replacement of co-base alloy for radiation exposure

111
K AERI/RR-1584/95 KR9600210 Replacement of Co-base Alloy for Radiation Exposure Reduction in the Primary System of PWR VOL 2 C ."? 0 5

Upload: others

Post on 09-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

K AERI/RR-1584/95 KR9600210

Replacement of Co-base Alloy for Radiation Exposure Reductionin the Primary System of PWR

VOL 2 C ."? 0 5

KAERI/RR-1584/95

Replacement of Co-base Alloy for Radiation Exposure Reductionin the Primary System of PWR

1996. 1.

O|

812}

NEXT PAQE(S)toft BLANK

I.

II.

M,

Co-free

* ^it[ Co reduction programs]

Co t e ^ H S CH^ » S t f ^r 2 i ^ Co

o|» fl^oi 7 |^ Co

Ofu|BK

III. sl LH§ a!

1. Co-free

. ^ Stellite

0:f 7H^£I OjSj fig § , STflfig 2#(Armacor M, Tristelle 5183)2f

488)S £ § ^ 2 * ° ^ , O|§ *^2f 7|^fij Stellite 6

a 316SS ax(jcH| TIG

2. Test loop2 f ^ f | ! « SAW ^ Si^ ^^ |A |§§ test

^Qi , O| § U | * 0 | § t ^ 300°C, 1500

3. | J

^ 4 #

, HAZ,

4. 7|#H^Sff M1

S 3 1*WI* SSM gfi^HH# 7|£2j Co-base Stellite * ^ £ £

Co-free f g o g qj^|§fe 7|^2f fiJS«fOi, ^ ^ ^M2J Aj§BF Co-free

5.

- IV -

IV. g^Sii l a! Wgoil cue

1. Co-free

Co-free * S S S -idSq^OllAi

o|ft s

2 # (Armacor M, TristeUe 5183),

(Nucalloy 488)O|&|, 7|^2j q j n f e ^ s ^ Afgs j i °ife Stellite

Jfe. TIG

316SS

2. Test loop

I*MISSI

= S &7\t\3Ln, fil^S] loop

loop s a g s § s # a gs*F<>< s ^ ^ ^ ^i^s ^ ^ i s s test. 0| loop°J ^ ^ A | S 2Bf, g*|| system^

fe ^S§-^(autoclave L|J¥)O| ± 0°C,

3. ^ | S

test loop# 0|S*W 300r, 1500 psi,

- v -

o|StelUteSf Nucalloy

Armacorfif Tristelle2| g

4.

. Armacor

. 01 EHS-

fe Fe2B

Nucalloy

SteUite

5. 7|^?

S3Co-free S ^ £ S

Co a! Co-free S

21 SSSI Co-free

Co-base Stellite | B °

6.

- vi -

Summary

I. Project Title

Replacement of Co-base Alloy for the Radiation Exposure Reduction in

the Primary System of PWR

II. Objective and Importance of the Project

The purpose of this project is to establish the technical guidelines for

the replacement of cobalt containing materials in valve components in the

nuclear power plants where these components could contribute significantly

to the cobalt inventory reaching the reactor core. Numerous studies such

as the characterization of Co-free alloys and the consideration of design

requirement and regulatory requirement should be performed to consolidate

the cobalt reduction program in the domestic nuclear power plants.

III. Scope and Contents of Project

1. Selection of Co-free alloys and welding

Of numerous Co-free alloys developed to replace Co-base Stellite

used in valve hardfacing material, two iron-base alloys of Armacor M and

Tristelle 5183 and one nickel-base alloy of Nucalloy 488 were selected as

candidate Co-free alloys of this project, and Stellite 6 was also selected as

- vu -

a standard hardfacing material. These four alloys were welded on 316SS

substrate using TIG welding method.

2. Design and fabrication of test loop, and corrosion test

The first corrosion test loop of KAERI simulating the water

chemistry and operation condition of the primary system of PWR was

designed and fabricated in this project. Corrosion behaviors of the above

four kinds of alloys were evaluated using this test loop under the condition

of 3001), 1500 psi, and the simulated primary water chemistry.

3. Microstructural observation and hardness measurement

Microstructures of weldment of these alloys were observed to

identify both matrix and secondary phase in each weldment. Hardnesses of

weld deposit layer including HAZ and substrate were measured using

micro-Vickers hardness tester.

4. Analysis on the status of the Co replacement technology

The status on the technology of Co-base alloy replacement in valve

components was reviewed with respect to the classification of valves to be

replaced, the development of Co-free alloys, the applications of Co-free

alloys and its experiences in foreign NPPs, and the Co reduction program

in domestic NPPs and industries.

5. Basic study for wear tests

For the evaluation of wear property of various Co-free alloys, wear

- vtii -

test technologies were studied to establish a proper test method for

hardfacing materials of valve components.

IV. Result and Proposal for Application

1. Selection of Co-free alloys and welding

Two iron-base alloys of Armacor M and Tristelle 5183 and one

nickel-base alloy of Nucalloy 488 as candidate Co-free materials were

selected in this project excluding other Co-free alloys which have been

utilized in the nuclear power plants. Weld specimens of these three alloys

and Stellite 6 as a standard hardfacing material were fabricated by TIG

welding on 316SS substrate.

2. Design and fabrication of corrosion test loop

The first corrosion test loop of KAERI simulating the water

chemistry and operation condition of the primary system of PWR was

designed and fabricated by ourselves in this project. From the performance

tests of this loop, it can be found that this loop will be able to operate

within the range of ± OTC and ± 1TC for the test solution and the

preheated feedwater, respectively, with no-leakage of solution in the whole

system, and to maintain within the pressure range less than 10% of

design pressure.

3. Corrosion evaluation

Corrosion behaviors of the above four alloys were evaluated using

this test loop under the condition of 300 "C, 1500 psi, and the simulated

primary water chemistry. Two kinds of specimens consisting of weld deposit

layer only and weld/feubstrate were used in corrosion tests. It was shown

that the corrosion resistance of both Stellite and Nucalloy was superior to

that of two iron-based alloys of Armacor and Tristelle. The corrosion

behaviors for both Stellite and Nucalloy having the negative weight

changes for a certain period could be interpreted as the phenomena due to

the dissolution of specific constituent from the weldment as well as a

formation of stable oxide film on the surface of these alloys.

4. Microstructural observation and hardness measurement

Microstructures of weldment of four alloys were observed to

identify both matrix and secondary phase in each weldment. Armacor M

was composed of a peculiar needle-like microstructure which did not

developed in a typical welding structure. This needle-like microstructure

was a kind of eutectic phase consisted of secondary phase(Cr2B) and

lamella structure(Fe2B). The other three alloys had typical casting

microstructures with the various kinds of intermetallic compounds and

carbides formed in each alloy system. The highest hardness was obtained

in Nucalloy alloy, thus it can be expected that Nucalloy will have a good

property with respect to the wear resistance.

5. Analysis on the status of the Co replacement technology

The status on the technology of Co-base alloy replacement in valve

components was reviewed with respect to the classification of valves to be

- x -

replaced, the development of Co-free alloys, the applications of Co-free

alloys and its experiences in foreign NPPs, and the Co reduction program

in domestic NPPs and industries.

- xi - I NEXT PAGE(S)I left BLANK

1

m Hfl s i

2 ^ PWR lSl-^ifl s£S«Qf^l $*§$• °)$ ^-dtcfl^ 2

^- £ €• 5

1 3 ^^vfl-g- ^ U"^ 5

1. JMH^-8- test loop $*[ % Co-free ^ ^%7}*]-% 5

2. 7l^7fl t^^" £A4 5

2 ^ Co-free ^ ^d^ -g-^ 6

1. Co-free ^ 4 ] ^ 6

2. ^ g-g-o} ^-^ 6

3. •&•$ 12

3 ^ Test loop ^Tfl, ^ 1 ^ - % ^ - ^ ^ 1 ^ 14

1. 7fl.fi. 14

2. Test loop -a^l ^114 17

3. JMMH 24

4 | nl^^a] ^ - ^ ^ ^£4^9 31

1. n j^a) -4} 31

2. 33E # ^ 36

5 ^ 7l 7fl#^3§- $q 39

1. aJ«.^'l tfl^l7l# 39

2. ^-ifl-^ 7l#t&# 55

- xin -

691. ! « . ^ ^ S . ^ f^A^ nj-stgEfl 69

2. HWL ^ ^ S *l-S.^Jg7W ^ t t ! : 4 a ^ l ^ ^ 77

3. ^ A ^7fifl-§- 83

86

89

- xiv -

s.

Table 1 Cobalt alloy sources in PWR 3

Table 2 Mechanical and physical properties of various

hardfacing alloys 7

Table 3 Composition of hardfacing alloys 8

Table 4 Properties of hardfacing alloys 10

Table 5 TIG welding condition 13

Table 6 Corrosion test condition simulating the primary

coolant chemistry 26

Table 7 Eletrolytic polishing condition for various weld metal 31

Table 8 Comparison of cobalt wear rates in various type of

valves measured using two different methods 45

Table 9 Decrease of Co-60 and radiation dose with cobalt

source reduction 48

Table 10 Priority of valves for cobalt alloy replacement 49

Table 11 Chemical composition of various hardfacing alloys 50

Table 12 Specific details about the Co removal programs

in the U.S. utilities and plant 59

Table 13 Example of Co-free alloy application in Ontario

Hydro's Pickering B plant 61

Table 14 The Swedish nuclear program for replacement

of Co-based alloys 62

Table 15 Vendor cobalt-free valve offerings 65

Table 16 Status of domestic nuclear power plants 68

Table 17 Status of domestic valve manufacturing industries 70

Table 18 Operation time and velocity of gate valve

with valve diameter 80

- xv -

Fig. 1 Effect of dissolved oxygen and hydrogen on corrosion

potential of 304 stainless steel in 288°C water 15

Fig. 2 Equilibrium potential-pH stability diagram for

iron-water system at 288°C 16

Fig. 3 Design diagram of primary water simulation test loop 18

Fig. 4 Photos of primary water simulation test loop

manufactured in this project 22

Fig. 5 Dimensions of corrosion test specimens 25

Fig. 6 Corrosion of single layer hardfacing specimens

under the simulated primary coolant 27

Fig. 7 Corrosion of 3 layers hardfacing specimens under

the simulated primary coolant 28

Fig. 8 Corrosion of exclusive hardfacing layer under

the simulated primary coolant 29

Fig. 9 Microstructure of weld deposited layer

(Armacor M, 3 layers) 32

Fig. 10 SEM fractography showing the different morphology

of weld deposited layer (Armacor M, 3 layers) 34

Fig. 11 Microstructure of weld deposited layer

(Nucalloy 488, 1 layer) 35

Fig. 12 Microstructure of weld deposited layer

(Stellite 6, 3 layers) 37

Fig. 13 Microstructure of weld deposited layer

(Tristelle 5183, 3 layers) 38

Fig. 14 Macrosection and hardness in the cross section

(Substrate-316SS, TIG welding) 40

- xvi -

Fig. 15 Hardness of weld deposit for various hardfacing

materials (Substrate-316SS) 41

Fig. 16 Hardness of 3-layers weld deposit for various

hardfacing materials (Substrate-316SS) 42

Fig. 17 Variation of hardness with weld deposited layers 43

Fig. 18 Schematic for implementing a cobalt

reduction program 46

Fig. 19 Co replacement of PWRs 57

Fig. 20 Dimension of wear specimen 82

- xvii -

^ ICRP 60^

(radiation field)^ 40]

^ 80

1*1-7(1-g-ifl

2 rem-$.S

ALARA

], 7j]f-vfl

5U

^ Co reduction

program

low Co £fe Co-free t ^

- 1 -

3:47V

low Co/Co-free ^ ^ - ^ ^ ^

nl^jfe i 7 | ^ f Jg7V ^ 4 ^^r A i 7 l # 7 f l ^ &<>&. sfl^

PWR

PWR -£*} l^Tflf- "o1"^^0!! 7l«^*>^ ^ A « j f ^ Co-604 Co-58olc|-. o]

C0-6O0I

Co-597>

Stellite-64

spacer grid -fs] q ^ t^"2!- €^>5.ifl^- ^-#, ufl^fl #S) i^oi^ l - ! : 7J- ^

control rod drive mechanism (CRDM), «J«. ^ «fl<H

S.* 50-60 % fl-fr^- SteUite ^-^-^.

^(hardfacing)

- 2 -

Z\7] t}.H

, CRDM gj

«• ^ 1 -

7)

Table 1. Cobalt alloy sources in PWR.

Source

S/G Tube Corrosion

Valve Maintenance

CRDM Wear

Check Valve Wear

Gate Valve Wear

Main Coolant Pump

Shaft Wear

Annual Release

Rate/Plant

(gfrr)

33-55

10-30

2-5

1

0.5

0.2

- 3 -

fl 600A5. Y ^ ^IS^l 690^

^ S^-S. -i-£l~g- 0.04 %oflA-j 0.015 %S. #±*\H ^ 9X^*\ ^^S- spacer

gridt <ya^ ^-9- tfl^l Zircaloy# Aj-g-^fe T^^- CO-60^ ^ ^ 25-50 % ^

£ #°J ^r SU4I1]. 61^°11 EPRI ^«fl 5] 8))

pH

[1].

- 4 -

1. Y^^l^-S- test loop ^m ^ Co-free ^-^ ^

^*>^, PWR

test loop*

fe- Co-base Stellite 6

316SS a^ofl TIG ^

2.

Co-base Stellite

^ Co a fe Co-free ^-^^-S . cfl^l^>^ 7l^ofl 9l°]*\, rfl-*

Co-free ^

- 5 -

Co-free

1. Co-free

Co-f ree t^"* BM

13) (iron-base), ^ 3 1 (nickel-base) t

A ^ , 5. 2<H11 * ^ $1^ «>^ ^ o l ^ Co^-^-4 Co-free

9X 4 . °1 f1^^ NOREM, Deloro, Colmonoy, Event, Cenium

A : Armacor M

N : Nucalloy 488

S : Stellite 6

T : Tristelle 5183

2. A

Co-free W l "steinte --g- cfl l ^fi.?iis.s ^e«fl ^m^l

4 i W&i } . ^ i ^ ^ t ^ ^ A - j f e Armacor

M, Tristelle 5183 1 ^ ^ ] ^ ^ - 2*. Nucalloy 488^

tJWS.*flj3.5. A>^E|ji $ i^ stellite

-6 -

Table 2. Mechanical and physical properties of various hardfacing alloys.

1

AlloyHardness

Room Temp.,HRC

TensileStrength, ksi

CharpyImpact

Strength,ft-lb

Coeff. ofThermal

Expansion(70-1100-F),

X106

High Cobalt AlloysStellite 6

Co-156

Co-12

Coast Metal 6

39-43

46-50

45

43-47

----

17

-

-

-

8.1

-

-

-

Low Cobalt AlloysHaynes 711

Haynes N-6

RHDIIG

Tristelle 1

Tristelle 2

43-47

30-32

38-40

-

-

-

---

-

-

-

13.8

4.0

-

-

-

-

-

Nickel Based Co-free Hardfacing AlloysColmonoy 4

Colmonoy 5

Colmonoy 6

Colmonoy 74

Colmonoy 84

Deloro 40

Deloro 50

Cobex 547

Tribaloy T700

Vertex 4776

35-40

45-50

56-61

38-40

38-44

29-41

46-49

41-42

42-45

47-48

-60

30

-

-

-

-

-

-

-

-

3

1.5

-

-

2.8

2

-

-

-

-

8.2

8.2

-

-

7.7

7.2

-

-

-

Iron Based Co-free Hardfacing AlloysAntinit DUR 300

Cenium Z20

Cenium 37

EB5183

Everit 50

NITRONIC 60

NOREM 01

RHDIC

SKWAM

28-32

42-48

38-41

40.5

47-53

25

45

41-46

36-42

115

61

-

-

-

123

80

-

-

-

-

-

5.5

-

54

4.2

-

-

9.2

7.8

-

8

9.6

10.19.1

-

-

- 7 -

Table 3 Composition of Hardfacing Alloys( wt % )

Alloy

Armacor-M

(A)

Nucalloy 488(N)

Stellite-6

(S)

Tristelle 5183(T)

Cr

26.5- 30

18.4

33

24.7

Ni

--

Bal.

3

11.7

Fe

Bal.

6.6

3

Bal.

Co

--

--

Bal.

0.3

C

0.2

max.

0.26

1.1

1.59

Mn

2.0-2.6

-

--

0.1

W

--

1.3

6

--

Si

1.2-1.6

7.7

-

5.4

B

3.5-4.0

--

--

-

Sn

-

0.9

-

-

Nb

--

--

--

5.4

Remark

Fe-base(amorphous)

Ni-basel)

Co-base

Fe-base2)

1) P < 0.01, S = 0.005, others < 0.52) Mo < 0.1, others < 0.5

f. A

vol a]^^(amorphous)

fe metamorphic

solid state amorphous transformation0!

r - B ^ 5 . ^^s j«H 5U^-^, Si

«13 £3

9X7}

*4. N W

61 U^-cr Ni-based

- ]-7l] iS j -^ l^ 7| --S] Co-base

NiCr-A, NiCr-B -f-4 ^ ^ - 7 l^ .

BWR «fl>H Co

- 9 -

Table 4. Properties of hardfacing alloys,a) hardness values, HV(5)

Alloy

ST-6

ARM

5183

488

RT

730,HV(30)

502

200 r

740

4001C

448

500 TC

500

440

6 0 0 1

437

7 0 0 1

190

401

Remark

PTA - 2 layers,(Base H-13)

OxyacetyleneDeposits

b) thermal expansion coefficient, (x 10'6/°C)

Alloy

ST-6

AR-M

5183

488

Temperature Range, °C

RT/100

11.3

10.8

RT/200

11.9

12.0

RT/300

12.9

12.2

RT/400

13.2

12.5

RT/500

13.4

12.8

RT/600

14.0

13.0

RT/700

14.6

13.4

Alloy

Table 4. (Continued), c) physical and mechanical properties,

Alloy

ST-6

AR-M

5183

488

Density,(g/fcm3)

7.3

7.5

8.1

RHC

31-40 (MIG)55-65 (as coated)71 (as applied)

41(30.4*)

45(38.8*)

UTS (kg/mm2)

RT

96.4

High Temp.

95.3, 80.2(400t), (6001:)

Impact Strength (kg-m)(Charpy un-notched)

RT

0.8

0.6

High Temp.

0.6, 0.7(400t), (600r)

Remark

*A11 weldhardness

it

d) wear properties.

FrictionCoefficient

Wear LossCounterRotatingCylinder

(mg)

Pin onDisk

(mm3).

Abrasion,ASTM G-65

Proc. Amm3 (or g)

Abrasion,ASTM G-65

Proc. Bmm3 (or g)

Remark

ST-6

AR-M

5183

488

120(0.957)

(T)(PS)

123.1 (M)

D : 0.09S : 0.14

14.5(0.112)

(M) 18 (0.13)14.8 (M)

D : DynamicS : StaticT : TIGM : MIGPS : Plasma

Spray

Ni JL-g-*ll, Ni3Si, NisB ^°1

carbide £ boride «g41-0l 71*1^3 MH jl^7]| £ ^ # 5 j - 5 ^ tfl

. T

Cr 7

3. -

Co-free t^ -^-S . 7fll-5l<H #-§-21- # ? H o|# EB 5183

9l$r •§• ^ ^ Co ^ - ^

Nb ^fl-l-ol j l Cr austenite

w i r e £ -

1.6 mrn l -g-^ wire^l^, UJ-P]^ N, S, T 3^-8:

3.2 ramSl -g-^^olcf. ^ i - -g-^7fl£.t- «»|^.*).^f ^£*\] « Ja .^^

4 ^ TIG ^-^-g-^^^-5 . 316 stainless steel (316SS)

3-7)1= 50X50X11 (rnmHH, 4 *

5L^°\} tflsfl -g -^## 1^(1 layer) ^ 3^(3 layers)^

oll-& 4 4 Al, A3 ^ 4 ^o] 5.^

2, 4 mm =SH*15a4. S. 5 ^ TIG ^

- 12 -

Designation(Material/Layer)

Al

A3

Nl

N3

SI

S3

Tl

T3

Material

Armacor M

Nucalloy 488

Stellite 6

Tristelle5183

Table

Current

(A)

50

60

60

70

60

70

60

70

5. TIG welding condition.

Interpass

Temp.CC)

400

500

500

600

400

500

400

500

Heat Treatment

Per

300 °C

Post-Weld(*)

-

o-o-o-o

Weldability

good

ft

fair

rr

good

rr

ft

tt

Defects in Weldlayer

microcrack

micropore

(*) 400°C, lOdays, furnace coolingcooling rate : l°C/min

3 *I Test loop

1. 7fl.fi.

2.2-3.5 ppm lithium (IiOH) gj 315-1,800 ppm

boron (H3BO3)°1 %7}£\ZL, 5 ppb °}Z}2\ •%•&&&% $ 15-35 cc H2 STP^cg

watery ^ r i ^ i 2L£O] .fl^slfe pH 6.9-7.43] 2:^0]t|..

(corrosion potential)7l- -g-#

1-& -g-e <L>^^ 5? ^ r^^^ l 304 ^Bll-ye

H , n ^ 2fe ^ - ^ ^ ^ 1 4 pH

Pourbaix diagram^

static autoclavel-

5 -^7f autoclaveofl 4e)- ^ ^ o ] ^ ) ^ ^ 5 > J I £ ^ A]^371^- autoclave

Safe loopl- Al-g-^l ^ i <£o]# jj.q

test loopl- *M 7l

- 14 -

uXto

u

200

100

0

-100

-200

-300

-400

-500

-600

-700

-

-

-

-

-

3O4SS1 ppb H2, 288CDLT=1

. .. 1 1 1

X'x/

— T 1 t 1 1 l l | " T F 1 1 T

Icorr of 3O4SS- - : 0.2jiA/cm2

:0.S|jA/cm2: 1.0uA/cm2: 2.0n.A/cm2

-

-

.1 1 10 100DISSOLVED O2 IN WATER, ppb

1000

-100 "

_ -200 "

E£ -300

:uUJ

-400

-500

-600

-700

-

-

304 SS150ppb H2, 288CDLT=1

f

'

/ / /

,

Icon- of 304 SS•" •" : 0.2 jiA/cm2

: 0.5 |iA/cm2

, . . . ,

-

_

.1 1 10 100DISSOLVED 02 IN WATER, ppb

1000

Fig. 1. Effect of dissolved oxygen and hydrogen oncorrosion potential of 304 stainless steel in288°C water [6]

- 15-

Fig. 2. Equilibrium potential-pH stability diagram foriron-water systen at 288°C [6]

- 16 -

2. Test loop £7%

loop A ^ rt # «.^7f ^ ^ * V loop

test loopl

G-i/B contents, dissolved oxygen, hydrogen concen-

trations, pH)^- «V1-J1 ol -g-eJI-g- ^ ^ ai^J- pump^. 7f<a-5>^ ^ ^ ^ 7 f ^ ^

. ^ 7$/$ 7V171 (regenerative heater) ^ <mi7ll- f-Sfl ^

] ^ O ] i-o^ ^ ^ autoclaves.

-B: autoclave ^ ^ - # f-sfl ^fl^ 7}%7)& 7)& *

adjustable relief valvel- f-s><^ ^-"y-^ ^ -fr^^-i- 7 ^ ufl

- relief valve^ wfl-

- recirculation

^•^1-t refreshing(or once-through)

7}-

relief v a l v e l - f-«fl ^ | ^ v e n t i n g ^ ?\ y£

hydrogen overpressure

- 17 -

RuptureDisk

Vent Valve

Drain316 SS

Autoclave

00

DigitalPressureTransducer

CD

Test Solution : 2ppm Li + lOOOppm BTest Condition : 300°C /1500psi, 35ccH2 STP/kg H2O, O2<5ppbTest Specimen : Hardfacing Materials for Valves in PWR

Vent

Heater

RegenerativePreheater Heater

PressureGauge

High PressureMeteringPump

T/C

CoolingWater In

CoolingWater Out

RuptureDisk

AdjustableRelief Valve

Filter

Flow Meter

Li/BSolutionoooo

1Dissolved

OxygenMonitor

Fig. 3. Design Diagram of Primary Water Simulation Test Loop

autoclave

solution

rupture disk-i-

controlf- ^

hour meter

pumpl-

loop «

Autoclave

loop

. Design specification

(l)

316 SS, OD 1/4" x 0.035" thick, 4,000 psi at 400°C

316 SS, OD 1/2" x 0.049" thick, 3,000 psi at 300TC (*

^ ^ , valve-n-(shut-off, check, relief valves, etc.)

316 SS, 4,000 psi at 400TC, grafoil packing for valves

Filter

316 SS body and sintered element, 7/m nominal

304 SS, OD 2" x 0.5" thick, 4,000 psi at 500r

Rupture disk

Inconel 600, burst pressure 3,010 psi

- 19 -

- System

3,000 psi at 400 "C, 6 liters per hour

(2)

- Autoclave

Maker : Autoclave Engineer. U.S.A.

Capacity : 1 liter bolt closure type

Material : 316 SS

Max. working condition : 3,825 psi at 343 °C

Ports : 4 on the top cover (1 for pressure gauge, 1 for solution

outlet, 1 for thermowell, 1 for future use)

4 on the bottom (1 for solution inlet, 1 for solution drain,

1 for pressure gauge, 1 for future use)

- Temperature controllers (for autoclave and preheater)

Maker and Type : Eurotherm 808 and HY-P100, PID control

(solution temperature control)

Safety device : Over temperature cut-off controllers

- High pressure metering pump

Maker : Eldex Laboratories, U.S.A.

Model and type : BBB-4, triple piston plunger type metering

pump

Capacity : 5,000 psi max., adjustable from 0 to 6 liters per hour

Material : Head of 316 SS, pistons of sapphire, check valves of

ruby balls, seals of PTFE

- 2 0 -

- Dissolved oxygen monitor

Maker : TOA Electronics, Japan

Model and type : DO-30A, membrane type

Measuring Range : from 20 ppm to 0.01 ppb O2

- Flow meter

Maker : Omega, U.S.A.

Model and type : FL-112, rotameter type

Capacity : from 0 to 2.2 liters per hour

- Solution reservoir

Material : 304 SS

Dimension : OD 300 mm x 5 mm thick x 500 mm height

Capacity : 37 liters

Test pressure rating : 5 bar

1000 mm, }*M 500 mm, ^°] 900

duraluminAS. * f l ^ framed A>-g-§H loop *}^

4<H1 ^ r ^ € loop A]

system^ zero^ ^•%•<$(autoclavevfl^-)ol ±0°C,

test loops]

-21 -

Fig. 4. Photos of primary water simulation test loopmanufactured in this project

- 2 2 -

(D #7l*1*g- 17 Mfi.cm °ltf£] i ^ ^ l Li ^ B *

24^1# ) # purging

autoclave^ $<%& ^ ^ ^ pumpl- A]~g-sH

autoclave ifl^-# 7^^ 4A1 ^ ^ S .

5 p pb

pump

gas purging^]

relief valvel- ^^*V f, 3.^^^= pumpt- 7)-^-§l-^5

5 ppb 0)^5

© ^ 4 ^ * 7]-^-Ai7lJl 4 |£714 autoclavel-

lofl hour meterl-

autoclave^) heater°V-g- T>\*\

© £ £ pumpll^ Al>b^ i f l j ^ cleaning^c}. (Li/©ol

1 U/B

* autoclave

- 2 3 -

3.

(l)

Co-base Stellite 6

5-b)

x l : a.^+-§-^^(l layer) A ^

x3 : S.7fl+-g-^#(3 layers) A ] ^

XH : -g-^^ Al^

(X: -g- -f- 7])S, A, N, S, T)

# 247fl

(2) ^ - ^ A

fe test loop

-24 -

(a) Specimens consisting exclusively of hardfcing material

(b) Specimens consisting of hardfacing and substrate material

Fig. 5. Dimensions of corrosion test specimens- 25 -

Table 6. Corrosion test condition simulating the primary coolant chemistry.

Pressure(psi)

1500

Temp.

(t)

300

Flowrate

U/hr)

1.23

Water Chemistry

pH(300 °C)

-7 .0

U(ppm)

2.2

B(ppm)

1000

Dissolvedoxygen(ppb)

< 5

H2

(cc/kg)

35

1 4

Loop test

14 t

cf. n^ 64 7^

T3(Tristelle 5183)7>

-fr 2190*1

^5. 4^

71E^ , N,

1 4

Armacor

- 26 -

20

15

: Armacor-M A N1 : Nucalloy 488v&S1 : Stellite-6 + T1 : Tristelle 5183

• * • •

-G-B-

0 500 1000 1500 2000 2500 3000Time (hr)

Fig. 6. Corrosion of single layer hardfacing specimens underthe simulated primary coolant

20

to00

A3 : Armacor-M -* N3 : Nucalloy 488- S3 : Stellite-6 &T3 : Tristelle 5183

500 1000 1500 2000 2500 3000

Time (hr)

Fig. 7. Corrosion of 3-layers hardfacing specimens underthe simulated primary coolant

to

C

(D

: Armacor-M ^rNH : Nucalloy488oSH : Stellite-6 +TH : Tristelle 5183

500 1000 1500 2000

Time (hr)2500 3000

Fig. 8. Corrosion of exclusive hardfacing layer underthe simulated primary coolant

SteUite ^ t ^ 3-f ° 1 ^ ^^^V^l =?•

3:71

Nucalloy ^ s ] Jf*l^^-^o] 7]^S] Stellite

Si/B ^--i-ol ^ 7 l nfl -otf ^ ^ ^ ^ nickel siUcide^l

^=-y-Al7lfe j l Si 3)n]-ol

sums].TristeUe ^-g-S]

Tristelle 5183^ 7l^] ^A>tV fl-^-S^* ?Jfe EB 5183

71*1

Tristelle

- 3 0 -

HAZ(Heat Attected Zone),

&

Table 7. Electrolytic polishing condition for various weld metal

^^^SolutionMate r . ^ \ .

AlA3

Nl

N3

SIS3

TlT3

Oxalic acid

5%, 3V, 3 - 5 sec5%, 3V, 3 - 5 sec

10%, 3V, 3 sec

10%, 3V, 2 sec10%, 3V, 2 sec

10%, 6V, 15 sec

Others

Nital 10%, 3V, 12 sec

Nital 10%, 4V, 10 sec

7\. A

Armacor M

- 31 -

a y

b

Fig. 9. Microstructure of weld deposited layer(Armacor-M, 3 Layers)

- 32 -

phase7}-

A} SEMAS. 3}-^^- ^ r # ^ ^ c K n ^ 10

1 secondary phased

10-b).

secondary phases.^ Fe-Cr at-g- D, Cr2B, Fe2B 5J

Fe3C f l S ^-^sjfe ^ A S S.ol^ «)- 91°-^, ^ ^ ^ ] secondary phased Cr

3\- Bo]

M-. N

Ni-base ^-g-^1 NucaUoy 488^1 5§^-, ^ r ^ l ^ ^ ^ ^^-3}. dendrite

l ^ ^ i £ ^ ^ ^ ^ 3 ] ^ - ^.o|ji ^^(ZL^ 11 # i ) . ^-*) Ni

71 ] i ^ Al-ojofl NigSi, NisB f A S

HAZ

- 3 3 -

b

*S* 1

" - - ' A* * '«£%

^ A

Fig. 10. SEM fractography showing the different morphologyof weld deposited layer (Armacor-M, 3 Layers)

- 34 -

a ' , • *

"•V . ' "•

{

b , , / r

Fig. 11. Microstructure of weld deposited layer(Nucalioy 488, 1 Layer)

- 35 -

K s

125] P J ^ ^ Stellite

£r fee ^ 2 ^ austenite ^-^1 Co-Cr^

H ^ r Cr ^ ^ I - V M T C S ) ^ W ^ ^ - # ( 1 ^ 0 ^ ^

[10]. i^Aj-^lAS. ^^>7l l ^-g-a} s]^l ^ z i ^o.^- , ^ 100-200 m

HAZ7f §

. T

Fe-base f-g-^ o| ^ ^ ( a ^ 13 ^-3:) ° H Nucalloy

austenite^ 7]*}^z\o]v\; 7\*}2L^ Aj-olofl^ Fe-base

Nb

HAZ

2.

^ ^ ^ r micro-Vickers 7JSL711- A>-g-§>< bad 50

(Hv50)

- 36 -

a

V M M W SV

Fig. 12, Microstructure of weld deposited layer(Stellite-6, 3 Layers)

- 37 -

* v # # *

Fig. 13. Wiierostructure of weld deposited layer(Tristelle 5183, 3 Layers)

- 38 -

or 3-layers)ofl

41 3 layer

sl 1 layer

^ 200

1541 . o]

Nucalloy

3 layers(H^ 16

^ 630

1 «B ^ 418

Stellite^

Armacorfi]

^s.41 n

400°C

3.7])

530^£S. 17

3 layer

NucalloyS]

StelliteS]

Stellite

3.7%

1. "JU-

- 39 -

o10

ICOX

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Position

Fig. 14. Macrosection and hardness in the cross section( Substrate - 316SS, TIG welding)

600

o1 0 500

CD- 1

vah

COCOCDC

T5i_

CDI

400

300

200

100

0

A1 : Armacor-MS1 : Stellite-6

N1 : Nucalloy 488T1 : Tristelle 5183

Hardfacing materials

Fig. 15. Hardness of weld deposit for various hardfacingmaterials (substrate - 316SS)

A3 N3 S3 T3

to

cS

>s v

alue

Ml

CDP

700

600

500

400

300

200

100

Hardfacing materials

Fig. 16. Hardness of 3-layers weld deposit for varioushardfacing materials (substrate - 316SS)

>

CO

c"ECO

700

600

500

400

300

200

100

0

/

/

1

532<rf&38ggg883£8SS3i£8

3

436

1

: Single Iayer

628^ ^ ^ ^

x"vr ":.....

395

21:3

492Mmmm.

465

layers

451

540

/

/

Armacor Nucalloy Stellite TristelleM 488 6 5183

Fig. 17. Variations of hardness with weld deposited layers

^( reac tor coolant system)^ 3

.l- EPRI -f<Hl S|«fl *1H£U Xl7)1 f-JE.

high-Co

3J^-f 7lGapping) ^ 4 :

resurfacing)^ «l£^«fl tfl*> ^7>£ S^-s]cHo> *Vcf. PWR

w.°flAi high-Co t^-° l ^ l*>fe S ^ ^ ^ -g-l-4 25-50 rag/dm!

high-Co ^-g-ol xH§}fe >g^ O.5. L f ^ l ^ ] ^51 S ^ ^ . HOV

^S.(effective cobalt release rate)

5.

»Jw.(check

- 44 -

Table 8. Comparison of cobalt wear rates in various type of valvesmeasured using two different methods.

Valve Type

Gate

Swing Check

Globe

Spray

Butterfly

Calculation

% Area inContact

12

3

1

17

3

Assumed CoInput (mdm)

25 - 50

25 - 50

25 - 50

25 - 50

25 - 50

Effective CoWear Rates

(mdm)

3.0 - 6.0

0.75 - 1.5

0.25 - 0.50

4.25 - 8.5

0.75 - 1.5

MeasuredEffective CoWear Rates

(mdm)

1.0 -2.0

4.5 - 8.0

-

-

-

J± Hiitglove valve), rtsefl °] HJ«.(spray valve)

fw.(butterfly

7 H

(residual heat removal system)^: ^^> 1-2 7fl-fi - 7J-:§-5]7] °1

HJw.0ift check valve)5f 3 ] ^ Mjw.(piston check valve)^

z\7$o) 4-8: «Jw.<H)Advent/drain valve) =L

high-Co

71-

-45 -

Identify valves that contactRCS

Estimate Co release to RCSfrom maintenance records

and EPRI reports

Prioritize candidatevalves for replacement

(i.e., valve is to be refurbished)no

yes

Identify candidate valves Ifor replacement or I

Identify valves design, operatingconditions, duty cycle

yesJustify continued use

of Co-base HF

RefertoNP-3220to minimize Co release

Fig. 18. Schematic for Implementing a Cobalt Reduction Program-46 -

Gate, globe orother valve

Isolatingcontrol valve

Check valveNon-isolationcontrol valve

Calculate(disc/seat)contact stress(a) Pivot bushing Seat

Select HighPerformance I

Select Fe-orNi-base HF

Eliminate HF

Justifycontinued use of

Co-base HF

Do notchangeHF/trim Perform 50.59

determination if

Identify valve vendor orservice organization thatcan supply selected HF

Fig. 18. (continued)

- 47 -

7\ . t

I = Io exp [ -(t/1.60) ]

, I : t

t : ^1?> (V!)

t =

Co-6051 52%7>

exp [ -(5/7.60) ] = 0.52 Io

Co-602)-

Table 9. Decrease of Co-60 and radiation dosewith cobalt source reduction.

i

Year

15101520

% Co-60Remaining

885227147

% DoseRemaining

9164453630

benefit) ^ -^

«]-§-

. 3.

(cost/

- 48 -

Table 10. Priority of valves for cobalt alloy replacement.

Rank

1

2

3

4

5

6

7

Type

Globe-FlowControl

Spray

Check

Check

Gate

Globe

All Types

System-Location

CVCS - Downstream ofdemineralizer

RCS - Pressurizer

CVCS - Downstreamof demineralizer

RCS - Safety InjectionSystem Interface

RCS & CVCS Down-stream ofdemineralizer

CVCS - Before demi-neralizer, RHRS, BoronInjection, SamplingSystem

Remarks

Used in charging line -subject to high wear.

Cobalt can indirectly enterprimary coolant.Used in charging line ;Check valves show highwear.Check valves show highwear plus relatively largearea for corrosion.

Gate valves show moderatewear and corrosion.

Globe valves estimated toshow moderate wear andcorrosion.

Most cobalt removed bydemineralizer. System usedinfrequently. Small amountof cobalt hardfacing used.

14. ^ Co ^ Co-free

CO

. S. l l^r

Co Co-free f"g--^

Co

15 % j y H ,

Stellite 61- «]^-*M Stellite 6B, StelUte 21 ^ ^ Stellite^]

Haynes 25, Haynes 36, Co-156, ZL^\3L Co-12 ^ -f

Stellite 6 ^ CabotAH>H A>4-*>OL &fe Co-Cr-C-W ^-^s] ^ A l 1930^

- 49 -

Table 11. Chemical composition of various hardfacing alloys.

Alloy

Aus. SS410 SS420 SS440C SS

17-4 PH

Incooel 600Inconel 625

Stellite 6Stellite 6BStellite 21Haynes 25Haynes 36Co - 156Co - 12Cst Mtls 6

Haynes 711Haynes 716Haynes N6RHDUGTristelle 1Tristelle 2

- NickelCobex 545Cobex 547Colmonoy 4Colmonoy 5Colmonoy 6Colmonoy 74Colmonoy 84Deloro 40Deloro 50EutroloyLurgi 4500TribaloyT700

Cr

18-2012

13.617

16.2

14-1720-23

33

302720

18.52930

28

Ni Fe Co c MnBase Material Used as

8-10.5--- -- -

4

72 min58 min

bal

baJ

bal

bal

bal

6-1015 max

.12-.18--- -

-

02-.0B.05-.10

.08 max.11.36.07

.05

.15 max

.10 max

Cobalt - Based33

2.810103

2.5

3

Low27

26

29

283035

Based27.527.5

10

11513.510.4297.5122831

15.5

bal

bal

bal

381010

33- -32

0.752.5

3

5553

6550

56balbal

bal

Cobalt (12329

3

bal

bal

bal

1211

3IIS1212

1.1

1.1

.25

.07

.41.6

1.4

1.2

to 152.7

1.11.1

1.512

2.46.39

1 max

.68

- -

Cu W Si BTrim Material—--—--4.3

.5

-----------

--.44.38

1 max

.47

- -

Hardfacing Alloys--2--1.5- -1

.25

.5

• %)1

1

1--- -- -

- -

- -- -----——

64.5- -15

154.58

4

- -

2- -1

--1.21.7

IS

------—---

--------.03- -

- -

- -

Hardfacing Alloys—

------—

33.5

2

2.5--- -

Cobalt Free « 1 %) Hardfacing

bal

bal

bal

79

74balbalbalbal

bal

bal

bal

8

7

2.54.254.752.51.51.53.513

-

- -- -—--- -- ------ -.2—

-

1.3

1.5

.45

.65

.75

.481.1.35.6

1.7

1.3

.08

1

1--- -- -- -—--- -- -- -

- -

—--------—-----------

7

7- -

- -

47.5- -- -.29

- -

11.51.5- -55

- -

.5

.6- ---- -

Alloys

1.5

1.5

2.253.754.252.51.953.53.51

2.1

3.4

----- -2.53

2.11.31.72.11.1

Mo

------

.75 max

- -

--

--

1.5

5- -- -11

1

8

3

5.54--- -

7

7- -

- -

- -

- -- -

- -- -

8- -

32.5

Other

--------

Cb+Ta.35

- -

- -

- -

--

----

--

--

- -

- -- -

- -

- -

Al-1.5Note 1

- -

- -

- -

- -- -

- -- -

- -

- -

Note 2

- Iron BasedAntinit DUR300CeoiumCenium Z 20EB5183Event 50NITRONIC60NOREM BlNOREM B4RHDICSKWAM

21

24-2827

2025

16.5

24.724.828

17.5

8

30-341810- -

8.5

4.026.05- -- -

bal

bal

balbal

bal

bal

balbalbal

bal

.3———

————

.12

1-7

.32

2.5

.10 max

1.031.051.5.2

6.5

3- -- -< 1

8

7.7912--.55

--————-

———

3-52- -- -

--- -1.5- -

5

2- -5

< .5

4

3.115.171.5- -

.9- -- -- -

--- -- -- -

- -

6-8--- -3.2

- -

1.991.961.51.1

Note 3< 5

Nb-8V-.5

N-.14

N-.26N-.23

- -- -

Note I : Al-1.5, V-4, 2 : Co*Fe - 3 max, 3 : Nb/Ta-3, Zr-3, V-3

- 5 0 -

Haynesofl

5]JL $X^- ^ Co tfg-£ 1-15 % S ^ S . ^ i l - fl-fr^- ^ - 2 . 5 . , Haynes

711, Haynes 716, Haynes N6 ^2] i^5g^| --g-i*}- RHDIIG, Tristelle 1,

ZL Tristelle 2 # 3 1^) ^-g-o] o}7H ^*V4. Co-free ^-^-^r 2 f £ Q

Z,^°} 1 % oj^o] ^ g - nj.^ t^ j o]i- tg-^-^. 4 A ] q^Tl) ^-^-ui). ^^ i

A5. £-ff-€t}. q^Tfl ^-^-ofl^ Deloro-CabotAl-oflAi 7fl -*}- Deloro

Deloro 50^- yl^^><^ Cobex 545, Cobex 547, Colmonoy 4, Colmonoy 5,

Eutroloy ^°] $X^. ^^1 ^^^ l^Tilf- 3.^E. ^^^\ m}4*L3- 7\^ &^

.B\s\JL 9X^r ^±^*\, °l^-s] EPRI^I- AMAXolH 7^$: NOREM,

Thyssen EdelstahlwerkeAHl*\ #& Everit 50, i^ iSe lo] . BOHLER

SchweisstechikAj-5] Antinit DUR 300, 3.B\5L E.^-^ CEA^- LAMEF7} ^

•§• 7fl -*V CENIUM ^-g-o) $|4. J3.3JL n^ofl Stoody Deloro

EB 51834, NITRONIC 60, RHDIC ^o] Co-free

^ | 1 ^ j ^ f e . JT Co

Co ^•^•*«>1

(1) o]-s.(wear) ^ ^ - y [14-20]

^- -£-£}-*1l-.5-(adhesive wear), ^ ^(erosion), ^^pfS.(abrasive wear),

- 51 -

S.(surface fatigue) ^o] o^tfl *]%• <$qv\3.Q S.#Z\3,T= ^ 3 »£*.<)}*] 3.

-f°H >M-8-5)fc ^ ^ G^Ht «fl^ galling

^ , -fr*H^ -^:i-0] e*ti*m*l e •B-^^V ^^|*>fe ^-^7lofl^ 3]-§-Sl*r 711

^ ^-(bonding)

( transfer)^ ^Sfl <y<H14D],

., ^-«1 gallingofl

galling^]

« galling

5-8 ksi ^ £ ^ £ £ ^ ^§1-^41/H Colmonoy 84, Colmonoy 74, Deloro

40, Antinit DUR 300, Everit 50 •§• Co-free ^-^-1-^r

Co-free ^ ^

f1^:^^^ ^^*V^(15 ksi)oflAi Colmonoy 84, Deloro 40, RHDIC,

Tribaloy T-700, Vertex 4776 ^-$\ Co-free ^^^ -^1 -^ r J ! CO

- 52 -

3L Co ^ ^ A ] ^ t n$ 71S]

15 ksi °]SHH *)-§•£] t tfl^-g-S] 1-M. ^ ^ Co-free ^-g-^

# £ 3 1 7 ^ ^ ^#*HK15 ksi ^1^-)^- ^ -^ S^oflAi EB 5183, Everit

50, NOREM 01^1- 04, Tristelle 14 2 •§•£] Co-free ^ ^i-Co ^^^-g-l-fil °>

a m ^ O ] JI-CO ^-^-4 71 °) *s-<£tiW. rtt^M o l s l^ x-j-Co ^ Co-free ^-^-^

^ 1 ^ JL-CO t ^ # °I#S. H ll aj-g-«>^i 53 ]

NOREM, EB 5183, NITRONIC 60, Tristelle 1,

2 -§- JH-g-^HA-] galling^)-

1 ^ fly^ ^ ] H 5i ^ % ) ^ Deloro

AECL -f-^

(1+)

1) J l ^ r > -ff- - (High Velocity Single Phase Flow)

tftf -8- 1 il-O] Sjfe. ^-ffe ^ - i f ^ 6

. Deloro 402)- 50^ water jet ^ l - g t H ^ Stellite 6<1 «l«fl 2.5

3ufl ^ £ ^ T f l ^ ^ ^ 0 ! 3711 ^Bf^cf. Everit 50^ Antinit DUR 300^-

Stellite

- 53 -

20

2)

4 Tristelle 2fe SteUite

Tristelle 14 EB 5183^ Stellite 6<H1 «]«« 2~3nfl

a.13 NOREM 014 04fe ^^)-^-^) ^Hv^°l Stellite 214

A ^ (308 ^^l^l^^^ofl »l«flAl*f 5«fl Jgs. ^tg-^c] a.),

fflwlEllo|^ ^^<H1A^1 NITRONIC 60^ ^Jfl-^ol Stellite 6B

2/3 i?W <J>sjt 1 4 1 - ^ ^ A i 4 300

r 3~4«H T^sj-^cl 3 ^ A S

(2) n>#7D^

3]-

-54 -

-Co t^-^r ^ *flJ3.#3 3 * H *>#3l^7}- a)-Co

i-Co 51 ^-Co t ^ # ^^«fl

^ ^ ^ l 7 l i *Vcf. Deloro ^

SteUiteSl pf#^]^5}- 71^

SteUite 6 ^ 7]^ «1^5>uj- n^-o]]Ai^ Stellite

^ - i : 347 ^E)l?l

StelHte 6 7]Slfi] ^ 3 1 ^r Slt^^l l ^ ^ l ^ . NITRONIC 60S]

7} xif>}^o\]*]±r Stellite

2.

7K afl i € ^ ^ Co-free tf$ 3-fc- 3 3 [2, 21]

Co reduction program^ ^ ^ - ^ 71^5] Co-base

Stellite tf^sl ^ A ^-^ofl ^-%-t}^ -f^«l- ^ ^ ^ x-ICo/Co-free ^ - ^ - l - * 7fl

(1)

7» BWR gj PWR

1980\icfl i Vermont Yankee

(feedwater control valve)^ nfS.^-^^- ^A>«}- ^ 4 , o) ^«L7> ^ ^ 1 ^ 40 g

-55 -

^r-ir RockweU 7 j £ < 50^ 440 C ^ l ^ i N ) ^ 7o>o.S

StelliteSLt} nK5.^*J-^°l #XI v+E}-q-o.s>«i, throttling^ flow!

e} cavitation 41 £ ^ JlL^s] # # ^-^lJlf-(single phase flow)

^J^ofl ^«.Vcf^ ^Jol |^-^ ^ ^ . ^ , o]& cavitation 4

5a* 41 safe- ^-y-^^. ^ 7 ^ ^ I J I sa^-. l ^ , 440 c ^

Q.3. #0]

BJW-^^-SAi iBflo]Bl]>; 7ov (440 C, 316, 17-4 PH

Stellitel-

*) Stellite

i4) Loop test

ZL% 19^1 PWRofl tfltl- EPRI^ %%MM «: ^r 5Ufe y

80\£tfl 2:W> ic -a^ fuel spacer grid# 9l3."i ^^^^ Zircaloy-45.

fe Co-base

Co-base

71 ^*!- 7l^7fl^-sl ^ ^ r ^ - S . galling ^ ^ - ^ 0 } -f^*V 3 ^ ^ ^Tfl Co-free ^•^•

(NOREM, Everit 50, EB 5183)3}- Co-base Stellite ^-^-S- ^ j ^ s : } ^ BWR4

-56 -

% Replacement Components using Cobalt Free Materials

to

Oo3o<D

1

o00

o s00

00

oo9>9oo

OCXXXXII(/}

QH

o-

o

<03.

(D

i2]Q

<01

(A

E35"6o

PWR AECL

Sheridan Park Engineering Laboratory ^ « . A ] ^ loop

9705), PWR^ 3-f 19003] full stroke cycle

Zl is]-, ^ J i ^ - ^ S.Sf-7} -"y- AV, ^f^^AK profilometry

< Ai Stellite 6 M.4 -f^^-ol *g^s|$il^. ^ 3 ^ ^ QA Co-free

Stellite

Everit 50

. ^-*1 NOREM 0 4 ^ EB 5183 f

Stellite^ll w

StelUte 6^ tfl*||7||fi.S>H 4-8-1 T1 Slfe ^ - ^

Si

l - ^ Co reduction program^

o.^, Co-free tf-

. S. 12fe Co-free -g

(2)

Co-free loop

SU*H-H Deloro 40, 5 0 ^ Colmonoy 4, 5, 6 ^ - g ^ A>-g-o]

j-e -A Ontario Hydro ^ S j A } ^ Colmonoy 5/Deloro 504-

double disc gate ^ check ! « . 257fl ol^-fi- Anchor-DarlingO.5. Jf

- 58 -

Table 12. Specific details about the Co removal programs in the U.S. utilities and plant.Utility

Boston Edison

ConsolidatedEdison

Duke PowerCompany

Duke PowerCompanyEntergy

Florida Power Co.

General PublicUtilities

Houston Lightingand Power

Illinois Power

Plant

Pilgrim

Indian Pt.2

Catawba

Oconee 1,2,3

Grand Gulf

Crystal River

Oyster Creek

South TexasProject

Clinton

Type

GE-BWR

W-PWR

W-PWR

B&W-PWR

GE-BWR

B&W-PWR

GE-BWR

W-PWR

GE-BWR

Demonstration Testing• 1970^cfl -g- 2i^»i a. trim : Stellite -> 420SS5. 51*11• 3 e # « r check € « . t\^3L : Deloro 50 43- Ar-§-• 1994V£, 12*1*1 # ^ r gate 'S*.(non-safety-related) 3^ ^ * H 1 ^ : NOREM *}--§-• 4 ^ 1 2^6.71 safety-reated BJM. : Co-free ^ ^-§-•3*1*1, 1500# AOR globe »J«. 27fl : 17-4 PH disc seat•3*1*1, gate *I*L 47fl : Deloro 40/50 seat and stem•3*1*1, 1500# Y-pattern globe "JiL 37fl : NOREM Bl disc seat (CVCS)

•8*1*1, 150# SS globe "fi-M. (safety-related isolation valve)-Colmonoy body, disc seat

• 1, 1.5, 2*1*1, 1700# double disc gate BJ«- : SS body, Colmonoy disc Stellite seat -

• 1995V1 Recirculation pump discharge flex-wedge gate HJ«. 27fl : NOREM *}-%• <$$• 1*1*1, modulating globe decay heat system 1S.M_ 27H : Nitronic 50/60• 1/2*1*1, isolation gate l i 27fl : Delore 40/50• 1989\i 6*1*1, -a-^ bypass 2 : ^ ^ « . 27fl : 17-4 PH body seat, plug-440C• €*M*1 ?F#^sl* ^ ^ ^*J• 10*1*1, 1500# ^ - ^ ^ ^ «J«. : CrNi body seat, 440C plug-10\i 7VS-• 14*1*1, ^^-^r MJ«- 2711 (MOV) : Colmonoy 5 seat, disc - 4*d 7f§-•10*1*1, gate «J«.(MOV, tilA1^47flf-) 67fl : SA240-347W/NiCr, body seat,

SA182-316L W/CoCr disc seat - 3Vl A^•2*1*1, SS double disc gate H i i : SA 351-CF8M body, NOREM 01 disc, NOREM

04 seat ring•8*1*1, swing check 13±L : Colmonoy disc (safety-related)• 10*1*1, - 3 - ^ £ $ - 8 - 3 ^ MJ a. : 316SS seat•24*1*1, feed pump discharge check valve 47fl : Stellite disc IB.*fl °fl^

Table 12. (Continued)Utility

New York PowerAuthority

Niagara Mohawk

PennsylvaniaPower and LightSouthern Nuclear

Operating Co.Tennessee Valley

AuthorityUnion ElectricYankee Atomic

Electric

Plant

J.A. FitzpatrickNPP

Nine Mile Point

SusquehannaSES.

Farley

Sequoyah

Callaway

Vermont Yankee

Type

GE-BWR

GE-BWR

GE-BWR

W-PWR

W-PWR

W-PWR

GE-BWR

Demonstration Testing• 50711 <>]•$• safety-related/non-safety-related HiL : Co-free ^ - - ^ . S - S*ti• S ^ l 3/4e,]tf : NiCr(Colmonoy-DeIoro 50) >M-8-• 10*1*1, gate, double disc »J«. 2?fl : RHR system ^-§-• 10*1*1, globe H-M- 27fl : RHR system•8*1*1, check u J i i 27fl : RCIC system• 10*1*1 X2, 16*1*1 X2, double disc gate H : HPCI system•6*1*1, double disc gate i S l 2A '• clean-up system• 3*1*1, double disc gate 1 1 27fl : ^7) 71 f-• 18*1*1, swing check «!«. : ^ ^ ^ 1 1 -• m 4^• globe 11*1 1507)1 5L 1 Tfl^ : PH SS•8*1*1, globe >i«L(MOV) 27fl (safety-related) : Stellife 6 body, Deloro 40/50 disc

seat and guide• 18*1*1, ^ - f r ^ ^ ^ H : 400SS disk stack, 400SS/17-4 PH plug• 10*1*1, emergency condenser return system (safety-related) : SA 351 CF8M

body and disc seat, A582 Gr. 416 Nitride bushing

•24*1*1, gate "JiKMOV, safety-related) : Hastelloy body guide-4'd 7Y%-

• CVCS UJ o. 6711 : Colmonoy or Deloro 4

• 8*1*1, check HJ «. 47fl : NiCr body and disc seat• CVCS-§- m : NOREM• 1.5*1*1, globe H J l 27H(safety-related, CVCS) : NOREM body and disc seat

• ^ - f r ^ ^ 1 1 2711 : 440C SS

check «8H.3 3-f 1.5-10" , gate «J«.Sj ^ - f 1.5-12"

Ontario Hydro's Pickering B tfKgiS] 4 - 8 Jl7HH<>] Stellite tfl-tl Co-free

4fe 5 13^- ^ 4 . o ]§ ^-^.o] ^ 4 ^ ^ ^ . 1983^ ^ ^

Ontario Hydro

^.S. ^ i 5Ui=h

^ o ) ^ - ^ €

. M , AECL^r

Stellite!-

£ Deloro 40, 50 ^

Ontario HydroBJW-

Co-base

371

Table 13. Example of Co-free alloy application inOntario Hydro's Pickering B plant.

Valves

Main primary heat transportsystem (PHTS) in-line gateand check valves

Moderator and auxiliary D2Osystem gate, check and globevalve

Vent and drain globe valve

(< 2")

D2O system control valve

Material

Deloro 40, 50

Deloro 40, 50

Colmonoy 4, 5

17-4 PH,AISI 440C SS

(3)

Co-base , o)f

- 61 -

ABB3

Co-base tf^-g-

Co . 3 314 ^

cl-ft-^- Co

Co t ^

Table 14. The Swedish nuclear program for replacement of Co-based alloys

Plant Replacement of Co-base Alloys

Oskarshamn1, 2

• Unit 1 : 1989^ -g-n^f- UJ«- M%) - Deloro 50 disc, Stellite 6 seat•Hot isostatic pressure(HIP) 2465 H i L ^ s _ 1 9 8 6 ^ ^«1

•am-HIP 2465 - Ragnalloy ^ *}& : 10, 1291*]bushing, seats. Af-g-, by-pass MJ«-^1 ^-g-

Oskarshamn 3 SS , Metco 19E, HIP 2465, Citochrome ^f-g-

TVO• C i t o c h r o m e *•}•%•

7] relief ?fl-f-ifl Sulzer solenoid 1 1 : x40Crl3 ^V-g-

Forsmark 1, 2• Ball "fiiKsafety relief valve ^If-) : 1.4122 ^ 9 "• flex wedge 1=1-M. : Colmonoy 45P seat and plug

Forsmark 3 • Control, CCI MJ *L 3571] : CA-61SM, 1.4122, 316SS

Ringhals Globe : Inconel 600, 6254-g-

Ringhals 15171^ Inconel 6 0 0 ^ 625

S.S. . Stellitel-

w. 1711 •

fe Inconel 625 ^ - ^ A ^

3-4H1

t\

Inconel

- 62 -

. ASEA-ATOM^r Deloro 50^- £$ •$ • Co-free

(4)

%#} Co-free >

^•^1 Event 50(^-1]), Antinit DUR 300 (i^MBlo}), Cenium Z20 (*#£.) *§•

o)] cfl*V t ^ ^ ^ l ^ ^ - ^rsS§H 5*4. KWU#^r 3-E- Siemens*!] ^^) ^ ^ ) ^

1300 MWe # Konvoi series PWR^ ^-f, 1JI>^ 1537fl S.^- »Jw.7|- Co-free

tt°-3. cflfl]A]-g-£|Ji SU -fi. a-*lji Xi^^, ^^) Co

«B 25% o l^S. nfl^- ^o> ^ ^ - ^ Jial^oL Si^- Co #

Col: >M-g-*|-ia ^-S-^ 85% o|

Co ^-^- ifl«||S. Srol ol^-<H^i4. H B J J ! ^Afl^AS. Inconel

Stellite ^ A}**]

gate ^«.<fl ^^s l©!

-8: Everit 50, 50 SO, Antinit DUR 300, Cenium Z20, Cr7oV

20% ol*}5. « i ^ * l #<H 1 - i , sg-a- ORE71- 15%

i) ^ 4 ^ Ml Jg-3" ^sfl Co-60 ^£ fe - 1 order

ii) ^r^divfl <*}5i ^-flofl>H^ Co-60<H1 ^ ^ ^I^Ai^ol 1/10-1/505.

5 f t * .iii) ^z^ f l i f l Co-60 ^ £ 4 Co-60<>11

- 63 -

7j]7> $X

t!-^ Grondhe NPP (1,300 MWE, PWR)^ <g-3-g-7liflS] Co

S#-g- Co-free

pH £ # 7 l # , n

171- 29 man-rem/t)lant<Hl

(5)

^^-^r ^ S BWR Q#$] Cot^" ^ ^ 1 1 - ^^«l i SW. Co-free ^

sf l^^ « J H . 5 . A ^ 4, 6, 20 *]^1S] gate BJw.^- 3/4^^1 globe «jw. J§.O]

t\. Gate «jy. ^-^11^1^ Nucalloy 453, disc<Hl^ Nucalloy 488^1 A>-g-s|^ji,

globe BJ«.^ ^S^- ^ - ^ 1 ^ disc seaH Nucalloy 453^- ^-§-*>^4. <&*?• gate

(6) £ £ H

^ ^ H ^ Loviisa

w.1- Co-free ^flS.5. JE^l^^cf. ^ H 4-8-€ ^ ^ - ^ Bohler Fox

«jy.fe #-8:

Co-free

- 64 -

Table 15. Vendor cobalt-rree valve offerings

Vendor

Anchor/Darling

Atwood-Morrill

BW/1P

Control Components

Conval

Edward Valves

Cobalt-FreeHardfac ings/Trim

Colmonoy 5

Deloro 50

NOREM

Type 309 SS

TristelleEB 5183Colmonoy

Colmonoy

Nitronic 50/60

Type 616 SS

Valve Function

isolation

non-return

isolationnon-return checknon-return checkmodulating/throttle

isolationnon-returnmodulating/throttlingpressure relief

isolationnon-return

Valve Type

gate, globe

swing and lift check

swing check

gate, globe, diaphragmlift and swing checktilt discglobe

check

globe

lift and stop check

globelift check

Valve Size

0.75" - 24" ; 150 - 1700#

0.75" - 24" ; 150 - 1700#

3" - 12" ; 150 - 900#

3" - 56" ; 150 - 600#

.375" - 24"150 - 2500#

.25" - 30" ; <4500#

.25" - 4" ; 900 - 4500#

.75" - 2"

Table 15. (Continued)

Vendor

Fisher Control

Newman Hattersley

Velan

Vogt Machine

Wm. Powell

Yarway

Cobalt-FreeHardfacings/Trim

Ni-Cr

Colmonoy 4/5Deloro 40/50Deloro 2265A

Deloro 40/50NOREM

AWS 5.13 R NiCrB

13% chrome

Nitronic 50 (disc)Nitronic 60 (seat)

Valve Function

isolationmodulating/throttlingpressure relief

isolationnon-return

isolationnon-returnmodulating/throttling

isolation

Valve Type

globe, butterfly, ballglobe, butterfly, ballself-contained regulators

gateglobelift check

gateglobecheck, swing check

globelift check

gate, globelift and swing checkglobe

globe

Valve Size

.5" - 36" ; various classes

.25" - 6" ; 150 - 1500#

various sizes and classes

.5" - 2" ; 150, 300, 600, 800,1500#

various sizes and classes

.5" - 2" ; 1700 - 2500#

vfl-8-

(l)

1 ) Co Reduction Program ^ Co replacement

% &2\$IA, Co-free

Stellite

seat^f disc -^-^°fl^^ erosion, cavitation £^H1 $]*}: »!*-$]

disc

Co-free

(2)

-67 -

Table 16. Status of domestic nuclear power plants.

7\] f-

X

3^X

3 ^ O• Stellite-6

3 ^ O• Stellite-6

• Stellite-64-§-

^ A €-*fl valve

• check valve• control valve

• RCS boundary iflvalve€-^]Sl^.

-

• seat^VS. - leakage

• seat, disc - erosion/

cavitation

• &#$• ^ - ^ ^-^^d

• seat VSL

-

• erosion- S^^f-S-^1 mill

• seat, disc ^r^Al- y ^ JJ 11

• °d^- lapping^f-8-

• ^.^ lapping

-

Co-free;^^-

*\&^

X

X

Co-free^"^-3-§-=3 £31^1

X

•AECL^. ^-Ei ^ ? t ^ J i «> r

Co

°11- 71^ f1 ^^l'Sw.5] ^-f, Co-free

Co-free

GTA(TIG)

TIG

cost/benefit^

1. 1 1 ^^3flfi.^ #Atb " F s . ^ ^ [22]

7f. Adhesive wear

- 69 -

Table 17. Status of domestic valve manufacturing industries.

• Globe•Gate• Check•MOV(#600 - 2500)•7mSize : 2"~4"

Size : 2"~4"

Hardfacing

TIG(Haynes -Stellite)

Co-free ^"n"

• ^-¥- 11 1 ?fl£ A>-§-

711^"^

tfl-8- 1 ^

• Co-free ^-^- -g-^

- QA €-*fl S i ^

- ^4>3:7H1 ۥ

• Cost/Benefit ^ S .

-

,1 a

• Safety<Hl ^ ^ ^

Sife- valve Al^ll#aflXJ., aq^. i)nj-

--

74*1)7}

adhesive

Hflo]^(journal bearing),

(1)

growth), transfer particle^

t)-. #•¥•*=•

wear particle^-

cracko]

sperity junction

positive

junction growth ^^-^r

^ wear particle^-

particle^-

-71 -

jA5. cracky

•g-

transfer

(2) Adhesive wear^l

71

e.7fl 7] -^^ ^fl .fe true bearing area*

phased ^i^^l 0 ]^^ - ^o> 45.

^-g- ^-g- ^r 5U4. Matrix-particle^s] A

incoherent^- ^ - f ZL ^l^-g- f-«l) crack^l 711 ^ 4 S ] ^ A - ^ V}S.7} 7}^-

oj^Til cracky ^sj-l- f-«fl o ] ^ ^ hard particle^ *}%# ^}o]d\] v\%

abrasive particle^. 2}-&-5>fe- ^7\ ^i^-. °^A7^ AS.^tf 'S*}^ 3.7]7\

- 72 -

bearing surfaced.

yl«fl matrix

matrixl- $ ^ 1 7 ] ^ ^-#s]x] ^ i ^ - matrix*

adhesion*

^ ^ * 7lt«£ ^ ^t)-. p f t l ^ ^Sf1^ o e] impurityl-ol

sa^s-a-

i-(-. Erosive wear

Erosion^- <Q*k7} ASS.^^ ^ l " * } ^ ^ -S::§-O1)M^]5. abrasion-g-

abrasion^ ^ A ? l 7 l i Z\JL, IL^A

fatigue, brittle fracture, melting* ^ A

4 a ^ ^ ^ . S °]<H^7l ^Mlfe incubation

. Incubation time^]

- 7 3 -

Incubation time^r W ^ l ^#°il ^«fl crack^

o] 711S. ^ ^ 5 . v+El-ul-xlfe &fe 7l#°lT}. O]B\^. incubation time-8:

£.3. nfl-f # 4 . Erosion^ 7 ^ ^ H 1 ^

(1) Erosion^]

abrasive

erosion-i: ductile mode erosion °]e|- S>J1 €• "y^l-^5] erosionions-s-brittle mode erosion0] 5}

^ ^ 7 1 7 H ^-^€r>^ 7fl£.ofl fatigue* "^-5.

20 nvfe o |^5l

Mfe fracture-fi- -

-dm/tit = kvn

m :

t :

k :

v :

n :

- 7 4 -

^r 2-3

100-1000

fracture7l-

^ 37lofl o|-e|-

brittle

effiency

particleSLcf ^ 7 ^ ^ r particle-ar

°.3. erosion^ 7^?\ ^ ^-cf. 3. o g ^ ^

°.5. abrasionofl s]*V ^ ^ - ^ . c } ^ brittle

o)o\) nj-e}- 4 7%g.S>\ erosion resistance^- ^1-^7*1-

5]«]- ductile mode erosion<HH

ductile

^ collision efficiency(#

xf-ol x+ -(turbulent)

collision

collision efficiency?]-

(2) erosion

P = p • V, • V

P :

- 7 5 -

Vs :

V=250

V:

MPa7>

. 3 mm

(3) Cavitation wear

-&-«fl3E.

-5}-7-

Cavitation

1) £3

Cavitaion-8r

Sfl nl.J2.7f

2)

cavitation wearS.*), 7}

o| 1.5

Cavitation wear^

stress corrosion cracking0!]

34-31 SjH

- 7 6 -

3)

Cavitation^r

^ ^o] Cavitation°fi

sponge ^Efls ^ ^ 4 . ^ e ) - ^ cavitation

2. ^M. 3£^Hs ^^•^^flS.^1 ul-S.^1 ^ A5.>>i block-on-ring sliding, pin-on-disc wear,

galling wear, vibratory cavitation pfiAltg J§.a) ^ « } ^ A 5 . A>-g-£]ji ^^.1+

[22], | I ^^flS-ofl ifl^- ^ l -SAl^^ASA-1^ t|.,g-<Sl reciprocating sliding «o>

f. Reciprocating sliding *4£.><1 - ^

fe pin-on-discfi]- block-on-ring^ ao>^ o]

pin-on-disc

block-on-ring «o>^5] ^ - f ^ A ]

reciprocating sliding

Reciprocating sliding

- 7 7 -

6\}*] <ajo]i4^ galling a^Aj ^ H l S -8-8-€4. =LB)5L profilometryofl

^ £ 5 . igni-g- ^ ^ K r USHSl profilometerl- A}-

reciprocating sliding

(1)

dead weight loading

dead weight loading *y-^HA^ ^ ^ ^ s ] 7l-#ofl A|^T|)7>

51 «B t}^^ £o] ^± HOVA] - dead weight

A] 3g7fl 5]

- 78 -

(1)

71^

2)

3)

1988»d<>l]

Iron-Based Hard-facing Alloys"°lH

Everit 50, Cenium Z20P, Stellite

Antinit DUR300 : 0.75ksi

Everit 50 : 15ksi

Cenium Z20P : 1.87ksi

"Laboratory Evaluations of

Antinit DUR300,

- 7 9 -

Stellite 6 : 7.5ksi

( £ £ . #•&, n > § t s ^ 8 mm,

5, 8, 10, 15, 20 ksi£] *>#6fl>

v\S.<>\)*] mild wear^. ^ severe wear^.

0.5 mm/fe)

7}

gate valve^

Table 18. Operation time and velocity of gate valvewith valve diameter.

Diameter

(inch)

2

4

14

20

Operation

Time

(sec)

10

30

30

100

Operation

Velocity

(mm/fe)

5

3

5

11

71 e l l -

stick-slip

7]-

- 8 0 -

mm 50 1 5 20 Hz

(2)

(7f)

PLINT Model TE77

204 £A*} ,

dead center^

center

weld deposits. S ^ ^ l 2 mm

- Dead

A)

(Ra=1.6/i1)S Hfl*£)Gapping)

W

mild

- 81 -

WEAR SPECIMEN

H I, 1 ( r K*t%p (ai^'a)

STATIONARY LOWER

i t s \

.op' |^^

RECIPROCATING UPPER

Fig. 20. Dimension of wear specimen

- 82 -

fe- weld deposits] 3 W powder^

0.5x1.5x20" ^E

fe BJ«- -§-*fl 7>*iS4l weld deposit «oVlS-£--§.

^ ^ -i-3-i- s e a t i ^ i i nls]

Weld deposit«0^A5. *fl4*Rr ^l^^r 316 SS^

0.5

7f

- 8 3 -

3.7])

U. 313*8£3.

profilometerofl

- Transfer particle^l rolling^

adhesive wear< l $\O]A)

- 84 -

E. S^^r -fr*flSl ¥ ^ 3 3 . *

u.<Hl^ Co-59

311-

-85-

1*1-31 f- M ^ ^^"Sl-1- ^tb Co reduction program^ <y^-o.s.

Co # - g - « ifl^lll- ^*V A:t7l#Sl

^ Xi^ Co t^cfl^ll 71 #

1. Co-free

Co-free

2 ^ (Armacor M, Tristelle 5183),

(Nucalloy 488)^]^, 7 l ^ ^ i | 4 i i 7 f l s i 4-8-=!^. <&^ Stellite 6

H , £$ ^ ^ ^ ] ^ 1 ^ ^ ) jgife- TIG316SS

2. Test bop

loop A ] ^

loop ^ ^ ^ ^ -§-# %•% %£,f>\q £ <&7-± i S . -^^^1^-8- test loop

Al^ ^J?^, ;g*H system^

zero^JI - g r i ^ x } ^ ^^-§-^(autoclave ifl -)«>l ± 0°C,

l-

- 86 -

3.

test loopl- °l-8-«M 300r, 1500 psi,

. zf

Nucalloy

Armacori^ TristelleSi °1

4.

. Armacor ^-#Sl ^-f,

. 7lE}

21-1- ^-o] ji5.7fl ^-

- Fe2B

Nucalloy

Stellite

5.

Co-free ttlLS

Co 9J Co-free ^

Co-free

Co-base Stellite ^^-A

6.

- 87 -

•a-

Co low Co/Co-free

Co

1. C. J. Wood, "Maintenance of Recent Techniques for LWR

Radiation-Field Control", EPRI-4505-SR, March 1986.

2. H. Ocken, "Cobalt Reduction Guidelines", EPRI NP-6737, Mar, 1990.

3. D. B. Heard & R. J. Freeman, "Cobalt Contamination Resulting from

Valve Maintenance", EPRI NP-3220, Aug. 1983.

4. U.S. Patent No. 4725512, 1988.

5. Non-Cobalt Alloys for Nuclear Application, Thermadyne-Catalog, 1993.

6. Young-Jin Kim, "IGSCC Mitigation Technology in LWRs," Seminar

Presented to KAERI, GE Corporate R&D Center, Nov. 21, 1995.

7. D. M. Himmelblau, J. Chem. Eng. Data 5, p.10, 1960.

8. £ ^ e 3 , "Metamorphic ^g-^g- <>l-g-*V - ^ . g ^ o } m.A^» 9 3)

2fl3.#£ ^5^1-g", 1995.

9. P. J. Hofmann and L. C. Friedrich, "Laboratory Evaluation of

Iron-Based Hardfacing Alloys," EPRI NP-5874, June 1988.

10. C. A. Bergmann et al., "Evaluation of Cobalt Sources in Westinghouse

Designed Three- or Four-Loop Plants", EPRI NP-2681, October 1982.

11. T. R. Young et al., "Cobalt Source Identification Program", EPRI,

NP-2685, October 1982.

12. C. A. Bergmann and E. I. Landermann, "Cobalt Release from PWR

Valve", EPRI NP-3445, July 1984.

13. L. Nolin, "Cobalt Replacement in Primary Valves", Virginia Power

report NP-1284, August 1, 1988.

14. H. Haynes, American Patent Paper No. 873 245

- 89 -

15. E. W. Ohriner and E. P. Whelan, "Development of Cobalt-free

Hardfacing Alloys for Nuclear Applications : 1984 Progress," EPRI

NP-4237, September 1985.

16. AMAX, "Production Weld Deposition, and Evaluation of Wear-Resistant

Iron- based Hardfacing Alloys," EPRI report, to bepublished.

17. W. J. Schumacher, "A Stainless Steel Alternative to Cobalt Wear

Alloys," Chemical Engineering, September 21, 1981.

18. E. I. Landerman et al., "Evalution of Low-Cobalt Alloys for Hardfacing

Applications in Nuclear Components," EPRI NP-3446, August 1984.

19. Velan Inc., "Laboratory Evaluation of Cobalt-free, Nickel-based

Hardfacing Alloys for Nuclear Application," EPRI NP-4993, March 1987.

20. P. A. March, "A Preliminary Assessment of the Cavitation Erosion

Resistance for EPRI/AMAX's NOREM Alloys," Norris, Tenn. : TVA

Engineering Laboratory, January 1989, TVA Report WR28-4-900-233.

21. H. Ocken, "Cobalt Reduction Guidelines, Rev. 1," EPRI-TR-103296, Dec,

1993.

22. ANNUAL BOOK OF ASTM STANDARDS, SECTION 3 : Metals Test

Methods and Analytical Procedures, VOLUME 03.02 Wear and Erosion;

Metal Corrosion, ASTM, 1993.

G-32 Standard Test Method for Cavitation Erosion Using

Vibratory Apparatus

G-77 Standard Test Method for Ranking Resistance of Materials

to Sliding Wear Using Block-on-Ring Wear Test

G-98 Standard Test Method for Galling Resistance of Materials

G-99 Standard Test Method for Wear Testing with a Pin-on-Disk

-90 -

Apparatus

G-115 Standard Guide for Measuring and Reporting Friction

Coefficient

- 91 -

KAERI/RR-1584/95

*fl- / -^1

<£ ^ 7.} J f A} lg

91 p.

^ d 1 ^ * *AM!* , 1 ^ » 4 ^ rt-

t^lJl(-?-^ i§7V7]^7ll^-) ) <ycj^)l(^-S]

oloj^(W-<S]Jg7l-7l^7B#), ^ ^ ^ - ( S l - ^

-n-( O ), :¥-( )

INIS^^l 3.^

3.7]

fl<H^l^)1996. 1

Cm

711 ( O ), tfl4«l( ), _ ^ « 1 ^

a^- (300^:^ i414)

7]^.$] iga. T^ig^Hsi

&l Co-free fl^ir ^ 3

(Nucalloy 488)-=r - S ^ K

S^^l TIG -S-^*!-^ °1

l^Hr 7f-&^ ;?]4 T -S}-*}"

^ 300°C, 1500 psi^ofl

^I-^-0] "T-T^ - ^ — 5 . M

^ t f l^ l^S.^ .A^ 7 > - ^

^ ^ . 4 'id^, Co-free H

nMl*?) ?!•?]— (10^°mi4)

i. ^F-g-sj^. &-fe Stellite ^^-^- cfl^lsf^l 4 ?

tHS- 2*(Armacor M, Tristelle 5183)4 4 -

2 ^ l ^ ^ Stellite 6 ^flSir i^-*f-^ # 4 ^ 4

oj Hj 77 A-]

i^i ^ - ^ i^

^-^-^- 316SS

^:?1# S.A}-§ ^ 5ife- - -<i)A] -§- test loop-i- ^ ^ ) , l)^«>

A) ijt^lT^-i- s%7}$; T jj). Stellite 6 4 Nucalloy 4884 -T-^

4ist4. •8- 'f' 7j£ # ^ 1 4 Nucalloy4 ;

# ^ 4 ^ - -T-E! Nucalloy 488 ^ ^ ^ - T - ^H

)61 ^ ^ - ^ ^ -°vl*l-^4. Co ^g- tfl^7l#4

3- ?ll*^*, «fl4si 7lifr*!#, -xfl ^ ^ ^ »j

« * W « . Co-free W , « ^ ^ , ^

^s] Stellite $•

«. ^v<a^l4

"est Loop

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org.Report No,

Sponsoring Org.Report No.

Standing Report No.INIS Subject

CodeKAERI/RR-1584/95

Title / SubtitleReplacement of Co-base Alloy for Radiation ExposureReduction in the Primary System of PWR

Project Manager and Dept Jung Ho, Han Corrosion Evaluation

Researcher and Dept Kye Ho, Nho (Corrosion Evaluation) Duk Jae, Lim (CVCS)

Deok Hyun, Lee ( * ) Jin Kun, Ahn ( " )

Pub. place Taejon Pub. Org KAERI Pub. DATE 1996. 1

Page 91 p. III. and Tab Yes ( O ), No( ) Size Cm

Note

Classified Qpen( O ), Outside( ), _Class Report TypeResearch

ReportSponsoring Org. Contrct No.

Abstract (About 300word)

Of numerous Co-free alloys develped to replace Co-base Stellite used in valvehardfacing material, two iron-base alloys of Armacor M and Tristelle 5183 and onenickel-base alloy of Nucalloy 488 were selected as candidate Co-free alloys, andStellite 6 was also selected as a standard hardfacing material. These four alloys werewelded on 316SS substrate using TIG welding method. The first corrosion test loopof KAERI simulating the water chemistry and operation condition of the primarysystem of PWR was designed and fabricated. Corrosion behaviors of the above fourkinds of alloys were evaluated using this test loop under the condition of 300°C, 1500psi. Microstructures of weldment of these alloys were observed to identify bothmatrix and secondary phase in each weldment. Hardnesses of weld deposit layerincluding HAZ and substrate were measured using micro-Vickers hardness tester.The status on the technology of Co-base alloy replacement in valve components wasreviewed with respect to the classification of valves to be replaced, the developmentof Co-free alloys, the application of Co-free alloys and its experiences in foreignNPPs, and the Co reduction program in domestic NPPs and industries.

Subject Keyword (About 10 words) Co Replacement, Primary System, Co-free Alloy,

Valve Hardfacing Material, Corrosion, Test Loop

S 3 1*M3

1996^19% ^

i ft 13a1 « 18H

p m

•* • « • "*"

W

HIM

f.

150