references - springer978-1-4939-0761-8/1.pdf · references 177 malhotra, a., & coupland, j. n....

8
175 References Allen, M. P., & Tildesley, D. J. (1987). Computer Simu- lation of Liquids (p. 385). Oxford: Oxford University Press. Anema, S. G., & Mckenna, A. B. (1996). Reaction Kinet- ics of Thermal Denaturation of Whey Proteins in Heated Reconstituted Whole Milk. Journal of Agri- cultural and Food Chemistry, 44, 422–428. Arnold, G., Schuldt, S., Schneider, Y., Friedrichs, J., Bab- ick, F., Werner, C., & Rohm, H. (2013). The impact of lecithin on rheology, sedimentation and particle inter- actions in oil-based dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 418, 147–156. doi:10.1016/j.colsurfa.2012.11.006. Atkins, P. (2007). Four laws that drive the universe (p. 131). Oxford: Oxford University Press. Atkins, P., & De Paula, J. (2006). Atkins’ Physical Chem- istry (8th ed., p. 1051). New York: W. H. Freeman and Company. Avery, H. E. (1974). Basic Reaction Kinetics and Mecha- nism (p. 174). London: MacMillan. Azanha, A., & Faria, J. (2005). Use of Mathematical Models for Estimating the Shelf-life of Cornflakes in Flexible Packaging. Packaging Technology and Sci- ence, 18(May), 171–178. Basaran, T. K., Coupland, J. N., & McClements, D. J. (1999). Monitoring Molecular Diffusion of Sucrose in Xanthan Solutions using Ultrasonic Velocity Measure- ments. Journal of Food Science, 64(1), 125–128. BeMiller, J. N., & Huber, K. C. (2008). Carbohydrates. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), Fennema’s Food Chemistry (4th ed., pp. 83–154). Boca Raton: CRC Press. Berg, J. C. (2010). An Introduction to Interfaces and Col- loids: The Bridge to Nanoscience (p. 785). New Jer- sey: World Scientific. Bohlin, L., Hegg, P.-O., & Ljusberg-Wahren, H. (1984). Viscoelastic Properties of Coagulating Milk. Journal of Dairy Science, 67(4), 729–734. doi:10.3168/jds. S0022-0302(84)81362-4. Bourne, M. (2002). Food Texture and Viscosity: Concept and Measurement (2nd ed., p. 416). Oxford: Academic Press. Chanamai, R., & McClements, D. J. (2000). Impact of Weighting Agents and Sucrose on Gravitational Sepa- ration of Beverage Emulsions. Journal of agricultural and food chemistry, 48(11), 5561–5565. doi:10.1021/ jf0002903. Chanamai, R., & McClements, D. J. (2001). Depletion Flocculation of Beverage Emulsions by Gum Arabic and Modified Starch. Journal of food science, 66(3), 457–463. Chumpitaz, L. D. A., Coutinho, L. F., & Meirelles, A. J. A. (1999). Surface tension of fatty acids and triglycer- ides. Journal of the American Oil Chemists’ Society, 76(3), 379–382. doi:10.1007/s11746-999-0245-6. Clark, A. H., & Ross-Murphy, S. B. (1987). Structural and Mechanical Properties of Biopolymer Gels. In Advances in Polymer Science. Berlin, Heidelberg: Springer-Verlag. Côté, A. S., Smith, W., & Lindan, P. J. (2014). Dem- ocritus. Retrieved from http://www.compsoc.man. ac.uk/~lucky/Democritus/Basic/Contents.html. Damodaran, S. (2008). Amino Acids, Peptides and Proteins. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), Fennema’s Food Chemistry (4th ed., pp. 217–330). Boca Raton. Dhami, R., Harding, S. E., Jones, T., Hughes, T., Mitchell, J. R., & To, K. (1995). Physico-chemical studies on a commercial food-grade xanthan—I. Characterisation by sedimentation velocity, sedimentation equilibrium and viscometry. Carbohydrate polymers, 21, 93–99. Dickinson, E. (1992). An Introduction to Food Colloids (p. 214). Oxford: Oxford University Press. Dickinson, E. (2012). Use of nanoparticles and micropar- ticles in the formation and stabilization of food emul- sions. Trends in Food Science & Technology, 24(1), 4–12. doi:10.1016/j.tifs.2011.09.006. Dill, K. A., Bromberg, S., & Stigter, D. (2003). Molecular driving forces: statistical thermodynamics in chemis- try and biology (1st ed., p. 665). New York: Garland Science. Esteban, B., Riba, J.-R., Baquero, G., Puig, R., & Rius, A. (2012). Characterization of the surface tension of veg- etable oils to be used as fuel in diesel engines. Fuel, 102, 231–238. doi:10.1016/j.fuel.2012.07.042. Evans, D. F., & Wennerström, H. (1994). The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet (1st ed., p. 515). New York: Wiley -VCH. Feynman, R. P. (1963). Lectures in Physics. Retrieved from http://www.feynmanlectures.info/docroot/I_46. html#Ch46-S5. Flory, P. J. (1974). Introductory lecture. Faraday Discus- sions of the Chemical Society, 57, 7–18. doi:10.1039/ dc9745700007. J. N. Coupland, An Introduction to the Physical Chemistry of Food, Food Science Text Series, DOI 10.1007/978-1-4939-0761-8, © Springer Science+Business Media New York 2014

Upload: buihanh

Post on 06-May-2018

217 views

Category:

Documents


1 download

TRANSCRIPT

175

References

Allen, M. P., & Tildesley, D. J. (1987). Computer Simu-lation of Liquids (p. 385). Oxford: Oxford University Press.

Anema, S. G., & Mckenna, A. B. (1996). Reaction Kinet-ics of Thermal Denaturation of Whey Proteins in Heated Reconstituted Whole Milk. Journal of Agri-cultural and Food Chemistry, 44, 422–428.

Arnold, G., Schuldt, S., Schneider, Y., Friedrichs, J., Bab-ick, F., Werner, C., & Rohm, H. (2013). The impact of lecithin on rheology, sedimentation and particle inter-actions in oil-based dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 418, 147–156. doi:10.1016/j.colsurfa.2012.11.006.

Atkins, P. (2007). Four laws that drive the universe (p. 131). Oxford: Oxford University Press.

Atkins, P., & De Paula, J. (2006). Atkins’ Physical Chem-istry (8th ed., p. 1051). New York: W. H. Freeman and Company.

Avery, H. E. (1974). Basic Reaction Kinetics and Mecha-nism (p. 174). London: MacMillan.

Azanha, A., & Faria, J. (2005). Use of Mathematical Models for Estimating the Shelf-life of Cornflakes in Flexible Packaging. Packaging Technology and Sci-ence, 18(May), 171–178.

Basaran, T. K., Coupland, J. N., & McClements, D. J. (1999). Monitoring Molecular Diffusion of Sucrose in Xanthan Solutions using Ultrasonic Velocity Measure-ments. Journal of Food Science, 64(1), 125–128.

BeMiller, J. N., & Huber, K. C. (2008). Carbohydrates. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), Fennema’s Food Chemistry (4th ed., pp. 83–154). Boca Raton: CRC Press.

Berg, J. C. (2010). An Introduction to Interfaces and Col-loids: The Bridge to Nanoscience (p. 785). New Jer-sey: World Scientific.

Bohlin, L., Hegg, P.-O., & Ljusberg-Wahren, H. (1984). Viscoelastic Properties of Coagulating Milk. Journal of Dairy Science, 67(4), 729–734. doi:10.3168/jds.S0022-0302(84)81362-4.

Bourne, M. (2002). Food Texture and Viscosity: Concept and Measurement (2nd ed., p. 416). Oxford: Academic Press.

Chanamai, R., & McClements, D. J. (2000). Impact of Weighting Agents and Sucrose on Gravitational Sepa-ration of Beverage Emulsions. Journal of agricultural and food chemistry, 48(11), 5561–5565. doi:10.1021/jf0002903.

Chanamai, R., & McClements, D. J. (2001). Depletion Flocculation of Beverage Emulsions by Gum Arabic and Modified Starch. Journal of food science, 66(3), 457–463.

Chumpitaz, L. D. A., Coutinho, L. F., & Meirelles, A. J. A. (1999). Surface tension of fatty acids and triglycer-ides. Journal of the American Oil Chemists’ Society, 76(3), 379–382. doi:10.1007/s11746-999-0245-6.

Clark, A. H., & Ross-Murphy, S. B. (1987). Structural and Mechanical Properties of Biopolymer Gels. In Advances in Polymer Science. Berlin, Heidelberg: Springer-Verlag.

Côté, A. S., Smith, W., & Lindan, P. J. (2014). Dem-ocritus. Retrieved from http://www.compsoc.man.ac.uk/~lucky/Democritus/Basic/Contents.html.

Damodaran, S. (2008). Amino Acids, Peptides and Proteins. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), Fennema’s Food Chemistry (4th ed., pp. 217–330). Boca Raton.

Dhami, R., Harding, S. E., Jones, T., Hughes, T., Mitchell, J. R., & To, K. (1995). Physico-chemical studies on a commercial food-grade xanthan—I. Characterisation by sedimentation velocity, sedimentation equilibrium and viscometry. Carbohydrate polymers, 21, 93–99.

Dickinson, E. (1992). An Introduction to Food Colloids (p. 214). Oxford: Oxford University Press.

Dickinson, E. (2012). Use of nanoparticles and micropar-ticles in the formation and stabilization of food emul-sions. Trends in Food Science & Technology, 24(1), 4–12. doi:10.1016/j.tifs.2011.09.006.

Dill, K. A., Bromberg, S., & Stigter, D. (2003). Molecular driving forces: statistical thermodynamics in chemis-try and biology (1st ed., p. 665). New York: Garland Science.

Esteban, B., Riba, J.-R., Baquero, G., Puig, R., & Rius, A. (2012). Characterization of the surface tension of veg-etable oils to be used as fuel in diesel engines. Fuel, 102, 231–238. doi:10.1016/j.fuel.2012.07.042.

Evans, D. F., & Wennerström, H. (1994). The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet (1st ed., p. 515). New York: Wiley -VCH.

Feynman, R. P. (1963). Lectures in Physics. Retrieved from http://www.feynmanlectures.info/docroot/I_46.html#Ch46-S5.

Flory, P. J. (1974). Introductory lecture. Faraday Discus-sions of the Chemical Society, 57, 7–18. doi:10.1039/dc9745700007.

J. N. Coupland, An Introduction to the Physical Chemistry of Food, Food Science Text Series, DOI 10.1007/978-1-4939-0761-8, © Springer Science+Business Media New York 2014

176 References

Francis, M. J., Gulati, N., & Pashley, R. M. (2006). The dispersion of natural oils in de-gassed water. Journal of colloid and interface science, 299(2), 673–677. doi:10.1016/j.jcis.2006.02.055.

Funami, T., Kataoka, Y., Omoto, T., Goto, Y., Asai, I., & Nishinari, K. (2005). Food hydrocolloids control the gelatinization and retrogradation behavior of starch. 2a. Functions of guar gums with different molecular weights on the gelatinization behavior of corn starch. Food Hydrocolloids, 19(1), 15–24. doi:10.1016/j.foodhyd.2004.04.008.

Gaonkar, A. G. (1989). Interfacial Tensions of Vegetable Oil/Water Systems: Effect of Oil Purification. Jour-nal of the American Oil Chemists Society, 66(8), 1090–1092.

Gerber, W. (2014). Surface Tension. gPhysics.net. Retrieved from http://gphysics.net/index.php/surface-tension.

Ghanbarzadeh, B., Musavi, M., Oromiehie, A. R., Rezayi, K., Razmi Rad, E., & Milani, J. (2007). Effect of plas-ticizing sugars on water vapor permeability, surface energy and microstructure properties of zein films. LWT—Food Science and Technology, 40(7), 1191–1197. doi:10.1016/j.lwt.2006.07.008.

Ghosh, S., Peterson, D. G., & Coupland, J. N. (2006). Effects of droplet crystallization and melting on the aroma release properties of a model oil-in-water emul-sion. Journal of agricultural and food chemistry, 54(5), 1829–1837. doi:10.1021/jf052262w.

Goral, M., Wiśniewska-Gocłowska, B., & Mączyński, A. (2006). Recommended Liquid–Liquid Equilibrium data. Part 4. 1-Alkanol–Water Systems. Journal of Physical and Chemical Reference Data, 35(3), 1391. doi:10.1063/1.2203354.

Grosberg, A. Y., & Khokhlov, A. R. (2010). Giant Mol-ecules: Here, There and Everywhere (2nd ed., p. 348). Singapore: World Scientific Publishing Company.

Hagiwara, T., & Hartel, R. W. (1996). Effect of Sweetener, Stabilizer, and Storage Temperature on Ice Recrystal-lization in Ice Cream. Journal of Dairy Science, 79(5), 735–744. doi:10.3168/jds.S0022-0302(96)76420-2.

Hammes, G. G. (2000). Thermodynamics and kinetics for the biological sciences (p. 184). New York: Wiley.

Hartel, R. W. (2001). Crystallization in Foods (p. 325). Gaithersburg: Aspen.

Haynes, W. M., Bruno, T. J., & Lide, D. R. (Eds.). (2013). CRC Handbook of Chemistry and Physics (93rd Inte.). CRC Press.

Haynie, D. T. (2001). Biological thermodynamics (p. 379). Cambridge: Cambridge University Press.

Herrera, M. L., de Leon Gatti, M., & Hartel, R. W. (1999). A kinetic analysis of crystallization of a milk fat model system. Food Research International, 32(4), 289–298. doi:10.1016/S0963-9969(99)00083-6.

Hiemenz, P. C., & Rajagopalan, R. (1997). Principles of Colloid and Surface Chemistry (p. 672). Boca Raton: CRC Press.

Hoffmann, R. (1998). Qualitative thinking in the age of modern computational. Journal of Molecular Struc-ture (Theochem), 424, 1–6.

Hunter, R. J. (2001). Foundations of Colloid Science (2nd ed., p. 816). Oxford: Oxford University Press.

Inaba, H., & Sato, K. (1996). A measurement of interfa-cial tension between tetradecane and ethylene glycol water solution by means of the pendant drop method. Fluid Phase Equilibria, 125(1–2), 159–168.

Israelachvili, J. N. (1991). Intermolecular and surface forces (p. 450). Academic Press.

Israelachvili, J., & Adams, G. (1978). Measurement of forces between two mica surfaces in aqueous elec-trolyte solutions in the range 0–100 nm. Journal of the Chemical Society, Faraday Transactions, 74, 975–1001.

Jasper, J., & Kring, V. (1955). The isobaric surface ten-sions and thermodynamic properties of the surfaces of a series of normal-alkanes, C-5 to C-18, 1-alkenes, C-6 to C-16, and of normal-decylcyclopentane, nor-mal-decylcyclohexane and normal-decylbenzene. Journal of Physical Chemistry, 2142(3), 3–5.

Johansson, D., & Bergenståhl, B. (1995). Lecithins in oil-continuous emulsions. Fat crystal wetting and inter-facial tension. Journal of the American Oil Chemists’ Society, 72(2), 205–211. doi:10.1007/BF02638901.

Jungwirth, P., & Tobias, D. J. (2006). Specific Ion Effects at the Air/Water Interface. Chemical Reviews, 106(4), 1259–1281.

Kavanagh, G., & Ross-Murphy, S. (1998). Rheological Characterization of Polymer Gels. Progress in Poly-mer Science, 23(97), 533–562.

Kontogiorgos, V., Tosh, S. M., & Wood, P. J. (2009). Phase behaviour of high molecular weight oat β-glucan/whey protein isolate binary mixtures. Food Hydrocolloids, 23(3), 949–956. doi:10.1016/j.foodhyd.2008.07.005.

Koocheki, A., Ghandi, A., Razavi, S. M. A., Mortazavi, S. A., & Vasiljevic, T. (2009). The rheological prop-erties of ketchup as a function of different hydro-colloids and temperature. International Journal of Food Science & Technology, 44(3), 596–602. doi:10.1111/j.1365-2621.2008.01868.x.

Labuza, T. P., & Labuza, P. S. (2004). Influence of tem-perature and relative humidity on the physical states of cotton candy. Journal of Food Processing and Preser-vation, 28(4), 274–287.

Le Meste, M., Champion, D., Roudaut, G., Blond, G., & Simato, D. (2002). Glass Transition and Food Tech-nology: A Critical Appraisal. Journal of Food Science, 67(7), 2444–2458.

Levine, H., & Slade, L. (1992). Glass transitions in foods. In H. Schwartberg & R. W. Hartel (Eds.), Physical Chemistry of Foods (pp. 83–222). New York: Marcel Dekker, Inc.

Macosko, C. W. (1994). Rheology: Principles, Mea-surements, and Applications (p. 568). New York: Wiley-VCH.

Makki, F., & Durance, T. D. (1996). Thermal inactivation of lysozyme as influenced by pH, sucrose and sodium chloride and inactivation and preservative effect in beer. Food Research International, 29(7), 635–645. doi:10.1016/S0963-9969(96)00074-9.

177References

Malhotra, A., & Coupland, J. N. (2004). The effect of sur-factants on the solubility, zeta potential, and viscos-ity of soy protein isolates. Food Hydrocolloids, 18(1), 101–108. doi:10.1016/S0268-005X(03)00047-X.

McClements, D. J. (2004). Food Emulsions. Principles, Practices and Techniques (2nd ed.). Boca Raton: CRC Press.

Miller, D. D. (1998). Food Chemistry: A Laboratory Manual (p. 168). Hoboken: John Wiley & Sons Ltd.

Morris, E. R. (2009). Functional Interactions in Gelling Biopolymer Mixtures. In S. Kapsis, I. T. Norton, & J. Ubbink (Eds.), MODERN BIOPOLYMER SCIENCE (First Edit., pp. 167–198). Elsevier Inc. doi:10.1016/B978-0-12-374195-0.00005-7.

Mullen, J. W. (2001). Crystallization (4th ed., p. 600). Oxford: Butterworth-Heinemann.

Nagano, T., & Nishinari, K. (2001). Rheological studies on commercial egg white using creep and compres-sion measurements. Food Hydrocolloids, 15(4–6), 415–421. doi:10.1016/S0268-005X(01)00053-4.

Naresh, M. D., Subramanian, V., Jaimohan, S. M., Raja-ram, A., Arumugam, V., Usha, R., & Mandal, A. B. (2007). Crystal structure analysis of Hen egg white lysozyme grown by capillary method. Protein Data Bank. doi:10.2210/pdb2epe/pdb.

Needham Jr., T. E., Patuta, A. N., & Gerraughty, R. J. (1971). Solubility of Amino Acids in Pure Solvent Systems. Journal of Pharmaceutical Sciences, 60(4), 565–568.

Niño, M. R. R., & Patino, J. M. R. (1998). Surface ten-sion of bovine serum albumin and tween 20 at the air–aqueous interface. Journal of the American Oil Chemists’ Society, 75(10), 1241–1248. doi:10.1007/s11746-998-0169-6.

NIST. (2014). Thermophysical Properties of Fluid Sys-tems- The NIST Webbook.

Nordmark, T., & Ziegler, G. (2000). Quantitative assess-ment of phase composition and morphology of two-phase gelatin–pectin gels using fluorescence microscopy. Food hydrocolloids, 14, 579–590.

Painter, P. C., & Coleman, M. (2004). Painter and Cole-man on Polymers: Polymer Science and Engineering (p. CD–ROM). Lancaster: DEStech Publications.

Peres, A. M., & Macedo, E. a. (1996). Thermodynamic properties of sugars in aqueous solutions: correla-tion and prediction using a modified UNIQUAC model. Fluid Phase Equilibria, 123(1–2), 71–95. doi:10.1016/S0378-3812(96)90013-8.

Picuell, L., Bergfeldt, K., & Nilsson, S. (1995). Factors determining phase behaviour of multi-component polymer systems. In S. E. Harding, S. E. Hill, & J. R. Mitchell (Eds.), Biopolymer mixtures (pp. 13–36). Nottingham: Nottingham University Press.

Raghavan, S. R., & Douglas, J. F. (2012). The conundrum of gel formation by molecular nanofibers, wormlike micelles, and filamentous proteins: gelation without cross-links? Soft Matter, 8(33), 8539. doi:10.1039/c2sm25107h.

Rees, D. A. (1977). Polysaccharide Shapes (p. 80). New York: John Wiley & Sons, Inc.

Reid, D. S., & Fennema, O. R. (2008). Water and Ice. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), Fennema’s Food Chemistry (4th ed., pp. 17–82). Boca Raton: CRC Press.

Rodríguez Patino, J. M., Sanchez, C. C., & Rodríguez Niño, M. R. (1999). Structural and morphological characteristics of b-casein monolayers at the air–water interface. Food Hydrocolloids, 13, 401–408.

Rousset, P. (2002). Modelling Crstallization Kinetics of Triacylglycerols. In A. G. Marangoni & S. S. Narine (Eds.), Physical Properties of Lipids (pp. 1–36). New York: Marcel Dekker.

Russel, W. W., Saville, D. A., & Schowalter, W. R. (1992). Colloidal Dispersions (p. 544). Cambridge: Cam-bridge University Press.

Ryan-Stoneham, T., & Tong, C. H. (2000). Degradation Kinetics of Chlorophyll in Peas as a Function of pH. Journal of Food Science, 65(8), 1296–1302.

Sá, M., Figueiredo, A., & Sereno, A. (1999). Glass transi-tions and state diagrams for fresh and processed apple. Thermochimica acta, 329, 31–38.

Schneider, E. D., & Sagan, D. (2005). Into the cool: energy flow, thermodynamics and life (p. 362). Chi-cago: University of Chicago Press.

Shaw, D. J. (1992). Introduction to colloid and surface chemistry (p. 306). Oxford: Butterworth-Heinemann.

Stoklosa, A. M., Lipasek, R. A., Taylor, L. S., & Mauer, L. J. (2012). Effects of storage conditions, formula-tion, and particle size on moisture sorption and flow-ability of powders: a study of deliquescent ingredient blends. Food Research International, 49(2), 783–791. doi:10.1016/j.foodres.2012.09.034.

Talbot, G. (2014). Water Structure and Science. Retrieved from http://www1.lsbu.ac.uk/water/.

Tangsuphoom, N., & Coupland, J. N. (2009). Effect of surface-active stabilizers on the surface properties of coconut milk emulsions. Food Hydrocolloids, 23(7), 1801–1809. doi:10.1016/j.foodhyd.2008.12.002.

Tinoco, I., Sauer, K., Wang, J. C., & Puglisi, J. D. (2002). Physical chemistry: principles and applications in biological sciences (4th ed., p. 740). Upper Saddle River: Prentice-Hall Inc.

Van der Linden, E., & Foegeding, E. A. (2009). Gelation: Principles, Models and Applications to Proteins. In S. Kasapis, I. T. Norton, & J. Ubbink (Eds.), Mod-ern Biopolymer Science (pp. 29–91). Elsevier Inc. doi:10.1016/B978-0-12-374195-0.00002-1.

Van Vliet, T. (1996). Large deformation and fracture behaviour of gels. Current Opinion in Colloid & Interface Science, 1(6), 740–745. doi:10.1016/S1359-0294(96)80075-6.

Vonnegut, K. (1963). Cat’s Cradle (p. 224). London: Pen-guin Classics.

Walstra, P. (2003). Physical Chemistry of Foods (p. 832). New York: Marcel Dekker, Inc.

178 References

Wille, R. L., & Lutton, E. S. (1966). Polymorphism of cocoa butter. Journal of the American Oil Chemists’ Society, 43(8), 491–6.

Wolf, W., Spiess, W. E. L., Jung, G., Weisser, H., Bizot, H., & Duckworth, R. B. (1984). The water-vapour sorption isotherms of microcrystalline cellulose (MCC) and of purified potato starch. Results of a col-laborative study. Journal of Food Engineering, 3(1), 51–73. doi:10.1016/0260-8774(84)90007-4.

Young, F. E., & Jones, F. T. (1949). Sucrose Hydrates. The Sucrose–Water Phase Diagram. Journal of Physical and Colloid Chemistry, 53(9), 1334–1350.

Yucel, U., & Coupland, J. N. (2010). Ultrasonic char-acterization of lactose dissolution. Journal of Food Engineering, 98(1), 28–33. doi:10.1016/j.jfoodeng.2009.12.003.

Zhou, Y., & Hartel, R. W. (2006). Phase behavior of model lipid systems: Solubility of high-melting fats in low-melting fats. Journal of the American Oil Chemists’ Society, 83(6), 505–511. doi:10.1007/s11746-006-1233-8.

179

Index

J. N. Coupland, An Introduction to the Physical Chemistry of Food, Food Science Text Series, DOI 10.1007/978-1-4939-0761-8, © Springer Science+Business Media New York 2014

Symbolsζ-potential, 140, 142χ-parameter, 111, 118

AActivity, 13, 16, 20, 29Adams, G., 139Aggregation, 48, 114, 115, 137, 149, 173

destabilization due to, 150–153Allen, M.P., 40Amorphous phase, 90, 103Anema, S.G., 46, 47Arnold, G., 155Arrhenius equation, 45, 50Asymmetric units, 89Atkins, P., 17, 40, 50, 68Avery, H.E., 50Avrami equation, 96, 97Azanha, A., 15

BBasaran, T.K., 21BeMiller, J.N., 130Bergenståhl, B., 77Bergfeldt, K., 130Berg, J.C., 86, 157Binodal phase separation, 66, 67Blond, G., 105Bohlin, L., 169Boiling, 7, 52, 53, 57, 159Boltzmann distribution, 4–7, 24, 39, 41, 42, 47, 50, 141Bonds, 19, 22

chemical, 22covalent, 22, 24, 25ionic, 23

Bourne, M., 174Bromberg, S., 17, 40, 50, 68, 86, 118, 129Bruno, T.J., 23, 24, 31

CCalorimetry

differential scanning, 59, 95of starch, 8–10

Capillary condensation, 83Capillary rise, 82

computing of, 82schematic illustration of, 82

Catalysis, 48Catalyst See also Catalysis, 48Champion, D., 105Chanamai, R., 146, 149Chemical potential, 10, 11, 16

calculation of, 12in crystal phase, 92in gas phase, 81of ethyl heptanoate, 13

Chocolateeffect of lecithin on, 155effect of temperature on, 101, 102fat type in See also Cocoa butter, 101

Chocolate See chemical potential of, 11Chumpitaz, L.D.A., 70Clark, A.H., 174Coalescence, 150, 152

formation of, 152of fluid droplets, 153particle aggregation by, 150

Cocoa butterchemical structure of, 101effect of temperature on, 59, 102polymorphic forms of, 101

Coleman, M., 129Colloidal forces

depletion, 145, 146, 147DLVO, 143electrostatic, 140–144hydrophobic, 147measurement, 156steric, 144, 145

180 Index

Van der Waals, 139, 140Contact angle, 71–73, 77, 82Coordination number, 38, 60, 62, 73, 81, 161Côté, A.S., 40Coulomb’s law, 28, 31, 138Coupland, J.N., 21, 95, 136, 142Creaming, 137, 146, 148–150Creep, 165, 168Crystal embryo, 82, 93, 94Crystal growth, 96–98Crystal lattice, 29, 63, 90

Bravais lattices, 90

DDamodaran, S., 130Debye screening, 141De Paula, J., 17, 40, 50, 68Dhami, R., 126Dickinson, E., 75, 86, 130, 149, 157, 174Diffusion, 11, 16, 20, 21, 67, 72, 97, 100, 102, 103,

111, 151Dill, K.A., 17, 40, 50, 68, 86, 118, 129Dipole, 30–33, 139Douglas, J.F., 161Durance, T.D., 115

EElastic modulus

complex, 167measurement, 163, 165shear, 80, 165surface, 79, 80Young’s, 163, 165

Electrical double layer, 140Electronegativity, 23Emulsion, 70, 76, 77, 80, 95, 119, 131, 132, 144, 147,

149, 151Energy, 2, 3, 5, 6Enthalpy, 7–9, 16, 47, 53, 57, 58, 87, 93, 98, 101, 111,

117, 119Entropy, 1, 3, 4, 6, 9, 11, 16, 22, 35, 53, 54

of mixing, 57, 61, 62Esteban, B., 70Evans, D.F., 68, 86, 129, 157Eyring equation, 47

FFaria, J., 15Fennema, O.R., 40Feynman, R.P., 4, 19Fisher-Turnbull equation, 91Flocculation, 146, 149–151, 153Flory-Huggins equation, 118Foam, 7, 44, 79, 82, 131–133, 148, 153Foegeding, E.A., 174Fractal dimension, 136, 137Fracture, 155, 159, 162, 164, 165, 170, 172Francis, M.J., 147

Freezing, 10, 11, 52, 98Funami, T., 126

GGaonkar, A.G., 70Gel, 115, 119–121

particle, 154, 170polymer, 161, 170

Ghanbarzadeh, B., 72Ghosh, S., 11Gibbs free energy, 9–11, 47, 93Gibbs isotherm, 77, 79Gibbs-Marangoni effect, 151Glassy state, 21, 103, 104Goral, M., 60Grosberg, A.Y., 129Gulati, N., 147

HHagiwara, T., 100Hammes, G.G., 17Hartel, R.W., 59, 68, 90, 100, 103, 105Haynes, W.M., 23, 24, 31Haynie, D.T., 17Henderson–Hasselbalch equation, 36Herrera, M.L., 91, 92, 97Hildebrand equation, 58, 59Huber, K.C., 130Hunter, R.J., 157Hydrophobic, 33, 35, 36, 40, 71, 72, 74, 75, 113–115,

144, 147, 171

IIce cream, 51, 70, 77, 87, 105, 132, 148, 153Inaba, H., 70Intermolecular interactions

electrostatic, 32, 34, 35hydrogen bonds, 35steric, 34Van der Waals, 32–34

Internal energy, 7–9, 39, 62, 85Isoelectric point, 79, 108, 119Isomass rounding, 99, 100Israelachvili, J., 139

JJasper, J., 70Johansson, D., 77Jones, F.T., 55Jungwirth, P., 70

KKavanagh, G., 174Khokhlov, A.R., 129Kontogiorgos, V., 56Koocheki, A., 129Krieger-Dougherty relation, 154Kring, V., 70

181Index

LLabuza, P.S., 104Labuza, T.P., 104Laplace pressure, 80, 133, 153Lattice model, 60, 61, 73, 74, 117Lecithin, 74, 77, 131, 155Le Meste, M., 105Lennard-Jones potential, 37, 38, 61Levine, H., 105Lide, D.R., 23, 24, 31Lindan, P.J., 40Lineweaver-Burke plot, 49Lutton, E.S., 101Lysozyme, 112–115

MMacedo, E.A., 55Macosko, C.W., 130, 157Mączyński, A., 60Makki, F., 115Malhotra, A., 142Mark-Houwink equation, 125, 126McClements, D.J., 21, 40, 86, 139, 146, 149, 157Mckenna, A.B., 46, 47Moisture sorption, 14, 15, 83Molecular dynamics simulation, 39Monte Carlo simulation, 39Morris, E.R., 130Mullen, J.W., 105

NNagano, T., 173Naresh, M.D., 113Needham, T.E., Jr., 36, 37Nilsson, S., 130Niño, M.R.R., 77, 79Nishinari, K., 173Nordmark, T., 121Nucleation, 67, 84, 87, 90–94

homogenous, 82

OOstwald- de Waele equation, 128Ostwald ripening, 83, 98, 100, 148Overrun, 132

PPainter, P.C., 129Particle size, 133–136, 149, 154Partition coefficient, 12Pashley, R.M., 147Patino, J.M.R., 77Peres, A.M., 55Phase angle, 169Phase diagram, 58, 60, 65, 67, 87, 98, 121

multicomponent, 54–56single component, 51, 53, 54

Pickering stabilization, 75

Picuell, L., 130Polarization, 23, 29Polymer conformation, 111, 129Polymer structure

primary, 108, 110, 113, 114, 116, 117quaternary, 114secondary, 114tertiary, 113, 114

Polymorphism, 100, 101Polysaccharide, 107–109

molecules. shape of, 116, 117Protein, 70, 72, 74–77, 79

denaturation, 115Puglisi, J.D., 17, 50

RRaghavan, S.R., 161Random coil, 111–113, 124, 125Rate constant, 41–43, 45, 46, 50Reaction order, 42–45Rees, D.A., 130Reid, D.S., 40Rodríguez Patino, J.M., 79, 80Ross-Murphy, S., 174Ross-Murphy, S.B., 174Roudaut, G., 105Rousset, P., 101Rubbery state, 103, 104Russel, W.W., 157Ryan-Stoneham, T., 43, 45

SSagan, D., 17Sá, M., 14Sanchez, C.C., 79Sato, K., 70Sauer, K., 17, 50Saville, D.A., 157Schneider, E.D., 17Schowalter, W.R., 157Sedimentation See Creaming, 137Shaw, D.J., 70Simato, D., 105Slade, L., 105Smith, W., 40Smoluchowski equation, 151Sol, 131Solubility, 51, 54, 58, 59, 65

of amino acids, 37Solutions, 12–14Solvent quality, 116, 126Sorption, 76, 77Specific heat, 8, 34Spinodal phase separation, 66Starch

calorimetry of, 8–10granule, 87

Stigter, D., 17, 40, 50, 68, 86, 118, 129Stokes-Einstein equation, 124, 153

182 Index

Stoklosa, A.M., 83Strain, 123, 128Stress, 123, 126, 128Surface area, 7, 49, 70, 72, 73, 76, 78–80, 93, 123,

134, 149Surface energy, 70, 82, 84, 94Surface pressure, 79, 80Surface tension, 71, 73, 76, 78, 80, 82, 155

molecular basis of, 73, 74Surfactant, 74–76, 79, 85

TTalbot, G., 40Tangsuphoom, N., 95Tie-line, 54Tildesley, D.J., 40Tinoco, I., 17, 50Tobias, D.J., 70Tong, C.H., 43, 45Tosh, S.M., 56

UUnit cell, 90, 98

VValency

fixed, 22Van der Linden, E., 174Van Vliet, T., 172Viscoelasticity, 171

Viscositydefining, 121–124intrinsic, 124–126measurement, 124Newtonian, 123non-Newtonian, 126, 128, 129of dilute polymer solution, 124, 125specific, 126

Volume fraction, 132–134, 149, 151, 153, 154Vonnegut, K., 88

WWalstra, P., 17, 29, 40, 50, 86, 105, 130, 139, 157Wang, J.C., 17, 50Water, 21, 24, 28, 30, 31

bonding in, 34–36Water activity, 13–15, 83, 116Wennerström, H., 68, 86, 129, 157Wetting angle See Contact angle, 71Wilhelmy plate, 72Wille, R.L., 101Wiśniewska-Gocłowska, B., 60Wolf, W., 14Wood, P.J., 56

YYoung, F.E., 55Yucel, U., 136

ZZhou, Y., 59Ziegler, G., 121