regional innovation systems approach to regional innovation

55
Regional Innovation Systems approach to regional innovation Professor Bjørn Asheim, Director, CIRCLE (Centre for Innovation, Research and Competence in the Learning Economy), Lund University, Sweden. Lecture at NORSI PhD course on ‘Innovation Systems, Clusters and Innovation Policy’, University of Agder, Kristiansand, October 23rd 2012

Upload: stella

Post on 10-Feb-2016

76 views

Category:

Documents


2 download

DESCRIPTION

Regional Innovation Systems approach to regional innovation. Professor Bjørn Asheim, Director, CIRCLE (Centre for Innovation, Research and Competence in the Learning Economy), Lund University, Sweden. Lecture at NORSI PhD course on ‘Innovation Systems, Clusters and Innovation Policy’, - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Regional Innovation Systems approach to regional innovation

Regional Innovation Systems approach to regional innovation

Professor Bjørn Asheim, Director,CIRCLE (Centre for Innovation, Research and Competence in

the Learning Economy), Lund University, Sweden.Lecture at NORSI PhD course on

‘Innovation Systems, Clusters and Innovation Policy’, University of Agder, Kristiansand, October 23rd 2012

Page 2: Regional Innovation Systems approach to regional innovation

C I R C L E Centre for Innovation, Research and Competence in the Learning Economy

Established 2004 as part of Lund University, the largest and third oldest (1666) university in the Nordic countries

Multidisciplinary centre of excellence in research on innovation and entrepreneurship

Long term funding from the Swedish Agency for Innovation Systems VINNOVA, the Swedish Research Council for Centres of Excellence and Lund University

One of the largest centres in Europe of its kind. Over 50 researchers, 50% non-Swedish)

www.circle.lu.se

Page 3: Regional Innovation Systems approach to regional innovation

Innovation as a progressive force

Productivity growth (process innovation) More value added production (product) Smarter ways of doing things (organisational)In a globalising knowledge economy: Secure growth (developed economies) Promote growth (developing economies) Enable growth (less developed economies) Strategic mechanism for solving societal

problems (growth, poverty, environemtal, ageing)

Page 4: Regional Innovation Systems approach to regional innovation

Innovation as a progressive force

Innovation represent ’the high road strategy’ that is the only long-term, sustainable growth alternative for developed, high-cost economies as well as for developing economies

Innovation is not only R&D in high-tech industries (linear model), but can take place in all kinds of economic activities (interactive process - broad based innovation policy)

Page 5: Regional Innovation Systems approach to regional innovation

Theoretical perspectives: Marx

Marx: Innovation represents the civilisational (i.e. dynamic/progressive) tendencies of capitalism

Caused by the two main contradictions:1. Capital – labour (Nordic trade unions’ wage demands

forcing capitalists to innovate)2. Between capitals (high road strategy) It is not innovation that is the cause of the economic

and financial crisis but lack of control of the repressive tendencies of capitalism (i.e. its unregulated development of e.g. the financial sector – deregulation/liberalisation)

Page 6: Regional Innovation Systems approach to regional innovation

Theoretical perspectives: Schumpeter

Schumpeter defined innovation as ’new combinations’ of existing knowledge.

He argued that innovation was the source of economic and social change. Without such innovation, resulting from the activities of entrepreneurial individuals and firms (contradictions between capitals), society would be stagnant

Page 7: Regional Innovation Systems approach to regional innovation

Theoretical perspectives: Innovation systems

OECD work in 1982 (’Science, Technology and Competitiveness’) developing an alternative to mainstream, static economic’s view on international competitiveness as based on ’relative wages’ (i.e. the ’low road’ strategy).

Instead a dynamic perspective on innovation and learning in the promotion of economic growth with an active role of government stimulating learning and innovation was proposed (i.e. the ’high-road’ strategy).

Innovation at the centre of economic growth IS both selection environments (shaping selection

processes) and sources of new variety creation (shaping creativity)

Page 8: Regional Innovation Systems approach to regional innovation

Economic performance: Global competitiveness report

(World Economic Forum) 2005 2008 2009 2010 2011 2012 Finland: 1 6 6 7 4 3 Sweden: 3 4 4 2 3 4 Denmark: 4 3 5 9 8 12 Norway: 9 16 14 14 16 15 Spain: 36 Italy: 42 Portugal: 49 Greece: 96

Page 9: Regional Innovation Systems approach to regional innovation

Innovation Systems and R&D(OECD Science, Technology and Industry Scoreboard 2011)

Promoting Innovation Systems approach: Finland: Science and Technology Policy Council (now

renamed as Research and Innovation Council) and TEKES

Sweden: VINNOVA (Swedish Governmental Agency for Innovation Systems)

R&D as share of GDP (2011), Researchers per 1000 Finland 4.0% 16.6 Sweden 3.6% 10.5 Denmark 3.0% 12.3 Norway: 1.8% 10.1

Page 10: Regional Innovation Systems approach to regional innovation

Origins of the innovation system approach

Lundvall, Aalborg university: Work during the last part of 1980s (also with Freeman). Edited book from 1992 on ’National Systems of Innovation: Towards a theory of innovation and interactive learning’

Nelson, Colombia university. Edited book from 1993 on ’National Innovation Systems: A Comparative Analysis’

Edquist: Edited book from 1997 on ’Systems of Innovation: Technologies, Institutions and Organizations’

Page 11: Regional Innovation Systems approach to regional innovation

Varieties of innovation systems

’Technological’ systems (Carlsson and Stankiewicz, 1995)

’Sectoral’ systems (Malerba, 1997) ’Regional’ systems (Cooke, 1992; Asheim 1995) Some of the crucial ideas of the IS concept such as

vertical interaction and innovation as an interactive process appear in Porter’s cluster concept (1990/98) and the Triple-Helix model of Etzkowitz and Leydesdorff (2000)

Complementary perspectives to the NIS approach

Page 12: Regional Innovation Systems approach to regional innovation

Regional Innovation Systems (RIS) narrowly (I) and broadly (II) defined

(I) A RIS is constituted by two sub-systems and the systemic interaction between them (and with non-local actors and agencies):

The knowledge exploration and diffusing sub-system (universities, technical colleges, R&D institutes, technology transfer agencies, business associations and finance institutions)

The knowledge exploitation sub-system (firms in regional clusters as well as their support industries (customers and suppliers))

(II) A wider system of organisations and institutions supporting learning and innovation, and their interactions with firms in the region. Integrating innovation policy with education and labour market policies

Page 13: Regional Innovation Systems approach to regional innovation

What characterises most regions?

Very few regions are only high-tech regions (Sillicon Valleys) Often regions have a combination of (few) high-tech (R&D/

science based) companies (SMEs and large firms/MNEs) and a majority of traditional, medium and low tech SMEs, and large firms

It seems as SMEs are either innovative (e.g. DBFs) and not rapidly growing, or rapidly growing but not innovative (e.g. many service gazelles)

Many regions only have traditonal, low tech SMEs (neither innovative nor rapidly growing)

Still different types of regions can have the same level of economic performance

Page 14: Regional Innovation Systems approach to regional innovation

Differentiated knowledge bases

Knowledge creation and innovation take place in all kind of industries but is done in different ways, needs different kinds of knowledge and skills and requires different forms of innovation support

No type of knowledge should a priory be considered superior with respect to generating economic growth and innovation

Characterise the nature of the critical knowledge which knowledge creation and innovation processes in different industries cannot do without (ontological, generic category)

Distinguish between three different knowledge bases: a) analytical (science based) b) synthetic (engineering based) c) symbolic (art based)

Page 15: Regional Innovation Systems approach to regional innovation

Differentiated knowledge bases: A typology

Analytical (science based)

Synthetic (engineering based)

Symbolic (art based)

Developing new know-ledge about natural systems by applying scientific laws; know why

Applying or combining existing knowledge in new ways; know how

Creating meaning, desire, aesthetic qualities, affect, intangibles, symbols, images; know who

Scientific knowledge, models, deductive

Problem-solving, custom production, inductive

Creative process

Collaboration within and between research units

Interactive learning with customers and suppliers

Experimentation in studios and project teams

Strong codified knowledge content, highly abstract, universal

Partially codified knowledge, strong tacit component, more context-specific

Importance of interpretation, creativity, cultural knowledge, sign values, implies strong context specificity

Meaning relatively constant between places

Meaning varies substantially between places

Meaning highly variable between place, class and gender

Drug development Mechanical engineering Cultural production, design, brands

Page 16: Regional Innovation Systems approach to regional innovation

Knowledge bases and firms: illustrating empirical examples

SymbolicBiotechnology

Pharmacuticals

Advertisement

Film

Automotive

Food

Analytical

Synthetic

Symbolic

Page 17: Regional Innovation Systems approach to regional innovation

Type of knowledge Type of RIS

Analytical/science based

Synthetic/engineering based

Symbolic/art based

Territorially embedded(grassroot RIS)

IDs in Emilia-Romagna (machinery)

’Advertisingvillage’ – Soho(London)

Networked(network RIS)

Regional clusters – regional university (wireless in Aalborg)

Regional clusters – regional technical university (mechanical in Baden-Württemberg)

Barcelona as the design city

Regionalisednational(dirigiste RIS)

Science parks/technopolis(biotech, IT)

Large industrial complex(Norwegian oil and gas related industry)

RIS TYPOLOGY

Page 18: Regional Innovation Systems approach to regional innovation

Different modes of innovation

’How Europe’s Economies Learn. Coordinating Competing Models’ : Different modes of innovation (Lorenz and Lundvall, 2006)

1. STI (Science, Technology, Innovation) – analytical knowledge/basic research (science push/supply driven) and synthetic knowledge/applied research (market/user driven)

2. DUI (Doing, Using, Interacting) – Competence building and organisational innovations – synthetic and symbolic knowledge (market/user driven)

3. Combining modes of innovation (STI/DUI) makes firms perform better (Berg Jensen et al., 2007)

4. Firms sourcing broadly (both R&D and experience based knowledge) are the most innovative (Laursen and Salter, 2006)

Page 19: Regional Innovation Systems approach to regional innovation

How to understand regional competitiveness?

Regional dimension: Heterogeniety, contingent factors (e.g. historical, cultural, social, economic, environmental) important

): Diversity and variety Competition: Based on unique capabilities and competences1. Existing competitiveness: growing of existing industries

(incremental (process) innovations in existing technological trajectories securing high productivity) – path extension (positive lock-ins)

2. Future competitiveness: - evolutionary dimension: upgrading existing industries

(changing technological trajectories through regional branching) – path renewal

- institutional dimension: promoting new emerging industries (radical (product) innovations) – path creation

Page 20: Regional Innovation Systems approach to regional innovation

What is Constructing Regional Advantage (CRA)

New regional development strategy promoting competitiveness on individual and systems levels to meet challenges of the globalising knowledge economy

Building on the IS approach on how to increase competitiveness but advocating a more pro-active and collaborative approach and including the meso (firm) and micro (entrepreneurs and work organisation) levels in addition to the system/macro level

Addressing system failures of weak connectivity and lack of transformative capacity within and between (regional) innovation systems

Support openness and diversity of IS (differentiated knowledge bases/related variety/cognitive distance) in the promotion of platform based strategies of regional development

Page 21: Regional Innovation Systems approach to regional innovation

Definition of Constructing Regional Advantage

Constructing Regional Advantage means: 1. turning comparative advantage into – or 2. creating competitive advantage through an explicit policy push

promoting a Chamberlinian monopolistic competition based on product differentiation resulting in unique assets or products

Report from DG Research, European Commission, May 2006

Basic assumption also in the innovation systems and Porter’s cluster approaches

Strenghtening innovation systems policies

Page 22: Regional Innovation Systems approach to regional innovation

Distributed knowledge networks

At present, the awereness and importance of implementing strategies for external knowledge sourcing is increasing, linked to the challenges and opportunities of global innovation networks

Concepts such as open innovation and innovation systems build on the recognition that interorganisational linkages are critical to the innovative capabilities of firms and the growth of economies

As a result of the increasing complexity and diversity of knowledge creation and innovation processes, firms need to access and acquire new, external knowledge to supplement their internal, core knowledge base(s)

Transition from internal knowledge base(s) within firms to distributed knowledge networks across a range of firms, industries and sectors locally and globally

Page 23: Regional Innovation Systems approach to regional innovation

Global open innovation

Evolutionary theory suggests the broader and more diverse the knowledge bases, the larger the scope for innovation

In most economies the most important source of variety in knowledge bases is found abroad

The ability of entrepreneurs and firms of a region to tap into global networks of knowledge and use it productively (open innovation) will in many cases be more important than the creation of new knowledge at home

The global dimension of distributed knowledge networks has increased dramatically in importance over the last decade

In sum, all this implies that territorial innovation systems are ’forced open’, that they can no longer be built solely as sets of user-producer relationships and that an excessive, singular focus on localised learning from the policy system may be harmful

Page 24: Regional Innovation Systems approach to regional innovation

The absorptive capacity for accessing, diffusing and making use of new external and internal knowledge is unenven due to the heterogeniety of firms’ competence bases and the importance of their position in internal and external innovation networks

Proximity dependent on the knowledge bases of firms Analytical knowledge based firms (e.g. biotech) are part of a

local node of excellence in global knowledge networks and epistemic communities - less sensitive to proximity – codified knowledge

Synthetic and symoblic knowledge based firms are more dependent on local knowledge networks and communities of practice - distance matters more – context dependent – higher content of tacit knowledge

For all knowledge bases: Early phasis of innovation facitlitated by F-2-F interaction

Knowledge bases and proximity

Page 25: Regional Innovation Systems approach to regional innovation

regional

Figure: Knowledge sourcing through

collaboration in life science

Source: Martin & Moodysson 2012

Page 26: Regional Innovation Systems approach to regional innovation

regional

Figure: Knowledge sourcing through

collaboration in food

Source: Martin & Moodysson 2012

Page 27: Regional Innovation Systems approach to regional innovation

regional

Source: Martin & Moodysson 2012

Figure: Knowledge sourcing through

collaboration in new media

Page 28: Regional Innovation Systems approach to regional innovation

Regional innovation policies: A classification of policy instruments

Support: Financial and technical

Behavioural change: Learning to innovate

Financial supportMobility schemes

Firm-focused Brokers

TechnologyClustersRegional

System-focused centres innovationsystems

Page 29: Regional Innovation Systems approach to regional innovation

Clusters and Regional Innovation Systems (RIS)

Regional Innovation Systems support several clusters The traditional constellation of regional clusters

surrounded by innovation promoting organisations (universities, development agencies) in a RIS is normally found in contexts of industries with a synthetic (and symbolic) knowledge base(s) (rationale: to upgrade historical technological trajectories)

The existence of a RIS as a necessary part of the development of an emerging regional cluster will normally be the case of industries based on an analytical knowledge base (rationale: to support commercialisation of newly created knowledge)

Page 30: Regional Innovation Systems approach to regional innovation

Centres of Expertise – focused cluster/RIS policy Cooperation between global competitive firms and

leading research universities Nordic countries (Finland, Sweden, Norway) Upgrading of existing industries and regional

branching based on related variety (i.e. industries with the same and/or complementary competences and knowledge bases)

Evolutionary perspective – path renewal through changing technological trajectories

Institutional perspective – new path creation based on emerging, knowledge based spin-offs (Sweden – university driven (exploration)

New regional innovation policy

Page 31: Regional Innovation Systems approach to regional innovation

31

The concept – Strong R&I milieus

Strong R&I milieus is a VINNOVA ’invention’ – not used internationally – shows VINNOVA’s innovativeness with respect to policy initiatives (e.g. VINNVÄXT)

Centres of Excellence; Centres of Expertise; Technopoles; Science Parks; Clusters (Technology clusters); Poles de Competitivite, RIS

Builds on and inspired by:1. (Regional) innovation systems – innovativess and

competitiveness can be promoted through policy push. Strong R&I milieus a ’sharpening’ of (R)IS – stronger focus on knowledge creation – university driven (exploration)

2. Triple Helix – university, industry, (regional) government – normative (regional) innovation policy approach

3. Mode 2 – interdisciplinary, problem-oriented, application driven research at universities

Page 32: Regional Innovation Systems approach to regional innovation

Proximity and the global – local nexus:Swedish regional innovation policies

Strong Research and Innovation milieus – strengthening of RIS approach (a narrow based innovation policy)

Sweden – VINNOVA’s regional innovation policy approach. Spatial agglomerations but with an explicit reference to the importance of links to global knowledge networks – open innovation

Emphasizing proximity (not only spatial but also organisational) between knowledge exploration and exploitation

’Strong’ emphasises of global excellence in knowledge exploration as well as in knowledge exploitation

Institutional perspective (policy push/Triple Helix) promoting innovation (10 years/matching funding)

Top-down/bottom-up strategy

Page 33: Regional Innovation Systems approach to regional innovation

Roles of universities in RIS:

Third mission (after teaching and research): direct interaction between universities and society as key actor in the knowledge exploration subsystem of RIS Creating high-tech firms Consulting for local industry Delivering advice for politicians Informing general public debates

Universities are increasingly of strategic importance for regional development in the knowledge economy by often being the only actor bringing global state-of-the-art science and technology into the region

Generative role: discrete outputs in response to specific demands

Developmental outputs: development of regional institutional capacities (e.g. in the context of RIS)

Page 34: Regional Innovation Systems approach to regional innovation

34

VINNOVA - Strong R&I milieus

•Policy to boost innovativess and competitiveness•Strong R&I milieus, focus on knowledge creationRegional innovation

systems

•University – industry – government•Normative (regional) innovation policy approach

Triple Helix

•Interdisciplinary, problem-oriented, application driven research

Mode 2

•Spatial and organisational•Global knowledge networks (open innovation)Regional Proximity/

Globally connected

•In knowledge exploration & exploitationEmphasis on global excellence

Page 35: Regional Innovation Systems approach to regional innovation

Requirements for a successful Triple Helix collaboration

•Proximities at the regional level•Spatial distribution of strong HEIsGeography

dimension•Third mission•Triple Helix policy framework•Research funding promoting Mode 2•University autonomy

Institutional dimension:

policy & funding

•internal organisation of universitiesOrganisational dimension

Page 36: Regional Innovation Systems approach to regional innovation

Geography dimension - regional concentration of R&D activity

Share of national investment EUR per capita

NORWAY Capital 45 1 956 Trondheim 17 1 964

SWEDEN Capital 33 1 768 Gothenburg 22.5 1 273 Lund 16.5 1 278 Linköping 18 1 216

FINLAND Capital 56 1 431 Tampere/Åbo 23.5 1 179 Oulu 16.5 1 761

DENMARK Capital 63 2 597

Page 37: Regional Innovation Systems approach to regional innovation

Why a broad based innovation policy?

Is more R&D driven innovation policies always the only answer to improving regional innovativeness and competitiveness? Hardly, as

Regions’ industrial structure are heterogenous, where a one dimensional R&D (S&T) based policy will not work. A fine tuned regional innovation policy is needed (Constructing Regional Adventage)

Many drivers of innovation (supply, demand, market, employee driven)

Many types of innovation (radical vs incremental; product, process, organisational)

Many regions and nations starting to have a stronger focus on this problematic. Thus, the idea of a broad based innovation policy get increasingly more support

Needs both narrow and broad RIS to be implemented combining the STI and DUI modes of innovation

Page 38: Regional Innovation Systems approach to regional innovation

The combination of STI and DUI modes of innovation

Cognitive distance has to be reduced and absorptive capacity increased to achieve such a combination (especially for traditional SMEs)

The STI mode includes both synthetic and symbolic knowledge bases, and the DUI mode is also present in firms based on the STI mode. This represent bridging mechanism reducing the cognitive distance

Internal competence building through developmental learning in learning work organisations and organisational changes increase absorptive capacity

Needs both narrow and broad RIS to be implemented

Page 39: Regional Innovation Systems approach to regional innovation

VRI – a Norwegian innovative regional policy program: A broad based policy

Anticipated later theoretical developments:1. DUI mode of innovation with learning work organisations

as the micro foundation2. Combining DUI and STI – later research has shown that

firm sourcing broadly for knowledge for innovation are more innovative – Triple Helix on regional level

3. Combining research with action research by creating regional learning arenas in the form of regional partnerships (regional development coaltions = learning regions)

4. Norway had a broad based innovation policy on the regional level 3-4 years before Finland introduced such a policy on the national level

Page 40: Regional Innovation Systems approach to regional innovation

Forms of work organisation across European nations (micro foundation of the DUI mode of innovation) ‘Learning’ forms of work organisation (CME):

+ : Netherlands, Denmark, Sweden and Norway - : Southern countries and Ireland

‘Lean’ forms of work organisation: + : UK, Ireland, Spain and France - : Netherlands, Denmark, Sweden, Germany and Austria

‘Taylorist’ forms of work organisation: + : Southern countries and Ireland - : Netherlands, Denmark and Sweden

‘Simple’ forms of work organisation: + : Southern countries - : Netherlands, Denmark, Finland and UK

Page 41: Regional Innovation Systems approach to regional innovation

The forms of work organisation in the EU

Learning forms of work organisation: (39.1%) autonomy in work learning dynamics (learning new things, problem solving) complexity of tasks responsibility for quality control low work rate constraints, repetitiveness and monotony team working and job rotation not characteristic

• “Swedish socio-technical” model • “American team working” model (Appelbaum et Batt)

Lean forms of work organisation: (28.2%) team working job rotation quality management (quality norms and quality control) learning dynamics work rate constraints, repetitiveness and monotony relatively low autonomy in work

• “Lean production” (Womack et alii; MacDuffie et alii)• “Controlled autonomy” model (Appay; Coutrot)

Page 42: Regional Innovation Systems approach to regional innovation

BE

DK

DE

FR

LU

NL

AT

FI

SE

UK

.4.5

.6.7

.8Le

arni

ng/L

earn

ing

+ Le

an

150 200 250 300 350EPO Patents

Page 43: Regional Innovation Systems approach to regional innovation

BE

DK

DE

FR

LU

NL

AT

FI

SE

UK

.4.5

.6.7

.8Le

arni

ng/ L

earn

ing

+ Le

an

0 50 100 150EPO High Tech Patents

Page 44: Regional Innovation Systems approach to regional innovation

Interactive learning in learning work organisations

Page 45: Regional Innovation Systems approach to regional innovation

The Norwegian ’puzzle’

Norwegian ’puzzle’ (OECD): High welfare and per capita income levels, one of the highest GDP globally, and strong performance with respect to productivity in combination with a very low level of investment in R&D (also when controlled for industry structure)

Focus on incremental process innovations in resource based industries (metal, oil and gas)

High level of absorptive capacity due to one of the highest levels of tertiary education in Europe

Page 46: Regional Innovation Systems approach to regional innovation

The Norwegian ’puzzle’

The high level of absorptive capacity results in a high level of adoption of new technologies, efficient knowledge diffusion and frequent cooperation in innovation

However, such characteristics of a national innovation system is ’typically not captured by conventional indicators of innovation input or output’ (Fagerberg et al. 2009a)

Page 47: Regional Innovation Systems approach to regional innovation

Norwegian oil and gas industry

Even if around 30% of all firms in (a wider defined) oil and gas industry use 4 percent or more on R&D (however, big variations between the subsectors in the industry) ’most past innovations were driven by the close cooperation between operators and suppliers in the development of large fields’ (Sasson and Blomgren, 2011)

This type of innovations as a result of practical challenges related to field development is typical examples of application development

Page 48: Regional Innovation Systems approach to regional innovation

Modes of innovation – technological and application development

Two modes of innovation (synthetic knowledge based, engineering industries with batch production):

1. Application development. Incremental innovations through user-producer relationships with demanding customers and suppliers in connection with the actual production. In-house experience based competence dependent on a highly qualified workforce. D(oing), U(sing), I(nteracting) mode of innovation

2. Technological development. Research projects together with universities to develop platform technologies as the basis for application development. S(cience), T(echnology), I(nnovation) mode of innovation

Page 49: Regional Innovation Systems approach to regional innovation

Innovation indicators and measurement

However, many such innovations, which ’relied on well-developed engineering competence and highly competent labor, ...., may not even be classified as innovations by CIS (community innovation study)-type surveys that mainly focus on product and process innovations’ (Fagerberg et al., 2009a)

This implies that ’learning-by-doing and engineering based activities such as the design of large process plants in oil refining or basic metals are not captured by the Frascati mmanual of definitions of R&D and may not be captured by the design category in the CIS expenditures question’ (Fagerberg et al. 2009b)

This measurement problem together with the importance of learning work organisation as the micro foundation of the DUI mode of innovation may well be able to explain why the Norwegian ’puzzle’ is not a ’puzzle’ after all

Page 50: Regional Innovation Systems approach to regional innovation

The Learning Region: Foundations, State of the Art, FutureEd by Rutten & Boekma, Elgar 2007

Foundations: Storper: Regional ’worlds’ of production

(1993) Florida: Toward the learning region (1995) Asheim: Industrial districts as ’learning

regions’ (1996) Morgan: The learning region: institutions,

innovation and regional renewal (1997)

Page 51: Regional Innovation Systems approach to regional innovation

What is a ’learning region’?

The building blocks of the concept:1. Learning regions as regional clusters/ industrial

districts characterised by broad co-operation and collective learning (Asheim/Third Italy)

2. Post-fordist economies as ’learning economies’ where innovation is understood as interactive learning (Lundvall/Denmark)

3. Learning regions as ’regional development coalitions’: a bottom-up strategy based on broad participation starting with work organisations (Gustavsen/Nordic countries)

Page 52: Regional Innovation Systems approach to regional innovation

The origins of the concept I

Research on localised learning and the role of cooperation in industrial districts (ID) (Asheim, 2006).

Important ’heritage’: ’Fusion’ of economy and society (Piore and Sabel, 1984)

Key ’addition’ (to ID research): Emphasizing the limitations of the vertical dimension of a cluster for innovation, and the need of promoting horizontal cooperation for the districts to become more innovative.

Requires organizational and institutional upgrading Anticipate: A broad definition of RIS

Page 53: Regional Innovation Systems approach to regional innovation

The origins of the concept II

Learning economy approach (Lundvall and Johnson, 1994)

Important ’heritage’: Innovation seen as a socially and territorially embedded, interactive learning process, pointing at knowledge as the most fundamental resource and learning the most important process

Key ’addition’ (to ID research): Making Third Italy’s ID not an exception ’for the time being’ but a territorial based development model

Anticipate: The DUI (Doing-Using-Interacting) mode of innovation (Lorenz and Lundvall, 2006)

Page 54: Regional Innovation Systems approach to regional innovation

The origins of the concept III

Regional development coalitions (Ennals and Gustavsen, 1999)

Important ’heritage’: Emphasizing the importance of work organisations and competence building for firms and regions competitiveness

Key ’addition’ (to ID resarch): Action-oriented organizational research adding to the change potential of the approach as a territorial development model applying a broad definition of RIS

Anticipate: The importance of (learning) work organizations (Lorenz and Lundvall, 2006), developmental learning (Lorenz, 2012) and organizational innovations

Page 55: Regional Innovation Systems approach to regional innovation

Growth paradigms and transformation of RIS.