references - university of tasmania · references campbell, i.h., and hill, r.i., 1988, a two-stage...

82
References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite- greenstone terrains of the Kalgoorlie-Norseman area, Western Australia: Earth and Planetary Science Letters, v. 90, p. 11-25. Coney, P.J., Edwards, A., Hine, R., Morrison, F., and Windrum, D., 1990, The regional tectonics of the Tasman orogenic system, eastern Australia, Journal of Structural Geology, v.12 Cooper, I., and Gernett, N., 1996, Internal Report. Browns Creek Mine Area Compilation, Hargraves Resources NL. Crawford, T., 1999, Lithostratigraphy and lithochemistry of volcanic and intrusive rocks-a preliminary report, Origin and metallogenesis of Ordovician volcanic belts of central western NSW, (SPIRT). Dickinson, W.R., Beard, L.S., Brakenridge, G.R., Eijavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A., and Ryberg, P.T., 1983, Provenance of North American sandstones in relation to tectonic setting: Geological Society of America Bulletin, v. 94, p. 222-235. Fergusson, C.L., and Coney, P.J., 1992, Convergence and intraplate deformation in the Lachlan Fold Belt of southeastern Australia: Tectonophysics, v. 214, p. 417-439. Fergusson, C.L., and VandenBerg, A.H.M., 1990, Middle Palaeozoic thrusting in the eastern Lachlan Fold Belt, southeastern Australia: Journal of Structural Geology, v. 12, p. 577-589. Gill, J.B., 1981, Orogenic andesites and plate tectonics: Berlin, Springer-Verlag. Gill, J.B., and Whelan, P., 1989, Early rifting of an ocean island arc (Fiji) produced shoshonitic to tholeiitic basalts: Journal of Geophysical Research, v. 94, p. 4561-4578. rucks in CFlHra!

Upload: others

Post on 04-Jun-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

References

Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite­

greenstone terrains of the Kalgoorlie-Norseman area, Western Australia: Earth and

Planetary Science Letters, v. 90, p. 11-25.

Coney, P.J., Edwards, A., Hine, R., Morrison, F., and Windrum, D., 1990, The regional

tectonics of the Tasman orogenic system, eastern Australia, Journal of Structural Geology,

v.12

Cooper, I., and Gernett, N., 1996, Internal Report. Browns Creek Mine Area Compilation,

Hargraves Resources NL.

Crawford, T., 1999, Lithostratigraphy and lithochemistry of volcanic and intrusive rocks-a

preliminary report, Origin and metallogenesis of Ordovician volcanic belts of central

western NSW, (SPIRT).

Dickinson, W.R., Beard, L.S., Brakenridge, G.R., Eijavec, J.L., Ferguson, R.C., Inman,

K.F., Knepp, R.A., Lindberg, F.A., and Ryberg, P.T., 1983, Provenance of North American

Phanerozoi~ sandstones in relation to tectonic setting: Geological Society of America

Bulletin, v. 94, p. 222-235.

Fergusson, C.L., and Coney, P.J., 1992, Convergence and intraplate deformation in the

Lachlan Fold Belt of southeastern Australia: Tectonophysics, v. 214, p. 417-439.

Fergusson, C.L., and VandenBerg, A.H.M., 1990, Middle Palaeozoic thrusting in the

eastern Lachlan Fold Belt, southeastern Australia: Journal of Structural Geology, v. 12, p.

577-589.

Gill, J.B., 1981, Orogenic andesites and plate tectonics: Berlin, Springer-Verlag.

Gill, J.B., and Whelan, P., 1989, Early rifting of an ocean island arc (Fiji) produced

shoshonitic to tholeiitic basalts: Journal of Geophysical Research, v. 94, p. 4561-4578.

rucks in CFlHra!

Page 2: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Glen, R.A., 1992, Thrust, extensional and strik~-slip tectonics in an evolving Palaeozoic

orogen-a structural synthesis of the Lachlan Orogen of southeastern Australia:

Tectonophysics, v. 214, p. 341-380.

Glen, R.A., 1999, Elements and structure of the Junee-Narrornine (Western) volcanic belt,

SPIRT: Origin and metallogenesis of Ordovician volcanic belts of central western NSW.

Glen, R.A., and Walshe, J.L., 1999, Cross-structures in the Lachlan Orogen: the Lachlan

Transverse Zone example: Australian Journal of Earth Sciences, v. 46, p. 641-658.

Glen, R.A., and Watkins, J.J., 1994, The Orange 1:100 000 sheet: a preliminary account of

stratigraphy, structure and tectonics, and implications for mineralisation: Quarterly Notes

of the Geological Survey of New South Wales, v. 95, p. 1-17.

Glen, R.A.~ and Wyborn, D., 1997, Inferred thrust imbrication, deformation gradients and

the Lachlan Transverse Zone in the Eastern Belt of the Lachlan Orogen, New South Wales:

Australian Journal of Earth Sciences, v. 44, p. 49-68.

Glen, R.A., Walshe, J.L., Barron, L.M., and Watkins, J.J., 1998, Ordovician convergent­

margin volcanism and tectonism in the Lachlan sector of east Gondwana: Geology, v. 26,

p. 751-754.

Graham, J.M., 1998, Exploration for Au-Cu systems in the Browns Creek District, NSW:

Extended Abstracts LFB, v. September, p. 39-54.

Heithersay, P.S., and Walshe, J.L., 1995, Endeavor 26 north: a porphyry copper-gold

deposit in the late Ordovician, shoshonitic Goonumbla Volcanic Complex, New South

Wales, Australia: Economic Geology, v. 90, p. 1506-1532. ·

Henderson, G.A.M., 1991, Notes on the geology of the Blayney Area: Bureau of Mineral

Resources Record 1991166.

Kamenetsky, V.S., Crawford, A.J., and Meffre, S., 1999 Factors controlling chemistry of

magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions

from primitive rocks: unpubl.

in area" central

Page 3: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Kjolle, I., 1996, [Phd thesis], Australian National University.

Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Larneyre Le Bas, M.J., Sabine, P.A.,

Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A.R., and Zanettin, B., 1989, A

classification of igneous rocks and glossary of terms, Blackwell, Oxford.

Lowe, D.R., 1982, Sediment gravity flows: II. Depositional models with special reference

to the deposits of high density turbidity currents: Journal of Sedimentary Petrology, v. 52.

Meffre, S., and Scott, R., 1999, Geology of Ordovician volcanics in the Kiandra belt,

southernmost NSW, SPIRT: Origin and metallogenesis of Ordovician volcanic belts of

central western NSW.

Morrison, G.W., 1980, Characteristics and tectonic setting of the shoshonite rock

association: Lithos, v. 13, p. 97-108.

Muller, D., and Groves, D.I., 1993, Direct and indirect associations between potassic

igneous rocks, shoshonites and gold-copper deposits: Ore Geology Reviews, v. 8, p. 383-

406.

Oversby, B., 1971, Palaeozoic plate tectonics in the southern Tasman Geosyncline: Nature,

v. 234, p. 45-48.

Packham, G., Percival, I., and Bischoff, G., (In press), Age constraints on strata enclosing

the Cadia and Junction Reefs ore deposits of central New South Wales, and tectonic

implications: Quarterly Notes of the Geological Survey ofNew South Wales.

Parker, A.J., and Platt, J.P., eds., Australasian Tectonics, Volume 12: Journal of Structural

Geology, p. 519-543.

Patterson, S.R., Tobisch, O.T., and Morand, V.J., 1990, The influence of large ductile

shear zones on the emplacement and deformation of the Wyangala Batholith, SE Australia:

Journal of Structural Geology, v. 12, p. 639-650.

Pemberton, J.W., and Offler, R., 1985, Significance of clinopyroxene compositions from

the Cudgegong Volcanics and Toolamangang Volcanics: Cudgegong-Mudgee district,

NSW Australia: Mineralogical Magazine, v. 49, p. 591-599.

area, central

Page 4: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Pogson, D.J., and Watkins, J.J., 1998, Bathurst 1:250000 Geological Sheet Explanatory

Notes, Australian Geological Survey Organisation.

Rogers, N.W., and Setterfield, T.N., 1994, Potassium and incompatible-element

enrichment in shoshonitic lavas from the Tavua volcano, Fiji: Chemical Geology, v. 118,

p. 43-62.

Rollinson, H.R., 1993, Using Geochemical Data: Evaluation, Presentation, Interpretation,

Longman Group.

Scheibner, E., 1973, A plate tectonic model of the Palaeozoic tectonic history of New

South Wa1es: Journal of the Geological Society of Australia, v. 20, p. 405-426.

Scott, R., 1999, Unpublished work for the SPIRT program.

Solomon, M., 1990, Subduction, arc reversal, and the origin of porphyry copper-gold

deposits in island arcs: Geology, v. 18, p. 630-633.

Squire, R., 1999, Geological and metallogenic evolution of the southern Molong Volcanic

Belt, PhD student, Centre for Ore Deposit Research.

Suppel, D.W., Barnes, R.G., and Scheibner, E., 1998, The Palaeozoic in New South

Wa1es-geology and mineral resources: AGSO Journal of Australian Geology and

Geophysics, v. 17, p. 87-105.

Taylor, S.R., and Gorton, M.P., 1977, Geochemical application of spark source mass

spectrography-III. Element sensitivity, precision and accuracy: Geochimica et

Cosmochimica Acta, v. 41, p. 1375-1380.

Wa1ker, R.G., 1975, Generalized Facies Models for Resedimented Conglomerates of

Turbidite Association: Geological Society of America Bulletin, v. 86, p. 746.

Wilson, M., 1989, Igneous Petrogenesis, A Global Tectonic Approach, Chapman & Hall.

Wyborn, D., 1992, The tectonic significance of Ordovician magmatism in the eastern

Lachlan Fold Belt: Tectonophysics, v. 214, p. 177-192.

Page 5: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

I ·. I

APPENDIX 1: LITERATURE REVIEW

'The significance of alkaline magmatism associated with

worldclass Au-Cu deposits in the circum-Pacific'

Page 6: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

The significance of alkaline magmatism associated with worldclass Au-Cu deposits in the circum-Pacific

P.B. DUERDEN {962037)

Literature Review

Abstract

Many of the world's major Au-Cu deposits appear to be related temporally and

genetically with magmatism showing an alkaline or shoshonitic affinity. This alkaline

magmatism accounts for a minor proportion of magmatism volumetrically and is

produced in a wide variety of arc tectonic settings, especially those affected by

collisional tectonics. These collisional events may involve the collision of an active

oceanic arc with either another arc, continent or oceanic plateau. Collision appears to

be a critical process, as it often results in stalling the subducting slab and stopping the

magma flux characteristic ofnormal active subduction zones. A stalled slab will then

have the potential to become modified by hybridisation/metasomatism through the

interaction of fluids and/or melts. Following collision the importance of extensional

tectonics is emphasised in that it often results in extension-related decompression

partial melting of the metasomatised sub arc mantle. Zones of extension also appear

to facilitai:~ eruption of post-collisional magmas through the often thickened crust

resulting from collisional tectonics. The physico-chemical nature of alkalic arc

magmas provides favourable conditions for the production of metal-rich melts,

capable of reaching shallow levels in the crust, where hydrothermal processes have

the potential to concentrate metals forming an economic deposit. To investigate the

critical magmatic and tectonic variables operating to produce these metal rich

magmas it is useful to analyse examples from the southwestern Pacific as these

provide good modern analogues of the processes operating elsewhere.

Page 7: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

I would particularly like to thank Dr David Cooke and Assoc. Prof. Tony Crawford

for their views on how to tackle the topic and I would also like to thank Dr Bruce

Gemmell and Sebastien Meffre for providing information upon request. Rick Squire

is also thanked for his informative review of the project.

ii

Page 8: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

CONTENTS

Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgements ......................................... ii

Contents .................................................. iii

List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Chapter 1: Introduction ................. : . . . . . . . . . . . . . . . . . . . 1

Chapter 2: Alkaline Arc Magmatism. . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Magma Chemistry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Petrogenesis of Alkaline-Arc Magmas. . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 3: Discussion of Deposits Associated with Alkaline Igneous Activity: Modern Analogues from the Southwestern Pacific. . . . . . . . . . . . 4

3.1 Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Modern Analogues from the Southwest Pacific. . . . . . . . . . . . . . . 6 3.2.1 Porgera, Papua New Guinea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 .2.2 Lihir Island, Papua New Guinea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2.3 Emperor, Viti Levu, Fiji. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 4: Metallogenic Significance of Arc Magma Alkalinity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 5: Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Appendices

Page 9: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Figure 1 Map of the southwestern Pacific showing the location of the major

deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2 Regional tectonic map showing the location of the Tabar-Lihir-Tanga-Feni

island arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 3 Diagram showing the collision of the oceanic subcontinent the Ontong Java

Plateau into the Manus-Kilinailau trench .................................................... 11

Figure 4 Regional tectonic setting of the Fiji region showing the position of the

extinct Vitiaz trench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 5 Diagram showing the combined effects of the major controls affecting sulfur

solubility: temperature, oxygen fugacity and magma bulk composition

(alkalinity) ....................................................................................... 15

Figure 6 ~,otal alkali-silica diagram (TAS) as recommended by the lUGS

Subcommission on Igneous Rocks Systematics ............................................. 17

iv

Page 10: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

associated with wor!ddnss Au-Cu ueJ:h)Sl!S in the t:;ircurn-Pacific

The geological processes involved in the development of world class porphyry and

related deposits have been the focus of much attention in recent years. However some

principal controls responsible for the development of these deposits are not fully

understood and deserve much more attention.

The nature of magmatism is likely to be a major primary control on the metallogenic

potential of magmatic-hydrothermal systems. This can be illustrated with a review of

a possible distinctive magma-ore association between alkaline-arc magmatism and

major Au-Cu occurrences. The recent discoveries of major deposits combined with

the often high Au grades make them attractive exploration targets. Therefore by

highlighting spatial and genetic associations between alkaline magmatism and some

of these worldclass Au-Cu deposits there will be important exploration implications in

identifying favourable and potentially metallogenic igneous suites in both ancient and

modem settings.

This review examines the nature and distribution of alkaline-arc magmatism

worldwide. It will concentrate on examining the physico-chemical petrological and

geochemical underlying principles in order to identify any genetic relationships

between magmatism and the development of major Au-Cu deposits. The

characteristics and petrogenesis of several deposits and related igneous suites from

modem tectonic settings from the southwestern Pacific will be reviewed. The Porgera

and Ladolam deposits of Papua New Guinea and the Emperor deposit, Fiji, provide

excellent examples for investigation of the tectonic and petrogenetic processes

involved in alkaline-arc magmatism. The distribution of other deposits associated

with alkaline-arc magmatism are broadly restricted to terranes around the Pacific Rim

with examples occurring in areas, such as in the South American Andes, Canadian

Cordillera, and the Ordovician Lachlan Fold Belt of Eastern Australia.

The deposits consist predominantly of porphyry and related epithermal styles of

mineralisation. An alkalic-type epithermal gold association has been suggested by

Bonham and Giles (1983). This association is considered to be a subdivision of low

sulphidation epithermal deposits and accounts for a large proportion of the worldclass

Au-Cu deposits associated with alkaline igneous magmatism worldwide. They

include examples from the Central Montana Alkalic Province, Colorado Mineral Belt,

Page 11: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

i;

circum-Pacific

Cripple Creek District and also encompasses the modern Porgera and Ladolam

deposits in Papua New Guinea and Emperor in Fiji.

Although epithermal deposits often produce the high grades suitable for economic

production porphyry style mineralisation is also commonly present at lower grades.

Both styles of mineralisation appear to have a significant magmatic influence driven

by fluids from alkaline igneous suites.

The observation that -20% of the large Au deposits of the circum-Pacific region are

related to igneous suites with alkaline affinities, combined with the fact that these

suites make up <3% by volume of the igneous rocks present (Sillitoe, 1997), suggests

the operation of important ore forming magmatic .processes. Therefore by identifying

the critical chemical and physical processes operating in alkalic magmatic systems it

may be possible to constrain prospective igneous suites with exploration implications

on the discovery of further world-class Au-Cu deposits.

2.1 MAGMA CHEMISTRY

The chemical processes operating in magmatic systems are likely to have a large

effect on t~e initial metal availability in a system. Alkaline-arc rocks as considered in

this review include a spectrum of rocks whose K + Na contents exceed that of the

calc-alkaline (sub-alkaline) suite rocks (see Appendix 1). They are also commonly

emiched in large ion lithophile elements (LILE) and light rare earth elements (LREE)

and depleted in high field strength elements (HFSE) with an oxidised, silica­

undersaturated character.

The degree of alkalinity of a rock has been measured using an array of schemes. To

define alkalic rocks measures of silica content, alkali content and trace elements can

be used. For the purposes of this discussion the TAS classification scheme is used

herein as recommended by the illGS Subcommission on Igneous Rocks Systematics

(Le Maitre et al., 1989). This is a bivariate plot of the sum of the Na20 and K20

content (total alkalis) against the Si02 content. On this plot various authors have

delineated a boundary between alkaline and subalkaline igneous suites on the basis of

Page 12: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

!:The circum-Pacific

in the

this classification. That suggested by Irvine and Baragar (1971) will be used for this

discussion (see Appendix 1).

As noted above for the purposes of this discussion alkalic rocks are considered to be

those rich in K and/or Na alkali elements, they are commonly also rich in volatiles

and are characterised by an enrichment of LlLE and LREE. This definition includes

the shoshonite series of high K rocks, defined by high total alkali (Na20 + K20 >

5wt% ), high K20/Na20 ratios (>0.6 at 50wt% Si02, > 1.0 at 55 wt% Si02), low Ti02

( <1.3 wt%) and strong enrichment in LlLE and LREE with depletion in HFSE

(Morrison, 1980). Therefore characteristics of igneous suites with shoshonitic

affinities will be relevant for this discussion of alkaline igneous rocks as a whole (see

Appendix 2). A further key feature of alkaline-arc magmas which separates them

from intra-plate examples of alkaline magmatism is that they all possess

characteristics of arc magmas in general. Box and Flower (1989) recognised

characteristics of alkaline magmas which are arc like; these include higher ratios of

LlLE to LREE elements (e.g. BalLa) and also of LREE to HFSE (e.g. Laffa). In

addition to these features alkaline-arc rocks are also commonly enriched in halogens

(Cl, F). This common enrichment in halogens can perhaps be partly explained by a

strong affinity of the halogens for potassium (Muller and Groves, 1997), possibly the

result of the electronic configurations of these elements.

2.2 PETROGENESIS OF ALKALINE-ARC MAGMAS

The petrological processes that can contribute to the alkalinity of magmas include

source enrichment, partial melting, assimilation/fractional crystallisation, or a

combination of these (Box and Flower, 1989).

Source enrichment is likely to be a major influence on the petrogenetic evolution of

alkaline igneous rocks and is supported by the presence of metasomatised ultramafic

xenoliths in some alkaline magmas (Bailey, 1987); such metasomatism prior to

melting may be a precursor to alkaline magmatism. This metasomatism may be

achieved by veining of the mantle wedge by either volatile and LlLE enriched fluids

of by enriched partial melts derived from the subducting slab (Muller and Groves,

1997). Plume activity may also have the potential to metasomatise the source region

and therefore have a significant effect on the development of alkaline magmas. In

Page 13: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

/-\pp\o~rEii to !; ~rhe significance of alkallne rnagrnatisrn associated vvith \vprkL.::!ass l\.U··{~u deposits in thecircum-Pacific-----,--------oceanic arc settings, however, it is considered that the metasomatic enrichment occurs

mainly from fluid derived enrichment (Muller and Groves, 1997). Examples of

stronger enrichments may be explained by a greater role of melt induced

metasomatism of the mantle wedge. This will be seen later on the discussion of the

Lihir lavas for which a melt product, of low density and viscosity is believed to have

penetrated and hybridised the overlying mantle producing an appropriate source for

strongly alkaline magmas (McInness and Cameron, 1994).

Partial melting may enhance alkalinity through preferential concentration of

incompatible elements (Box and Flower, 1989). The production of LILE-rich

magmas demands that there is very small degrees of partial melting or extensive

crystal fractionation (Fitton and Upton, 1987), unless the source has been previously

enriched. In arc settings partial melting may occur by thermal perturbation of the

mantle geotherms near the cold subducting slab. This can be achieved via processes

such as 1ithospheric delamination, decompression or some other source of thermal

perturbation resulting from local crustal kinematics. In the back arc and post

collisional tectonic settings characteristic of many alkaline-arc magmas it appears that

rifting and extensional stresses may play an important role in partial melting.

Extension could lead to decompression of the sub arc mantle resulting in varying

degrees of partial melting. This variable degree of partial melting along with the

initial heterogeneity of the mantle source may contribute to the continuum in the

degree of alkalinity seen in the igneous suites.

In summary, simple partial melting and fractionation models by themselves cannot

explain the alkalic character of these magmas (Heithersay, P, 1994). They are

believed to have been generated from partial melting of a heterogenous mantle source,

which has undergone metasomatic enrichment.

3.1 DISTRIBUTION

Alkaline-arc magmatism is relatively rare worldwide. The major occurrences

associated with significant Au-Cu mineralisation include deposits from the Canadian

Cordillera, the Central Montana Alkalic Province, Colorado Mineral Belt, Cripple

LitlriOSfi[l,'h!lYWi~\:({JJ(.llii!loche!ni,vtr~rq{()rdovicia!"2 Fo!r.:-tJ..Ho·IJiuJ;:.Jnic rocl-.. ,), in the IJlayncy tJrea, ten/ralA1nfenl{ Belt, NS\V 4

Page 14: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

A~.ppendix 1.; ~rhe signjtlcance t.'d"' {ilkaline rnagrnatisIH assc~c1atGd vi~th v/Dddc~ass /\U··.(\.l ct-::;pt)sits in the~ir(;Unl-Pacific

Creek District, along the South American Andes and also the oldest examples from

the Ordovician Lachlan Fold Belt of eastern Australia.

In British Columbia, Canada, deposits associated with alkaline-arc magmatism

formed in the Early Jurassic-Triassic between 183 and 212 Ma (Lang et aI., 1994).

The deposits are considered to have been produced in intraoceanic arc settings that

were subsequently accreted onto North America (Lang et aI., 1994). They can be

subdivided into two groups: one characterised by silica-undersaturated intrusions

(Galore Creek, Copper Canyon, Mount Polley, Rayfield River), and a second group

defined by silica-saturated to weakly oversaturated intrusions (Lang et al., 1994). The

silica-undersaturated intrusions are much more strongly alkalic than the silica­

saturated intrusions. The volcanic host rocks, which share temporal and

compositional similarities with the alkalic intrusions, can be widely correlated along

the Canadian Cordillera (Lang et aI., 1994).

Cripple Creek deposits, central Colorado, show an excellent association between gold

mineralisation and alkaline-arc magmatism (Kelley et aI., 1994). The area is located

within a Tertiary alkaline volcanic/diatreme complex and represents, perhaps the most

alkali rich of all the known global occurrences of this type, with mineralisation being

temporally and genetically related to phonolites (Fig 6).

The Colorado Mineral Belt is located - l00km NW of Cripple Creek. It encompasses

two broad 'areas of gold mineralisation, the Boulder and La Plata counties. It is a

-425km long volcanic belt marking a zone of intense Late Cretaceous-Tertiary

igneous activity believed to be a reactivated shear zone in Precambrian basement

(Richards, 1995). Later phases of this activity with which much of the deposits are

closely related mainly have an alkalic affinity.

Other North American examples include the Central Montana Alkalic Province,

which is located immediately north of Yellowstone National Park. These occurrences

are believed to be the result of Cretaceous-Tertiary back arc magmatism along the

Rocky Mountain foreland (Richards, 1995) and consist of examples of both porphyry

and epithermal mineralisation styles.

The oldest known examples come from the Ordovician Lachlan Fold Belt of Eastern

Australia. This belt is currently being explored for a variety of deposit types,

including major Au-Cu occurrences. The central west of NSW is becoming a major

metallogenic province for Au-Cu deposits, including examples of porphyry and

--_._--Litho5:rraligrophy and lizhocl!efnhJ,try f.?l ()rdoviciafi. Folcano-pfulonic rocks in the !Jluyney area~ centra!Mo/OIu; He!;. f',!SVi 5

Page 15: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Appendix 1: The significance of alkaline magmatisrn associated wi·th worldclass Au-Cu deposits in thecircum-Pacific

epithennal mineralisation styles. The Ordovician volcanic succession is dominated

by shoshonitic, high K igneous suites (Heithersay, P, 1994). Further examples of

shoshonitic volcanism associated with major Au-eu deposits come from the South

American Andes, these occurrences have a continental arc association and will not be

discussed for the purposes of this review.

3.2 MODERN ANALOGUES FROM THE SOUTHWESTPACIFIC

Examples from the southwest Pacific represent relatively modern suites related to

alkaline-arc magmatism (Fig 1). These are important to consider because they can

give an insight into the importance of the effects of various tectonic and petrogenetic

processes on the older deposits and their related igneous suites.

Three examples are discussed and major and trace element analyses of selected lava

suites have been compared against a typical calc-alkaline suite from Batur Volcano,

Bali, Indonesia, in order to illustrate their affmities.

Figure 1 Map of the southwestern Pacific showing the location of the relevant

deposits (Smith & Sandwell, 1995).

LilhoslJ"C(tigraphy and !it!J.ochemistly o!Ordovician l'olccmo-pillfonic rocks in the Blayney area) centra!~,f/}f/},.o Rv 1/ 71/<:;'),1/ M

Page 16: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

!\ppendjx 1.: 'The signifIcance ~)f alkaline rnagrnatisrn associated \vith \voddclass /\u:··('u deposit~; in iht:'

circurn-PaciFic--------- -----------------------

3.2.1 PORGERA, Papua New Guinea

Tectonic Setting and Geological Evolution

The Porgera deposit lies in the highlands of Enga Province, Papua New Guinea_ It

contains about 410 tonnes Au and 890 tonnes Ag (Muller and Groves, 1997).

The highlands are the result of complex crustal kinematics associated with the

continent-arc collision event of the Australian continental plate with the rocks of the

Pacific plate in the Early-Mid Miocene. This resulted in rapid thrusting and uplift of

the arc sedimentary melange, which near Porgera consists of carbonaceous and

calcareous shales.

This dominantly compressive stress regime, as a result of collision, subsequently

reverted to an extensional one representing a period of synorogenic collapse. The

main period of mineralisation broadly coincides with this period of extensional

tectonics, occurring coevally, within IMa of the time of magmatism (Richards, 1990).

The initial emplacement of magmas at shallow levels in the crust was probably

facilitated by the Middle Miocene uplift of the Australian continental crust during the

collision event and also probably further controlled by major crustal structures. This

activity produced the Middle to Late Miocene alkalic Porgera intrusive complex. The

complex is a suite of mafic stocks and dykes intruding the Middle-Late Cretaceous

shale and Miocene limestone host rocks. The intrusions represent an early event

during magmatism and they appear to be spatially and temporally associated to the

mineralisation (Richards, 1992). Petrological evidence suggests that the Porgera

alkalic magmatism isn't directly related to subduction (Richards, 1990). Instead it is

thought to be related to uplift and faulting of the Australian continental margin from

collision with an arc terrane and shows an enriched petrologic character typical of

intra-plate, alkaline magmas (Richards, 1990). Alternatively Muller and Groves

(1993) suggest that geochemical and geological evidence implicate a subduction

related postcollisional arc setting rather than a intra-plate tectonic setting for the

intrusive complex. Their evidence includes the relatively low HFSE characteristic of

the Porgera intrusive suite in conjunction with geological evidence, such as the fact

that within-plate magmatism would require the uprise of a deep asthenospheric mantle

plume with ocean island basalt geochemistry. This is unlikely as the subducting

oceanic slab beneath continental crust at Papua New Guinea at this time would have

----------~--

LithoSfJLUt'gJIifJhy ({}"id htf!~ocflem'!Sf!'-\'

N!W!Jlh! Beli. NSWOn:iovici<m p()!cnfW;-pffl!OfllC rocks in the i3ft(vney area, centra!

Page 17: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

/\.ppendix t; '-fhe significance of alkaline rnagrnatislB associated \vith v!oddc!a.ss i'\U'~C'u tl:PI.)Slis in ihecircum-PaciJic

blocked the interaction of any mantle plumes. Therefore the Porgera deposit

represents a postcollisional arc association.

Petrogenesis and Geochemical nature of the Host Rocks

The intrusions of the Porgera intrusive complex are silica undersaturated, ranging

from alkali gabbro/alkali basalt through hawaiite to mugearite (Richards, 1990)

(Appendix 1). They can be described as highly potassic alkaline with high LILE,

moderate LREE, and low HFSE contents (Muller and Groves, 1997). The high

Fe3+lFe2+ ratios of the selected suite of rocks, taken from Richards (1990), are

common for mafic alkaline rocks (see Appendix 4), this suggests that crystallisation

occurred under relatively oxidising conditions (high f 02). The high oxidation state

for the igneous suite suggests that the volatile phases were probably dominated by

H20 with some CO2 and S02. Richards (1990) identified textural evidence for a late­

stage of volatile saturation, with the production of a separate volatile-rich fluid phase.

Hypersaline fluid inclusions and stable isotope data suggest the involvement of

magmatic volatiles during the ores formation (Richards, 1992). Further supporting a

postcollisional association for the Porgera deposit is the geochemistry of igneous

rocks at Porgera. They show a transition from calc-alkaline to more alkaline affinities

represente4 by the Porgera intrusive complex, which is a common feature for many

mature postcollisional arc settings (Muller & Groves, 1997).

3.2.2 LADOLAM, Lihir Island, Papua New Guinea

Tectonic Setting and Geological Evolution

The Ladolam deposit is located on the east coast of Lihir Island which is a part of the

Tabar to Feni island chain, -50km east of New Ireland (Fig 2). It contains a

combined resource of -425 Mt of ore averaging 2.8 g/t Au (Muller and Groves,

1997).

The Tabar-Feni island chain is located in the fore-arc basin behind the presently

inactive Manus-Kilinailau trench (Herzig et aI., 1998) (Fig 2). The islands that make

up the Tabar-Feni chain consist of Pliocene to Pleistocene volcanics. Magmatism

along the chain is localised to zones of extension within the thickened crust. These

LitiiwSIiLltlFlflP,i;v OFld lithoc!w!rristry {~{()rd(;vici(fn ~.Jol(>Jn()··plu!(}flic ro(·:tv in the BI(!yney f..1fF{£, centro}MO/Oil;'; Beli. NSvV 8

Page 18: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

;\ppencUx f; T'he significance t)f afkaIlne rnagrnatisID associa.ted vv~th v>;oddc~a.ss l\t(·.(~u deposits in thecircurn-Pacific .

zones are manifested as northeast trending structures seen cutting across the New

Ireland Basin (McInness and Cameron, 1994). Today, volcanic activity along this

island chain is focussed in the Lihir Group, which represents the most active tectonic

zone in the arc (Herzig et al., 1998). This is further supported by the active

geothermal systems found in the Luise caldera on Lihir.

The major episode of mineralisation is interpreted to have a magmatic origin and

appears to have occurred following an early stage of minor porphyry style Cu-Mo-Au

mineralisation (Moyle et aI., 1990); and a period of caldera development with sector

collapse. This late event is characterised by extensive geothermal activity and was

probably initiated by the unroofing of the high temperature hydrothermal core during

a sector collapse event (Moyle et al., 1990). This geothermal activity produced the

exceptionally high grade epithermal gold mineralisation at Ladolam on Lihir.

Richards (1995) classified Ladolam as an 'alkalic-type' epithermal deposit based on

its association with alkaline igneous rocks.

t:<ACtHCP!j,T2

Figure 2 Regional tectonic map showing the location of the Tabar-Lihir-Tanga­

Feni island arc. Inset shows late Miocene collision of the Ontong Java Plateau

(OJP) with the Manus-Kilinailau trench (McInness and Cameron, 1994).

-------------Lithostra.rigraphy and lifhoche!.nisu~v(~{ ()rd()vi{.'iaf! h:!cano-plutonic rock:)' in the Blayney areU1 ("(:n1ra!Al%n.? l;e/t, tv,.S·~V 9

Page 19: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Appendix 1: The significance ef alJ-;aline magmatism associated with worlddass l'iU'CU deposits in !ht:',jrcum-Pacific

Both Porgera and Ladolam lie in collisional arc settings. In the case of Ladolam

collision of the Ontong Java Plateua, a zone of thickened oceanic lithosphere, resulted

in the stalling of subduction, and a reversal of arc polarity as observed by Solomon

(1990) occured. Therefore the alkaline magmatism at Lihir isn't related to active

subduction, it occurs when subduction related magma flux ceases and extensional

tectonics become significant.

Petrogenesis and Geochemical nature of the Host Rocks

The magmas forming the Tabar-Feni island arc are believed to be intrinsically

enriched in gold (Moyle et aI., 1990). This is suggested by the magmatic origin for

much of the gold mineralization. The host rocks consist of trachybasalt,

trachyandesite and latitic lavas cut by monzonite intrusions (Muller and Groves,

1997) (see Appendix 1). Their geochemistry can be described as shoshonitic, with

high LILE, moderate LREE and low HFSE contents (Muller and Groves, 1997). This

is supported by the data obtained from Kennedy et al (1990), where samples plot

mainly in the high-K and shoshonite fields (see Appendix 2). This igneous suite also

contains relatively high volatile and halogen contents (Muller and Groves, 1997).

The volcanic islands of the Tabar-Feni chain have a distinctly silica-undersaturated,

alkali rich ,nature. Recent studies of the Lihir Island volcanics by McInness and

Cameron (1994) suggest that the volcanics have been derived from mantle that was

enriched in alkali and alkali-earth elements. McInness and Cameron (1994) also

studied inclusions in xenoliths from Simberi Island in the Tabar Island group further

north and suggested that slab-derived sulfate, carbonate, H20, alkali-rich

aluminosilicate magmas, with geochemical similarities to phonolites, have

metasomatised the mantle' wedge there. This may also be relevant to the

metasomatism of the mantle at Lihir. This enrichment may also have occurred during

earlier subduction episodes along the Miocene New Britain and Bougainville

trenches, having the effect of enriching the mantle above the subduction zone. A

transition to extensional tectonics following the cessation of subduction activity in the

Late Miocene and subsequent arc reversal may have resulted in small degrees of

melting of the enriched mantle with subsequent eruption of distinct SiOT

undersaturated alkaline lavas. McInness and Cameron (1994) suggested that alkaline

---------_._---_._-_._----_._--------LitfuJ5ifradgraphy {!nd lithochf!!nisu:v q{ ()rdovician ~j(·d(~-ano-pifj.!onjc rock" in the 151dyn.ey ar(:a~ centra!/i1o!on.f! l!eft. i\iSl'V .1 ()

Page 20: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

i\ppendix: 1; The significance of "likaline magmatism associaied with worlddass /m-·Cu deposits in thel:ircumPacifi(

volcanism in the arc is a result of adiabatic decompression melting of subduction

modified mantle in a transtensional environment (Fig 3).

Figure 3 showing the collision of the oceanic subcontinent Ontong Java Plateau

into the Manus-Kilinailau trench. Oblique convergence produced extensional

pull apart structures which have penetrated subduction modified mantle

material above the subduction zone. Adiabatic decompression results in partial

melting of this modified mantle producing alkaline, silica-undersaturated, high

/02 Tabar -Feni lavas (McIhness and Cameron, 1994).

McInness and Evans (1996) suggested the oxidised melts of the Tabar-Feni arc

transport significantly more Cu and S from the mantle to the crust than magmas

emplaced at mid-ocean ridges. Samples taken from the Tanga island group adjacent

to Lihir did not reach sulfide saturation until at least 85% degassing of S02 and as a

consequence Cu-Au depletion did not occur until late in the eruptive history. The

degassing history of the magma is likely to be a critical process in ore genesis at

Ladolam. If the degassing is fairly slow CuiAu will not be fractionated from the

--,------------------_._-- ._----_._--,------LithOY[f(![£graphy and lithoc!u:Jnistr.v (~l (}rdovicion rolcaHo~r)lut()flic rocks in the fJlayney (;rea~ centra!Mo'/mt\? Beft. NS\V 11

Page 21: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

.A.ppendix 1: 'fhe si.gnificance of alkaline Hlagrnatlsrn associated v!ith viorldclass I\U-C>U deposits in the\:ircurn-Pacific

magma and thus will be available for subsequent magmatism. In the case of Ladolam

a partial sector collapse of the Luise caldera may have been a way of initiating and

slowly degassing a magma chamber and may partially explain the richness of this

deposit (McInness and Evans, 1996). Further supporting a genetic link between the

gold occurrences on Lihir and alkalic magmatism is the recent discovery of submarine

gold rich hydrothermal vents associated with volatile-rich alkaline rocks, located -25

km south of Lihir. These seamounts, including Conical seamount, were confirmed

during a cruise of the RV Sonne (Herzig et al., 1998). The rocks dredged from the

Conical and other seamounts south of Lihir are the result of highly alkaline, Si02­

undersaturated magmatism (Herzig et al., 1998). Epithermal style gold

mineralisation was also found at Conical seamount supporting a genetic link between

it and the magmatism. The proximity of the seamounts with the hydrothermally

active Luise caldera on Lihir suggests that the submarine and subaerial mineralisation

may be comagmatic (Herzig et aI., 1998).

3.2.3 EMPEROR, Viti Levu, Fiji

Tectonic Setting and Geological Evolution

The Emperor deposit is a Pliocene epithermal Au deposit located on the western,

margin of the Tavua caldera complex in northern Viti Levu, Fiji. It contains

estimated gold reserves of 150 tonnes Au (Muller and Groves, 1997).

Fiji is located at the boundary between the Indo-Australian and Pacific plates, midway

between the west dipping Tonga-Kermadec Trench and the east dipping Vanuatu

Trench (Gill and Whelan, 1989) (Fig 4). Subduction along the extinct Vitiaz trench,

to the north, produced extensive volcanism during the Pliocene. As subduction waned

a period of extensional and strongly rotational tectonics resulted in rifting of the

Vanuatu-Fiji-Lao-Tonga arc producing a distinct suite of volcanics with shoshonitic

affinities (Rogers and Setterfield, 1994). This extensional event appears to be coeval

with ritting of the adjacent north Fiji basin (Solomon, 1990) and also the opening of

the Lau Basin behind the Tongan arc (Crawford pers comm). Like Ladolam on Lihir,

it represents epithermal Au mineralisation in a late oceanic arc association (Muller

and Groves, 1997).

--------_._----Lithoslrafi/sl'aphy and lithr.N.:hp.lnistr.v q{ (Jlziovicia!1. Folcano-.plutonic rocks in, the Blayney {[rear cen.traJiv/a/OiL>; Belt. lVS'W 12

Page 22: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

;-\.ppendi\ ~: ~r-he signif~cance of <lIkaline rnagrnatisrn associated \vith worIdc!ass /\U-(~~U deposits in thc~

circunl~Pacific

Figure 4 Regional tectonic setting of the Fiji region showing the position of the

extinct Vitiaz trench. Islands are in black, grey areas are < 2000m water.

Spreading ridges are denoted by double solid lines (Rogers and Setterfield,

1994).

The Emperor deposit lies on the western rim of Tavua caldera and consists of

epithermal' gold mineralisation hosted by shoshonitic volcanics, however the caldera

also hosts subeconomic porphyry style mineralisation in its core (Setterfield et al

1992). The shoshonitic volcanics are the youngest suite of volcanics making up Viti

Levu. They post-date previous periods of tholeiite to calc-alkaline magmatism related

to subduction (Setterfield et al, 1992). This sequence of magmatism higWights a

common geochemical transition in mature arc settings from more subalkaline suites to

more alkaline igneous suites.

The timing of mineralisation has been constrained by 4°Ar_39Ar dating at 3.71±O.13

Ma in comparison with the period of shoshonitic volcanism earlier at ca. 4.3 Ma

(Setterfield et aI, 1992). Stable isotope and fluid inclusion data indicate that

mineralisation was a result of mixing of heated meteoric fluids with a significant input

of magmatic fluids (Muller and Groves, 1997).

Lithosrrarigrt:7phy and iithoc!u:'lnisu:v (~t ()rdo'viciafl. !,Jolc-arIO-!llutonic rucA"s in the l]l(l~vney to)!y:a: centra!A1%nk !$eft~ iVSPI .13

Page 23: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

!\.ppend~x I; T'he signlJjc~.H1Ce (Jf alkaHne Jnag:Jnatisrn. assoGiated v/lth \\!()rk1class ,'\u-C'u deposits in thecircurn-Pacific

Petrogenesis and Geochemical nature of the Host Rocks

Compositionally the Tavua shoshonite suite displays a range from mafic absarokite,

shoshonite to more evolved banakites (Rogers and Setterfield, 1994). They have high

LILE, moderate LREE and low HFSE (Muller and Groves, 1997). The suite shows

many characteristics of shoshonitic rocks as defined by (Morrison, 1980). This can be

seen from the data taken from Rogers and Setterfield (1994), (see Appendix 2) where

the Fiji suite is characterised by a moderate to highly K enriched distribution. A

further feature is their Ti02 and Fe203 contents decrease with increasing Si02,

possibly in a response to titanomagnetite crystallizing early. The Ah03 however,

increases in the fractionation suite possibly as a result of the early suppression of

plagioclase causing it to crystallise late. In summary the geochemical features of the

Tavua suite ofrocks taken from Rogers and Setterfield (1994) are interpreted to be the

result of source enrichment by subducted oceanic lithosphere derived fluids.

The most important magma characteristic that leads to the development of a

mineralising system is its sulfur content relative to its level of sulfur saturation

(Wybom, '1994), also expressed as the sulfur solubility in the melt.

The sulfur can be present in an oxidised state as sulfate, or in a reduced state as

sulfide. This introduces the importance of the oxygen fugacity of the system and its

effect on sulfur solubility. If a melt has a low oxygen fugacity, the melt becomes

saturated in sulfide, resulting in removal of Cu and Au, due to their high partition

coefficients between sulfide and the melt, (Kd - 103to 105 (McInness, 1996), forming

an immiscible sulfide melt. Conversely, if the oxygen fugacity is high the

concentration of dissolved sulfate increases resultirig in the progressive enrichment of

metals in the melt.

Magma alkalinity has an important role to play in increasing the suifur solubility in a

melt and thus reducing the potential for sulfur saturation to occur. In the more alkali

rich, high-K calc-alkaline and shoshonitic melts the solubility of sulfate is 2-3 times

greater than in calc-alkaline melts under the same T-102 conditions (McInness, 1996),

meaning that there is less chance for sulfide saturation to occur (Fig 5). The high

Lithosrrarigrolihy and lit!lochelnistt:v t?t ()rdovicia/i. Foicano-jjiutor;ic ("neL), in the FJldyney t.frea~ centra!Alofmi~ Belt. NSV/ J4

Page 24: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

;\.ppendix. i; yrhc significance of arkal~ne rnagrnatisrn associated v!ith \~h>rkk:lass A..u~.(~u depos~.ts in thecircu.m-Pacific

meaning that there is less chance for sulfide saturation to occur (Fig 5). The high

alkali content characteristic of alkaline-arc magmas with a resultant increase in the

Fe3+lFe2

+ content leads to the development of magnetite and anhydrite, which

subsequently increases sulfur solubility in the melt (Wyborn, 1994). In addition to

these chemical processes the physical behaviour of alkali rich magmas also augments

the production of Au-eu rich melts. Alkaline magmas commonly have a low

viscosity and are relatively high in volatiles. These features facilitate the rapid

transport of the metal rich magma from the source through the crust, effectively

minimising the transit time for the magmas, reducing the opportunity for redox

reactions to occur which might lead to sulphide saturation (McInness, 1996).

cafe-alkaline melts

11130°

00

Tee)

Figure 5 Diagram showing the combined effects of the major controls affecting

sulfur solubility: temperature, oxygen fugacity and magma bulk composition

(alkalinity). The vertical Ni-NiO buffer surface separates the sulfide and sulfate

stability fields. The conversion from sulfate to sulfide (S042- => S2- + O2) drives

the magma into the sulfide stability field where it becomes sulfide-saturated.

Curviplanar surface approximates the S concentrations at which sulfide and

sulfate saturation occurs (McInness, 1996).

Sack et al (1980) proposed that the main reason for the association between Au

deposits and mantle-derived rocks of alkalic affinity lies in their relatively high

oxidation state. This leads to the preferential development of sulfate rather than

LifhosrraIigr(!phy and iithcche!nistr~v(~l ()rd(:vlcian Folcano-plu!()nic rock:)' in the iJlayney t.?Tea$ (:en/ra)

[v!o!on.:; [fe/Tt lYSiiV 15

Page 25: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

II

I

;\.ppendix: I: '['he significance of ;';lJkaline rnagrnatlsrn assc~ciated V/~ttl \Yorkh:iass /\u-,C:u deposits in thecircurn-Pacific

sulfide which is well represented by common anhydrite veins and often phenocrysts in

a number of igneous suites in oceanic arcs.

Wybom and Sun (1994) proposed that the mantle lithosphere provides an ideal source

for metal-rich magmas. This is due to this region being depleted in sulfur due to

previous melting events, which formed sUlfur-saturated, subalkaline magmas.

Because of the sulfur-depleted nature of subsequent magmas, sulfur saturation would

intuitively be delayed until later in the fractionation of the magma, retaining metals

for a longer period and perhaps to shallower levels in the crust. Alkaline magmas are

generally derived from hybridisedlhydrated subarc source regions and thus contain

sufficient water to evolve a fluid phase with the potential to form fractures through

hydraulic fracturing.

Halogen content also plays a significant part in the metal content of magmas and has

been the focus of intense research in recent years. Cl and F are important components

of hydrothermal fluids derived from a magma in that they complex with metals in a

hydrothermal fluid, providing an effective transporting medium. The effect of

chlorine on the partitioning of ore metals between melts and volatile phases has been

demonstrated by a number of authors, including Metrich and Rutherford (1992).

Experimental studies of Cl partitioning in granitic systems suggest that the strongest

enrichment of magmatic-hydrothermal fluids in Cl and ore metals complexed with Cl

will most likely be in fluids exsolved from magmas that are relatively enriched in K20

(Muller and Groves, 1997).

In summary it appears that the ultimate role of the chemical components of an alkalic

system is to retain the metals in the melt until or after the onset of volatile saturation.

This is achieved through the physico-chemical variables acting to suppress sulfur

saturation. The metals can then be retained in the magma and be incorporated into a

hydrothermal fluid phase later in its evolution.

Lithosrratigraphy and lithochefnistl» ql'-- (JrdfiviciaY!.. Folcano-plutonic rock,.\' in the lJ!ayney (}reo., centralAf%ng lleir

lj\rs},¥ 16

Page 26: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Appendix i; The significance of alkaline magrnatism u%ociared 'kith wuddclass Au-·Cu deposits in thecirctun-Pacific

In conclusion it appears that many major Au-Cu deposits are preferentially associated

with igneous suites showing alkaline affinities in convergent plate settings of the

circum-Pacific.

75

j

'A. Colorado Mineral Beit

.{\ Cefltral Montana

I• 10 Luise Caldera, Uh'r Is., PNG

I+ Tawa Catdera. Fiji

j. Porgera-Mt. Kare. PNG

X Cfipple Creek., Colorado

706560S550

Si0 2 (wt. %)

Figure 6 Total alkali-silica diagram (TAS) as recommended by the lUGS

Subcommjssion on Igneous Rocks Systematics. Showing compositions of

samples taken from major alkalic deposits, ancient and modern (Richards,

1995). Boundary between alkalic and subalkalic suites defined by (Irvine and

Baragar, 1971).

Figure 6 combines data from the modem southwestern Pacific examples with those

from northern America, showing the range of alkalis rich compositions present. All

the suites present are characterised by high alkali content (NazO + KzO) at any value

for SiOz. Magmas rich in alkali elements have several features making them good

magma sources for Au-Cu mineralisation. From the discussion a series of critical

magmatic/tectonic processes relevant for the development of alkaline-arc magmas and

associated mineralisation have been identified.

It appears that late oceanic island arc environments are preferred for the development

of the more alkali rich magmatism however continental arc examples of shoshonitic

magmatism also exist. Examples of alkaline magmatism from the modem settings of

Lifhosrratigraphy and lithoche!nistJ~r[.~r (}rdovicion Folct:lH()-r}!u!onic roe;"",.') in tht.: Bl(iyney £Irea; cen-ttal1 ._j

1. !

Page 27: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

!\ppendix 1; yrhe signitJcance of alkallne Inagrnatlsrn associated 'NHh voi'oddclass ;\u-(~u derJt.)srts in theclrcurn~·Pacinc

the southwest Pacific show a range of tectonic environments including rifted and

rotated arcs and collisional zones. This diversity of tectonic settings suggests a

dynamic interplay between the tectonic environment and the diversity of petrogenetic

processes acting to produce these alkaline magmas. However the common influence

of collisional tectonics suggests that this has an important control.

Alkaline-arc related deposits are commonly temporally related to major changes in

the tectonic processes in a region. These changes are commonly caused by collisional

events, which may involve the collision of an arc, continent or oceanic plateau with an

active arc. This is genetically important as it results in a cessation in subduction

resulting in the metasomatism/hybridisation of sub arc mantle, which, when subjected

to partial melting processes is thought to lead to the formation of alkaline-arc

magmas. The timing of alkaline magmatism worldwide appears to correlate well with

collisional tectonic events. This is seen in the modem southwestern Pacific examples

of Porgera and Ladolam, and is also supported by evidence that those from the

Canadian Cordillera are also related to collisional tectonic processes (Lang et aI.,

1994). The importance of subsequent extensional tectonics is evident from the

discussion on southwestern Pacific examples. Rifting/extension may induce

decompression resulting in low degrees of partial melting of the previously enriched

mantle source and the generation of alkaline-arc magmas. Alkaline-arc magmatism is

often emplaced in structurally localised extensional zones in regions of thick crust.

These extensional zones are often marked by regionally significant faults, which

augment the transport of alkali-rich melts to shallower levels in the crust. This

emplacement of melts to shallower levels may also be assisted through uplift

associated with collisional events. A further characteristic of the alkaline-arc igneous

suites is that they do not appear to be directly related to active subduction. They

appear to be the result of the post subduction partial melting of hybridised

(metasomatised) mantle as opposed to the continuous magma flux occurring in the

production of subalkaline suites. The alkaline-arc magmas commonly have an

oxidised character, which is reflected by the common presence of sulfate minerals,

present in a phenocryst phase or as late stage veining. Epithermal deposits are the

most common mineralisation style in the examples discussed, as they produce the

high Au grades suitable for economic exploitation, however subeconomic porphyry

style mineralisation is also commonly present.

LithosfFaligraphy and fithochernfstry q{ ()rdA)vicia!l volcan.owj)i!Jtonic rocks in the Bli):vney dreO. j ("entral18

Page 28: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

;\.ppendLx i; T'he significanl;e ()f alkarine Hlagrnatisrn associated \;vith v\'uddclass l\.U-·CU dept)sits in dk~

circtnn~·Pacific------------~--

From the review it is evident that the intrinsic physico-chemical features of alkaline

magmas have a significant effect on the production of Au-Cu rich melts. The

combined effect of the chemical variables increases the sulfur solubility of the melt

and thus has a vital role to play in delaying sulfur saturation. This retains Au-Cu in

the magma so that it may become further enriched in Au-Cu via fractionation

processes and carried to shallower crustal levels. The volatile rich character of these

magmas would also facilitate rapid transport through the crust, reducing the potential

for sulfur saturation to occur. Higher chlorine contents are correlated with increased

alkalinity and is likely to be a major control on ore genesis due to cWorine's ability to

act as an effective ligand in later hydrothennal gold transport. Another interesting

fact evident from the discussion is that these deposits are commonly gold rich, this is

perhaps related to the chemical complexing mechanisms operating in hydrothermal

fluids as opposed to magmatic processes and is beyond the scope of this discussion.

In conclusion the close spatial and temporal association between alkaline magmatic

suites and major Au-Cu mineralisation at many circum-Pacific deposits is the result of

complex interactions between tectonic and magmatic processes, and also the physico­

chemical behaviour of the alkalis rich magmas to produce metal-rich melts. These

factors combined with the appropriate concentration, transport and deposition

mechanisms have the potential to produce major Au-Cu deposits.

Lithostrari,graph.y and lithochcfnistry oJ: ()n:iovicia/i ~}()!('an()·"/nlut(;nicrockY in the BI{{yney aYell, CelllFa!

fj;f(,'lCf:~'< Belt, NSW 19 .

Page 29: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

!\.ppendi\ j ~ 'fhe signlfJcance of a1kahne rnagrnatlsIH HssoC'ta£ed v~;ith \vt)rklclass /\u-·('u deposits in thecircurn··F~acific

Bailey, D. K., 1987, Mantle metasomatism-perspective and prospect, in J. G. Fitton,

and B. G. J. Upton, eds., Alkaline Igneous Rocks, Geological Society Special

Publication, p. 1-13.

Barr, D.A., Fox, P.E., Northcote, K.E., and Preto, V.A., 1976, The alkaline suite

porphyry deposits; a summary, Porphyry Deposits of the Canadian Cordillera,

Volume 15: Canadian Institute of Mining, Metallurgy and Petroleum, Spevial

Volume, p. 359-367.

Bonham, H.F., and Giles, D.L., 1983, Epithermal gold/silver deposits: the geothermal

connection: Geothermal Resources Council, Special Report, v. 13, p. 257-262.

Box, S.E., and Flower, M.F.J., 1989, Introduction to special section on alkaline arc

magmatism: Journal of Geophysical Research, v. 94, p. 4467-4468.

Fitton, J. G. and Upton, B. G. J. 1987, Alkaline igneous rocks: The Geological

Society, Special Publication, v. 30.

Gill, J.B., and Whelan, P., 1989, Early fifting of an oceanic island arc (Fiji) produced

shoshonitic to tholeiitic basalts: Journal of Geophysical Research, v. 94, p. 4561­

4578.

Hayashi, K.I., and Ohmoto, H., 1991, Solubility of gold in NaCl- and H2S-bearing

aqueous solutions at 250-3500C: Geochim. Cosmochim., v. 55, p. 2111-2126.

Heithersay, P, 1994, The Central West New South Wales Cu-Au Province: CODES,

short course Manual 1, University of Tasmania, 1.1-1.25 (unpublished)

Page 30: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

/\.ppendjx 1.; T'he significance (~f alkaline rnagrnatlsrl1 as&ch,;.iated \:vith v\/oddcLtss /\u·_(~u in thecircum-Pacific

Herzig, P.M., Hannington, M.D., Stoffers, P., Becker, KP., Drischel, M., Franklin, J.,

Franz, L., Gemmell, J.B., Hoeppner, B., Horn, c., Horz, K, Jellineck, T., Jonasson,

LR., Kia, P., Nickelsen, S., Percival, J., Perfit, M., Petersen, S., Schmidt, M., Seifert,

T., Thieben, 0., Turkay, M., Tunnicliffe, V., and Winn, K, 1998, Petrology, Gold

Mineralization and Biological Communities at Shallow Submarine Volcanoes of the

New Ireland Fore-Arc (Papua-New Guinea):Preliminary Results of RIV Sonne Cruise

SO-133: InterRidge News, v. 7, p. 34-38.

Irvine, T.N., and Baragar, W.RA., 1971, A guide to the chemical classification of the

common volcanic rocks: Can. J. Earth Sci., v. 8, p. 523-548.

Kelley, KD., Romberger, S.B., Beaty, D.W., Snee, L.W., Stein, H.J., and Thompson,

T.B., 1994, Genetic model for the Cripple Creek district: Constraints from 40Ar/39Ar

geochronology, major and trace element geochemistry, and stable and radiogenic

isotope data, in Thompson, T.B., ed., Diamonds to gold, IT Cresson Mine, Cripple

Creek District, Colorado, Volume 26: Guidebook Series, Society of Economic

Geologists.

Lang, J.R, Stanley, C.R, and Thompson, J.F.H., 1994, Porphyry Copper-Gold

Deposits ~elated to Alkalic Igneous Rocks in the Triassic-Jurassic Arc Terranes of

British Columbia: Master of Economic Geology, short course notes, University of

Tasmania, 5.1-5.4 (unpublished).

Le Maitre, RW., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M.J., Sabine,

P.A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A.R, and Zanettin, B.,

1989, A classification of igneous rocks and glossary of terms, Blackwell, Oxford.

McInness, B. I. A., 1996, The Role of Arc Magma Alkalinity in Cu-Au

Metallogenesis: Geological Society of Australia, Abstracts, v. 41, p. 49.

McInness, B.I.A., and Cameron, E.M., 1994, Carbonated, alkaline hybridizing melts

from a sub-arc environment: mantle wedge samples from the Tabar-Lihir-Tanga-Feni

arc, Papua New Guinea: Earth Planet Science Letters, v. 122, p. 125-141.

-----------------------------

Page 31: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

!\ppendL\ J.; 'fhe signincance (~f a~kaline rnaglnatisrn associated \N1th \vtnldcLass /~,u--(~u deposits in thecircum-Pacific

McInness, B.I.A., and Evans, N.J., 1996, Cu- and Pd-rich immiscible sulphide liquids

in submarine shoshonitic lavas from the Tabar-Lihir-Tanga-Feni island arc, Papua

New Guinea: Geological Society of Australia, Abstracts, v. 41, p. 288.

Metrich, N., and Rutherford, M.J., 1992, Experimental study of chlorine behaviour in

hydrous silicate melts: Geochim. Cosmochim. Acta, v. 56, p. 607-616.

Morrison, G. W., 1980, Characteristics and tectonic setting of the shoshonite rock

association: Lithos, v. 13, p. 97-108.

Moyle, A.J., Doyle, B.J., Hoogvliet, H., and Ware, A.R., 1990, Ladolam gold deposit,

Lihir Island, in Hughes, E., ed., Geology of the Mineral Deposits of Australia and

Papua New Guinea: Australian Institute of Mining and Metallurgy, p. 1793-1805.

Muller, D., and Groves, DJ., 1997, Potassic Igneous Rocks and Associated Gold­

Copper Mineralisation, Springer-Verlag.

Mutschler, F.E., Griffen, M.E., Stevens, S.D., and Shannon, S.S.J., 1985, Precious

metal deposits related to alkaline rocks in the North American Cordillera: Geological

Society of South Africa Transactions, v. 88, p. 355-377.

Richards, J. P., 1990, Petrology and geochemistry of alkalic intrusives at the Porgera

gold deposit, Papua New Guinea: Journal of Geochemical Exploration, v. 35, p. 141­

199.

Richards, J. P., 1992, Magmatic-epithermal transitions in alkalic systems: Porgera

gold deposit, Papua New Guinea: Geology, v. 20, p. 547-550.

Richards, J. P., 1995, Alkalic-Type Epithermal Gold Deposits - A Review, in J. F. H.

Thompson, ed., Magmas, Fluids, and Ore Deposits.: Mineralogical Association of

Canada Short Course, p. 101-127.

Rogers, N.W., and Setterfield, T.N., 1994, Potassium and incompatible-element

enrichment in shoshonitic lavas from the Tavua volcano, Fiji: Chemical Geology, v.

118, p. 43-62.

---------------------Lithosrr{ldgrar~hy{{na lifh()chefnisu~\' Of' (Jrdovici(fi'I iJolcaJto'-IJiufOnic ruck,)' in Ihe fjfiT\'f!f~\} fJJ'(;'.~« :::>.?titrn.!ldolung Is!!!t, [VS~yV

Page 32: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

!\ppendL\ 1: 'fhe signincance t)f alkaline Jnagrnatisrn associa.ted \~/ith v/orkkJass l\U··.(\l deposits in thecirclnn-"Pdcific

Sack, R.O., Carmichael, I.S.E., Rivers, M., and Ghiorso, M.S., 1980, Ferric-ferrous

equilibria in natural silicate liquids at 1 bar: Contrib. Mineral. Petrology, v. 75, p.

369-376.

Setterfield, T.N., Mussett, A.E. and Oglethorpe, R.D.J., 1992, Magmatism and the

evolution of the Tavua Caldera: 40Ar-39Ar dating of the volcanic, intrusive and

hydrothermal events. Economic Geology., 87: 1130-1140.

Solomon, M., 1990, Subduction, arc reversal, and the origin of porphyry copper-gold

deposits in island arcs: Geology, v. 18, p. 630-633.

Smith, W.H.F. & Sandwell, D.T., 1995, Seafloor Topography Version 4, SCIPP,

September.

Wybom, D., 1994, Mantle magmatism and large Au-Cu deposits: Master of

Economic Geology, short course notes, University of Tasmania, 5.1-5.4

(unpublished).

Wybom, D., and Sun, S., 1994, Sulphur-undersaturated magmatism - a key factor for

generating magma-related copper-gold deposits: AGSO Research Newsletter, v. 21, p.

7-8.

Wheller, G.E., 1986, Petrogenesis of Batur Caldera, Bali, and the Geochemistry of

Sunda-Banda arc basalts: PhD Thesis, University of Tasmania, Hobart.

Lif'hOSiJLltigr(!phy (fnd W!l'OCI'IC1fiistrv q{ (}rdovician po!c[J!l-o"piu-iof(ic rucA-/)' in fhe IJL.?yney ~1reaf cen.tT[jfA1o!ong lJeff, fvStV

Page 33: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Further subdivisiom trachybasalt basaltic trachyandesitetrachyandesite

Na2O-2.0>K2O hawaiite mugear;te benmoreiite

Na2O-2.0<K2Opotassic

shoshonite latitetrachybasalt

• Fiji suite

Lihir suite

" Porgera suite

)( Batur eale-alkaline suite

Na20 + K20 wt%

I lua~D"""Y',,?,.a""I>~'"6(~MnPL~

8 I l ,cyllln..,.", /; 0'<' ClI.I\"lCl.;:)IW \ ...... .iJ,W';;I~~ ~

4 I I L" 'Jtr.. I I "I

2 I I :'-''":..,,1 I -, I \

14

16

12 I / "V!JI'III~ ' ..._,/ _:~. • I

10 I ,f ~IIV~IV:),.... ~ \ '.'.I.... e1FJO I I

776757Si02 wt%

47o 'riT' I I I I " I i I

37

Appendix 1 Total alkalis-silica diagram, taken from Le Maitre et al (1989), showingcompositions of volcano-plutonic rocks associated with major Au-Cu deposits of thesouthwestern Pacific. The boundary between alkaline and subalkaline suites is takenfrom Irvine & Baragar (1971).

Page 34: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

74 Si02 wt%

K20 wt%7

6

5

4

3

2

I:1

0

44 54

//

)K /./,//

,/

64

)K

)K ...

shoshonite

high-K i

medium-K

low-K

A Porgera suite

• Fiji suite

Lihir suite

)K Batur calc-alkaline suite

Appendix 2 ~O vs Si02 variation diagram showing cam positions of VOlcano-plutonic rocksassociated with major Au-Cu deposits of the southwestem Pacific.~O classification fields taken from Le Maitre et al (1989) and Wheller (1986).

Page 35: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Tavua caldera, Fiji, wholerock geochemistry

TS-14 TS-46 TS-54 TS-20 TS-37 T526 TS-44 TS-28 TS-4 TS-1 TS-22 TS-5 TS-68Man Sb Sh Man Sh Sb Sb Sh Ban Ban Man Ban Abs

Si02 51.29 51.56 51.77 52.35 52.73 52.99 53.04 53.56 54.33 54.98 55.12 56.44 47.99Ti02 0.60 0.61 0.71 0.73 0.54 0.70 0.61 0.70 0.54 0.59 0.57 0.54 0.53AI203 17.87 18.03 17.16 16.75 19.71 18.38 19.77 18.59 18.63 18.58 18.33 18.22 11.75Fe203 7.92 8.67 9.19 9.09 6.29 ··8.54 8.07 7.68 6.29 6.80 6.72 6.04 10.59MnO 0.17 0.16 0.14 0.17 0.15 0.19 0.11 0.14 0.20 0.18 0.23 0.18 0.16MgO 3.15 3.95 3.47 4.42 1.98 3.55 2.16 2.08 1.41 2.21 2.63 2.24 9.94CaO 6.51 7.83 5.44 8.33 5.84 6.82 7.22 7.05 5.19 5.84 5.62 5.31 12.54Na20 3.69 3.08 3.41 2.81 3.00 3.31 3.45 3.83 4.30 3.89 4.18 4.23 1.33K20 4.70 4.17 5.06 3.15 6.13 4.19 3.44 3.83 4.90 4.54 4.63 4.78 2.74P205 0.53 0.51 0.68 0.40 0.48 0.59 0.62 0.53 0.40 0.48 0.50 0.39 0.37LOI 3.18 1.03 2.87 1.76 2.73 0.70 1.49 1.70 3.63 1.70 1.28 1.40 1.98TA 8.39 7.25 8.47 5.96 9.13 7.50 6.89 7.66 9.20 8.43 8.81 9.01 4.07

TS-82 TS-66 TS-55 TS-63 TS-61 TS-78 TS-64 TS-57 TS-70 TS-67 TS-32Abs .. Abs Abs Abs Abs Abs Abs Abs Pab Pab Sh

Si02 48.08 48.20 48.44 48.49 48.71 48.89 48.99 49.75 49.50 49.55 50.56Ti02 0.51 0.52 0.53 0.57 0.50 0.57 0.56 0.53 0.73 0.72 0.66AI203 10.96 11.34 10.97 12.25 10.78 11.92 11.90 11.22 15.28 15.80 17.23Fe203 10.77 10.88 10.66 11.03 10.53 10.59 10.59 10.84 11.15 10.82 8.68MnO 0.16 0.17 0.17 0.19 0.21 0.16 0.15 0.15 0.17 0.17 0.19MgO 11.47 11.04 10.02 9.94 12.32 9.98 10.22 10.00 5.59 5.20 3.76CaO 12.09 12.30 13.14 12.06 11.80 12.09 12.56 12.30 10.83 9.58 8.20Na20 2.00 1.50 1.45 1.96 1.38 1.81 2.10 2.69 2.29 2.17 2.74K20 1.80 2.61 2.18 1.34 2.22 2.08 1.20 0.79 2.42 3.18 4.70P205 0.44 0.35 0.34 0.30 0.35 0.35 0.34 0.38 0.46 0.46 0.58LOI 1.52 0.93 1.73 1.50 0.86 1.55 1.46 0.91 1.45 2.22 2.41TA 3.80 4.11 3.63 3.30 3.60 3.89 3.30 3.48 4.71 5.35 7.44

Appendix 3 Whalerock geochemical data for Tavua lavas, Fiji, taken from Rogers & Setterfield (1994)

Page 36: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Porgera intrusive complex wholerock geochemistry

RJR-27 RJR-44 RJR-21 RJR-35 RJR-46 RJR-3 RJR-7 RJR-57 RJR-8 RJR-12 RJR-65 RJR-53 RJR-28Si02 44.96 45.08 45.1 46.69 47.08 47.16 47.23 47.58 47.59 47.69 47.8 48.01 48.4Ti02 1.2 1.19 1.18 1.38 1.33 1.27 1.23 1.29 1.2 1.2 1.18 1.28 1.4AI203 13.2 13.03 13.09 16.11 16.49 16.87 17.77 16.38 18.18 18.01 17.91 16.75 16.79Fe203 3.73 3.73 3.26 3.98 3.76 4.93 4.64 2.87 4.19 4.2 3.06 3.63 1.81FeO 5.97 5.74 6.18 5.67 5.25 . 4.8 4.69 6.29 4.85 4.82 5.98 5.47 7.08MnO 0.19 0.17 0.17 0.21 0.18 0.19 0.19 0.18 0.18 0.19 0.19 0.16 0.18MgO 14.94 15.23 14.85 9.09 8.41 6.65 6.25 8.24 6.06 5.91 6.09 7.89 7.22CaO 11.78 11.41 11.9 10.77 10.96 12.76 12.23 11.32 12.06 12.09 11.21 10.83 10.74Na20 2.16 2.14 2.83 4.18 4.13 3.9 4.18 3.48 4.09 4.29 5.01 3.83 4.28K20 1.18 1.63 0.85 1.22 1.74 0.86 0.98 1.7 0.98 0.97 0.96 1.47 1.45P205 0.7 0.64 0.59 0.68 0.67 0.62 0.62 0.68 0.62 0.62 0.59 0.68 0.65H20- 0.37 0.39 0.45 0.51 0.25 0.12 0.2 0.27 0.24 0.22 0.19 0.31 0.21H20+ 3.51 3.1 3.53 2.39 2.53 2.23 2.42 3.11 2.34 2.2 2.64 3.01 2.66CO2 1.94 1.46 2.58 3.29 4.23 1.81 1.74 5.68 3.34 3.46 3.93 4.96 3.76S 0.11 0.1 0.13 0.02 0.03 0.03 0.01 0.49 0.15 0.04 0.07 0.1 0.7Fe3+/Fe2+ 0.56 0.59 0.47 0.63 0.65 0.92 0.89 0.41 0.78 0.78 0.46 0.6 0.23MG 74.06 74.91 74.4 63.66 63.45 56.19 55.72 62.33 55.62 55.04 55.4 61.67 59.65Ba 305 330 235 310 365 295 315 330 345 360 285 390 475Rb 29.5 45 19.5 28.5 42 14.5 16.5 35.5 18.5 13.5 21.5 37.5 23Sr 725 630 645 700 680 785 830 755 795 770 750 765 825Pb 36 7 7 11 19 9 8 9 6 9 5 26 42Th 6.2 7 7.5 5.5 7 6 5.4 6.5 6 6.5 6 7.2 8.5LJ 1.1 1.5 1 1.5 1 2 1.8 1 2 2 1.5 1.1 3.5Zr 120 120 114 133 133 129 133 134 137 137 132 139 142Nb 54 49.5 47.5 47.5 51 54 54 59 59 59 55 59 62Y 16 16 15 18 17 18 18 17 18 18 17 18 19La 38.1 32 29 33 36 30 32.7 34 31 31 27 37.9 34Ce 76.5 65 60 68 71 65 65.3 69 62 62 55 75.6 70Se 28.9 32 31 28 28 38 30.1 28 35 36 36 22.2 32V 243 240 232 258 244 338 303 277 302 292 320 268 296Cr 785 785 845 291 275 49 48.2 241 42 44 55 221 179Ni 378 388 374 121 111 31 30 106 28 26 28 95 67Cu 76 66 66 58 74 75 71 79 72 91 45 85 102Zn 195 104 79 129 97 145 124 105 126 106 129 103 148

Page 37: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Porgera intrusive complex wholerock geochemistry

RJR-6 RJR-22 RJR-34 RJR-38 RJR·16 RJR-60 RJR-17 RJR-20 RJR-43 RJR-39 RJR-19

Si02 48.85 50.15 50.23 50.7 51.85 51.87 51.89 52 52.36 52.4 52.48

Ti02 1.11 1.12 1.12 1.05 1 0.95 0.96 1.01 0.96 1.07 0.88

AI203 18.45 18.55 18.53 18.27 18.98 16.73 19.1 18.61 18.87 17.57 19.09

Fe203 4.13 4.15 3.55 4.48 4.28 3.29 4.24 3.93 3.89 3.83 3.94

FeO 4.55 4.45 4.59 3.74 3.49 4.37 3.65 3.76 3.54 3.93 3.62

MnO 0.19 0.17 0.14 0.18 0.2 0.17 0.18 0.16 0.18 0.17 0.18

MgO 5.21 4.93 4.89 4.01 3.61 6.23 3.53 3.99 3.53 5.54 3.25

CaO 10.93 9.97 10.89 10.84 9.34 10.38 9.22 9.09 9.4 8.7 9.32

Na20 4.47 4.75 4.35 4.47 5.19 3.6 5.08 4.7 5.38 4.48 5.24

K20 1.48 1.22 1.15 1.78 1.6 2.04 1.66 2.27 1.39 1.68 1.56

P205 0.64 0.54 0.54 0.49 0.47 0.38 0.49 0.48 0.5 0.63 0.46

H20- 0.16 0.25 0.19 0.24 0.21 0.2 0.18 0.25 0.38 0.32 0.3

H20+ 1.9 2.35 2.27 1.63 1.96 2.51 1.77 1.82 1.78 1.78 2.14

CO2 2.84 4.08 4.19 2.97 1.26 4.55 1.39 3.15 1.89 1.84 2.52

S 0.1 0.09 0.66 0.16 0.03 0.31 0.15 0.09 0.16 0.08 0.22

Fe3+/Fe2+ 0.82 0.84 0.7 1.08 1.1 0.68 1.04 0.94 0.99 0.88 0.98MG 52.88 51.78 52.83 47.94 46.74 60.23 45.72 49.31 47.17 57.23 44.69

Ba 475 310 265 425 445 415 415 465 455 450 420Rb 23 31 23.5 36.5 29 44 30 47.5 20 36 26.5

Sr 845 750 720 740 750 665 770 745 840 835 745Pb 14 9 4 4 6 9 6 6 4 4 5

Th 10 9 7.5 7 7 6.6 8 7.5 8.7 11 8

U 2 3 2 1.6 2 1.7 2 2 2.1 2.5 2Zr 172 152 156 140 124 127 141 175 159 187 127

Nb 77 67 68 67 67 59 70 80 76 74 62y 18 20 19 19 19 15 19 19 19 18 18La 37 32 31 37.7 34 31.3 30 35 40.9 42 29Ce 74 66 61 73.3 67 60.6 59 69 78.3 84 59

Se 28 31 31 19.6 19 24 18 24 15 19 17

V 270 288 272 277 268 230 247 233 252 206 242Cr 27 45 46 29.1 9 170 7 29 19.8 158 6

Ni 20 23 21 16 11 59 10 15 14 69 9

Cu 133 101 33 94 140 60 127 74 198 53 112

Zn 116 165 57 79 81 76 74 63 86 66 78Appendix 4 Wholerock geochemical data for Porgera intrusive complex, taken from Richards (1990)

Page 38: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Lihir lavas wholerock geochemistry

L3 L6 L7 78LH1 L10 L12 L13 L14 L16 L22 L23 L25Si02 47.35 47.24 47.98 48.14 46.87 47.27 48.04 47.06 48.51 52.09 50.17 50.35Ti02 0.76 0.9 1.03 0.89 0.91 1.06 0.93 0.96 1.08 0.77 0.93 1AI203 12.46 12.69 14.75 13.5 14.51 16.41 15.19 15.55 16.12 16.16 17.01 17.15Fe203 11.69 11.7 11.74 11.9 12.36 12.22 11.45 11.92 11.31 9.7 10.27 9.59MnO 0.21 0.21 0.19 0.24 0.23 0.21 0.22 0.22 0.21 0.18 0.21 0.21MgO 9.12 7.47 7.33 7.28 6.24 5.77 5.92 5.86 5.85 5.33 4.96 4.77CaO 14.73 13.12 12.74 12.76 12.36 12.22 11.45 11.92 11.31 9.7 10.27 9.59Na20 2.90 2.15 2.68 2.55 3.05 3.16 3.51 3.64 2.73 3.37 2.98 3.17K20 0.44 2.23 1.13 2.35 2.85 1.86 2.91 1.77 2.01 2.75 2.28 2.37P205 0.36 0.49 0.42 0.37 0.54 0.55 0.52 0.61 0.37 0.35 0.36 0.4H2O 2.00 1.2 2 1.3 0.57 1.2 0.12 1.3 1.8 0.66 1.5 0.96CO2 0.30 0.25 0.3 0.3 0.03 0.05 0.1 0.36 0.2 0.08 0.27 0.01Fe2+/Fe3+ 1.22 1.51 1 1.3 1.13 0.97 0.95 1.11 1.01 1.2 1.22Normative NI 5.77 3.6 1.35 4.68 11.18 5.4 9.52 7.34 0.18 0.5Normative Q 0.5Rb 12.00 43.5 36.9 58.2 128 59 59 40 49.4 39.5 40 39.8Sr 1196.00 1120 1049 1659 1397 1430 1440 1780 1140 948 1089 1021Ba 187.00 168 135 199 255 265 270 390 175 239 249 220Cs 1.16 0.85 0.54 0.78 0.86 1.1 0.76 1 0.51 0.75 0.43V 308.00 313 287 320 347 251 275 264 234 224 226 235Cr 119.00 221 124 158 33 24 94 18 47 33 21.8 12.7Ni 40.00 40 27 40.8 25 14 20 14 16 22 16 14Se 53.50 46.1 46.8 42.5 31 21 24 15 30 68 25.5 24.5Zn 82.00 89 76 95.4 91 74 72 77 78 16.5 78 93Ga 13.50 15 15.5 16.5 17.5 16.5 17 16.5 20 17 17.5Y 15.00 17 18 19 21 19 19 19 66 20 24Zr 45.00 70 70 86.1 57 74 67 65 32 1.5 60 70Nb 1.50 1.5 0.51 2.7 1.5 2 2 2 1.5 1 1Hf 1.40 1.8 1.8 1.7 1.9 1.9 1.6 1.8 1.9 2.1U 0.83 0.94Th 0.7 0.7 0.9 1.1 1.37 1.35 1.4 0.92La 11.80 12.2 10.6 12.4 13.8 15.4 17.1 18.8 12 11 10.1 10.4Ce 26.00 28.4 25.9 29.7 32.3 36 42.4 42.5 32 23 23.1 25.1Nd 16.10 18.4 18 18.8 21.1 21.4 24.1 27.7 16 15 15 16.6Sm 4.09 4.78 4.76 4.72 5.4 5.46 5.22 6.36 3.38 3.94 4.41

Page 39: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Lihir lavas wholerock geochemistry

L3 L6 L7 78LH1 L10 L12 L13 L14 L16 L22 L23 L25Eu 1.27 1.53 1.53 1.5 1.7 1.73 1.66 1.97 1.34 1.42Tb 0.66 0.63 0.64 0.75 0.58 0.76 0.68 0.77 0.56 0.64Yb 1.20 1.8 1.7 1.6 1.8 2 1.71 1.7 2 2.3Lu 0.21 0.27 0.27 0.24 0.25 0.31 0.3587Sr/86Sr 0.70 0.703862 0.703822 0.70395 0.7039610.704094 0.704128 0.704008 0.703954143Nd/144NI 0.51 0.51299 0.512982 0.513013 0.512976 0.512998 0.512961 0.513035 0.512968206Pb/204PI 18.74 18.74 18.743 18.756 18.741 18.754 18.743207Pb/204PI 15.55 15.54 15.556 15.55 15.541 15.569 15.539208Pb/204PI 38.40 38.364 38.378 38.392 38.355 38.441 38.33

Appendix 5 Wholerock geochemical data for Lihir lavas, taken from Kennedy et al (1990)

Page 40: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Batur calc-alkaline suite wholerock geochemistry

72-994 72-991 72-992 72-993 66636 66631 67263 67330 66637 66638 66639 66640 66641Si02 53 66.4 63.8 65.9 66.36 58.64 62.5 61.99 64.8 64.14 62.91 65.52 65.31Ti02 0.93 0.62 0.52 0.6 0.61 1 0.81 1 0.7 0.73 0.75 0.51 0.53AI203 19.9 15.61 16.98 15.7 15.43 16.84 16.11 16.1 15.9 15.91 15.83 14.75 14.88FeO* 8.61 5.3 5.2 5.5 4.788 7.416 5.499 6.525 4.905 5.148 5.697 4.122 4.095MnO 0.17 0.12 0.12 0.15 0.19 ··0.21 0.21 0.23 0.19 0.19 0.2 0.15 0.16MgO 3 0.85 1.78 0.92 0.6 2.31 1.32 1.58 0.84 1.08 0.96 0.62 0.53CaO 9.59 2.91 5.1 3.01 2.32 5.73 3.76 4.18 2.8 3.14 3.31 2.19 1.92Na20 3.56 5.31 3.95 5.3 5.76 4.72 4.99 5.35 5.84 5.69 5.38 4.74 5.37K20 1.06 2.82 2.41 2.7 2.89 1.86 1.89 1.57 2.58 2.47 2.36 3.5 3.21P205 0.19 0.16 0.2 0.17 0.16 0.45 0.35 0.44 0.23 0.26 0.23 0.13 0.15L.O.1. 0.27 0.28 0.74 -0.06 0.06 -0.03 0.68 -0.3 0.18 0.22 1.22 2.9 2.98H20- 0 0 0 0 0 0 0.56 0.12 0 0 0 0 0Total 100.28 100.38 100.8 99.89 99.7 99.97 99.29 99.51 99.51 99.55 99.48 99.59 99.59Rb 20 59 63 65 60 40 46 41 55 51 44 79 73Ba 210 460 420 0 491 344 444 423 440 433 423 501 514Sr 453 236 381 300 189 387 287 320 260 268 266 164 171Pb 0 0 0 0 0 0 0 0 0 0 0 0 0Cs 0 0 0 0 0 0 0 0 0 0 0 0 0Zr 73 180 184 177 193 130 159 143 172 160 143 234 226Hf 0 0 0 0 0 0 0 0 0 0 0 0 0Nb 0 0 0 0 12 7 10 11 10 10 9 14 14Ta 0 0 0 0 0 0 0 0 0 0 0 0 0y 21 41 34 42 41 35 36 36 38 37 36 44 44Th 0 0 0 0 0 3.7 0 0 5.3 0 0 0 0U 0 0 0 0 0 1 0 0 1.4 0 0 0 0La 0 0 0 0 0 0 19 18 0 0 0 0 0Ce 0 0 0 0 0 0 45 40 0 0 0 0 0Pr 0 0 0 0 0 0 0 0 0 0 0 0 0Nd 0 0 0 0 0 0 27 26 0 0 0 0 0Srn 0 0 0 0 0 0 0 0 0 0 0 0 0Eu 0 0 0 0 0 0 0 0 0 0 0 0 0Gd 0 0 0 0 0 0 0 0 0 0 0 0 0Tb 0 0 0 0 0 0 0 0 0 0 0 0 0Dy 0 0 0 0 0 0 0 0 0 0 0 0 0Ho 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 41: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Batur calc-alkaline suite wholerock geochemistry

72-994 72-991 72-992 72-993 66636 66631 67263 67330 66637 66638 66639 66640 66641Er 0 0 0 0 0 0 0 0 0 0 0 0 0Yb 0 0 0 0 0 0 0 0 0 0 0 0 0Lu 0 0 0 0 0 0 0 0 0 0 0 0 0Cr 4 2 3 0 4 6 3 3 1 3 3 2 3Ni 6 0 0 0 1 - 4 2 2 0 1 0 1 1V 320 10 74 0 4 105 39 42 7 21 16 20 6Se 25 15 11 0 15 23 18 20 15 15 17 16 15Co 22 4 10 0 0 0 0 0 0 0 0 0 0

FeO* 8.61 5.3 5.2 5.5 4.788 7.416 5.499 6.525 4.905 5.148 5.697 4.122 4.095Zr/Se 2.92 12 16.73 12.87 5.65 8.83 7.15 11.47 10.67 8.41 14.63 15.0787Sr/86Sr 0.70399 0 0 0.70407 0 0 0 0 0 0 0 0 0143Nd/144 0 0 0 0 0 0 0 0 0 0 0 0 0208Pb/204 0 0 0 0 0 0 0 0 0 0 0 0 0207Pb/204 0 0 0 0 0 0 0 0 0 0 0 0 0206Pb/204 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 42: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Batur calc-alkaline suite wholerock geochemistry

67275 67276 67277 67278 672810 672820 67294 66633 66634 67318 67274 67331 67332Si02 61.75 65.72 66.7 64.27 66.41 66.47 65.83 61.01 50.7 57.01 63.93 61.69 64Ti02 0.88 0.69 0.54 0.82 0.55 0.54 0.55 0.93 1.03 1.11 0.74 0.79 0.82AI203 16.81 15.84 15.38 16.07 15.6 15.5 15.25 16.23 18.34 16.29 15.95 16.09 15.92FeO* 6.489 4.851 4.725 5.877 4.797 4.734 4.248 6.777 10.08 8.325 5.247 5.976 5.751MnO 0.22 0.19 0.21 0.22 0.19 - 0.2 0.18 0.21 0.2 0.22 0.21 0.21 0.21MgO 1.64 0.83 0.54 1.06 0.63 0.61 0.56 1.82 4.36 2.41 1.1 1.43 1.01CaO 4.59 2.71 2.35 3.46 2.43 2.37 2.05 4.62 9.63 5.93 3.22 3.98 3.43Na20 4.95 5.4 5.88 5.45 5.84 5.84 5.16 5.09 3.11 3.96 5.41 5.23 5.23K20 1.63 2.29 2.94 2.14 2.83 2.8 2.66 2.08 1.05 2.47 2.48 2.32 1.85P205 0.39 0.21 0.13 0.26 0.12 0.14 0.14 0.38 0.27 0.71 0.25 0.31 0.27L.O.1. -0.06 0.09 0.01 -0.19 0.06 0.18 1.65 0.46 -0.14 0.04 0.1 0.55 0.13H20- 0.13 0.05 0.01 0.07 0.13 0 0.54 0 0 0.26 0.07 0.35 0.37Total 100.14 99.41 99.94 100.16 100.12 99.91 99.29 100.36 99.75 99.66 99.29 99.59 99.63Rb 39 53 59 52 59 60 74 43 24 71 50 47 50Ba 400 460 525 465 527 524 518 395 216 471 444 444 460Sr 322 240 194 274 200 202 192 336 415 370 280 295 268Pb 0 0 0 0 0 0 0 0 0 0 0 0 0Cs 1.3 0 1.7 0 0 0 0 0 0 0 0 0 0Zr 137 174 195 166 189 190 220 143 88 250 159 153 160Hf 3 0 4.3 0 0 0 0 0 0 0 0 0 0Nb 9 10 12 10 10 10 13 9 5 14 10 9 10Ta 0 0 0 0 0 0 0 0 0 0 0 0 0y 32 33 37 35 41 42 41 37 26 55 33 36 35Th 3.9 0 5.9 0 0 0 0 0 0 0 0 0 0U 0 0 1.4 0 0 0 0 0 0 0 0 0 0La 17 18 19.9 20 20 22 24 0 0 35 19 18 18Ce 37 41 41 41 44 47 50 0 0 74 40 43 44Pr 0 0 0 0 0 0 0 0 0 0 0 0 0Nd 21 24 23 23 27 26 26 0 0 42 23 25 24Srn 5.2 0 5.2 0 0 0 0 0 0 0 0 0 0Eu 1.6 0 1.5 0 0 0 0 0 0 0 0 0 0Gd 5.7 0 5.7 0 0 0 0 0 0 0 0 0 0Tb 0 0 0 0 0 0 0 0 0 0 0 0 0Dy 0 0 0 0 0 0 0 0 0 0 0 0 0Ho 1.2 0 1.3 0 0 0 0 0 0 0 0 0 0

Page 43: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Batur calc-alkaline suite wholerock geochemistry

67275 67276 67277 67278 672810 672820 67294 66633 66634 67318 67274 67331 67332Er 0 0 0 0 0 0 0 0 0 0 0 0 0Yb 3.2 0 3.8 0 0 0 0 0 0 0 0 0 0Lu 0.5 0 0.6 0 0 0 0 0 0 0 0 0 0Cr 0 2 0 8 1 3 2 3 23 9 2 2 6Ni 2 1 1 1 2 1 2 1 14 3 2 2 3V 54 7 1 9 9 8 6 88 317 86 18 42 11Se 17 13 14 17 18 17 16 22 37 25 16 17 18Co 0 0 0 0 0 0 0 0 0 0 0 0 0

FeO* 6.489 4.851 4.725 5.877 4.797 4.734 4.248 6.777 10.08 8.325 5.247 5.976 5.751ZrlSe 8.06 13.38 13.93 9.76 10.5 11.18 13.75 6.5 2.38 10 9.94 9 8.8987Sr/86Sr 0 0 0 0 0 0 0 0 0 0 0 0 0143Nd/144 0 0 0 0 0 0 0 0 0 0 0 0 0208Pb/204 0 0 0 0 0 0 0 0 0 0 0 0 0207Pb/204 0 0 0 0 0 0 0 0 0 0 0 0 0206Pb/204 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 44: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Batur calc-alkaline suite wholerock geochemistry

67329 66635 66632 67273 67267 67265 67272 PUM1 67238 67266 67244 67247 67264Si02 61.92 51.11 51.72 64.59 52.78 52.44 55.04 63.91 52.94 54.86 51.78 51.08 52,11Ti02 0.97 1.17 1.37 0.77 1.02 0.98 1,03 0.42 1.02 1.03 0.98 0.96 0.99AI203 16.13 17.26 15.61 16.18 18.02 18.21 18.34 14.38 18.16 18.57 18 18.03 18.01FeO* 6.426 11.016 10.926 5.247 9.432 9.45 8.244 4.095 9.18 8.307 9.72 9.927 9.441MnO 0.23 0.21 0.23 0.22 0.21 ··0.21 0.19 0.17 0.21 0.2 0.21 0.22 0.21MgO 1.59 4.26 3.72 1.16 4.13 4.41 2.61 0.47 3.62 2.68 4.73 5.04 4.42CaO 4.1 8.66 8.22 3.25 8.84 8.88 8.13 1.85 8.78 8.2 8.97 9.26 9.38Na20 5.27 3.08 3.03 5.5 3.35 3.52 4.14 5.15 3.63 3.81 3.97 3.27 3.56K20 2.31 1.3 1.6 1.6 0.95 0.87 0.97 2.87 1.29 0.94 0.95 0.91 0.99P205 0.44 0.26 0.43 0.28 0.23 0.21 0.27 0.09 0.23 0.27 0.22 0.2 0.22L.O.1. -0.21 -0.31 1.39 0.03 -0.53 -0.53 -0.53 2.55 -0.57 -0.41 -0.65 -0.62 -0,59H20- 0.09 0 0 0.07 0.16 0.12 0.03 2.41 0.42 0,08 0.09 0.09 0.06Total 99,98 99.24 99.46 99.48 99.64 99.82 99.38 98.82 99.93 99.46 100.05 99.47 99.85Rb 45 29 42 49 21 19 21 60 22 23 18 18 18Ba 437 269 330 437 234 243 289 529 232 268 216 221 241Sr 323 410 358 280 436 451 407 157 428 431 429 417 435Pb 0 0 0 0 0 0 0 0 0 0 0 0 0Cs 0 0 0 1.6 0 0 0 0 0.7 0 0.5 0 0Zr 149 107 145 156 73 73 89 195 78 89 66 70 70Hf 0 0 0 3.6 0 0 0 0 1.1 0 0.7 0 0Nb 11 5 8 10 5 4 6 10 5 6 4 4 5Ta 0 0 0 0 0 0 0 0 0 0 0 0 0y 35 27 37 33 21 22 26 40 22 26 19 21 23Th 0 0 0 6 0 0 0 0 2.2 0 2 0 0U 0 0 0 1.2 0 0 0 0 0.6 0 0.4 0 0La 19 0 0 18 13 14 16 22 10.3 14 9,2 13 12Ce 38 0 0 40 17 22 27 45 23 26 21 19 22Pr 0 0 0 0 0 0 0 0 0 0 0 0 0Nd 27 0 0 22 14 16 16 24 13.9 18 12.7 15 16Srn 0 0 0 5.2 0 0 0 0 3.4 0 3.1 0 0Eu 0 0 0 1.6 0 0 0 0 1.2 0 1.1 0 0Gd 0 0 0 5.6 0 0 0 0 4.1 0 3.6 0 0Tb 0 0 0 0 0 0 0 0 0 0 0 0 0Dy 0 0 0 0 0 0 0 0 0 0 0 0 0Ho 0 0 0 1.2 0 0 0 0 0.9 0 0.8 0 0

Page 45: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Batur calc-alkaline suite wholerock geochemistry

67329 66635 66632 67273 67267 67265 67272 PUM1 67238 67266 67244 67247 67264Er 0 0 0 0 0 0 0 0 0 0 0 0 0Yb 0 0 0 3.4 0 0 0 0 2 0 1.8 0 0Lu 0 0 0 0.5 0 0 0 0 0.3 0 0.3 0 0Cr 4 8 12 0 19 17 5 1 7 8 15 18 28Ni 2 12 10 2 12 15 4 1 9 6 39 18 15V 37 322 336 18 254 267 225 3 265 228 284 284 289Se 20 34 38 15 28 27 29 15 26 27 27 27 29Co 0 0 0 0 0 0 0 0 0 0 0 0 0

FeO* 6.426 11.016 10.926 5.247 9.432 9.45 8.244 4.095 9.18 8.307 9.72 9.927 9.441Zr/Se 7.45 3.15 3.82 10.4 2.61 2.7 3.07 13 3 3.3 2.44 2.59 2.4187Sr/86Sr 0 0 0 0 0 0 0 0 0.70404 0 0 0 0143Nd/144 0 0 0 0 0 0 0 0 0.512907 0 0 0 0208Pb/204 0 0 0 0 0 0 0 0 0 0 0 0 0207Pb/204 0 0 0 0 0 0 0 0 0 0 0 0 0206Pb/204 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 46: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Batur calc-alkaline suite wholerock geochemistry

67257 67240 67261 67262 67250 67269 67270 67271 67268 66630 67259 67328 67326Si02 52.63 53.54 52.34 52.39 51.95 54.06 51.79 52.28 54.13 53.24 54.12 52.28 52.08Ti02 1 1.03 0.97 0.97 0.98 0.99 0.96 0.98 0.99 1 1 1.01 0.97AI203 18.06 18.96 18.12 18.24 17.95 18.73 17.72 18.12 18.97 18.44 18.84 18.33 18.11FeO* 9.594 8.685 9.297 9.279 9.72 8.46 9.522 9.522 8.136 9.045 8.397 9.486 9.612MnO 0.21 0.19 0.2 0.21 0.21 0.2 0.21 0,22 0.19 0.19 0.19 0.2 0.21MgO 4.47 3.06 4.39 4.31 4.6 3.04 4.85 4.38 2.82 3.47 2.85 3.74 4.47CaO 8.93 9.06 9.36 9.33 9.08 8.6 9.75 8.86 8.54 8.79 8.78 9.19 9.1Na20 3.49 3.85 3.07 3.38 3.54 3.82 3.13 3.48 3,78 3.69 4.23 3.49 3.38K20 0.75 0.99 0.68 0.95 0.9 1.21 0.97 0.78 1.01 1.15 0.93 1.08 1.04P205 0.23 0.24 0.24 0.21 0.22 0.24 0.21 0.25 0.26 0.26 0.27 0.22 0.22L.O.1. -0.56 -0.54 -0,37 -0.49 -0.63 -0.4 -0.44 -0.34 -0.45 -0.43 -0.46 -0.42 -0.62H20- 0.09 0.09 0.18 0.13 0.07 0.12 0.08 0.17 0.15 0 0.1 0.17 0,06Total 99.96 100.12 99,51 99.94 99.67 100.Q1 99.81 99.76 99.43 99.85 100.18 99.83 99.7Rb 18 21 18 17 17 23 18 19 22 24 21 23 23Ba 231 239 226 235 220 244 205 231 251 235 254 258 245Sr 426 428 432 416 417 452 426 439 436 448 442 393 393Pb 0 0 0 0 0 0 0 0 0 0 0 0 0Cs 0,6 0.6 0 0 0 0 0 0 0 0 0.6 0 0Zr 71 81 68 68 64 80 63 67 83 86 79 87 68Hf 0.8 1.2 0 0 0 0 0 0 0 0 1.2 1.5 0Nb 4 5 4 4 4 5 4 4 5 4 5 4 5Ta 0 0 0 0 0 0 0 0 0 0 0 0 0y 22 20 20 20 20 24 21 21 24 24 24 22 20Th 2.3 2.2 0 0 1.8 0 0 0 0 0 2.6 2.5 0U 0.4 0.5 0 0 0.4 0 0 0 0 0 0.5 0.6 0La 9.7 10.4 11 12 13 14 12 12 16 0 10.5 10.8 9Ce 23 24 18 16 16 21 16 21 21 0 24 24 19Pr 0 0 0 0 0 0 0 0 0 0 0 0 0Nd 14.5 14.3 14 13 12 16 13 13 15 0 14.6 14.7 14Srn 3.4 3.5 0 0 0 0 0 0 0 0 3.5 3.6 0Eu 1.2 1.2 0 0 0 0 0 0 0 0 1.2 1.2 0Gd 3.9 4 0 0 0 0 0 0 0 0 4.2 4.1 0Tb 0 0 0 0 0 0 0 0 0 0 0 0 0Dy 0 0 0 0 0 0 0 0 0 0 0 0 0Ho 1 1 0 0 0 0 0 0 0 0 0.8 0.8 0

Page 47: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Batur calc-alkaline suite wholerock geochemistry

67257 67240 67261 67262 67250 67269 67270 67271 67268 66630 67259 67328 67326Er 0 0 0 0 0 0 0 0 0 0 0 0 0Yb 2 2 0 0 0 0 0 0 0 0 2.1 2.2 0Lu 0.3 0.3 0 0 0 0 0 0 0 0 0.3 0.3 0Cr 11 4 26 24 15 7 55 20 6 9 3 13 20Ni 16 7 14 15 16 6 18 15 6 8 7 12 14V 269 274 287 279 276 227 285 275 222 256 233 292 298Se 28 27 29 29 27 26 31 28 26 29 25 28 29Co 0 0 0 0 0 0 0 0 0 0 0 0 0

FeO* 9.594 8.685 9.297 9.279 9.72 8.46 9.522 9.522 8.136 9.045 8.397 9.486 9.612Zr/Se 2.54 3 2.p4 2.34 2.37 3,08 2.03 2.39 3.19 2,97 3.16 3.11 2.3487Sr/86Sr 0 0 0 0 0 0 0 0 0 0 0 0 0143Nd/144 0 0 0 0 0 0 0 0 0 0 0 0 0208Pb/204 0 0 0 0 0 0 0 0 0 0 0 0 0207Pb/204 0 0 0 0 0 0 0 0 0 0 0 0 0206Pb/204 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 48: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Batur calc-alkaline suite wholerock geochemistry

67333 67334 67325 67336 67327 67339 67340 67335 67342 67337 67295 67299 67341Si02 51.09 51.44 48.83 55.18 51.85 53.58 50.42 53.21 58.58 48.62 56.12 55.32 48.74Ti02 0.9 0.97 1.02 1.29 0.95 1.43 0.97 1.01 1.33 1.08 1.14 1.12 0.91AI203 16.87 18.53 17.62 16.09 17.91 16.6 20.25 18.32 15.29 19.88 16.21 16.24 19.41FaO· 9.54 9.324 10.908 9.684 9.504 10.647 9 9 8.46 9.621 8.667 8.433 9.594MnO 0.2 0.19 0.22 0.25 0.21 -0.22 0.19 0.18 0.23 0.2 0.21 0.21 0.19MgO 7.13 3.91 5.78 2.95 4.78 2.86 3.72 3.33 1.8 4.22 2.44 2.49 5.94CaO 9.91 9.44 10.33 6.92 9.35 7.67 9.81 8.74 5.06 10.17 6.02 5.93 11.04Na20 2.78 2.93 2.79 3.89 3.33 3.19 2.98 3.24 3.51 2.95 4.06 4.27 3.04K20 1.14 1.34 0.6 2.11 0.97 2.13 0.81 1.51 3.38 0.89 0.41 1.95 0.57P205 0.22 0.24 0.14 0.47 0.22 0.48 0.22 0.27 0.61 0.23 0.78 0.77 0.16L.O.I. -0.57 -0.06 -0.39 -0.28 -0.56 -0.26 -0.03 -0.39 0.01 0.48 0.4 0.86 -0.33H20- 0.1 0.24 0.34 0.21 0.04 0.28 0.43 0.11 0.5 0.66 0.51 0.83 0.17Total 100.37 99.53 99.4 99.84 99.61 100.01 99.77 99.53 99.7 100.07 97.93 99.36 100.5Rb 27 31 8 49 16 59 16 34 97 17 64 69 11Ba 224 254 178 369 218 397 172 294 581 199 450 467 142Sr 415 425 417 362 432 375 446 427 326 361 362 369 366Pb 0 0 0 0 0 0 0 0 0 0 0 0 0Cs 0 0 0 0 0 0 0 0 0 0 0 1.8 0Zr 76 91 41 159 62 188 61 107 318 61 233 239 43Hf 0 0 0 0 0 0 0 0 0 0 0 5.3 0.3Nb 4 5 2 9 4 10 3 7 17 4 13 14 2Ta 0 0 0 0 0 0 0 0 0 0 0 0 0y 22 24 16 40 19 44 22 26 66 23 55 57 18Th 0 0 1.2 0 0 0 0 0 0 0 0 7.9 0.7U 0 0 0.3 0 0 0 0 0 0 0 0 1.6 0La 10 9 7 19 9 24 6 13 38 8 31 28 5.6Ca 26 26 15 45 19 51 14 32 88 16 71 64 13.5Pr 0 0 0 0 0 0 0 0 0 0 0 0 0Nd 18 17 10 27 14 32 14 20 49 16 43 38 8.7Srn 0 0 0 0 0 0 0 0 0 0 0 9 2.3Eu 0 0 0 0 0 0 0 0 0 0 0 2.2 0.9Gd 0 0 0 0 0 0 0 0 0 0 0 9.3 2.9Tb 0 0 0 0 0 0 0 0 0 0 0 0 0Dy 0 0 0 0 0 0 0 0 0 0 0 0 0Ho 0 0 0 0 0 0 0 0 0 0 0 1.7 0.6

Page 49: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Batur calc-alkaline suite wholerock geochemistry

67333 67334 67325 67336 67327 67339 67340 67335 67342 67337 67295 67299 67341Er 0 0 0 0 0 0 0 0 0 0 0 0 0Yb 0 0 0 0 0 0 0 0 0 0 0 4.7 1.6Lu 0 0 0 0 0 0 0 0 0 0 0 0.7 0.2er 197 22 35 11 50 5 13 13 7 7 1 0 27Ni 124 14 25 5 21 8 7 10 3 8 2 3 23V 279 280 383 230 301 271 228 256 26 289 96 95 288Se 34 30 33 30 32 31 22 27 26 23 25 20 26Co 0 0 0 0 0 0 0 0 0 0 0 0 0

FeO* 9.54 9.324 10.908 9.684 9.504 10.647 9 9 8.46 9.621 8.667 8.433 9.594Zr/Se 2.24 3.03 1.24 5.3 1.94 6.06 2.77 3.96 12.23 2.65 9.32 11.95 1.6587Sr/86Sr 0 0 0 0 0 0 0 0 0 0 0 0 0143Nd/144 0 0 0 0 0 0 0 0 0 0 0 0 0208Pb/204 0 0 0 0 0 0 0 0 0 0 0 0 0207Pb/204 0 0 0 0 0 0 0 0 0 0 0 0 0206Pb/204 0 0 0 0 0 0 0 0 0 0 0 0 0

Appendix 6 Wholeroek geoehemieal data for a eale-alkaline suite, Batur, Indonesia, taken from Wheller (1986)

Page 50: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

APPENDIX 2: ELECTRONMICROPROBE DATA

Page 51: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Pyroxene EMP AnalysesSample# PBD30Rocktype BLV

--- ------

Si02 51.51 51.23 53.32 50.35 51.23 51.62 51.13 51.34 50.59 50.33 50.99 51.05 51.11 51.01Ti02 0.4 0.39 0.12 0.45 0.41 0.32 0.37 0.38 0.46 0.49 0.46 0.41 0.39 0.38AI203 2.29 2.38 1.2 3.95 2.49 2:29 2.45 2.37 2.9 3.51 2.79 2.58 2.52 2.5Cr203 0.2 0.3 0.63 0.44 0.23 0.19 0.18 0.17 0.39 0.34 0.27 0.22 0.12 0.21Fe203(c) 3.55 3.02 2.11 3.62 2.92 2.57 2.93 2.89 4.09 3.39 3.21 3.15 3.07 3.33FeO(c) 6.16 6.28 2.55 4.11 6.55 7.48 6.77 5.66 4.46 5.98 6.72 5.63 6.85 6.43MnO 0.33 0.29 0.14 0.21 0.28 0.29 0.32 0.26 0.22 0.25 0.23 0.24 0.26 0.34MgO 15.66 15.33 17.7 15.6 15.46 15.56 15.39 15.94 15.58 14.75 15.29 15.53 15.33 15.35CaO 20.54 20.7 22.54 21.34 20.36 19.88 20.04 20.52 21.4 21.01 20.32 20.83 20.07 20.24Na20 0.26 0.26 0.16 0.25 0.25 0.22 0.28 0.24 0.2 0.25 0.24 0.26 0.28 0.27K20 0.02 0 ' 0 0 0 0 0 0 0.03 0 0 0 0.01 0.01Sum Ox% 100.91 100.18 100.46 100.33 100.18 100.41 99.85 99.76 100.32 100.3 100.53 99.89 100.02 100.06

Si 1.897 1.9 1.939 1.854 1.899 1.911 1.902 1.904 1.87 1.867 1.887 1.894 1.899 1.895Ti 0.011 0.011 0.003 0.013 0.012 0.009 0.01 0.01 0.013 0.014 0.013 0.011 0.011 0.01AI/AI IV 0.099 0.1 0.051 0.146 0.101 0.089 0.098 0.096 0.127 0.133 0.113 0.106 0.101 0.105AIVI 0 0.004 0 0.025 0.008 0.011 0.01 0.007 0 0.02 0.008 0.007 0.01 0.005Cr 0.006 0.009 0.018 0.013 0.007 0.005 0.005 0.005 0.011 0.01 0.008 0.007 0.004 0.006Fe3+ 0.099 0.084 0.058 0.1 0.081 0.071 0.082 0.081 0.114 0.095 0.089 0.088 0.086 0.093Fe2+ 0.19 0.195 0.078 0.127 0.203 0.232 0.211 0.176 0.138 0.185 0.208 0.175 0.213 0.2Mn2+ 0.01 0.009 0.004 0.006 0.009 0.009 0.01 0.008 0.007 0.008 0.007 0.007 0.008 0.011Mg 0.859 0.847 0.959 0.856 0.854 0.858 0.853 0.881 0.858 0.815 0.844 0.859 0.849 0.85Ca 0.81 0.822 0.878 0.842 0.808 0.789 0.799 0.815 0.847 0.835 0.806 0.828 0.799 0.806Na 0.018 0.019 0.011 0.018 0.018 0.016 0.02 0.017 0.014 0.018 0.017 0.018 0.02 0.02K 0.001 0 0 0 0 0 0 0 0.002 0 0 0 0.001 0

Sum Cat# 4 4 4 4 4 4 4 4 4 4 4 4 4 4Wo(Ca) 43.585 44.108 45.855 46.128 43.334 41.978 42.883 43.559 45.981 45.486 43.384 44.494 42.926 43.42En(Mg) 46.217 45.451 50.09 46.932 45.787 45.69 45.814 47.064 46.547 44.418 45.42 46.128 45.636 45.81Fs(Fe2+) 10.198 10.441 4.055 6.94 10.879 12.332 11.303 9.377 7.472 10.096 11.197 9.378 11.439 10.769XMg 0.819 0.813 0.925 0.871 0.808 0.787 0.802 0.834 0.862 0.815 0.802 0.831 0.8 0.81

Mg# 0.75 0.75 0.88 0.79 0.75 0.74 0.74 0.77 0.77 0.74 0.74 0.77 0.74 0.74

Page 52: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Pyroxene EMP AnalysesPBD66BLV

51.08 51.71 50.99 51.31 51 51 51.22 51.17 51.25 51.43 50.95 51.06 50.44 50.63 50.14 50.540.3 0.39 0.4 0.41 0.44 0.38 0.39 0.33 0.4 0.33 0.51 0.48 0.58 0.41 0.72 0.343.3 2.33 2.62 2.73 2.62 2.53 2.37 2.62 2.32 2.38 2.67 2.55 2.82 2.97 1.61 2.26

0.22 0.14 0.17 0.03 0.29 0.17 0.2 0.15 0.2 0.19 0.29 0.22 0.16 0.37 0.03 0.293.81 2.93 3.47 3.08 3.41 3.38 2.92 3.03 3.56 3.42 3.44 3.25 4 3.35 2.6 3.233.43 6.56 5.92 6.82 5.79 5.33 6.08 5.95 5 5.08 6.7 7.12 6.8 4.91 11.38 6.040.12 0.26 0.24 0.23 0.26 0.23 0.26 0.2 0.2 0.24 0.27 0.25 0.3 0.22 0.42 0.24

16.28 15.66 15.32 15.45 15.2 15.37 15.33 15.67 15.63 15.86 15.12 15.46 15.17 15.37 13.11 15.1321.59 20.44 20.77 20.24 21.11 21.25 20.87 20.38 21.45 21.19 20.55 19.77 19.62 21.29 18.79 20.45

0.23 0.26 0.26 0.26 0.26 0.24 0.26 0.28 0.23 0.23 0.24 0.26 0.33 0.24 0.27 0.270.01 0.01 0.02 0 0 0 0 0 0 0 0 0 0 0 0.04 0.01

100.38 100.69 100.19 100.55 100.38 99.89 99.91 99.77 100.26 100.35 100.74 100.43 100.22 99.77 99.11 98.8

1.873 1.906 1.89 1.895 1.888 1.893 1.903 1.899 1.894 1.897 1.884 1.892 1.876 1.88 1.916 1.90.008 0.011 0.011 0.011 0.012 0.011 0.011 0.009 0.011 0.009 0.014 0.013 0.016 0.012 0.021 0.010.127 0.094 0.11 0.105 0.112 0.107 0.097 0.101 0.101 0.103 0.116 0.108 0.123 0.12 0.072 0.10.016 0.007 0.005 0.014 0.002 0.004 0.006 0.014 0 0.001 0.001 0.003 0 0.01 0 0.0010.006 0.004 0.005 0.001 0.009 0.005 0.006 0.004 0.006 0.005 0.008 0.006 0.005 0.011 0.001 0.0090.105 0.081 0.097 0.086 0.095 0.094 0.082 0.085 0.099 0.095 0.096 0.091 0.112 0.094 0.075 0.0910.105 0.202 0.184 0.211 0.179 0.166 0.189 0.185 0.155 0.157 0.207 0.221 0.211 0.153 0.364 0.190.004 0.008 0.007 0.007 0.008 0.007 0.008 0.006 0.006 0.008 0.008 0.008 0.009 0.007 0.014 0.008

0.89 0.86 0.847 0.851 0.839 0.85 0.849 0.867 0.861 0.872 0.834 0.854 0.841 0.851 0.746 0.8480.848 0.807 0.825 0.801 0.837 0.845 0.83 0.81 0.85 0.837 0.814 0.785 0.782 0.847 0.769 0.8240.017 0.019 0.019 0.019 0.018 0.018 0.018 0.02 0.017 0.016 0.017 0.019 0.024 0.017 0.02 0.020.001 0.001 0.001 0 0 0 0 0 0 0 0 0 0 0 0.002 0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 446.024 43.165 44.473 43.012 45.128 45.415 44.451 43.527 45.542 44.874 43.901 42.209 42.626 45.776 40.938 44.24848.274 46.025 45.628 45.675 45.209 45.689 45.435 46.546 46.166 46.727 44.93 45.92 45.85 45.977 39.711 45.545

5.702 10.81 9.899 11.314 9.663 8.897 10.114 9.927 8.291 8.399 11.169 11.871 11.524 8.247 19.351 10.2070.894 0.81 0.822 0.801 0.824 0.837 0.818 0.824 0.848 0.848 0.801 0.795 0.799 0.848 0.672 0.817

0.81 0.75 0.75 0.74 0.75 0.77 0.76 0.76 0.77 0.78 0.73 0.73 0.72 0.78 0.63 0.75

Page 53: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Pyroxene EMP Analyses-- ---- ---PSD49

SLV50.5 50.95 50.49 51.33 51.5 50.59 50.82 50.71 51.09 51.51 50.55 50.86 50.21 50.77 49.5 49.470.48 0.5 0.54 0.4 0.39 0.44 0.4~ 0.48 0.41 0.43 0.49 0.46 0.39 0.48 0.54 0.592.65 1.73 2.56 1.8 2.35 2.91 2.16

..

2.56 2.35 2.37 2.59 2,61 4.21 2.91 4.21 3.770.23 0.07 0.13 0 0.32 0.24 0.06 0.17 0.02 0.25 0.11 0.17 0.45 0.04 0 0.053.13 3.26 3.42 1.95 2.34 3.73 2.8 3.37 3.13 2.86 3.02 2.6 4 3.5 4.24 3.337.91 7.72 7 10.81 6.89 5.77 7.54 6.74 7.66 6.69 7.6 7.13 3.49 6.74 6.19 8.19

0.3 0.31 0.34 0.42 0,29 0.28 0.31 0.31 0.33 0.24 0.34 0.23 0.18 0.29 0.28 0.3114.51 15.3 15.23 14.1 15.55 14,97 15.05 15.37 15.57 15.41 15.45 15.25 15.45 14.71 13.92 14.8519.83 19.47 19.51 18.87 20.14 21.07 19.78 19.72 19.11 20.55 18.95 19.87 21.99 20.57 21.24 18.420.29 0.24 0.28 0.25 0.25 0.25 0.25 0.29 0.27 0.25 0.25 0.25 0.21 0.33 0.25 0.22

0 0.01 0.02 0.02 0.01 0 0.01 0 0 0.02 0 0.02 0.02 0 0 0.0299.81 99.57 99.53 99.94 100.03 100.26 99.26 99.73 99.93 100.6 99.35 99.46 100,6 100.35 100.39 99.23

1.891 1,909 1.889 1.931 1.91 1.877 1.908 1,891 1.902 1.903 1.894 1.9 1.844 1.885 1.842 1.8610.013 0.014 0.015 0.011 0.011 0.012 0.014 0.014 0.012 0.012 0.014 0.013 0.011 0.014 0.015 0.0170.109 0.076 0.111 0.069 0.09 0.123 0.092 0.109 0.098 0.097 0.106 0.1 0.156 0.115 0.158 0.1390.008 0 0.002 0.011 0.013 0.004 0.003 0.004 0.006 0.006 0.008 0.015 0.026 0.012 0.027 0.0280.007 0.002 0.004 0 0.009 0.007 0.002 0.005 0.001 0.007 0.003 0.005 0.013 0.001 0 0.0010.088 0.092 0.096 0.055 0.065 0.104 0.079 0.095 0.088 0.08 0.085 0.073 0.111 0.098 0.119 0.0940.248 0.242 0.219 0.34 0.214 0.179 0.237 0.21 0.238 0.207 0.238 0.223 0.107 0.209 0.193 0.258

0.01 0.01 0.011 0.014 0.009 0.009 0.01 0.01 0.01 0.008 0.011 0.007 0.006 0.009 0.009 0.010.81 0.854 0.849 0.79 0.86 0.828 0.842 0.854 0.864 0.849 0.862 0.849 0.845 0.814 0.772 0.833

0.796 0.782 0.782 0.76 0.8 0.838 0.796 0.788 0.762 0.813 0.761 0.795 0.865 0.819 0.847 0,7420,021 0.017 0.02 0.018 0.018 0.018 0.018 0.021 0.02 0.018 0.018 0.018 0.015 0.023 0.018 0.016

0 0.001 0.001 0,001 0.001 0 0 0 0 0.001 0 0.001 0.001 0 0 0.001

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 442.93 41.622 42.266 40.22 42.708 45.417 42.452 42.535 40.88 43.521 40.871 42.596 47.594 44.43 46.745 40.505

43.7 45.49 45.898 41.802 45.886 44.884 44.92 46.124 46.335 45.412 46.343 45.468 46.504 44.201 42.62 45.43113.371 12.888 11.836 17.978 11.406 9.699 12.628 11.341 12.785 11.066 12.786 11.936 5.901 11.368 10.635 14.063

0.766 0.779 0.795 0.699 0.801 0.822 0.781 0.803 0.784 0,804 0.784 0.792 0.887 0.795 0.8 0.764

0.71 0.72 0.73 0.67 0.76 0.75 0.73 0.74 0.73 0.75 0.73 0.74 0.79 0.73 0.71 0.70

Page 54: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Pyroxene EMP AnalysesPBD52BLV

52.32 51.1 51.5 51.1 50.24 50.16 49.75 51.83 50.45 51.77 52.85 50.59 51.56 49.65 53.09 52.650.16 0.32 0.33 0.27 0.37 0.46 0.45 0.2 0.45 0.35 0.16 0.43 0.25 0.51 0.15 0.180.89 2.26 2.29 2.79 3.56 3.65 5 2.58 2.57 1.89 1.55 2.9 2.31 3.92 1.28 1.340.01 0.03 0.07 0.16 0.25 0.28 0.17 0.58 0.02 0.07 0.57 0.29 0.35 0.04 0.67 0.412.43 3.77 2 3.06 3.34 3.61 4.19 3.47 3.44 2.74 3.2 3.5 2.91 4.5 2.36 2.056.95 6.97 8.29 4.68 3.81 5.82 4.62 2.57 6.99 7.65 1.32 2.94 3.41 3.56 2.28 2.990.38 0.33 0.28 0.23 0.19 0.24 0.19 0.12 0.3 0.43 0.11 0.16 0.14 0.14 0.14 0.15

14.82 14.35 14.46 15.99 15.05 14.72 14.88 16.59 14.41 14.82 17.47 15.71 15.68 15.1 17.04 16.8121.61 20.97 20.19 21.2 22.4 20.96 21.14 22.63 20.65 20.57 23.43 22.58 22.98 21.95 23.35 22.8

0.27 0.35 0.36 0.16 0.19 0.27 0.32 0.19 0.28 0.3 0.16 0.18 0.2 0.2 0.18 0.170 0.01 0 0 ·0.01 0 0 0.01 0 0 0 0 0 0.05 0.02 0

99.86 100.46 99.76 99.65 99.41 100.16 100.72 100.77 99.57 100.58 100.82 99.28 99.78 99.62 100.56 99.54

1.952 1.901 1.924 1.892 1.868 1.862 1.83 1.89 1.892 1.92 1.916 1.878 1.905 1.845 1.933 1.9380.004 0.009 0.009 0.008 0.01 0.013 0.012 0.005 0.013 0.01 0.004 0.012 0.007 0.014 0.004 0.0050.039 0.099 0.076 0.108 0.132 0.138 0.17 0.11 0.108 0.08 0.066 0.122 0.095 0.155 0.055 0.058

0 0 0.025 0.014 0.024 0.022 0.047 0.001 0.005 0.003 0 0.005 0.005 0.017 0 00 0.001 0.002 0.005 0.007 0.008 0.005 0.017 0.001 0.002 0.016 0.008 0.01 0.001 0.019 0.012

0.068 0.106 0.056 0.085 0.093 0.101 0.116 0.095 0.097 0.076 0.087 0.098 0.081 0.126 0.065 0.0570.217 0.217 0.259 0.145 0.118 0.181 0.142 0.078 0.219 0.237 0.04 0.091 0.105 0.111 0.069 0.0920.012 0.01 0.009 0.007 0.006 0.008 0.006 0.004 0.01 0.013 0.003 0.005 0.004 0.004 0.004 0.0050.824 0.796 0.805 0.883 0.834 0.815 0.816 0.902 0.806 0.819 0.944 0.869 0.863 0.836 0.925 0.9220.864 0.836 0.808 0.841 0.892 0.834 0.833 0.884 0.829 0.818 0.91 0.898 0.909 0.874 0.911 0.899

0.02 0.025 0.026 0.012 0.013 0.019 0.023 0.013 0.02 0.021 0.011 0.013 0.014 0.015 0.013 0.0120 0.001 0 0 0 0 0 0 0 0 0 0 0 0.002 0.001 0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 445.355 45.232 43.158 45.014 48.369 45.582 46.513 47.43 44.733 43.627 48.04 48.318 48.425 47.99 47.818 46.98943.255 43.038 43.013 47.237 45.21 44.542 45.554 48.367 43.445 43.707 49.844 46.775 45.96 45.928 48.54 48.206

11.39 11.73 13.829 7.749 6.421 9.875 7.933 4.203 11.822 12.666 2.116 4.907 5.615 6.082 3.642 4.8050.792 0.786 0.757 0.859 0.876 0.819 0.852 0.92 0.786 0.775 0.959 0.905 0.891 0.883 0.93 0.909

0.74 0.71 0.72 0.79 0.80 0.74 0.76 0.84 0.72 0.72 0.88 0.82 0.82 0.78 0.87 0.86

Page 55: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Pyroxene EMP AnalysesPBD43 PBD89BYV BYV

52.32 53.21 52.55 52.67 51.39 52.66 50.16 50.81 49.92 51.11 50.92 50.42 49.74 50.53 50.04 50.630.26 0.15 0.2 0.13 0.25 0.12 0.4 0.34 0.4 0.18 0.34 0.21 0.37 0.33 0.26 0.31.71 1.2 1.31 1.5 2.09 1.28 2.97 2.54 3.47 2.38 2.36 2.38 2.7 2.3 2.72 2.540.09 0.59 0.39 0.6 0.03 0.02 0 0 0.05 0.01 0 0.01 0.01 0.06 0 0.012.56 1.78 3.45 2.26 3.04 2.69 3.93 3.85 4.08 3.94 3.73 3 4.25 3.03 3.23 3.494.34 2.55 1.91 2.61 6.1 3.94 5.67 5.63 5.39 3.62 5.14 7 5.89 6.83 7.21 6.290.23 0.15 0.13 0.14 0.39 0.22 0.44 0.41 0.3 0.22 0.39 0.43 0.38 0.36 0.44 0.3916.4 17.24 16.88 16.8 14.15 16.74 13.73 14.04 13.6 14.97 14.08 13.79 13.64 13.95 13.44 14.11

22.11 23.14 23.43 22.99 22.21 22.02 22.03 22.2 22.21 23.01 22.53 21 21.52 21.32 21.01 21.480.13 0.15 0.19 0.19 . 0.31 0.19 0.32 0.33 0.34 0.27 0.36 0.32 0.35 0.29 0.33 0.310.02 0 0 0.02 .0.03 0 0.01 0.01 0.02 0 0.02 0.03 0.02 0 0 0

100.16 100.16 100.44 99.92 99.98 99.88 99.65 100.15 99.78 99.72 99.85 98.57 98.88 98.99 98.68 99.57

1.924 1.942 1.92 1.931 1.916 1.938 1.88 1.893 1.867 1.897 1.9 1.91 1.881 1.906 1.898 1.8970.007 0.004 0.005 0.003 0.007 0.003 0.011 0.009 0.011 0.005 0.009 0.006 0.011 0.009 0.007 0.0090.074 0.052 0.056 0.065 0.084 0.055 0.12 0.107 0.133 0.103 0.1 0.09 0.119 0.094 0.102 0.103

0 0 0 0 0.008 0 0.011 0.005 0.02 0.002 0.003 0.017 0.002 0.009 0.02 0.010.003 0.017 0.011 0.017 0.001 0.001 0 0 0.001 0 0 0 0 0.002 0 00.071 0.049 0.095 0.062 0.085 0.075 0.111 0.108 0.115 0.11 0.105 0.086 0.121 0.086 0.092 0.0980.134 0.078 0.058 0.08 0.19 0.121 0.178 0.175 0.169 0.112 0.16 0.222 0.186 0.215 0.229 0.1970.007 0.005 0.004 0.004 0.012 0.007 0.014 0.013 0.009 0.007 0.012 0.014 0.012 0.012 0.014 0.0120.899 0.938 0.919 0.918 0.786 0.918 0.767 0.78 0.758 0.828 0.783 0.779 0.769 0.784 0.76 0.7880.871 0.905 0.917 0.903 0.887 0.868 0.885 0.886 0.89 0.915 0.9 0.852 0.872 0.862 0.854 0.8620.009 0.011 0.013 0.013 0.022 0.013 0.023 0.024 0.025 0.02 0.026 0.023 0.025 0.021 0.024 0.0230.001 0 0 0.001 0.001 0 0 0 0.001 0 0.001 0.001 0.001 0 0 0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 445.759 47.103 48.402 47.5 47.603 45.504 48.358 48.124 48.982 49.314 48.839 46 47.721 46.3 46.354 46.67147.221 48.836 48.513 48.287 42.191 48.137 41.93 42.35 41.733 44.631 42.463 42.034 42.078 42.132 41.233 42.658

7.019 4.06 3.085 4.213 10.207 6.359 9.711 9.526 9.284 6.054 8.699 11.966 10.201 11.568 12.413 10.6710.871 0.923 0.94 0.92 0.805 0.883 0.812 0.816 0.818 0.881 0.83 0.778 0.805 0.785 0.769 0.8

0.81 0.88 0.86 0.87 0.74 0.82 0.73 0.73 0.73 0.79 0.75 0.72 0.71 0.72 0.70 0.73

Page 56: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Pyroxene EMP Analyses-- -- - ------- -

PBD19 PBD169 PBD142(1)BYV BYV BYV

50.72 50.7 50.62 50.39 49.53 49.9 50.25 50.16 50.57 50.44 49.91 50.63 51.18 50.27 49.84 50.450.31 0:28 0.28 0.24 0.42 0.39 0.4 0.38 0.32 0.38 0.36 0.28 0.26 0.4 0.38 0.292.23 2.2 2.11 2.24 3.2 2.85 2.79 3.71 2.35 2.62 2.49 2.16 1.81 3.41 3.34 2.520.04 0 0 0 0.09 0.04 0 0 0.01 0.1 0 0.07 0 0.03 0.05 03.01 3.5 3.18 3.24 3.33 4.19 3.43 2.75 2.29 3.18 3.46 2.64 2.98 3.22 3.45 36.97 6.08 6.33 6.85 7.07 5.89 6.08 6.98 6.99 6.79 6.77 7.98 7.58 6.86 7.26 7.880.39 0.38 0.36 0.41 0.43 0.4 0.3 0.28 0.41 0.36 0.46 0.52 0,54 0.36 0.34 0.38

14.03 14.15 14.11 13.81 12.99 13.75 13.58 13.17 13.55 13.56 13.24 14.01 14.12 13.78 13.7 13.4121.18 21.61 21.46 21.12 21.39 21.76 22.2 21.85 21.73 21.68 21.5 20.26 20.82 21.26 20.6 20.81

0.31 0.32 0.31 0.33 0.33 0.28 0.3 0.34 0.29 0.32 0.34 0.29 0.32 0.3 0.31 0.360 0.01 0.01 0 0 0 0 0 0.01 0.03 0.02 0.01 0 0.01 0.03 0.02

99.2 99.24 98.76 98.63 98.79 99.45 99.34 99.62 98.52 99.45 98.55 98.85 99.6 99.89 99.3 99.13

1.91 1.906 1.911 1.909 1.88 1.876 1.89 1.881 1.916 1.897 1.897 1.916 1.922 1.879 1.878 1.9070.009 0.008 0.008 0.007 0.012 0.011 0.011 0.011 0.009 0.011 0.01 0.008 0.007 0.011 0.011 0.008

0.09 0.094 0.089 0.091 0.12 0.124 0.11 0.119 0.084 0.103 0.103 0.084 0.078 0.121 0.122 0.0930.009 0.003 0.005 0.009 0.023 0.003 0.013 0.045 0.021 0.013 0.009 0.012 0.002 0.03 0.026 0.0190.001 0 0 0 0.003 0.001 0 0 0 0.003 0 0.002 0 0.001 0.001 00.085 0.099 0.09 0.092 0.095 0.119 0.097 0.077 0.065 0.09 0.099 0.075 0.084 0.091 0.098 0.0850.219 0.191 0.2 0.217 0.225 0.185 0.191 0.219 0.221 0.213 0.215 0.253 0.238 0.215 0.229 0.2490.012 0.012 0.011 0.013 0.014 0.013 0.01 0.009 0.013 0.011 0.015 0.017 0.017 0.011 0.011 0.0120.788 0.793 0.794 0.78 0.735 0.771 0.761 0.736 0.765 0.76 0.75 0.79 0.79 0.768 0.769 0.7560.854 0.87 0.868 0.857 0.87 0.877 0.894 0.878 0.882 0.874 0.876 0.821 0.838 0.852 0.832 0.8430.022 0.023 0.023 0.024 0.024 0.021 0.022 0.025 0.021 0.023 0.025 0.021 0.023 0.022 0.022 0.027

0 0.001 0 0 0 0 0 0 0 0.002 0.001 0 0 0.001 0.002 0.001

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 445.901 46.934 46.623 46.24 47.557 47.835 48.431 47.894 47.204 47.293 47.554 44.062 44.886 46.434 45.451 45.60942.312 42.765 42.641 42.059 40.169 42.053 41.219 40.164 40.949 41.152 40.754 42.389 42.357 41.867 42.044 40.90711.787 10.301 10.736 11.701 12.274 10.112 10.35 11.942 11.848 11.555 11.692 13.55 12.757 11.699 12.506 13.484

0.782 0.806 0.799 0.782 0.766 0.806 0.799 0.771 0.776 0.781 0.777 0.758 0.769 0.782 0.771 0.752

0.72 0.73 0.73 0.72 0.70 0.72 0.73 0.71 0.73 0.71 0.70 0.71 0.71 0.72 0.70 0.69

Page 57: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Pyroxene EMP AnalysesPBD1~-- PBD180- -- ---- PBD73hbld dyke TM BLV

50.71 50.39 52.1 53.22 50.65 48.79 51.23 52.09 52.54 52.83 51.79 52.94 50.54 50.63 53.02 52.60.28 0.41 0.14 0.1 0.2 0.42 0.22 0.18 0.09 0.02 0.09 0.11 0.47 0.51 0.12 0.172.32 3.38 1.86 1.1 2.67 4.68 1.63 1.18 0.41 0.34 0.49 0.86 2.74 2.51 1.42 1.71

0 0 0.31 0.55 0.03 0.15 0 0 0.03 0.02 0 0 0.14 0.28 0.44 0.512.65 3.62 2.78 2.08 2.71 4.27 2.63 1.72 1.74 1.11 2.55 2.02 2.83 2.59 0.32 1.897.84 5.13 2.66 1.96 6.67 3.88 6.85 8.4 7.47 7.85 9.38 5.12 7.8 7.56 3.88 2.840.64 0.2 0.16 0.13 0.33 0.14 0.46 0.66 0.53 0.58 0.75 0.38 0.35 0.29 0.1 0.17

13.99 14.22 15.85 17.68 14.13 13.36 14.59 13.88 13.68 13.49 12.7 15.06 14.91 14.55 16.85 16.4920.31 22.18 23.84 22.93 21.45 23.47 20.64 21.07 22.79 23.01 21.8 23.51 19.5 20.17 22.61 23.38

0.31 0.32 0.17 0.16 0.22 0.17 0.36 0.35 0.29 0.27 0.28 0.21 0.25 0.28 0.1 0.130 0.02 0 0.02 -0.02 0 0 0 0 0 0 0 0 0.02 0.02 0.03

99.06 99.88 99.86 99.89 99.07 99.33 98.62 99.54 99.56 99.51 99.84 100.2 99.53 99.4 98.86 99.91

1.914 1.876 1.919 1.943 1.905 1.829 1.934 1.957 1.974 1.986 1.96 1.957 1.893 1.9 1.959 1.930.008 0.012 0.004 0.003 0.006 0.012 0.006 0.005 0.002 0.001 0.003 0.003 0.013 0.014 0.003 0.0050.086 0.124 0.081 0.047 0.095 0.171 0.066 0.043 0.018 0.014 0.022 0.037 0.107 0.1 0.041 0.070.017 0.024 0 0 0.024 0.035 0.006 0.01 0 0.001 0 0 0.014 0.011 0.021 0.004

0 0 0.009 0.016 0.001 0.004 0 0 0.001 0.001 0 0 0.004 0.008 0.013 0.0150.075 0.102 0.077 0.057 0.077 0.121 0.075 0.049 0.049 0.031 0.073 0.056 0.08 0.073 0.009 0.0520.248 0.16 0.082 0.06 0.21 0.122 0.216 0.264 0.235 0.247 0.297 0.158 0.244 0.237 0.12 0.0870.021 0.006 0.005 0.004 0.011 0.004 0.015 0.021 0.017 0.018 0.024 0.012 0.011 0.009 0.003 0.0050.787 0.789 0.87 0.962 0.792 0.746 0.821 0.777 0.766 0.756 0.717 0.83 0.833 0.814 0.928 0.9020.822 0.885 0.941 0.897 0.864 0.943 0.835 0.848 0.917 0.927 0.884 0.931 0.782 0.811 0.895 0.9190.023 0.023 0.012 0.011 0.016 0.013 0.027 0.026 0.021 0.02 0.02 0.015 0.018 0.02 0.007 0.009

0 0.001 0 0.001 0.001 0 0 0 0 0 0 0 0 0.001 0.001 0.001

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 444.264 48.257 49.709 46.749 46.321 52.067 44.596 44.883 47.833 48.038 46.579 48.517 42.081 43.555 46.071 48.171

42.4 43.037 45.966 50.139 42.438 41,218 43.846 41.142 39.934 39.173 37.77 43.23 44.78 43.705 47.762 47.26113.336 8.706 4.325 3.112 11.241 6.715 11.558 13.975 12.233 12.789 15.651 8.253 13.139 12.74 6.167 4.567

0.761 0.832 0.914 0.942 0.791 0.86 0.791 0.746 0.766 0.754 0,707 0.84 0.773 0.774 0.886 0.912

0.71 0.75 0.85 0.89 0,73 0,75 0.74 0.71 0.73 0.73 0.66 0.80 0.72 0.72 0.88 0.87

Page 58: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Pyroxene EMP AnalysesPBD87BYV (volcaniclastic)

50.08 50.45 51.94 50.25 50.41 50.23 51.05 51.04 50.72 50.43 51.03 50.44 51.77 50.54 49.16 49.670.64 0.44 0.28 0.51 0.52 0.42 0.49 0.41 0.47 0.66 0.31 0.36 0.23 0.37 0.57 0.362.68 2.63 2.05 2.64 2.77 3.01 1.57 2.16 2.09 2.09 2.59 2.89 2.26 3.18 3.77 3.90.17 0.05 0.27 0.26 0.25 0.3 0 0.2 0.15 0 0.27 0.2 0.12 0 0.01 0.072.84 2.64 1.13 2.71 1.98 1.89 1.37 1.83 1.99 1.95 3.18 4.1 3.09 3.08 3.99 4.857.03 7.01 5.93 7.45 7.42 8.17 10.36 7.98 8.16 10.67 4.57 4.03 3.65 8.06 7.14 2.690.35 0.28 0.19 0.28 0.15 0.35 0.31 0.25 0.29 0.36 0.21 0.17 0.21 0.42 0.33 0.2

14.54 14.81 15.68 14.6 14.32 13.91 14.27 14.85 14.7 14.38 15.41 15.16 15.9 14.03 13.6 14.4820.38 20.11 21.16 19.91 20.57 20.17 18.86 20.02 19.73 17.95 21.73 22.01 22.8 20.08 20.63 23.32

0.23 0.27 0.24 0.28 0.28 0.28 0.26 0.21 0.23 0.26 0.27 0.27 0.15 0.34 0.25 0.240 0 0.01 0 0 0 0.01 0.03 0.02 0.01 0 0 0 0 0 0.01

98.95 98.69 98.9 98.88 98.68 98.72 98.54 98.98 98.57 98.75 99.55 99.62 100.18 100.09 99.46 99.82

1.888 1.901 1.936 1.895 1.902 1.9 1.941 1.92 1.918 1.916 1.896 1.876 1.905 1.888 1.852 1.8440.018 0.012 0.008 0.015 0.015 0.012 0.014 0.012 0.013 0.019 0.009 0.01 0.006 0.011 0.016 0.010.112 0.099 0.064 0.105 0.098 0.1 0.059 0.08 0.082 0.084 0.104 0.124 0.095 0.112 0.148 0.1560.007 0.018 0.027 0.012 0.025 0.034 0.011 0.016 0.012 0.01 0.009 0.002 0.003 0.028 0.02 0.0150.005 0.001 0.008 0.008 0.008 0.009 0 0.006 0.005 0 0.008 0.006 0.004 0 0 0.0020.081 0.075 0.032 0.077 0.056 0.054 0.039 0.052 0.057 0.056 0.089 0.115 0.086 0.087 0.113 0.1360.222 0.221 0.185 0.235 0.234 0.258 0.329 0.251 0.258 0.339 0.142 0.125 0.112 0.252 0.225 0.0840.011 0.009 0.006 0.009 0.005 0.011 0.01 0.008 0.009 0.012 0.007 0.005 0.007 0.013 0.01 0.0060.817 0.832 0.872 0.82 0.805 0.784 0.809 0.833 0.829 0.814 0.853 0.84 0.872 0.781 0.764 0.8010.823 0.812 0.845 0.804 0.831 0.817 0.768 0.807 0.8 0.731 0.865 0.877 0.899 0.804 0.833 0.9280.017 0.02 0.017 0.02 0.02 0.021 0.019 0.015 0.017 0.019 0.019 0.019 0.011 0.024 0.018 0.017

0 0 0.001 0 0 0 0 0.001 0.001 0 0 0 0 0 0 0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 444.208 43.539 44.448 43.252 44.434 43.946 40.303 42.675 42.382 38.781 46.5 47.595 47.728 43.765 45.717 51.1843.882 44.613 45.829 44.122 43.052 42.161 42.419 44.046 43.932 43.228 45.87 45.596 46.304 42.523 41.933 44.20811.909 11.848 9.723 12.626 12.515 13.893 17.277 13.279 13.687 17.991 7.63 6.809 5.969 13.712 12.35 4.612

0.787 0.79 0.825 0.778 0.775 0.752 0.711 0.768 0.762 0.706 0.857 0.87 0.886 0.756 0.772 0.906

0.73 0.74 0.80 0.72 0.74 0.72 0.69 0.73 0.72 0.67 0.79 0.78 0.81 0.70 0.69 0.78

Page 59: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Pyroxene EMP AnalysesPBD41BYV (Volcaniclastic)

52.95 51.05 49.73 50.02 49.81 50.32 51.13 50.31 50.03 50.61 51.07 51.25 50.04 51.09 49.89 51.360.11 0.26 0.32 0.31 0.31 0.42 0.32 0.4 0.48 0.37 0.38 0.38 0.42 0.38 0.55 0.381.36 3.12 3.77 3.69 3.77 3 2.5'5 3.14 3.17 2.94 2.36 2.4 3.73 2.47 4.02 2.180.38 0.27 0.2 0.15 0.46 0.02 0 0.01 0 0 0.04 0 0.02 0 0.03 02.19 3.86 4.83 4.6 4.14 4 3.09 4.09 4.31 3.66 3.81 3.14 4.97 3.33 3.77 3.081.95 2.43 2.94 2.87 2.96 4.5 5.23 3.62 4.83 4.25 5.03 5.84 4.02 6.18 4.84 5.420.11 0.17 0.16 0.16 0.14 0.25 0.35 0.22 0.31 0.31 0.44 0.39 0.25 0.32 0.22 0.42

17.27 15.6 14.86 15.02 14.79 14.51 14.7 14.36 13.96 14.71 14.58 14.47 14.42 14.3 13.89 14.5523.32 23.35 22.54 22.68 22.79 22.28 22.05 23.2 22.36 22.34 22.09 21.77 22.1 21.64 22.33 21.88

0.15 0.21 0.28 0.26 0.25 0.29 0.3 0.29 0.34 0.3 0.36 0.36 0.41 0.36 0.36 0.420.01 0 0 0 ·0.01 0.02 0 0 0 0.01 0 0.02 0 0.01 0.02 0

99.79 100.32 99.63 99.77 99.43 99.61 99.71 99.65 99.79 99.51 100.16 100.02 100.37 100.09 99.91 99.7

1.938 1.875 1.848 1.854 1.853 1.877 1.903 1.873 1.869 1.885 1.897 1.906 1.852 1.902 1.857 1.9130.003 0.007 0.009 0.009 0.009 0.012 0.009 0.011 0.013 0.01 0.011 0.011 0.012 0.011 0.015 0.0110.059 0.125 0.152 0.146 0.147 0.123 0.097 0.127 0.131 0.115 0.103 0.094 0.148 0.098 0.143 0.087

0 0.01 0.013 0.015 0.018 0.008 0.015 0.011 0.008 0.014 0 0.011 0.015 0.01 0.033 0.0090.011 0.008 0.006 0.004 0.014 0.001 0 0 0 0 0.001 0 0.001 0 0.001 0

0.06 0.107 0.135 0.128 0.116 0.112 0.086 0.115 0.121 0.103 0.107 0.088 0.138 0.093 0.105 0.0860.06 0.075 0.091 0.089 0.092 0.14 0.163 0.113 0.151 0.132 0.156 0.182 0.125 0.192 0.151 0.169

0.003 0.005 0.005 0.005 0.004 0.008 0.011 0.007 0.01 0,01 0.014 0.012 0.008 0.01 0.007 0.0130.942 0.854 0.823 0.83 0.82 0.807 0.815 0.797 0.777 0.817 0.807 0.802 0.796 0.793 0.77 0.8080.914 0.919 0.898 0.901 0.909 0.89 0.879 0.925 0.895 0.892 0.879 0.867 0.877 0.863 0.89 0.873

0.01 0.015 0.02 0.019 0.018 0.021 0.022 0.021 0.025 0.022 0.026 0.026 0.03 0.026 0.026 0.030 0 0 0 0 0.001 0 0 0 0 0 0.001 0 0.001 0.001 0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 447.727 49.732 49.529 49.504 49.905 48.463 47.341 50.433 49.079 48.438 47.714 46.869 48.79 46.687 49.152 47.20349.161 46.227 45.425 45.611 45.036 43.894 43.904 43.432 42.641 44.374 43.808 43.325 44.277 42.907 42.528 43.671

3.113 4.041 5.046 4.884 5.058 7.643 8.755 6.135 8.28 7.188 8.478 9.806 6.934 10.406 8.319 9.1260.94 0.92 0.9 0.903 0.899 0.852 0.834 0.876 0.837 0.861 0.838 0.815 0.865 0.805 0.836 0.827

0.89 0.82 0.78 0.79 0.80 0.76 0.77 0.78 0.74 0.78 0.75 0.75 0.75 0.74 0.75 0.76

Page 60: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Pyroxene EMP Analyses-- - PBD214

FRV51.65 50.2 51.26 51.18 50.39 50.09 50.39 49.98 50.4 49.86 50·17 50.91

0.33 0.31 0.27 0.33 0.43 0.5 0.41 0.5 0.4 0.43 0.43 0.331.86 2.44 2.27 2.38 3.53 3.62 3.78 3.71 3.23 3.81 3.21 3.140.02 0 0 0 0.05 0 0.03 0 0 0.01 0.07 02.37 4.68 3.35 3.33 3.93 4.94 4.92 3.84 3.48 4.51 3.46 3.786.24 3.77 5.34 5.72 6.25 5.81 4.43 6.1 5.46 4.88 6.23 5.990.41 0.34 0.41 0.38 0.26 0.27 0.28 0.2 0.32 0.21 0.35 0.29

14.38 14.68 14.96 14.72 13.47 13.46 14.19 13.49 13.83 13.62 13.62 13.9921.86 22.34 21.62 21.62 22.04 22.1 22.53 21.8 22.37 22.49 21.65 21.99

0.38 0.28 0.3 0.31 0.4 0.42 0.37 0.42 0.32 0.38 0.38 0.390.01 0.03 0.01 0 ·0.01 0.01 0.01 0 0.01 0.02 0 0

99.51 99.08 99.8 99.99 100.77 . 101.22 101.34 100.03 99.82 100.22 99.58 100.8

1.93 1.882 1.907 1.903 1.87 1.853 1.852 1.866 1.881 1.855 1.881 1.8840.009 0.009 0.008 0.009 0.012 0.014 0.011 0.014 0.011 0.012 0.012 0.009

0.07 0.108 0.093 0.097 0.13 0.147 0.148 0.134 0.119 0.145 0.119 0.1160.012 0 0.006 0.007 0.024 0.011 0.016 0.029 0.023 0.022 0.023 0.020.001 0 0 0 0.001 0 0.001 0 0 0 0.002 00.067 0.132 0.094 0.093 0.11 0.138 0.136 0.108 0.098 0.126 0.097 0.1050.195 0.118 0.166 0.178 0.194 0.18 0.136 0.19 0.17 0.152 0.195 0.1850.013 0.011 0.013 0.012 0.008 0.008 0.009 0.006 0.01 0.007 0.011 0.0090.801 0.82 0.829 0.816 0.745 0.742 0.778 0.751 0.769 0.756 0.761 0.7710.875 0.898 0.862 0.861 0.876 0.876 0.887 0.872 0.895 0.897 0.87 0.8720.027 0.021 0.022 0.023 0.029 0.03 0.026 0.03 0.023 0.027 0.028 0.028

0 0.001 0 0 0.001 0 0 0 0.001 0.001 0 0

4 4 4 4 4 4 4 4 4 4 4 446.77 48.888 46.4 46.434 48.28 48.73 49.27 48.091 48.774 49.701 47.629 47.669

42.816 44.681 44.65 43.983 41.042 41.266 43.173 41.413 41.936 41.884 41.683 42.19310.415 6.431 8.95 9.583 10.678 10.004 7.557 10.496 9.29 8.415 10.688 10.138

0.804 0.874 0.833 0.821 0.794 0.805 0.851 0.798 0.819 0.833 0.796 0.806

0.75 0.77 0.76 0.75 0.71 0.70 0.74 0.72 0.74 0.73 0.72 0.73

Page 61: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Blayney Volcanics (BLV) Chromite EMP AnalysesPBD49 PBD52

Si02 0.12 0.09 0.05 0.1 0.1 0.12 0.1 0.11 0.15 0.08 0.32 0.04 0.02 0.05 0.1Ti02 0.1 0.09 0.15 0.12 0.14 0.12 0.13 0.16 0.08 0.1 0.12 0.13 0.1 0.11 0.14AI203 7.49 7.6 10.93 10.71 6.09 6.82 7.13 10.37 6.43 5.8 5.57 7.84 6.34 7.31 5.43Cr203 59.03 60.48 56.61 57.6 61.5 62.5 62.4 58.42 58.01 58.45 54.86 58.9 60,35 60.69 61.42Fe203(c) 5.94 5.47 4.71 4.51 4.17 4.33 2.64 3.62 4.76 5.04 6.24 4.85 5.11 4.3 4.57FeO 10.25 9.54 10.58 9.85 18.68 14.01 17.07 16.34 23.87 19.09 22.57 19.38 20.21 19.48 20.81V203 0.1 0.06 0.16 0.01 0.03 0 0.07 0.11 0.08 0.09 0.05 0 0.1 0.06 0.01MnO 0.11 0.05 0.12 0.12 0.22~ 0.11 0.13 0.14 0.28 0.2 1.16 0.15 0.31 0.23 0.31MgO 14.43 15.17 14.66 15.14 9.41 12.62 10.59 11.45 5,64 8.38 4.32 9.06 8.41 9.15 7.91ZnO 0.11 0 0.01 0.19 0.1 0.11 0.05 0.12 0.4 0.06 2.39 0.11 0.08 0,03 0.21NiO 0.17 0.17 0.16 0.06 0 0.09 0.08 0.17 0.05 0.02 0.09 0.08 0 0.09 0CoO 0.03 0 0.05 0.09 - - - - - 0.09 0.02Sum Ox% 97.9 98.71 98.2 98.52 100.44 100.84 100.39 101.04 99.76 97.38 97.69 100,55 101.04 101.52 100.92

Si 0.004 0.003 0.002 0.003 0.004 0.004 0.003 0,004 0.005 0.003 0.011 0.001 0.001 0.002 0.003Ti 0.003 0.002 0.004 0.003 0.004 0.003 0.003 0.004 0.002 0.003 0.003 0.003 0.003 0.003 0.004AI/AI IV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0AI VI 0.292 0.293 0.418 0.408 0.242 0.263 0.279 0.396 0.264 0.239 0.236 0.309 0.252 0.286 0.217Cr 1.544 1.562 1.452 1.47 1.638 1.617 1,64 1.497 1.595 1.616 1.564 1.559 1.609 1.595 1.651Fe3+ 0.148 0.134 0.115 0.11 0.106 0.107 0.066 0.088 0.125 0.133 0.169 0.122 0.13 0.108 0.117Fe2+ 0.284 0.261 0,287 0.266 0.526 0.383 0.475 0.443 0.694 0.558 0.68 0.543 0.57 0.542 0.592V 0.003 0.002 0.004 0 0.001 0 0.002 0.003 0.002 0.002 0.001 0 0.003 0.002 0Mn2+ 0.003 0.002 0.003 0.003 0.006 0.003 0.004 0.004 0.008 0.006 0.035 0.004 0.009 0.006 0.009Mg 0.712 0.738 0.709 0.728 0.472 0.615 0.525 0.553 0.293 0.437 0.232 0.452 0.423 0.454 0.401Zn 0.003 0 0 0.005 0.002 0.003 0.001 0,003 0.01 0.001 0.064 0.003 0.002 0.001 0.005Ni 0.005 0.004 0.004 0.002 0 0.002 0.002 0.004 0.001 0 0.002 0.002 0 0.002 0Co 0.001 0 0.001 0.002 - - - - - 0.003 0.001GeCuSum Cat# 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3XCr 84.087 84.223 77.646 78.296 87.146 86.005 85.439 79.071 85.817 87.123 86.862 83.44 86.456 84.775 88.362XFe2+ 28.502 26.092 28.808 26.751 52.702 38.39 47.485 44.461 70.352 56.093 74.57 54.536 57:423 54.421 59.609YFe3+ 7.455 6.757 5.796 5.516 5.32 5.37 3.329 4.459 6.278 6.678 8.59 6.143 6.519 5.408 5.885Mg# 0,62238 0.65137 0.63816 0.65942 0.42754 0.55656 0.4925 0.51015 0.26349 0.38741 0.21462 0.40466 0.37667 0.41123 0.36126

Page 62: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

APPENDIX 3: XRFIICP-MSDATA and SAMPLELOCATIONS MAP

Page 63: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

)

SUMMARY OF XRF ANALYSIS (X-Ray Fluorescence Analysis)

School of Earth Sciences, University of Tasmania Phil.Robinson 29/10/99

Instrument

X-Ray Tubes

Crystals:

Collimators:

Detectors:

Sample Changer:

Sample Preparation

Majors Elements:

Trace Elements

Corrections

Philips PW1480 X-Ray Spectrometer

3kW max. Sc Mo anode side window.Elements analysed: Majors, Sand Y, Rb, D, Th, Cu, Pb, Zn, Ni,As, Bi, Co, Ga, Tl, Se, W

3kW max. Au anode side window.Elements analysed: Nb, Zr, Sr, Ba, Cr, V, Sc, La, Ce, Nd, Sb, Sn

LiF 200, LiF 220, PX-1 (for Na and Mg), PE002, Ge111

Coarse (0.7mm) and fine (0.3mm) with auxiliary (0. 14mm)

Gas flow proportional counter with PlO gas (10% methane inargon) and Scintillation Counter.

Philips 30 position sample holder

Fusion discs prepared at 1100 degreesC in 5%Au/95%Pt crucibles0.77g sample, 4.125g Norrish Flux (Lithium boratesILa203 mix),0.055g LiN03 for silicates.Platinum/gold moulds used for cooling.Sulphide bearing samples have a mix with more LiN03 asoxidising agent and the mix is preignited at 700 degreesC for 10minutes. Ore samples and ironstones use 12/22 flux and a higherflux/sample ratio.

Pressed powder pills (3.5 tonnes/cm-2) with 10 grams sample.

Binder used is PVP-MC.

Corrections for mass absorption are calculated using Philips X40 software with DeJongh's calibration model and Philips (or CSIRO) alpha coefficients. Compton scatteringis also used for many trace elements.

Calibration

Pure element oxide mixes in pure silica, along with international and Tasmanian standardrocks are used. Numerous checks of standard rocks and pure silica blanks are run witheach program.

Page 64: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

BLAYNEY PROJECTSample # PBD1 PBD2 PBD6 PDB19 PBD21 PBD22 PBD25 PBD26 PBD27 PBD30 PBD33 PBD36 PBD39 PBD42

Rocktype SLV SLV SLV SYV BYV BYV TM TM SYV SLV SLV SLV SYV BYV

Major Elements (wt%)

Si02 52.24 50.10 49.34 57.26 55.28 51.90 55.81 56.05 51.80 49.92 51.95 55.36 60.66 51.36

Ti02 0.56 0.57 0.56 0.53 0.53 0".49 0.58 0.59 0.84 0.55 0.58 0.68 0.42 0.73

AI203 15.35 15.19 15.74 16.08 15.91 19.45 17.07 18.00 17.55 14.18 13.70 14.99 13.13 16.99

Fe203 9.80 10.14 10.64 7.86 8.78 8.84 8.67 7.93 11.33 12.13 9.71 8.65 7.87 10.86

MnO 0.16 0.18 0.18 0.10 0.13 0.13 0.17 0.16 0.17 0.20 0.19 0.13 0.14 0.18

MgO 7.69 8.61 8.49 3.34 3.98 3.55 3.66 3.39 4.30 9.26 8.68 6.82 2.67 4.54

CaO 10.57 11.60 11.91 6.22 7.10 7.13 6.26 6.09 8.25 9.52 11.17 6.96 8.48 7.98

Na20 2.19 1.87 1.69 5.34 4.88 1.70 3.73 4.16 4.10 1.70 1.66 5.62 3.65 2.76

K20 1.20 1.49 1.21 2.83 2.98 6.38 3.70 3.26 1.23 2.26 2.09 0.53 2.55 4.08

P205 0.23 0.24 0.26 0.44 0.43 0.41 0.34 0.38 0.45 0.28 0.28 0.26 0.42 0.52

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Trace Elements (ppm)

Ba 906 898 484 1174 1042 1444 897 909 259 1132 1187 362 752 1302

Rb 23 23 23 39 38 97 67 52 14 39 33 8 35 66

Sr 394 410 525 647 697 711 1003 1015 638 505 545 246 528 1195

V 230 250 246 261 275 278 183 183 251 265 257 243 225 311

Nb 5 4 5 4 4 4 4 5 6 3 3 5 3 6

Zr 48 50 49 51 50 37 78 74 74 49 51 63 30 59

Cr 265 467 390 57 60 30 32 12 29 448 520 301 57 18

U <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 2 2 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5

Se 33 34 35 28 28 27 18 16 29 33 35 31 26 28

La 6 6 6 12 8 9 18 16 9 10 5 8 9 12

Ce 16 18 15 25 27 20 34 37 17 19 21 22 20 24

Nd 9 9 9 13 14 10 21 19 10 10 12 12 9 13

Y 15 14 13 14 13 15 17 18 21 13 15 18 11 18

Th <1.5 2 <1.5 <1.5 <1.5 <1.5 2 2 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5

Pb 2 4 6 3 5 3 4 6 7 2 4 2 4 4

Zn 81 83 84 70 74 72 72 66 103 102 83 72 48 89

CU 111 93 102 121 86 28 283 111 135 89 92 119 48 65

Ni 75 127 107 37 19 18 13 9 11 140 135 81 14 14

S 0 <0.01 0 0 0 0 0 0 0 0 0 0 0 0

Page 65: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

BLAYNEY PROJECTSample # PBD44 PBD46 PBD47 PBD49 PBDS2 PBDS6 PBD61 PBD62 PBD63 PBD66 PBD69 PBD73 PBD82 PBD89

Rocktype BYV BYV BYV BLV BLV BYV BLV BLV BLV BLV BLV BLV BYV BYVMajor Elements (wt%)

Si02 51.89 55.08 53.76 51.91 51,41 53.64 52.16 51.57 52.70 54.33 51.05 52.61 50.17 55.68

Ti02 0.40 0.66 0.67 0.58 0.57 0.75 0.63 0.63 0.62 0.58 0.59 0.60 0.53 0.53

AI203 11.73 16.25 16.09 15.36 11.61 15.90 14.85 15.24 14.80 14.21 14.61 14.42 16.81 16.11

Fe203 10.74 9.24 10.18 9.91 10.40 9.57 10.08 10.39 10.01 8.89 10,47 9.79 12.11 8.65

MnO 0.26 0.14 0.14 0.16 0.21 0.13 0.16 0.16 0.16 0.17 0.17 0.16 0.19 0.13

MgO 8.41 3.28 3.92 8.38 11.15 5.17 7.68 7.86 7.10 7.39 8.74 8.40 6.06 3.77

CaO 10.57 7.92 7.66 8.21 10.67 6.93 9.59 9.29 10.03 10.39 10.48 9.59 9.06 6.17

Na20 1.21 4.88 5.34 3.74 2.30 4.35 2.65 2.71 2.24 1.77 1.71 2.23 2.58 3.52

K20 4.40 2.06 1.74 1.48 1.45 3.22 1.95 1.89 2.08 2.00 1.92 1.95 2.17 5.00

P20S 0.40 0,48 0.49 0.26 0.24 0.32 0.25 0.26 0.25 0.25 0.26 0.26 0.33 0.44

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Trace Elements (ppm)

Ba 1465 645 484 676 706 789 982 947 1147 923 814 831 1702 1487

Rb 69 27 21 23 21 47' 30 29 29 26 29 27 32 72

Sr 905 761 694 364 329 620 505 472 525 415 387 373 911 795

V 318 282 269 235 260 266 266 257 266 244 257 253 310 252

Nb 3 6 6 5 3 7 4 4 4 3 4 3 4 5

Zr 19 55 55 52 46 60 53 55 53 51 49 51 44 55

Cr 146 13 13 374 734 54 321 313 325 439 517 523 79 58

U <1.5 <1.5 2 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5

Se 42 23 24 33 34 29 33 33 34 32 32 31 29 27

La 7 8 9 6 6 7 4 6 6 8 7 7 7 12

Ce 18 25 22 19 18 22 15 17 22 20 16 21 20 30

Nd 9 14 11 9 9 11 11 10 12 11 10 9 9 16

Y 11 17 17 14 14 15 15 16 15 14 15 15 14 14

Th <1.5 <1.5 2 <1.5 <1.5 <1.5 . <1.5 2 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5

Pb 3 4 3 3 2 2 2 3 4 2 4 4 3 3

Zn 76 72 84 84 78 70 81 85 81 74 82 64 93 77

Cu 147 49 53 90 104 71 125 119 113 99 108 77 142 62

Ni 35 10 12 114 202 23 103 101 99 126 163 157.3 29 17.1

S 0 0 0 0 0 0 0 0 0 0 0 <0.01 0 0

Page 66: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

BLAYNEY PROJECTSample # PBD95 PBD116 PBD119 PBD127 PBD134 PBD139 PBD143 PBD155 PBD157 PBD161 PBD169 PBD176 PBD180

Rocktype TM BYV BYV BLV BLV BYV BYV BLV BLV BLV BYV TM TMMajor Elements (wt%)

Si02 61.58 48.99 51.07 53.14 48.17 53.64 53.59 47.77 53.21 52.50 52.74 54.13 58.06

Ti02 0.44 0.83 0.86 0.60 0.58 0,68 0.43 0.60 0.43 0.62 0.58 0.67 0.48

AI203 16.74 18.29 16.65 15.57 17.62 16.23 16.70 14.81 12.86 13.36 15.95 16.26 16.85

Fe203 5.99 11.42 11.74 10.32 10.11 10.15 9.39 11.08 8.72 9.72 10.78 9.25 7.32

MnO 0.09 0.15 0.19 0.17 0.19 0.16 0.17 0.19 0.17 0.18 0.13 0.23 0.18

MgO 2.30 4.39 6.12 6.41 8.65 3.95 4.89 9.43 9.00 8.63 5.03 4.71 3.30

CaO 3.70 9.32 8.14 10.26 10.19 7.59 8.67 13.70 10.76 10.53 6.16 7.42 5.66

Na20 3.48 1.60 4.59 1.74 1.65 5.00 3.32 1.60 2.81 2.88 3.75 3.81 3.82

K20 5.43 4.60 0.37 1.58 2.60 2.13 2.47 0.57 1.83 1.29 4.40 3.09 3.99

P205 0.24 0.40 0.29 0.21 0.25 0.48 0.35 0.26 0.21 0.28 0.48 0.43 0.34

Total 100 100 100 100 100 100 100 100 100 100 100 100 100

Trace Elements (ppm)

Ba 802 679 159 550 1086 603 654 406 983 675 852 786 1032

Ab 110 66 5 27 49 27 32 9 29 19 80 55 67

Sr 663 749 849 432 330 804 794 632 314 415 739 1102 1005

V 108 290 290 252 263 279 240 283 205 279 312 215 144

Nb 9 5 5 4 5 5 4 4 3 4 4 7 6

Zr 143 57 74 49 49 55 42 51 36 54 39 105 84

Cr 25 36 68 144 323 13 89 545 491 529 72 62 36

U <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 2 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5Se 14 30 27 33 39 22 25 36 38 38 28 21 13

La 14 7 12 7 5 9 7 6 4 9 10 22 17Ce 37 16 30 17 15 23 13 14 17 18 23 36 40

Nd 20 11 14 8 8 10 8 8 8 9 12 19 18

Y 17 21 19 15 14 16 13 14 11 15 15 21 16

Th <1.5 <1.5 2 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 2 <1.5 5

Pb 6 5 <1.5 3 <1.5 3 6 8 2 4 3 6 11

Zn 42 94 90 85 74 84 78 83 71 76 95 82 95

Cu 14 134 110 109 97 24 90 114 107 194 53 41 89.'

Ni 13.2 21 27.8 43.6 101.2 11.2 29.7 156.2 89.4 148.6 19.5 21.8 14.1

S <0.01 0 0 0 0 0 0 0 0 0 0 0 <0.01

Page 67: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

AGSO DATASample # 89840034 90844060 90844072 91844151 91844167 91844169 91844180 91844183 91844192 91844194 91844197 91844216

Rocktype FRV TM FRV FRV FRV FRV FR\! TM FRV FRV FRV FRVMajor Elements (wt%)

5102 56.31 57.42 59.10 52.98 59.21 59.22 58.68 59.42 51.97 50.19 52.2Q 50.70

Ti02 0.47 0.54 0.54 0.72 0.42' 0.41 0.45 0.46 0.61 0.76 0.74 0.66

AI203 19.27 16.42 18.77 17.83 18.15 18.12 17.91 16.47 15.92 17.09 16.68 17.02

Fe203 7.55 7.56 5.56 10.44 6.06 5.93 6.43 6.58 9.76 11.03 11.45 11 .11

MnO 0.16 0.13 0.08 0.15 0.13 0.12 0.12 0.13 0.16 0.16 0.19 0.17

MgO 2.41 3.75 1.78 3.58 1.94 1.79 2.22 3.13 6.79 6.06 4.42 5.93

CaO 5.99 5.95 2.05 8.33 2.74 3.99 3.70 4~76 8.98 9.03 8.62 8.35

Na20 3.80 3.54 5.14 3.00 4.82 4.77 4.86 <1.04 3.42 2.88 2.52 3.83

K20 3.69 4.34 6.52 2.62 6.24 5.37 5.34 4.74 2.14 2.53 2.82 1.95

P205 0.34 0.35 0.44 0.35 0.29 0.27 0.30 0.29 0.25 0.27 0.36 0.28

Total 100 100 100 100 100 100 100 100 100 100 100 100

Trace Elements (ppm)

Ba 1272 911 1134 1186 1121 947 961 845 829 794 1257 872

Rb 69 85 111 38 113 94 93 96 33 44 31 30

Sr 859 938 472 787 713 902 913 878 496 582 728 733

V 126 167 124 264 96 96 116 147 260 325 337 264

Nb 6 6 7 3 8 8 7 7 4 -2 3 3

Zr 64 105 96 58 109 109 101 131 38 35 51 46

Cr 9 49 3 40 7 8 9 46 157 89 62 131

U 1 3.5 3 1 3.5 4 3.5 4 -0.5 -0.5 0.5 -0.5

Se 14 19 8 28 11 12 13 17 31 32 35 27

La 14 24 28 11 25 26 22 22 11 10 10 7

Ce 24 33 41 22 40 41 38 39 15 15 18 17

Nd 11 20 17 12 16 19 19 19 9 9 7 8

Y 17 16 13 19 15 17 16 17 15 17 18 17

Th 1 5 7 -2 7 7 6 6 -2 -2 -2 -2

Pb 6 10 7 8 7 18 16 11 3 6 3 3

Zn 77 66 69 95 77 75 86 71 81 89 141 79

Cu 91 110 33 94 34 53 50 103 117 90 45 120

Ni 5 19 5 20 7 6 7 17 49 39 23 72

S -100 -100 -100 -10 90 700 2630 770 300 4300 500 900

Page 68: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

AGSO DATASample # 91844219 91844341 91844346 91844361 92844438 92844442 91844278 91844284 91844286 91844356 87840101 87840102 91844104Rocktype FRV FRV FRV FRV TM FRV MPBM MPBM MPBM MPBM MPBM MPBM MPBMMajor Elements (wt%)Si02 53.21 56.93 60.34 59.69 56.44 57.61 55.35 52.98 5.:1.03 54.38 54.53 54.71 53.02Ti02 0.60 0.59 0.43 0.53 0.64 0.56 0.64 0.69 0.67 0.69 0.71 0.61 0.69AI203 16.77 18.02 17.46 17.86 17.33 16.49 14.66 15.15 14.39 15.57 15.01 14.79 14.36Fe203 9.79 6.93 6.47 6.56 7.93 8.22 8.52 9.48 9.32 8.41 9.05 8.74 . 9.68MnO 0.16 0.12 0.09 0.16 0.12 0.18 0.12 0.14 0.14 0.12 0.14 0.12 0.15MgO 5.01 2.81 2.43 2.75 3.43 2.87 6.66 6.88 7.60 5.51 6.85 5.68 8.04CaO 6.68 4.19 2.80 2.65 6.12 6.18 7.21 7.78 7.72 6.98 7.05 8.29 8.23Na20 3.27 5.17 3.96 3.68 4.07 3.64 2.66 2.08 3.50 4.00 3.66 2.49 3.08K20 4.09 4.72 5.73 5.67 3.58 3.88 3.71 4.42 2.25 3.83 2.60 4.10 2.35P205 0.41 0.52 0.28 0.44 0.34 0.38 0.47 0.39 0.38 0.51 0.39 0.46 0.39Total 100 100 100 100 100 100 100 100 100 100 100 100 100Trace Elements (ppm)Ba 869 919 1042 846 876 635 564 652 334 527 397 549 419Rb 62 68 87 106 58 52 44 63 30 61 29 47 36Sr 840 876 674 511 1023 629 895 888 783 820 677 1147 678V 220 206 107 102 181 172 240 259 251 258 254 251 249Nb 5 5 7 6 5 4 6 5 6 5 5 5 5Zr 68 72 110 82 95 93 93 94 87 100 91 100 88Cr 89 34 39 43 23 52 318 379 392 287 373 265 442U -0.5 1 2 3 1 2Se 20 12 12 8 22 20 21 27 26 21 27 20 26La 18 21 26 29 17 26 13 11 14 16 11 12 8Ce 30 46 41 46 29 43 26 18 25 29 31 28 17Nd 16 19 19 16 14 20 13 9 15 18 14 15 14Y 18 15 20 18 19 18 15 17 17 16 18 15 17Th 2 6 7 8 4 6

.Pb 10 14 8 10 9 9 6 6 7 8 8 14 6Zn 100 78 42 137 61 113Cu 152 212 225 23 19 135 174 183 173 181 221 172 176Ni 40 19 11 11 15 19 108 141 150 105 132 91 155S 200 50 340 250 40 230 100 100 100 140 -3 -3 190

Page 69: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

KJOllE DATASample No K91841 042 K91841044 K91841045 K91841046 K91841 047 K91841048 K91841049 K91841050Rocktype BLV FRV FRV BLV BYV BYV BYV BLVMajor Elements (wt%)

Si02 57.24 52.77 54.66 55.25 51.61 52.93 54.84 53.25

Ti02 0.42 0.55 0.65 0.61 0.48 0.46 0.65 0.61

AI203 9.73 15.56 15.20 13.23 11.95 12.29 15.83 13.75

Fe203 9.37 9.54 9.76 10.70 12.41 11.67 9.29 11.19

MnO 0.15 0.12 0.12 0.14 0.19 0.16 013 0.17

MgO 14.24 6.20 7.18 9.72 8.89 7.64 3.61 7.90

CaO 9.57 10.29 9.28 10.19 11.66 11.58 8.37 10.07

Na20 1.86 3.04 3.61 2.08 1.89 2.87 3.78 3.77

K20 1.72 3.37 1.34 1.40 3.11 2.53 4.50 1.87

P205 0.18 0.41 0.20 0.29 0.40 0.37 0.51 0.38

Total 104.50 101.85 102.01 103.62 102.58 102.50 101.51 102.96

Trace Elements (ppm)

Ba 1333 1224 786 793 1653 983 1857 631

Rb 19 53 22 25 36 28 48 19

Sr 391 893 413 414 644 733 730 620

VNb -2 4 4 2 -2 3 4 4

Zr 28 32 48 47 12 19 50 44

CrU -0.5 1.5 -0.5 1 -0.5 -0.5 1 1

Se 33 40 40 36 54 47 20 37

La 8 14 13 11 13 12 18 16

Ce -5 16 16 18 21 15 31 26

Nd -2 12 8 17 14 5 17 11Y 11 16 17 16 12 12 18 14

Th -2 2 -2 -2 ·2 ·2 4 ·2

Pb 7 5 5 5 5 5 5 -2

Zn 69 55 73 87 92 77 45 92

Cu 78 38 89 80 54 76 205 14

Ni 378 51 73 141 46 56 70 161

S 60 860 4360 80 90 110 1680 50

Page 70: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

JUNEE-NARROMINE XRF DATA Nel VolSample# N1 N2 N3 N5 N6 N7 N8 N9 N13 N18 N22 1503-16/68.21503-33/64.7 1503-49/91.e

Major Elements (wt%)Si02 56,12 57.38 58,29 56,68 62,38 58.50 55.14 60.77 62.55 56.82 57.77 54.07 61.48 55.85Ti02 0.58 0.56 0.51 0.61 0.62 0.59 0.58 0.51 0.45 0.62 0.53 0.74 0.47 0.61AI203 17.87 16.74 14,72 17.27 16.92 -16.41 17.01 14,62 13.99 15.50 15.11 17.08 17.02 15.81Fe203 8.87 8,15 9.84 8.22 6.44 8,16 8.59 8,39 7.22 7.54 9.69 9.48 7.42 8,93MnO 0.18 0.12 0.11 0.12 0.05 0.14 0.14 0.12 0,10 0,16 0,12 0.11 0.08 0.13MgO 3.87 2.52 3.39 3.52 1.18 3.86 4.65 3.47 2.22 3.29 3.79 4.69 4.51 6.22CaO 6.18 9.68 8,73 7.61 3.81 6.37 7,52 7.14 9.09 8.89 7.17 8,06 2.26 8.25Na20 4.37 4.50 4.08 2.85 4.96 2.97 3.85 4.28 4.08 5.95 4.98 3.08 5.35 3.02K20 1.67 0.09 0.10 2.83 3.24 2.68 2.26 0.46 0.10 0.88 0.57 2.15 1.07 0.93P205 0.28 0.25 0.21 0.30 0.39 0.30 0.25 0.24 0,19 0.34 0.27 0.46 0.25 0.23Total 100.00 100,00 100.00 100,00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.93 99.91 99.97Trace ElementsBa 417 118 58 531 923 571 634 197 76 893 214 485 650 203Rb 21 0 1 39 49 38 22 6 3 11 11 22 14 14Sr 1088 1 354 1114 814 1087 1108 540 174 1635 784 1155 618 770V 227 246 258 230 186 226 242 241 150 235 222 256 234 277Nb 5 6 3 6 8 6 5 4 4 6 4 6 2 3Zr 86 92 62 109 143 106 96 86 75 123 66 82 89 77Cr 19 72 48 38 20 35 79 42 55 241 87 54 269 258Se 24 31 28 24 16 23 26 22 23 26 31 28 29 35La 17 16 17 22 30 18 15 18 15 22 14 0 0Ce 38 39 35 49 62 48 43 36 33 53 34 0 0Nd 22 22 20 27 34 26 24 23 19 31 21 0 0y 15 14 13 16 16 16 15 13 12 16 13 18 10 13Pb 3 6 4 4 3 4 3 4 5 2 4 8 4Zn 98 55 63 68 61 79 80 68 54 78 74 98 97 82Cu 64 22 260 99 221 41 27 33 27 157 53 155 41 104Ni 13 18 19 15 8 17 33 18 18 46 22 16 78 72

Page 71: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

JUNEE-NARROMINE XRF DATA Basal Goonumbla VoleanlesSample# 1503-42/61.0 1503-42/63.0 M33/086 N24 N26 N31 M33/142 CSG154 CSG112 CSG23 CSG51 CSG50 CSG88 CSG111

Major Elements (wt%)Si02 51.27 53.05 56.05 52.83 50.17 50.13 53.19 52.21 51.81 54.75 55.31 54.52 56.87 53.85Ti02 0.79 0.69 0.67 0.68 0.85 0.85 0.78 0.52 0.53 0.66 0.76 0.72 0.62 0.62AI203 20.46 19.27 16.85 16.11 17.65 17.49 16.84 14.69 14.59 16.90 18.24 17.51 15.82 16.49Fe203 10.97 10.24 7.85 9.45 11.60 10.52 6.24 10.42 9.68 8.69 8.12 7.65 8.37 8.16MnO 0.16 0.23 0.15 0.14 0.17 0.17 0.17 0.15 0.17 0.16 0.17 0.13 0.14 0.14MgO 4.29 4.47 3.25 5.47 4.83 4.13 1.55 6.78 6.07 4.93 3.10 3.25 3.93 4.87CaO 5.67 5.21 6.44 9.20 10.10 10.80 12.37 9.23 11.43 7.76 7.12 4.41 6.96 8.49Na20 3.78 6.14 4.37 4.70 3,06 5.50 7.04 2.28 2.38 3.22 3.98 5.99 4.06 3.18K20 2.29 0.40 2.51 1.10 1.25 0.06 0.25 3.22 2.87 2.51 2.76 1.65 2.76 3.74P205 0.29 0.30 0.38 0.31 0.31 0.34 0.36 0.40 0.40 0.35 0.37 0.36 0.39 0.39Total 99.96 99.99 98.51 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00Trace ElementsBa 365 68 552 795 518 38 70 560 611 549 594 534 653 646Rb 45 5 35 12 10 -1 46 37 21 45 27 36 60Sr 905 610 1034 1072 1377 252 383 862 949 1083 1129 815 1093 889V 269 242 0 240 369 370 0 290 282 217 172 189 193 201Nb 6 5 6 7 4 4 4 4.2 3.7 6.6 8.2 9.7 6.6 8.8Zr 103 87 130 117 84 94 79 37 36 93 116 126 101 118Cr 27 12 2 171 41 44 42 247 228 125 9 7 219 230Se 35 26 15 28 31 32 33 31 28 17 13 16 20 16La 19 20 21 18 21 0 0 0 0 0 0 0Ce 41 54 43 40 41 0 0 0 0 0 0 0Nd 23 30 28 27 28 0 0 0 0 0 0 0y 22 14 21 18 21 20 21 12 12 17 20 20 17 16Pb 3 2 4 7 3 3 3 3.1 4.8 4,5 5.1 6.4 6.5 10.1Zn 106 132 61 81 97 99 80 73 79 86 89 91 75 74Cu 29 33 10 58 210 208 197 142 157 172 144 119 156 169Ni 18 12 -3 55 25 18 7 55 54 47 9 7 80 84

Page 72: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

JUNEE-NARROMINE XRF DATA Eastern Goonumbla VoleaniesSample# CSG172 CSG17 CSG40 CSG177 CSG67 M33/149 10-22-1 10-22-2 N46 N47(to be re~ 10-22-13 M33/185 M33/186 M33/228

Major Elements (wt%)Si02 54.60 53.60 55.60 55.44 NA 56.20 55.33 54.39 58,01 57.17 55.41 57.86 55.74 56.68Ti02 0.69 0.84 0.66 0.69 0.84 0.59 0.68 0.68 0.55 0.55 0.67 0.59 0.60 0.54AI203 16.44 17.14 17.28 17.05 17.12 14.92 18.96 18.97 19.74 19.44 19.02 18.28 18.41 19.03Fe203 9.08 8.91 8.51 8.50 9.18 6.74 6.34 6.70 5.89 5.87 6.58 6.25 6.02 5.78MnO 0.19 0.17 0.17 0.08 0.21 0.10 0.16 0.14 0.10 0.08 0.16 0.15 0.18 0.20MgO 5.08 4.39 3.71 4.17 4.51 3.37 2.67 2.97 1.98 2.02 3.15 2.31 2.41 1.96GaO 6.72 7.24 6.82 6.12 7.07 9.89 5.98 5.23 5.19 5.09 4.79 1.60 5.88 6.04Na20 3.06 3.39 4.95 5.05 3.55 5.82 5.27 5.33 5.74 4.45 3.62 5.63 5.43 5.24K20 3.76 3.81 1.92 2.47 3.15 0.13 3.24 3.62 3.84 4.43 5.98 5.10 3.58 3.71P205 0.31 0.47 0.32 0.36 0.48 0.39 0.42 0.45 0.50 0.50 0.41 0.44 0.41 0.35Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00Trace ElementsBa 842 561 580 619 128 130 865 818 677 839 1233 1691 773 823Rb 0 69 32 30 41 -1 53 59 51 57 88 63 63 58Sr 1085 1095 1275 951 18 215 1355 1840 1342 1828 3069 857 1157 1637V 248 241 238 226 31 0 209 208 143 146 201 0 0 0Nb 7.2 7.4 5.2 6.2 7.24 8 9 6 6 7 5 6 5Zr 97 115 85 104 13564 122 122 90 92 127 120 136 112Gr 156 32 44 157 350 4 4 17 15 3 0 0 6Se 22 19 18 23 526 8 8 11 9 9 15 13 4La 0 0 13 0 0 14 13 0 26 22 17Ge 0 0 29 0 0 33 36 0 49 33 36Nd 0 0 12 0 0 19 20 0 24 21 22Y 0 21 16 17 19 16 21 22 14 14 20 21 24 24Pb 0 8.5 5.3 1.9 7.3 10 6 7 8 8 7 7 5 6Zn 0 87 82 23 866 90 86 69 72 92 75 75 101Gu 0 159 87 13 18 148 181 166 211 196 156 65 433 96Ni 0 22 21 59 2 11 4 5 8 8 4 3 3 35

Page 73: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

JUNEE-NARROMINE XRF DATA Western Goonumbla VoleaniesSample# M33/102 10-22-5 CSG114 CSG9B CSG100 CSG54 CSG89 CSG141B CSG194 CSGB5 CSG53 CSG93 CSG44 M33/150

Major Elements (wt%)Si02 55.76 55.06 55.17 55.24 59.92 56.81 53.00 56.02 55.43 57.95 58.25 56.86 56.30 60.62Ti02 0.61 0.67 0.66 0.67 0.49 0.63 0.76 0.81 0.81 0.73 0.76 0.71 0.72 0.74AI203 19.43 19.52 19.59 19.50 17.99 -19.02 18.53 18.00 18.35 18.91 18.55 18.64 18.78 18.53Fe203 6.76 6.62 7.08 7.11 5.84 7.53 8.74 8.28 7.73 7.11 8.55 6.95 7.02 5.59MnO 0.15 0.15 0.18 0.18 0.14 0.12 0.15 0.22 0.18 0.18 0.16 0.17 0.19 0.12MgO 2.52 3.00 2.68 2.59 2.26 2.01 3.44 3.71 2.91 2.53 3.45 2.24 2.41 1.02CaO 7.42 5.36 7.66 7.64 4.89 5.94 6.20 2.91 6.87 6.47 5.50 5.85 6.58 5.17Na20 4.33 4.28 4.39 4.48 4.32 3.82 5.08 6.28 4.20 4.79 3.93 4.56 4.71 6.45K20 2.51 4.82 2.17 2.20 3.81 3.57 2.22 0.74 3.07 2.80 3.76 3.61 2.89 0.84P205 0.33 0.41 0.34 0.35 0.29 0.42 0.37 0.22 0.35 0.35 0.38 0.34 0.36 0.36Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00Trace ElementsBa 579 966 569 543 931 943 883 150 537 943 1007 770 662 384Rb 35 77 29 29 58 33 36 8 46 43 59 60 42 6Sr 1368 1258 1341 1274 1408 1355 1043 955 1124 1311 1249 1320 1346 1176V 0 194 165 166 230 166 139 191 195 172 179 159 174 0Nb 5 7 6 4 6 7 9 9 8 8 9 7 7 7Zr 104 112 71 69 98 137 124 127 114 104 121 114 94 116Cr 7 4 3 3 6 4 9 13 4 4 6 3 3 10Se 9 14 9 8 16 19 14 21 13 10 12 9 12 15La 12 0 0 0 0 0 0 0 15Ce 27 0 0 0 0 0 0 0 44Nd 14 0 0 0 0 0 0 0 24Y 17 19 17 17 17 22 21 23 21 20 20 21 20 24Pb 5 9 3 4 11 4 4 2 4 3 6 6 3 7Zn 96 86 70 68 61 89 100 86 70 69 95 86 71 82Cu 131 124 134 49 34 187 152 149 116 227 154 105 20 169Ni -3 6 3 2 9 4 7 9 4 2 6 2 2 -3

Page 74: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

JUNEE-NARROMINE XRF DATA Wombin VoleaniesSample# CSG101 M33/148 M33/147 15437 CSG163 CSG158 15436 CSG252 CSG219 GPR9547 GPR9530 M33/175 M33/173 M33/097

Major Elements (wt%)Si02 57.57 60.58 60.16 60.01 62.59 62.39 60.25 56.18 53.96 56.06 61.41 59.63 61.33 57.87Ti02 0.74 0.65 0.65 0.63 0.66 0.59 0.56 0.70 0.73 0.71 0.47 0.49 0.43 0.62AI203 18.40 18.91 18.97 18.42 16.50 -17.92 18.64 19.54 18.82 18.62 18.48 18.75 18.47 18.81Fe203 7.14 6.13 6.15 5.81 6.71 6.08 4.57 6.80 6.92 6.31 3.99 5.27 4.14 6.09MnO 0.16 0.14 0.14 0.12 0.17 0.15 0.16 0.20 0.18 0.21 0.16 0.15 0.18 0.17MgO 2.63 1.37 1.38 1.54 1.79 2.36 1.34 2.37 2.66 2.19 1.14 1.90 1.28 1.55CaO 6.45 1.76 1.76 3.06 4.06 4.37 4.72 7.39 6.66 5.33 1.64 4.84 1.67 4.57Na20 3.98 9.05 9.08 7.77 5.00 4.80 4.37 4.61 5.02 5.18 5.95 4.61 6.02 5.99K20 3.42 0.57 0.57 2.39 2.12 3.62 5.23 3.71 3.14 3.91 5.77 4.32 6.41 4.20P205 0.36 0.25 0.25 . 0.27 0.29 0.25 0.25 0.46 0.47 0.34 0.22 0.30 0.24 0.33Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00Trace ElementsBa 644 448 163 0 1100 495 0 726 911 836 1137 1425 1385 687Rb 54 14 -1 29 18 68 88 64 46 66 95 67 109 74Sr 1250 1090 1231 1135 1264 780 1581 1640 1634 1658 697 1295 714 612V 161 0 0 0 104 145 0 184 254 169 70 0 0 0Nb 8 1 8 8 9 10 9 8 5 9 10 5 3 9Zr 133 63 126 121 219 159 141 117 78 118 156 123 152 155Cr 4 43 8 0 15 8 0 2 4 8 14 0 0 10Se 11 27 11 0 18 11 0 10 10 7 8 11 8 10La 0 13 12 0 0 0 0 0 17 23 16 29 18Ce 0 16 29 0 0 0 0 0 33 54 37 58 47Nd 0 17 17 0 0 0 0 0 19 23 14 30 26Y 21 15 29 22 28 18 20 24 20 22 24 20 23 24Pb 5 4 4 5 5 5 6 9 3 10 14 8 15 13Zn 74 86 82 74 101 81 97 76 74 78 90 72 77 98Cu 140 117 66 56 61 134 66 119 93 233 43 164 41 196Ni 4 11 -3 3 7 6 2 2 2 4 3 3 -3 -3

Page 75: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

JUNEE-NARROMINE XRF DATASample# CSG263 CSG281 CSG291? CSG224 CSG245 CSG12 CSG67 CSG107 CSG195 CSG204 CSG216 10-22-6 10-22-12

Major Elements (wt%)Si02 59.72 56.55 61.08 60.83 62.38 53.77 65.89 57.26 55.63 60.67 58.03 62.02 61.76Ti02 0.50 0.66 0.44 0.48 0.39 0.76 0.35 0.56 0.64 0.58 0.62 0.44 0.41AI203 18.85 19.04 18.61 18.23 18.46 -19.57 18.78 19.14 19.03 19.30 19.22 18.67 18.64Fe203 4.84 6.45 4.35 4.67 3.73 7.41 3.09 5.66 6.49 4.21 5.43 3.62 3.89MnO 0.16 0.18 0.16 0.14 0.15 0.17 0.00 0.24 0.20 0.13 0.13 0.06 0.09MgO 1.70 2.43 1.48 1.61 1.14 2.94 0.12 1.76 2.33 1.24 1.85 0.51 0.82CaO 3.65 3.75 1.99 3.38 1.67 6.87 0.00 4.85 6.81 1.78 3.84 1.72 2.30Na20 5.03 3.42 5.72 5.40 5.74 4.19 7.57 6.52 4.87 5.29 4.92 5.40 6.50K20 5.14 6.96 5.82 4.89 6.07 3.66 3.90 3.62 3.52 6.37 5.42 7.21 5.28P205 0.29 0.38 0.24 - 0.26 0.20 0.54 0.27 0.30 0.41 0.31 0.41 0.23 0.22Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00Trace ElementsBa 949 1754 985 1085 1091 971 128 818 933 1279 1230 1242 832Rb 86 150 92 73 98 60 41 42 57 94 84 100 77Sr 963 1856 845 671 752 1587 18 648 1493 791 1123 624 526V 100 181 82 114 59 195 3 155 182 81 123 66 72Nb 8 9 9 8 9 6 7 9 6 9 9 8 9Zr 133 150 146 132 157 86 135 130 94 133 126 146 151Cr 3 5 5 5 2 4 3 3 3 2 2 3 2Se 5 11 7 7 5 13 5 8 9 9 9 7 6La 0 0 0 0 0 0 0 0 0 0 0 0 -0Ce 0 0 0 0 0 0 0 0 0 0 0 0 0Nd 0 0 0 0 0 0 0 0 0 0 0 0 0y 21 22 22 18 22 21 19 21 23 22 20 23 22Pb 8 12 11 10 14 9 7 6 5 13 13 12 12Zn 75 81 78 75 85 77 8 62 78 84 79 94 81Cu 45 107 37 120 24 101 18 102 95 23 43 26 14Ni 2 4 3 2 3 4 2 2 3 2 3 2 2

Page 76: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

BLAYNEY PROJECT REE DATA JUNEE-NARROMINE REE DATASample# BLV36 BLV52 BLV157 BYV39 BYV42 BYV21 BYV169 FRV56 TM95 TM176 N1 N13 N26 N45La 31.78 23.29 19.64 29.30 38.31 38.02 34.93 31.66 40.45 65.41 58.01 56.19 59.56 58.47Ca 24.79 18.10 15.14 20.43 27.64 27.02 24.20 24.03 30.99 45.36 .:16.85 41.50 47.44 49.60Pr 22.30 16.71 13.69 17.51 24.00 23.07 20.47 21.40 31.17 39.66 44..:15 36.70 46.86 47.96Nd 18.66 14.18 11.42 13.80 19.69 18.63 16.62 17.86 24.38 31.74 37.55 31.2.:1 41.47 41.58Sm 14.41 11.29 9.16 10.33 14.91 12.90 13.04 13.90 18.18 22.51 24.55 20.11 28.85 28.03Eu 9.87 9.19 7.67 .8.69 12.53 10.88 11.53 11.82 12.43 16.76 18.06 14.61 21.66 21.93Gd 11.51 9.27 7049 8.12 12.09 10.09 10.45 11.12 12.25 16.01 14.08 11.61 18.75 18.42Tb 10.25 8.37 6.66 6.69 10.46 8.38 9.18 9.37 10.41 12.69 10.36 8.30 14.07 13.75Dy 9.54 7.66 6.14 6.08 9.77 7.77 8.36 8,59 9.36 10.82 8.55 6.81 12.02 11.53Ho 9.16 7.51 5.98 5.96 9.45 7.40 8.06 8.14 8.84 10.18 7.88 6.15 10.90 10.56Er 9.24 7.53 5.95 5.89 9.53 7.31 7.89 7.89 8.95 9.86 7.25 5.61 10.15 10.06Tm 9.06 7.52 5.92 5.90 9.51 7.32 7.84 7.74 9.42 9.57 7.19 5.38 9.74 9.55Yb 8.89 7.51 5.88 5.91 9.49 7.32 7.78 7.60 9.89 9.28 7.44 5.44 9.89 9.54Lu 8.84 7.28 5.78 5.82 9.46 7.03 7.69 7.32 9.81 9.33 7.29 5.33 9.52 9.50

LalYb 3.58 3.10 3.34 4.96 4.04 5.19 4.49 4.17 4.09 7.05 7.80 10.34 6.02 6.13LalSm 2.21 2.06 2.15 2.84 2.57 2.95 2.68 2.28 2.23 2.91 2.36 2.79 2.06 2.09GdlYb 1.29 1.23 1.27 1.38 1.27 1.38 1.34 1.46 1.24 1.73 1.89 2.14 1.90 1.93

JUNEE-NARROMINE REE DATA

41.71 35.51 46.99 50.26 32.21 54.61 40.13 56.84 49.38 46.99 50.25 45.0425.18 23.69 35.13 35.82 23.75 40.26 29.19 40.90 37.03 37.27 37.93 35.2819.57 20.12 30.56 31.94 19.77 35.48 26.46 35.17 33.59 34.78 32.81 31.9414.71 16.73 26.75 27.00 16.28 28.94 23.46 27.51 28.70 30.44 28.68 27.108.84 12.22 19.31 18.70 11.55 20.36 17.12 18.90 20.91 22.32 20.76 18.987.52 10.75 15.12 14.40 12.03 17.28 16.59 15.78 17.43 17.24 17.12 13.896.28 8.90 13.16 12.72 10.83 15.95 12.26 14.63 14.91 15.77 15.13 12.704.91 7.29 11.08 10.30 10.50 12.12 10.49 10.39 12.94 13.70 12.61 10.514.59 6.67 9.80 9.13 10.24 10.69 9.52 9.14 11.81 12.77 11.51 9.644.77 6.45 8.84 8.86 9.86 10.10 9.04 8.67 11.32 12.29 10.91 a.235.19 6.27 8.76 8.35 10.37 10.07 8.51 8.86 10.72 11.83 10.69 &.815.52 5.90 8.51 8.36 11.03 9.8.2 8.25 8.70 10.79 11.79 10.68 &.866.20 6.12 8.87 8.47 11.93 10.16 8.42 9.00 10.87 11.89 10.80 9.366.66 6.21 8.68 8.68 11.66 10.17 8.25 9.20 10.47 11.73 10.74 9.48

6.72 5.80 5.30 5.93 2.70 5.38 4.77 6.31 4.54 3.95 4.65 4.814.72 2.91 2.43 2.69 2.79 2.68 2.34 3.01 2.36 2.11 2.42 2.371.01 1.46 1.48 1.50 0.91 1.57 1.46 1.62 1.37 1.33 1.40 1.36

4.341.861.67

52.9644.7643.9638.1028.5420.7120.4216.7014.5713.3713.0312.2112.1911.84

4.241.941.75

58.3849.1048.2342.4330.1726.8024.0919.4316.9716.0015.2713.8413.7713.23

LaNbLa/SmGdNb

ampleLaCePrNdSmEuGdTbDyHoErTmYbLu

Page 77: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

~'~_' __ ..• _"---.C.'

n·;SR~~ '::Jt ill

;i "I;.J / 1\

'''''-Io01oo

.... 0 .

le I

091841049

Au-Cu

o r:=:7Ined sam

I

- - - . - -. _. - . . . . . . . ~ - " . .

)

Qo

028444

~

o

(J O'>'<.0'(J1-0

..~................. :0/ 0 ,.... . .

o

·0984003~ ..... , ..

01844194

. . . ., 62f17JJ,QQ. .cJ

Page 78: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

APPENDIX 4: BLAYNEYSTUDY AREA - OUTCROP

DISTRIBUTION MAP

Page 79: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

3W

OO

OO

Ol

3W

OO

OeO

L

3W

0009

0LI

3wOOOS~ I

l

'",

'",

N'"

<D

<D

U~

<:>0

I'0

'0 ,0

/3

Z,%

3w

O

Cl

-I, I I

fl I I I~w

0008

69

r

C:>o'~

I I i

),7

p..

WO

OO

S"

Ilip

'./

...

oP~o

o""

'c,

~,

'l~

<:I'

"~~

t:l

,I>

"

oJ I

o "

~~_

.,--

--~I

~---

-1---

---.

o

g"

'", .., CD <:> o '0 ,0 3 z

L·(

I'~;

'-o

0;:0

­

f i, t I l 1rr

"'_

_• 1

I 1 I I r I- ,I

'", '"co <

D o "0

,0 3 z

oo

DJ

;0,._

I I l

6970

!JQ

mE

.

"CO °'0 .0 3 z 6911

0!JQ

mE

...:

---.:.

....-

70

40

00

mE

',./

./":

I !~,!~50.0Q

mE

,

en -I :;c - DJ c: -I - o zo c: -I o :;c o ."

Page 80: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

APPENDIX 5: ROCKCATALOGUE

Page 81: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Catalog# Field# Rock Name Rock description AMG AMG Lithostratigraphy Preps141747 1 basalt crystal-rich cpx+plag-phyric basalt lava or dolerite 6290580 702239 Blayney Volcanics TS,CR,PO,R141748 2 basalt Cpx+plag+altd ol-phyric basalt 6291104 702468 Blayney Volcanics PS,CR,PO,R141749 4 voles Hbd+plag volc'clastic sst with fresh hbd, minor apatite 6291720 701842 Blayney Volcanics PS,R141750 6 basalt Coarsely cpx-phyric basalt with smaller plag phens 6291368 701685 Blayney Volcanics TS,CR,PO141751 15 basalt cpx-phyric vesicular basalt 6286000 712700 Blayney Volcanics R141752 19 diorite cpx phyric shallow intrusive 6292289 702372 Byng Volcanics PS,CR,PO,R141753 21 diorite cpx phyric shallow intrusive 6292050 702431 Byng Volcanics TS,CR,PO,R141754 22 andesite Cpx+plag phyric andesite lava 6292339 702025 Byng Volcanics TS,CR,PO,R141755 25 monzonite Otz-hbd diorite,common apatite,cpx 6287957 698107 Tallwood Monzonite PS,CR,PO,R141756 26 monzonite Otz-hbd diorite,common apatite,cpx 6287957 698107 Tallwood Monzonite TS,CR,PO,R141757 27 diorite cpx-phyric basaltic dyke 6292460 700209 Byng Volcanics TS,CR,PO,R141758 30 basalt Cpx+ol(altd)+plag(altd)-phyric basalt 6289623 704942 Blayney Volcanics PS,CR,PO,R141759 33 basalt Coarse cpx+sparse ol+plag-phyric basalt 6289877 702664 Blayney Volcanics TS,CR,PO,R141760 36 basalt Plg+cpx-phyric basaltic andesite 6290357 702955 Blayney Volcanics TS,CR,PO,R141761 39 andesite plag+green cpx+FeTiox+apatite-phyric andesite 6293974 704176 Byng Volcanics TS,CR,PO,R141762 41 volcaniclastic Coarse volc'c1astic,andesitic frags with cpx, plag and apatite 6294036 703997 Byng Volcanics PS,R141763 42 volcaniclastic Coarse volc'clastic,andesitic frags with cpx, plag and apatite 6294036 703997 Byng Volcanics TS,CR,PO,R141764 43 andesite cpx+plag+FeTiox+apatite andesite 6293987 703975 Byng Volcanics PS,R141765 44 andesite cpx+altd ol+plag-phyric basalt 6293615 704123 Byng Volcanics TS,CR,PO,R141766 46 andesite vesicular cpx+plag+FeTiox-phyric andesite 6293554 704273 Byng Volcanics TS,CR,PO,R141767 47 andesite vesicular cpx+plag+FeTiox-phyric andesite 6293554 704273 Byng Volcanics TS,CR,PO,R141768 49 basalt Cpx+pl+altd ol-phyric basalt 6291965 704235 Blayney Volcanics PS,CR,PO,R141769 52 basalt v primitive ol(altd)+chromite+cpx-phyric basalt 6291796 703623 Blayney Volcanics PS,CR'pO,R141770 56 basalt Cpx+pl+FeTiox-phyric basaltic andesite 6291527 698964 Byng Volcanics TS,CR,PO,R141771 61 basalt Cpx+plag-phyric basalt with v fine gmass 6290975 700271 Blayney Volcanics TS,CR,PO,R141772 62 basalt Cpx+plag-phyric basalt with v fine gmass 6290975 700271 Blayney Volcanics TS,CR,PO,R141773 63 basalt Cpx+ol+plag-phyric basalt 6290915 700312 Blayney Volcanics TS,CR,PO,R141774 66 basalt Cpx+ol (altd)-phyric basalt 6290825 700728 Blayney Volcanics PS,CR,PO,R141775 69 diorite Cpx-phyric shallow intrusive 6291240 700428 Blayney Volcanics TS,CR,PO,R141776 73 diorite Coarse cpx-phyric basaltic dyke 6291557 700423 Blayney Volcanics PS,CR,PO,R141777 82 basalt Coarse cpx+plg-phyric basalt 6291762 701986 Byng Volcanics TS,CR,PO,R141778 87 volcaniclastic V xl-rich volc'clastic with fresh cpx/hbd debris 6291864 702024 Blayney Volcanics PS,R141779 89 andesite Cpx+plag+FeTiox+ap-phyric andesite 6291972 702118 Byng Volcanics PS,CR,PO,R141780 95 monzonite Holoxlline qtz monzonite,hbd,cpx,plag abundant apatite 6290822 698074 Tallwood Monzonite TS,CR,PO,R141781 116 andesite Cpx+plag+FeTiox-phyric andesite 6293041 700455 Byng Volcanics TS,CR,PO,R141782 119 basalt Cpx+plaq-phyric basalt 6293011 700050 Byng Volcanics TS,CR,PO,R

Rock Catalogue

Page 82: References - University of Tasmania · References Campbell, I.H., and Hill, R.I., 1988, A two-stage model for the formation of the granite ... M., 1989, Igneous Petrogenesis, A Global

Catalog# Field# Rock Name Rock description AMG AMG Lithostratigraphy Preps

141783 127 basalt Cpx+plag-phyric basalt 6293545 702504 Blayney Volcanics TS,CR,PD,R141784 134 basalt Coarse cpx-Ol phyric basalt 6292839 703057 Blayney Volcanics PS,CR,PD,R141785 136 basalt Clast-supported monomictic breccia with silty matrix 6292969 702973 Blayney Volcanics R141786 139 andesite vesicular cpx+plag+FeTiox-phyric andesite 6293554 704273 Dyke TS,CR,PD,R141787 142 basalt cpx+plag+hbd+FeTiox-phyric basalt lava 6294261 703727 Dyke PS,R141788 143 basalt cpx+plag+hbd+FeTiox-phyric basalt lava 6294262 703728 Dyke PS,CR,PD,R141789 155 basalt coarse cpx+plag+ol phyric basalt bx 6290655 703549 Blayney Volcanics TS,CR,PD,R141790 157 basalt Coarse cpx-phyric basalt 6291446 703265 Blayney Volcanics TS,CR,PD,R141791 158 volcaniclastic Polymict conglomerate 6292606 704944 Byng Volcanics R141792 161 basalt Cpx+sp ol+plag-phyric basalt 6290793 704713 Blayney Volcanics TS,CR,PD,R141793 169 andesite cpx+plag+FeTiox+apatite phyric andesite 6290519 701790 Byng Volcanics PS,CR,PD,R141794 176 monzonite Monzodiorite,Kspar,amphibole,cpx,ap,FeTiox 6289629 697124 Tallwood Monzonite TS,CR,PD,R141795 180 monzonite Monzodiorite,cpx,apatite,oxides, interstitial qtz 6291991 696694 Tallwood Monzonite TS,CR,PD,R141796 214 basalt Coarse cpx+plaq-phyric basalt 6288730 699530 Blayney Volcanics PS

Rock Catalogue