relativistic positioning and navigation angelo tartaglia relgrav

29
RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

Upload: meredith-woods

Post on 14-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

RELATIVISTIC POSITIONING AND NAVIGATION

Angelo TartagliaRELGRAV

Page 2: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

How could the Enterprise starship find her way in the

universe?

2011 March 03 RELGRAV A. Tartaglia 2

Page 3: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

More practical…

How to use a pulsar to find Starbucks

Cosmic GPS would employ pulsing stars, not satellites, as

celestial beacons

2011 March 03 RELGRAV A. Tartaglia 3

Page 4: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 4

Coordinates and positioning

• Space-time is a 4-dimensional generally curved metric manifold

• Gaussian coordinates may be used to localize events.

Page 5: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 5

Emission coordinates

Light cone

Clocks

Signalstime

Page 6: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 6

Null or light coordinates

Cartesian grid

Light rays grid

Page 7: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 7

Null vectors and waves

n̂,1Tcos,cos,cos,1T

02

The wave vector:

is a null vector

Page 8: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 8

The null basis

dcba ,,,

a

b

time

space

Page 9: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 9

Positioning in space-time

a

b

time

space

event

r

dd

d

cc

c

bb

b

aa

a

TTTTr

light coordinates

Page 10: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 10

Wave fronts

dabcdabc

abc

d

hyperplane

Page 11: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 11

b

b

time

space

a

a

Page 12: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 12

Uncertainty volume

dcba V

abc

acd

Td

Tb

4 dcba TTTTcl

Page 13: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 13

Locally uniform motion

Ta

Tb

time

space

Proper time t

Page 14: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 14

Light coordinates of an event

d,c,b,ad,c,b,a Txn

integerFrom simple linear equations

Page 15: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 15

..........

tt

tt

1x,tt

tt

1x,1x,tt

x

tt

1x,tt

1x,tt

1x,0x

48

12

48

142d

37

12

37

132c2b

15

122a

48

141d

37

131c

26

121b1a

Page 16: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 16

Uncertainty depends on clock

tt

t

t1

4xn4i,i

21i,i

n4i,i

As big as allowed by the linearity of the worldline

Page 17: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 17

Accelerated motion

...tTa

21

tTu

x 2a

a

a

aa

Four-velocity Four-acceleration

tau

2t a

a

max Maximum integration time

Page 18: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 18

A gravitational field

The gravitational field shows up when:

2tt

4u

Gravitational potential

Page 19: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 A. Tartaglia 19

Pulsars as clocks

RELGRAV

Page 20: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 20

Two options

• X-ray pulsars• Radio-pulsars

Our choice is radio-pulsars

• ~ 1800 “clocks”• “Fixed” positions in the sky• Very stable clocks• Periods ≥ 1 ms

Page 21: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 21

Page 22: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

Parkes observatory (Australia)

2011 March 03 RELGRAV A. Tartaglia 22

Page 23: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

Four real pulsars

2011 March 03 RELGRAV A. Tartaglia 23

Page 24: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

Static observer

2011 March 03 RELGRAV A. Tartaglia 24

Page 25: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

Uncertainties

2011 March 03 RELGRAV A. Tartaglia 25

Page 26: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 26

Eppur si muove

Page 27: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 27

Extension to moving sources

The method can be extended to nearby moving sources as clocks on satellites or on celestial bodies of the Solar system, provided one has the time dependence of the direction cosines of the null basis vectors

Page 28: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 28

Conclusion

• The problem of obtaining the local coordinates from the arrival times of pulses from remote sources has been solved

• The method naturally includes all relativistic effects

• The method can be applied both to pulsars and to clocks onboard satellites or celestial bodies

Page 29: RELATIVISTIC POSITIONING AND NAVIGATION Angelo Tartaglia RELGRAV

2011 March 03 RELGRAV A. Tartaglia 29

• ML. Ruggiero, E. Capolongo, A. Tartaglia, Pulsars as celestial beacons to detect the motion of the Earth, IJMPD, in stampa (2011). •A. Tartaglia, ML. Ruggiero, E. Capolongo A null frame for spacetime positioning by means of pulsating sources, Advances in Space Research, 47, 645-653, 2011.• A. Tartaglia , Emission Coordinates for the Navigation in Space, Acta Astronautica, 67, 539-545, 2010• D. Bini, A. Geralico, ML. Ruggiero, A. Tartaglia, Emission vs Fermi coordinates: applications to relativistic positioning systems, Classical and Quantum Gravity, 25, 1-11, 2008.• ML. Ruggiero, A. Tartaglia, Mapping Cartesian Coordinates into Emission Coordinates: some Toy Models, IJMPD, 17, 311-326, 2008.