relationship between thermal and luminance distributions in high-power lateral gan/ingan...

27
and and luminance distributions in hi luminance distributions in hi gh-power gh-power lateral GaN/InGaN light-emitt lateral GaN/InGaN light-emitt ing diodes ing diodes J.K. Lee D.P. Han, J.I. Shim and D.S. Shin D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS LETTERS , 18th March 2010 , Vol. 46 No. 6 ELECTRONICS LETTERS , 18th March 2010 , Vol. 46 No. 6

Upload: antony-mccormick

Post on 17-Jan-2018

222 views

Category:

Documents


0 download

DESCRIPTION

Outline Introduction Experiment Results and discussion Conclusion

TRANSCRIPT

Page 1: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

Relationship between thermal andRelationship between thermal andluminance distributions in high-powerluminance distributions in high-powerlateral GaN/InGaN light-emitting diodeslateral GaN/InGaN light-emitting diodes

J.K. Lee

D.P. Han, J.I. Shim and D.S. ShinD.P. Han, J.I. Shim and D.S. Shin

ELECTRONICS LETTERS , 18th March 2010 , Vol. 46 No. 6ELECTRONICS LETTERS , 18th March 2010 , Vol. 46 No. 6

Page 2: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

OutlineOutline• Introduction

• Experiment

• Results and discussion

• Conclusion

Page 3: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

IntroductionIntroduction

Relationship between the luminance and thermal distributions in high-power lateral GaN/InGaN blue LEDs by using a current density distribution analysis and comparing two LED devices with different electrode designs.

Page 4: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

ExperimentExperiment

Fig. 1 Lateral GaN/InGaN LED devices selected for analysis and comparison.

Chip Size : 1mm * 1 mm.

PP

N N

Page 5: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

ExperimentExperiment

Table 1: Extracted material and structural parameters

Rsh,TME : lateral resistance of TME.Rsh,n-GaN : lateral resistance of n-GaN.Rsh,p-GaN : lateral resistance of p-GaN.ρc : specific contact resistance between TME and p-GaN. β: exponential junction parameter.Is : reverse saturation current.

Page 6: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

Results and discussionResults and discussion

Fig. 2 Luminance distributions obtained by using simulator based on threedimensional electrical circuit model when current of 400 mA is injected (Figs 2a and b), and luminance distributions taken by CCD camera when current of 400 mA is injected (Figs 2c and d)

Page 7: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

Results and discussionResults and discussion

Fig. 3 Thermal images taken by an infrared camera when a current of 400 mA is injected (Figs 3a and b), and thermal image after image processing (Figs 3c and d).

85℃ 90℃

Page 8: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

Results and discussionResults and discussion

Fig. 4 Measured light-current curves for two different LED devices shown in Figs 1a and b.

A

B

Page 9: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

ConclusionConclusion

It can be concluded that the current-density distribution is essential in determining the luminance and thermal properties of high-power lateral GaN LED devices.

We have also shown that poorer current spreading indicated by a smaller emission area can eventually cause an earlier optical saturation in the LED devices.

Page 10: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

Simulation of current spreading for GaN-based light-emittinglight-emitting diodes

Pei Wang, WeiPei Wang, Wei Wei, BinWei, Bin Cao, ZhiyinCao, Zhiyin Gan, ShengGan, Sheng Liu Liu

Optics & Laser TechnologyOptics & Laser Technology , , 42 (2010) 42 (2010) , , 737–740737–740

Page 11: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

OutlineOutline

• Introduction

• Experiment

• Results and discussion

• Conclusion

Page 12: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

IntroductionIntroduction

It has been reported that the reliability and light distribution are affected by non-uniform current spreading.

The impact of different electrode patterns on the performance of LED chips is investigated.

Page 13: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

ExperimentExperiment

Fig. 1. Schematics of the two LED chips with different electrode patterns.

Page 14: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

Results and discussionResults and discussion

Fig. 2. Current density distribution in the active layer of sample A (a) and sample B (b) under the injection current of 300 mA.

Page 15: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

Results and discussionResults and discussion

Fig. 3. Diode temperature distribution of sample A (a) and sample B (b) under the injection current of 300 mA.

Page 16: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

Results and discussionResults and discussion

Fig. 4. Measured and simulated I–V curves for sample A and sample B.

Page 17: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

Results and discussionResults and discussion

Fig. 5. The L–I characteristics and the external quantum efficiency versus the injection current of the LED chips.

Page 18: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

ConclusionConclusion

It is found that increasing the number of p-electrodes in the interdigitated electrode patterns improves the performance of the LED.

It is demonstrated that the electrode pattern plays an important role in the design and fabrication of LED chips due to its influence on the current spreading and then the optical and electrical performance of chips.

Page 19: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

Improved thermal management of GaN/sImproved thermal management of GaN/sapphire light-emitting diodesapphire light-emitting diodesembedded in reflective heat spreadersembedded in reflective heat spreaders

R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S. Wuu, and H. I. LinR. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S. Wuu, and H. I. Lin

APPLIED PHYSICS LETTERS 93, 111907 2008APPLIED PHYSICS LETTERS 93, 111907 2008

Page 20: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

OutlineOutline

• Introduction

• Experiment

• Results and discussion

• Conclusion

• References

Page 21: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

IntroductionIntroduction

We have demonstrated an enhanced performance of GaN/sapphire light-emitting diode LED embedded in a reflective copper heat spreader.

Infrared thermal images confirm the GaN/sapphire LED with more efficient heat extraction and better temperature uniformity.

Page 22: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

ExperimentExperiment

FIG. 1. Schematic fabrication sequences of InGaN LED structure embeddedIn a reflective Cu heat spreader : (a) a conventional lateral-electrode LED, (b) a transferring of chip to glass carrier, followed by photoresist coating, (c) an evaporation of Au/Cr/Ag mirror films, (d) Cu electroplating over a cupshaped reflector, and (e) a LED chip embedded into reflective Cu heat spreader after removing glass carrier and photoresist by immersion of acetone.

Page 23: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

ExperimentExperiment

FIG. 2. SEM micrographs of fabrication sequences of InGaN LED structure embedded in a reflective Cu heat spreader : (a) process step shown in Fig. 1(b) and (b) final process step shown in Fig. 1(e).

Page 24: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

Results and discussionResults and discussion

FIG. 3. (Color online) (a) Light output power and (b) power efficiency of LED with the reflective Cu heat spreader as a function of the forward current, along with the case of the conventional GaN LED. The inset shows their corresponding angular distribution of emission patterns at 20 mA.

Page 25: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

Results and discussionResults and discussion

FIG. 4. (Color online) Thermal images for InGaN/sapphire LED (a) without and (b) with a reflective heat spreader, as well as the simulated thermal distribution for (c) the former and (d) the latter, respectively.

Page 26: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

ConclusionConclusion

Improvement in the thermal management and optical performance. The heat generated from the LED chip is efficiently extracted due to a reasonably large metal spreader.

Using the direct-electroformed Cu heat spreader module applied to the conventional GaN/sapphire LED chip.

Page 27: Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes D.P. Han, J.I. Shim and D.S. Shin ELECTRONICS

ReferencesReferences

1. D.P. Han, J.I. Shim and D.S. Shin, “ Relationship between thermal and luminance distributions in high-power lateral GaN/InGaN light-emitting diodes ”, ELECTRONICS LETTERS , 18th March 2010 , Vol. 46 No. 6.

2. Pei Wang, Wei Wei, Bin Cao, Zhiyin Gan, Sheng Liu, “ Simulation of current spreading for GaN-based light-emitting diodes ” , Optics & Laser Technology , 42 (2010) , 737–740.

3. R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S. Wuu, and H. I. Lin, “ Improved thermal management of GaN/sapphire light-emitting diodesembedded in reflective heat spreaders ” , APPLIED PHYSICS LETTERS 93, 111907 2008.