regularized fast multipole method (rfmm) for geometric...

27
FMM and Velocity Verlet scheme Regularized Fast Multipole Method (RFMM) for Geometric Numerical Integrations Eric DARRIGRAND Universit´ e de Rennes 1 – INRIA - IPSO [email protected] http://perso.univ-rennes1.fr/eric.darrigrand-lacarrieu joint work with Philippe C HARTIER and Erwan FAOU Eric Darrigrand eminaire IECN – 15 juin 2010

Upload: others

Post on 10-Sep-2019

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

Regularized Fast Multipole Method (RFMM)for Geometric Numerical Integrations

Eric DARRIGRAND

Universite de Rennes 1 – INRIA - [email protected]

http://perso.univ-rennes1.fr/eric.darrigrand-lacarrieu

joint work with Philippe CHARTIER and Erwan FAOU

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 2: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

Outline

• Hamiltonian systems

? symplectic integrators

? motivation of fast methods

• a classical FMM

? derivation of the FMM

? FMM and symplectic integrators

? some improvements of the FMM

• a regularized FMM (RFMM)

? regularization of the classical FMM

? numerical application to the Solar System

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 3: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

Hamiltonian systems

ODE system: q = M−1p ∈ R3N

p = −∇U(q) ∈ R3N

where M = diag(m1IR3 , · · · ,mNIR3)

Hamiltonian of the system:

H(p, q) = T (p) + U(q)

? T (p) =12pTM−1p is the kinetic energy

? U(q) is the potential function

−→ For invariance energy: Use of symplectic integrators.

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 4: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

Symplectic integrators

Velocity Verlet scheme: ([Hairer, Lubich, Wanner - 06])qn+ 1

2= qn + h

2 vn

vn+1 = vn − h∇U(qn+ 12)

qn+1 = qn+ 12

+ h2 vn+1

where qn ≈ q(nh) and vn ≈ v(nh) with v = q = M−1p

−→ explicit, symplectic and symmetric

Calculation of the potential:

astronomy / molecular dynamics =⇒ evaluation of∇U of order N2.

For instance, for the Outer Solar System,

U(q) = −γ5∑i=1

i−1∑j=0

mimj

‖qi − qj‖

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 5: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

The Fast Multipole Method (FMM): Basic idea

• Compute: ∀i = 1, N , Yi =N∑j=1

Mij Xj −→ Complexity = O(N2)

• Suppose: ∃ (ai)i , (bj)j /Mij = ai bj

Algorithm:Step 1: F =

N∑j=1

bj Xj

Step 2: ∀i, Yi = aiF

−→ Complexity = O(N)

• Suppose: ∃ (ali)il , (bl

j)jl /Mij =L∑

l=1

ali bl

j , L << N

Algorithm:

Step 1: ∀l , F l =N∑j=1

blj Xj

Step 2: ∀i , Yi =L∑l=1

aliFl

−→ Complexity = O(N L)

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 6: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

FMM: a 1D simple example

Speed up of matrix-vector productsMX with given X and

Mi j =

1

xi − xjif i 6= j

1 if i = j

Suppose the configuration

B1 B2 B3 B4

0 1

•xi xj

For xj ∈ B3 ∪B4

1xi − xj

=1

C1 − xj − (C1 − xi)=

1C1 − xj

∞∑l=0

(C1 − xiC1 − xj

)l.

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 7: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

Hence∑

j/xj∈B3∪B4

Mi j .Xj =Lε∑l=0

(C1 − xi)l∑

j/xj∈B3∪B4

Xj

(C1 − xj)l+1.

•Ckxi

◦xj1◦

xj2◦

xj3◦

Complexity of a matrix-vector product: O(KN ln N + N2/K)with K = number of boxes and N = number of points xj)

Optimal complexity: O(N3/2 ln N) obtained with K ∼ N1/2.

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 8: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

FMM for the Outer Solar System

Coulomb forces of the Outer Solar System

∇iU(q) = −γ∑j 6=i

mimj∇1G(qi, qj) = −γ∑j

Mi,j

with

G(x, y) =1

‖x− y‖Mj,j = 0

Mi,j = mimj∇1G(qi, qj) for i 6= j

−→ common matrix-vector product calculable with FMM(V. Rokhlin - L. Greengard)

First step: FMM expansion for∑j 6=i

wj‖xi − yj‖

for given {wj}j .

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 9: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

18 interactions

BT1

BS2

BS3

x11

x12

x13

y21y22

y23

y31y32

y33 11 interactions

BT1

BS2

BS3

C2◦

C3◦

C1

◦x11

x12

x13

y21y22

y23

y31y32

y33

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 10: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

Source boxes – multipole expansion:(yj , wj) source points in a box Bsrc of center Csrc and xi a target point far away.

Φ(xi) =∑j

wj‖xi − yj‖

=∑j

wj‖(xi − Csrc)− (yj − Csrc)‖

Consider (xi − Csrc)↔ (r′, θ′, ϕ′) and (yj − Csrc)↔ (ρj , αj , βj). Then

Φ(xi) =∞∑n=0

n∑m=−n

Mmn

r′n+1Y mn (θ′, ϕ′)

Mmn =

∑j

wj ρnj Y

−mn (αj , βj)

Choice of the truncation, with a = radius of the boxes:∣∣∣∣∣Φ(xi)−L∑n=0

n∑m=−n

Mmn

r′n+1Y mn (θ′, ϕ′)

∣∣∣∣∣ ≤∑j |wj |r′ − a

( ar′

)L+1

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 11: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

Target boxes – local expansion:xi in a box Btrg of center Ctrg ; (xi − Ctrg)↔ (ρi, αi, βi)If (Csrc − Ctrg)↔ (r, θ, ϕ) with r > (c+ 1)a, c > 1 and ρi ≤ a.

Then Φ(xi) =∞∑ν=0

ν∑µ=−ν

Lµν ρνi Y

µν (αi, βi)

Lµν =∞∑n=0

n∑m=−n

ı|µ−m|−|µ|−|m| Amn Aµν

(−1)n Am−µν+n

Y m−µν+n (θ, ϕ)rν+n+1

Mmn

with

Amn =(−1)n√

(n−m)!(n+m)!

Error estimates:∣∣∣∣∣Φ(xi)−L∑ν=0

ν∑µ=−ν

Lµν ρνi Y

µν (αi, βi)

∣∣∣∣∣ ≤∑j |wj |

ca− a

(1c

)L+1

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 12: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

Algorithm:

• Step 0: w-independent quantities:

? Translation operator: multipole exp. around Csrc→ local exp. around Ctrg.

? Far moments fn,mj and local moments gν,µi .

• Step 1: Far fields: ∀Bsrc, ∀yj ∈ Bsrc, Fn,mBsrc← wj · fn,mj .

• Step 2: Local fields: ∀Btrg, ∀Bsrc far from Btrg, (Gν,µBtrg)ν,µ ← (Fn,mBsrc

)n,m.

• Step 3: Far interactions: ∀Btrg, ∀xi ∈ Btrg, ∀(ν, µ), Φfar(xi)← Gν,µBtrg· gν,µi .

• Step 4: Close interactions: ∀Btrg, ∀xi ∈ Btrg,Φclose(xi)← neighbor-source-points contribution.

• Step 5: The matrix-vector product: ∀Btrg, ∀xi ∈ Btrg,Φ(xi) ≈ Φclose(xi) + Φfar(xi).

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 13: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

Complexity:With N = number of degrees of freedom.

K = number of boxes.

T = number of translations between boxes.

L = truncature parameter.

• Translations between boxes (step 2): T × L4.

• Local translations inside the boxes (steps 1 and 3): N × L2.

• Close interactions (step 4): N2/K.

• One-level FMM (SL-FMM): total cost ∼N2/K + K2 L4 + N L2.

• Multilevel FMM (ML-FMM): total cost ∼N2/K + K L4 + N L2.−→ Optimal choice: K ∼ N ; complexity N L4.

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 14: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

FMM discontinuities:

•CBT

CBS1• •CBS2

xi1◦

yj1◦ ◦

yj2

CBT1• •CBT2

xi1◦ ◦xi2

Far interactions of BT1

Far interactions of BT2

Close interactions of xi1 ∈ BT1

Close interactions of xi2 ∈ BT2

−→ loss of regularity and preservation of the Hamiltonian

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 15: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

Some algorithm improvements:

• ML-FMM using multipole-multipole and local-local translations.

• Optimization of the translation costs:

? vFMM: Number of multipoles L adapted to the level in ML-FMM.Petersen et al., 1994;

? Rotation of the system: translations are more efficient along the axes.Greengard and Rokhlin, 1997; −→ reduces L4 to L2.

? Convolution ((n− ν), (m− µ)) and FFT for translations Mmn −→ Lµν .

Elliott and Board, 1996; −→ reduces L4 to L2 ln L.

• Alternatives:

? FFTM: Convolution (Csrc − Ctrg) and FFT for the translations Csrc to Ctrg.Ong, Lim, and Lee, 2003. A modified SL-FMM.

? Generalization of the FMM: e.g., using the SVD concept.

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 16: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

RFMM – a regularized FMM: Overlapping boxes and partition of unity.

Virtual box B1

Virtual box B2

Virtual box B3

Box 1 Box 2 Box 3x1• x2•x3•

Φ(x1) ≈ Φclose(x1 ∈ B2) + Φfar(x1 ∈ B2)

Φ(x2) ≈ (1− χ(x2))[Φclose(x2 ∈ B2) + Φfar(x2 ∈ B2)

]+ χ(x2)

[Φclose(x2 ∈ B3) + Φfar(x2 ∈ B3)

]Φ(x3) ≈ (1− χ(x3))

[Φclose(x3 ∈ B1) + Φfar(x3 ∈ B1)

]+ χ(x3)

[Φclose(x3 ∈ B2) + Φfar(x3 ∈ B2)

]Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 17: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

Algorithm consequencies:

? The overlapping of the boxes may affect the speed of the convergence of thelocal/multipole expansions

=⇒ larger order of neighborhood.

? A target point may belong to several boxes.

? A low increase of the number of points in each target box.=⇒ A low increase of the cost of the step involving the local moments.

? No change of the global algorithm complexity.

=⇒ a regularized FMM for a comparable computational cost

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 18: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

1D illustration: x1, · · · , x800, uniformly distributed on [0, 1] ;

Compute ∀i = 1, · · · , 800: Si =400∑

j 6=i,j=250

1‖xi − xj‖

.

0 0.2 0.4 0.6 0.8 1−2

0

2

4

6

8

10 x 10−3

x

erro

r on

Sum

y( G(x

,y) )

Error on Sumy( G(x,y) )

classical FMMsmooth FMM

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4−2

0

2

4

6

8

10 x 10−3

x

erro

r on

Sum

y( G(x

,y) )

Error on Sumy( G(x,y) )

classical FMMsmooth FMM

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 19: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

RFMM and the Outer Solar System

Problem: The solar system (Sun, Jupiter, Saturn, Uranus, Neptune, Pluto).Initial data: positions/velocities on sept. 4, 1994.FMM for the computation of

∇iU(q) = −γ∑j 6=i

mimj∇1G(qi, qj) , G(x, y) =1

‖x− y‖

Notations:

? L: number of multipoles. Typical value ≈ 6, very accurate with L = 15 or even 20.

? No: order of neighborhood (defines close and far interactions).

? NL: number of levels of the oc-tree. Here, a good tradeoff is NL = 7.

? Rreg: ratio (regularization zone on each side of a group / length of the group).

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 20: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

RFMM and the Outer Solar System

L = 3, NL = 7, No = 1, Rreg = 0.25

0 0.5 1 1.5 2 2.5x 106

−7

−6

−5

−4

−3

−2

−1

0

1

time (unit = 1 day) −− Time−step = 10 days

Log 10

(rela

tive

erro

r on

Ham

ilton

ian)

Log10 of relative error on Hamiltonian versus time in days − 3p7b

regular FMMclassical FMMwithout FMM

0 0.5 1 1.5 2 2.5x 106

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (unit = 1 day) −− Time−step = 10 days

Rel

ativ

e er

ror o

n H

amilt

onia

n

Relative error on Hamiltonian versus time in days − 3p7b

regular FMMclassical FMM

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 21: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

RFMM and the Outer Solar System

L = 3, NL = 7, No = 1, Rreg = 0.25

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 22: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

RFMM and the Outer Solar System

L = 5 or 6, NL = 7, No = 1, Rreg = 0.25

0 1 2 3 4 5 6 7 8x 105

−8

−7

−6

−5

−4

−3

−2

−1

time (unit = 1 day) −− Time−step = 10 days

Log 10

(rela

tive

erro

r on

Ham

ilton

ian)

Log10 of relative error on Hamiltonian versus time in days − 5p7b

regular FMMclassical FMMwithout FMM

0 0.5 1 1.5 2x 106

−8

−7

−6

−5

−4

−3

−2

−1

time (unit = 1 day) −− Time−step = 10 days

Log 10

(rela

tive

erro

r on

Ham

ilton

ian)

Log10 of relative error on Hamiltonian versus time in days − 6p7b

regular FMMclassical FMMwithout FMM

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 23: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

RFMM and the Outer Solar System

L = 6, NL = 7, No = 1, Rreg = 0.25

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 24: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

RFMM and the Outer Solar System

L = 10, NL = 7, No = 1, Rreg = 0.25

0 2 4 6 8 10x 105

−10

−9

−8

−7

−6

−5

−4

−3

−2

time (unit = 1 day) −− Time−step = 10 days

Log 10

(rela

tive

erro

r on

Ham

ilton

ian)

Log10 of relative error on Hamiltonian versus time in days − 10p7b

regular FMMclassical FMMwithout FMM

0 0.5 1 1.5 2x 105

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

time (unit = 1 day) −− Time−step = 10 days

Log 10

(rela

tive

erro

r on

Ham

ilton

ian)

Log10 of relative error on Hamiltonian versus time in days − 10p7b

regular FMMclassical FMMwithout FMM

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 25: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

RFMM and the Outer Solar System

L = 3, NL = 7, No = 2, Rreg = 0.45

0 0.5 1 1.5 2x 106

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

time (unit = 1 day) −− Time−step = 10 days

Log 10

(rela

tive

erro

r on

Ham

ilton

ian)

Log10 of relative error on Hamiltonian versus time in days − 3p7b 2Nei Tr=0.45

regular FMMclassical FMMwithout FMM

0 0.5 1 1.5 2x 106

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

time (unit = 1 day) −− Time−step = 10 days

Rel

ativ

e er

ror o

n H

amilt

onia

n

Relative error on Hamiltonian versus time in days − 3p7b 2Nei Tr=0.45

regular FMMclassical FMM

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 26: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

RFMM and the Outer Solar System

L = 3, NL = 7, No = 2, Rreg = 0.45

Eric Darrigrand Seminaire IECN – 15 juin 2010

Page 27: Regularized Fast Multipole Method (RFMM) for Geometric ...microwave.math.cnrs.fr/meetings/FMM1/SeminaireEric.pdf · FMM and Velocity Verlet scheme Regularized Fast Multipole Method

FMM and Velocity Verlet scheme

A first conclusion

The regularized FMM

• recovers the invariance of energy of an Hamiltonian system,

• has the same algorithm complexity as the usual FMM.

Coming work

• Application of improvements regarding the source-to-target translations.

• Application of the regular FMM to molecular dynamics.

Eric Darrigrand Seminaire IECN – 15 juin 2010