report 0f investigation 46

50

Upload: others

Post on 13-Mar-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: REPORT 0F INVESTIGATION 46
Page 2: REPORT 0F INVESTIGATION 46
Page 3: REPORT 0F INVESTIGATION 46

REPORT 0F INVESTIGATION 46

Yields of Shallow Dolomite

Wells in Northern Illinois

by SANDOR CSALLANY and W. C. WALTON

Printed by authority of thc State of Illinois-Ch. 127, IRS, Par. 58.29

Page 4: REPORT 0F INVESTIGATION 46

STATE OF ILLINOIS

HON. OTTO KERNER, Governor

DEPARTMENT OF REGISTRATION AND EDUCATION

WlLLlAM SYLVESTER WHITE, Director

BOARD OF NATURAL RESOURCES AND CONSERVATION

WILLIAM SYLVESTER WHITE, Chairman

ROGER ADAMS, Ph.D., D.Sc., LL.D., Chemistry

ROBERT H. ANDERSON, B.S., Engineering

THOMAS PARK, Ph.D., Biology

CHARLES E. OLMSTED, Ph.D., Botany

LAURENCE L. SLOSS, Ph.D., Geology

WILLIAM L. EVERITT, E.E., Ph.D.,

University of Illinois

DELYTE W. MORRIS, Ph.D.,

President, Southern Illinois University

STATE WATER SURVEY DIVISION

WILLIAM C. ACKERMANN, Chief

URBANA

I963Second Printing 1970

Page 5: REPORT 0F INVESTIGATION 46

C O N T E N T SPage

Abstrac ............................................................................................................................................................. 1Introduction ....................................................................................................................................................... 1

Acknowledgments .......................................................................................................................................... 2Geology and hydrology.......................................................................................................................................... 3

Ordovician rocks .......................................................................................................................................... 3Silurian rocks .................................................................................................................................................. 8Devonian, Mississippian, and Pennsylvanian rocks......................................................................................... 8

Construction features of wells ......................................................................................................................... 8Specific-capacity data ........................................................................................................................................ 1 1

Description and analysis of specific-capacity data ....................................................................................... 14Yields of individual shallow dolomite aquifers .................................................................................................. 15

Silurian rocks .............................................................................................................................................. 15Ordovician rocks .......................................................................................................................................... 19

Acid treatment of wells to increase yield ............................................................................................................................................ 20Predicting the yields of wells ................................................................................................................................. 21Conclusions ......................................................................................................................................................... 24

References.......................................................................................................................................................... 25

Appendix .......................................................................................................................................................... 26

Well-numbering system....................................................................................................................................... 26

Table A. Specific-capacity data for wells in Silurian rocks and Maquoketa Formation innortheastern Illinois..................................................................................................................................................................... 26

Tab1e B. Specific-capacity data for wells in Silurian rocks in areas outside of northeastern Illinois..................39Table C. Specific-capacity data for wells in Silurian and Devonian rocks and Maquoketa Formation

in areas outside of northeastern Illinois.................................................................................................................... 40Table D. Specific-capacity data for wells in Galena-Platteville Dolomite in northern Illinois........................ 41Table E. Specific-capacity data for wells in northeastern Illinois showing effects of acid treatment.............. 43

Page 6: REPORT 0F INVESTIGATION 46

FigureILLUSTRATIONS

Page123

23

456789

10111213141516171819202122232425262728293031

Northern Illinois area and locations of geologic cross sections shown in figure 3 ...................................Areal geology of bedrock surface in northern Illinois ..................................................................................................Cross sections of structure and stratigraphy of bedrock in northern Illinois

(locations shown on figure 1) ......................................................................................................................................................Elevation of top (A) and thickness (B) of Galena-Platteville Dolomite in northeastern Illinois .................Elevation of base of Galena-Platteville Dolomite in part of northern Illinois ............................................................Thickness of Maquoketa Formation in northeastern Illinois.. .......................................................................Thickness of Silurian rocks in northeastern Illinois .....................................................................................................Bedrock topography of northeastern Illinois......................................................................................................Construction features of selected wells in northeastern Illinois. ..................................................................Construction features of selected wells in northwestern Illinois ...................................................................Theoretical relation between specific capacity and radius of well (A) and pumping period (B) ...........Theoretical relation between specific capacity and coefficient of transmissibility....................................Relation between well-loss constant and specific capacity and pumping level ............................................Coefficient of transmissibility versus specific capacity for several values of rw

2/ t ....................................Relation between specific capacity and units penetrated by wells in DuPage County.. ..........................Specific-capacity frequency graphs for units penetrated by wells in DuPage County ............................Relation between specific capacities of wells in Silurian and Ordovician rocks overlain by glacial driftRelation between specific capacity and depth of penetration of wells in McHenry County.. ..................Relation between specific capacity and character of glacial drift.. ...............................................................Relation between specific capacity and thickness of sand and gravel directly above Silurian rocks .......Relation between specific capacity and bedrock topography ...........................................................................Relation between specific capacities of wells in Silurian and Devonian rocks .............................................Relation between specific capacity and character of deposits overlying Silurian rocks in northern IllinoisRelation between specific capacities of wells in Silurian and Ordovician rocks overlain by bedrock .....Specific-capacity frequency graphs for wells in northeastern Illinois ...............................................................Effects of acid treatment on yields of selected wells .........................................................................................Effects of acid treatment on specific capacities of newly constructed wells ................................................Effects of acid treatment on specific capacities of old wells ...........................................................................Estimated yields of shallow dolomite wells in northern Illinois.......................................................................Possibilities for occurrence of sand and gravel above bedrock in northern Illinois......................................Bedrock topography of northern Illinois.............................................................................................................

56789

101112131414151616171717171818181919202121222324

Page 7: REPORT 0F INVESTIGATION 46

Yields of Shallow Dolomite Wells in Nortbern Illinois

by Sandor Csallany and W. C. Walton

A B S T R A C T

In northern Illinois large quantities of ground water are withdrawn from wells in shallowdolomite aquifers of Silurian and Ordovician age. The Niagaran and Alexandrian Series ofSilurian age and the Galena-Platteville Dolomite of Ordovician age yield moderate to largequantities of ground water. Dolomite beds of the Maquoketa Formation of Ordovician ageyield small quantities of water to wells. Silurian rocks are usually encountered at depths ofbetween 10 and 300 feet in northeastern Illinois and between 30 and 880 feet in northwesternIllinois. These rocks exceed 450 feet in thickness at places and are often overlain by glacialdrift. The average depth of shallow doIomite weIIs is about 140 feet, and most wells ofrecent design are finished 12 to 16 inches in diameter.

About 1000 well-production tests were made, 1921-1961, on more than 800 shallowdolomite wells. Statistical analysis of specific-capacity data provided a basis for determining1) the role of individual shallow dolomite aquifers or formations, uncased in wells, as con-tributors of water; 2) whether or not significant relationships exist between the yields of wellsand geohydrologic controls; and 3) the effects of acid treatment on the productivities of wells.

It is concluded that the Niagaran Series, Alexandrian Series, and Galena-PlattevilleDolomite all have similar moderate to high yields and inconsistency of yields in areas through-out northern Illinois where these rocks directly underlie glacial drift. These Silurian andOrdovician rocks have similar low yields and inconsistency of yields in areas where these rocksare overlain by bedrock. On the other hand, the Maquoketa Formation and rocks of Devonianage yield very little water to wells. Most water-yielding openings occur in the upper one-thirdof the shallow dolomite aquifers. There is a good connection between glacial drift and theupper part of the shallow dolomite aquifers. Highest yielding wells are found in bedrockupland areas, in areas where the glacial drift immediately overlying the shallow dolomiteaquifers is composed of sand and gravel, and in areas where reefs and associated strata arepresent.

Most dolomite wells treated with acid show significant improvement in yield; largestimprovements are recorded for rehabilitated wells. Yields are increased because water-yieldingopenings are enlarged and fine drill cuttings or incrustations are removed from openings.

Probable ranges in yields of shallow dolomite wells in undeveloped areas are estimatedfrom specific-capacity frequency graphs, aquifer thickness and area1 geology maps, and water-level data.

I N T R O D U C T I O N

In northern Illinois (see figure 1) north of the forty-firstparallel of latitude, several hundred municipal and indus-trial wells obtain large quantities of ground water frombedrock of Silurian and Ordovician age. Silurian andOrdovician rocks are encountered at depths ranging froma few to several hundred feet, and the parts of these rocksabove the Glenwood-St. Peter Sandstone functioning asaquifers consist largely of dolomite (a limestone-like rockrich in magnesium). Silurian rocks range in thickness froma few to more than 450 feet; the maximum known thick-ness of the Galena-Platteville Dolomite exceeds 350 feet.The Silurian rocks are major aquifers in northeastern andnorthwestern Illinois, and the Galena-Platteville Dolomiteof Ordovician age is a major aquifer in the central portionof northern Illinois. Despite the fact that these shallow

dolomite aquifers are very inconsistent in productivity andthe yields of wells vary greatly from place to place, shallowdolomite wells have been prolific sources of water for near-ly 75 years. Small quantities of water also are obtainedfrom dolomite beds of the Maquoketa Formation and lime-stone beds of rocks of Devonian age.

Pumpage from Silurian and Ordovician rocks is largelyconcentrated in DuPage, Cook, and Lake Counties innortheastern Illinois. Withdrawals from dolomite wells innortheastern Illinois averaged about 55 million gallons perday (mgd) in 1960. Shallow dolomite wells at places haveyields exceeding 1000 gallons per minute (gpm) . Largequantities of water are pumped from wells owned by Chi-cago Heights, Clarendon Hills, Downers Grove, Flossmoor,Glen Ellyn, Hinsdale, Homewood, La Grange, Libertyville,

1

Page 8: REPORT 0F INVESTIGATION 46

Figure 1 Northern Illinois areo and locations of geologic cross sections shown in figure 3

Lisle, Lombard, Orland Park, Park Forest, Thornton, VillaPark, West Chicago, Westmont, Wheaton, and othermunicipalities.

The State Water Survey has collected many data onthe performance of shallow dolomite wells. The results ofwell-production tests made on several hundred wells pro-vide important information concerning the influence oflocation, depth, construction features, and age of a wellon its yield. The effects of acid treatment of shallow dolo-mite wells are apparent from data for tests made beforeand after acid treatment. The performance of a shallowdolomite well depends in large part upon the water-yieldingproperties of the rocks uncased in the well, Thus, well-production data for wells drilled to various depths anduncased in one or more bedrock units can be used to evalu-ate the water-yielding properties of the individual units.

The geology and hydrology of the ground-water re-sources of the Chicago region were discussed in detail in acooperative report (Suter et al., 1959) issued by the StateWater Survey and State Geological Survey. Emphasis wasplaced on deeply buried sandstone aquifers of Ordovician

2

and Cambrian age which have been widely used for largeground-water supplies. Very littIe information on shallowdolomite aquifers was presented; however, from availabledata their potential yield was judged to be larger thanwithdrawals. Additional quantitative studies of the poten-tial yield of shallow dolomite aquifers were recommended.The Water Survey program of collecting and analyzingwell-production data for shallow dolomite wells in northernIllinois was accelerated in 1960.

This report summarizies the results of studies made todate on the yields of shallow dolomite wells in northernIllinois; emphasis is placed on wells in the Chicago region.A summary of published information concerning thegeology and hydrology of the bedrock units uncased inshallow dolomite wells is presented to serve as a back-ground for interpretation of the records.

Acknowledgments

This report was prepared under the general supervisionof William C. Ackermann, Chief of the State Water Survey,

Page 9: REPORT 0F INVESTIGATION 46

Figure 2. Areal geology of bedrock surface in northern Illinois

and H. F. Smith, Head of the Engineering Section. Manyformer and present members of the State Water Surveyand State Geological Survey participated in well-productiontests, wrote earlier special reports which have been used asreference material, or aided the authors indirectly in pre-paring this report. Grateful acknowledgment is made,therefore, to the following: R. T. Sasman, W. H. Baker,T. A. Prickett, Max Suter, Jack Bruin, J. B. Millis, J. S.Randall, R. A. Hanson, A. J. Zeizel, J. E. Hackett, G. B.Maxey, and R. E. Bergstrom.

Consulting engineers, well drillers, and municipal offi-cials were most cooperative and helpful in making dataavailable on well-production tests. J. W. Brother preparedthe illustrations.

GEOLOGY AND HYDROLOGY

Shallow dolomite wells in northern Illinois may pene-trate bedrock of Pennsylvanian, Mississippian, Devonian,Silurian, and Ordovician age (figure 2). This report ismainly concerned with rocks of Devonian and Silurianage and upper formations of rocks of Ordovician age(Maquoketa Formation and Galena-Platteville Dolomite);

other formations are considered. only with respect to theirrelation to the geohydrologic conditions of these rocks.

The geologic nomenclature and characteristics, drillingand casing conditions, and water-yielding properties of theglacial drift and the bedrock in northern Illinois are sum-marized in the chart presented on the next page. Thesequence, structure, and general characteristics of the rocksare shown in figure 3. For further details of the geologyof the rocks the reader is referred to Suter et al. (1959),Horberg (1950), Hackett (1960), Hackett and Bergstrom(1956) Bergstrom et al. (1955) and Zeizel et al. (1962).The following sections on geology and hydrology wereabstracted from these reports.

Ordovician Rocks

Three formations, the Platteville Dolomite, the DecorahFormation, and the Galena Dolomite, are considered asone geohydrologic unit and are collectively called theGalena-Platteville Dolomite. The Galena-Platteville Dolo-mite is dense to porous, partially argillaceous and cherty,and has shale partings and sandy dolomite beds. Inter-bedded dolomitic limestone and calcareous dolomite grade

3

Page 10: REPORT 0F INVESTIGATION 46

Generalized Stratigraphy and Water-Yielding Properties of Rocks in Northern Illinois

(After suter et al., 1959; and selkregg and Kempton, l958)

4

Page 11: REPORT 0F INVESTIGATION 46

Figure 3. Cross sections of structure and stratigraphy of bedrock in northern Illinois (locations shown on figure 1)

5

Page 12: REPORT 0F INVESTIGATION 46

Figure 4. Elevation of top (A) and thickness (B) of Galena-Platteville Dolomite in northeastern Illinois

into one another at places. The unit is the uppermostbedrock formation in many counties in central and north-western parts of northern Illinois. In these areas the thick-ness of the unit varies because the bedrock surface hasbeen eroded. In areas where the Galena-Platteville Dolo-mite is overlain by other rocks, it has a uniform thicknessaveraging about 300 feet. As described by Bergstrom andEmrich (see Suter et al., 1959) the lowest formation ofthe Galena-Platteville Dolomite is the Platteville Dolomite,“which is commonly argillaceous, cherty in the upper half,buff to gray, very fine- to fine-grained, and commonlymottled. Near the base it is sandy. The Decorah Forma-tion lies above the Platteville and consists of fine- tomedium-grained, speckled (red and black) dolomite withthin gray to red shale partings. The overlying GalenaDolomite is cherty in the lower half, fine- to medium-grained, buff to brown, and includes scattered thin shalebeds.” The thickness and elevation of the top of theGalena-Platteville Dolomite in northeastern Illinois aregiven in figure 4.

Figure 5 shows elevations of the base of the Galena-Platteville Dolomite. In western LaSalle and Lee Countiesrocks are folded into an asymmetrical anticline (LaSalleanticline). Beds on the western side dip steeply while bedson the eastern side dip gently. A long fault zone (the

6

Sandwich Fault Zone) extends southeastward throughOgle, northeastern Lee, DeKalb, Kendall, and Will Coun-ties. Rocks have been displaced as much as 900 feetvertically along the fault. Other gentle folds and warpsare common. In northeastern Illinois the Galena-Platte-ville Dolomite has a regional dip to the east and south ofabout 10 feet per mile. The Galena-Platteville Dolomiteis missing in large areas in the central part of northernIllinois, as shown in figure 5.

Rocks of the Galena-Platteville Dolomite underlie theglacial drift or other unconsolidated deposits in parts ofMcHenry, Kane, Kendall, Grundy, DeKalb, Boone, Winne-bago, Stephenson, JoDaviess, Carroll, Ogle, Lee, andLaSalle Counties. In areas where the Galena-PlattevilleDolomite underlies glacial drift or other unconsolidateddeposits, solution activity has enlarged openings, and theunit yields moderate quantities of water to wells. Wherethe unit is overlain by the Maquoketa Formation, theGalena-Platteville Dolomite is a less favorable source ofground water and yields very little water from joints,fissures and solution cavities.

In large parts of northern Illinois the Galena-PlattevilleDolomite is overlain by the Maquoketa Formation whichis the uppermost unit of the Ordovician rocks. The unitconsists mostly of shale, dolomitic shale, and argillaceous

Page 13: REPORT 0F INVESTIGATION 46

Figure 5. Elevation of base of Galena-Platteville Dolomite in part of northern Illinois

dolomite and has a maximum thickness of about 250 feetin northeastern Illinois (see figure 6). In areas where theMaquoketa Formation is the uppermost bedrock, thethickness of the unit varies because the bedrock surfacehas been eroded. The formation dips regionally to theeast in northeastern Illinois at a uniform rate of about10 feet per mile.

Bergstrom and Emrich (see Suter et al., 1959) dividedthe Maquoketa Formation in northeastern Illinois intothree units: lower, middle, and upper. As described byBergstrom and Emrich, “The lower unit is normally abrittle, dark brown, occasionally gray or grayish brown,dolomitic shale grading locally to dark brown, argillaceousdolomite . . . The middle unit is dominantly brown togray, fine- to coarse-grained, fossiliferous, argillaceous,speckled dolomite and limestone. It is commonly inter-bedded with a fossiliferous brownish gray to gray, dolo-mitic shale . . . The upper unit is a greenish gray, weak,silty, dolomitic shale that grades into very argillaceous,greenish gray to gray dolomite.” The lower unit is thickerin Cook and Will Counties where it exceeds 100 feet.It thins to the north and west to less than 50 feet. Themiddle unit is thicker to the west where it is more than

100 feet locally and thins to the east. The upper unitranges in thickness from less than 50 feet in the west tomore than 100 feet in parts of Cook and Will Counties.The lower dense shale unit is the most impermeable unit.Dolomite beds in the middle unit yield small quantitiesof water. The middle unit water-yielding potential isgreatest in Kane County.

The Maquoketa Formation underlies the glacial drift orother unconsolidated deposits in large areas in McHenry,DeKalb, Boone, Kane, and Kendall Counties and insmaller areas in Kankakee, Grundy, Will, Cook, DuPage,Bureau, Lee, Whiteside, Carroll, Ogle, Stephenson, andJoDaviess, as shown in figure 2. The unit overlies theGalena-Platteville Dolomite in northeastern Illinois whereit confines the water in the Cambrian-Ordovician Aquiferunder artesian conditions. According to Walton (1960)the average vertical permeability of the Maquoketa For-mation in northeastern Illinois is 0.00005 gallons per dayper square foot (gpd/sq ft) . Even though the verticalpermeability is very low, leakage through the unit is appre-ciable under the influence of existing large vertical hydrau-lic gradients. The Maquoketa Formation is missing inlarge areas in the central part of northern Illinois.

7

Page 14: REPORT 0F INVESTIGATION 46

Figure 6. Thickness of Maquoketo Formation in northeastern Illinois

Silurian Rocks

The bedrock surface in the eastern one-third and thewestern one-fourth of northern Illinois is formed by Silurianrocks. In northeastern Illinois Silurian rocks dip to thesoutheast at an average rate of about 10 feet per mile.The thickness of the rocks increases from less than 50 feetin McHenry, Kane, and Kendall Counties to more than450 feet in southeastern Will County as shown in figure 7.Where valleys occur in the bedrock (see figure 8), theSilurian rocks have been deeply eroded and are thinned.Silurian rocks attain thicknesses exceeding 300 feet in partsof northwestern Illinois. In the southern part of northernIllinois the rocks are overlain by rocks of Devonian,Mississippian, and Pennsylvanian age.

The Silurian rocks are mainly dolomites and are siltyat the base. They are divided into the Alexandrian Seriesbelow and the Niagaran Series above. Areas where theAlexandrian Series forms the bedrock surface are smallcompared with the areas where the Niagaran Series is theuppermost bedrock. The Alexandrian Series consists oftwo formations: Edgewood below and Kankakee above.According to Bergstrom and Emrich (see Suter et al.,1959)) in northeastern Illinois “the Edgewood Formationis an argillaceous to finely sandy, light gray to gray brown,finely crystalline dolomite. At some places it is similar tothe dolomite of the Maquoketa Formation. The KankakeeFormation is a light gray to buff, cherty, finely crystallinedolomite.” The rocks of the Niagaran Series have beensubdivided into Joliet, Waukesha, and Racine formations.

The Niagaran Series is white to light gray, finely to me-dium crystalline, compact dolomite with varying amountsof silt. White to light gray chert generally occurs in theupper part. At the base the dolomite is commonly green,pink, or red and is slightly silty. At places shaly dolomitebeds occur at the base, and reefs and associated strata arepresent in upper formations. Reefs and associated strataare most characteristic of the Racine Formation but mayoccur stratigraphically as low as the Joliet Formation(Zeizel et al., 1962).

Ground water in the Silurian and Ordovician rocksabove the Glenwood-St. Peter Sandstone occurs in joints,fissures, solution cavities, and other openings. The water-yielding openings are irregularly distributed both verticallyand horizontally. Available geohydrologic data indicatethat the rocks contain numerous openings which extendfor considerable distances and are interconnected on anarea1 basis. The upper parts of the rocks are much morepermeable than lower parts. The Niagaran and Alexan-drian Series have about the same average productivity inareas where the units are the uppermost bedrock. Rechargeto these Silurian and Ordovician rocks is derived locallymostly from vertical leakage through the glacial drift orother unconsolidated deposits, and surficial materials arein turn recharged from precipitation. Water occurs in theserocks mainly under leaky artesian conditions.

Devonian, Mississippian, and Pennsylvanian Rocks

Rocks of Devonian, Mississippian, and Pennsylvanianages occur at places on top of Silurian or Ordovicianrocks. They underlie the glacial drift in areas of thesouthern part of northern Illinois. The Devonian andMississippian rocks are composed mostly of dolomitic andcalcareous shale, and the Pennsylvanian rocks are mainlyshales with thin sandstone, limestone, clay, and coal beds.The rocks mentioned above yield small quantities of waterfrom creviced dolomite and sandstone beds. The Devonianrocks have a maximum thickness of about 100 feet in thearea of study.

CONSTRUCTION FEATURES OF WELLS

The shallow dolomite wells in northern Illinois aredrilled mainly by the cable tool method. They range indepth from 15 to 450 feet in northeastern Illinois andfrom 20 to 650 feet in northwestern Illinois. The averagedepth of wells is about 140 feet.

Many shallow dolomite wells penetrate more than onebedrock aquifer, and often several formations of an aquifercontribute to the yield of the well. Wells may be groupedinto the following categories according to the rocks uncasedin wells: 1) Silurian rocks (Sil) ; 2) Silurian rocks andMaquoketa Formation (Sil-Maq) ; 3) Maquoketa Forma-tion (Maq) ; 4) Devonian and Silurian rocks (Dev-Sil ) ;

8

Page 15: REPORT 0F INVESTIGATION 46

Figure 7. Thickness of Silurian rocks in northeastern Illinois

9

Page 16: REPORT 0F INVESTIGATION 46

Figure 8. Bedrock topography of northeastern Illinois

10

Page 17: REPORT 0F INVESTIGATION 46

Figure 9. Construction features of selected wells in northeastern Illinois

and 5) Galena-Platteville Dolomite (G-P). The distribu-tion of wells in these five categories is as follows:

Percentage of wells uncasedin aquifers

Area Sil Sil-Maq Maq Dev-Sil G-P

NortheasternIllinois 67 29 1 — 3

NorthwesternIllinois 36 — — 36 28

NorthernIllinois 65 27 1 3 4

Many deep sandstone wells are either uncased or faultilycased in Silurian rocks and obtain large quantities of waterfrom that aquifer. In northeastern Illinois most shallowdolomite wells are uncased in the entire thickness of theSilurian rocks and often terminate in dolomite beds in theupper part of the Maquoketa Formation. In the centralpart of northern Illinois shallow dolomite wells are opento the Galena-Platteville Dolomite. Most of the shallowdolomite wells in northwestern Illinois are uncased inSilurian rocks. In the southern part of northern Illinoisusually both Devonian and Silurian rocks are open to wells.

Shallow dolomite wells usually are uncased through theformations penetrated because most of the bedrock en-countered does not cave or swell. A drive pipe extendsthrough the unconsolidated deposits to bedrock. The

diameters of some wells are smaller at the bottom thanat the top. Well-bore diameters ranging from 6 to 16inches at the top and reduced to between 6 and 12 inchesat the bottom are common. Generalized graphic logs oftypical shallow dolomite wells are given in figures 9 and 10.

SPECIFIC-CAPACITY DATA

The water-yielding properties of shallow dolomite aqui-fers influence the productivity of wells; as the size and/ornumber of openings in shallow dolomite aquifers increase,the yields of wells increase. The hydraulic properties ofaquifers are commonly expressed mathematically by thecoefficients of transmissibility, T, or permeability, P, andstorage, S. The hydraulic property of a confining bed(deposits overlying aquifers and retarding vertical move-ment of water into aquifers) influencing the productivityof a well is the coefficient of vertical permeability, P’.

The coefficient of transmissibility is defined as the rateof flow of water in gallons per day through a vertical stripof the aquifer one foot wide and extending the full satu-rated thickness of the aquifer under a hydraulic gradientof 100 percent (one foot per foot) and at the prevailingtemperature of the ground water. The coefficient of per-meability is defined as the rate of flow of water in gallonsper day, through a cross-sectional area of one square footof the aquifer under a hydraulic gradient of one footper foot at the prevailing temperature of the ground wa-ter. The relation of the coefficients of transmissibilityand permeability is shown by the formula P = T/m, or

11

Page 18: REPORT 0F INVESTIGATION 46

Figure 10. Construction features of selected wells in northwestern Illinois

T = Pm, where m is the saturated thickness of the aquifer.The storage properties of an aquifer are expressed by thecoefficient of storage, which is defined as the volume ofwater in cubic feet released from or taken into storageper square foot of surface area of the aquifer per footchange in the component of head normal to that surface.The coefficient of vertical permeability of a confining bedis defined as the rate of flow of water in gallons per daythrough a horizontal cross-sectional area of one square footof the confining bed under a hydraulic gradient of onefoot per foot at the prevailing temperature of the groundwater. The leakage coefficient is (P'/m') where m’ is thesaturated thickness, in feet, of the confining bed throughwhich leakage occurs.

The hydraulic properties of leaky artesian aquifers andtheir confining beds are often determined by means ofaquifer tests, wherein the effect of pumping a well at aknown constant rate is measured in the pumped well andin observation wells penetrating the aquifer. The datacollected during aquifer tests can often be analyzed bymeans of the leaky artesian formula (Hantush and Jacob,1955). However, the difference between the ideal porousmedia assumed in the derivation of that formula and thecharacter of water-yielding openings of shallow dolomite

12

aquifers suggests that the leaky artesian formula will notcompletely describe the response of shallow dolomite aqui-fers to pumping.

Walton (see Zeizel et al., 1962) made the followingremarks : “The high average yields of shallow dolomitewells and the conformable piezometric surface of theSilurian rocks in DuPage County suggest that the dolomitecontains numerous fractures and crevices which extendfor considerable distances and are interconnected on anarea1 basis. Such a network of openings can give a re-sultant regional effect equivalent to a radially homogeneousaquifer (also see Walton, 1953) .” The dolomite feeds itswater into a complex system of interconnected fractures;some of the fractures are intersected by wells. The flowof ground water through dolomite assumes at least someof the characteristics of the flow of water in a linearchannel in the immediate vicinity of a pumped well.Turbulent head losses are appreciable in the pumped well.Thus, the leaky artesian formula (based on laminar flowconditions) may describe drawdown on an area1 basis withreasonable accuracy but does not completely describe thedrawdown in a pumped well.

Two controlled aquifer tests were made using shallowdolomite wells in DuPage County, and results of the tests

Page 19: REPORT 0F INVESTIGATION 46

were described in Zeizel et al. ( 1962). Hydraulic propertiescomputed with aquifer-test data are as follows:

1. Test at City of Wheaton, central DuPage County—coefficient of transmissibility, 61,000 gpd/ft; coefficientof storage, fraction, 3.5 x 10–4; leakage coefficient, 6.5 x10–3 gpd/cu ft.

2. Test at Argonne National Laboratory, southeastDuPage County — coefficient of transmissibility, 44,000gpd/ft; coefficient of storage, fraction, 9.0 x 10–5; leakagecoefficient, 1.0 x 10–3 gpd/cu ft.

During the aquifer tests interference between wells spacedmore than one-half mile apart was measured indicatingthat water-yielding openings in Silurian rocks extend forconsiderable distances.

The yield of a well may be expressed in terms of itsspecific capacity, which is commonly defined as the yieldof the well in gallons per minute per foot of drawdown(gpm/ft) for a stated pumping period and rate. Thespecific capacity is influenced by the hydraulic propertiesof the aquifer and confining bed, thickness of the confm-ing bed, radius of the well, and pumping period.

The theoretical specific capacity, Q/s, of a well in aleaky artesian aquifer can be written as:

Q/s = T/[ 114.6 W(u,rw/B) ] (1)where:

u = 1.87 rw

2 S/Tt (2)(3)

Q = discharge of pumped well, in gpms = drawdown, in ft

T = coefficient of transmissibility, in gpd/ftrW = nominal radius of the well, in ftS = coefficient of storage, fractiont = pumping period, in days

p' = coefficient of vertical permeability, in gpd/ sq ftm' = saturated thickness of confining bed, in ft

Equation 1 was derived by assuming that 1) the wellcompletely penetrates the aquifer, 2) well loss is negligible,and 3) the effective radius of the well has not been affectedby the drilling and development of the well and is equalto the nominal radius of the well.

From equations 1-3 the theoretical specific capacity ofa well depends in part upon the radius of the well and thepumping period. The relationships between theoreticalspecific capacity and the radius of a well and the pumpingperiod are shown in figure 11. Diagram A indicates that a20-inch diameter well has a specific capacity about 22percent larger than that of a 4-inch diameter well. It isevident that large increases in the radius of a well areaccompanied by comparatively small increases in specificcapacity. Diagram B shows that the specific capacity de-creases with the length of the pumping period as the coneof depression deepens and expands until vertical leakagethrough the confining bed into the aquifer balances dis-charge. It is evident that the yields of wells cannot becompared unless specific-capacity data are adjusted to a

Figure 11. Theoretical relation between specific capacity andradius of well (A) and pumping period (B)

common radius and pumping period base. The theoreti-cal specific capacity does not change with the pumping rate.

In addition to the drawdown in equation 1 there isgenerally a head loss or drawdown (well loss) in the dis-charging well due to the turbulent flow of water as it entersthe well itself and flows upward through the well bore.The specific capacity of a well taking into account well lossis defined by the following equation:

Q/s a = Q/ (s + sw) (4)where:

Q/sa = specific capacity, in gpm/fts = the laminar flow head loss due to the movement

of water through the aquifer towards the well,in ft

sW = the turbulent flow head loss due to the move-ment of water through the aquifer in the im-mediate vicinity of the well bore and the wellface, in ft

13

Page 20: REPORT 0F INVESTIGATION 46

Description and Analysis of Specific-Capacity Data

Step-drawdown tests have been made on about 45shallow dolomite wells in northern Illinois. Analysis ofavailable data indicates that the well-loss constant is afunction of 1) specific capacity and therefore the hydraulicproperties of shallow dolomite aquifers and 2) the positionof the pumping level in relation to the top of shallow dolo-mite aquifers. High values of C are computed for wellshaving low specific capacities, and low values of C arecomputed for wells having high specific capacities. Ap-parently turbulence and therefore well loss increases asthe specific capacity (and therefore the coefficient oftransmissibility) of the dolomite aquifers decreases. It isprobable that as the coefficient of transmissibility decreasesthe size and/or number of water-yielding openings in thedolomite decrease.

The well-loss constant increases greatly when water levelsare lowered below the top of the shallow dolomite aquifer.As the pumping level declines below the most productivewater-yielding openings in the upper part of the dolomitemaximum contribution from these openings is attained.Additional withdrawals place a greater burden on lowerand less permeable water-yielding openings and well lossis greatly increased. The relations described above areshown graphically in figure 13.

Figure 12. Theoretical relation between specific capacity andcoefficient of transmissibility

Well loss may be calculated from the following relation-ship (Jacob, 1946) :

s w = C Q2 (5)where :

sw= well loss, in ftC = empirical well-loss constant, sec2/ft5

Q = rate of pumping, in cubic feet per second (cfs)

In wells having appreciable well loss, the specific capaci-ty decreases with an increase in the pumping rate. Thus,the yields of wells cannot be compared unless well lossesare subtracted from observed drawdowns and the specificcapacities are computed on the basis of radial flow andas described by equation 1. The value of C in equation 5may be estimated from "step-drawdown" test data by usingthe equations given below. During a step-drawdown testthe well is operated during three successive periods of onehour at constant fractions of full capacity.

For steps 1 and 2

For steps 2 and 3

where:(6)

the s terms represent increments of drawdown producedby each increase ( Q) in the rate of pumping. Thecommonly used dimensions of s and Q are feet andcubic feet per second, respectively.When the well-loss constant is known, well loss can be

computed for any particular pumping rate from equation 5.The coefficient of transmissibility of an aquifer is re-

lated to the specific capacity of a production well and canbe estimated from specific-capacity data. The relationshipbetween the theoretical specific capacity in equation 1 andthe coefficient of transmissibility of a leaky artesian aquiferis given in figure 12.

Figure 13. Relation between well-loss constant and specitlc capacityand pumping level

Experience has shown that the constant-rate method oftesting production wells, when applied to shallow dolomitewells, has often resulted in erroneously optimistic predictedyields of wells under higher rates of discharge. The valueof C increases with higher pumping rates as water levelsdecline below major producing zones. The step-drawdowntest provides data that can be analyzed to obtain moreaccurate predictions of yields under various pumping-rate.conditions.

Drawdown at the end of each pumping period is plottedagainst the corresponding pumping rate, and a curve isdrawn through the points. The drawdown in the well

14

Page 21: REPORT 0F INVESTIGATION 46

Figure 14. Coefficient of transmissibility versus specific capacityfor several values of rw2/t

caused by a planned rate of discharge may be read directlyfrom the curve or approximated for higher pumping ratesby projecting the curve.

During the period 1921 to 1961, well-production testswere made by the State Water Survey on about 800shallow dolomite wells in northern Illinois. The well-production tests consisted of pumping a well at a constantrate and frequently measuring the drawdown in thepumped well. Drawdowns were commonly measured withan airline, steel tape, or electric dropline; rates of pumpingwere largely measured by means of a circular orifice atthe end of the pump discharge pipe.

The results of the tests are summarized in appendixtables A-D. Values of well loss were estimated for allwells from the results of step-drawdown tests, well-con-struction data, pumping-rate data in the appendix, andequation 5. Well losses were subtracted from observeddrawdowns, and specific capacities adjusted for well losseswere computed.

An artesian coefficient of storage and leakage coefficient,based on the results of aquifer tests in DuPage County andavailable geohydrologic data, and several values of t andrw were substituted into equation 1 to construct figure 14showing the relationship between specific capacity andcoefficient of transmissibility for several values of rw

2/t.This graph, specific capacities adjusted for well losses, anddata concerning the lengths of tests and radii of wells wereused to estimate theoretical coefficients of transmissibilityof shallow dolomite aquifers contributing to the yields ofwells. Specific capacities adjusted for well losses were thenfurther adjusted to a common radius and pumping periodbased on estimated coefficients of transmissibility and thegraphs in figure 14. The average radius, 0.5 foot, andpumping period, 12 hours, calculated from well-productionand well-construction data in the appendix, were used asbases. Observed specific capacities, adjusted for well lossesand to common radius and pumping period, also are givenin the appendix. Actual and adjusted specific capacitieswere divided by the total depths of penetration below thetop of the shallow dolomite aquifer to determine actualand adjusted specific capacities per foot of drawdownper foot of penetration.

No great accuracy is inferred for the adjusted specificcapacities because they are based on estimated well-lossconstants and on an average coefficient of storage andleakage coefficient. However, they come much closer todescribing the relative productivity of shallow dolomiteaquifers than do the observed specific capacities based onpumping rates, pumping periods, and radii which varyfrom well to well.

The yields of shallow dolomite wells are affected bymany man-made factors such as partial clogging of thewell bore, partial penetration of formations, poor wellconstruction, and acid treatment, in addition to naturalconditions. All of these factors and more must be takeninto consideration in appraising the relative, local, andregional productivity of the formations and aquifers.

YIELDS OF INDIVIDUAL SHALLOW DOLOMITE AQUIFERS

Many shallow dolomite wells in northern Illinois tapmore than one bedrock unit or shallow dolomite aquiferand are multiaquifer wells. The specific capacity of amultiaquifer well is the numeric sum of the specific capaci-ties of the individual units or aquifers. The yields of indi-vidual units or aquifers can be ascertained by studying thespecific capacities of multiaquifer wells.

Silurian Rocks

Many wells penetrate only rocks of the Niagaran (N)Series; some wells penetrate rocks of both the Niagaranand Alexandrian (A) Series; other wells penetrate rocksof both the Niagaran and Alexandrian Series and dolomitebeds in the upper part of the Maquoketa (M) Formation.

Wells in DuPage County were segregated (Walton andNeill, 1963) into three categories, N, N + A, and N + A+ M, depending upon the units penetrated by the wells.Specific capacities per foot of penetration for wells in eachof the three categories were tabulated in order of magni-tude, and frequencies were computed by the Kimball(1946) method. Values of specific capacity per foot ofpenetration were then plotted against percent of wells onlogarithmic probability paper as shown in figure 15. Spe-cific capacities per foot of penetration decrease as thenumber of units penetrated increase, indicating that theNiagaran and Alexandrian Series are more productive thanthe Maquoketa Formation, and the Niagaran Series ismore productive than the Alexandrian Series.

The unit specific-capacity frequency graphs in figure 16

15

Page 22: REPORT 0F INVESTIGATION 46

were constructed from the graphs in figure 15 by theprocess of subtraction taking into consideration unevendistribution of wells in the three well categories. The slopeof a unit specific-capacity frequency graph varies with theinconsistency of production, a steeper line indicating alarger range in productivity. The slopes of the unit fre-quency graphs indicate that the Maquoketa Formation ismuch less consistent in productivity than both the Niagaranand Alexandrian Series, and the productivity of the Alex-andrian Series is more consistent than the productivity ofthe other units.

Statistical analysis (Walton and Neill, 1963) of specific-capacity data for DuPage County indicates that significantcorrelations exist between specific capacities and the thick-ness of Silurian age dolomite at the well site, stratigraphicthickness of Niagaran unit penetrated by the well, andthickness of reef and associated strata at the well site.

Shallow dolomite wells penetrating Silurian rocks innorthern Illinois were segregated into two categories, Nand A, depending upon the uppermost unit beneath theglacial drift at well sites. Specific-capacity frequency graphswere constructed as shown in figure 17. The graphs indi-cate that the Niagaran and Alexandrian Series have aboutthe same productivity in areas where the rocks immediatelyunderlie the glacial drift.

Wells in Silurian rocks were segregated into two othercategories, those wells penetrating only the upper 33 per-cent of Silurian rocks and those wells penetrating the entirethickness of Silurian rocks. Specific-capacity frequencygraphs were constructed as shown in figure 18. The graphsindicate that the productivity of the upper 33 percent ofSilurian rocks is much greater than that of the lower 67percent of Silurian rocks.

The specific-capacity frequency graphs in figures 19-21were prepared to determine the relations between wellyields and the following geologic controls: 1) the glacialdeposits penetrated by the well immediately above bedrockare predominately till (clayey materials) ; 2) the glacialdeposits penetrated by the well immediately above bedrockare predominately sand and gravel; 3) sand and graveldeposits immediately above bedrock are less than 10 feetthick; 4) sand and gravel deposits immediately above bed-rock exceed 10 feet in thickness; 5) the well is in a bedrockvalley; and 6) the well is in a bedrock upland. Figure 19indicates that the productivity of the Silurian rocks isgreater in areas where sand and gravel directly overlieand are in hydraulic connection with the dolomite than itis in areas where relatively impermeable till directly over-lies the dolomite. Figure 20 indicates that the productivityof the Silurian rocks increases as the thickness of sand andgravel directly overlying the dolomite increases. Graphsin figure 21 indicate that the productivity of the Silurianrocks is greater in bedrock uplands than it is in bedrockvalleys.

Specific-capacity frequency graphs also were preparedto determine the relation between the yields of wells and

16

Figure 15. Relation between specific capacity and units penetratedby wells in DuPage County

Figure 16. Speciftc-copocity frequency graphs for units penetratedby wells in DuPage County

Page 23: REPORT 0F INVESTIGATION 46

Figure 17. Relation between specific capacities of wells in Silurian andOrdovician rocks overlain by glacial drift

Figure 18. Relation between speciftc capacity and depth of penetrationof wells in McHenry County

Figure 19. Relation between specific capacity and character of glacial drift

Figure 20. Relation between specific capacity and thickness of sandand gravel directly above Silurian rocks

17

Page 24: REPORT 0F INVESTIGATION 46

Figure 21. Relation between specific capacity and bearock topography Figure 22. Relation between specific capacities of wells inSilurian and Devonian rocks

the following geologic controls : 1) the well is in a bedrockanticline; 2) the well is in a bedrock syncline; 3) glacialdrift overlying the dolomite is thin; and 4) glacial driftoverlying the dolomite is thick. No significant relationexists between yields of wells and these geologic controls.

Graphs in figures 19 and 20 suggest that there is a goodhydraulic connection between Silurian rocks and overlyingglacial drift and that the productivity of Silurian rocks isprimarily controlled by solution openings in the upper partof the aquifer.

In northwestern Illinois Silurian rocks are at placesoverlain by Devonian rocks, and some shallow dolomitewells are open to both Silurian and Devonian rocks. Onthe other hand, some wells in northwestern Illinois pene-trate only Silurian rocks. Wells were segregated intotwo categories, Silurian (Sil) and Silurian and Devonian(Sil + Dev) depending upon the rocks penetrated bywells. Specific-capacity frequency graphs for these twocategories, based on appendix tables B and C and shownin figure 22, indicate that Devonian rocks contribute verylittle water to wells. Graphs in figures 23 and 24 indicatethat in areas where Silurian rocks are overlain by Penn-sylvanian, Mississippian, or Devonian rocks the produc-tivity of the Silurian rocks is low and about the samemagnitude as the productivity of the Maquoketa Forma-tion in northeastern Illinois.

Specific capacities for wells penetrating Silurian rocksin northeastern Illinois were divided by the total depths

Figure 23. Relation between specific capacity and character of depositsoverlying Silurian rocks in northern Illinois

18

Page 25: REPORT 0F INVESTIGATION 46

Figure 24. Relation between specific capacities of wells in Silurian and Figure 25. Specific-capacity frequency graphsOrdovician rocks overlain by bedrock for wells in northeastern Illinois

of penetration to obtain specific capacities per foot ofpenetration. Wells were segregated into 10 areas (LakeCounty, McHenry-Lake Counties, northern, central, andsouthern Cook County, DuPage County, Kane County,eastern and western Will County, and Kankakee County).Specific-capacity frequency graphs for the 10 categoriesare shown in figure 25. The productivity of the Silurianrocks is highest in DuPage County and lowest in centralCook County.

Ordovician Rocks

Specific-capacity data for wells penetrating Silurianrocks in northwestern Illinois are given in the appendix,table B. The specific-capacity frequency graph for thecase where Silurian rocks are overlain by glacial drift isgiven in figure 17. The, productivity of wells in Silurianrocks is about the same in northwestern Illinois as it is innortheastern Illinois, as is indicated by comparison of thefigure-l7 graph with the average specific-capacity frequencygraphs in figure 23 pertaining to similar geologic conditionsin northern Illinois.

Average specific-capacity frequency graphs for the twocases 1) where Silurian rocks immediately underlie theglacial drift and 2) where Silurian rocks are overlain bybedrock are shown in figure 23. The graphs indicate thatin northern Illinois, the Silurian rocks yield much morewater to wells in areas where the Silurian rocks are theuppermost bedrock than they do in areas where Silurianrocks underlie bedrock.

Available specific-capacity data for wells in the Galena-Platteville Dolomite in northern Illinois are summarizedin the appendix, table D. Wells were segregated into twocategories: 1) wells in areas where the Galena-PlattevilleDolomite is the uppermost bedrock and 2) wells in areaswhere the Galena-Platteville Dolomite is overlain by theMaquoketa Formation. A specific-capacity frequency graphfor the case where the Galena-Platteville Dolomite is theuppermost bedrock is given in figure 17. A comparison ofthis specific-capacity frequency graph with correspondinggraphs for Silurian rocks and the Maquoketa Formationshows that in areas where the Galena-Platteville Dolomitedirectly underlies the glacial drift the productivity of theaquifier is about the same as the productivities of Silurianrocks in areas where the Niagaran or Alexandrian Seriesimmediately underlie the glacial drift. The productivityof the Galena-Platteville Dolomite is much greater in theseareas than the productivity of the Maquoketa Formation.

A specific-capacity frequency graph for the case wherethe Galena-Platteville Dolomite is overlain by the Maquo-keta Formation is given in figure 24. A comparison of thespecific-capacity frequency graphs in figure 24 shows thatin areas where the Galena-Platteville Dolomite is overlainby bedrock the productivity of the aquifer is low and aboutthe same as the productivities of the Maquoketa Formation

19

Page 26: REPORT 0F INVESTIGATION 46

and Silurian rocks in areas where the Niagaran and Alex-andrian Series are overlain by bedrock. A comparison offigures 17 and 24 indicates that the productivity of theGalena-Platteville Dolomite is much lower in areas wherethe aquifer is overlain by bedrock than it is in areas wherethe aquifer directly underlies the glacial drift.

Very little is known about the yield of the MaquoketaFormation; few wells are open only to the MaquoketaFormation. As indicated from the specific-capacity unitfrequency graphs for DuPage County in figure 16, theproductivity of the Maquoketa Formation is in most areaslow and very inconsistent.

ACID TREATMENT OF WELLS TO INCREASE YIELD

Acid treatment has been used successfully to rehabilitateold shallow dolomite wells and to develop newly con-structed wells in northern Illinois. Many wells have beentreated with inhibited 15 percent hydrochloric acid inquantities ranging from 100 to 4000 gallons. The pumpand discharge column are usually removed from the wellduring the treatment period. Acid is introduced througha temporary line extending to a position near the bottomof the well. The solution is allowed to stand underpressure in the well for periods ranging from one-halfhour to four days and averaging about one day. Thepump is then reinstalled, and the spent acid is removedfrom the well during pumping periods ranging from oneto eight hours.

Well-production tests were made on a few wells beforeand after acid treatment. The results of the tests aresummarized in the appendix, table E. There is an ex-tremely large range (0-1190 percent) in improvement.Most improvements over 100 percent were recorded forrehabilitated wells; improvements generally less than 100percent were reported for newly constructed wells. Inseveral cases where little or no improvement was observedthe acid was allowed to stand in the well for short periods(one hour or less). The results of acid treatment of twowells are shown graphically in figure 26.

When wells are operated at high rates of pumping thepressure of the water in the shallow dolomite aquifer isgreatly reduced in the immediate vicinity of the well boreand in fractures extending some distance from the wellbore. Because of the decline in pressure carbon dioxide isliberated, and the water is unable to hold in solution itsload of mineral salts. Consequently calcium carbonate isprecipitated in the openings of the well face and well wall,and the permeability of the well face and well wall isgreatly reduced. This clogging is especially noticeable inthose wells with pumping levels below the top of the dolo-mite. The yields of clogged wells can often be restoredto their original values by acid treatment.

During the construction of many shallow dolomite wellssome very fine drill cuttings invariably infiltrate a short

20

Figure 26. Effects of acid treatment on yields of selected wells

distance into the water-yielding openings of the aquiferand reduce the permeability of the well wall. A newlycompleted well is often less than 100 percent efficient be-cause of the partial clogging of openings. With acid treat-ment the yield of a newly completed well can often beincreased by removing the fine materials which havemigrated into the openings of the dolomite.

Acid introduced into a well tends to flow into, andwiden, fractures leading into the well bore. Also the acidreacts with drill cuttings in openings and the dolomite ofthe well wall. The effect of the reaction with the massivedolomite of the well wall is to increase the radius of thewell bore. Large increases in the well bore result in com-paratively small increases in specific capacity because thespecific capacity varies with the logarithm of 1/ rw

2 . Severalthousand gallons of acid cannot dissolve in a day enoughmassive dolomite to substantially increase the radius of thewell bore. Thus, large increases in the yield of a shallowdolomite well can not be attributed to well bore enlarge-ment. However, the acid will penetrate considerable dis-tances along the fractures and will widen openings andincrease their permeability. In addition, the acid will dis-solve drill cuttings in openings and increase the permeabilityof the well wall.

The effect of treatment will vary according to thepermeability of the well wall before treatment. A tightdolomite with narrow openings will respond differentlythan one with openings of appreciable width. Furthermore, a formation which has been partially clogged during drill-ing will respond differently than one which has not beenclogged. Acid should be removed from the well before it

Page 27: REPORT 0F INVESTIGATION 46

is entirely spent; if acid remains in the well after it hasbeen spent, clogging due to iron falling out of solutionmay occur.

According to Muskat (1946), acid treatment will berelatively ineffective unless the shallow dolomite aquiferhas extended fractures or the openings are partially clogged.Increases up to about 50 percent for wells of initiallymoderate or high capacity may be explained on the assump-tion that the width of water-yielding openings of a smallradial zone about the well bore have been increased and/orthat drilling cuttings partially clogging the well wall havebeen removed. Moderate increases, 50 to 500 percent, maybe explained on the assumption that there are extendedfractures in the dolomite which are penetrated and widenedby the action of the acid or that mild clogging is the princi-pal factor in determining the initial yield of the well. In-creases larger than 500 percent can only be explained onthe assumption that there are extended fractures in thedolomite which are penetrated and widened by the acidor that there was initially a condition of almost completeclogging of the fractures.

Specific capacities per foot of penetration of newly com-pleted wells before and after acid treatment were tabulatedin order of magnitude, and frequencies were computed.Values of specific capacity per foot of penetration beforeand after acid treatment were then plotted against percentof wells on logarithmic probability paper as shown infigure 27. There was some improvement in the yields of

Figure 27. Effects of acid treatment on specific capacitiesof newly constructed wells

80 percent of the wells indicating that in most cases acidtreatment will increase the initial yields of newly com-pleted wells. Improvement increases as the specific capacityincreases. In 50 percent of the wells tested, improvementaveraged over 100 percent.

Frequency graphs for rehabilitated wells are shown infigure 28. There was some improvement in all wells indi-

Figure 28. Effects of acid treatment on specific capacitier of old wells

cating that in most cases the specific capacity of a wellwhose yield has deteriorated because of partial clogging ofwater-yielding openings by incrustation can be greatlyincreased with acid treatment. In 50 percent of the wellstested, improvement averaged over 150 percent.

PREDICTING THE YIELDS OF WELLS

The productivity of the shallow dolomite aquifers isvery inconsistent, and it is impossible to predict with ahigh degree of accuracy the yield of a well before drillingat any location in undeveloped areas. However, the prob-able yields of wells can be estimated based on specific-capacity frequency graphs, aquifer thickness and area1geology maps, and water-level data. Probable ranges ofspecific capacities of shallow dolomite wells in northernIllinois were estimated as the products of the specificcapacities per foot of penetration measured in 50 percentof the wells (see figures 15-25) and aquifer thicknesses. Itwas assumed that wells completely penetrate the Silurian

21

Page 28: REPORT 0F INVESTIGATION 46

rocks or the Galena-Platteville Dolomite. Aquifer thick-nesses were estimated from figures 4-7 and from well-logand water-level data.

Probable yields of shallow dolomite wells were estimatedfrom computed specific capacities and water-level data.Computed specific capacities were multiplied by availabledrawdowns to determine yields of wells. Pumping levelswere limited to depths below the top of the dolomite equalto about one-third of the thickness of the aquifer. Undersuch conditions the most productive water-yielding open-ings in the dolomite will be discharging freely into the well,and maximum use of upper openings is attained. Addi-tional discharge with pumping levels much below the upperone-third of the aquifer will be accompanied by rapidlydeclining specific capacities and yields of wells.

The probable range of yields of shallow dolomite wellsin northern Illinois is shown in figure 29. It is possible todrill what is essentially a dry hole at any location; however,from data for 50 percent of existing wells, the chances of

obtaining a well with a production of 250 gpm or moreare good in all areas except areas where the Silurian rocksand Galena-Platteville Dolomite are thin or where theMaquoketa Formation is the uppermost bedrock. Thechances of obtaining a well with a production of 500 gpmor more are good in large portions of northeastern andnorthwestern Illinois. In the southern part of northwesternIllinois and south of a line extending through Iroquois,Ford, McLean, Woodford, and Peoria Counties (see figure29), the quality of water in the shallow dolomite aquifersis unsuitable for most public use (exceeds 1500 parts permillion total solids). The yields of shallow dolomite wellsin areas where the quality of water is poor are not con-sidered in this report. From figure 29 it is probable thatthe yield of the dolomite aquifer is high enough to supportheavy industrial or municipal well development in !argeparts of northern Illinois.

The specific capacities used to compute probable yieldswere adjusted to a well radius of 0.5 foot and a pumpingperiod of 12 hours; therefore, the probable yields of wells

Figure 29. Estimated yields of shallow dolomite wells in northern Illinois

22

Page 29: REPORT 0F INVESTIGATION 46

Figure 30. Possibilities for occurrence of sand and gravel above bedrock in northern Illinois

given in figure 29 are valid only for these conditions.Probable yields for other conditions can be estimated withfigure 11.

For design purposes, the hydrologist may wish to basethe computation of the probable yield of a well on aspecific capacity with a particular frequency other than50 percent. In this event, the probable yield indicated in

figure 29 is multiplied by the ratio of the specific capacitywith the selected frequency (see figures 15-25) and thespecific capacity with a 50 percent frequency to obtain theprobable yield of the well based on the selected frequency.

Highest yielding wells will probably be located in areaswhere possibilities for occurrence of sand and gravel is bestas indicated in figure 30 and in bedrock upland areas asindicated in figure 31.

23

Page 30: REPORT 0F INVESTIGATION 46

Figure 31. Bedrock topography of northern Illinois

CONCLUSIONS

Statistical analysis of specific-capacity data provides abasis for judging whether or not significant relationshipsexist between the yields of shallow dolomite wells andgeohydrologic controls. Specific-capacity frequency graphsshed much light on the role of individual units uncased inshallow dolomite wells as contributors of water.

It is recognized that precise evaluations of yields ofshallow dolomite wells in undeveloped areas is impossible.However, statistical analysis combined with a knowledge ofgeohydrologic conditions does take much of the guessworkout of estimating probable yields.

To refine estimates of probable yields of shallow dolomitewells the following investigations are recommended:

1) geophysical logging and well testing to determine thenature and occurrence of water-yielding openings

24

2) geohydrologic studies to determine the hydraulic con-nection between water-yielding openings in the upper andlower parts of shallow dolomite aquifers

3) geohydrologic studies to delineate areas where reefsare present

4) geohydrologic studies to delineate more accuratelyfavorable and unfavorable areas for development of highcapacity wells

5) collection of more complete data on the specificcapacities of wells open only in the Maquoketa Formation

6) geohydrologic studies to determine why yields ofshallow dolomite wells are greater in bedrock uplands thanin bedrock valleys

7) continuing studies of actual ground-water develop-ment so that predicted and actual well behavior can becompared.

Page 31: REPORT 0F INVESTIGATION 46

REFERENCES

Bergstrom, R. E. 1956. Ground water geology in westernIllinois, north part. Illinois Geol. Survey Circ. 222.

Bergstrom, R. E., J. W. Foster, L. F. Selkregg, and W. A.Pryor. 1955. Ground water possibilities in northeasternIllinois. Illinois Geol. Survey Circ. 198.

Bergstrom, R. E., and A. J. Zeizel. 1957. Groundwatergeology in western Illinois, south part. Illinois Geol.Survey Circ. 232.

Hackett, J. E. 1960. Ground-water geology of WinnebagoCounty, Illinois. Illinois Geol. Survey Rept. of Invest.213.

Hackett, J. E., and R. E. Bergstrom. 1956. Groundwaterin northwestern Illinois. Illinois Geol. Survey, Circ. 207.

Hantush, M. S., and C. E. Jacob. 1955. Non-steady radialflow in an infinite leaky aquifer. Trans. Am. Geophys.Union v. 36(1).

Horberg, Leland. 1950. Bedrock topography of Illinois.Illinois Geol. Survey Bull. 73.

Jacob, C. E. 1946. Drawdown test to determine effectiveradius of an artesian well. Proc. Am. Soc. Civil Engrs.v. 72(5).

Kimball, B. F. 1946. Assignment of frequencies to a com-pletely ordered set of sample data. Trans. Am. Geophys.Union v. 27.

Muskat, Morris. 1946. The flow of homogeneous fluidsthrough porous media. McGraw-Hill Book Co., NewYork.

Selkregg, L. F., and J. P. Kempton. 1958. Ground watergeology in eastern-central Illinois. Illinois Geol. SurveyCirc. 248.

Suter, Max, R. E. Bergstrom, H. F. Smith, G. H. Emrich,W. C. Walton, and T. E. Larson. 1959. Preliminaryreport on ground-water resources of the Chicago Region,Illinois. Illinois State Water Survey and Geol. SurveyCooperative Ground-Water Rept. 1.

Walton, W. C. 1953. The hydraulic properties of a dolo-mite aquifer underlying the village of Ada, Ohio. Stateof Ohio, Div. of Water, Tech. Rept. 1.

Walton, W. C. 1960. Leaky artesian aquifer conditions inIllinois. Illinois State Water Survey Rept. of Invest. 39.

Walton, W. C., and J. C. Neill. 1963. Statistical analysisof specific capacity data for a dolomite aquifer. Jour. ofGeophys. Research v. 68 (8) : 2251-2262, April.

Zeizel, A. J., W. C. Walton, T. A. Prickett, and R. T.Sasman. 1962. Ground-water resources of DuPageCounty, Illinois. Illinois State Water Survey and Geol.Survey Cooperative Ground-Water Rept. 2.

25

Page 32: REPORT 0F INVESTIGATION 46

A P P E N D E X

Per foot

d o w ni n g

Non-Specific

Length Pump- Pump capacity capacity

Year ing -

of Specificper foot

DepthDiam Pene D r a wYear of pene- Specific of pene

of t e s t level Rate

Ownereter tration capacity tration

( f t) ( f t) drilled test (h r) (f t) ( ft) (gpm/ft ) (gpm/ft 2 )

Unadjusted

Specific

Table A. Specific-Capacity Data for Wells in Silurian Rocksand Maquoketa Formation in Northeastern Illinois

Adjusted

(in) ( gpm)c a p a c i t y t r a t i o n

(g p m / f 2 ) ( gpm/ f t )Well

number

1.2a (1)1.2a (1)1.2c (3)

12.3b 12.4d

13 (1)

14.6a (2)

23.1h (1)

23.2c

25.1g (6)

25.5f

26.8f (2)

29 .3d

35N13E-

C O K —

3.4b (4)

12.8f(5)

13.7c (2)

14.6f (2)

23.2c (T)

25.1e (5)

25.5f (3)

26.5h (1)

26.8f (2)

Flossmoor (V)Floossmor (V)F lossmor (V)Country Club HillsFlossmoor (V)A. Hr i t shFlossmoor (V)Olympia Fields CCb.Olympia Fields CCb.Olympia Fields (V)Rich Township H.S.

Olympia Fields (V)LionvillePark Forest (V)Park Forest (V)Park Forest (V)Park Forest (V)Park Forest (V)Matteson (V)Matteson (V)Matteson (V)Public Service Co.of N. I11.Public Service Co.of N. I11.Park Forest (V)Indian Wood CCb.Park Forest (V)

29.3d

30.7f (2)36.1a 36.3h (4)

35N14E-33.1g6.5b (2)6.7h (2)7.5c7.5c9.6g9.6g

275275467382250470500370187270303

169463463345361350300282305305158

156

300300350

150153351436280280220220

240240240309309309309

1 01 01 61 21 2....1 11 01 51 2....

1 01 21 21 71 61 61 21 01 212

8

8

1 51 21 2

66

1 22 11 21 21 212

8888888

1939 19451941 1941........ .........1952 19521923 ........

1939 1940

1956 1956....... ........1925 19251958 19581960 1960

........0.38...................7............86

42.5......

237

15241410......3/4

4

31024

......3

0.30.3......311

......

......2......22......

19561950........19531958194819521914195619561948

3820383252

1954737

3171

416155

951946

82516

2

8.4

102046

51120

2426

20113460....

856.5351320

0.1000.0220.1570.175........

........

........0.352..........

........0.4330.4500.592........0.3160.315

0.762

0.494

0.061

0.044

0.213

0.0790.0170.0540.051

0.023........

0.102.......... . . . . . .0.0810.0900.472. . . . . .0.1460.055

0.122

0.456

0.042

........

........

0.170

11.5018.80

8.3045.5036.30

1.0018.00

207.00116.00

62.3013.20

210.00160.00166.00144.00

13.8042.0074.5033.30

162.0045.3038.50

1948

194719291952

1946.......1928194519521952195919591946194619461937193719371937

0.525 51.30 0.723

128.0018.5054.00

8.752.85

38.501.80

90.50101.0018.2019.50

2.37.........24.30

2.885.559.12

19.30

Well-Numbering System

The we l l -number ing sys t em used i n t h i s r epo r t i s ba sed on t he

loca t i on o f t he we l l , and u se s t he t ownsh ip , r ange , and s ec t i on fo r

i den t i f i c a t i on . The we l l number cons i s t s o f f i ve pa r t s : coun ty ab -

b r e v i a t i o n , t o w n s h i p , r a n g e , s e c t i o n , a n d c o o r d i n a t e w i t h i n t h e

sec t i on . Sec t i ons a r e d iv ided i n to rows o f one -e igh th -mi l e squa re s .

Each one -e igh th -mi l e squa re con ta in s 10 ac re s and co r r e sponds t o

a q u a r t e r o f a q u a r t e r o f a q u a r t e r s e c t i o n . A n o r m a l s e c t i o n o f

o n e s q u a r e m i l e c o n t a i n s e i g h t r o w s o f e i g h t h - m i l e s q u a r e s ; a n

o d d - s i z e d s e c t i o n c o n t a i n s m o r e o r f e w e r r o w s . R o w s a r e n u m -

be red f rom ea s t t o wes t and l e t t e r ed f rom sou th t o no r th a s shown

i n t h e d i a g r a m ; t h e n u m b e r o f t h e w e l l s h o w n i s C O K 4 1 N 1 1 E -

25 .4g . Where t he r e i s more t han one we l l i n a 10 -ac r e squa re t hey

a re i den t i f i ed by a r ab i c number s a f t e r t he l ower ca se l e t t e r i n t he

wel l number .

A n y n u m b e r a s s i g n e d t o t h e w e l l b y t h e o w n e r i s s h o w n i n

pa ren these s a f t e r t he l oca t i on we l l number . Fo r example , t he f i r s t

w e l l l i s t e d i n t a b l e A b e l o w i s o w n e d b y t h e V i l l a g e o f F l o s s m o o r

and i s known a s V i l l age We l l No . 1 , wh ich i s i nd i ca t ed by (1 ) i n

t h e w e l l n u m b e r C O K 3 5 N 1 3 E - 1 . 2 a ( 1 ) . D i r e c t i o n a l t i t l e s u s e d

b y t h e o w n e r a r e i n d i c a t e d b y ( N ) f o r N o r t h W e l l , e t c . ; T e s t

Wel l s a r e i nd i ca t ed by (T ) .

0.6300.0820.227

0.0850.0450.1560.0070.3930.4400.1000.107

0.012........0.1180.0110.0230.0380.076

15.006.60

15.6310.45

0.389.57

167.0093.0018.1510.55

95.0030.0033.30

115.00

33.9012.9525.0026.0036.20

37.30

102.5012.5012.95

2.2821.00

1.4546.7025.8014.5510.30

19.40

4.44

6.75

7.00

2.17

11.08

35.50

7.90

........

2.30

5.61

190379289207......

......177

370

103

256

230

182

205

205

246

254

203

237

71

......

370

......

237......

213

190

408......

......

244

133

213

78

227

63246

230

182

205

246

241

0.5050.0550.055

0.0680.0360.0850.0060.2030.1120.0800.057

0.011........0.0950.0090.0180.0230.027

C o o k C o u n t y

T 4 1 N , R 1 1 E ,

sec 25

The abb rev ia t i ons u sed fo r coun t i e s a r e :

B N E B o o n e J D V J o D a v i e s s MRS Marsha l l

B U R B u r e a u K E N K e n d a l l O G L O g l eC A R C a r r o l l K N E K a n e P E O P e o r i aC O K C o o k K N K K a n k a k e e P U T P u t n a m

D E K D e K a l b K N X K n o x R I S R o c k I s l a n dD U P D u P a g e L A S L a S a l l e S T E S t e p h e n s o nF R D F o r d L E E L e e S T K S t a r kF U L F u l t o n L I V L i v i n g s t o n W A R W a r r e nG R Y G r u n d y L K E L a k e W I L W i l lH A N H a n c o c k MCD McDonough WIN WinnebagoHND Henderson M C H M c H e n r y WTS Whiteside

H R Y H e n r y M E R M e r c e r WDF Woodfo rd

Othe r abb rev i a t i ons u sed in t he t ab l e s a r e :

( V ) V i l l a g e o w n e d Sbd. Subdivision

( C ) C i t y o w n e d C C b . C o u n t r y C l u b

( T ) T o w n o w n e d Pres. Preserve

19561950195019531958194819521914195619581948

1948

194719291952

19461939194519451952195219591959

1946194619461946194619471940

Glenwood (V)Camp Thorton, CCCFlossmoor (V)Homewood (V)Flossmoor CCb.Flossmoor CCb.. N. Ill. Gas Co.N. Ill. Gas Co.

Gold Seal Asphalt Co.Gold Seal Asphalt Co.Gold Seal Asphalt Co.Gold Seal Asphalt Co.Gold Seal Asphalt Co.Gold Seal Asphalt Co.Gold Seal Asphalt Co.

15.8a1 (3)15.8a1 (3)15.8a1 (3)15.8a2 (1)15.8a2 (1)15.8a2 (1)15.8a2 (1)

47 30090 30064 25060 500

7 54430 7540 45018 500

1.5 65042 56046 748

17 38031 48033 50050 57546 105041 64539 595

8 20020 65033 58027 71

26 313

57.5 105210 25039 595

18 3514 2540 42035 35012 28012 51710 16010 350

32 13032 3032 15563 13063 15568 7355 135

26

Page 33: REPORT 0F INVESTIGATION 46

Table A (Continued)

C O K —

35N14E-(Cont'd)

0.005........

. . . . . . .

0.0060.0180.056

0.0060.0010.0020.0850.0860.1030.2160.1640.2500.2550.2480.1630.2250.1750.4120.3240.0090.0080.004

0.3530.0520.0060.007

0.0850.0560.0690.010

0.0270.016

0.021

.........

........

........

0.012........................0.0390.0170.0240.0880.0180.0230.050..........

88 100052 350

102 70108 60110 13035 34070 30079 30079 10570 12040 10035 5835 12336 350

106 325111 21058 5106 88

49 52095 50097 250

37.105.940.900.972.173.402.222.860.400.50........................1.563.254.47

26.803.394.687.70

16.65

254756....2475

160877516

11127517830301739282445.54055284626358080

196

14

2759786260

100135105260240

....

.....

....224100471926

1116515

82786778

1871180

18114848............

21333166........0.212.1....45

26

103.578188

36201

257

55

135

1327

1201513................

59 150059 200059 200082 500.... 30063 60056 69056 90056 115074 100045 75

9.5 2201955

19561956........189718971960........195319491959

Unadjusted Adjusted

Specificcapacityper foot

Specific of pene- Specificcapacity tration capacity(gpm/ft ) (gpm/ft2 ) (gpm/ft )

Specificcapacityper footof pene-tration

(gpm/ft 2)

254254269......243. . . ......170165133

1937193719371937193719531953194119411941

Diam- Pene-eter tration(in ) (ft)Owner

Depth(ft )

Gold Seal Asphalt Co.Gold Seal Asphalt Co.Gold Seal Asphalt Co.Gold Seal Asphalt Co.Gold Seal Asphalt Co.Gold Seal Asphalt Co.Gold Seal Asphalt Co.Gold Seal Asphalt Co.Gold Seal Asphalt Co.Gold Seal Asphalt Co.

Victor Chemical Co.Victor Chemical Co.Victor Chemical Co.Dawes LaboratoryAlcoa Products, Inc.Chicago Heights (C)Chicago Heights (C)Chicago Heights (C)Chicago Heights (C)Chicago Heights (C)Chicago Heights (C)Chicago Heights (C)Chicago Heights (C)Chicago Heights (C)Chicago Heights (C)Chicago Heights (C)Lincoln-Dixie TheatreLincoln-Dixie TheatreLincoln-Dixie Theatre

238395395212212228196196145145145202202190168168182(302)(302)

......

105115213213.....

404040404040404040

274274306193201155......

19411941194119571957........1941194119451945194519461946194619581958193819381938

1936Diamond BraidingMills

Chicago Heights (C)Victor Chemical Co.Victor Chemical Co.Victor Chemical Co.Victor Chemical Co.Victor Chemical Co.Victor Chemical Co.Victor Chemical Co.Victor Chemical Co.Victor Chemical Co.Victor Chemical Co.Victor Chemical Co.Victor Chemical Co.Victor Chemical Co.Flintkote Co.Flintkote Co.Flintkote, Tile-Tex.Penn. Salt Mfg. Co.Victor Chemical Co.Victor Chemical Co.Victor Chemical Co.

450210330

200

309309309309309425425205205205

275433433250250330251251203203203260

270260

450

330

193

250252

250......400400400400400400400400400300300416215250250......

499499510499510474425450450332332332332

450450450250222222222222222248205

191719451955195519551909190919091909190919091909190919091946194619511954195619561955

E. Chicago Hts. (V)E. Chicago Hts. (V)E. Chicago Hts. (V)E. Chicago Hts. (V)E. Chicago Hts. (V)Sauk Village (V)Inland Steel Co.Chicago Heights (C)Chicago Heights (C)Inland Steel Co.Inland Steel Co.Inland Steel Co.Inland Steel Co.

8888

12

24

12

24101010

101010101010101010181817.361515

1616121612121519198

8

23232312101012.312.312.312

8

12126

612126

8

12

888

1515151515......

242323232323232424............

....

....

88

8

6

510

419419452419453396302383168132132132132

1958195819531958195319591953195819581900190019001900

Chicago Heights (C)Chicago Heights (C)Chicago Heights (C)S. Chicago Hghts. (V)Amer. Locomotive Co.Amer. Locomotive Co.Amer. Locomotive Co.Amer. Locomotive Co.Amer. Locomotive Co.Alco Products Inc.Ex-Service Men’s Club

161161161168160160174174174175116

J. DeChico 304

3450.00........

900.000549.00

1000.001.67

8.45

4.527.05

25.0029.8029.4015.90

6.60240.00

0.4057.30

Orland Park (V)Orland Park (V)Cook Co. Forest Pres.Orland Park (V)Orland Park (V)Orland Park (V)U. S. GovernmentAndrews Corp.J. KolenskiFernway Utility Co.

Y e a rdrilled

Non-Length pump- Pump-

Year o f i n g i n g Draw-of test level r a t e d o w ntest (hr) ( ft ) (gpm) (ft)

1940193719551953195319531955194619461953

19411941194719571957194619411945194519451948

19461956

194619581959193819381938

1936

19471947

1955195519551921192319291930194519451945194519461946

19511951

1954195619561955

1958195819531958195319591953196019581900194519451945

19601960196019561910191019421942194219591953

19601960196019561945194519421942194219591953

211

237237

80119119310

93105

267

397397218329329453253249212125

19561958

1955

1936........

194319601956195319491959

35382740405240404038

Wellnumber

55 170185....82

......40

2566 12038 11840 37525 9240 22272 120

36.5 14737 14537 1309 5449 544

20 400...... 1650...... 90022 87022 168026 144033.5 180033.5 127026 150052 180050 190084 10084 15084 198

6.823.941.46........5.001.572.341.062.967.50

1.320.530.73

18.1018.1523.5042.4032.2036.3037.0036.0032.8045.5032.60

54.3069.30

1.251.871.87

31.40

........20.001.962.93

12.253.70

8.504.932.16

24.00

1.650.660.73

22.5022.5028.5053.10

173.10158.5046.4045.0041.0057.0040.8084.3067.801.552.521.69

........

46.3011.505.383.92........5.904.505.500.560.69........................4.504.075.60

35.603.46

17.3520.5020.80

2.052.062.001.901.34

116.0011.2233.0035.0020.00

........

........

........

89.5076.0081.00

9.50................

3470.003210.083200.001250.00

1.80

......

......

......

......

......

......

......

......

0.8242424

......

1212140.3......

231

18

2.3

1 .5......

55

. . . . . .

422 .83 .5

12......

6962

24......11

320

......

1 . 362.53

316.52424

4

7.5

........88

12

15

2.513

......

......

......

......

.................................................................

......

.....

..................

......

......

......

......

245

110 440

135130110126200

l016400500435450125183220

45855025

238235572132240

10400

16.2a (3)

17.6a1 (18)

17.6a2 (21)

19.2e (23)

19.7a (25)

20

21.1h3 (4)21.1h1 (6)

21.2h (1)

21.2h (1)

22.8h1 (5)

22.8h3 (8)

21.4a (3)

22

22.8h2 (10)

21.1h2 (7)

21.2h (1)21.2h (1)21.2h (1)

21.7e (1)

21 (15)

21.1h1 (6)

21.2h(1)21.2h(1)21.2h(1)21.2h(1)

21.4a(3)

15.8a2 (1)15.8a2 (1)15.8a2 (1)15.8a2 (1)15.8a2 (1)15.8a3 (4)15.8a3 (4)15.8h (2)15.8h (2)15.8h (2)

16.2a (3)16.2a (3)

16.2f (1)16.2f (1)17(19)

17.6a1 (18)17.6a2 (21)

17.6a2 (21)19.2e (23)

19.4c (22)19.7a (25)

2 0

20

21

1.671.65

5.00

2.94

........

71.5060.6064.607.58

1.65

1.621.07

92.40

2.76

9.38................

........

23.4b23.5a23.5b23.6e

28 (2)28.1g (24)28.1g (24)

28.5h (W)

29.6e (3)29.7f (3)32.1a

23.4b

25.3c (2)

28.5h (W)

28.5h (W)28.5h (W)

29 (26)29 (26)29 (26)29.1c29.5e (1)29.5e (1)29.6e (3)29.6e (3)

0.0040.0020.2330.0170.0070.0180.071........

0.3760.4000.045.........

20.7005.4203.300

0.014

0.445

0.0040.0040.004

.................

........

5.750

0.040

0.0190.0300.3130.2500.2470.0510.0712.2850.0158.200

10.00

7.7719.2026.1039.6039.2031.807.78

320.000.41

92.00

0.020

........0.084...............0.7220.0230.117

0.0020.0030.1160.1160.125

0.3200.3100.1990.2820.2150.5020.405

0.007

........

0.1000.0360.028........0.1470.111

0.0140.017.........................

0.0200.1160.018

........

0.0040.005

0.0370.0090.021

........

.......

........

0:5030.057

20.90019.35019.300

0.015

0.5560.473

0.0050.005

0.0030.294

0.151

0.015

0.0870.132

0.034

0.008

0.008

0.8850.270

1.090

0.0110.010

0.453

0.137

........

........

7.150

0.047

0.0330.0810.3260.3330.3300.1020.0843.0500.016

13.150

27

17.1g17.4b22.2d

9.3g (1)9.3g (1)9.8a (3)16

36N12E-4.1a (2)

54.1a (2)

35N15E-20.6d

Page 34: REPORT 0F INVESTIGATION 46

Table A (Continued)Unadjusted Adjusted

Specificcapacityper root

Specific of pene-tration

(gpm/ft ) (gpm/ft 2 )capacity

Specificcapacity(gpm/ft)

Specificcapacityper footof pene-tration

(gpm/ft 2 )Depth(ft )

Non-Length pump- Pump-

of ing ing Draw-test level rate down(hr) (ft ) (gpm ) (f t)

Diam- Pene-eter tration Year(in) (ft) drilled

Yearoftest

362103

365386370370

0.0140.817

0.0480.0080.0080.0580.011

0.0740.0160.0140.0720.015

22(2)28.2a28.2a32

36N15E-23

37N11E-14.8b

1010

20191919

6

1216151212

6

15....

61010101010101212128

121212886

....

106

101010

6....6

8

6106

10

8

6108

12

5

824202015151515171517171766886

68

10

19541954

19541955

1951195119501950

1951195119501951

243 1941 1947

231371371304263

1952 19521959 19591959 19591957 19571956 1956

1527221445

98......

152216

182182182182146160357357375260385385332

97153381

........

1960........

19571911191119111911192219461953195319461946192319231928194319431940

1952........

1960195719461923

19431945

192219461953195319461946192319411928194619441946

1340503677263434162341412542309276539729

0.37......

16472

242

129242

255 66500 11

510 10680 80260 170835 166

35 5

346 31350 118350 125700 40270 95

24 6755 14

140 11014 36

285 39170 22245345 120

134

240 73195 103530 38520 33230 300180 167 5 195100 61160

43130

100100 10103 18

14 38

120 57127 5173 6390 12.5200 4

30 136 6030 6

65 14

50 3250 24200 9

500 25

80 38

50 17480 82

120 12302 95

15 62

125 741000 50900 143118 7500 22650 20500 20500 11500 22500 24500 25500 22500 2270 10

210 1540 1833 455 33

100 51110 82290 48

. . . . . .

0.0130.3520.1190.1290.387

. . . . . .

0.0150.4150.1480.2100.490

62

153......

1957

19511927193019301947

........1945

1957

19511941194519471947

1949.......

........

3.86 0.011 5.2145.50 0.442 84.25

51.008.501.535.03

0.1400.0220.0040.014

101.5017.75

2.0613.30

0.2780.0460.0060.036

7.00 0.029 7.38 0.030

11.152.972.81

17.502.84

16.955.855.25

21.903.98

0.363.931.270.397.327.741.832.883.291.891.40

15.750.77

11.250.381.641.232.33

10.005.72

0.004.......0.0060.0030.0400.042

0.0170.0220.0120.0040.0420.0020.0430.0010.0040.0040.024

0.0150.065

0.45........1.550.509.179.002.453.004.142.201.75

47.200.97

14.100.482.071.542.50

22.208.06

0.005

0.007........

0.0030.0500.0500.0130.0170.0280.0140.0050.1320.0030.0540.0010.0050.0050.0260.1450.016

0.38

2.1125.4028.9031.2050.00

2.4529.9035.8050.9063.50

30.000.605.00

0.484 31.40......... ........0.033 5.25

0.506........0.035

......

......

......

8

148

6

4.65 0.034 5.66 0.041

16.6510.41 0.061

........

22.20 0.171

20.0214.1028.20

........0.0820.217

20.00 0.200 36.30 0.363

2.10 0.017 2.27 0.019

32.5g1 (1)32.5g2 (T)33(1)

200369

92395

6876

0.290.98

10.003.18

0.0020.0041.1110.010

........1.09

12.404.55

.......

1.3780.145

0.24 0.001 0.25 0.001

385352358358385385385385313313313313313370330327327377

325375420

274277299280285285285285248248248248252260140260260193

82313341

111754878606098406267659861

11095676754

757481

1.6920.006.30

16.8522.7032.5025.0045.5022.7020.8020.0022.7022.707.00

14.002.228.251.67

0.0060.0720.0210.0600.0800.0850.0880.1600.0920.0840.0810.0920.0900.0270.1000.0090.0320.009

2.2026.00

8.2021.9045.0042.3032.5078.0029.5027.1026.0029.5029.5012.7018.20

3.5010.30

3.67

0.0080.0940.0270.0780.1580.1180.1150.2730.1200.1090.1050.1200.1170.0490.1300.0130.0400.019

1.961.346.05

0.0240.0040.018

2.55 0.0311.74 0.005

0.023

Wellnumber Owner

COK—

36N12E-(Cont’d)25.5c30.2b

36.1g1 (2)36.1g2 (3)36.3f (1)36.3f (1)

Southlands Sbd.N. Amer. MushroomCo.Tinley Park St. Hosp.Tinley Park St. Hosp.Tinley Park St. Hosp.Tinley Park St. Hosp.

459200

515489

491491

36N13E-l.lg Libby, McNeil, &

LibbyOak Forest (V)Sherry BuildersWillowick EstatesCountry Club HillsCountry Club Hills

300

162222.6b34.5e (1)34.7b

297455455387373

33.5f34.5d (1)34.5d (1)34.5h1 (2)34.5h2 (3)34.5h2 (3)36.2h (T)

31.6h (T)31.6h (T)31.8d (3)

32

36N14E-613.7b19.5e23.2a31.5d (1)31.5d (1)31.5d (1)31.5d (1)

31.8d (3)

Cook Co. Forest Pres.Brown Packing Co.Coca-Cola Bottling Co.Illinois Hwy. Div.Homewood (V)Homewood (V)Homewood (V)Homewood (V)Homewood (V)Homewood (V)Ravisloe Golf ClubRavisloe CCb.Wash. Pk. Race TrackOak Lawn CemeteryThornton (V)Thornton (V)Thornton (V)Thornton (V)Thornton (V)Homewood (V)

144386280250252252252252210226420420400302477477408250250460

Hwy. Div. Storage 250

Alexander ChemicalCoghill Golf & CCb.Fournier InstituteFournier InstituteLemont Packing Co.

191172370

244370

37N12E-789

147......302

18.8h

2630.2f32

35.4b

37N13E-4

Cook Co. Forest Pres.Camp Kwanis ScoutsCCC Camp, PalosHillsU. of Chicago Expt.Sta.Ill. Bell TelephoneSt. Coletta SchoolPalos Park El. Sch.Dist.Palos—Highlands Sbd.

308

352

250350

234

Linder Sch.—Chi.Dist.Ill. Bell TelephoneRidgeland Sbd.Ridgeland Sbd.Playfield Sbd.

215

8.8b

37N14E-13 Cal—Auto Wreckers 292

38N12E-2.6d

16.4c

5.3e (6)5.4d (5)5.4d (5)5.8c (1)5.8c (1)5.8c (1)5.8c (1)5.8d (2)5.8d (2)5.8d (2)5.8d (2)5.8d (2)8.1a8.3h9.5a9.8d

Werner Mfg. Co.LaGrange (V)LaGrange (V)LaGrange (V)Western Springs (V)Western Springs (V)Western Springs (V)Western Springs (V)Western Springs (V)Western Springs (V)Western springs (V)Western Springs (V)Western SpringsCountry Club Hts.

(V)

LaGrange Field ClubMark MagisanoMark MagiranoSch. Dist. 105,Lyons Twp.Finn Construction Co.Midwest Water Co.Coronet Construction

16.8e

17.2c17.1a

137

172......

130

100

121

135270

9313

200

44

0.86

1210

15

31.55

104

.............7

2472

1

2813

12142226

25

......

20.......

1.57214......0.3......441

24 36

12.552.8

......

772

120105132

70100103

158

528647

57

......

......

43.5

......

50

18

4.56.8

120.5

1233.8

12......

3.32.53.8............2

2421.3

1021.3

........

1944

196019501957

1953

1945

1959195719581959

1959

195719491947194719241924192419241930193019301930193019551955195019501951

195419521953

1944

196019501957

1953

1945

1959195719581959

1959

195719491947195019371942195419241937

19511946

19311954

19551955

19501950

1951

1954

19531952

28

Page 35: REPORT 0F INVESTIGATION 46

120299232232289

17725325325330

35491

361102102

58

249

142314

212211286

221295

229121

19591957195219521952

1957194719471947.......194819511957195319531954

19591957195219521952

1957194719581960........194819511957195319581954

38N13E-20.1e (1)20.7d (2)29.5c 29.5d 29.6c

300215

12 2436 77

....

....10126

126

105

1010

1952195219351942.........195519371958195719301959

47

57173

17017325

17275363520604437

12 416 1236 265 265 426 45 55 1475 85

16 17716 17616 18012 2886 2506 686 115 685 3

610121215

8

88

8686

10101010

10

.....

.....

8

88

68

12

45

0.0100.0330.0070.0110.065

0.0320.0060.0070.0070.0460.1040.0900.2770.0610.2280.213

0.005

4591

111

9

634

19

26

40

16

86757218

32

9

393233298300375

7950126064

43 5025 45035 15839 28839 299

22 15035 13048 13548 13038 2555 33068 26035 60015 21025 20715 235

Specificcapacity(gpm/ft )

Non-pump-

inglevel( f t)

Specificcapacity(gpm/ft )

Table A (Continued)Unadiusted Adjusted

Specificcapacityper footof pene-tration

(gpm/ft2 )

Specificcapacityper footof pene-tration

(gpm/ft 2 )

0.0130.0430.0090.0140.0780.0410.0080.0090.0090.0500.1070.1170.2890.1220.2350.215

0.007

4010

219

3270

2088

........0.0060.0070.0030.008

0.0020.004

0.0100.024

0.441.07

2.302.90

0.0100.021

306250

0.002

0.0910.155

Lengthof

test(h r)

Pump-ing Draw-rate down

( gpm) (f t)

Diam- Pene-eter tration Year(in ) (ft) drilled

Yearoftest

2.7813.00

2.263.28

27.207.151.962.342.351.50

38.0010.58

104.0012.4024.0012.50

1.82

........0.811.580.572.18

0.66

16.957.85

22.0011.90........

1955

165170135

5715

200401630

150185

119.0097.006.188.450.632.351.750.131.00

24.401.47

18 509 400

27 259 60

21 900

68 3036 6540 2060 27

44 11

33 35028 3413 2513 2510.5 2513 2513 2575 1522 1538 29030 17036 29019 13340 1644 1544 3044 1544 30

22 15

20 1020 1020 1233 26546 300

13.204.68

16.3039.0014.80

250260350300

3140.961.030.34

0.14

109.501.12

13.7513.756.528.701.620.755.148.191.626.942.720.080.391.090.38

10.03

6 127

........

........19351935

.......... ........

41N9E-21 212 9 . 6 b34.1b (1)34.1b (1)

0.22

0.100.12

90.900.15

71.50

Depth(ft )

Wellnumber Owner

322

. . . . . .

. . . . . .

. . . . . .119128206113252

4947

200

COK—

E. G. BooneRidgewood Sbd. Cook Co. TB Sanitar.Cook Co. TB Sanitar.Cook Co. TB Sanitar.

Hinsdale San. Dist.Indian Head ParkIndian Head ParkIndian Head ParkCook Co. Forest Pres.Acacia CCb.Buick-Gen. Motor Co.Made Crest Golf Cb.Edgewood Acres Sbd.Edgewood Acres Sbd.Midwest Justice Wtr.

Co.Ajax Box Co.

349357357342

22029529529593

409180401150

190

150145

18.2g18.8f1 (1)18.8f1 (1)18.8f2 (2)

19.2f

36.5a

18.1h

19

19.2f20

28.8c

32.7h

35

38N12E-(Cont'd)

19.2f

20.8e

30.8b

32.7h

322

286

Nat. Aluminate Corp.Nat. Aluminate Corp.School Dist. 220School Dist. 220Stickney Comm. Dist.220

Stickney Sch. 111Reedy Developm’tCorp.

Stickney Sch. 111Stickney Sch. 111

38N14E.3.7h

32

30.7d 31.5h

33.7e

Goldenrod Ice Cream 374

39N12E-2 (1)4

4.2b (1)4.2h

111717

4.2b (1)

4.8e(2)

17.1c1818.7h (2)19

21.2h21.2h31.2c

33.2g32

24.2b

39N13E-99

29.5c

315315250291202242178305130151252

Raytheon Mfg. Co.Sacrad Heart

Richardson Co.Seminary

Richardson Co.Hiway RestaurantStone Park (V)Cook Co. Forest Pres.Hillside Shop. CenterHillside (V)Vulcan Tin Can Co.Leona FingerBerkeley (V)Catholic CemeteriesInc.Hub Planting WorksAmphenol Corp.Salt Creek CampCook Co. Forest Pres.La Grange Park (V)

178345118112370

Meyercord Co.Peterson Ice CreamAermotor Co.Stickney Comm. Dist.220

39N14E-28 A. P. Callahan Co. 386

40N12E-2

33.4h (6)10 (5)10 10.2e (2)11 (4)

3

17 20.3f120.3f220.4f1 (E)31.3h (2)33.3e353535.1c (1)35.5h (3)

ElginCook Co. Forest Pres.Cook Co. Forest Pres.Park Ridge CampPark Ridge CampCook Co. Forest Pres.Park Ridge CampPark Ridge CampBert BushDakota Chief Sales Co.Dakota Chief Sales Co.C.M.St.P. & P. RRNorth Lake (C)Public Water Co.Cook Co. Forest Pres.Cook Co. Forest Pres.Park Ridge CampPark Ridge Camp

931921021021239697

221150270260270316330136

83136

83

40N13E-10 Cook Co. Forest Pres. 212

Water Service Co.Ramblevale C.M.St.P. & P. RRBartlett (V)Bartlett (V)

165165156200200

37141

22...........

0.3. . . . .4

33

.......8

1959 1959 8

........1936194219481948

19481956

19381945

19361937194219481948

19481946

19381945

1938 1939

19551940

1936193619351942......195519371948195719301959

1952 19531958 19581936 1936........ ........1954 1954

1910190518951948

5 325 1906

1934193419581948

1935

1941

100

8563502060

90

30555

1.2510.001.742.60

18.70

5.771.511.801.811.39

36.708.14

100.006.19

23.7012.35

1.12

0.570.741.470.562.00

0.0020.0050.0070.0030.007

0.42 0.0020.97 0.003

2.222.56

0.60 0.002

0.0700.105

85.0055.00

1.697.12

1.810.50

1.600.120.60

18.751.13

. . . . . .

.......

. . . . . .0.0600.0040.0090.0140.0010.0120.4000.006

12.503.60

12.5030.0011.40

0.1350.0120.2560.3900.038

3.000.881.000.32

.........

........

........0.002

0.14 0.001

87.601.06

12.5012.506.258.351.560.505.005.811.334.921.120.070.381.000.37

10.00

2.1400.0090.4820.4820.1492.0900.3140.0030.0590.0330.0080.0270.0040.0010.0060.0910.0053.333

0.21

0.090.110.15

66.3050.00

0.002

0.0020.0040.0021.2300.925

1941........ ................ ........1936 19361936 1936-------19351936194119501950195019461943

........19351936194119581958195019471943........

.........

........0.0710.0050.0110.0160.001

........

0.0200.5200.008

0.1420.0160.3330.5070.049

2926 49

77298

.......

.......

......

8

.......

6 9319

615

......5

211

........

.........0.002

0.001

2.6800.0090.5300.5300.1552.1700:3250.0050.0600.0460.0090.0390.0090.0010.0060.0990.0063.380

0.002

0.0020.0040.0021.6841.325

........19351935

19311931194319241925

19311931194319231923

854927.5

67

54

......

81.8

1.3......45.5

......28

......112

610......6

70.35

......

........1010......10105

......

......

......8

......

......

......

........

........

.......

......

.......

4

......

12

1.5

8

103

......

......8

4 494 29

10 648 548 54

343630

72

34

7

2

8

11025

13250

8163

11122

79

742084

322243

1630

350

12859

1192204030403

108

90

15085

76

9

150

18

3

80

30

4

10

80

4

70

8880

46

29

Page 36: REPORT 0F INVESTIGATION 46

Table A (Continued)

193619451959

8.6822.15

0.50

19231941.......

0.6800.3810.3441.3104.2808.1100.3580.0510.046

0.193

0.0030.0020.0020.2040.5100.0370.0440.169

0.4830.0080.0180.0180.0840.0910.8321.1500.037

0.2181.0800.2730.0260.0120.0330.0220.002

0.1551.0330.0040.0080.1970.0340.002

0.0040.002

6587

Non-capacitySpecific

Length Pump- Pump-Draw- per footof ing ingdown

Specifictest level rate capacity

of pene-

(tration

hr) (f t) (gpm ) (f t) (gpm/ft ) (gpm/ft 2)

Unadjusted Adjusted

Yearof

test

Specificcapacityper footof pene-Diam- Pene-

Depth eter tration(f t) (in) (ft)

Specificcapacity(gpm/ft )

tration(gpml/ft

2 )

200200200

888

54

5454

3.521.5

260308130

305305305305210210236188276

171

250250342225230218218172

812126

126

....5

1312121288

108

-----

6

12128

866

121212121616466

8

88

1254

1918

6

.......1515158

125

1210

28

101212121212

44

121246

12

66

1051051051051818233030

373760

52028677132

6152435403730203725

122

122

252528

608713

5660616153528020

110

15

3844326585383825

112040403215204233

3336258326382625

82505050505055

6070

263200349

25030030585

25034

1860096

15010010020020014460

20

20

26025850

177025

270400380350540700163240

127

1616301010

23022338

3813510018032015020

18729

10515024065

15720015230

10156499308060

1710

447

65.8050.0050.00

1.2200.9250.925

90.0163.4075.60

1.6701.7201.400

200225236263250205

195619581958195819601953

90283016

1435

293

1001530

1002013

12062

30

18

4116

112

643115

516164

14122

2230

21

102152128

55

847716

7130459032205

299

55425157

1217263

195

35

1421221025

179

6855

2.7810.7110.715.311.756.80

0.052

0.1270.122

0.0570.0220.041

3.7615.3014.505.922.357.20

0.0710.1740.1820.0630.0300.043

113585

10810094

133

117135

48

48

.......141169

16419946

580.83

0.62200.00

0.9610.003.331.00

10.0015.401.200.97

0.0565.7300.0110.0930.0330.0110.072.......0.0100.007

0.87426.00

1.0912.00

3.801.14

13.0018.75

1.441.01

0.0792.1500.0130.1110.0380.0120.098.......0.0120.007

0.67 0.014 0.69 0.014

1.11 0.023 1.16 0.024

6.3516.10

.......0.114

0.45 0.003

.......0.1570.003

0.26 0.002 0.0020.282.26 0.011 2.48 0.0121.67 0.036 1.74 0.038

54.0025.0023.7587.5038.6058.408.001.451.33

0.5150.2380.2260.8322.1403.2400.3470.0480.044

71.4040.0036.05

138.5077.20

146.008.251.531.42

6.05 0.164 7.14

195319531958195219411953

0.160.110.232.002.002.742.902.38

0.0030.002

0.2000.002

0.5000.0340.0340.158

0.160.110.252.042.043.033.772.54

127245245245275200128206201

201201140170218213218265

12141141141175100

57

92

104

2348

133108131164

223

13613616

105220

.......19551955195319551926193819511949

3.441.042.222.00

10.007.504.006.453.23

0.4520.0070.0150.0140.057

0.8000.075

0.9210.035

5.791.102.542.50

14.709.054.158.063.38

1.913.584.71

1.301.14

2.782.420.15

0.1910.8950.2050.0240.0100.0260.0180.001

2.184.236.281.251.573.522.930.30

34.7g35 (2)

3.333.000.450.813.003.200.33

0.1511.0000.0030.0060.1870.0300.002

3.413.100.501.033.163.550.49

0.250.18

0.0040.002

0.270.19

Wellnumber

YeardrilledOwner

COK—

41NSE— (Cont’d)34.1b(1)34.1b(1)34.1b(1)

Bartlett (V)Bartlett (V)Bartlett (V)

121125195200210204231228487218

274

274

208208216

5388809478

168

37

5757

149104

818615

192319231945

195619551956195819601953

1933194519551922192719271954195419581958

1954

1953

.......19521946

19231940.......

1933194519551922192719581958195419581958

1954

1953

195219521946

80.3.......6.5

103

41NI0E-Pure oil co.Citizens Utilities Co.Citizens Utilities Co.Weathersfield Sbd.Weathenfield Sbd.Schaumburg Sch. Dia.54

12.5d (1)15.lf (1)15.4f (3)20 (1)20 (2)22

4lNllE-7810.3f12.3f (1)12.3f (1) 12.8h (2)

2323

24.1g(1)25.00

Altendrof ConstructionR. F. JohnsonHatlen Heights Sbd.Mt. Prospect (V)Mt. Prospect (V)Mt. Prospect (V)Texas Co.Badger Pipe Line Co.Waycinden ParkStandard Oil Co.

......

......8......6......

......

......

431

......24

......

9............4.542............8

12

......63.5......6............6

......122.37.52......32.50.8

0.821.50.3

1024

......

......

22................

1024.5

.......10

41N12E-17

17 (1)

Public Service Co.of N. Ill.

Public Service Co.of N. III.

Higgins Water Co.Orchard PlaceG. C. Ehrhard

28.7c33.5e34.1a

41N13E-7.ld10.8h32

Golf (V)Sally’s RestaurantCook Co. Forest Pres.

42N9E-1.7hl (1)1.7hl (1)1.7hl (1)1.7hl (1)1.7h2 (2)1.7h2 (2)3.7g527.4h

Barrington (V)Barrington (V)Barrinrton (V)Barrington (V)Barrington (V)Barrington (V)Arthur TeremesWm. P. SiblevF. McCormac k

1898189818981898192919291932.......1933

1959

.......1951

19481959190919411953195819531958

1940194019551955193919051954

.......1940

192219231928193319291933194419441933

1959

19531953195819521941195319531951

........19551955195819551927194419511949

19491959194619411958195819531958

1941194119551955194119411954

.......1940

42Nl0E-2.5f Rand Rd. Drive-In

TheatreBarrington Woods Sbd.Barrington Woods Sbd.Northemaire EstatesC. L. WertzA. T. McIntoshRolling Meadows Sbd.Kimball-Hill & Assoc.Cook Co. HighwayGar.

3.8f3.8f (1)11.4a (1)16.7h17.3d2525. If35.8a

42NllE-110. le10.le (2)10.1e (2)1112.8h (1)2227.7c (2)27.8c1

Cook Co. Forest Pres.Wheeling (V)Wheeling (V)Wheeling (V)Ekco Foil ContainerWheeling (V)C. A. SmithProspect Meadows Sbd.Nat. mortgage &Invest.

Prospect Meadows Sbd.Rollingg Green CCb.Arlington Heights (V)Arlington Hts. TheatreCitizens Bluett Co.Brickman Manor Sbd.R. T. Bluett & SonsBluett—Central Ford

2827.8c2(1)

29 (1)29.6b34.1d34. 11h34.1h

42N12E-13.5d17.3e17.8f17.8f17.8g27.1e30.2d ( 1)

W. S. DavisW . K . B l u e

144143

Northbrook West Sbd. 286Northbrook West Sbd. 286M. Rothschild 139Lutter Brick Co. 215Northfield Woods Sbd. 300

42N13E-6.3f230.1

30

CohenT. E. Wecker

186185

Page 37: REPORT 0F INVESTIGATION 46

Table A (Continued)Unadjusted Adjusted

Non-Length pump- Pump-

of ing ing Draw-test level rate down(hr) (ft) (gpm ) (ft)

Specificcapacity

Specificper footof pene-

capacity tration(gpm/ft ) (gpm/ft 2)

Specificcapacityper foot

Specific of pene-trationcapacity

(gpm/ft ) (gpm/ft 2)

.......

........

........

.......

.......

420233170200250150295158300

14126

1212

16

30.....10

121268

126

1066

12....302716....

2020121230303030161212121712121215........88

1616161610

6

688

2412888

161212........12126

620868

12181616205

22623540

219239

19591948194919481948

3181485585

19675

20564

200

........

.......

22616517920

210183195197190210210205167208239255230119198182138239296199218250

........19441956192819301950192619321932195319351958194519561954195419541957195719561957195719601958

3.55

......4.551

10......11........

28

2412......

3..................

821051072421

10

114811

5868

123965033849465

57

6212108977

58611790

109469664

10195

11310212312891906973732225787073

115134

90

644568738287777872958678.546857517

22456540427698

2248560

55020043

200750

1270

620100200

10072620030562075

34015035

140

200560400530

60

970700520525850860980412600150300210250259385838708360388150157400500580100320147

28218075

510500215196542800150465336

60400234570

100863

8070

500750750150450765

32

3232

1786

86

11.51463

110

122148

19

65

8.5412512.5

76803

2376121551.2

11.54

242027128

10127

12655201010902210

515.0784118

3.5194038113236.595

6316

17955

9368721150191

17.2066.7021.5011.75

8.73

0.0760.2850.5380.0540.037

26.1080.0022.6013.6016.90

0.1150.3410.5660.0620.071

14.79 0.075 110.00 0.556

53.807.153.18

0.403........0.017

105.006.903.50

0.784. . . . . . .0.019

100.0072.6033.3325.40

310.0075.0085.0018.751.84

0.3150.4910.6060.2981.5811.0000.4150.2940.092

111.00180.00286.0035.00

887.0097.00

118.0019.002.10

0.3481.2155.1900.4124.5201.2950.5760.2980.011

2.16 0.015 2.30 0.016

23.6013.6516.00

530.0024.00

0.1520.0860.0932.220........

27.4023.7022.20

589.0029.40

0.1770.1490.1292.485........

Diam- Pene- YearDepth eter tration Year of

(ft) (in) (ft) drilled test

0.0560.0530.9701.1420.0530.3920.3350.4192.6300.062........0. 0430.0750.0460.1340.4120.3080.2520.2800.0070.0210.0840.1670.2910.0510.058

33.3016.10

347.0036.0022.30

218.00340.00129.00

2000.0014.6093.8010.4015.8012.1045.90

440.00173.0041.0080.80

1.303.10

25.2084.80

108.001.10

19.50

250255248310322265257268332320330350200335254273

. . . . . .. . . . .4

......

......

70.7013.601.00

18.9044.60

154.0011.6022.9050.6015.1021.3011.60

6.90122.00

4.3064.80

160341134138310352422202212422200

195819519441944191619471947

195819541957

. . . . .. . . . .......5

......6.56......6

......

. . . . . .

111.0026.2017.015.307.70

21.7019.0015.2013.3099.3032.00

Wellnumber

341345155284300

266

178200210

237

245190202334......

271210209165300250295262313250250295302313354370319212291200238294398294317395

250

Owner

DUP—

37N11E-4.3c (4)8.2h (5)9.8a10.5f (1)10.6g (2)

38N9E-2.1h (1)

13.2h (4)17.5d23.3g (1)

38N10E-5.4e3.8a (2)11.6d (1)11.7c12.5e12.6b12.2b (2)13.8h (2)15.8h1

15.8h2

16.4d18.3d1 (5)18.3d2 (6)26.1b (1)26.2b

38N11E-1.3al (2)1.3a2 (3)1.4a (1)3.1b6.4c (9)7.6d8.4b8.7c (8)9.1h (2)10.2c (2)10.2c (2)10.6e (1)10.7a (3)10.8e (4)11.5a (3)11.5d (4)12.8a (5)(T)1.8c (T)(T)(1)24.3b (1)24.4b1 (2)24.4b2 (3)28.1c (2)30.5d

33.2b (1)

39N9E-3 (1)3.1h1 (2)3.1h2 (4)4.2b (3)4.4a (2)5.5g1 (3)5.5g2 (2)7.6h (1)9.3d (2)9.3h (1)9.6e (1)9.7d12.4b13.6c1 (2)13.6c1 (2)35.1a (2)

39N10E-2.3e (1)9.2f (4)10.3b10.4c11.7c111.7c2 (2)11.8c (3)12.4a (2)12.4c (3)15.1b (4)16 (1)

19591948194919481948

198 1957 1957 8

134 1928..... . . . . . .

188 1956

1943. . . . .

1956

834

19581959195519571955........19541958........

19581959195519571955

19541954

.......2.5

.......6.5

222430.58.8

142 ........ 1939 ......

155159172237......

........193019371959........

19471935

194819591958

......

......

......

......8

19241928

19471947192419441958194719451953193819321947195319471958194519561954195419541957195719561957195719601958

. . . . .......

4.......838

155 1958 1958 8

15516015422823320019320424324523726775

205124218

................195819501908195819581958195319571953................195719571957

19461947195819501947195819581958195319571953

......2.5

10......

.......1939195819571957

.....

. . . . .438

...........

77246191819523629015213226287

19581954.......................19221941.......19581954.......

12.758.75

173.2022.8211.2071.6065.4082.40

500.0013.0575.008.75

12.509.60

32.10105.0070.8030.0055.501.192.86

20.0050.0058.00

1.1114.55

56.4012.000.96

12.4127.8061.5010.3013.5221.1013.6414.51

9.236.66

80.00

35.603.72

100.0010.9216.0014.005.38

11.0210.4013.649.00

40.2532.00

Argonne Nat’l Lab.Argonne Nat’l Lab.Argonne Nat’l Lab.Argonne Nat’l Lab.Argonne Nat’l Lab.

Elmhurst-ChicagoStone Co.Naperville (C)Reber Preserving Co.Lawn Meadow Sbd.

Ill Toll Hwy. Comm.Lisle (V)Schieser SchoolOakview Sbd.Schaffer Bearing Div.Downers Gr. San. Dist.Belmont (V)Maple Hill Improv.Benedict SistersSacred HeartBenedict SistersSacred HeartSt. Procopius CollegeNaperville (C)Naperville (C)Woodridge Sbd.Surety Builders

14.70 0.095 17.30

0.3640.0750.0060.0550.1190.3080.0530.0660.0870.0560.0610.0350.0890.3900.0300.163

1.3000.0450.8420.7780.0280.0470.0360.0900.0680.1540.368

0.0981.9401.8000.1061.1911.7420.656

10.5200.070........0.0510.0950.0580.1921.7250.7550.3440.4080.0070.0220.105

0.147

0.2870.5440.0510.078

0.112

0.4560.0850.0070.0830.1920.7700.0600.1120.2080.0620.0900.0440.0920.5960.0350.297

1.4450.1060.8950.8510.0400.0920.0660.1000.1010.3790.368

Hinsdale (V)Hinsdale (V)Hinsdale (V)Hinsdale Golf ClubDowners Grove (V)Downers Grove (V)Downers Grove (V)Downers Grove (V)Westmont (V)Clarendon Hills (V)Clarendon Hills (V)Blackhawk Sbd.Westmont (V)Westmont (V)Clarendon Hills (V)Clarendon Hills (V)Hinsdale (V)Hinsdale (V)Hinsdale (V)Hinsdale San. Dist.Ill. Toll HighwayInternat’l HarvesterInternat’l HarvesterInternat’l HarvesterBrookhaven ManorMaple Crest LakeCCb.

Cass School Dist. 63

Campbell Soup Co.Campbell Soup Co.Campbell Soup Co.West Chicago (C)West Chicago, (C)Western Electric Co.Western Electric Co.Western Electric Co.Lindsay Chemical Co.Northwest’n ChemicalMolded Products Corp.George Ball Inc.Winfield SanitariumWinfield (V)Winfield (V)Elmhunt-ChicagoStone Co.

Ray Spaulding SchoolWheaton (C)Jefferson Ice Co.Rathkum Farm Prod.Glen Ellyn (V)Glen Ellyn (V)Glen Ellyn (V)Glen Oak CCbGlen Oak CCb.Glen Ellyn (V)Hitchcock Pub. Co.

31

Page 38: REPORT 0F INVESTIGATION 46

Table A (Continued)

19461958

195719591945........19571957

195519561958193019541948

.......1948

.........

.........1919192319231959196019471954195819591956

19501958........

...... ............. 10

18

584

2412

5

5.562......

.........10

.........

39N11E-1

3.2e3.3a (1)4.1e (5)5.3g (1)7.1h1 (3)7.1h2 (T)8.7h (1)10(3)10(4)10.8e (3)10.8d (4)10.8d (4)13.3g (7)1620.1g20.6g (1)23.1a24.2g34

237195114235209175175

84220187285251187290175235241290350279

298250120

6105

12152068

................8

12....8

10....106

108

88....

18315926170124115103

.......14

.......227193129210......140135227290179

16113530

19551956195819441954194819481939192219241955195519241959196019471954195819591956

195019581933

........

........

.......

.......

.......4.58............................................

4 525

384 075853 280

6 13 738334399

1019265 75726743866292645

103

558414.5

82

54

502 92 8

3747116 05 040

7282

622814

182030

1 4

3 8

24

7.5

9

24.52 8

50

283945

47.7

19024020022033536580

46535050050050050033583019548360

350136

1806030

27823

1727

1214055704

55863155

1141

6553

13415

0.5

7.0530.00

1.00.0073.4019.7213.5180.0022.158.759.107.15

125.009.103.90

26.803.554.23

60.005.402.56

1.344.00

60.00

0.0390.1893.8500.4320.1590.1170.7761.580

........

0.0320.6480.0710.019.......0.0250.0310.2640.0190.014

0.0080.0302.000

8.5037.50

131.0091.8025.7021.30

114.0033.7011.3013.50

10.50238.00

13.205.10

71.606.905.90

66.606.902.80

1.608.60

60.00

0.0470.0365.0400.5400.2070.1851.1052.405................0.0461.2310.1040.024........0.0490.0430.2940.0240.016

0.0100.0642.000

........8

......

340

160

271140192

12 228

8 55

10 2035 438 82

1954

1957

195519581958

24

8......2

......

254

100

4212481

85

30

603

63

2.99

3.33

7.028.001.29

0.013

0.059

0.0350.1860.016

3.70

3.60

9.508.601.40

0.016

0.066

0.0470.2000.017

3.4e1(1)3.4e2(2)12.7b20.5d(2)26.5d31.2g

182183145320353335

10

........10

101610

434385

200232225

1925 19261954 19541925 19451958 19581959 19591958 1958

6.53

........5

101.5

11014225085

300408

159

14101716

1299

4012220

10844

10972

1085

50

7

88.5

7 .5

13

3.740

10

5820.32035.2

7.8614.2014.70

5.312.32

45.30

0.1830.3310.1730.0270.0100.201

9.80 0.20515.20 0.35417.70 0.2085.60 0.0282.80 0.012

122.00 0.541

8.4f (T)8.6c (5)8.6f (3)8.8f (2)24.4b28.3a (3)28.3f (2)28.4f (1)28.7b33.7f (4)

20019020018521922191

155152250

1212128

10106

101010

129108120102164150216566176

19591958193919361959195619081924.........1954

1959195819471947195919571950192519341959

85.5121

........

102

6......

11570

35050

20060098

150200453

2.880.57

17.500.464.555.50

13.8575.0020.005.34

0.0220.0050.1460.0050.0280.0370.6601.1520.3040.030

3.400.57

20.500.464.558.70

15.2090.5024.007.30

0.0260.0050.1710.0050.0280.0580.7250.1390.3640.042

4

8

4

10

68

4

48

1046

......... 12

10

117

4142

......

1766667098

1945

.........

........1947

1949

1929194919571927........

20

1959

19411947

1949

19331949195719341952

8 530

612

4675

20

74.80

13.202.15

2.10

4.9219.0016.80

3.409.80

0.640

0.3220.051

14.4h1 (1)14.4h2 (2)21.1e26.5a

Unadjusted Adjusted

Non-Specificcapacity

Length pump- Pump-of ing ing Draw-

level downSpecific

per foot

capacityof pene-tration

Specifictest rate(hr)

capacity(ft) (gpm) ( ft) (gpm/ft ) (gpm/ft 2 ) (gpm/ft)

SpecificCapacityPer footof pene-tration

(gpm/ft 2)

19.4h30.1h(1)34.3d(3)34.4d(4)35.5g(2)35.6g(1)

330265

252335250250250290

188

81212121212

64180

170250177175200179

19461958

195719591956195619571957

320156

260759690720560536

45

213267.5

11

80.0031.21

130.0058.30

345.00120.0074.6048.70

1.2500.174

0.7650.2341.9420.6870.3730.272

93.0037.00

180.00159.00

1115.00403.00150.0086.00

1.4550.205

1.0600.6376.3002.3100.7500.481

3.18 0.084 4.22 0.112

1.43 1.50

0.14

.......

0.009 0.14

........

0.090

2.67 0.267 2.76 0.276

40.80

12.421.88

0.0350

0.3040.045

........

Diam- Pene- Yeareter tration Year of(in) (f t) drilled test

1954

1957

195519581958

........

1947

1959 2

1947

1956 5.8

1946 1

89152150150196

Depth(ft )

Wellnumber

D U P -

39N10E-(Cont'd)16.6c (4)18.6e (1)

Owner

Wheaton (C)DuPage Co. Hwy.

Dept.St.Francis AcademyArrowhead Sbd.Morton ArboretumMorton ArboretumValley View Sbd.Valley View Sbd.

J. F. KyleBlack Top Road Co.Robert Hall ClothesVilla Park (V)Lombard HeightsLombard (V)Lombard (V)Lombard (V)Wander Co.Wander Co.Villa Park (V)Villa Park (V)Villa Park (V)Elmhurst (C)Elmhurst (C)York Center Sbd.Highland Hills Sbd.Ill. Toll Hwy. Comm.J. Harris JonesLiberty Park HomeOwners' Assn.

St. Francis RetreatSt. Joseph CollegeCamp Fullersburg

Christ the KingSeminary

Christ the King Seminary

Kawneer Corp.De Vito Co.Sidwell Studios

Roselle (V)Roselle (V)Medinah CCb.Allied Cement Co.N. Glen Ellyn UtilitiesCarol Stream Sbd.

Itasca (V)Itasca (V)Itasca (V)Itasca (V)River Forest Golf Cb.Addison (V)Addison (V)Addison (V)Addison (V)Addison (V)

Gibson’s Transfer 173 6 38

C. Clifton 130

Danforth (V) 160 16

W. G. Cole 108

Martinton (V) 265

Clifton (V) 137Ashkum (V) 196

A. Goodman 172

George BernsChebanse (V)Chebanse (V)H. FlemingSch. Dist. 4, Clifton

34.2g34.5e (2)36

40N9E-28.4bl (1)

28.4b2 (2)

32.5gl (1)34.3g (1)35.3g (1)

40Nl0E-

40NllE-

IRO—

26NllE-19

27NllW-ll.lh

27N14W-18.3g (T)

28Nl0E-36.8a

28N12W-16.6g

28N14W-3.4d (1)28.5e (1)

29Nl0E-31.2d

29N14W-14.2f

..........

1012.5

244.5

1503713241048

2.00

2.6018.3016 .20

3 .339.22

0.1530.2780.2460.0480.094

........

0.2890.2880.2550.0490.100

32

Page 39: REPORT 0F INVESTIGATION 46

Table A (Continued)Unadjusted Adjusted

Specificcapacity(gpm/ft )Well

numberDepth( ft )Owner

......

......

......

0.0280.1310.013

38N8E- ....451950263624184227

55555655

5.000.674.002.000.83

25.000.830.48

40N7E-252733.5a

9738

196

504616

16019

101141

3084

242

142

486376

17060757145

82192192220240209

1632

20048

133133

7171

544361

85194127261271

81755546

200182

255140213

11

2903010

157161

158

57148

302070

202020

20020

200100193050

30

3010201020502520

202001755502061251525

1501530

1202020

152025

10181010

13915152534

6565

53025

31015

333032

200300

285

3155

114

28

253

12029

10115

11

61555

242

3012

46

2238429552

305

20972323

35

23

114041309

152885

2020

5163152

693010

1516

16

3638.2

40N8E-10.4g13.8h19.lg21.6f26.7b28.8f28.8h30.6g32

157292280383319226235140242

5645

10

....5

55

0.0120.0060.0020.0020.1810.0130.0010.0390.152

41N7E-22.7g22.7h

350350

3.253.25

41N8E-2127.5d28.le35.7g

42N8E-23.7a23.7d26.2g

666

KNK—

29N12E-4.4a1 (1)4.4a2 (1)

257265

29N12W-4.4a1 (1)

E. TannerBatavia Farm ServiceG. H. Alexander

North Aurora (V)O. S. SkeenMattesonBurgess-Norton Co.V. TiazzoBlackberry Hts. Sbd.Montgomery (V)N. L. PitzNick LarenzMarviray Manor

D. Perry

D. ScottPotterR. JohnsonA. H. BennetH. W. DahlstromD. T. HugbsM. TiemeyM. T. Voss

I. JohnsonSt. Trng. Sch., GirlsSt. Trng. Sch., GirlsFox R. SanitariumCampana Sales Co.Campana Sales Co.B. OmanB. OmanErnest OswaltL. MontgomeryFurnas Elevator Co.Furnas Elevator Co.Excel. Bldg. & Maint.Excel. Bldg. & Maint.

A. MeeksW. C. WickerLarson

JacobsonA. WeekerA. CibisA. W. McNeilleU.S. Print. & Lithog.C. SandbergW. JonsonT. EngelhartKane Co. Farm Bur.

Plato Milk Co.Plato Milk Co.

Rialto TheatreElgin State Hosp.Rollins Builders Inc.Max Gates

Haeger PotteriesEat Dundee (V)Fin & Feather Club

St. Anne (V)St. Anne (V)

St. Anne (V) 257

158 5111 5290 6

190110

70220140160175

88142300

. . . .55

201911855

10

212 5

132128139306185285190121

152265265300281250

8685

26586

193193105105

51010

61010

44

1058845

196192183

5

55

66

30026030020

.......4

126

343130173

1010

10

88155

240

Diam- Pene-eter tration(in) ( ft )

Yeardrilled

Yearof

test

195019461950

.........195519401950194719591928194719501946

1949

1950........194619481947195819561951

........19531953195219361936........1955193919551946194619491949

195019461950

1953195519401950194719591947194719501946

1949

1950........194619481947195819561951

........19531957195719451946. . . . . . .1955193919551953195319491949

1956 19561949 19491946 1946

194619401951194719391950195819511957

1912........

1941.........19601924

19391933.........

19181928

1918

19491949

194619401951194719461950195819511957

19341938

1958193519601934

193919391957

19181937

1947

19491949

SpecificN o n capacity

Lengthof

pump- Pump-ing Draw- Specific

per footof pene-

test level rateing

down capacity( ft) (gpm ) (ft) (gpm/ft) (gpm/ft 2 )

tration( hr)

......

......

......4

......5.55

......

......5

......

......

......

......

......

......12............

......4

......80.5

......

......

......36..............................

......

......

......

......1

......

......2

......

......

......0.5

2424

......

......12......

50.5

......

......

......

......

63

212151

19

2445387777683023

4566613037413033651323232222

112702

686055784880924780

6060

9861710

1951

115

....57

57

33.940

2.735.002.51

2.86 0.0295.152.82

0.1350.014

10.00 0.2004.00 0.0876.66 0.4171.67 0.010

10.00 0.52622.20 0.21010.00 0.07119.00 0.63530.00 0.37510.00 0.041

10.254.136.852.58

10.2527.6011.3019.4030.9010.60

0.2050.0900.4280.0160.5400.2730.0800.6460.3680.044

2.73 0.019 2.87 0.020

0.1040.0110.0530.0120.0140.3330.0120.011

5.210.684.122.040.88

27.600.880.50

0.1080.0010.0540.0120.0150.3680.0120.011

5.0012.488.00

14.494.921.323.00

12.505.003.001.501.240.870.87

0.0610.0650.0420.0660.0200.0060.1870.3910.0250.0630.0110.0090.0120.012

5.1533.4022.2021.205.484.823.07

12.906.283.072.144.800.911.00

0.0630.1730.1160.0960.0230.0230.1920.4030.0310.0640.0160.0350.0130.014

5.004.001.08

0.0930.0930.018

5.104.121.14

0.0940.0960.019

0.910.450.240.33

15.451.000.543.146.80

0.0110.0020.0020.0010.0570.0120.0070.0570.148

1.031.140.250.44

49.001.030.553.257.02

0.0160.018

3.61 0.0183.60 0.020

10.4010.4020.627.50

0.0030.040

0.0970.682

4.500.50

30.6019.50

0.484.343.20

0.0020.1450.320

0.655.353.36

13.35 0.085 17.1018.75 0.116 26.80

17.88

0.861.44

0.114

0.0150.010

25.20

0.871.51

0.2140.0040.1020.102

0.0020.1780.340

0.1090.166

0.160

0.0200.010

Specificcapacityper footof pene-tration

(gpm/ft 2 )

3.6g22.lc22.8b

KNE—

38N7E-

3 (W)4.6g172129.5g31.7d32.3c (1)32.5d32.7d35.8d

39N6E-22.5d

39N7E-1.5a2.7c12.7c26.1c8.8e9.8b20.6c20.6h

39N8E-4.4a11.7c (3)11.7c (3)15.3e (2)15.6f (1)15.6g3 (1)15.6g115.6g215.7d21.1c21.2f (1)21.2f (1)2222.6d

30N9E-27.2d (3)27.2d (3)

Buckingham (V)Buckingham (V)

33

Page 40: REPORT 0F INVESTIGATION 46

Table A (Continued)Unadjusted Adjusted

Diam- Pene-Depth eter tration Year

(f t) (in) (f t) drilledOwner

Yearoftest

Ernst DenaultTexas—Ill. Herscher

30N11E-6 Jacob Zeilenga

30N11W-28 Hopkins Park School

30N12E-2 Jacob Salm

114115

100

150

243

1959 19591940 1940

114 1943249 1959131 1950126 1948129 1946

49 1946

0.0610.0100.0420.1220.0220.034

1 06688

104

198 1923 194730 1928 193471 ........ 1958

266 1946 1946295 1947 1947274 1961 1961

57 1939 1940

....2051

815.51228

11.80 0.0602.07 0.0700.61 0.0104.40 0.0204.00 0.010

26.20 0.1002.47 0.038

193619361941194019351938

1760

450

75

200

18070

28200100300

2020

10

652025

26520922525

360100450

95393

450210285390268615

21

1254930

163050

740716

40665

24016

11340

13539610404035

100

505015

236236

257530

0.7250.1530.2500.0390.0491.333

....66

1010

610

100403971711585

19341933........1958195819371945

7550381121198284

0.83 0.0080.41 0.0107.60 0.195

426.00 6.000568.00 8.000

13.95 0.931137.00 1.620

4310

11211

1431493017179

81

19581941194919411949195119391941193719441958

888

241

1.52

144

......5

1359010610140108453346

8110

351367

937

20151414

2

Towner Sbd.Vernon Hills Inc.J. D. AllenWm. JohnsonChevy Chase CCb.

3 21.522 53

...... 6

20

5

4.5

......

3 86......

....

8

4....

....

55 1947 194755 1952 1952

96 1949 1949

66 1959 1959

218 1949 1949

Vigil De GrootRichard Voss

234 6 182109 6 81

Lowe Seed HouseAroma Park (V)Aroma Park (V)Kankakee Co. FairTrevlyn RiggsJames Wilson

177299182156

5268

6886

....4

194319591950194819461946

12102076

11

Kankakee River St. Pk. 96 6 70 1953 1953 12

Bourbonnais (V)E. BenoitS. Stone Borden Co.Borden Co.General Food Corp.G. Dandurand

23086

175300325325100

Momence (C) 175Eldorado Terrace 282Momence (C) 125

12 125 1957 19578 252 1959 1959

12 105 1936 1947

16....

2

18.4.a (5) Momence (C) 57519.7d (S) Momence (C) 176

12 51312 120

1936 19471957 1957

......52113

4

241

......20242

.....

255

......2

2015

Manteno (V)Manteno (V)Manteno (V)Manteno St. Hosp.Manteno St. Hosp.Manteno St. Hosp.

100100120225227226

1212121512.....

808097

206107206

193619391941194019351938

......

......

......

......

56

172428.3191019.7

32N13E-35 Frank Gamble 101 ..... 71 1959 1959 2 23.5

Grant Park (V)Grant Park (V)Am. Tel. & Telegraph

330 8 265252 8 192150 8 67

1949 19491899 19491956 1956

3 413436

15

E. SayewskiG. GreswellI. BatesValentiElm Construction Co.M. McDooPure Oil, Barrington

247252207310310247305

........

1958

1945

19341933

1958

1937

5

7

12

24......

34

Albani Real EstateWm. RuefferMt. St. Joseph (V)C. E. JohnsonLake Zurich (V)Lake Zurich (V)G. ReedC. H. ParsonL. SchauflerR. L. HuszaahKopp Farm

330 6274400

....10

278 6443 6421 10197 6192 6211 6202 6350 6

19561941194919411949195119391940193719341958

280190162350280

75 0.6738 1.327 2.14

44 5.3648 5.37

W. Wecker 228H. E. LeRoy 275III. Tollway Comm. 330

666

....

....

666

391744

230160

19571961194119381938

19571961194119571958

.....24162424

8574385353

18 1935 1935 881 1940 1940 10

115 1958 1958 21

683063

SpacificNon- capacity

Length pump- Pump- per footof ing ing Draw- Specific of pene- Specific

test level rate down capacity tration capacity(hr ) (f t) (gpm ) ( f t) (gpm/ft ) (gpm/ft 2) (gpm/ft )

Specificcapacityper footof pene-tration

(gpm/ft 2 )

11.5 1.4833 1.82

16 28.10

70 1.07

39 5.13

0.0270.033

0.300

0.016

0.023

1.523.30

47.90

1.34

25.00

0.0300.060

0.510

0.020

0.120

10 18.00 0.099 22.00 0.1208 8.75 0.108 9.57 0.120

48018.319.57

12

7.002.505.46

15.402.861.67

7.18. . . . . .6.33

22.602.952.06

0.060......

0.0400.1800.0200.040

22 0.45 0.006 0.48 0.007

6104569.5

1112

10.802.000.563.823.52

20.402.08

0.0550.0670.0080.0140.0120.0750.036

63946

60.002.569.80

0.4800.0100.093

84.005.46

20.42

0.6700.0220.195

908.5

1.0646.30

0.002 2.920.386 67.70

0.0060.171

252518

12188

3.6

18.008.40

15.833.223.05

171.00

0.2500.1130.1720.0150.0280.830

32.7011.3022.908.005.22

275.00

4.5 4.67 0.066 4.80 0.068

14 8.9427 1.813 10.00

0.0340.0090.150

10.472.02

10.00

0.0400.0110.150

208073239.5

0.810.387.15

247.00358.00

13.3570.00

0.0080.0090.1833.4805.1800.8900.825

6.851.231.694.45

13.3156.600.502.672.862.50

50.00

0.1590.1250.0150.4040.0930.3800.0170.0570.1630.2780.617

9.951.272.124.72

13.9282.000.512.863.062.65

55.50

0.2320.1270.0190.4280.0980.5500.0170.1700.1800.2950.685

0.0170.0780.0490.0230.034

32 0.7810 7.50

3 10.00

0.0430.0930.087

0.751.46

8.33

8.27

2.207.94

0.82

10.23

0.0190.0860.0500.0350.052

0.0450.0120.090

Wellnumber

KNK—(Cont’d)

30N10E-23.8h33

30N12W-25.6b27

30N13W-1414.4e14.6b (1)19.4b2327

31N13E-13.3d (N)

33 (2)

31N11E-5.3g (1)

31N12E-19.1f20.8b23.5a33.4g(1)33.4h(2)33.5g(2)34.3a

24.1g

31N14E-

32N12E-22.8e1 (S)22.8e1 (S)22.8e1 (S)26.4c (5)26.5f (3)26.5g (4)

32N14E-19.1b (3)20.8c2 (1)29

LKE—

43N9E-1313.6b2225.5d25.7a26.1e36.1h

43N10E-6.6a77.3h18.5c20.2e (3)20.6h (2)24.5e25252628

43N11E—6.7g8.2f15.5f35.3d35.6c

43N12E-19.1c19.1h31.6f

34

Page 41: REPORT 0F INVESTIGATION 46

Non-Pump-

Specific

Length pump-ing Draw-

capacity

o f ing Specificper foot

specifictest ratelevel down capacity tration capacity

( gpm )

of pene-

( hr ) ( ft ) ( ft ) ( gpm/ft ) ( gpm/ft 2 ) ( gpm/ft )

Table A (Continued)Unadjusted Adjusted

Wellnumber Owner

specificcapacityper footof pene-tration

( gpm/ft 2)

Diam- Pene-eter tlation( in ) ( ft )

Depth( ft )

Yearo ftest

Yeardrilled

LKE—(Cont’d)

Island Lake (V)Island Lake (V)Wauconda (V)Wauconda (V)Wauconda (V)

190182231257325

....

....8

1212

2020133132

373191333960

5

8190467950

10474567597

102102102102102102

63646340

115115129129

427171784619

25515117

1132012

125

1118

65

91581

4054

57

878753292953

120133

75

10182252

1030

19411940193919391957

1954........19531954195419541942

........1956195419591959194119401955195019551955195519551955195519551929192919291921194719471946194719501951195119501930194619351959195419541941

1952.......19361937

1954........1947

193919511952

19521947

1953

19581958194419391939194419141945

1957

1947195419401940

19411958

705039

25

648071826482

135

20401447776067529

53202020133353....96........155220523539793564903773505050

44254055

603040

456045

4541

35

8087462646464051

25

30154454

3865

1020

210318287

183350

7164

182330

25

60100115125226

3530

18870

200350376728681630700442300450

70330325200150130305500215120125100

5550

13010

30110

5525

307040

1010

200

128100

25

442710100150150100175288

22

30105340

1545

40502044

155

13143109312202

19707593368028555924

18018015014315224

13057

19635371411146

13261357602734

140128

4

883555

120

1402

10

105

81

20158

27

1451067446265410

107

175

5159497

10185

0.0130.0211.0650.3620.125

24.3d2

24.3e3

44N9E-20.2f21.6b26.1c1 (1)26.1c2 (2)26.3b (3)

44N10E-

24.3d124.3e124.3e2

30.3c32.6c

44N11E-8 (1)89.2d10.3b11.4b14.7c14.8d16 (T)16.la16.1b1 (6)16.1b1 (6)16.1b1 (6)16.1b1 (6)16.1b1 (6)16.1b2 (7)16.1b2 (7)16.2c (1)16.2c (1)16.2c (1)16.3c 416.3c1 (3)16.3e1 (3)16.3e2 (4)16.3e2 (4)16.4d1 (5)16.4d1 (5)16.4dl (5)16.4d2 (T)19.8a19.2a28.2f31.5e32.3a32.2a36.3d

44N12E-69 (1)1621

45N9E-1.la23 (2)23.3c

45N10E-1212.2e (1)16

16.4a16.5a (1)

19. 1a

27.5c27.5c28.6h1 (3)28.6h2 (1)28.6h1 (1)28.6h2 (3)29.4f (1)29.5h (2)

45N11E-2.1b (2)

46N9E-9.4e13.1c28.2h (1)28.2h (1)

46N10E-12.1f28.2h

Mundelein (V)A. T. McIntosh & Co.Loch Lomond Sbd.A. T. McIntosh & Co.A. T. McIntosh & Co.M. J. BoyleWm. M. Paris

270264358264270358351

0.4740.1870.0850.0240.3980.4252.580

Leesley NurseryLeesley NurseryE. J. Burns (Sbd.)B. CooperE. P. DoerrCaseyFarmLibertyville (V)Libertyville (V)Libertyville (V)Libertyville (V)Libertyville (V)Libertyville (V)Libertyville (V)Libertyville (V)Libertyville (V)Libertyvillc (V)Libertyville (V)Libertyville (V)Libertyville (V)Libertyville (V)Libertyville (V)Libertyville (V)Libertyville (V)Libertyville (V)Libertyville (V)Libertyville (V)Libertyville (V)Mundelein (V)

I. FlorsheimMundelein (V)

E. J. & E. RRCuneo Press Inc.Cuneo Press Inc.A. A. Gilchrist

252255168242260342301225250297297297297297300300251251251240287287286286227227227251285213178215231231222

128

126

6

88

12

666

16

616

1666

16

6

66

6

12

6

1616

....168

1212

66

12126

1210105

0.0390.0160.0330.0170.1250.0040.0140.0610.0160.0860.0190.0200.0480.0600.0410.2860.0540.0820.0360.0500.0780.2020.1410.0830.5170.3320.2720.2120.0462.0800.4120.0650.0070.0200.147

Abbott Lab.Great Lakes Hosp.T. H. DonnellyC. Olmstead

270200201295

8....

88

Fox Lane Hills Sbd.Wooster Lake Co.E. Ross

383200265

....

....6

A. HallmanL. Hennier.Shorew’d-Ridge Wtr.Co.

L. B. HarrisShorew’d-Ridge Wtr.Co.Public Service Co.of N. Ill.

Grays Lake (V)Grays Lake (V)Round Lake ParkRound Lake ParkBoysen Water Co.Boysen Water Co.Round Lake (V)Round Lake (V)

....

12121066

106

10

235265314

278342

267

337337313279279313350359

4.546

612

Waukegan C’trysideSbd.

285 6

N. KellerFerrisChain-O-Lakes St. Pk.Chain-O-Lakes St. Pk.

260250234270

4488

46

1947195419401940

0.13

6.000.670.560.41

1.500.24

0.002

0.6000.0370.0250.008

0.1500.008

J. A. Cuthrie 257Antioch Sch. Dist 31 290

19411940193919391957

1954........19531954195419441942

88888

......

......

......

......

......88

1929195919541959195919411940195519501958195519551955195519551958193519581930. . . . . . . .194719581946195819501951195819501930194619611961195419541941

9............

24844

2418...................86......5............538......81.51.8

5.5

624

3

. . . . . .4

......

1952........19361937

......9

103

195419321947

......1.......

193919511952

19521948

1953

19581959194419391939194419451945

......

......

......

6......

23

8586681.57.5

1957 ......

......

......88

19411958

......8

0.250.40

10.507.231.85

14.052.457.100.69

15.1516.5012.50

3.161.431.531.356.270.441.073.421.198.341.942.094.856.174.15

29.203.405.262.302.008.90

23.2018.2010.7021.7023.6019.2516.512.112.083.711.620.361.022.50

0.343.151.000.21

0.2135.00

4.00

1.002.002.47

6.400.63

0.93

3.056.701.353.285.781.85

17.502.66

0.0120.0200.8070.2330.058

0.260.42

13.85

4.0011.20

0.380 17.455.80

0.0780.079

7.800.021 0.800.390 15.500.276 25.502.500 12.90

3.481.751.801.758.890.491.144.751.38

11.005.005.30

19.1515.0052.5082.0010:508.92

17.302.28

14.9050.0022.7012.8524.8033.3038.7021.402.642.634.351.800.461.382.54

0.0030.1580.083........

0.0024.3700.062

0.37 0.0030.1893.78

1.12 0.0930.23 0.002

0.24 0.00237.20 4.6504.20 0.065

0.1120.1990.031

0.1600.012

0.016

0.0350.0770:0250.1130.1990.0350.1460:020

1.027.203.66

7.700.79

1.11

9.8289.001.674.207.202.25

21.005.10

0.14

6.170.680.650.46

0.0430.0190.0390.0390.1770.0050.0150.0850.0180.1310.0490.0520.1880.1470.5150.8200.1670.1400.2750.0570.1300.4350.1750.1000.5900.4700.5450.2750.0572.6300.4830.0720.0090.0270.150

0.1140.2480.045

0.1930.015

0.020

0.1131.0200.0320.145

0.0430.1750.038

0.002

0.1560.011

1.560.32

0.6170.0380.0300.009

35

Page 42: REPORT 0F INVESTIGATION 46

Table A (Continued)

...

319

Unadjus ted Adjus ted

NonL e n g t h pump- Pump- per foo t

o f i n g i n g D r a w Specific of penetest l e v e l r a t e down capacity t r a t i o n

( h r ) ( ft ) ( g p m) ( ft ) ( g p m / f t ) ( g p m / f t2 )

Specificcapacity

Yearo f

t e s t

Specificcapacity( g p m / f t )

Specificcapacityper footof pene-tration

(gpm/ f t 2 )

1943 35. . . . . .

86888

19531912........19461947

5

25037507 511

5.00 0.1190.23 0.0030.50 0.0160.68 0.0060.09 0.003

0.1820.2440.0170.0040.003

1935 150

6 ....88

101010. . . .. . . .

6

610

4

20

426932

12136

42

67130165165159146146

238

32

309717

1001 3 5

434319192310

565

60

10622020

15150

1 415312

12

11

48

100

10111

74113

903022148530

4560

110

0.0160.0680.0070.0850.0310.0110.0160.0220.1380.172

0.1220.0290.118

105105

69

1717

10060

0.94 0.0095.50 0.041

11.60 0.27010.70 0.250

7.82 0.4129.15 0.4820.84 0.0362.80 0.280

0.0130.0440.3340.3560.5830.7800.0380.286

. . . . . .531

2810

41010

112105.5

98107

0.0480.0370.3800.452

0.0490.0470.6690.896

462242

342

130263

5 1160200113118

1 020

165

165100

10

1185 5

220250250320

3214

1004

30

10140350415

1101010

150100

125

600

40

100

322202540

12

100

2550

1518151010

25

5016

105110124

86

1203043114070522 01830

4535

5

125101 923323538

5

16120

8

216 24646

13458121 84 0

57

6 1

20

85

197 6

966

25

75

758

12601210

2

0.20 0.010 0.20 0.010

10.5d (1)10.8g (4)21 (2)283 5

19591922193219461947

7.6516.80

0.540.820.10

1.74 0.041 2.18 0.052

1960195619481957195719401922194019341954

195719541952

1.088.801.18

14.555.001.62

0.502.27

1.115.50

3.67

2.862.08

1.4512.80

1.3114.78

6.902.022.800.661.167.06

4.693.382.04

0.0220.0990.0080.0900.0430.0140.019

0.1450.029

0.221

0.1570.0340.120

330385145145120120243182

19541954192819281956195619411941

19541954192819471956195819411941

1.265.92

14.3515.3511.0514.85

0.882:86

6.25 1.250 7.17 1.4320.03 0.001 0.03 0.005

3.75 0.062 3.92 0.065

125

1010

2.280.48

7.629.04

0.492.90

13.3517.90

2 5

44N8E-2 533.8a33.8b33.8b

19481939194319391955

0.900.170.838:352.50

0.0500.0010.0590.0550.208

1.070.180.85

10.123.13

0.0710.0010.0610.0660.261

2.20 0.183 2.76 0.230

9.85 0.896 33.00 3.000

1.82 0.038 1.95 0.041

1.18 0.012 1.48 0.015

6121212

....

10

66

56664

60564747

1942195919551955

1944

1927

19371944

19481934194619461943

1.682.902.780.61

0.0520.028

0.0590.013

1.783.112.900.67

1944

1927

19371944

19481834194619461943

0.48 0.018 0.50

. . . .

5028

2410242516

1.33 0.166 1.64

184325

0.33 0.0826.25 0.312

0.366.68

110111

1.250.301.251.005.00

0.0350.0030.0150.0160.116

1.280.361.251:025.16

0.0300.0550.0620.014

0.019

0.206

0.3340.090

0.0320.0040.0150.0160.120

D i a m - P e n e -Depth eter tn t ion

( i n) ( f t )( f t)Y e a r

drilled

1943

1958

1960195619481948195319131913194019311954

195519471952

1959 19591956 1957

1936 1936

1934194019401905

1944194019401947

19391959

194819391958

1955

1956

1961

1924

1956

1956

1961

. . . . . .

1955195919551956

Well-n u m b e r O w n e r

LKE—(Cont’d)

46NllE-

16.4g

4 6 N 1 2 E -10

....122617

50

30110

25

32

60

98

39

6708084

25

R. Laursen 210 4

Winthrop Harbor 138W i n t h r o p H a r b o r ( V ) 159Zion (C) 220

J. Sicks 262

Ill. Beach St. Pk. 160

U n i o n ( V ) 192

Ladd EnterprisesHarnischfeger Co.Pure Oil Co.Pure Oi l Co.Pure Oi l Co.Cary (V)Cary (V)A. FilipF . ChranowskiAlgonquin-McHenryCO.

Algonquin (V)Lake-in-the-HillsB. Standerman

250400423423414300300125213167

257165

207

Nor thwood Fur FarmNor thwood Fur FarmFox River Grove (V)Fox River Grove (V)Fox River Grove (V)Fox River Grpve (V)V. C. P . Dre iskeT . S u c h y

121212121010

44

St. Joseph NoviciateHwy. GarageWoods tockM. Schieck

268 6330 6

350 6

N. JohnsonNat. Grain Yeast Co.Crystal Lake (C)Clystal Lake (C)

257

280280

Mor ton Chemica l Co .C. ToddNathansonF. C. HowardEastwood Manor Wtr.Co.

222330208300180

66

8. . .

8

Eas twood Manor Wt r .C o .

McHenry Sand &Gravel

McHenry Comm. Sch .15M c H e n r y ( C )

180 8

193 12

298 6

224 . . . .

Sunnyside Estates Sbd. 250Ladd Enterprises 303Sunnys ide s ta tes Sbd .E 297Sunnyside Estates Sbd. 297

L. H. Van Hoozen 150

Richmond (V) 170

D. B. MaherJ im Carey

J . O ' B r e i nDan Col l insE . M a v i nMel l inaerM. Carterfield

130139125115

75

. . . . . .2

. . . . . .

. . . . . .2

0.3

8. . . . .6

. . . . . .

. . . . .6352

. . . . . .

42 4. . . . .

M C H –

4 3 N 6 E -

4.5f (1)

1.8g4

5.1b1(1)5.1b2(2)13.lg (2)13.lg (2)2 4 . l g2 6 . l e27.2el

43N9E-6.2bl6.2b2 (3)

18.3al(1)18.3a2(2)18.3a2(2)

32

27.2e229.4a (1)33.7.a

43N8E-

5.1b1 (1)

18.3al(1)

30

. . . . . .22 . 50 52

. . . . . .9

. . . . . .

4 4 N 7 E -13.6e16.7h1 (1)

61.5

. . . . . .

45N8E-

l 0 . 8 c1 7 . 8 a2222.5e25.2a (1)

25.2a (1)

26.6f

29.2h

3 4 . l h

45N9E-7 (1)7.2g7.8d7.8d

. . . . . .

12

7

. . . . . .

2436......12

10

17

8. . . . . .

27

8

42 0

4 01048 36 34 3

46N5E-

27.6g

46N8E-

9.4b

46N9E-58.2b

WIL-

33N9E-7.4b13.4c1 7 . l h3 536.4e

36

Page 43: REPORT 0F INVESTIGATION 46

Table A (Continued)Unadjusted Adjusted

Specific SpecificNon- capacity capacitypump- Pump- per foot per foot

i n g i n g Draw- Specific of pene- Specific of pene-level rate down capacity tration capacity tration(ft) (gpm) (ft ) (gpm/ft ) (gpm/ft 2 ) (gpm/ft ) (gpm/ft 2 )

Diam- Pene-Depth eter tration

( f t) (f t) ( in)

117160

165

240230388203187

134135136115102176156

98101

408412250157490200

379

318325325200195263246203

17555

240303

13512370

22815079

23112455

248265

125180180185144200150356356153130378334

7927392

129

315130457225225

100159147200201

44

10

46....810

55510564105

1761010208

16

1212126101266

64146

464854654158

510105544121265.....1251455

851988

6861515

5892

75

196130155162126

3076977770

1561236119

27726512167

356120

.......

17121521510045

16214091

12517

196144

1255442

1786328

1543917

......152

4813013010318

10961

2532538665

155232

42432438

18542

336135135

7810971

159153

2038

26

2423213018

163127152118151542

597050758028

32

4345313318405021

157

44159

83018....405170857

1035

62111139508

432624142553354

171214

3049566765

68

701210

1010

300

1080

2464080

201515

29020

240204015

19570

20014060080

508

35040030050

1233006060

3016

24520

122020

1601612471016

45

35090

160121212

300838220

30065

20525

38020

2512

30057

475

507720

112200

Troy Elm. SchoolJoan SibleyJoyce 7-Up Mfg. Co.State of Illinios

0.0600.016

1.680

0.0070.0250.0290.0070.028

0.1720.0670.0400.4350.0980.0590.0130.0170.402

0.0220.0270.2100.2450.2200.034

........

0.6910.6420.6980.0480.6200.1660.0120.234

0.0620.0880.0740.005

0.0490.0170.0400.0100.0240.4560.0130.0190.0540.0840.004

0.4960.0350.0180.0130.0460.0160.3600.0050.0050.4280.2780.0050.0263.2300.4320.4280.428

0.0070.0360.0230.3670.402

0.0400.0170.0080.0290.084

1933 19331946 19461950 19501922 19401946 19461950 19501957 19571950 19501946 19461960 19601952 1952

6.10

20.420.90

1 .81

12.771.50

1.930.760.92

13.300.59

62.104.562.391.350.821.75

21.901.291.23

10.2518.100.746.00

12.90105.0010.2510.25

1.251.53

49.507.70

54.50

3.141.900.604.60

13.30

LengthY e a r

Yearo f

drilledo f test

test ( h r)Well

number Owner

WIL—(Cont’d)

33N10E-22.1d23.6a

19511952 19521950 19501946 19461949 19491942 1942...... 1934...... 1934

1951

1950 1950

19571945

1958191319601960

1953

19101935193519601903195519561960

1961 19601946 19461951 19511960 1960

1948 19481957 19571957 19571949 19491951 19511948 19481948 19481953 19531953 19531949 19491948 1948........ 1948

19501951 1951

19501947 19471950 19501949 1949

19381951 1951

19201960 1960

19221920 1952

19391960 19601947 19471929 1929

1938

1939

1929 1929

1942 19421942 1942

1931 1944

1946 19461956 1958...... 19411940 19411941 1941

194519571958

19601946

1960

1953

19461946194219601945195519561960

7

2892.56526

3

13592

11

108

1522

4

2.511

165

403

111842

24

125111

50151861

115

2392

9157

20103972

2510348252

1.230

18

21

3

10

43

3

7

434

12

36

4

4

2

1

8

2

8174

98452961

3.33 3.461.43 0.015 1.49

100.00

0.057

1.335 126.00

1.45 0.0072.86 0.022 3.262.66 0.017 4.540.62 0.004 1.08

1.46

3.00 0.024 3.51

5.00 0.1685.00 0.066 5.103.76

24.20 0.3140.039 3.84

33.506.66 0.095 6.866.68 0.043 9.251.54 0.012 1.590.68 0.011 1.02

5.15

7.50 0.395 7.62

4.536.36 0.024

0.016 6.257.05

25.00 0.205 25.5014.00 0.209 16.4040.00 0.112 80.60

3.64 0.030 4.12

50.80 86.20.........

87.66100.00 0.463 138.00120.00

4.540.560 150.000.045

24.6018.80 0.115

0.547 27.804.88

1.50 0.011 1.68

0.513 118.00

26.90

20.00 0.250 21.30

7.50 0.060 7.801.45 0.085 1.50

13.60 0.070 1.4450.48 0.003 0.66

0.836.00

20.000.281.45

12.000.94

0.890.67

3.280.39

43.803.911.741.330.801.72

15.00

0.8510.0012.00

0.634.27

76.0012.50

10.0010.00

1.191.501.72

45.5015.82

2.780.790.443.873.28

0.0480.0150.4770.007

0.4300:023

0.0060.0170.0520.0210.003

0.9150.0300.0130.0130.0450.0160.2460.0030.0030.2640.1850.0040.0183.1400.3130.4180.264

0.0060.0360.0050.3520.117

0.0360.0070.0060.0240.021

J. WhalenB. Baskerville

33N14E-16.8a

34N10E-28.3h29.6f3232.5h (1)32.6h (3)

34N11E-

Beecher (V)

10.5

......

0.5............84.5

2............

14

10............2

......

1......

18.......

1

2

12

3.51......8......

24......5

24

200.5

21

65

1235......3

51413511.3115........52521

62231.5

......

......5......5

E. F. ColdwaterElwood (V)Elwood OrdnanceElwood OrdnanceElwood Ordnance

512.1e

1715.8h

17.5d20 (3)20.2g1 (E)20.2g2 ( W )26.8c

A. Helt

F. KistelJ. Fietterer

S. ChelliosA. HeltWabash RR Co.Manhattan (V)Manhattan (V)T. Gallagher

34N13E-

14.3f(2)

21.5d (1)17

21.7c (3)30

Cardex Corp.Mall AirportA. DeMuthMonee (V)Monee (V)J. Koenig

34N14E-21.6b (2)

5.3h1 (1)5.3h2 (2)5.3h2 (2)7.6a8.1a (1)8.5h (2)20.1d (1)24.8d

35N9E-152431.1b (2)33.1f

Lincoln Flds. RacingInc.

Steger (V)Steger (V)Steger (V)Meadowood Sch.Crete (V)Crete (V)Balmoral Hts. Sbd.Sun Valley Sports Cb.

35N10E-1.3h2.5e6.4h1013.6g15.6a

18.2e18.8c

25.3h27.8h (2)28.4h

MaloneyJ. LasinasCh. W. GoodyZero Ice co.Wm. MellishH. DotsonR. Caddarette, Jr.E, MorisJ. SibleyPreston HeightsDeavours TrailerCamp

35N11E-2.7c7.8g7.8g9. 1a9.1b9.5a10.7c14.1a (1)14.1a (1)14.3b16.2d21 (1)21.2b (2)28.3a29.6d33.1b34.8d

WarwickN. Ill. Gas Co.N. Ill. Gas Co.W. P. HenningH. Henning

TriebieKrapp

Lincolnway SchoolLincolnway SchoolLincolnway SchoolDevoorNew Lenox (V)New Lenox (V)E. J. McLanghlinGeo. BarnesP. KistelW. B. Mooney

35N12E-37.4e10.7f8.6c8.6c

36N9E-3.6h3.8e9.1g (1) 9.2g (2)

WLSA. J. SchicklingArbury Hills Sbd.Mokena (V)Mokena (V)

Spring Bank ResortMaterials Paving Co.W. AndersonPlainfield (V)Plainfield (V)

37

Page 44: REPORT 0F INVESTIGATION 46

Diam- Pene-Well Depth eter tration Y e a r

number

Year

Owner ( ft ) (in) ( ft ) drilled testo f

WIL—(Cont’d)

36N10E-

(f t)

3.6h13.3a15.1a15.2a16.4d1(2)16.4d2 (3)232426.7g3131.4b31.7a1 (3)

31.7a2 (3)

35.7c

36N11E-11.1g (1)27.3c (T)

......

5.33

......824

37N10E-25.5d25.7h33.1h

Table A (Continued)

Materials Paving co.Bonnie Brae Sbd.Material service Corp.Material service Corp.Globe Aircraft Corp.Globe Aircraft Corp.Lewis Coll., LockportN. Ill. Gas Co.E. C. Blagg

Hillcrest Shop. CenterRichland Improv.Assoc.Richland Improv.

New Fairmount Sch.A s s o c .

Commonwealth Edison 485State Geol. Survey 1 7 5

Lemont Mfg. co. 1 5 2Badger Pipe Line Co. 1 8 0Hampton Park 1 6 5

300 8 128

312 10 245

1210

86

12

1 5 9 8 109310 18 249206 8 161206 8 1622 8 5 10 230301 10 246300 12

6219

2 2 15

1466 4 34

1 9 0 6 110282 10 239290 6 130

33219

13481

123

196019571957195719511952195619591946195219591949

1951

1959

19571943

195819541958

196019571957195719511952195619591946195219591950

1951

1959

19571943

195819581958

Non-Length Pump-

ofpump-i n g ing Draw-

test level(hr) (ft) (gpm)

rate down

. . . . .10.5. . . . .825823

.....52.3

1.3

8 7 7 9859 8 5 0 3.118 2 2 8 23

6 1 0 0 154 5 8 0 1946 2 4 774 5 1 5 1 291 1 5 0 1030 3 0

32.5

35 1 55 2 0 0 62

24 4 4 12

30 2 1 0 15

81 5 0 27

82 4 0 0 7.... 172 71

3 6 7 8839 1 3 5 4620 4 0 0 140

Unadjusted Adjusted

Specificcapacity

Specific

per footcapacity

Specific of pene- Specificper footof pene-

capacity tration(gpm/ft ) (gpm/ft 2) (gpm/ft) (gpm/ft 2)

capacity t r a t i o n

0.79 0.00727.40 0.111

9.92 0.0626 .66 0.0414.21 0.0180.31 0.0015.21 0.0245.00 0.034

12.00 0 .3535.00 0.0453 .23 0.0133 .67 0 .028

4 .00 0 .109

1 .85 0.008

57.20 0.1722 .42 0.127

0.76 0.0092.94 0.0222.86 0.023

1.90 0.017131.00 0.52613.40 0.0837.65 0.0476.35 0.0270.48 0.0027.10 0.0335.35 0.037

14.30 0.4215.10 0.046

11.75 0.0493.93 0.030

83.00 0.2503.05

0.76 0.01345.00

0.063

18.10 0.141

3.45 0.014

0.160

0.33520.00

38

Page 45: REPORT 0F INVESTIGATION 46

Table B. Specific-Capacity Data for Wells in Silurian Rocksin Areas Outside of Northeastern Illinois

Unadjusted Adjusted

Specific Specificcapacity capacityper foot per foot

Specific of pene- Specific of pene-capacity tration capacity tration(gpm/ft ) (gpm/ft 2) (gpm/ft ) (gpm/ft 2 )

Non-Length

of i n g ingpump- Pump-

Draw-test level rate down

(hr ) (ft) (gpm ) (ft )

Diam- Pene-eter tration Year(in) (ft) drilledOwner

Depth(ft )

Yearof

test

Ill. Toll Road Plaza 200 6 8 0 1958 1958 3 31 20 2 10.00 0.125 10.30 0.129

Neponsett (V) 830 6 222 1948 24 276

65

193 11.9 1.72 0.008 1.84 0.008

Mineral (V) 375 8 146 1954

1948

1954 3 42 30 1.40 0.010 1.49 0.010

1947

34.51920 0.1

30 75

33

130 4 5

1956 4 48 12570 4 7

3.63 0.025 4.22

0.0143.400.0122.90

0.0301.49 0.045 1.84 0.056

Orion (V) 615 8 210 1927

Osco (Uninc.) 400 5 6 7 1947

1944

1947

1945 51947

1956

.......

5

3

8

2 7 4.26 0.020 4.95 0.024213 115

2 2 5 1 0

32.6 273 8 6 0

23.5 76

1.02 0.015

0.80 0.0300.77 0.008

Creamery WellAnnawan (T)

185250

410

2792

18901947 0.0080.7284

1 0 1.00 0.015

35.1 0.77 0.029

Colona (V) 492 8 333 1956 38.5 1.98 0.006 2.20 0.007

Rio (V) 675 8 253 1958

16.5g Altona High School 564 616.8h (1) Altona (V) 808 8

20 1940280 1951

1958

19401951

19541940

1959

195519541953

195519311931194019531958

1952

1952

1942

1944

1960

1958

...... 345 156

2 257 6 2

2 2 1 1351 0 1.50

9 6.90 0.027 7.50 0.030

0.075 1.55 0.07727.5 4.91 0.018 5.64 0.021

Oak Glen Home 555 12 330 1954Rock Is. Co. Home 6 134 1940

2 2 186 318 833 168 50 21

3.83 0.0132.38 0.018

5.62 0.0172.56 0.019

Glendale Addition 595 8 277 1955 5.8 162.5 121 219 0.55 0.002 0.64 0.002

Weavers 3rd AdditionMoline Sch. Dist. 140Quad City Airport

500 5 218 1954260 6 54 1954410 8 252 1953

3.51 116

1512 525

48 8 235 43

213 176

0.580.821.22

0.0030.0150.005

0.630.861.73

0.0030.0160.007

Rapids City (V) 532Moline St. Hosp. 325Moline St. Hosp. 335C.R.I. & P. RR 405Silvis Heights 555Silvis Heights 556

8 3608 127

10 180 191210 267 19406 233 19528

19521931

171 1957

......

......8......32.5

Port Byron (V) 462 8 222 1952

1 1 520.5

9.54 7

151.5168.5

127.5

8 0120

202135120225

6 3 6

92

470

731.52 0 28 46.57.5

9 4 . 0 0 0.018 4.26

1 1 . 4 0 0.0360.030 4.45 0.035

1 . 4 4 0.008 2.06 0.0111.90 0.007

1 8 . 5 0 0.080 21 .60 0.0933 0 . 0 0 39 .50

0.019

12.700.032

0.006

0.175

3 . 8 1

1 . 6 1

0.231

Erie (V) 567

Eclipse Lawn Mower 193

Prophetstown (C) 2 3 5

Dillon School 135

8 392

45

40

25

1920 ......

......

......

2

6

24

4 1

6

35

2 6 . 5

8

15 .35 0.039 17.30

8 1942 13 .42 0.298 25.40

10 1944 304 0.287

16 1960 10 2150

294 111

11 .48

269 .00 10.700

1.390

16.40

404.00

0.044

0.565

0.410

16.150

Caterpillar Trail W.D. 358 10 2 0 1956 6.5 4 27 .80 32.00 1.600

Wellnumber

BNE—43N4E-

6.6f

BUR—15N6E-

10.5b (1)

16N6E-8.8b (1)

FRD—

23N7E-11.7d (3)

29N9E-

16.8g (3) Cabery (V) 357 8 195616.8h (2) Cabery (V)

143

Central Soya co. 402 10 237 1947

233 6 3 3 1920

HRY—

16N1E-28.3h (1)

16N2E-29.1h (1)

16N5E-3.5c3.6c (1)

17N1E-11.8g (1)

KNX—13N1E-

17.1a (1)

13N3E-

16N1W-3.2e (1)3.2e

17N1E-7.1g (1)

17N1W-11.7h (1)15.1h21.5f (2)

18N1E-2.4c19 (1)19.4d1 (2)29.7b (3)31.4a (1)31.4a (2)

19N1E-25.3f (2)

WTS—

19N4E-6.3a (1)

19N5E-5.1h (2)

20N5E-33.5a

21N7E-33.3c (2)

WDF—

27N3E-29.3.3

39

Page 46: REPORT 0F INVESTIGATION 46

Wellnumber

FUL—4N3E-1.5a (2)

GRY—

32N8E-2.8e1 (1)2.8e2 (3)

265 8 75360 12 147

HRY—

14N1E-21.1f (2)

15N1E-28 .4a

15N2E-17.5h (1)

KNX—

11N4E-23.6d (2)

12N2E-16.5d (1)

12N3E-13.2h (1)

13N2E-36.6f (1)

LEE—20N8E-14.1d

LIV—

28N7E-15.3c (N)

MER—13N1W-26.8g (1)

14N1W-13.2g (1)

15N1W-4.6d (1)24.5g (1)

15N2W-27.8c (1)

PEO—

11N6E-13.1a (2)

RIS—

16N3W-36.3b (1)

17N1W-1.1e (1)

STK—

13N4E-18.4c (1)

13N6E-19.7b (2)

WAR—

12N3W-21.8a (S)

Table C. Specific-Capacity Data for Wells in Silurian and Devonian Rocksand Maquoketa Formation in Areas Outside of Northeastern Illinois

Owner

Unadjusted Adjusted

SpecificNon-

Specific

Length pump- Pump-capacityper foot

capacity

Diam- Pene- Year of ing ing Draw- Specificper foot

Depthof pene-

eter tration Year of test levelSpecific of pene-

rate down capacity tration capacity tration( f t) (in) (f t) drilled test (hr) (f t) (gpm) (gpm/ft ) (gpm/ft ) (gpm/ft ) (gpm/ f t )( f t )

Dickson Mounds St. 840 6 28 1951 1951 13 95 60 115 0.52 0.019 0.57 0.020Pk.

Coal City (V)Coal City (V)

Alpha (V)

Ophiem (C)

Andover (V)

1209 8 658

370 6 143

334

292

8677

887 8

2608840 1954

860 8 260 1950

1946

1954

1946

1950

314 19458840

2.29 0.004 2.644.5

3

2.5

256

180

248.5

112 49

50 108

109 53.6

0.46 0.003 0.50

2.04 0.006 2.34

0.004

0.004

0.007

Williamsfield (V)

Wataga (V)

Victoria (V)

Oneida (C)

5.76 0.020 7.48

3.27 0.013 3.82

1950

1946

1954

1946

1954

1950

1945

5.5

1.5

5

3

......

186.5 230 40

324 108 33

315 110 14

277 49 5.5

7.86 0.030 9.04

8.92 0.028 9.60

0.026

0.015

0.035

0.031

Harmon (V) 532 5 362 1909 1916 7 30 62 0.48 0.001 0.51 0.001

Saunemin (V) 584 8 184 1926 1926 ...... 118 20 49 0.41 0.002 0.42 0.002

North Henderson (V)

New Windsor (C)

Sherrard (V)Swedona (V)

Matherville (V)

5.28 0.018 5.85

3.33 0.023 3.80

1.63 0.006 0.0060.34

1.710.001 0.36

7.61 0.027 8.40

0.020

0.026

0.001

0.029

660 6

2856604

546

533

710 8

8

6274 1950252 1957

1924

1957297

144

1951

...... 250 2 6 1 65.3

8

2

1

1957

1924

19501957

1951

256.8 52 9.6

228 100 30

184 25 72.6

207.5 58 7.5

Princeville (V) 1340 10 248 1938 1938 3 194.5 320 95 3.38 0.014 4.90 0.020

1925 1927 ...... 50 3001937 1938 ...... 69 700

242

150.0016.65

2.0000.113

214.00 2.86041.80 0.284

Reynolds (V) 589 12 256 1952 1952 2 4 240 161 44.5 3.62 0.014 4.44 0.017

Urbandale Sbd. 430 8 288 1938 1938 1 0 163 200 27 7.43 0.026 9.40 0.033

Lafayette (V) 758 8 268 1959 1959 6 289.6 55 29 1.90 0.007 2.07 0.008

Toulon (C) 780 16 338 1942 1942 2.5 203.2 205 18 11.04 0.034 14.60 0.043

Little York (V) 326 6 100 1915 1915 1 0 45 33 60 0.55 0.005 0.58 0.006

40

Page 47: REPORT 0F INVESTIGATION 46

Table D. Specific-Capacity Data for Wells in Galena-PlattevilleDolomite in Northern Illinois

Unadjusted Adjusted

Specificcapacityper foot

Specific of pene-capacity tration

Specificcapacity

(gpm/ft ) (gpm/ft 2 ) (gpm/ft)

Specificcapacityper footof pene-tration

(gpm/ft 2 )

Non-Length

o fpump- Pump-

ing ing Draw-test level rate down(hr) (ft ) (gpm) (f t)

446560560

Yearof

test

194019511951

1941

193919411954

1943

1947

1945

1940

1934

1928

19501953

19511952

1942

1945

1950

192119451938

1948

1937

1934

19581934

1954

196019541954

1957

Owner

Diam- Pene-Depth eter tration Year

( f t ) (in) (f t) drilledWell

number

CAR—

25N3E-27.8b1 Miss. Palisades St. Pk.27.8b2 (3) Miss. Palisades St. Pk.27.8b2 (3) Miss. Palisades St. Pk.

576294

6 294

North Lake (C) 855 . . . . 287

Glenview CountrysideGlenview CountrysideGlenview Countryside

572 6 191606 10650 14

332160

United Precision Co. 337 6 25

Waterman (V) 400 10 276

Hinckley (V) 157 5 33

NW Mutual Life Ins. 400 6 88

194019511951

1940

193919411954

1943

1946

1945

1940

C.M.St.P. & P. RR 230 10 13

Kingston (V) 202 10 77

White Pine CCb.Elmhurst (C)

Cuba (C)Cuba (C)

Aux Sable Lock 185 6 102 1942

Mauvoo Milk Products 812 8 747 1943

McChesney 675 6 35 1950

Kewanee Boiler Co.Kewanee Boiler Co.Walworth Co.,Kewanee

Walworth Co.,Kewanee

1084 101110 101152 8

1152 8

89115150

150

19181918. . . . . . . .

........

Elizabeth (V) 317

110

9532

12 282 1900

Better Brothers 6 98 1934

L. TaylorA. Biesecker

6 548 22

19581860

Prairie City (V) 1090 8 243

Hickory Manor Motel 447 10Lake-in-the-Hills 321 10Lake-in-the-Hills 321 10

247166166

435 6 170

1954

196019471947

1957

......2424

105052

61 8540 2461 30

0.013 0.740.721.67 0.006 1.972.04 0.007 2.26

0.0130.0070.008

30 75 100 192 0.52 0.002 0.54 0.002

8 212 1008 188 20024 279 230

1226

128

8.357.701.80

0.0440.0230.011

9.529.702.43

0.0500.0290.015

72 130 10 5 2.00 0.080 2.04 0.082

5

5

1

......

1.5

4. . . .

83.5

......

......

......

30.5 165 84.5 1.96 0.007 2.39 0.009

12 1.25 0.038 1.29 0.039

20 1.00 0.011 1.04 0.012

15

20

100

30

310100

15386

30

75

59 1.70 0.131 1.93 0.149

36.5

120

5

61

366470

20 1.50 0.020 1.58 0.021

4176

7.55 0.034 10.95 0.0491.32 0.004 1.50 0.005

156168.4

62 2.47 0.012 2.98 0.01419.8 4.35 0.020 4.90 0.023

14 77 0.39 0.004 0.41 0.004

44 18 4.16 0.006 4.63 0.006

165 130 65 2.00 0.057 2.36 0.068

0.5............

......

284308263

243

199200175

187

1468320

149

1.36 0.015 1.732.41 0.0218.75 0.058 10.80

1.26 0.008 1.51

0.0190.0270.072

0.010

4.5

1

5......

130

30

439

10

2.5

1023

100

10

100

50

64100130

17

10.00

4.00

4.004.35

2.10

40160.864.34

3.40

4.08 0.0420.041

0.800 0.850

0.036 1.14 0.041

4.250.198 4.95 0.225

1 171.5 23.8

25116

30

5

2.25 0.009

3 11364

...... 64

0.009

0.0170.0040.022

0.02023.5 96

4.84 0.020

5.25 0.027

0.020

1.41 0.007

3.49

COK—

40N12E-32.5a

42N12E-33.4b (1)33.7b (2)33.1b

DEK—

38N3E-10.4g

38N4E-16.2d

38N5E-15

39N4E-32.7f

40N4E-13.6c

42N4E-22.7a (1)

DUP—40N11E-23.1d35.5e

FUL—6N3E-

20.6f (4)20.6f (4)

GRY—

34N8E-29.7e

HAN—7N9W-35

HND—

10N5W-34

HRY—

15N5E-32.2f (2)32.2f (2)33 (4)

33 (4)

JDV—27N2E-24.2c (2)

LEE—

2N9E-5

21N10E-1.8b35.3b

MCD—

7N1W-1.3e (1)

MCH—43N8E-

10.6h20.4b (2)20.4b (2)

44N7E-16.7h1 Hwy. Garage,

Woodstock

........

1911

628 .... 225 ........734 .... 300 ........

1380 8 215 19511380 8 215 1951

41

Page 48: REPORT 0F INVESTIGATION 46

Table D (Continued)

Wellnumber Owner

PEO—

10N5E-24.8h

11N6E-13.1a2 (2)13.1a2 (2)

1342 10 2511342 10 251

STE—

26N5E-36

27N8E-30.7b (4)

28N8E-25

WAR—

10N3W-8 ( 4 )

WTS—

21N7E-14.4d (2)

WIL—

34N9E-34.3a (3)35.5a (1)35.8a1 (2)35.8a2 (2a)

Brimfield Sch. Dist 1257 8 327 1949 1949 30 208 60 8 7.50 0.023 8.17 0.025

Princeville (V)Princeville (V)

1938 1938 31938 1943 1.5

194.5 320 94.5 3.39195 148 50 2.96

0.0140.012

4.82 0.0203.57 0.014

E. Devires 183 6 173 3 28 38 0.74 0.004 0.78

Freeport (C) 100

98

16 16

1950

1928

1940

1950

1934

1940

1946

1952

1940194019401941

18

105

37

24

1000 13 77.00 4.810 154.00

Dakota Cemetery 6 74 3 27 3 9.00 0.122 9.75

0.005

9.620

0.132

Kirkwood (V) 1069 5 124 1948

1952

1940194019401941

...... 193

94

50 1 5 7 0.32 0.003 0.34 0.003

Diam-Depth

Pene-eter tration Year

( f t) (in ) (ft) drilled

Sterling St. Police Hq. 476 6

Kankakee Ordnance 260 21Kankakee Ordnance 275 21Kankakee Ordnance 280 21Kankakee Ordnance 100 25

175

24426327484

Yearof

test

Non-Length pump- Pump-

o f inglevel

ing Draw-test rate down(hr) (ft) (gpm) ( ft )

......

5.541.52.5

130

7.5 173 697 100 68

10.5 245 268.5 195 43

12 10.80 0.062 12.70 0.073

2.511.479.434.55

0.0100.0060.0340.054

3.4818.2013.256.25

Unadjusted

Specificcapacityper foot

Specific of pene-

(gpm/ft )capacity

(gpm/ft 2 )tration

Adjusted

Specificcapacity(gpm/ft)

specificcapacityper footof pene-tration

(gpm/ft 2)

0.0140.0690.0480.075

42

Page 49: REPORT 0F INVESTIGATION 46

Table E. Specific-Capacity Data for Wells in NortheasternIllinois Showing Effects of Acid Treatment

Before acid treatment After acid treatment

Period Specificacid capacityleftin

Pump-Specific

per footing of pene-

well rate capacity tration(hr) (gpm ) (gpm/ft ) (gpd/ft )

Specificcapacity Increase

Pump- per foot ini n g Specific of pene- specificrate tration

(gpm )capacity(gpm/ft ) (gpm/ft )

capacity(gpm/ft )

Diam-eter Yearof of

well Year treat-(in) drilled ment

Quan-tityof

acidused

(gal )

Percentimprove-ment inspecific

capacityWellnumber

Depth(f t)Owner

COK—35N14E-15.8a1 (3)15.8a2 (1)15.8a2 (1)15.8h (2)21.2h (1)21.2h (1)28.5h (W)28.5h (W)29.5e (1)

36N12E-36.3f (1)

36N14E-31.5d (1)

39N12E-4 . 2 b ( 1 )

42N10E-3 . 8 f ( 1 )

42N11E-10.1e (2)

42N12E-17.8f

240309309205400400332332222

8888

101088

12

194619371937194119091909190019001910

200030002000200025002000500

10004400

........

........

........

........

........

........

........

........

........

2.17

1.462.30

1.060.500.60.... . .. . . . . .. . . . . .

19.404.445.002.960.621.56

........

........

........

DUP—

38N9E-13.2h (4)

38N10E-18.3d1 (5)18.3d2 (6)18.3d2 (6)

3 9 N 9 E -4 .2b (3)

39N10E-12.4c (2)

39N11E-10.8e2 (3)13.3g (7)

40N10E-3 . 4 f ( 1 )

40N11E-8.5f1 (6)8 . 6 b ( 5 )8 . 6 b ( 5 )

3339

KNE—

3 9 N 8 E -21.2f (1)

KNK—

31N12E-33.4h (2)

LKE—

44N10E-

24.3e24.3d

44N11E-16.1b1 (9)16.1b2 (10)16.1b2 (10)16.1b2 (10)16.1b2 (10)35.3d

45N10E-16.5a

Libertyville (V)Libertyville (V)Libertyville (V)Libertyville (V)Libertyville (V)Cuneo Press Inc.

6161616166

27.5c (3)

MCH—

43N8E-20.4b (2)

WILL—

35N11E-14.1a (1)

130136

8292

120158125183300

0.0110.0090.0060.0060.0120.014........................

155155120222100

90183220600

.......

........

170 1.53 0.004 166 5.03

245 1.82 0.100 345 2.88

........ 165 55.00 . . . . . . . . 170 85.00

........ 0.11 0.002 16 0.16 0.003 0.05 45

........ 1.04 0.007 100 2.22 0.015 1.18 1 1 3

........

16

135

64 0.45 0.003 99 0.81 0.006 0.36 88

Gold Seal Asphalt Co.Gold Seal Asphalt Co.Gold Seal Asphalt Co.Cold Seal Asphalt Co.Victor Chemical Co.Victor Chemical Co.Inland Steel Co.Inland Steel Co.Amer. Locomotive Co.

194619461953194619451945194519451945

0.0950.0180.0210.0180.0150.038.........................

17.231.143.541.900.120.96

........

. . . . . . . .

. . . . . . . .

7 9 893

2 4 21 8 0

24154..................

Tinley Park St. Hosp.

Homewood (V)

491 19 1950 1951

252 10 1911 1945

5000

2000

. . . . . .

........

4000

2000

0.014

0.158

........

3.50 278

1.06 58

Richardson Co. 315 .... 1936 1952 30.00 55

Barrington Woods Sbd.

Wheeling (V)

Northbrook West Sbd.

250 8 1953 1953

245 15 1955 1955

286 12 1955 1955

Naperville (C) 178 24 1928 1943 ........ 336 250 4.20 0.031 620 54.00 0.403 49.80 1190

Naperville (C)Naperville (C)Naperville (C)

190 24202 24202 24

193019371937

194219471948

300020003000

3000

600

15003000

1000

100010002000

1000

500

500........

240.596

390 3.70 0.023 700390 3.70 0.023 700285 1.70 0.010 570

26.901.70

12.50

0.1710.0100.073

23.200.00

10.80

627none635

375 3.30 0.015 800 10.00 0.045 6.70 203

311 2.20 0.017 450 6.30 0.048 4.10 1 8 7

0.014 3690.019 300

4.505.40

0.0180.026

1.101.50

24 140 2.30 0.054 170

50250400

7.70 0.178 5.40 2 3 5

75 0.70 0.008156 1.20 0.011250 3.80 0.035

0.403.806.30

0.0040.0350.058

0.302.602.50

none216

66

30 2.14 0.016 120 4.80 0.035 2.64 1 2 4

........ ...... ........ 209 3.52 0.012 ........

. . . . . .60

. . . . . .0.46

. . . . . . . .0.005

350 2.45 0.079125 0.81 0.009

........0.36

37635037672868150

2.351.942.094.856.170.36

0.0240.0190.0200.0480.0600.007

200376728681700130

8.342.094.856.179.45

0.0860.0200.0480.0600.1030.020

5 .990 .152 .761 .323.280.66

........

442

100

83

......

3.05

0.86

0.80

. . . . . . . .

0.035

0.005

0.003

100

710

130

91

0.63 0.012 ........

6.70 0.077 3.65

4.34 0.026

0.89 0.003

3.48

0.09

........

........78

2 5 48

1 3 23 75 3

1 8 4

......

1 2 0

4 0 5

13

West Chicago (C) 310 24 1950 1953

Glen Oak CCb. 212 16 1957 1957

Villa Park (V) 285Elmhurst (C) 290

88

1919 19461959 1959

Roselle (V) 182 10 1925 1955

Itasca (V)Itasca (V)Itasca (V)

181190190

20

12

195919581958

195919591960

Furnas Elevator Co. 193 8 1946 1953

Borden Co. 325 8 1947 1947

A. T. McIntosh & Co. 264Loch Lomond Sbd. 358

128

19541953

19541953

297300300300300231

1955 19551955 19551955 19551955 19551955 19581954 1954

Shorewood-Ridge Wtr.Co.

Grays Lake (V)

342 12

337 12

1947

1958

Lake-in-the-Hills 321 10

Lincolnway School 356 12

1947

1953

1948

1959

1954

1953

..... ...

........

..... ... 200 3.40........ 335 3.90

........2072

........

........

........

........

........

.................. . . . . .................

........

........

4000100

4000. . .3300........

........

........

. . . . . . . .

2000

........

24

43

Page 50: REPORT 0F INVESTIGATION 46