report: 1977-05-00 (part 2) chemical consequences of air

101
APPENDIX A Reprints of OH Rate Constant Determination and Reactivity Scale Papers I .._ l 58

Upload: others

Post on 25-Dec-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Report: 1977-05-00 (Part 2) Chemical Consequences of Air

APPENDIX A

Reprints of OH Rate Constant Determination

and Reactivity Scale Papers

I_

l

58

(Reprinted from the Journal of Physical Chemistry 80 789 (1976)] Copyright 1976 by the American Chemical Society and reprinted by permission of the copyright owner

l

l Relative Rate Constants for Reaction of the Hydroxyl Radical

J with a Series of Alkanes Alkenes and Aromatic Hydrocarbons l

f Alan C Lloyd Karen R Darnall Arthur M Winer and James N Pitts Jrbull

l Statewide Air Pollution Research Center University of California RiV8flSide California 92502 bull(Received October 21 1975)

Publlcatlon costs assisted by the National Science Foundation-RANN and Calltomia Air Resources Board

The relative rates of disappearance in air at 305 I 2 K of aset of14 alkanes alkenes and aromatic hydroshycarbons were measured in an environmental chamber under simulated atmospheric conditions The obshyserve~ rates of disappearance were used to derive relative rates of reaction with the hydroxyl radical (OH) on the previously validated basis that OH is the species dominantly responsible for the hydrocarbon disapshypearance under the experimental conditions employed Absolute rate constants obtained from the relative values by using the mean of the published rate constants for OH+ n-butane (18 X 109 M-1 s-1) are (k X 10-9 M-1 s-1) isopentane 20 I 04 2-methylpentane 32 I 06 3-methylpentane 43 I 09 n-hexane 38 1 08 m-xylene 129 I 26 n-propylbenzene 37 I 08 isopropylbe~zene 37 I 08 ethylbenzene 48 plusmn 10 o-ethyltoluene 82 I 16 m-ethyltoluene 117 I 23 p-ethtoluene 78 plusmn 16 ethene 52 plusmn 10 proshypene 175 I 35 cis-2-butene 392 plusmn 80 13-butadiene 464 plusmn 93 In the case of seven of the compounds investigated these results are shown to be in good agreement with literature values reported for elementary rate constant determinations For the remaining seven compounds no previous determinations have been made

Introduction

The hydroxyl radical is well known to be an important species in the chemistry of combustion systems12 the stratosphere3-5 and the troposphere6-9 Recent direct deshyterminations of its concentration in ambient air1011 have

shown average daytime levels of about 5 X 106 molecule cm-3 in good agreement with predictions from computer

middot models of the formation of photochemical air pollu-tions12-14

In order to develop satisfactory chemical mechanisms for modeling combustion and photooxidation systems includ-

middot 11le Journal of Physical Chemistry Vol BO Na 8 1976

59

790

ing urban airshed models15middot16 kinetic data for the reactions of the OH radical with hydrocarbons as well as various inshyorganic species are necessary Prior to 1970 relatively few absolute rate constants were available for OH reactions with organic species however since then a large number of determinations have been reported for alkanes17-27 and

23 28-36alkenes 21 - Although aromatic compounds such as toluene xylenes propylbenzene m-ethyltoluene and 123-and 124-trimethylbenzenes are present in polluted ambishyent air3i-39 only in the past few years have significant studies been reported on the reactions of the OH radical with some of these aromatics2140-42 For example recently we reported the use of an environmental chamber to obtain accurate relative rate constants for the gas phase reaction of hydroxyl radicals with a series of aromatic hydrocarbons using n-butane as the reference compound42 Although a number of other species are present in these experiments (ie O(3P) HO2 03 NO3 etc) with the exception ofOa in

l the case of the alkenes these species have been shown to

I make at most minor contributions to the observed disapshypearance of the hydrocarbons investigated Thus the rate constants determined in our previous study42 are in good agreement with those determined subsequently in separate studies of the reactions of individual compounds with OH using a flash photolysis-resonance fluorescence techshynique4041

On the basis of this validation of the environmental chamber method we have extended our investigation to inshyclude an additional six aromatic hydrocarbons four alshykanes and four alkenes

Experimental Section

Irradiations of the HC-NOx-air system were carried out in an all-glass (Pyrex) chamber of approximately 6400-l volume equipped with two externally mounted diametrishycally opposed banks of Sylvania 40 BL fluorescent lamps43 Before each experiment the chamber was flushed for a minimum of 2 hat a rate of 12-15 scfm with a purified air stream44 The resulting matrix air contained less than~1 X 10-9 M (100 ppb C) of nonmethane hydrocarbons All reacshytants were injected into the chamber using 100-ml precishysion bore syringes and rapid mixing was obtained using Teflon-coated sonic pumps During irradiation the chamshyber temperature was maintah1ed at 305 plusmn 2 K by passing chilled air between the chamber walls and the fluorescent lamp banks

Hydrocarbon disappearance was measured by gas chroshymatography using the columns and techniques developed by Stephens and Burleson3745 Ozone46 was monitored by means of ultravioletabsorption (Dasibi Model 1003 analyzshyer) carbon monoxide by gas chromatography (Beckman 6800 Air Quality analyzer) and NO-NOz-NO by the chemiluminescent reaction of NO with ozone (TECO Model 14B)

The concentrations of the reactants ranged between 45 and 90 X 10-10 M (11-22 ppb in air) except for ethene ethane acetylene and n-butane whose concentrations were 18 37 18 and 83 X 10-9 M (45 92 45 and 203 ppb jn air) respectively In addition low concentrations of carbonshyyl compounds (formaldehyde acetaldehyde and acetone) were present Initial concentrations in the photolysis exshyperiments were 27 X 10-9 M (2900 ppb C) of total nonshymethane hydrocarbons 175 X 10-9 M (043 ppm) of NO (with an NOzNOr ratio of 012) 285 X 10-9 M (7ppm) of CO and 1129 X 10-9 M (2775 ppb) of methane together

The Journal of Physical Chemistry Vol 80 No 8 1976

Lloyd Darnall Winer and Pitts

with water at 50 relative humidity Four replicate experishyments were carried out in which this mixture was irradishyated for 3 h with continuous analysis of inorganic species and analysis of hydrocarbons every hour The irradiation period was extended from 2 to 3 h compared with our earshylier study in order to obtain additional data points The light intensity measured as the rate of NO2 photolysis in nitrogen k147 was approximately 026 min-1 All data were corrected for losses due to sampling from the chamber (09-20h) by subtraction of the average dilution rate from the observed hydrocarbon disappearance rate Alshythough the HCNOr ratio was chosen to delay the formashytion of ozone after 3 h of irradiation the ozone concentrashytion was 0065 X 10-9 M (0016 ppm) or less in three of the runs and 013 X 10-9 M (0031 ppm) in the fourth (whichmiddot had a higher initial formaldehyde concentration) A small correction for loss of hydrocarbon due to reaction with ozone was applied to the alkene disappearance rates

Results

The rates of disappearance observed during a 3-h run for the seven aromatic hydrocarbons four alkanes and four alkenes areshown in Figures 1-3 respectively (n-butane is included as the reference compound in each figure) Table I gives the disappearance rates for these reactants (after apshyplication of the dilution correction and for alkenes the ozone correction) relative to that for n-butane based on data from the four separate experiments

With the assumption that the OH radical is the species responsible for the hydrocarbon depletion during the 3-h irradiation absolute rate constants were derived from the relative rates of disappearance using a value of 18 X 109

M-1 s-1 as the mean of the existing literature values for the reaction of OH with n-butane21232427

(1)

These results are shown in Table I and are compared with existing literature values whenever possible in Table II

middot Discussion

As seen from Table II the validation of the assumption that the OH radical is by far the major species depleting the hydrocarbons (during the first 2-3 h of reaction) has been provided by the good agreement observed between OH rate constants determined in our previous chamber study42 for benzene toluene o- m- and p-xylenes and the trimethylbenzenes with those determined in elementary rebull action studies of each individual hydrocarbon4041 The exshytent to which this assumption is valid is indicated by the results of computer modeling calculations48 (shown in Figshyure 4) for an HC-NOr system of overall concentrations identical with that used in this study In the computer simshyulation a propene and n-butane mixture was used as a surshyrogate for the complex hydrocarbon mixture employed in the experiment and the rate of attack on propene by OH 0 3 O(3P) and HO2 was calculated The relative and total concentrations of propene and n-butane were chosen such that the overall hydrocarbon reactivity toward the OH radshyical would equal that predicted for the complex mixture It is clear from Figure 4 that although OH is the major atshytacking species in these experiments the 0 3 contribution to the disappearance rates of the alkenes increases with time of irradiation In contrast the rates of reaction of 0 3 with alkanes and aromatics are many orders of magnitude slower50-52 than with alkenes4953 and no correction for

60

791 Kinetics of OH-Hydrocarbon Reactions

TABLE I Rates of Disappearance and Rate Constants for Selected Alkanes Alkenes and Aromatic Hydrocarbons at l middotatm in Air at 305 plusmn 2 K

c Relative ~

rate of 10-9k0 g M-1s-1Compound disappearancei5 sect z 18bn-Butane 1C

110 20 plusmn 04 Isopentane~ 0 177 32 plusmn 06 2-Methylpentanez w 3-Methylpentane 240 43 plusmn09 u z 38 plusmn08n-Hexane 2090 u m-Xylene 718 129 plusmn 26 0 w 207 37 plusmn 08n-Propylbenzenegt 0 203 37 plusmn 08 lsopropylbenzenew V) a Ethylbenzene 265 48 i 10 0

o-Ethyltoluene 457 82 plusmn 16 m-XYLENE

m-Ethyltoluene 649 117 plusmn 23 20

j

100--I

9

n-PROPYLBENZENE

3

2 3 p-Ethyltoluene 433 78 plusmn 16 HOURS OF IRRADIATION Ethene 288 52 plusmn 10

970 175 plusmn 35PropeneFigure 1 Logarithm of the aromatic hydrocarbon concentration durshy 13-Butadiene 258 464 plusmn 93 ing 3-h photolysis of HC-NOc mixture In air at 305 plusmn 2 K and 1 atm 392 plusmn 80cis-2-Butene 218

a The indicated error limits are plusmn20 and are the estimated

l overall error limits b Placed on an absolute basis using the mean~3r-----r-----~--------1L i of the literature values ref 21 23 24 and 27

~ 0- ~

I ----uu~---------0------~c- middot -0 n - BUT~NE0 ~2~-----01SOPENTANE - TABLE II Rate Constants k for OH Radical Reactions with

n-Butane and Selected Alkane Alkenes and Aromatic ~ I v-------0---U__ 2-METHYLPENTANE Hydrocarbons at Room Temperature -----c_____-ltgt--_____ 3-METHYLPElHANE 1r 81 In-HEXANE o I

Environmental Compound chamber studies0 b Lit values t II I

~ 0 2 3 O HOURS OF IRRADIATION ~23degBenzene 074 plusmn 007lt

095 plusmn007dFigure 2 Loga-ithm of concentrations of alkanes during 3-h photolyshy25 plusmn 094

sis of HC-NOc mixture in air at 305 plusmn 2 K and 1 atm Toluene 347 plusmn 035C 367 plusmn 024d

o-Xylene 77 plusmn 23deg 918 plusmn 090C 11bull m-Xylene 14plusmn 1deg 142 plusmn 14c

129 plusmn 26b 11bull p-Xylene 74 plusmn 154 732 plusmn 072C 11bull 123-Trimeth- 14 plusmn 3deg 158 plusmn 16C

ylbenzene 124-Trimeth- 20plusmn 3deg 201 plusmn 2oc

ylbenzene 135-Trimeth- 31 plusmn 4deg 283 plusmn 29lt

ylbenzene lsopentane 20 plusmn 04b 27 2-Methylpent- 32 plusmn 06b 34

ane 3-Methylpent- 43 plusmn 09b 34

ane n-Hexane 29138 plusmn o8b Ethene 57 plusmn 0652 plusmn IOb

1111 30i 32 plusmn 04i 30 18 plusmn 061

10 plusmn 03m 13 plusmn 01n

Propene 175 plusmn 35b 217 plusmn 248 102 plusmn 2611i 87 plusmn 131151 plusmn 150 r 96 plusmn 03P 30 plusmn 10m

z 5 0 u lt( 4 a 0

~ 3

0

l-o

~ 2

Iz

-----o---------0_____-o

n-BUTANE

30 plusmn06n 13-BUTADIENEl) cis-2-Butene 392 plusmn 80b 367 323 plusmn 320

~ 257 plusmn 15Pu

1o------------J2L------3---- 0 Reference 42 b From Table I c Reference 40 d Reference 41 bull Reference 21 for a mixture of xylene isomers I Reference 24HOURS OF IRRADlATION

11 Reference 33 h References 30 and 21 i Reference 31 i Reference Figure 3 Logarithm of concentrations of alkenes during 3-h photolyshy 36 k Reference 29 1 Reference 28 m Reference 22 n Reference 32 sisbull or HC-NO mixture in air at 305 plusmn 2 Kand 1 atm Reference 35 P Reference 340

The Journal al Physical Chemistry Vol 80 No 8 1976

61

792

100 w_ ltl 90 i5 i z 80 w ~ u 0 INITIAL7w xa NO 389

0 N02 middot049

gt- pound6 C3H6 149 C4H10 596

a

0 ID

0

COllC (ppm)

~ ~ 5 wz

0 ~ 4 ll

0 J ~ 3~

0~ _ u -z 0

w_ Iltl

ll

0

HOURS OF IRRADIATION

OH

Figure 4 Predicted relative importance of several reactive intermeshydiates during photooxidation of propene-nbutane mixture under simulated atmospheric conditions

their reaction with ozone was necessary For example the rate constant for the reaction of ozone with toluene is about nine orders of magnitude lower than that for OH with tolushyene During the initial hours of irradiation other species such as NO355 and HO256 may contribute slightly to hydroshycarbon disappearance rates especially for alkenes but since their concentrations and in some cases rate conshystants are not known correction was not possible

Hydroxyl Radical Source in this System The major sources of OH in our experimental system are probably the reactions781315

NO + NO2 + H2O =2HONO (2)

HONO + hv (290-410 nm) - OH+ NO (3)

HO2+NO-OH+NO2 (4)

Nitrous acid has been observed in a chamber study of simshyulated atmospheres carried out in our laboratory57 when a mixture of propene and nitrogen oxides in moist air was

g photolyzed indicating that HONO can be formed in HC NO systems under conditions similar to those employed in the present study (Nash58 claims to have measured HONO in ambient air at levels up to 11 ppb) Direct evidence for formation of OH radicals in environmental chambers has been provided recently by Niki Weinstock and coworkshyers1154 Reaction 4 of major importance provides a further source of the OH radical HO2 can be formed in air56-59 by any mechanism producing H atoms or formyl radicals via the reactions

H+O2+ M-HO2+M (5)

HCO + 02 - HO2 + CO (6)

Thus any mechanism producing HO2 in our system is also a means of furnishing OH radicals via reaction 4

The concentration of OH radicals present during these experiments was calculated to be (15-20) X 106 molecules cm-3 using the observed rates of m-xylene disappearance (corrected for dilution) and the previously determined rate constant for OH + m-xylene4042 These concentrations are

The Journal of Physical Chemistry Vol 80 No 8 1976

62

Lloyd Darnall Winer and Pitts

of the same order as those observed directly in ambient air10u as discussed above

Aromatic Hydrocarbons Present results for the rate constant for the reaction of OH with m-xylene show good agreement with the previous study42 carried out in our labshyoratory (Table II) indicating good reproducibility for this technique

Rate constants for the reaction of OH with the propylshybenzenes and ethyltoluenes have not been reported preshyviously However the trend in rate constants for the reacshytion with o- mbull and p-ethyltoluene is identical with that previously determined for the xylenes40bull42 which supports the concept that OH is an electrophilic species since attack on the meta compound is favored

Davis et al41 have studied the reaction of OH with benshyzene and toluene and from the observed pressure depenshydence of the reactions conclude that addition occurs at least 50 of the time In an environmental chamber study similar to that reported here Schwartz et aI60 tentatively identified a number of aerosol products such as phenols and aromatic nitro compounds from the photooxidation of toluene in the presence of nitrogen oxides A mechanism was proposed assuming initial addition of OH to the aroshymatic ring In the case of the more highly substituted aroshymatic compounds studied here it may be possible that hyshydrogen abstraction from the side chain could possibly be as important as addition This is supported by the fact that a log plot of the OH-aromatic hydrocarbon rate constants vs the ionization potential of the hydrocarbon (which for abshystraction reactions is expected to be linear) in this case did not yield a straight line

Detailed product studies are required in order to obtain the quantitative data necessary to further elucidate the mechanism of OH attack on various aromatic hydrocarshybons

Alkanes Greiner24 has derived an empirical formula for calculating the rates of reaction of OH with alkanes based on his experimental results for the reaction of the OH radishycal with selected alkanes

k = 615 X 108N 1exp(-1635RT) + 141 X 108N 2 exp(-850RT)

+ 126 X 108N 3 exp(+190RT) M-1 s-1

where N1 N2 and N3 are the numbers of primary seconshydary and tertiary hydrogen atoms respectively in the alshykane We have used this equation to calculate the rate conshystants for isopentane 2- and 3-methylpentane and n-hexshyane The calculated values are in quite good agreement with the experimental values Although Greiners formula predicts the same rate constants for the 2- and 3-methylshypentanes our study suggests that the latter is somewhat higher Indeed this may be expected since the stability of the radical formed by the abstraction of the tertiary H atom from 3-methylpentane should be greater than that for the radical formed from similar attack in the 2-methylpenshytane case

Alkenes Unlike the alkanes and the aromatic comshypounds alkenes react with ozone at a significant rate Thus in our experimental system the small amounts of 0 3 formed during the 3-h photolyses contributed to the alkene disappearance rates From the measured concentrations of ozone and the published rate constants for the reaction of 03 with the alkenes studied49-5361 -63 a correction was made to the alkene disappearance rates for loss due to reaction with ozone This amounted to ~3 for ethene ~7 for

l

Kinetics of OH~Hydrocarbon Reactions

propene ~21 for cis-2-butene and ~2 for 13-butadishyene

Our results for the reaction of OH with propene

OH + C3Hs -- products (7)

are within experimental error of a recent absolute determishynation of k using flash photolysis-resonance fluoresshycence35 while the value of k 7 given in Table II for the reshysult of Cox33 incorporates a stoichiometry factor of 2-to 3 In parallel studies in this laboratory using flash photolysisshyresonance fluorescence35 no evidence was found within exshyperimental error of a pressure effect for k1 by varying the totai pressure from 25 to 100 Torr of argon but additional studies should be carried out especially at lower pressures where such an effect would become evident to see whether k exhibits any pressure dependence

The value of the rate constant obtained in this study for the reaction of OH with cis-2-butene though somewhat high is within experimental error of values previously reshyported from direct determinations213435 In this case a sigshynificant (21) correction for reaction with 0 3 had to be apshyplied to the data

No previous determinations of absolute rate constants have been reported for the reaction of OH with 13-butadishyene However the close agreement between our values for cis-2-butene and 13-butadiene is consistent with the workmiddot by Cvetanovic and Doyle64 who showed that these two compounds reacted at similar rates with oxygen atoms

The value obtained in this study for the rate constant of _the reaction

(8)

of 52 X 109 M-1 s-1 is about a factor of 2 higher than

II published values from low pressure ( lt300 Torr) studshymiddot 22middot 32ies21middot 28- 36 The only other study to date carried out at

atmospheric pressure is that recently reported by Cox33 in which OH was generated by photolyzing gaseous nitrous acid in nitrogenoxygen mixtures (21) at 760 Torr and the effect of added alkenes on the photolysis of nitrous acid was studied A rate constant aka = (57 plusmn 06) X 109 M-1

s-1 was obtained relative to a value of 90 X 107 M-1 s-1for the reaction of OH with CO where a is a stoichiometry facshytor Cox suggests that a is between 2 and 3 based on pubshylished values for the direct determination of k8bull Davis et al36 have shown that the significant differences between low pressure measurements of reaction 8 can be rationalshyized by the fact that the reaction exhibits a pressure depenshydence over the region studied (3 to 300 Torr of He)

This pressure dependence is probably due to the initial formation of the adduct observed by Niki and coworkshyers21middot30 Presumably this adduct becomes stabilized by colshylisional deactivation

(8a)

While it is possible that our determination of k8 is higher than previous values due to the fact that species other than Q

t OH -and 03 are depleting the ethene at least part of the discrepancy may be due to the difference in pressure reshygions studied Figure 5 shows a plot of log ks vs log P where P is the total pressure in the system for studies carshyried out using N2 02 or N2O as diluent gases Studies carshyried out using less efficient third body gases such as He are not plotted since the present study is focused on ambient atmospheric conditions and third bodies such as N2 or the

middot793

100

- u

-- 0 E

95 C

~ a

gt

0 0

900~--J----J--___________~bull------- 10 20 30

rog PCP in torr)

Figure 5 Variation with pressure of the rate constant k8 for the reshyaction of OH with C2H4 M is bath gas in reaction 8 ltbullgt Davis et al38 ( ) Smith and Zellner31 (reg) this work

equivalent Thus at 3 Torr of diluent gas the results of Davis et ai36 differ by a factor of 16 depending on whether N2or He is used as the diluent gas Although our results for ethene are subject to some uncertainty it appears possible that reaction 8 is not at the limiting high pressure kinetics region until the pressure exceeds 1 atm

Conclusions

Relative rate constants have been determined for the reshyaction of OH with 14 hydrocarbons and these rate conshystants have been placed on an absolute basis using the litshyerature values for the rate constant of OH + n-butane No previous determinations have been reported in the case of seven of these compounds

Our results indicate that the reaction of OH with ethene possibly does not obey second-order kinetics until presshysures exceed 1 atm while for propene and the higher alkshyenes the reactions are second order at atmospheric presshysure

The comparatively high rates of reaction observed for the aromatic hydrocarbons have significant implications for the control of photochemical air pollution This subject and the use of the present data in the formulation of a hyshydrocarbon reactivity scale has been treated in detail elseshywhere65

Acknowledgments The authors gratefully acknowledge the helpful comments of Dr R Atkinson Dr George Doyle and Dr Jeremy Sprung during the preparation of this paper and thank Dr William P Carter for carrying out the computer calculations used to construct Figure 4 and Ms Sharon Harris for the hydrocarbon GC analyses

This work was supported in part by the National Science Foundation-RANN (Grant No AEN73-02904 A02) and the California Air Resources Board (Contract No 5-385) The contents do not necessarily reflect the views and policies of the National Science Foundation-RANN or the California Air Resources Board nor does mention of trade names or commercial products constitute endorsement or recomshymendation for use

References and Notes

(1) R R Baker R R Baldwin and R W Walker Symp (Int) Combust [Proc] 13th 291 (1971)

(2) D D Drysdale and A C Lloyd Oxid Combust Rev 4 157 (1970) W

The Journal of Physical Chemistry Vol 80 No 8 1976

63

794

E Wilson Jr J Phys Chem Ref Data 1535 (1972) (3) H S Johnston Adv Environ Sci Technot 4263 (1974) (4) P Crutzen Can J Chem 52 1569 (1974) (5) M 8 McElroy S C Wolsy J E Penner and J C McConnell J

Atmos Sci 31 287 (1974) (6) H Levy II Adv Photochem 9369 (1974) (7) K L Demerjian J A Kerr and J G Calvert Adv Environ Sci Techshy

nol 4 1 (1974) (8) H Niki E E Daby and B Weinstock Adv Chem Ser No 113 16

(1972) (9) J N Pitts Jr and B J Finlayson Angew Chem Int Edit Engl bull 14 1

(1975) (10) C C Wang and L I Davis Jr Phys Rev Lett 32349 (1974) (11) C C Wang L I Davis Jr C H Wu S Japar H Niki and 8 Wein-

stock Science 189 797 (1975) (12) 8 Weinstock and H Niki Science 176290 (1972) (13) 8 Weinstock and T Y Chang Telus 26 108 (1974) (14) J G Calvert and R D McQuigg Proceedings of the Symposium on

Chemical Kinetics Data for the Upper and Lower Atmosphere Warrenshyton Va Sept 15-18 1974 Int J Chem Kinet Symposium No 1 113 (1975)

(15) T A Hecht J H Seinfeld and M C Dodge Environ Sci Technol 6 327 (1974)

(16) A a Eschenroeder and J R Martinez Adv Chem Ser No 113 101 (1972)

l (17) D D Davis S Fischer and R Schiff J Chem Phys 61 2213 (1974) (18) R Overend G Paraskevopoulos and R J Cvetanovlc 11th Informal

Conference on Photochemistry Vanderbilt University Tenn June 1974

I (19) J Margltan F Kaufman and J G Anderson Geophys Res Lett 1 80

(1974) (20) S Gordon and W A Mulac Proceedings of the Symposium on Chemishy

cal Kinetics Data for the Lower and Upper Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Symposium No 1 289 (1975)

(21) E D Morris Jr and H Niki J Phys Chem 75 3640 (1971) (22) J N Bradley W Hack K Hoyermann and H Gg Wagner J Chem

Soc Faraday Trans 1 69 1889 (1973) (23) R A Gorse and D H Volman J Photochem 1 1 (1972) 3 115

(1974) (24) N R Greiner J Chem Phys 53 1070 (1970)

t (25) N R Greiner J Chem Phys 46 3389 (1967) (26) J Peeters and G Mahnen Symp (Int) Combust [Proc] 14th 113

(1973) (27) F Stuhl Z Naturlorsch A 28 1383 (1973) (28) F Stuhl Ber Bunsenges Phys Chem 77 674 (1973) (29) N R Greiner J Chem Phys 53 1284 (1970) (30) E D Morris Jr D H Stedman and H Niki J Am Chem Soc 93

3570 (1971) (31) I W M Smith and R Zellner J Chem Soc Faraday Trans 2 69

1617 (1973) (32) A V Pastrana and R W Carr Jr J Phys Chem 79 765 (1975) (33) R A Cox Proceedings of the Symposium on Chemical Kinetics Data

for the Lower and Upper Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Sypposium No 1379 (1975)

(34) S Fischer R Schiff E Machado W Bollinger and D D Davis 169th National Meeting of the American Chemical Society Philadelphia Pa April 6-11 1975

(35) R Atkinson and J N Pitts Jr J Chem Phys 63 3591 (1975) (36) D D Davis S Fischer R Schiff R T Watson and W Bollinger J

Chem Phys 63 1707 (1975)

Lloyd Darnall Winer and Pitts

(37) E R Stephens Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973

(38) A P Altshuller S L Kopczynski W A Lonneman F D Sutterfield and D L Walson Environ Sci Technol 4 44 (1970)

(39) H Mayrsohn M Kuramoto J H Crabtree T D Sothern and S H Mano Atmospheric Hydrocarbon Concentrations June-Sept 1974 California Air Resources Board April 1975

(40) D A Hansen R Atkinson and J N Pitts Jr J Phys Chem 79 1763 (1975)

(41) D D Davis W Bollinger and S Fischer J Phys Chem 79 293 (1975)

(42) G J Doyle A C Lloyd K R Darnall A M Winer and J N Pitts Jr Environ Sci Technof 9 237 (1975)

(43) J N Pitts Jr P J Bekowies G J Doyle J M McAfee and A M Wirier An Environmental Chamber-Solar Simulator Facility for the Study of Atmospheric Photochemistry to be submitted for publication

(44) G J Doyle P J Bekowies A M Winer and J N Pitts Jrbull A Charshycoal-Adsorption Air Purification System for Chamber Studies Investigatshying Atmospheric Photochemistry Environ Sci Technol submitted for publication

(45) E R Stephens and F R Burleson J Air Pollut Control Assoc 17 147 (1967)

(46) Ozone measurement was based on calibration by the 2 neutral buffshyered Kl method and was subsequently corrected from spectroscopic calibration data (see J N Pitts Jr J M McAfee W Long and A M Winer Environ Sci Technol in press)

(47) J R Holmes R J OBrien J H Crabtree T A Hecht and J H Sein-feld Environ Sci Technol 1519 (1973)

(48) W P Carter A C Lloyd and J N Pitts Jr unpublished results (49) D H Stedman CH Wu and H Niki J Phys Chem 11 2511 (1973) (50) D H Stedman and H Niki Environ Lett 4303 (1973) (51) J J Bufallnl and A P Altshuller Can J Chem 45 2243 (1965) (52) P L Hans E R Stephens W E Scott and R C Doerr Atmospheric

Ozone-Olefin Reactions The Franklin Institute Philadelphia Pa 1958

(53) S M Japar CH Wu and H Niki J Phys Chem 18 2318 (1974) (54) H Niki and B Weinstock Environmental Protection Agency Seminar

Washington DC Feb 1975 (55) S M Japar and H Niki J Phys Chem 79 1629 (1975) (56) A C Lloyd Int J Chem Kinet VI 169 (1974) (57) J M McAfee J N Pitts Jr and A M Winer In-Situ Long-Path Inshy

frared Spectroscopy of Photochemical Air Pollutants In an Environmenshytal Chamber presented at the Pacific Conference on Chemistry and Spectroscopy San Francisco Calif Oct 16-18 1974

(58) T Nash Telus 26 175 (1974) (59) J G Calvert J A Kerr K L Demerjian and R D McQulgg Science

175 751 (1972) (60) W i Schwartz P W Jones C J Riggle and D F Miller Chemical

Characterization of Model Aerosols EPA-6503-74-011 Aug 1974 (61) F S Toby and S Toby Proceedings of the Symposium on Chemical Kishy

netics Data for the Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Symposium No 1 197 (1975)

(62) K H Becker U Schurath and H Seitz Int J Chem Kinet 6 725 (1974)

(63) R E Huie and J T Herron Proceedings of the Symposium on Chemishycal Kinetics Data for the Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Kinet Symposium No 1 165 (1975)

(64) R J Cvetanovic and L C Doyle Can J Chem 38 2187 (1960) middot (65) K R Darnall A C Lloyd A M Winer and J N Pitts Jr Environ Sci

Technol in press

middotThe Journal of Physical Chemistry Vol 80 No 8 1976

64

rl

i

8 ~

ct il

Introduction

During the last six years the major role of the hydroxyl radical (OH) in atmospheric chemistry and photochemical air pollution has been recognized1-7 and kinetic data for the reshyaction of OH with both organic and inorganic species have increased substantially8 However there are currently no published rate constant determinations for the reaction of OH with ketones chloroethenes or any of the naturally occurring hydrocarbons such as the nionoterpenes Such rate constant data for the reaction of OH with these three classes of com-middot pounds would be useful in part because of their increasing importance for modeling the atmospheric processes occurring both in urban and rural atmospheres Specifically ketones and chlorinated hydrocarbons are components of commercial solvents910 Both tri- and tetrachloroethene have been obshyserved in the troposphere at part per trillion (ppt) concenshytrations of lt511 and 20 ppt1112 respectively while methyl ethyl ketone has been observed at concentrations of 1-6 parts per billion (ppb)13 Monoterpene hydrocarbons have been shown to be present in the atmosphere with source strengths of millions of tons annually14 Thus Rasmussen1516 and coshyworkers have estimated that on an individual basis such naturally occurring hydrocarbons have ambient concentrashytions in the low ppb range and are largely responsible for the blue haze occurring in certain forested areas 17

This paper describes an extension of our recent experiments in which an environmental chamber has been employed to obtain relative rate constants for the gas phase reaction of the hydroxyl radical with a series of hydrocarbons1819 In this case we report data for the reaction of OH with three ketones two chloroethenes and three monoterpene hydrocarbons using isobutene as a reference compound

bullExperimental Section

The experimental methods and procedures employed have been described in detail e1Rewhere1819 and are only briefly summarized here Irradiations of the hydrocarbon-NO_-air system were carried out in a Pyrex chamber20 of approxishymately 64001 volume equipped with externally mounted

tteprmteo _rrom me urna1 I tnys1ca1 ~em1suy liU 1_01_ l l~ m1f Copyright 1976 by the American Chemical Society and reprinted by perm1ss10n of the copyright owner

Relative Rate Constants for the Reaction of the Hydroxyl Radical with

Selected Ketones Chloroethenes and Monoterpene Hydrocarbons

Arthur M Winer Alan C Lloyd Karen R Darnall and James N Pitts Jrbull

Statewide Air Pollution Research Center University of California Riverside California 92502 (Received January 30 1976)

Publication costs assisted by the University of California Riverside

The relative rates of disappearance of three monoterpmiddotene hydrocarbons two chloroethenes and three alishyphatic ketones were measured in an environmental chamber under simulated atmospheric conditions at 305 middot plusmn 2 K The observed rates of disappearance were used to derive relative rates of reaction of these organic compounds with the hydroxyl radical (OH) on the previously validated basis that OH is the species domishynantly responsible for the hydrocarbon disappearance under the experimental conditions employed Absoshylute rate constants obtained from the relative values using the published rate constant for OH + isobutene (305 X 1010 M-1s-1) are (k X 10-10 M-1s-1) o-pinene 35 plusmn 05 B-pinene 41 plusmn 06 d-limonene 90 plusmn 14 methyl ethyl ketone 020 plusmn 006 methyl isobutyl ketone 09 plusmn 03 diisobutyl ketone 15 plusmn 05 trichloshyroethene 027 plusmn 008 tetrachloroethene 013 plusmn 004 No previous determinations of these rate constants have been found in the literature Rate constants for an additional nine monoterpene hydrocarbons have been derived from data recently published by Grimsrud Westberg and Rasmussen

Sylvania 40-BL fluorescent lamps whose spectral distribution has been reported elsewhere21 (photon flux at 300 nm is apshyproximately 1 of the photon flux maximum at 360 nm) The light intensity measured as the rate of NO2 photolysis in nishytrogen22 k1 was approximately 04 min-1bull All gaseous reacshytants were injected into pure matrix air23in the chamber using 100-ml precision bore syringes Mixtures of the liquid reacshytants were injected using micropipettes During irradiation the chamber temperature was maintained at 305 plusmn 2 K

Alkene terpene and ketone concentrations were measured by gas chromatography (GC) with flame ionization detection (FID) using the columns and techniques developed by Steshyphens and Burleson2425 The chloroethenes were also monishytored with GC(FID) using a 10 ft X frac34instainless steel column packed with 10 Carbowax 600 on C22 Firebrick (100110 mesh) Ozone26 was monitored by means of ultraviolet abshysorption (Dasibi Model 1003 analyzer) carbon monoxide by gas chromatography (Beckman 6800 air quality analyzer) and NO-NOrNO by the chemiluminescent reaction of NO with ozone (TECO Model 14B)

The initial concentrations of reactants are shown in Table I In addition to these compounds ethene (20-28 ppb) ethane (48-61 ppb) acetylene (25-37 ppb) propane (13-15 ppb) and variable concentrations of formaldehyde (16-134 ppb) acshyetaldehyde (0-7 ppb) and acetone (3-19 ppb) were present Initial concentrations in these experiments were 1200-2100 ppb C of total nonmethane hydrocarbons 058 ppm of NO (with an NOvNOx ratio of005-010) 5 ppm of CO and 2900 ppb of methane together with water vapor at 50 relative humidity Replicate experiments were carried out in which this mixture was irradiated for 2-3 h with continuous analysis of inorganic species analysis of hydrocarbons every 15 min and analysis of monoterpenes chloroethenes and ketones every middot30 min

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilution rate (12 per hour) from the observed hydrocarbon disappearance rate The HCNO and NONO2 ratios were chosen to delay the forshymation of ozone and ozone was not detected during the irra-

The Journal of Physical Chemistry Vol 80 No 14 1976

65

i

1636

TABLE I Rates of Disappearance and Rate Constantsa for Selected Ketones Chloroethenes and Monoterpene Hydrocarbons at 1 atm in Air at 305 plusmn 2 K

middot Relative Initial rate of concn disap- koH0 Mmiddot

Compound ppb pearance smiddotbull X 10middot10

C

A M Winer A_ C Lloyd K R Darnall and J N Pitts

100-------~-------r-------- _eo___J-__

--~bull middot METHYL ETHYL KETONE 60

~ r-----__ g 2o+---__ ~--------t5 -- __ middot METHYL ISOBUTYL KETONE

u bull --------8 - middot---- 0 10 -- DIISOBUTYL KETONE ~ a

~ 6 ~bull ISOBUTENE

0 05 10 15 20 HOURS OF IRRADIATION

Figure 1 Concentrations of ketones (plotted on a logarithmic scale) during 2-h photolysis of HC-NO mixture in air at 305 plusmn 2 Kand 1 atm

-60

-~ ~-- I - -~ 40bull __ middot---

~ ~ __ ------~ 2 ----_ middot-middot- ~20~ _____ ISOBUTENE

~ ----- middot---0 bull bull

~ bull -~ a-PINENE

z 10 ---8 8 bull --

~6 - --

ll d-LIMONENE e-PINENE (D

0 4~----__---_________J_~_ 0 2 3

HOURS OF IRRADIATION

Figure 2 Concentrations of monoterpene hydrocarbons (plotted on a logarithmic scale) during 3-h photolysis of HC-NO mixture in air at 305 plusmn 2 K and 1 atm

X 106 radicals cm-3 using the observed rates of isobutene disappearance (corrected for dilution) and the previously determined rate constant for OH + isobutene35These con-

centrations are of the same order as those observed directly 32 36 37in ambient air31

Results and Discussion

Typical rates of disappearance observed during a 2-h irrashydiation of the three ketones and 3-h irradiations of the three monoterpene hydrocarbons and the two chloroethenes are shown in Figures 1 2 and 3 respectively Isobutene was used as the reference compound (and is included in each figure) rather than n-butane which was used in our previous studshyies1819 because its reactivity was closer to that of the terpenes and its rate of decay could be measured more accurately in our system In addition the ratio of k0Hlk0a for isobutene is greater3235 than that for any of the other olefi ns studied thus minimizing any contribution to the disappearance rate due to reaction with ozone Table I gives the disappearance rates

66

lsobuene Prop-ne cis-2-Butene Methyl ethyl

ketore Methyl isobutyl

ktgttone Diisobutyl ketone o-Pinene 3-Pinene d-Limonene frichloroethene Tetrachloroethene

17-20 5-7 7-8

50-100

20-70

20-32 10-20 10-20 10-20 41-161 14-88

10 049 122 007

03

05 114 133 295 0088 0044

305 plusmn 031 149 plusmn 022 372 plusmn 056 020 plusmn 006

09 plusmn 03

15 plusmn 05

a Placed on an absolute basis using 305 X 10 0

OH isobutene from ref 35 b The indicated error limits are plusmn 15 except in the case of the chloroethenes and ketones for which they are plusmn 30 These represent the estimated overall error limits and include both experimental errors and uncertainties which may occur in assuming that hydroshycarbon disappearance is due solely to reaction with OH

diation period except in the case of one experiment for which a small correction for the loss of hydrocarbon due to reaction with ozone was applied to the alkene disappearance rates

In order to obtain additional data (at lower OH concen- trations) to correct for the concurrent photolysis of the ketones as discussed below irradiations of a mixture of ketones and isobotene were carried out In these experiments NO CO and other hydrocarbons were not added and under these conditions relatively low concentrations of OH ( lt5 X 105 radicals cm-3) were obtained

Hydroxyl Radical Source in this System As discussed previously19 the major sources of OH and its precursors in our experimental system are probably the reactions452728

NO + N02 + H20 plusmn 2HONO (1)

H02 + N02 - HONO + 02 (2)

HONO + hv (290-410 nm) - OH + NO (3)

H02+NO--OH+N02 (4)

The first reaction is now thought to occur slowly homogeshyneously29 but its rate is probably significantly faster when the reaction is catalyzed by surfaces Thus nitrous acid has been observed in a chamber study of simulated atmospheres carried out in our laboratory30 while direct evidence for formation of OH radicals in an environmental chamber has been proshy

32vided recently by Niki Weinstock and co-workers31

Reaction 4 of major importance provides a further source 34of the OH radical H02 can be formed in air33 by any

mechanism producing H atoms or formyl radicals (eg formaldehyde photolysis) via the reactions

H + 02+ M-H02 +M (5)

HCO + 02 - H02 + CO (6)

Thus any mechanism producing H02 in our system is also a means of furnishing OH radicals via reaction 4

The concentration of OH radicals present during these irshyradiated HC-NO experiments was calculated to be (14-35)

The Journal of Physical Chemistry Vol 80 No 14 1976

348 plusmn 052 406 plusmn 061 900 plusmn 135 027 plusmn 008 013 plusmn 004

M-1 s-bull for

OH Radical Reaction with Selected Hydrocarbons

50------------~----~--

-middot---middot TRICHLOROETHENE

bull TETRACHLOROETHENE ---middot

IOloz--------l--------l2-----1-3---

HOURS OF I RRAOIATION

Fgure 3 Concentrations of chloroethenes (plotted on a logarithmic scale) during 3-h photolysis of HC-NOx mixture in air at 305 plusmn 2 Kand 1 atm

l (corrected for dilution) for these reactants relative to that for isobutene based on data for the three separate experiments for monoterpenes and four separate experiments for methyl

t isobutyl and diisobutyl ketone and chloroethenes Methyll ethyl ketone was present in all experiments

Employing the fact that a range of OH concentrations (20 X 105-35 X 106 radicals cm-3) was observed in these experishy

[ ments corrections to the measured rates of disappearance of the ketones were made for the possible small contribution

middotfrom photolysis of these compounds These corrections were made in the following manner The observed rate of disapshypearance ofa ketone is given by

d ln (ketone]dt = kK[OH] + khv (7)

where kK and khv are the rate constants for reaction with OH and photolysis respectively The isobutene disappearance rate is controlled solely by reaction with OH hence

[OH] =d In [isobutene] (8)dt ks

where kB is the rate constant for reaction of OH with isobushytene Thus substituting for [OH] in eq 7

d In [ketone] _ kK d In [isobutene] dt - kiB dt + kh (9)

Based on eq 9 the relative rates of ketone disappearance were determined from the slopes of plots of d In [ketone]dt vs d ln [isobutene]dt The intercepts of these plots gave the rate constants for photolysis For methyl ethyl methyl isobutyl and diisobutyl ketone the ratios k Kfk iB were 007 03 and 05 respectively and the photolysis rate constants khv were 0007 0014 and 025 h-1 respectively

On the basis that the OH radical is the species dominantly responsible for the hydrocarbon depletion during the 2- or 3-h irradiations (as discussed in detail in our earliermiddotpapers)1819 absolute rate constants were derived from the relative rates of disappearance using Atkinson and Pitts35 value of (305 plusmn 031) X 1010 M-1s-1for the reaction of OH with isobutene These results are shown in Table I It should be noted that the ratio of rate constants (05 and 12 respectively) obtained here for propene and cis-2-butene relative to isobutene are in exshycellent agreement with the ratios obtained by Atkinson and Pitts (05 and 11 respectively)35

1637

Ketones To our knowledge the data presented here repshyresent the first experimental determination of rate constants for the reaction of the OH radical with any ketones in the gas phase The only literature value for ketones is an estimated rate constant of 21 X 109 M-1s-1for the reaction of OH with methyl ethyl ketone which was made by Demerjian Kerr and Calvert5 on a thermochemical basis This value is in remarkshyably good agreement with the experimental value obtained here (20 X 109 M-1 s-1) middot

The rate constants for the reaction of OH with the two other ketones reported here are significantly larger than that for methyl ethyl ketone Thus the rate constant for diisobutyl ketone is about the same as that for OH+ propeneB1935 The dominant mode of reaction of OH with ketones is expected to be one of hydrogen abstraction This is consistent with the increased rate constant in going from methyl ethyl ketone to diisobutyl ketone reflecting a weaker C-H bond strength in going to more highly substituted ketone

Acetone is relatively stable under conditions employed in our photooxidation studies and consequently the rate conshystant for OH + acetone was not measured Based on the fact that the C-H bond strength in acetone (98 kcal) is 6 kcal stronger than that for methyl ethyl ketone (92 kcal) one would e~pect OH to react significantly slower with acetone than with methyl ethyl ketone

Chloroethenes Rate constants for the gas phase reactions of OH with tri- and tetrachloroethene (C2HC3 and C2CI4

respectively) have not been reported previously The rat constants found in this study are 05 and 025 respectively of the rate constant for OH + C2Hi19 This difference in reshyactivity for the chloro-substituted ethenes and ethene is consistent with the results of Sanhueza and Heicklen38-40 who reported that the rates of reaction of 0(3P) with C2HC13and C2C4 were the same and were both a factor of 10 less than that for the reaction of 0(3P) with ethene

Our results show that trichloroethene is mor~ reactive with respect to attack by OH than tetrachloroethene This is in agreement with the results ofLissi41 for CH30 reactions and Franklin et al42 for CI atom reactions with these compounds These workers found relative rates for attack on C2HC3 and C2C4 of 22 and 26 for CH30 and Cl respectively compared to 20 for OH as found in the present study Gay et aI43 reshycently reported results from a photooxidation study of chloc roethenes which while not directly comparable to the present study due to the presence of substantial concentrations of ozone showed that C2HCI3 disappeared more rapidly than C2Cl4 (near the beginning of their irradiations when ozone concentrations were relatively low the ratio of the rates of disappearance was ~2)

Since addition is likely to be the primary reaction pathway for attack by OH the relative reactivity of C2H4 C2HCia and C2Cl4 should reflect the relative magnitudes of the ionization potentials of these molecules which are 1066 948 and 934 eV respectively Our results are consistent with this trend

Monoterpene Hydrocarbons The terpenes experimentally investigated were a-pinene (I) 1-pinene (II) and d-limonene (III) The detection limit for ozone in these experiments was

XI) xD -0-lt II III

~1 ppb and since no ozone was detected during irradiations of the terpenes an upper limit to the contribution due to reshyaction with ozone to the observed rates of terpene disap-

The Journal of Physical Chemistry Vol 80 No 14 1976

67

1638

TABLE II Reactivity of Selected Monoterpenes with O(P) 0

3 and OH

Rate constant M-1 s- 1

Compound O(P)l 03 OHe

o-Pinene 160 plusmn 006 20 X 105 b 35x10 0

X 10 0 10 X 105c 88 X l0~d

J-Pinene 151 ~ 006 22 X l0bulld 41 X 10 0

X 10 0

d-Limonene 650 plusmn 052 39 x 105 d 90 X 10 0

X 10 0

a Reference 49 b Reference 48 c Reference 45 d Referbull ence 16 e This work

pearance can be calculated Thus assuming an ozone conshycentration of 10 ppb and using published rate constants for the reaction of ozone with the terpenes1643-45 an upper limit of 7 of the overall disappearance rate is obtained for the case of d-limonene (the worst case) at the lowest OH concentration present in these experiments (14 X 106radicals cm-3)

l It is interesting to note that the rate constant 37 X 1010

M- 1 s-1 obtained in this study for OH + cis-2-butene a component in the hydrocarbon mix (Table I) used in this set of experiments is in good agreement with the values of 32 X

l 1010 and 37 X 1010 M-1 s-1 obtained by Atkinson and Pitts35 and Morris and Niki46 respectively although our value is somewhat higher than the value of 26 X 1010 M-1 s-1obtained by Fischer et al47 in these three studies the rate constant was r determined from elementary reaction measurements

Table I shows the absolute rate constant values obtained for the terpenes Clearly these natural hydrocarbons react very rapidly with OH For example a-pinene reacts about 3 X 105 times faster with OH than with ozone1648 Thus for an ozone concentration of 3 X 1012 molecules cm-3 (012 ppm) and an OH concentration of 107 radicals cm-3 the rates of disappearance of a-pinene due to reaction with 0 3 and OH respectively will be essentially equal A comparison of the rates of the three terpenes with O(3P) 0 3 and OH is given in Table 1116bull4546 Within the experimental errors for the rate constants for OH + a- and 6-pinene the trend observed for reaction with OH is the same as that observed for reaction with O(3P) and 03

Grimsrud Westberg and Rasmussen (GWR)16 have reshyported the relative rates of photooxidation of a series of monoterpene hydrocarbons using mixtures of 10 ppb of the monoterpene and 7 ppb of nitric oxide which were irradiated for periods ranging between 60 and 120 min Making the rsasonable assumption that as in the case of our studies OH is the major species depleting the hydrccarbon in their exshyperiments then a series of rate constants relative to isobutene (which was included in the GWR study) can be generated in the same manner as described above The data from GWR are given in T-able III relative to isobutene = 10

Considering the- uncertainties involved in this approach (including a lack of knowledge of the exact ozone concentrashytions formed in the experiments of GWR) the agreement between our results for the reaction of OH with a- and 6-pinene and d-limonene and those shown in the fourth column of Table III is quite good and except in the case of a-pinene well within the estimated experimental uncertainty for our determinations The fact that our value of OH + d-limonene is only slightly higher than GWR suggests that little or no 03 was formed in their experiments since there was less than 1 ppb formed during our irradiations

The Journal of Physical Chemistry Vol 80 No 14 1976

A M Winer A C Lloyd K A Darnall and J N Pitts

TABLE III Relative Reaction Rates of Monoterpene Hydrocarbons and Rate Constantsl for Their Reaction with the OH Radical Based on Data from Grimsrud Westberg and Rasmussen (Ref 16)

Rel koH M-bull Hydrocarbon Structure reactivity s-bull X 10-10

p-Menthane 013 040-0-lt p-Cymene 030 092 (078 -0-lt plusmn 016)b

Isobutene )= 10 305

~Pinene 13 40 (41 gtQ) plusmn 06)C

Isoprene 155 47 (46 ~ plusmn 0 9)d

o-Pinene 15s 47 (35 plusmn 05)C~

3-Carene 17 52-cl-~Phellandrene 23 70-0-lt Carvomenthene 25 76-0-lt d-Limonene 29 88 (90-0-lt plusmn 14)C

Dihydromyrcene 36 101~ Myrcene 45 137~ cis-Ocimene 63 192~

a Placed on an absolute basis using 305 x 10 0 M- 1 s-bull for OH+ isobutene from ref 35 b For p-ethyltoluene which is structurally similar (ref 19) c Present work (see Table II) d For 13-butadiene which is structurally similar (ref 19)

A further check on the validity of using the results of Grimsrud Westberg and Rasmussen16 to obtain OH rate constant data is provided by the values derived for the reacshytion of OH with p-cymene and isoprene p-Cymene is structurally very similar to p-ethyltoluene and hence the OH rate constants for these two compounds should be comparable In fact this is the case with the value for OH+ p-cymene of 91 X 109 M-1 s-1 derived from the data of GWR being very close to that obtained for OH+ p-ethyltoluene 78 X 109 M-1

s-1 in our previous study19 Likewise isoprene is structurally similar to 13-butadiene and the rate constant derived for isoprene of 47 X 1010 M-1 s-1 is consistent with that preshyviously measured19 for OH+ 13-butadiene of 46 X 1010 M-1

s-1 On the basis of these comparisons it appears valid to use the photooxidation data of Grimsrud Westberg and Rasshymussen16 to obtain OH rate constant data for the series of monoterpenes which they investigated

Conclusion

Relative rate constants have been experimentally detershymined for the reaction of OH with eight compounds and these rate constants have been placed on an absolute basis using the literature value for the rate constant for OH + isobutene35

In the same manner rate constants for the reaction of OH with nine additional compounds (monoterpene hydrocarbons) for

68

OH Radical Reaction with Selected Hydrocarbons

which no previous rate constants are available have been deshyrived from data recently published by Grimsrud Westberg and Rasmussen16

The comparatively large rate constants obtained for the ketones and monoterpene hydrocarbons indicate that they will be quite reactive in the troposphere The implications for photochemical oxidant control strategies of the chemical reshyactivity of the ketones chloroethenes and terpenes are disshycussed in detail elsewhere5051

Acknowledgments The authors gratefully acknowledge the helpful comments of Drs R Atkinson and E R Stephens during the preparation of this manuscript G Vogelaar and F Burleson for the gas chromatographic analyses and W D Long for valuable assistance in conducting the chamber exshyperiments

This work was supported in part by the California Air Reshysources Board (Contract No 5-385) and the National Science Foundation-RANN (Grant No AEN73-02904-A02) The contents do not necessarily reflect the views and policies of the California Air Resources Board or the National Science Foundation-RANN nor does mention of trade names or commercial products constitute endorsement or recommenshydation for use

References and Notes

(1) J Heicklen K Westberg and N Cohen Publication No 114-69 Center for Air Environmental Studies Pennsylvania State University University Park Pa 1969

(2) D H Stedman E D Morris Jr E E Daby H Niki and B Weinstock presented at the 160th National Meeting of the American Chemical Society Chicago Ill Sept 14-18 1970

(3) B Weinstock E E Daby and H Niki Discussion on Paper Presented by E R Stephens in Chemical Reactions in Urban Atmospheres C S Tuesday Ed Elsevier New York NY 1971 pp 54-55

(4) H Niki E E Daby and B Weinstock Adv Chem Ser No 113 16 (1972) (5) K L Demerjian J A Kerr and J G Calvert Advances in Environmental

Science and Technology Vol 4 Wiley-lntersclence New York NY 1974 p 1

(6) H Levy 11 Advances in Photochemistry Vol 9 Wiley-ln1erscience New York NY 1974 p 1

(7) S C Wofsy and M B McElroy Can J Chembull 52 1582 (1974) (8) R F Hampson Jr and D Garvin Ed Chemical Kinetic and Photoshy

chemical Data for Modeling Atmospheric Chemistry NBS Technical Note No 866 June 1975

(9) A Levy and S E Miller Final Technical Report on the Role of Solvents in Photochemical Smog Formation National Paint Varnish and Lacquer Association Washington DC 1970

( 10) M F Brunelle JE Dickinson and W J Hamming Effectiveness of Orshyganic Solvents in Photochemical Smog Formation Solvent Project Final Report County of Los Angeles Air Pollution Control District July 1966

(11) E P Grimsrud and R A Rasmussen Atmos Environ 9 1014 (1975) (12) J E Lovelock Nature (London) 252 292 (1974) (13) E R Stephens and F A Burleson private communication of unpublished

data (14) R A Rasmussen and F W Went Proc Natl Acad Sci USA 53215

(1965) R A Rasmussen J Air Polut Control Assoc 22537 (1972) (15) R A Rasmussen and M W Holdren Analysis of Cs to C 10 Hydrocarbons

in Rural Atmospheres J Air Pollut Control Assoc Paper no 72-19 presented at 65th Annual Meeting (June 1972)

(16) E P Grimsrud H H Westberg and R A Rasmussen Atmospheric Reshyactivity of Monoterpene Hydrocarbons NOx Photooxldation and Ozonolshyysls middot Proceedings of the Symposium on Chemical Kinetics Data for the

1639

Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Kinet Symp No 1 183 (1975)

(17) F W Went Nature(London) 187641 (1960) bull (18) G J Doyle A C Lloyd K R Darnall A M Winer andJ N Pitts Jr Enshy

viron Sci Technol 9237 (1975) (19) A C Lloyd K R Darnall A M Winer and J N Pitts Jr J Phys Chem

80 789 (1976) (20) J N Pitts Jr P J Bekowies A M Winer G J Doyle JM McAfee and

K W Wilson The Design and Construction of an Environmental Chamber Facility for the Study of Photochemical Air Pollution Final Report Calishyfornia ARB Grant No 5-067-1 in preparation

(21) Sylvania Technical Bulletin No 0-306 Lighting Center Danvers Mass 01923 1967

(22) J R Holmes R J OBrien J H Crabtree T A Hecht and J H Seinfeld Environ Sci Technol 7 519 (1973)

(23) G J Doyle P J Bekowies A M Winer and J N Pitts Jr Environ Sci Technol accepted for publication

(24) E R Stephens Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973 NTIS No PB 230 993AS

(25) E R Stephens and F R Burleson J Air Pollut Control Assoc 17 147 (1967)

(26) Ozone measurement was based on calibration by the 2 neutral buffered Kl method and was subsequently corrected from spectroscopic calibration data [-see J N Pitts Jr J M McAfee W Long and A M Winer Environ Sci Technol in pressJ

(27) B Weinstock and T Y Chang Telus 26 108 (1974) (28) T A Hecht J H Seinfeld and M C Dodge Environ Sci Technol 8 327

(1974) (29) L Zafonte P L Rieger and J R Holmes Some Aspects of the Atmoshy

spheric Chemistry of Nitrous Acid presented at 1975 Pacific Conference on Chemistry and Spectroscopy Los Angeles Calif Oct 28-30 1975 W H Chan R J Nordstrum J G Calvert and J N Shaw Chem Phys Lett 37441 (1976)

(30) J M McAfee A M Winer and J N Pitts Jr unpublished results (31) C C Wang L I Davis Jr CH Wu S Japar H Niki and B Weinstock

Science 189 797 (1975) (32) H Niki and B Weinstock Environmental Protection Agency Seminar

Washington DC Feb 1975 (33) A C Lloyd Int J Chem Kinet 6 169 (1974) (34) J G Calvert J A Kerr K L Demerjian and R D McQuigg Science 175

751 (1972) (35) R Atkinson and J N Pitts Jr J Chem Phys 63 3591 (1975) (36) D Perner D H Ehhalt H W Patz U Platt E P Roth and A Volz OH

Radicals In the Lower Troposphere 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(37) D D Davis T McGee and W Heaps Direct Tropospheric OH Radical Measurements Via an Aircraft Platform Laser Induced Fluorescence 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(38) E Sanhueza and J Helcklen Can J Chem 52 3870 (1974) (39) E Sanhueza and J Helcklen Int J Chem Kinet 6 553 (1974) (40) E Sanhueza I C Hisatsune and J Heicklen Oxidation of Haloethylenes

Center for Air Environment Studies The Pennsylvania State University CAES Publication No 387-75 Jan 1975

(41) E A Lissi private communication to authors of ref 40 and quoted therein (42) J A Franklin G Huybrechts and C Cillien Trans Faraday Soc 65 2094

(1969) (43) B W Gay Jr P L Hans J J Bufalinl and R C Noonan Environ Sci

Technol 10 58 (1976) (44) R F Lake and H Thompson Proc R Soc London Ser A 315 323

(1970) (45) LA Ripperton and H E Jefferies Adv Chem Ser No 113 219 (1972) (46) E D Morris Jr and H Niki J Phys Chem 75 3640 (1971) (47) S Fischer R Schiff E Machado W Bollinger and D D Davis 169th

National Meeting of the American Chemical Society Philadelphia Pa April 6-11 1975

(48) S M Japar CH Wu and H Niki Environ Lett 7245 (1974) (49) J S Gaffney R Atkinson andJ N Pitts Jr J Am Chem Soc 97 5049

(1975) (50) K R Darnall A C Lloyd A M Winer and J N Pitts Jr Environ Sci

Technol in press (51) J N Pitts Jr A C Lloyd A M Winer K R Darnall and G J Doyle

Development and Application of a Hydrocarbon Reactivity Scale Based on Reaction with the Hydroxyl Radical to be presented at 69th Annual APCA Meeting Portland Oreg June 27-July 1 1976

The Journal of Physical Chemistry Vol 80 No 14 1978

69

l

Reactivity Scale for Atmospheric Hydrocarbons Based on Reaction with Hydroxyl Radical

Karen R Darnall Alan C Lloyd Arthur M Winer and James N Pitts Jrbull

Statewide Air Pollution Research Center University of California Riverside Calif 92502

Bv use of relative and absolute rate constants for the reshyactiltn of the hydroxyl radical (OH) with a number of alkanes alkenes aromatics and ketones a reactivity scale is formushylated based on the rate of removal of hydrocarbons and oxyshygenates by reaction with OH In this five-class scale each class spans an order of magnitude in reactivity relative to methane Thus assigned reactivities range from lt10 fo~ ~lass I (conshytaining oniv methane) togt104 for Class V cotammg te mo~t reactive compounds (eg d-limonene) This scale differs m several significant ways from those presently utilized by _air p(llution control agencies and various industrial laboratories For example in contrast to other scales based o~ s_eco~dar_y marifestations such as yields of ozone and eye 1rritat1on it focuses directlv on initial rates of photooxidation The proshyposed scale als~ provides a clearer understandin~ of the_imshyportance of alkanes in the generation of ozone durmg per10~s of prolonged irradiation The present ~cale can be readily extended to include additional orgamc compounds (eg natural and anthropogenic hydrocarbons oxygenates chloshyrinated solvents) once their rate of reaction with OH is known

It has been recognized for many years (1-21) that all hyshydrocarbons occurring in polluted atmospheres are not equally effective in producing photochemical oxidant and hence that the application of cost effective strategies for the control of hydrocarbons requires that more stringent emissions reducshytions be applied to the more reactive organic compounds (22-25) This in turn has led to a continuing requirement for a rational assessment of hydrocarbon reactivity as a basis for control decisions Such an assessment is particularly critical since attainment of the Federal air quality standard for phoshytochemical oxidant has been sought largely through the stringent control of hydrocarbon emissions (26-27)

The first effort to formulate and apply a practical hydroshycarbon reactivity scale was taken in 1966 with the impleshymentation by the Los Angeles Air Pollution Control District (LAAPCD) of a regulation known as Rule 66 to limit solvent organic emissions on the basis of their capacity for promoting photochemical smog formation (24-25) This rule an~ other conceptions of reactivity scales (28) represented a maJor adshyvance in the application of the information then available concerning the mechanisms of photochemical smog formation to the development of practical air pollutant emission control strategies

Not surprisingly however both in the past and present there have been significant differences in hydrocarbon reacshytivity scales proposed by local regional and national air pollution control agencies (23 29-31) as well as by industy (14 16) As shown in Table I this can lead to very large difshyferences in emission inventory estimates and in approaches to hydrocarbon control (29 32 33) In this case reactive hyshydrocarbon emission inventory levels calculated by Goeller et al (32) using hvdrocarbon reactivity definitions of the Envishyronmental Protection Agency (EPA) on tlie one hand and the California Air Resources Board (ARB) and LAAPCD on the other differed by factors of 3 to 4

A second problem common to virtually all previous reacbull tivity classifications has been their reliance on smog chamber data obtained for relatively short irradiation (~2-6 h) periods

Thus the recent concern over oxidant formation resulting from ionger irradiations during pollutant tr~sport ~o ~egio_ns downwind of urban sources introduces additional d1fficult1es both in defining what constitutes a reactive hydr~carbon and in categorizing degrees of reactivity For example a compound such as propane the major component in liquefied petroleum gas (LPG) and often cited as a clean fuel is now known (34-36) to contribute to the formation of photochemical oxishydants in the later stages of day-long irradiation periods However on the basis of data obtained during short-term ir- middot radiations propane has been classified as unreactive in a reactivity scale proposed (23) by B Dimitriades of the EPA (hereafter referred to as the EPA reactivity scale)

Altshuller ald Bufalini (9 17) have reviewed the various definitions of hydrocarbon reactivity ~nd summarized results of numerous studies up to 1970 The criteria used for evalushyating hydrocarbon reactivity include hydrocarbon conshysumption the conversion of nitric oxide to nitrogen dioxide ozone formation aerosol formation eye irritation and plant damage It is generally agreed that the criteria most suitable with respect to photochemical oxidant control strategies are ozone dosage or maximum ozone concentration (29) However establishing a definitive hydrocarbon reactivity scale to be applied specifically to the control of ozone formation requires an extensive and lengthy experimental program in which the ozone-forming capability of each individual hydrocarbon is determined under simulated atmospheric conditions inshycluding long-term irradiation (ie 12-14 h)

An alternative basis for assessing hydrocarbon reactivity which would appear to have considerable utility and a valid experimental foundation is the formulation of a reactivity scale based on the rate of disappearance of hydrocarbons due to reaction with the hydroxyl radical the key intermediate spcies in photochemical air pollution

Results and Discussion

It is only in the last six years that the critical role-of OH in photochemical smog formation has been generally recognized (37-40) and that appreciable rate constant data have become available for the reaction of OH with several classes of hyshydrocarbons The importance of OH as a reactive intermediate relative to species such as Oa 0(3P) and H02 has been shown previously (39-41) through computer modeling of smog chamber data For example Niki et al (39) showed that the reactivity of a number of hydrocarbons as measured by the rate of conversion of NO to N02 correlated significantly better with OH rate constants than with either 0(3P) or Oa rate constants

Table I Comparison of Reactive Hydrocarbon Inventory Levels for Fixed Sources Under Alternative Reactivity Assumptions (from Ref 32 Based on Pre-1973 Data)

Reactive hydrocarbons tonsday

Control Conslslenl ARB-

strat-iy EPA lAAPCD Rand Corp

1970 8760 2283 6363 1975 nominal 4273 1022 2399 1975 maximal 2906 577 1299

Reprinted from ENVIRONMENTAL SCIENCEamp TECHNOLOGY yo 10 Page 692 ~uly 1976 Copyright 1976 by the American Chemical Society an1 0eprinted by perm1ss1on of the copynght owner

The utility of a large environmental chamber in obtaining relative rate constants with an accuracy of plusmn20 for the reshyaction of the hydroxyl radical with a variety of hydrocarbons was demonstrated in an earlier study in this laboratory (41 ) This method has recently been extended to an investigation of more than a dozen additional hydrocarbons including seven compounds for which OH rate constants are not currently available The detailed kinetic data derived from this invesshytigation have been reported elsewhere (42) In these studies we determined the rPlative rates of disappearance of selected alkanes alkenes and aromatic hydrocarbons under simulated atmospheric conditions of temperature pressure concenshy

l

middottrations light intensity and other trace contaminants (NO CO hydrocarbons water) These relative rate constants were placed on an absolute basis using the published rate cons~ts for OH+ n-butane The assumption that OH was responsible for the hydrocarbon disappearance under the experimental conditions employed (41) was subsequently supported by the very good agreement between OH rate constants determined for the individual compounds using flash photolysis-resoshynance fluorescence techniques (43 44) and those obtained in

l the initial chamber study (41) The general validity of the chamber method for obtaining OH rate constants is illustrated in Figure 1 where the good correspondence between chamber values (41 42) and the available literature values [(45) and references in Table IV] is shown graphically

The importance of the chamber method for the purposes of formulating a reactivity scale is the simultaneous detershymination of valid rate constants for reactions of OH with a large number and wide variety of atmospherically important hydrocarbons This substantially expands the number of compounds which can be incorporated now and in the near future in the resulting reactivity scale In this regard we are currently extending (46) the chamber method to the detershymination of rate constants for reactions of OH with natural hydrocarbons such as terpenes and solvent hydrocarbons such as ketones and chloroethenes for which no data currently exist Preliminary kinetic data (46) for selected natural hyshydrocarbons and ketones are included in our proposed reacshytivity scale

Use of OH Rate Constants as a Reactivity Index From the successful correlation of OH rate constants with the rates of hydrocarbon disappearance observed in our chamber simulations we conclude that to a good approximation this

Ill 1-- 25 z

~~ a ii ~ lt 20 ux ow ~ f5 ~ ~ 15 u lt(0 c

()

~ ~ 10 14

~ tla z ILI lt(

~ 1i 5 I- w lt( Q __ Q

ILI lt(a Ill

i5 o 5 ~ ~ W ~ ~ ~ 40

PUBLISHED RATE CONSTANTS ( J mol-1sec-I x 10-9)

Figure 1 Comparison of relative rates of hydrocarbon disappearan~e determined by environmental chamber method (refs 41 a~d 42) with selected published rate constants (cited in Table IV) for reaction of those hydrocarbons with OH radicals Line shown represents one to one correspondence and has slope of ( 1 18) X 10-9 mol s 1- 1bull Compounds shown are 1 n-butane 2 isopentane 3 toluene 4 2-methylpentane 5 n-hexane 6 ethane 7 3-melhylpentane 8 p-xylene 9 erxylene 10-11 m-xylene 12 123-trimeth~lbenzene_ 13 propane 14 124--trimethylbenzene 15 135-trimethylbenzene 16 cs-2-butene

71

Table II Effect of 0 1 PPM Ozone on Calculated Lifetimes of Selected Alkenes Based on Reaction with OH Radicals (1 X 107 Radicalscm3 ) a at 300 K

OH rate constants b Hall-Ille c tor Hall-Ille d lor Alkenamp I mo1- 1 bull-1 [o3J=0 h (03) = 01 ppm h

Ethene 38 X 109 30 28

Propene 15 X 1010 076 067

cis-2- 32 X 1010 036 020 Butene

13-Buta- 46 X 1010 025 024 diene bull b bull

bull Concentration used in these calculations-see text See references on Table IV c t112 = 0693kOH[OH] under the assumption ol attack only by OH d t12 = 0693(kOH[OH] + ko(03]) ko3 taken from refs 45 and 59

correlation can be extr~polated to the atmosphere for alkenes in ambient air parcels during the early morning hours when ozone levels are generally quite low (5005 ppm) and for alshykanes and aromatics at essentially all times and locations The latter assumption namely that an OH rate constant is a good reactivity index for alkanes and aromatics throughout an irradiation day (or multiple irradiation days) rests upon the fact that the rates of reaction of these classes of hydrocarbons with species such as ozone 0(3P) atoms and hydroperoxyl radicals are several orders of magnitude slower than with OH (45 47-49) For example even at the highest ozone concenshytrations experienced in ambient atmospheres 03 will not contribute significantly to the photooxidation of alkanes and aromatics

This is in contrast to the case for alkenes which although the rate constants for reaction of Oa with alkenes are not particularly large (45) react rapidly with ozone at the average concentrations commonly encountered in polluted ambient air (---01-02 ppm) The approximate magnitude of the effect of ozone on the atmospheric lifetimes of alkenes is given in Table II From their OH rate constants (see Table IV) atshymospheric lifetimes for four alkenes were obtained by asshysuming an OH radical concentration in polluted atmospher~s of 107 radicals cm-3 which is a reasonable value on the bass of both model calculations (50) and recent atmospheric measurements (51-53) The half-life given in column 3 of Table II is defined as t 1 2 = 0693k(OH) and assumes deshypletion of the hydrocarbon solely by the hydroxyl radical When one assumes an average concentration of 010 ppm of 0 3 the more reactive alkenes show considerably shorter half-lives (column 4) For example the lifetime of cis-2-butene in the atmosphere is 036 h assuming only reaction with OH but this is reduced to 020 h when reaction with Oa at a conshycentration of 01 ppm is considered

Proposed Reactivity Scale Under the assumption that hydrocarbon depletion is due solely to attack by OH (with the qualification noted for alkenes) we propose a five-class reshyactivity scale based on hydrocarbon disappearance rates due to reaction with OH The ranges of reactivities for the five proposed classes each span an order of magnitude in reactivity relative to methane and are shown in Table III The hydroshycarbon half-lives as defined above are also shown for each reactivity range

Hydroxyl radical rate constant data for a wide ra~ge of atshymospheric hydrocarbons have been taken from the literature as well as from our own studies and are compiled and refshyerenced in Table IV The assignment of these compounds in the various classes of our proposed reactivity scale is shown in the last column of Table IV For interest carbon monoxide is included in this table since although it is not a hydrocarbon it is present in polluted urban atmospheres but is generally regarded as being unreactive in ambient air Thus carbon

Volume 10 Number 7 July 1976 693

l

monoxide appears as being somewhat reactive in Class 11 Cohen (o) and Glasson and Tuesday (8) was essentially the which also includes ethane and acetylene In our current same as that obtained from the studies of hydrocarbon conshycompilation of compounds methane is the only compound sumption carried out by Schuck and Doyle (1 ) Stephens and listed which appears in Class I and 2-methyl- and 23-dishy Scott (3) and Tuesday (5) We are currently investigating methyl-2-butene and d-limonene are the only compounds in methods of quantitatively relating hydrocarbon consumption Class V Several of the higher alkenes and 13-butadiene apshy to nitric oxide oxidation and ozone formation the parameter pear at the upper end of Class IV Data from our recent study of greatest interest in formulating control strategies for oxishyof monoterpeiie hydrocarbons ( 46) indicate that many of these dant reduction compounds will appear in Class V (54) As indicated above Rule 66 formulated by the LAAPCD

Comparison with Other Scales The ranking of reacshy in 1966 represented the first hydrocarbon control measure tivities for the aromatic hydrocarbons in our scale is essentially based on photochemical reactivity Although this regulation the same as that obtained by Altshuller et al (4) and by has been effective results from recent studies (34-36) indicate Kopczynski (7 17) Although our proposed scale is based that the 4-6 h irradiations (25) from which assignments of solely on hydrocarbon disappearance rates Altshuller and the degree of reactivity of hydrocarbons were made in forshyBufalini ( 17) have shown that this measure of reactivity is very mulating Rule 66 did not give sufficient recognition to the similar to the one based on nitric oxide oxidation rates They ozone-forming potential of slow reactors such as n-butane and showed that the ranking of reactivities of hydrocarbons from propane Consequently it is now realized that measures more the nitric oxide photooxidation studies of Altshuller and stringent than Rule 66 are necessary to achieve reductions in

ozone formation to levels approaching th(se mandated by the US Clean Air Act Amendments of 1970

Table Ill Reactivity Scale for Hydrocarbons Based on Recognition of such deficiencies in current hydrocarbon Rate of Disappearance of Hydrocarbon Due to control regulations has led to reexamination of present hyshyReaction with Hydroxyl Radicals drocarbon reactivity classifications The focus of these reshy

evaluations has been the five-class reactivity scale (see TableClasa Hall-Hiebull Reactivity rel to methane ( =1)

I gt99 days lt10 V) proposed by B Dimitriades at the EPA Solvent Reactivity II 24 h to 99 days 10-100 Conference in 1974 (23) Significant changes have been sugshy

gested for this reactivity classification by the California ARB (29 30) the LAAPCD (31) the EPA (55) and by industry

Ill 24-24 h 100-1000 IV 024-24 h 1000-10 000

However since no final conclusions have been reached by any V lt024 h gt10 000 t112 = 0693kOH[OH] of these agencies at this time we will restrict comparison of

our proposed scale to the 1974 EPA scale

r Table IV Proposed Reactivity Classification of Hydrocarbons and CO Based on Reaction with Hydroxyl Radicals

Compound koH + Cpd (I mo1- 1 s-1) X 10-9 Rat Reactivity rel to methane ProPQsad class see Table Ill

Methane 00048 (60) 1 I co 0084 (45) 18 II Acetylene 011 (45 61 66) 23 II Ethane 016 (62) 33 II Benzene 085 (43 44) 180 Ill Propane 13 (63) 270 Ill n-Butane 18 (41 42) 375 Ill lsopentane 20 (42) 420 Ill Methyl ethyl ketone 21 (46) 440 Ill 2-Methylpentane 32 (42) 670 Ill Toluene 36 (43 44) 750 Ill n-Propylbenzene 37 (42) 770 ill lsopropylbenzene 37 (42) 770 ill Ethane 38 (42 64-66) 790 Ill n-Hexane 38 (42) 790 Ill 3-Methylpentane 43 (42) 900 Ill Ethylbenzene 48 (42) 1000 Ill-IV P-Xylene 745 (41 43) 1530 IV p-Ethyltoluene 78 (42) 1625 IV o-Ethyltoluene 82 (42) 1710 IV o-Xylene 84 (41 43) 1750 IV Methyl isobutyl ketone 92 (46) 1920 IV m-Ethyltoluene 117 (42) 2420 IV m-Xylene 141 (4143) 2920 IV 123-Trimethylbenzene 149 (41 43) 3100 IV Propene 151 (67) 3150 IV 124-Trimethylbenzene 20 (41 43) 4170 IV 135-Trimethylbenzene 297 (41 43) 6190 IV cis-2-Butene 323 (67) 6730 IV 8-Pinene 42 (46) 8750 IV 13-Butadiene 464 (42) 9670 IV-V 2-Methyl-2-butene 48 (68) 10 000 V 23-Dimethyl-2-butene 67 (69) 14 000 V d-Limonene 90 (46) 18800 V

bull Where more than one reference is cited an average value is given for the rate constant

694 Environmental Science amp Technology 72

i

Table V Proposed EPA Reactivity Classification of Organics (from Ref 23 1974) Claul Class II Class Ill Class IV Class V

nonreactive reactive reactive reactlVe reactive

C-C3 paraffins Mono-tertiary- CH paraffins Primary and secondary Aliphatic olefins

Acetylene Cycloparaffins a-Methyl styrene alkyl benzeries alkyl benzenes

Cyclic ketones Dialkyl benzenes

Benzaldehyde Tertiary-alkyl n-Alkyl ketones Branched alkyl Tri- and tetra-alkyl acetates ketones

Benzene Styrene Aliphatic aldehydes

benzenes 2-Nitropropane Primary and secondary

Acetone Primary and secondary alkyl acetates Unsaturated ketones Methanol alkyl alcohols N-methyl pyrrolidone Diacetone alcohol Tertiary-alkyl Cellosolve acetate

3lcohols NN-dimethyl Ethers ace tam Ide Partially halogenated

Phenyl acetate CellosolvesolefinsPartially halogenated paraffins Methyl benzoate

Partially halogenated Ethyl amines paraffins

Dimethyl formamlde

Perhalogenated hydrocarbons

Reactivity rating 10 35 65 97 143

Briefly the EPA has proposed on the basis of previous experimental studies that methane ethane acetylene proshypane and benzene are essentially nonreactive for typical urban ambient hydrocarbon-NOx ratios (23) and these compounds are placed in Class I on their scale Three other classes have been proposed for mobile source hydrocarbon emissions (56)-Class III (C4 and higher alkanes) Class IV (aromatics less benzene) and Class V (alkenes) When stashytionary source hydrocarbons including solvents (Class II) are added to the list five classes are suggested as shown in Table V

Thmiddot reactivity classification proposed here (Tables III and IV) can be compared with that suggested by the EPA (Table V) It is evident that several significant differences emerge

bull The C1-C3 alkanes are given equal weighting in the EPA scale and all are designated unreactive whereas our scale clearly differentiates among the three compounds from methane in Class I and ethane in Class II to the more reactive propane in Class III

bull According to our proposed classification benzene and n-butane are of similar reactivity whereas the EPA scale places them in Class I and III respectively

bull All the alkenes are placed in Class V of the EPA scale whereas our proposed scale shows a differentiation in reacshytivity from ethene in Class III to 23-dimethyl-2sbutene in Class V

bull Our scale g1ves recognition to the high reactivity of natshyural hydrocarbons such as 3-pinene and d-limonene placing these in Class IV and V respectively The present published EPA scale does not give a classification for natural hydroshycarbons although they could be loosely categorized as subshystituted alkenes in Class V

In addition to noting these differences some similarities exist between the two scales For example our scale shows that 13-butadiene is highly reactive which is consistent with preshyvious studies indicating it to be a facile precursor of eye irrishytants (17) and highly effective in producing oxidant during irradiation of HC-NOx mixtures (57) Also methanol would appear in the low half of Class II in our scale based on a recent dstermination of the rate constant for OH attack on methanol (58) The value found was k(OH+CH30H)lkltOH+CO) = 063 at 298 K This reduces to 53 X 107 1 mo1-1 s-1 based on k(oH+CO) = 84 X 107 1 mo1-1s-1 (45) Hence both our scale and the EPAs show methanol to be relatively unreactive

It should be emphasized that the classification proposed in our scale is not strictly applicable to compounds which

73

undergo significant photodissociation in the atmosphere for example aliphatic aldehydes In such cases the compound will be more reactive than predicted from a scale based on hydrocarbon depletion due solely to OH attack However our proposed classification emphasizes that most compounds react in polluted atmospheres and suggests that thf Class I scale be reserved only for the few compounds which have half-lives greater than about 10 days

Conclusion

Our proposed reactivity scale based on the depletion of hydrocarbons by reaction with the OH radical has utility in assessing hydrocarbon chemical behavior in polluted ambient air Since only those organic compounds which participate in atmospheric reactions are of consequence in the chemical transformations in ambient air their relative reactivity toward OH is a useful and directly measurable index of their potential importance in the production of secondary pollutants

Ohe advantage of the proposed scale is that because it is based on the individual rate constants for hydrocarbon reacshytion with OH any degree of gradation in reactivity may be used to formulate any desired number of classes-from relashytively few to a large number of classes or even an ordered ranking of compounds A second strength of the present scale is that it can be readily extended to include additional organic compounds once their rate of reaction with OH is known Fishynally the proposed scale gives greater weight than previous reactivity scales to the alkanes and a number of aromatic hydrocarbons which require a longer period of time to react but can contribute significantly to ozone formation during longer irradiation periods eg during their transport downshywind from urban centers-a phenomenon of increasing conshycern to air pollution control agencies

Acknowledgment

We gratefully acknowledge helpful discussions with R Atkinson G J Doyle D M Grosjean and E R Stephens

Literature Cited

(1) Schuck E A Doyle G bull J Photooxidation of Hydrocarbons in Mixtures Containing Oxides of Nitrogen and Sulfur Dioxide Rept No 29 Air Pollution Foundation San Marino Calif 1959

(2) Leighton PA Photochemistry of Air Pollution Academic Press New York NY 1961

(3) Stephens E R Scott W E Proc Am Pet Inst 42 (111)665 (1962)

Volume 10 Number 7 July 1976 695

l

1 I l

(4) Altshuller A P Cohen I R Sleva S F Kopczynski S L Sciena 135442 (1962)

(5) Tuesday C S Arch Emmiddotiron Health 7 188 (1963) (6) Altshuller A P Cohen I R Int J Air Water Pollut 7 787

(19631 (7) Kopczynski S L ibid 8 107 (1964) (8) Glasson W A Tuesday C S paper presented at the 150th

National Meeting ACS Atlantic City NJ September 1965 (9) Altshuller A P Bufalini J J J Photochem Photobiol 4 97

(J96fi (10) Heuss JM Glasson W A Environ Sci Technol 2 1109

(19681 (11) Altshuller A P Kopczynski S L Wilson D Lonneman W

Sutterfield F D J Air Pollut Control Assoc 19 787 (1969) (12) Altshuller A P Kopczynski S L Wilson D Lonneman W

Sutterfield F D ibid p 791 (13) Dimitriades B Eccleston B H Hurn R W ibid 20 150

(19701 (14) Levy A Miller S E Final Technical Report on the Role of

Solvents in Photochemical Smog Formation National Paint Varnish and Lacquer Assoc Washington DC 1970

(15) Wilson K W Doyle G J Investigation of Photochemical Reactimiddotities of Organic Solvents Final Report SRI Project PSU-8029 Stanford Research Institute Irvine Calif September 1970

(16) Glasson W A Tuesday C S J Air Pollut Control Assoc 20 239 (1970)

(17) Altshuller A P Bufalini J J Environ Sci Technol 5 39 (1971)

(18) Glasson W A Tuesday C S ibid p 153 (19) Stephens E R in Chemical Reactions in Urban Atmospheres

pp 45-54 C Tuesday Ed American Elsevier New York NY 1971

(20) Stephens E R Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973

(21) Kopczynski S L Kuntz R L Bufalini J J Environ Sci Technol 9608 (1975)

(22) Control Techniques for Hydrocarbon and Organic Solvent Emissions from Stationary Sources Nat Air Pollut Control Admin Publication AP-68 March 1970

(23) Proceedings of the Solvent Reactivity Conference US Enshyvironmental Protection Agency Research Triangle Park NC EPA-6503-74-010 November 1974

(24) Hamming W J SAE Trans 76 159 (1968) (25) Brunelle M F Dickinson JE Hamming W J Effectiveness

of Orga1ic Solvents in Photochemical Smog Formation Solvent Project Final Report Los Angeles County Air Pollution Control District July 1966

(26) Emironmental Protection Agency Region IX Technical Support Document January 15 1973

(27) Feldstein J J Air Polut Control Assoc 24469 (1974) (28) Altshuller A P ibid 16257 (1966) (29) California Air Resources Board Informational Report Progress

Report on Hydrocarbon Reactivity Study June 1975 (30) Organic Compound Reactivity System for Assessing Emission

Control Strategies ARB Staff Report No 75-17-4 September 29 1975

(31) Los Angeles County APCD Proposed Reactivity Classification of Organic Compounds with Respect to Photochemical Oxidant Formation Los Angeles County Air Pollution Control Departshyment July 21 1975

(32) Goeller B F Bigelow J H DeHaven JC Mikolowsky W T Petruschell R L Woodfill B M Strategy Alternatives for Oxidant Control in the Los Angeles Region R-1368-EPA Rand Corp Santa Monica Calif December 1973

(33) Impact of Reactivity Criteria on Organic Emission Control Strategies in the Metropolitan Los Angeles AQCR TRW Interim Report March 1975

(34) Holmes J California Air Resources Board private communishycation 1975

(35) Pitts J N Jr Winer A M Darnall K R Doyle G J McAfee JM Chemical Consequences of Air Quality Standards an~ of Control Implementation Programs Roles of Hydrocarbons Oxides of Nitrogen and Aged Smog in the Production of Photoshychemical Oxidant Final Report California Air Resources Board Contract No 3-017 July 1975

(36) Altshuller A P in Proceedings of the Solvent Reactivity Conference US Environmental Protection Agency Research Triangle Park NC EPA-6503-74-010 pp 2-5 November 1974

(37) Heicklen J Westberg K Cohen N Puhl 115-69 Center for Air Environmental Studies University Park Pa 1961

(38) Weinstock R Daby E E Niki H Discussion on Paper Presented by E R Stephens in Chemical Reactions in Urban Atmospheres pp 54-55 C S Tuesday Ed Elsevier New York NY 1971

(39) Niki H Daby E E Weinstock B AdLbull Chem Ser 113 16 (197)

(40) Demerjian K L Kerr J A Calvert J G Adv Environ Sci Technol 4 1 (1974)

(41) Doyle G J Lloyd A C Darnall K R Winer A M Pitts J N Jr Environ Sci Technol 9237 (1975)

(42) Lloyd A C Darnall K R Winer A M Pitts J N Jr J Phys Chem 80 789 (1976)

(43) Hansen D A Atkinson R Pitts J N Jr ibid 79 1763 (1975) (44) Davis D D Bollinger W Fischer S ibid p 293 (45) Chemical Kinetic and Photochemical Data for Modeling Atshy

mospheric Chemistry NBS Technical Note 866 R F Hampson Jr llQJJQarvin Eds Ju_ne 1975_____~ middot middot

(46)rloyd A C~arnliltKR-XWiner A JI_) Pitts J N Jr J Phys Chem 80 lflgti (1976)

(47) Pate C T Atkmiddot ori R Pitts J N Jr J Environ Sci Health All 1 (1976)

(48) Atkinson R Pitts J N Jr J Phys Chem 78 1780 (1974) (49) Stedman D H Niki H Environ Lett 4303 (1973) (50) Calvert J McQuigg R Proceedings of the Symposium on

Chemical Kinetics Data for the Upper and Lower Atmosphere Warrenton Va September 15-18 1974 Int J Chem Kinet Symposium No 1 113 (1975)

(51) Wang C C Davis L I Jr Wu CH Japar S Niki H Weinstock B Science 189 797 (1975)

(52) Perner D Ehhalt D H Patz H W Platt U Roth E P Volz A OH Radicals in the Lower Troposphere 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(53) Davis D D McGee T Heaps W Direct Tropospheric OH Radical Measurements via an Aircraft Platform Laser Induced Fluorescence ibid

(54) Pitts J N Jr Lloyd A C Winer A M Darnall K R Doyle G J Development and Application of a Hydrocarbon Reactivity Scale Based on Reaction with the Hydroxyl Radical to be preshysented at 69th Annual APCA Meeting Portland Ore June 27-July 1 1976

(55) Informal EPA meeting Philadelphia Pa July 30-31 1975 (56) Black M High L E Sigsby JE Methodology for Assignshy

ment of a Hydrocarbon Photochemical Reactivity Index for Emissions from Mobile Sources US Environmental Protection Agency Research Triangle Park NC EPA-6502-75-025 March 1975

(57) Haagen-Smit A J Fox M M Ind Eng Chem 48 1484 (1956)

(58) Osif T L Simonaitis R Heicklen J J Photochem 4 233 (1975)

(59) Japar S M Wu CH Niki H J Phys Chem 78 2318 (1974) (60) Davis D D Fischer S Schiff R J Chem Phys 61 2213

(1974) (61) Pastrana A Carr R W Jr Int J Chem Kinet 6587 (1974) (62) Overend R Paraskevopoulos G Cvetanovic R J Hydroxyl

Radical Rate Measurement for Simple Species by Flash Photolysis Kinetic Spectroscopy Eleventh Informal Conference on Photoshychemistry Vanderbilt University Nashville Tenn June 1974

(63) Gorse R A Volman D HJ Photochem 3115 (1974) (64) Greiner N R J Chem Phys 53 1284 (1970) (65) Smith I W M Zellner R J Chem Soc Faraday Trans II

69 1617 (1973) (66) Davis D D Fischer S Schiff R Watson R T Bollinger W

J Chem Phys 63 1707 (1975) (67) Atkinson R Pitts J N Jr ibid p 3591 (68) Atkinson R Perry R A Pitts J N Jr Chem Phys Lett

38607 (1976) (69) Atkinson R Perry R A Pitts J N Jr unpublished results

1975 Received for review November 3 1975 Accepted January 30 1976 Work supported by the California Air Resources Board (Contract No 4-214) and the National Science Foundation-RANN (Grant No AEN73-02904 A02) The contents do not necessarily reflect the vieumiddots and policies of the California Air Resources Board or the National Science Foundation-RANN nor does mention of trade names or commercial products constitute endorsement or recommendation for use

696 Environmental Science amp Technology 74

Ii

rl

I r I

G

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE

BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Statewide Air Pollution Research Center University of California

Riverside CA 92521

Paper No 76-311

Presented at the 69th Annual Air Pollution Control Association Meeting

Portland Oregon

June 27 - July 1 1976

75

76-311 rII 2

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Statewide Air Pollution Research Center University of California

Riverside CA 92502

Abstract

Measurements of the relative rate constants for the reaction of the hydroxyl radical (OH) with some 35 atmospherically important hydrocarbons have been made in the SAPRC 6400 i glass irradiation chamber These rate constants were placed on an absolute basis using literature values for either n-butane or isobutene and have been augmented with OH rate data obtained by elementary reaction measurements and other appropriate data such as that from photoshy

l oxidation studies from which relative and absolute OH rate constants could be calculated

l Utilizing these data a reactivity scale for some 80 compounds including alkenes alkanes aromatics oxygenates and naturally occurring hydrocarbons has been formulated based on the removal of the hydrocarbons by reaction with OH The resulting scale is an ordering of the reactivities of the hydrocarbons relative to methane The scale can be divided into an arbitrary number of classes for purposes of application to control strategies or comparison with other reactivity scales

Some comparisons of the present scale with proposed EPA and ARB reactivity scales are made and the implications of the present scale for the role of alkanes and a number of aromatic hydrocarbons in the formation of ozone in regions downwind of urban centers is analyzed

76

r I

I D

-I

f

76-311 3

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Introduction

1A major result of the photooxidation studies of the past 20 years - 26 has been the recognition that atmospherically important hydrocarbons do not all contribute equally to the production of photochemical oxidant and hence that the application of cost effective strategies for the control of hydrocarbons requires that more stringent emissions reductions be applied to the more reactive organic compounds 10lll9 26 This in turn has led to a continuing requirement for a rational assessment of hydrocarbon reactivity as a basis for control decisions Such an assessment is particularly critical since attainshyment of the Federal air quality standard for photochemical oxidant has been sought largely through the stringent control of hydrocarbon emissions2728

The first effort to formulate and apply a practical hydrocarbon reactivity scale was taken in 1966 with the implementation by the Los Angeles Air Pollution Control Districtmiddot (LAAPCD) of a regulation known as Rule 66 to limit solvent organic emissions on the basis of their capacity for promoting photoshychemical smog formation 10ll This rule and other conceptions of reactivity scales29 represented a major advance in the application of the information then available concerning the mechanisms of photochemical smog formation to the development of practical air pollutant emission control strategies Thus the basic concept of selective control of emissions based on their reactivity is now widely established

Not surprisingly however there have been significant differences in hydrocarbon reactivity scales proposed by local regional and national air pollution control agencies2530-34 as well as by industry161823 This in turn can lead to quite large differences in emission inventory estimates and in approaches to hydrocarbon control303536

Most although not all previous reactivity classifications have relied primarily on smog chamber data obtained for relatively short irradiation (~ 6 hrs) periods Thus the recent concern over oxidant formation resulting from longer irradiations during pollutant transport to regions downwind of urban sources introduces additional difficulties both in defining what constishytutes a reactive hydrocarbon and in categorizing degrees of reactivity For example a compound such as propane the major component in liquified petroleum gas (LPG) and often cited as a clean fuel is now known37-39 to contribute to the formation of photochemical oxidants in the later stages of day-long irradiation periods However on the basis of data obtained during short-term irradiations propane has been classified as unreactive in a reactivity scale

77

76-311

[

r I l

J

I

4

proposed25 in 1974 by B Dimitriades of the EPA (hereafter referred to as the EPA reactivity scale)

A third difficulty with reactivity scales which are based on previous smog chamber data concerns their reliance on measurements of smog manifestations such as maximum ozone concentrations Observed values of such secondary properties of a photooxidation system can be significantly affected by the particular chamber materials light source purity of matrix air and other aspects of the chamber methodology employed This fact can account in large measure for the significant number of discrepancies which arise from comparison of the specific ranking of hydrocarbons in reactivity scales formulated on the basis of different sets of chamber data

Altshuller and Bufalini9 zo have reviewed the various definitions of hydroshycarbon reactivity and summarized results of numerous studies up to 1970 The criteria used for evaluating hydrocarbon reactivity include hydrocarbon conshysumption the conversion of nitric oxide to nitrogen dioxide ozone formation aerosol formation eye irritation and plant damage It is generally agreed that the criteria most suitable with respect to photochemical oxidant control strategies are ozone dosage or maximum ozone concentration30 However establishing a definitive hydrocarbon reactivity scale to be applied specifishycally to the control of ozone formation requires an extensive and lengthy experimental program in which the ozone-forming capability of each individual hydrocarbon is determined under simulated atmospheric conditions including long-term irradiation (ie 10-12 hrs)

An alternative and perhaps supplementary basis for assessing hydrocarbon reactivity which appears to have considerable utility and a valid experimental foundation is the formulation of a reactivity scale based on the rate of disshyappearance of hydrocarbons due to their reaction with the hydroxyl radical the key intermediate species in photochemical air pollution

Results and Discussion

It is only comparatively recently that the critical role of OH in photoshychemical smog formation has been generally recognized40-44 and that appreciable rate constant data have become available for the reaction of OH with several classes of hydrocarbons The importance of OH as a reactive intermediatz

46relative to species such as o3 o(3P) and H02 has been shown previously 3-through computer modeling of smog chamber data For example Niki Daby and Weinstock43 showed that the reactivity of a number of hydrocarbons as measured by the rate of conversion of NO to NOz correlated significantly betterwith OH rate constants than with either 0(3P) or 03 rate constants

The utility of a large environmental chamber in obtaining relative rate constants with an accuracy of plusmn20 for the reaction of the hydroxyl radical with a variety of hydrocarbons has been demonstrated in a number of recent studies both in this45-48 and other laboratories49 To date we have measured relative rates for the reaction of OH with some 35 organic compounds The

78

l l t

l

r L

76-31 1 5

detailed kinetic data derived from these investigations have been reported48elsewhere 45 - In these studies we determined the relative rates of disshy

appearance of selected alkanes alkenes and aromatic hydrocarbons under simushylated atmospheric conditions of temperature pressure concentrations light intensity and other trace contaminants (NOx CO hydrocarbons water) These relative rate constants were placed on an absolute basis using the published rate constants for OH+ n-butane or isobutene The assumption that OH was responsible for the hydrocarbon disappearance under the experimental conditions employed was subsequently supported by the very good agreement between OH rate constants determined for the individual compounds using flash photolysisshyresonance fluorescence techniquesS051 and those obtained in our initial chamber experiments4546

The importance of the chamber method for the purposes of formulating a reactivity scale is that it permits the simultaneous determination of valid rate constants for reactions of OH with a large number and wide variety of atmospherically important hydrocarbons This substantially expands the number of compounds which can be incorporated now and in the near future in the resulting reactivity scale

Use of OH Rate Constants as a Reactivity Index

From the successful correlation of OH rate constants with the rates of hydrocarbon disappearance observed in chamber simulations at the SAPRc45-48 and Ford49 laboratories we conclude that to a good approximation this correlation can be extrapolated to the atmosphere (a) for alkenes in ambient air parcels during the early morning hours when ozone levels are generally quite low (~005 ppm) and (b) for alkanes and aromatics at essentially all times and locations The latter assumption namely that an OH rate constant is a good reactivity index for alkanes and aromatics throughout an irradiation day (or multiple irradiation days) rests upon the fact that the rates of reaction of these classes of hydrocarbons with species such as ozone 0(3P) atoms and the hydroperoxyl radical are several orders of magnitude slower than

52- 54with OH 8 For example even at the highest ozone concentrations experienced in ambient atmospheres 03 will not contribute significantly to the photooxidation of alkanes and aromatics This is in contrast to the case for alkenes which although the rate constants for reaction of 03 with alkenes are not particularly large55-57 react rapidly with ozone at the average concenshytrations connnonly encountered in polluted ambient air (~01-02 ppm)

Proposed Reactivity Scale

Under the assumption that hydrocarbon depletion is due solely to attack by OH (with the qualification noted for alkenes) we propose a five-class reacshytivity scale based on hydrocarbon disappearance rates due to reaction with OH The ranges of reactivities for the five proposed classes each span an order of magnitude in reactivity rel~tive to methane and are shown in Table I Although a scale based on OH rate constants can be divided into an arbitrary number of classes we have found it convenient and useful (particularly for purposes of

79

l r f

1

76-311 6

comparison with other scales) to employ the order of magnitude divisions which lead to a five-class scale

The hydrocarbon half-lives (defined as t12 ~ 0693k[OH]) corresponding to each class are also shown in Table I These half-lives were calculated assuming depletion of the hydrocarbon solely due to reaction with the hydroxyl radical and assuming an OH radical concentration in polluted atmospheres of 107 radicals cm-3 a reasonable value on the basis of both model calculations58 and recent atmospheric measurements59-61

Table II shows the compounds for which OH rate constants have been found or calculated distributed among the five classes of our proposed reactivity scale in the order of increasing rates of reaction within each class Employing OH rate constants obtained from hydrocarbon disappearance rates measured in photooxidation studies62 63 as well as those from elementary rate determinations and our chamber studies has permitted tabulation of OH rate constant data for 80 hydrocarbons These 80 hydrocarbons are incorporated in Table II

For interest carbon monoxide although not a hydrocarbon is included in Table II since it is present in polluted urban atmospheres Although CO is generally regarded as being unreactive in ambient air in our scale it appears in Class II which also includes ethane and acetylene

In our current compilation of compounds methane is the only compound listed which appears in Class I although the recent work of Chameides and Stedman has shown that even methane will react given sufficient time64 Most of the straight chain alkenes appear in Class IV with the substituted alkenes occurring in the upper half of Class IV and in Class V The alcohols fall into Class III while the monoterpene hydrocarbons are highly reactive and most of them appear in Class V with a- and $-pinene occurring in the upper half of Class IV The reactivity classification shown in Table II is similar to an earlier one we have formulated65 but many more compounds have now been included

Comparison with Other Scales

The ranking of reactivities for the aromatic hydrocarbons in our scale is essentially the same as that obtained by Altshuller et al4 and by Kopczynski 7 66 Although our proposed scale is based solely on hydrocarbon disappearance rates Altshuller and Bufalini20 have shown that this measure of reactivity is very similar to the one based on nitric oxide oxidation rates They showed that the ranking of reactivities of hydrocarbons from the nitric oxide photooxidation studies of Altshuller and Cohen6 and Glasson and Tuesdays was essentially the same as that obtained from the studies of hydrocarbon conshysuinption carried out by Schuck and Doyle 2 Stephens and Scott3 and Tuesday 5

As indicated above Rule 66 formulated by the LAAPCD in 1966 represented the first hydrocarbon control measure based on photochemical reactivity Although this and similar regulations have been effective results from recent

80

T

I I t

I Ii

76-31 1 7

d 37-39 d h h ffmiddot hstu ies in icate tat t ey give insu icient recognition tote ozone-forming potential of slow reactors such as g_-butane and propane under longshyterm irradiation conditions Consequently it is now realized that measures more stringent than Rule 66 are necessary to achieve reductions in ozone formation to levels approaching those mandated by the U S Clean Air Act Amendments of 1970

Recognition of such deficiencies in current hydrocarbon control regulations has led to re-examination of present hydrocarbon reactivity classifications The focus of these re-evaluations has been the five-class reactivity scale (see Table III) proposed by B Dimitriades at the EPA Solvent Reactivity Conference in 1974 25 Significant changes have been suggested for this reactivity classishyfication by the California ARB30-33 the LAAPCn34 the EPA67 and by industry The EPA is currently examining this question and since no final conclusions have been reached at this time we will restrict comparison of our proposed sci=Lle to the scale proposed in 1974 by Dimitriades of the EPA In addition we will discuss our proposed scale in the context of the three-class system r~cently approved32 by the ARB for application to hydrocarbon pollutant invenshytories and for planning future control strategies

Briefly the EPA has proposed on the basis of previous experimental studies that methane ethane acetylene propane and benzene are essentially non-reactive for typical urban ambient hydrocarbon-NOx ratios25 and these compounds are placed in Class I on their scale Three other classes have been proposed for mobile source hydrocarbon ernissions68__Class III (C4 and higher alkanes) Class IV (aromatics less benzene) and Class V (alkenes) When stationary source hydrocarbons including solvents (Class II) are added to the list five classes are suggested as shown in Table III

The reactivity classification proposed here (Tables I II) can be compared with that suggested by the EPA (Table III) It is evident that several signifishycant differences emerge

(1) The C1-C3 alkanes are given equal weighting in the EPA scale and all are designated unreactive while our scale clearly differentiates between the three compounds methane ethane and propane in Classes I II and III respectively

(2) According to our proposed classification benzene and n-butane are of similar reactivity while the EPA scale places them in Class I and III respectively

(3) All the alkenes are placed in Class V of the EPA scale while our proposed scale shows a differentiation in reactivity from ethene in Class III to 23-dimethyl-2-butene in Class V

(4) Our scale gives recognition to the high reactivity of natural hydroshycarbons such as the pinenes_and i-limonene placing these in Class IV and V respectively The present published EPA scale does not give a classification for natural hydrocarbons although they could be loosely categorized as substituted alkenes in Class V

81

l l

i

l

76-311 8

In addition to noting these differences some similarities exist between the two scales For example our scale shows that 13-butadiene ts highly reactive which is consistent with previous studies indicating it to be a facile precursor of eye irritants20 and highly effective in producing oxidant during irradiation of HC-NOx mixtures1 Both our scale and the EPAs show methanol to be relatively unreactive with a greater reactivity exhibited by the higher alcohols although our sc-ale predicts a lower overall reactivity than that of the EPA

The three-class system recently approved by the ARB is shown in Table IV and is similar to one being considered by the EPA30 According to the ARB 32

Class I would include low reactivity organic compounds yielding little if any ozone under urban conditions Class II would consist of moderately reactive organic compounds which give an intermediate yield of ozone within the first day of solar irradiation Class III would be limited to highly reactive organic compounds which give very high yields of ozone within a few hours of irradiation

In general the three-class ARB scale is in line with the scale presented here based on OH rate constants with only minor exceptions For example the ARB scale shows the primary and secondary Cz+ alcohols to be highly reactive in Class III while our scale shows them to be of moderate reactivity

Finally we wish to note two limitations of the reactivity scale proposed here One limitation of our scale is that it is not strictly applicable to compounds which undergo significant photodissociation in the atmosphere and aldehydes have been omitted for this reason In such cases the compound will be more reactive than predicted from a scale based on hydrocarbon depletion due solely to reaction with OH A second limitation in the application of our scale concerns the inherent problem arising from uncertainties in the identity and fates of subsequent products33

Conclusion middot

Our proposed reactivity scale based on the depletion of hydrocarbons by reaction with the OH radical has utility in assessing hydrocarbon chemical behavior in polluted ambient air Since only those organic compounds which participate in atmospheric reactions are of consequence in the chemical transshyformations in ambient air their relative reactivity towards OH is a useful and directly measurable index of their potential importance in the production of secondary pollutants

One advantage of the proposed scale is that because it is based on the individual rate constants for hydrocarbon reaction with OH any degree of gradation in reactivity may be used to formulate any desired number of classes-shyfrom relatively few to a large number of classes or even an ordered ranking of compounds A second strength of the present scale is that it can be readily extended to include additional organic compounds once their rate of reaction

82

76-311 9

~

l

I

with OH is known Finally the proposed scale gives adequate weight to alkanes and a number of aromatic hydrocarbons which require a significant period of time to react but can contribute substantially to ozone formation during longer irradiation periods eg during their transport downwind from urban centers-shya phenomenon of increasing concern to air pollution control agencies

Acknowledgement

We gratefully acknowledge access to the final report of the ARB Reactivity Committee prior to official release

This work was supported by the California Air Resources Board (ARB Contract No 5-385) and the National Science Foundation-Research Applied to National Needs (NSF-RANN Grant No ENV73-02904-A03) The contents do not necessarily reflect the views and policies of the ARB or the NSF-RANN nor does mention of trade names or commercial products constitute endorsement or recomshymendation for use

References

1 A J Haagen-Smit and M M Fox Ozone formation in photochemical oxidashytion of organic substances Ind Eng Chem 48 1484 (1956)

2 E A Schuck and G J Doyle Photooxidation of hydrocarbons in mixtures containing oxides of nitrogen and sulfur dioxide Rept No 29 Air Pollution Foundation San Marino California 1959

3 E R Stephens and W E Scott Relative reactivity of various hydrocarbons in polluted atmospheres 11 Proc Amer Petrol Inst 42 (III) 665 (1962)

4 A P Altshuller I R Cohen S F Sleva and S L Kopczynski Air pollutionphotooxidation of aromatic hydrocarbons Science 138 442 (1962)

5 C S Tuesday Atmospheric photooxidation of olefins Effect of nitrogen oxides Arch Environ Health l 188 (1963)

6 A P Altshuller and I R Cohen Structural effects on the rate of nitrogen dioxide formation in the photooxidation of organic compound-nitric oxide mixtures in air Int J Air Water Pollut l 787 (1963)

7 s L Kopczynski Photooxidation of alkylbenzene-nitrogen dioxide mixtures in air Int J Air Water Pollut _ 107 (1964)

B W A Glasson and C S Tuesday paper presented at the 150th National Meeting ACS Atlantic City N J September 1965

9 A P Altshuller and J J Bufalini Photochemical aspects of air pollution a review J Photochem Photobiol _ 97 (1965)

10 M F Brunelle JE Dickinson and W J Hannning Effectiveness of organic solvents in photochemical smog formation Solvent Project Final Report Los Angeles County Air Pollution Control District July 1966

11 W J Hamming Photochemical reactivity of solvents SAE Transactions Ji 159 (1968)

83

10 76-311

12 JM Reuss and W A Glasson Hydrocarbon reactivity and eye irritation Environ Sci Technol I 1109 (1968)

13 A P Altshuller S L Kopczynski D Wilson W Lonneman and F D Sutterfield Photochemical reactivities of n-butane and other paraffinic hydrocarbons J Air Pollut Contr Assoc 19 787 (1969)

14 A P Altshuller S L Kopczynski D Wilson W Lonneman and F D Sutterfield Photochemical reactivities of paraffinic hydrocarbonshynitrogen oxides mixtures upon addition of propylene or toluene J Air Pollut Contr Assoc 19 791 (1969)

15 B Dimitriades B H Eccleston and R W Hurn An evaluation of the fuel factor through direct measurement of photochemical reactivity of

l emissions J Air Pollut Contr Assoc 20 150 (1970)

l 16 A Levy and S E Miller Final technical report on the role of solvents

in photochemical smog formation National Paint Varnish and Lacquer Association Washington DC April 1970

17 K W Wilson and G J Doyle Investigation of photochemical reactivities organic solvents Final Report SRI Project PSU-8029 Stanford Research Institute Irvine California September 1970

18 W A Glasson and C S Tuesday Hydrocarbon reactivity and the kinetics of the atmospheric photooxidation of nitric oxide J Air Pollut Contrl

t Assoc 20 239 (1970)

19 Control Techniques for hydrocarbon and organic solvent emissions from stationary sources Nat Air Pollut Contr Admin Publication IIAP-68 March 1970

20 A P Altshuller and J J Bufalini Photochemical aspects of air pollution a review Environ Sci Technol i 39 (1971)

21 W A Glasson and C S Tuesday Reactivity relationships of hydrocarbon c mixtures in atmospheric photooxidation Environ Sci Technol 5 151 I (1971) -

22 E R Stephens Hydrocarbon reactivities and nitric oxide conversion in real atmospheres in Chemical Reactions in Urban Atmospheres C S Tuesday Ed American Elsevier Inc N Y 1971 pp 45-54

23 Solvents Theory and Practice R W Tess Ed Adv Chem Series 124 (1973)

24 E R Stephens Hydrocarbons in polluted air Sunnnary Report CRC Project CAPA-5-68 June 1973 NTIS No PB 230 993AS

25 Proceedings of the solvent reactivity conference U S Environmental Protection Agency Research Triangle Park N C EPA-6503-74-010 November 1974

26 S L Kopczynski R L Kuntz and J J Bufalini Reactivities of complex hydrocarbon mbtures Environ Sci Technol 2_ 648 (1975)

ltL

27 Environmental Protection Agency Region IX Technical Support Document January 15 1973

28 M Feldstein A critical review of regulations for the control of hydroshycarbon emissions from stationary sources J Air Pollut Contr Assoc 24 469 (1974)

84

l l f [

l

middot-i~ I~ ~ 4 -

11 76-311

29 A P Altshuller An evaluation of techniques for the determination of the photochemical reactivity of organic emissions J Air Pollut Contr Assoc 16 257 (1966)

30 Progress report on hydrocarbon reactivity study California Air Resources Board Informational Report No 72-12-10 June 12 1975_

31 Organic compound reactivity system for assessing emission control strageshygies California Air Resources Board Staff Report No 75-17-4 September 29 1975

32 Board approves reactivity classification California Air Resources Board Bulletin March 1976 p 4

33 Tinalreport of the committee on photochemical reactivity to the Air Resources Board of the State of California Draft April 1976

34 Los Angeles County APCD proposed reactivity classification of organic compounds with respect to photochemical oxidant formation Los Angeles County Air Pollution Control Department July 21 1975

35 B F Goeller J H Bigelow J C DeHaven W T Mikolowsky R L Petruschell and B M Woodfill Strategy alternatives for oxidant control in the Los Angeles region The RAND Corporation Santa Monica California R-1368-EPA December 1973

36 J C Trijonis and K W Arledge Utility of reactivity criteria in organic emission control strategies for Los Angeles TRW Environmental Services Redondo Beach California December 1975

37 J Holmes California Air Resources Board private communication 1975

38 J N Pitts Jr A M Winer K R Darnall G J Doyle and JM McAfee Chemical consequences of air quality standards and of control implementation programs roles of hydrocarbons oxides of nitrogen and aged smog in the production of photochemical oxidant Final Report California Air Resources Board Contract No 3-017 July 1975

39 A P Altshuller in reference 25 pp 2-5

40 N R Greiner Hydroxyl-radical kinetics by kinetic spectroscopy II Reactions with c H6 c H8 and iso-c H at 300 K J Chern Phys 462 3 4 103389 (1967)

41 K Westberg and N Cohen The chemical kinetics of photochemical smog as analyzed by computer The Aerospace Corporation El Segundo California ATR-70(8107)-1 December 30 1969

42 B Weinstock E E Daby and H Niki Discussion on paper presented by E R Stephens in Chemical Reactions in Urban Atmospheres C S Tuesday Ed Elsevier N Y 1971 pp 54-55

43 H Niki E E Daby and B Weinstock Mechanisms of smog reactions Adv Chem Series 113 16 (1972)

44 K L Demerjian J A Kerr and J G Calvert The mechanism of photoshychemical smog formation Adv Environ Sci Technol ~ 1 (1974)

45 G J Doyle A C Lloyd K R Darnall A M Winer and J N Pitts Jr Gas phase kinetic study of relative rates of reaction of selected aromatic compounds with hydroxyl radicals in an environmental chamber Environ Sci Technol 2_ 237 (1975)

85

12 76-311

46 A C Lloyd K R Darnall A M Winer and J N Pitts Jr Relative rate constants forreaction of the hydroxyl radical with a series of alkanes alkenes and aromatic hydrocarbons J Phys Chem 80 789 (1976)

47 A M Winer A C Lloyd K R Darnall and J N Pitts Jr Relative rate constants for the reaction of the hydroxyl radical with selected ketones chloroethenes and monoterpene hydrocarbons J Phys Chem 80 1635 (1976) -

48 A C Lloyd K R Darnall A M Winer and J N Pitts Jr Relative rate constants for the reactions of OH radicals with isopropyl alcohol diethyl and di-n-propyl ether at 305 plusmn 2 K Chem Phys Lett~ 405 (1976)

49 CH Wu S M Japar and H Niki Relative reactivities of HO-hydrocarbon reactions from smog reactor studies J Environ Sci Health All 191 (1976)

i 50 D A Hansen R Atkinson and J N Pitts Jr Rate constants for the reaction of OH radicals with a series of aromatic hydrocarbons J Phys Chern JJ 1763 (1975)

51 D D Davis W Bollinger S Fischer A kinetics study of the reaction of the OH free radical with aromatic compounds I Absolute rate constants for reaction with benzene and toluene at 300degK J Phys Chem J_J_ 293 (1975)

f 52 C T Pate R Atkinson and J N Pitts Jr The gas phase reaction ofi 03 with a series of aromatic hydrocarbonsmiddot J Environ Sci Health All

1 (1976)

53 R Atkinson and J N Pitts Jr Absolute rate constants for the reaction of o(3P) atoms with selected alkanes alkenes and aromatics as determined by a modulation technique J Phys Chem 78 1780 (1974)

54 D H Stedman and H Niki Ozonolysis rates of some atmospheric gases Environ Lett_ 303 (1973)

55 Chemical kinetic and photochemical data for modeling atmospheric chemistry R F Hampson Jr and D Garvin Eds NBS Technical Note 866 June 1975

56 D H Stedman CH Wu and Hbull Niki Kinetics of gas phase reactions of ozone with some olefins J Phys Chem ]J_ 2511 (1973)

57 S M Japar CH Wu and H Niki Rate constants for the reaction of ozone with olefins in the gas phase J Phys Chem 78 2318 (1974)

58 J G Calvert and R D McQuigg The computer simulation of the rates and mechanisms of photochemical smog formation Int J Chem Kinetics Symposium No 1 113 (1975)

59 C C Wang L I Davis Jr CH Wu S Japar H Niki and B Weinstock Hydroxyl radical concentrations measured in ambient air Science 189 797 (1975)

60 D Perner D H Ehhalt H W Patz U Platt E P Roth and A Volz OH radicals in the lower troposphere 12th International Symposium on Free Radicals Laguna Beach California January 4-9 1976

61 D D Davis T McGee and W Heaps Direct tropospheric OH radical measurements via an aircraft platform laser induced fluorescence 12th International Symposium on Free Radicals Laguna Beach California January 4-9 1976

86

13 76-311

62 J L Laity I G Burstain and B R Appel Photochemical smog and the atmospheric reactions of solvents in Reference 23 p 95

63 E P Grimsrud H H Westberg and R A Rasmussen Atmospheric reactivity of monoterpene hydrocarbons NOx photooxidation and ozonolysis Int J Chem Kinetics Symposium No 1 183 (1975)

64 W L Chameides and D H Stedman Ozone formation from NOx in clean air Environ Sci Technol 10 150 (1976)

65 K R Darnall A C Lloyd A M Winer and J N Pitts Jr A reactivity scale for atmospheric hydrocarbons based on reaction with the hydroxyl radical Environ Sci Technol 10692 (1976)

66 S L Kopczynski quoted in Reference 20

67 Informal EPA meeting Philadelphia Pennsylvania July 30-31 1975 l 68 M Black L E High and JE Sigsby Methodology for assignment of al hydrocarbon photochemical reactivity index for emissions from mobile

soucres EPA-6502-75-025 U S Environmental Protection Agency Research Triangle Park North Carolina March 1975

J i

J

s

87

ii

1

14 76-311

Table I R~activity Scale fer Hydrocarbons Based on Rate of Disappearance

of the Hydrocarbon due to Reaction wih the Hydroxyl Radical

Reactivity Relative Class Half-lifea (days) to Methane(== 1)

I gt 10 ~ 10

II 1 - 10 10 - 100

III 01 - 1 100 - 1000

IV 001 - 01 1000 - 10000

V 001 ~ 10000

a 7 -3[OR] is assumed to be 10 radicals cm

88

-- _1---c=r- FFIT~ Ja--~uli -~4 P-iJJia-degR j_--CL[Jl_j i---i_ 0-1 j-____-~ ~ -Ji=-ej ~~~ ~~- I -middot~1--c--aC-

Table II Proposed Reactivity Classification of Hydrocarbons and CO Based on Reaction with the Hydroxyl Radical

CLASS I CLASS II CLASS III CLASS IV CLASS V (S48 x107a (48 X 107 - 48 X lQB)a (48 X 108- 48 X 109) 8 (48 x 109 - 48 x 10lO)a 4 8 X 1Ql0) a

Methane Methanol Neopentane n-Octane 2-Mcthyl-2-butene Carbon monoxide Cyclobutane Diethyl ether 3-Carene Acetylene 2233-Tetramethylbutane pXylene 23-Dirnethyl-2-butene Ethane Benzene p-Ethyltoluene 13-Phellandrene

Ethyl acetate o-Ethyltoluene Carvomenthene Isobutane o-Xylene d-LimoneneshyPropane p-Cymene Dihydromyrcene Diethyl ketone Methyl isobutyl ketone Myrcene Isopropyl acetate Di-n-propyl ether cis-Ocimene n_Butane m-Ethyltoluene n-Butyl acetate m-Xyle~e Ethanol 123-Trimethylbenzene Methylethyl ketone Propene Isopentane 1-Butene 1-Propanol 33-Dimethyl-1-butene 224-Trimethylbutane 1-Pentene V

23-Dimethylbutane 1-Hexene co 223-Trimethylbutane 124-Trimethylbenzene0

Tetrahydrofuran Isobutene 2-Methylpentane 135-Trimethylbenzene Toluene cis-2-Butene Cyclopentane Diisobutyl ketone n-Propylbenzene 2-Methyl-1-butene Isopropylbenzene a-Pinene Ethene Cyclohexene n-Hexane cis-2-Pentene Cyclohexane trans-2-Butene n-Pentane 13-Pinene p-Menthane 13-Butadiene 1-Butanol Isoprene Isopropyl alcohol 4-Methyl-2-pentanol 3-Methylpentane Ethylbenzene

--J 0 a -1 -1Range of values (in liter mole sec ) for the rate constant for reaction of the OH radical with the listed w

compounds

I

------t-L ~- ~ J---1 bull middotmiddott1- lTLJ_J 1--___r _ ~II ~Ai ~-_c11 )----_-J1bull~

Table III Proposed EPA Reactivity Classification of Organics (from reference 25 1974)

CLASS I CLASS II CLASS III CLASS IV CLASS V ~Nonreactive~ (Reactive) (Reactive) (Reactive) (Reactive)

c1-c paraffins3

Acetylene

Benzene

Benzaldehyde

Acetone

Methanol

Tertiary-alkyl alcohols

Phenyl acetate

Methyl benzoate

Ethyl amines

Dimethyl formamide

IO Perhalogenated 0 hydrocarbons

RFACTIVITY RATING 10

Mono-tertiary-alkyl benzenes

Cyclic ketones

Tertiary-alkyl acetates

2-nitropropane

35

c4+ paraffins

Cycloparaffins

Styrene

n-Alkyl ketones

Primary amp Secondary alkyl acetates

N-methyl pyrrolidone

NN-dimethyl acetamide

Partially halogenated paraffins

6S

Primary amp Secondary alkyl benzenes

Dialkyl benzenes

Branched alkyl ketones

Primary amp Secondary alkyl alcohols

Cellosolve acetate

Partially halogenated olefins

97

Aliphatic olefins

a-Methyl styrene

Aliphatic aldehydes

Tri- amp tetra-alkyl benzenes

Unsaturated ketones

Diacetone alcohol

Ethers

Cellosolves

deg

143

-J OI

I) I-

I

17 76-311

Table IV California Air Resources Board (ARB) Reactivity Classification of Org_a1ic Compounds 32

Class I Class II Class III (Low Reactivity (Moderate Reactivity) (High Reaccivity)

c1-c Paraffins2 Acetylene

l

l B2nz2ne

Benzaldehyde

Acetone

Methanol

Tert-alkyl alcohols

Phenyl acetate

Methyl benzoate

Ethyl Amin-lts

Dim2thyl fcr-amide

Perhalogenated Hydrocarbons

Partially halogenated paraffins

Phthalic Anhydride

Phthalic Acids

Acetonitrile

Acetic Acid

Aromatic Amines

Hydroxyl Amines

Naphthalene

Chlorobenzenas

Nitrobenzenes

Phenol 1

Hono-tert-alkyl-benzenes

Cyclic Ketones

Alkyl acetates

2-Nitropropane

c + Paraffins3

Cycloparaffins

n-alkyl Ketones

N-Methyl pynolidone

NN-dimethyl acetamide

Alkyl Phenols

Methyl phthalates

All other aromatic hydroshycarbons

All Olefinic hydrocarbons (including partially haloshygenated)

Aliphatic aldehydes

Branched alkyl Ketones

Cellosolve acetate

Unsaturated Ketones

Primary amp Secondary c + alcohols

2 Diacetone alcohol

Ethers

Cellosolves

Glycols

c + Alkyl phthalates2

Other Esters

Alcohol Amines

c + Organic acids+ di acid3

c + di acid anhydrides3

Fannin Hexa methylene-tetramine)

Terpenic hydrocarbons

Olefin oxides

Reactivity data are either non-existent or inconclusive but conclusive data from similar compounds are available therefore rating is uncertain but reasonable

Reactivity data are uncertain

91

r1_

l

Volume 42 number 2 CHEMICAL PHYSICS LETTERS 1 September 1976

RELATIVE RATE CONST ANTS FOR THE REACTIONS OF OH RADICALS

WITH ISOPROPYL ALCOHOL DIETHYL AND DI-11-PROPYL ETHER AT 305 plusmn 2 K

Alan C LLOYD Karen R DARNALL Arthur M WINER and James N PITTS Jr Statewide Air Pollution Research Center University ofCalifornia Riverside California 92502 USA middot

Received 27 April 1976

Relative rate constants have been obtained for the reaction of the hydroxyl radical (OH) with isopropyl alcohol and diethyl and di-n-propyl ether in environmental chamber photooxidation studies employing hydrocarbon-NOx mixtures in air it 1 atmosphere and 305 plusmn 2 K These results were obtained from measurements of the relative rates of disappearance of these compounds on the previously validated basis that OH radicals are dominantly responsible for their disappearance in the initial stages of reaction under the experimental conditions employed Absolute rate constants obtained by using the published rate constant for OH+ isobutcne of 305 X 1010 Q mole-1 s-1 are (k X 10-9 I mole-1 s-1) isopropyl alcohol 43 plusmn 13 diethyl ether 56 plusmn II and di-nbullpropyl ether 104 plusmn 21 No previous determinations of these rate constants have been reported

1 Introduction 2 Experimental

The hydroxyl radical plays a fundamental role in The technique used to determine relative OH rate chemical transformations in photochemical air pollushy constants in this study has been previously employed tion [ l -7] With the realization of the importance of to obtain kinetic data for reactions of OH with alkanes OH has come an extensive experimental effort to [14 15] alkenes [ l 115) ketones [ l l] aromatics determine rate constants for the reaction of OH with a [1415] and halogenated [I 116) and natural hydroshylarge number of organic compounds These studies carbons [I l] Briefly irradiations of the hydrocarbonshyhave been documented in recent reviews [7] and in a NOx-air system were carried out in a Pyrex chamber critical compilation [8] of approximately 6400-liter volume at a light intensity

To date however comparatively few data have been measured as the rate of N02 photolysis in nitrogen obtained for the gas phase reactions of OH with oxyshy (k1) of 04 min- 1 All gaseous reactants were injected genated hydrocarbons [9-1 l] In this work rate conbull into pure matrix air [ 17] in the chamber using l 00-ml stants are reported for the reaction of OH with three precision bore syringes Liquid reactants were injected ingredients of commercial solvents [1213] - isoshy with micropipettes During irradiation the chamber propyl alcohol and diethyl and di-n-propyl ether temperature was maintained at 305 plusmn 2 K Such data are of fundamental importance in assessing The alcohol and ether concentrations were monitored the role of these oxygenated hydrocarbons in atmosshy with gas chromatography (FID) using a 5-ft X I 8-in pheric chemistry particularly since as controls on stainless steel column packed with Poropak Q (80-

automobiles reduce the contribution of hydrocarbons 100 mesh) operated at 393 and 423 K respectively from mobile sources emissions of such oxygenates Ozone was monitored by means of ultraviolet absorpbull from stationary sources become increasingly of tion CO by gas chromatography and NO-NO2-NOx greater concern by the chemiluminescent reaction of NO with ozone

92

205

Volume 42 number 2 CHEMICAL PHYSICS LETTERS I September 1976

i l

l

The initial concentrations of reactant were isoproshypyl alcohol 60 ppb ( 1 ppb in air= 40 X I o- 11 mole liter - I at 305 K and I atmosphere) diethyl ether 20 ppb and di-11-propyl ether 55 ppb In addition to these compounds traces of several alkanes alkenes and oxygenates were present [I 115) Initial concenshytrations in these experiments were 800-1500 ppbC of total non-methane hydrocarbons 060 ppm of NOx (with an NO2 NOx ratio of 003-008) 6 ppm of CO and 3000 ppb of methane together with warer vapor at 50 relative humidity Replicate 3-hour irradiations vere carried out with continuous analysis of inorganic species analysis of hydrocarbons every 15 minutes and analysis of isopropyl alcohol and the ethers every 30 minutes

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilushytion rate (12-l6 per hour) from the observed hydrocarbon disappearance rate The HCNOx and NON02 ratios were chosen to delay the formation of ozone and ozone was not detected during the irrashydiation period [11 14]

As discussed in detail previously [1115] the major sources of OH in our experimental system are probably the photolysis of HONO and the reaction of H02 with NO [561819]

NO+ N02 + H20-= 2 HONO (l)

H02 + N02 HONO + P2 (2)

HONO + hv(290-410 nm) OH+ NO (3)

l-102 +NO OH+N02 (4)

The first reaction is thought to occur relatively slowly homogeneously [2021] but its rate is probably sigshynificantly faster when the reaction is catalyzed by surfaces Thus nitrous acid has been observed in a chamber study of simulated atmospheres carried out in our laboratory (22] while direct evidence for formation of OH radicals in an environmental chamber hasbeen provided recently by Niki Weinstock and co-workers [2324]

The concentration of OH radicals present during these irradiation experiments was calculated to range from 14 to 35 X 106 radicals cm-3 depending upon the conditions of the specific experiment The calculashytions employed the observed rates of isobutene dis-

206

appearance ( corrected for dilution) and the previously determined rate constant for OH+ isobutene [25] These concentrations are the same order as those calshyculated [182627] and observed directly 232428 29] by other workers

3 Results and discussion

Typical rates of disappearance observed during the irradiations of isopropyl alcohol and of the two ethers are shown in figs I and 2 respectively lsobutene wJs

used as the reference compound and is included in the figures From these pseudo-first-order rates of disshyappearance of the hydrocarbons rate constants reshylative to that of isobutene were obtained for the reshyaction of the PH radical with isopropyl alcohol and diethyl and di-n-propyl ether These were placed on an absolute basis using a value of 305 X 1010 Q

mole- 1 s-1 for the reaction of OH with isobutene [25] These results are presented in table I

There are no rate constants currently available for the reaction of OH radicals with ethers Assuming that hydrogen abstraction is the major reaction pathway one would expect these rate constants to be larger than

z 0

~ a 5 z w lt) z 0 u

0 w gta w ()

ID

ISOPROPYLALCOHOL

0

3 ______________________

omiddot 05 10 15 20 HOURS OF IRRADIATION

Fig 1 Concentrations of isopropyl alcohol and isobu tene plotted on a logarithmic scale) during photolysis of HC-NOx mixture in air at 305 plusmn 2 K and I atm

93

l

Volume 42 number 2 CHEMICAL PHYSICS LETTERS 1 September 1976

50

Fig 2 Concentrations of diethyl and di-n-propyl ether and isobutene (plotted on a logarithmic scale) during -photolysis of HC-NOx mixture in air at 305 plusmn 2 Kand 1 atm

those for the corresponding alkane since the C-H bond strengths in the ethers are at least several kiloshycalories weaker [30] Thus our rate constants ( at 305 K) for diethyl and di-n-propyl ethers of 56 and 104 X 109 Q mole-1 s-1 respectively compare with values for the corresponding alkanes n-butane and n-hexane (at 298 K) of 16 and 29 X 109 Q mole-I s- 1 respectively calculated from the formula of Greiner [31]

Two recent measurements of the rate constants for the gas phase reaction of OH radicals with alcohols

Table 1

iftltt a z w ~ 10 0 u

0 gta S 5

0 05

a DIETHYL ETHER

--0--

10 15 20 25 HOURS OF IRRADIATION

have been reported Osif et al [9) obtained a value of 53 X 107 Q mole- 1 smiddot- 1 for OH+ methanol using a value of 84 X 107

Q moiemiddotmiddot 1 s- 1 for OH reaction with CO [8] Recently Campbell et al [IO] have carried out studies of the reaction of OH With a series of alcohols-shymethanol ethanol 1-propanol and 1-butanol Our value for OH+ isopropyl alcohol of (43 plusmn 13) X 109 Q mole- 1

s-1 at 305 K is consistent with the value of (2 3 plusmn 02) X lQ9Q moie- 1 s-1reported for 1-propanol by Campbell et ai (10) at 292 K middot Although as mentioned no literature data are availshyable for the reaction of OH with ethers it is interesting to examine the data for solvent photooxidations obshytained by Laity et al [32] in chamber studies These workers irradiated separate solvent-NOx-air mixshytures in a stainless steel chamber at 305 K and reshyported t_he maximum rate of hydrocarbon disappearshyance observed in these experiments relative to toluene If this disappearance is assumed to be predominantly duemiddotto attack by OH then absolute rate constants may be derived from these data using a value of 36 X 109 Q moie- 1 s-1 for the reaction of OH+ toluene [3334] Values for OH+ isopropyl alcohol and OH+ diethyl ether are 31 X 109 and 54 X 109 Q mole-1 s-1 respectively compared to our results of 43 and 56 X 109 Q moie-1 s-1 Considering the differences in experimental methods and apparatus as well as the uncertainties involved in such an interpretation of the data of Laity et al [32] the agreement obtained for isopropyl alcohol and diethyl ether is quite satisshyfactory Similar treatment of their chamber data for other compounds for which the OH rate constants are known yields results (35] in fair agreement with literature values

Relative and absolute rate constants for the reaction of OH with selected hydrocarbons

Compound Relative rate of k(ll mole-1 s-1 X 10-9 )

disappearance this work a) literature

isobutene 1 305 isopropyl alcohol 014 43 31b) diethyl ether 0185 56 54 b) di-ndegpropyl ether 034 104

a) Using a literature value of 305 X 1010 ll mole- I s-1 for OH+ isobutene (25] b) Using the data of Laity et al [32] and attributing the HC loss solely to reaction with OH results placed on an absolute basis

using a value of 36 X 109 ll mole-1 s-1 for OH+ toluene (see text) middot

94

207

Volume 42 number 2 CHEMICAL PHYSICS LETTERS I September 1976

r

I l i l l r il

l11e atmospheric half lives tl2 = 0693kou +RH

X [01-1] for isoprupyl alcohol and diethyl and di-11-propyl ether are akubted to be 5 4 41 and 22 hours respectivdy using an ambient OH concentrashytion of 5 X 106 radicals cm-3 [18232426-29] and our rate constants Thus these compounds react with OH at rates similar to ethene c6 - c7 alkanes and mono-alkyl substituted benzenes [36] The relative importance of alcohols ethers and other oxygenated hydrocarbons in photochemical smog formation are discussed in detail elsewhere [35-37]

Acknowledgement

The authors gratefully acknowledge the assistance of FR Burleson in carrying out the gas chromatoshygraphic analyses WD Long for valuable assistance in conducting the chamber experiments and Dr R Atkinson for useful comments concerning this manushyscript This work was supported in part by the California Air Resourses Board (Contract No ARB 5-385) and the National Science Foundation-Research Applied to National Needs (NSF~RANN Grant No AEN73-02904-A02)

References

[I] NR Greiner J Chem Phys 46 (1967) 3389 [2] J 1-Ieicklen K Westberg and N Cohen Center for Air

Environmental Studies Pennsylvania State University University Park PA Pub 114-69 (1969)

[3] DH Stedman EE Morris Jr EE Daby H Niki and B Weinstock 160th Natl Meeting American Chemical Society Chicago September 14-18 1970

(4] B Weinstock EE Daby and H Niki Discussion on paper presented by ER Stepens in Chemical reactions in urban atmospheres ed CS Tuesday (Elsevier Amsterdam 1971) pp 5455

(51 H Niki EE Daby and B Weinstock in Advances in Chemistry Series No 113 (American Chemical Society Washington 1972) p 16

(6) KL Demerjian JA Kerr and JG Calvert Advances in environmental science and technology Vol 4 eds JN Pitts Jr and RL Metcalf (Wiley-lnterscience New York 1974) p 1

(7) JN Pitts Jr and BJ Finlayson Angew Chem Intern Ed 14 (1975) l BJ Finlayson and JN Pitts Jr Science 191 _(1976) 111

(8) RF Hampson Jr and D Garvin eds Chemical kinetic and

208

photochemical data for modeling atmospheric d1cmi~try NBS Tbullchnk11 Note 866 ltJune 1975)

[9] TL Osif R Sinrnnaitis and J lkicklcn J Photod1cm 4 (1975) 233

[10] JM Campbell DF McLaughlin and BJ Handy Ch~m Phys Letters 38 ( 1976) 362

[11] AM Winer AC Lloyd KR Darnall and JN Pitts Jr J Phys Chem 80 (I 976) to be published

( 12] KW Wilson and GJ Doyle Investigation of photocmiddothemishycal reactivities of organic solvents Stanford Research Inmiddot stitute Repor EPA Contract IICPA 22-9-125 (September 1970)

(13) Solvents theory and practice Advances in Chemistry Series No 124 (American Chemical Society W1hingtrn 1973)

[14] GJ Doyle AC Lloyd K Darnall AM Winer and JN Pitts Jr Environ Sci Technol 9 (1975) 237

[ 15) AC Lloyd KR Darnall AM Viner and J N Pitts Jr J Phys Chem 80 (1976) 789

(16) R Atkinson KR Darnall AM Winer and JN Pitts Jr Environ Sci Technol (1976) submitted for publication

(17) GJ Doyle PJ Bekowics AM Winer and JN Pitts Jr A charcoal-adsorption air purification system for clrnmshyber studies investigating atmospheric photochemistry Environ Sci Technol (1976) to be published

(18] B Weinstock and TY Chang Tellus 26 (1974) 108 [19] TA Hecht IH Seinfeld and MC Dodge Environ

Sci Technol 8 (1974) 327 (20] R Graham and BJ Tyler J Chem Soc Faraday Trans

I 68 (1972) 683 [21) WH Chan RJ Nordstrom JG Calvert and JN Shaw

Chem Phys Letters 37 (1976) 441 (22] JM McAfee AM Winer and JN Pitts Jr unpublished

results (1974) (23] CC Wang LI Davis Jr CH Wu S Japar H Niki and

B Weinstock Science 189 (1975) 797 (24) H Niki and B Weinstock Environmental Protection

Agency Seminar Washington (February 1975) [25] R Atkinson and JN Pitts Jr J Chem Phys 63 (1975)

3591 (26) H Levy II Advan Photochem 9 (1974) 369 [27) J G Calvert Environ Sci Technol 10 (1976) 256 (28) D Perner DH Ehhalt HW Patz U Platt EP Roth

and A Volz OH radicals in the lower troPosphere 12th International Symposium on Free Radicals Laguna Beach CA January 4-9 1976

(29) DD Davis T McGee and W Heaps Direct tropospheric OH radical measurements via an aircraft platform laser induced fluorescence 12th International Symposium on Free Radicals Laguna Beach CA January 4-9 1976

(30] JA Kerr and AF Trotman-Dickenson in Handbook of chemistry and physics 57th Ed (The Chemical Rubber Company Cleveland 197677)

[31] NR Greiner J Chem Phys 53 (1970) 1070 [32] JL Laity IG Burstein and BR Appel Solvents

theory and practice Advances in Chemistry Series No 124 (American Chemical Society Washington1973) p 95

95

Volume 42 number 2 CIIEMICAL PHYSICS LETTERS 1 September 1976

[33] DA Hansen R Atkinson and JN Pitts Jr J Phys Chem 79 ( 1975) 1763

[ 34 I DD Davis Bollinger and S Fischer J Phys Chem 79 (I 975) 293

[35 I JN Pitts Jr AC Lloyd AM Winer KR DamaII and GJ Doyle Demiddotelopment and application of a hydroshycarbon rlactivity scale based on reaction with the hydroxyl radical presented at the 69th Annual APCA Meeting Portland OR June 27-July I 1976

l

f I

If

i )

(36] KR Darnall AC Lloyd AM Winer and JN Pitts Jr Environ Sci Technol 10 (1976) to bl published

(37] JN Pitts Jr AM Winer KR Darnall AC Lloyd and GJ Doyle Smog chamber studies concerning hydrocarbon reactivity and the role of hydrocarbons oxides of nitrogen and aged smog in the production of photochemical oxidants to be presented at the In-tershynational Conference on Photochemical Oxidant Pollushytion and Its Control Research Triangle Park NC September I2-17 I 976

96

209

Volume 44 number 3 CHEMICAL PHYSICS LETTERS 15 December 1976

I

l

i

RELATIVE RATE CONST ANTS FOR THE REACTION OF OH RADICALS

WITH SELECTED C6 AND C7 ALKANES AND ALKENES AT 305 plusmn 2 K

Karen R DARNALL Arthur M WINER Alan C LLOYD and James N PITTS Jr Statewide Air Pollution Research Celter University of California Riverside California 92502 USA

Received 16 August 1976

Measurements of the rates of disappearance of three alkenes and two alkanes relative to isobutene in environmental chamber photooxidation studies employing hydrocarbon-NOx mixtures in air at 1 atmosphere have been used to obtain relative rate constants for the reaction of these compounds with the hydroxyl radical Absolute rate constants at 305

1plusmn 2 K obtained using a published rate constant for OH+ isobutene of 305 X 1010 l2 mole-1 s- are (k X 10-9 Q mole-I

s- 1) cyclohexene 47 plusmn 9 1-methylcyclohexene 58 plusmn 12 1-heptene 22 plusmn 5 23-dimethylbutane 31 plusmn 05 223-trishymethylbutane 23 plusmn 05 No previous determinations of OH rate constants have been reported for 1-heptene and 1-methylshycyclohexene For the remaining compounds these results are shown to be in good agreement with literature values reported for elementary or relative rate constant determinations

I Introduction

Recently we have reported rate constant determinashytions for the reaction of OH with alkanes [l 2] alshykenes [2 3] aromatic hydrocarbons_ [I 2) monoshyterpene hydrocarbons [3) halogenated hydrocarbons [3 4 J ketones [3] and ethers and isopropyl alcohol [5] These rate constants were obtained by measuring the relative rates of disappearance of hydrocarbons in a hydrocarbon-NOx mixture in air at 1 atmosphere and at 305 plusmn 2 K Absolute rate constants were obshytained [1--3 5] by using literature values for OH+ nshybutane andor isobutene at least one of which was employed as a reference compound in each study A similar technique has recently been employed by Niki and co-workers [6] Results obtained from these relative rate studies have uniformly been in very good agreement with literature values reported for elemenshytary rate constant determinations [7]

Here we report rate constant data at 305 plusmn 2 K for the reaction of OH with 1-heptene 1-methylcycloshyhexene cyclohexene and two substituted alkanes -2 3-dimethylbutane and 2 2 3-trimethylbutane These long-chain alkanes and cyclic alkenes have been suggested to play a major role in the formation of the organic portion of aerosols found in polluted ambient air (89)

2 Experimental

The experimental technique used to determine relashytive OH rate constants in this study has been described in detail previously [1-3) Briefly irradiations of the hydrocarbon-NOx-air system were carried out in a Pyrex chamber of approximately 6400-liter volume at a light intensity measured as the rate of NO2 photoshylysis in nitrogen (k1) of 04 min- 1bull During irradiation the chamber temperature was maintained at 305 plusmn 2 K

The alkane and alkene concentrations were monishytored with gas chromatography (FID) using a 5 X 18 SS of Poropak Q (80-100 mesh) column and a 36 X 18 SS column of 10 dimethylsulfolane on AW C-22 Firebrick (60-80 mesh) followed by 18 X 18 SS column of 10 Carbowax 600 operated at 433 and 273 K respectively Ozone was monitored by means of ultraviolet absorption CO by gas chroshymatography and NO-NO2-NOx by the chemiluminesshycent reaction of NO with ozone

The initial concentrations of reactants were 2 3-dimethylbutane 7 ppb (I ppb in air= 40 X 10-11

mole liter-I at 305 Kand 1 atmosphere) 223-trishymethylbutane 14 ppb cyclohexene 10 ppb I meshythylcyclohexene 21 ppb and 1-heptene 14 ppb In addition to these compounds traces of several alkanes alkenes and oxygenates were present [2 3] Initial

97

415

Vol um~ 44 number 3 CHEMICAL PHYSICS LETTERS 15 December 1976

i l

l

concentrations in these experiments were 700-800 ppbC of total non-methane hydrocarbons 061 ppm of NOx (with an NO2NOx ratio of 004-005) 6 ppm of CO and 2900 ppb of methane together with water vapor at 50 relative humidity Replicate three-hour irradiations were carried out with continshyuous analysis of inorganic species and analysis of hydrocarbons eve~y 30 minutes

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilushytion rate (16 per hour) from the observed hydrocarshybon disappearance rate The HCNOx and NON02 ratios were chosen to delay the formation of ozone and ozone was not detected during the irradiation peshyriod [13)

As discussed in detail previously [23) the major sources of OH in our experimental system are probably the photolysis of HONO and the reaction of HO2 with NO [10-13)

NO+ NO2 + H2O ~ 2 HONO (1)

HONO + hv (290-410 nm) OH+ NO (2)

HO2 + NO OH + NO2 (3)

The first reaction is thought to occur relatively slowly homogeneously [14-16) but its rate is probably sigshynificantly faster when the reaction is catalyzed by surshyfaces Thus nitrous acid has been observed in a chamshyber study of simulated atmospheres carried out in our laboratory [ 17] while direct evidence for formation of OH radicals in an environmental chamber has been provided recently by Niki Weinstock and co-workers [6 18 19] The reaction of HO2 with NO2 has also been proposed a~ a source

(4)

of nitrous acid [20 21] but recent results [22 23) suggest that peroxynitric acid is the major product of reaction (4)

(5)

The peroxynitric acid may decompose back to HO2 and NO2 or possibly give HONO but this is currently uncertain [22 23]

The concentration of OH radicals present during these irradiation experiments was calculated to range

416

from (25-50) X 06 radicals cm- 3 depending upon the conditions of the specific experiment The calculashytions of OH concentrations employed the o~served rates of isobutene disappearance ( corrected for dilushytion) and the previously determined rate constant for OH + isobutene [24] These concentrations are the same order as those calculated [12 25 26) and obshyserved directly [I 8 27 28) by other workers

3 Results and discussion

lsobutene was used as the reference compound in this series of experiments From the pseudo-first-order rates of disappearance of the hydrocarbons rate conshystants relative to that of isobutene were obtained for the reaction of the OH radical with 2 3-dimethylbushytane 2 2 3-trimethylbutane cyclohexene 1-methylshycyclohexene and 1-heptene These were placed on an absolute basis using a value of 305 X 1010 Q mole-ls-I for the reaction of OH with isobutene [24] These reshysults are presented in table 1 together with the availshyable literature data

Within the estimated 20 uncertainty in our rate constant values the agreement among our data and the literature values is good For example our value of (31 plusmn 06) X 109 Q mole- 1s-1 for 2 3-dimethylbutane agrees within experimental uncertainty with that of (26 plusmn 03) X 109 Qmole-1s- 1 recentlY determined in a separate study in this laboratory by Atkinson et al [4] This latter value was derived from the relative

1

rates of disappearance of 2 3-dimethylbutane and ethane during a 216-hour irradiation in the Pyrex chamber Both of these values are significantly lower than the value directly determined by Greiner [29] at 300 K of (516 plusmn 013) X 109 However it is expected [28) that the rate constant for the reaction of OH radicals with 2 3-bulldimethylbutane would be less than twice as fast as with isobutane on the basis of the numshybers of primary and tertiary hydrogen atoms in these two alkanes The absolute rate constant for the reaction of OH radicals with isobutane has been determined to be 15 X 109 Qmole-1s-1 at 304 K [29) and hence the OH rate constant for 23-dimethylbutane is exshypected to belt 3 X 109 Q mole-1 s-1 which is in agreement with both the determination of Atkinson et al [4) and with the present work

Similarly our value of (23 plusmn 05) X 109 Qmole-I

98

Volume 44 number 3 CIIEIICAL PHYSICS LETTERS 15 December 1976

Table l Pclativc and absolute rate constants for the reaction of OH anltl 0(3P) with selected hydrocarbons

---middot-middot--------

ko11 + compound at 305 K Compourd Relative rdte ko(3P) + compound

of disappearance this work a) literature at 298 K

------ -middot-middotmiddotmiddotmiddotmiddotmiddotbull-middot-middot----------------------isobutene 1 305 L2 e)

2 3-dimethylbutane 010 031 plusmn 006 045 b) 026 plusmn Oo3 c) 0012 e)

2 2 3-trimethylbutane 0074 023 plusmn 005 029 b) 1-pentene 18 plusmn 02 d) 028 e)

1-hexene 19 plusmn 02 d) 031 e) 1-heptenc 073 22 plusmn 05 cyclohexene 153 47 plusmn 09 38 plusmn 04 d) 13 e)

f 1-mcthylcyclohexene 191 58 12 49 plusmn 02 f)

a) Using a literature value of 305 X 1010 Q mole-1 s-~ for OH+ isobutene (24 ] b) Ref [29) T= 298 K c) Ref [4] T= 305 K d) Ref (16) using a literature value of 31 X 1010 Q mole-1 s-1 at 303 K for OH + cis-2-butene [24 ] e) Rcf(32] ORef(31) bull

s-1 for 22 3-trimethylbutane is in reasonable agreeshy addition reaction of 03P) atoms with cyclohexene l ment with the value of 29 plusmn 01) X 109 Q mole-1 s-1 and 1-methylcyclohexene (091 and 421 relative to obtai_ned by Greiner at 303 K (29] In addition the O (3P) + cyclopentene) (31] decrease in rate constant in going from 2 3-dimethylshy Table 1 shows a comparison of the reactivity of butane to the larger molecule 2 2 3-trimethylbutane 0(3P) atoms (31 32] as well as OH radicals towards is consistent with a decrease from two to one in the the compounds studied here and other selected comshynumber of tertiary hydrogen atoms [29] These atoms pounds Since both 0(3P) and OH are expected to are the most easily abstracted since the C-H bond primarily undergo addition to the alkenes one would strength for tertiary hydrogens is 3 kcal mole-1 and expect the same trend in going from 1-pentene to cyshy6 kcal mole- 1 weaker than that for secondary and clohexene and this is in fact observed In addition primary hydrogens respectively [30) the value of 18 X 1010 Qmole-1 s-1 obtained for

Recently Wu et al (6] us~d a technique similar 1-hexene by Wu et al [6] and our value of to the one employed here namely the photooxidation 22 X 1010 Q mole-1 s-1 for 1-heptene both obtained of hydrocarbons in the presence of NOx in air at 1 atshy by similar methods are consistent with the trend obshymosphere and 303 K middotunder the assumption that OH served by Wu et al (6] of an increase in rate constant was the principal species depleting the hydrocarbon with the larger molecular size of the alkene they obtained rate constants relative to cis-2-butene As mentioned above the higher straight chain and for several of the higher alkenes Using a value of cyclic alkenes are assumed to be important precursors 31 X 1010 Qmole-I s-1 for OH+ ds-2-butene at of the organic content of ambient aerosols found in 303 K [24] one obtains a value of 38 X 1010 mole-I polluted air [9 10] The rapid rate of reaction of OH s- 1 for cyclohexene at 303 K from the data of Wu et with these species ensures that in addition to 0 3-al [6] This value is in reasonable agreement with our alkene reactions OH attack will be an important reacshyvalue of (47 plusmn 09) X 1010 Qmole-I s-1 at 305 K tion pathway in real and simulated atmospheres posshy

Substitution of a methyl group for one of the hyshy sibly yielding multifunctional oxygenated species in drogen atoms in cyclohexene increases the rate conshy the aerosol phase (9 33] stant slightly since we obtain a value of Assuming an ambient OH concentration of 5 X 106 (58 plusmn 12) X 1010 Q mole-1 s-1 for 1-methylcycloshy radicals cm-3 (18 2728] the atmospheric halfclives hexene This is expected by analogy with the similar t112 =middot0693koH+RH [OH] based solely on reaction

middot 417

99

l

Volume 44 number 3 CHEIICAL PHYSICS LETTERS 15 December 1976

[

with OH are (in hours) 2 3-dimethylbutane 75 2 2 3-crimcthylbutanc 100 cyclohexcne 049 1-methylcyclohexcne 039 and 1-heptene 10 In the case of the alkenes the actual half-lives in the atmosshyphere are expected to be significantly less since 0 3 reacts with the alkenes at significant rates [934]

Acknowledgement

The authors gratefully acknowledge the assistance of FR Burleson in carrying out the gas chromato-

graphic analyses WD Long for valuable assistance in conducting the chamber experiments and Dr R Atkinson for helpful comments concerning this manushyscript This work was supported in part by the California Air Resources Board (ARB Contract No 5-385)

References

[ l] GJ Doyle AC Lloyd KR Darnall AM Winer and JN Pitts Jr Environ Sci Technol 9 (1975) 237

[2] AC Lloyd KR Darnall AM Winer and JN Pitts Jr J Phys Chem 80 (1976) 789

(3) AM Winer AC Lloyd KR Darnall and JN Pitts Jr J Phys Chem 80 (1976) 1635

[4 J R Atkinson KR Darnall AM Winer and JN Pitts Jr Tropospheric Reactivity of Halocarbons Final Report to EI DuPont de Nemours amp Co Inc February l 1976

[5] AC Lloyd KR Darnall AM Winer and JN Pitts Jr Chem Phys Letters 42 ( 1976) 205

[6] CH Wu SM Japar and II Niki J Environ Sci HealthshyEnviron Sci Eng A11 (1976) 19 l

(7] R Atkinson KR Darnall AC Lloyd AM Winer and JN Pitts Jr Accounts Chem Res submitted for publication (1976)

[8] D Grosjean National Academy of Sciences Report (1976)

(9] WE Schwartz PW Jones CJ Riggle and DF Miller Chemical Characterization of Model Aerosols Office of Research and Development US Environmental Proshytection Agency EPA-6503-74-011 August 1974

(10] H Niki EE Daby and B Weinstock Photochemical Smog and Ozone Reactions Advances in Chemistry Series No 113 (American Chemical Society Washington 1972) p 16

I11] KL Demerjian JA Kerr and J G Calvert in Advances in enviromi1ental science and technology Vol 4 eds JN Pitts Jr and RL Metcalr(Wiley-lnterscience New York 1974) p 1

418

[12] B Weinstock and TY Chang Tcllus 26 (1974) 108 [13) TA Hecht JH Seinfeld and MC Dodge Environ Sci

Technol 8 (1974) 327 [14] R Graham and BJ Tyler J Chem Soc Faraday Trans

I 68 (1972) 683 (15] WH Chan RJ Nordscrom JG Calvert and JN Shaw

Chem Phys Letters 37 (1976) 441 Environ Sci Techshynol 10 (1976) 674

(16) L Zafontc PL Rieger and JR Holmes Some Aspects of the Atmospheric Chemistry of Nitrous Acid presented at the 1975 Pacific Conference on Chemistry and pecshytroscopy Los Angeles CA October 28-30 1975

(17] JM McAfce AM Winer and JN Pitts Jr unpublished results (1974)

(18] CC Wang LI Davis Jr C11 Wu S Japar II Niki and B Weinstock Science 189 (1975) 797

(19) H Niki and B Weinstock Environmental Protection Agency Seminar Washington DC February 1975

[20] R Simonaitis and J Heicklen J Phys Chem 78 ( 1974) 653 80 (1976) 1

(21) RA Cox and RG Derwent J Photochem 4 (1975) 139 (22] H Niki P Meker C Savage and L Breitenbach 12th

Informal Photochemistry Conference National Bureau of Standards Gaithersburg MD June 28-July 2 1976

(23) J Heicklen 12th Informal Photochemistry Conference National Bureau of Standards Gaithersburg MD June 28-July 2 1976

[24) R Atkinson and JN Pitts Jr J Chem Phys 63 (1975) 3591

(25) H Levy 11 in Advances in photochemistry Vol 9 eds JN Pitts Jr GS Hammond and K Gollnick (VileyshyInterscience New York 1974) p 1

[26] JG Calvert Environ Sci Technol 10 (1976) 256 [27] D Perner DH Ehhalt HW Patz U Platt EP Roth

and A Volz OH Radicals in the Lower Troposphere 12th International Symposium on Free Radicals Laguna BeachCAJanuary 4-9 1976

[28] DD Davis T McGee and W Heaps Direct Tropospheric OH Radical Measurements Via an Aircraft Platform Laser Induced Fluorescence 12th International Symposhysium on Free Radicals Laguna Beach CA January 4-9 1976

(29] NR Greiner J Chem Phys 53 (1970) 1070 (30] JA Kerr and AF Trotman-Dickenson in Handbook

of Chemistry and Physics 57th Ed (The Chemical Rubber Company Cleveland 1976)

(31] JS Gaffney R Atkinson and JN Pitts Jr J Arn Chem Soc 97 (l 975) 5049

(32) JT Herron and RE Huie J Phys Chem Ref Data 2 (1973) 467

[33] WPL Carter KR Darnall AC Lloyd AM Winer and JN Pitts Jr 12th Informal Photochemistry Confershyence Gaithersburg MD June 28-July 2 1976

(34] JN Pitts Jr and BJ Finlayson Angew Chem Intern Ed14 (1975) 1 BJ Finlayson and JN Pitts Jr Science 191 (1976) 111

100

APPENDIX B

i Inorganic and Hydrocarbon Data for

AGC Runs 216 through 223

l Jl

[

l

101

AGC-216-l S02 CRY C GLASS CHA~SER

1976 JUL 27

OiRK FROM 1200 TO 1545 HIE TE~PERATURES ~ERE TAiltE~ FRC~ IHE LCG __ MOK__ FROM 16QQ__ Cgt ---middot-middotmiddotmiddotmiddotmiddot----middot- ---------middotmiddotmiddotmiddot-middotmiddotbull- TH~ TEMPERATURE~ WE~E TAK~N )R6MTHE iOMPUTER REicoui TECO ~3 SAMPLING RATE 1161 HLMlN

ClCCtlt __ ELMSpound0 ___ TSL _Rl HUI _____ SC2 ----middot--bullmiddot-middot ----middotmiddotmiddot-----middot-middotmiddotmiddotmiddotmiddot-------middot-middot-------middot-middot-middotmiddotmiddot-middot-middotmiddot-middot--middot TIME TIMEl~lNI IOEG Cl 11 (~PHI

bull1200 bullbullo 29-4bullbull bull---bullbullbull1bullo---middotbullo3bull59middot--bull bullbull-- bullbull--bullbullbull --bullbull-bull----bull-middotbull---- bullbullbullbull-bull------bullbullbullbullbullmiddot------ -bullbull bullbullbull-bull-bullbull-bullbullbullbull bull bull bull-bullbullORbullbullbullbullbull-bullbullbullbullbullbull~bullbullbull bullO O O bullbull-

1215 15 294 00 C353 _____ 1230 _______30_ ___22r__ aa ___ c~s_9 ____bull ________________________________________________________ _

124s 45 2ltJ6 Jo aJss 1300 60 296 2s c355 1315 75 29 ~--- _________2_o _C ~ 344 ---middot--- ______________________ __________ - middot-middotbull--middot ---------middot------middot--middot - --middot-middotmiddot - middot--middotmiddot 1330 JO 294 20 C357 1345 105 296 20 0344

____ 14_0_0 _____ 1o ____ J9 bull 7 __z_o ___ o_342__________________________ __________________________________________ ______ __ 1415 135 297 15 C344 1430 1sc 297 1s c34q

-- _ --~_lt45__ middot--- J6_5_ _______29_7_ --middotbull-middotmiddot2bull Q_______QU5____ middotmiddotmiddotmiddotmiddotmiddot---1500 160 297 1S C330 1515 195 299 15 C338

_______1530 ____ 210 ______3c bullo _1s____c_32g middot-----middotmiddotmiddotmiddot-1s4 22s 267 15 c331 1600 240 middotmiddotmiddotmiddotmiddot~ bullbullbullbullbullbullbullbullbullbullbullbull

l615______ 255___ _ _bullo~~__________

NO DATA TAKE~ ---- CATA OISCARCED QUESTIONABLE QATA

____________________ __ __ -middot

102

AGC-216-2 SC2 CRY GLASS CHA~eER 1976 JUL 27-2~

CLCCK El~PSfC TSl REL rUM S02 1111pound middotT111emiddot(M1~middotmiddot1oec cT (g (PPII

middoti63amiddotmiddot- -210 -middot33~middot4middot--middot--1--smiddot c3f3-middotmiddot---middot-- - middot 1646 286bull 334 15 C315

--middotmiddotmiddot- po1 middot--middot-middot301_ ____ 334 middotmiddotmiddotmiddotmiddotmiddotmiddot--middotl bull5 middot-middot (320 ___ middot----- _ middotmiddot--middot---- ----middot--bull-middotmiddot----middot-middot-middot middotmiddotbullbullmiddotmiddotmiddot-middot--middot-------middot--l7l6 316 335 15 C10 1731 331 335 l5 C315

-middotmiddot middot- _1746 346 _ 3~_5_ --middotmiddot 15C 3l4___ -------middot---middotmiddotmiddot---- _____ __ 1800 360 337 15 C321 1a1s 375 335 1s 0313

_ JSJO __ 390_335___1_5 C03______ middotmiddot-----------1845 405 335 15 C303

bull1900 420 334 20 0305 _______ middot1915___ middot-- 4 3_5bull middot-middot 3 3 2 ---middot- 2 o __ Cbull 309 -----middot----middotmiddotmiddotmiddot

193C 450bull 33 2 20 C299 1945 465 331 20 0297 2000 480 332 20 C300

- middot 2015- --middotmiddot45middotmiddotmiddotmiddot-- 334 - - 20 C 310 2030 510 335 20 0296 2045 525 337 20 C3072ico middot 540 middot3jmiddot----i~o-middotmiddotc299-middot-middot----bullmiddot-211s 555 338 20 0294

__ 21Jo ____ 5_7c_ __ 33 1 20 _o 300________

~~

il middot 2145 585 338 middot 20 0296J 1middot 2200 600 337 20 0296 2215 615 33 7 20 0296

~-middot 223c 630- middot 33 1 2 o a294 middot 1 C 2245 645 337 20 0294

2300 660 337 20 C291_____middot1 -------middot--------------middotmiddot------middot 2315 675 337 20 0237

C 2330 690 337 20 0293 2345 705 33~~middot-middot 20 0291 --------middotmiddot-middot-----------------middot-middot ---middot---- --- middot- middotmiddot o 120 334 2 a o2as

( 15 735 334 20 0268

(

103

t bull middotmiddotmiddotmiddot--

AGC-216-3 S02 CRY L GLASS CHAMlgtER

1976 JUL 2E

c1oc_~ ELAPSEC rs1 l=L HU S02 Tl~E Tl~~ibull~l IDEG Cl Ii) (PPMI

30 750 339 20 C287 45 765 346 zo 0278

- _lOQ_ middot- _]so ~sr 2 O C ~Obull middot-middot-middot-bullmiddot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot----middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middot-middotmiddot-middot-middotmiddotmiddotmiddot-middot---- middot-middot-middot- middotmiddot-middotmiddot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot------115 7~5 354 15 C276 130 810 354 l 5 C2ol

J45 sect25 35bull1_ 1 _CZJ7 middotmiddot--middotmiddotmiddot -middot--bullmiddotmiddot-middotmiddotmiddotmiddotmiddot-bullmiddotmiddot---middotmiddot-bull---middotmiddotmiddot--middot -middotmiddotmiddotmiddotmiddot --------- --bullmiddotmiddot--- middot-200 840 354 15 C277

l 215 855 356 15 C277 ___ _230 870 _356 _ l5 _C bull ZH ---middotmiddot-middotmiddotmiddotmiddotmiddot---- ----middotmiddot-------------middot--

245 8S5 354 15 C275f 300 900 356 15 C27J

_ 315 915 bullbull~5bull4 bullmiddotbull-middotmiddotmiddotmiddot-middots middotmiddotmiddot- cZ69____---middotmiddotmiddotmiddot-middot-middotmiddot -------- --middotmiddot--middotmiddot--middot----- -middotmiddotmiddot-330 93() 356 15 C271 345 945 354 zo 0271

_ 400 __96Q___ 3_j4 --middotmiddot--bulll5 C2l_________________________________ 415 975 354 20 C250 430 990 354 20 C264 445 1005 353 20 C264 500 1020-~ 354 20 C260 515 1035 353 20 C250 530 1050 353 20 0254 -----middotmiddot--------middot-middot------middot ------middot-middot-middot-545 1065 354 20 C250 6~C 1080 35l 20 0252 615 lOC5 bull350 20 C49 middotmiddot-middot-middot-- middotmiddotmiddot-middotmiddot-middotmiddotmiddotmiddot-_ 630 1110 350 20 0248

C 645 1125 350 zo 0249 ____100 1140 bull_3s o middot--middotmiddotmiddotmiddotmiddot zo__o 2t9 middot-bull-bullmiddotmiddot--middotmiddot--------middotmiddot------------middot----middot---middotmiddotmiddotmiddotmiddot ______

715 1155 350 20 0243 C 730 1170 350 20 024

745 118S 350 25 C239 800 1200 middotmiddot37 25 C233

C 815 1215 347 25 0238

830 l 23() middot- 34 5 _ 2 5 middot-middotmiddot 0 236 ----middot--middot----middot 845 124) 345 25 C241

( 930 1260 347 25 C237 9J5 1275 4 bull7 2bull ~23) 930 129J 347 25 0236

( 945 13C5 347 25 C231 middotmiddotmiddot-~middotmiddotmiddotmiddot l Obull C l 3 0 bull 3 4 7 2 5 C 23 3 middotmiddot- middotmiddot-middot- __ middot-middotmiddotmiddotmiddot-middot- middotmiddot- -middotmiddot bull middot-bullmiddot---bull middot-middot--middot middotmiddot bull _____ -middot middot-middotmiddotmiddotmiddot-- -middot _ _ -

1015 1335 34 7 25 C232 1030 us 34 1 2s c221 1045 131gt5 34 7 2bull~ C225 1100 13eo 349 2s c221 lllS 1395 349 2s c22c

--middotmiddotmiddotmiddotmiddotU30 ltLO 349 z- _C2l6 1145 1475 347 25 C215

1

104

AGC-217-1 S02 LIGHT ORY7 GLASS CtlAHBER

1976 JUL 30 CONTINUATION Of AGC-216 LIGHTLIGHTS ON JUL 29 AT COO ~TENSITY 1ooi OATA FOR 216-LIGHT USELESS DUE TO FAULTY OACS CHANNEL S02 STRIP CHiRT DATA USEO FOR THIS RUN 25 HL CF S02 INJECTED HITH 90 ML Of NZ ON JULY 30 AT 1003 OASIBI 1212 ON CHAMBER AT ABOUT 1534 TO 1537 ON JULY 30 ANO FROM 1201 TO

1230 CN JULY 31 SAMPLING RATES tHLHINI TECO 43 - 1161 DASIBI 1212 - 600

middot~ CLOCK ELAPSED OZCNE TSl REL HUH SC2 ~

ii TIME TIHEIMINI tPPH) IOEG Cl Ill (PPM)

l 1130 -15 bullbullbullbullbullbull bullbullbullbullbullbull o3ze 1145 o bullbullbullbullbullbull 346 220 0321 1200 15 351 215 0315 1215 30 354 195 C310

l 1230 45 bullbullbullbullbullbull 356 18J 0307 1245 60 bullbullbullbullbullbull 357 17Q 0305 1300 75 bullbullbullbullbullbull 360 165 0301 1315 90 bullbullbullbullbullbull 360 155 0296

l 1330 lC5 bull bullbullbullbullbullbull- 36l 145 0 292 1345 120 bullbullbullbullbullbull 364 130 C290 1400 135 bullbullbullbullbullbull 366 110 0286

1415 150 366 _ll5 0282 1430 165 bullbullbullbullbullbull 365 115 027~ 1445 180 bullbullbullbullbullbull 365 110 021 1500 195 362 11C 0273 1515 210 36l 130 0269 1530 225 0519 360 140 0265

~[ ~~ i~~-- ~~ ~ ~~ - middotmiddotmiddotmiddot-- -middotmiddotmiddotmiddot- --middot - -middot middotmiddotmiddot-middot--------middot

sect ~ 1615 270 bullbullbullbullbullbull 357 160 0255

l ____1630 _______2s5 --bullbullbull _____ 35 bull7__Jo 5middot-middot--middotmiddot-cmiddot253middotmiddotmiddotmiddotmiddotmiddotmiddot--middot

1645 300 bullbullbullbullbullbull 357 110 025C l7CO 315 357 170 025C

___ 111s___330 __ bullbullbullbullbullbull __35 bull 7 -middot--- 1a bullomiddotmiddot--middotmiddotmiddotmiddot0241 middotmiddot--middot--middotmiddotmiddot----middot---middot-middot--middotbullmiddotmiddotmiddotmiddot-middot-middot middot-------------1130 345 357 190 0245 1745 360 bullbullbullbullbullbull 356 20c 0242

___a_oo_~--middotmiddot--3_15_ __bull___S_bullt____ 21 o -bullmiddot _o 24c middot-middot--middotmiddotmiddotmiddotmiddot--------middotmiddot----------------I 1815 390 bullbullbullbullbullbull 354 225 0231 1 1830 4C5 357 21~ 0236

___J_B4~ middot- ____420-~bullbull middot---middot _3l bull l___19 0 0 235 1900 435 bullbullbullbullbullbull 364 170 0233

) 1915 450 bullbullbullbullbullbull 365 160 0230

i 1 _ ____19 3 0 __ ---middotmiddotmiddot 465 bull bull bull middotmiddotmiddotmiddot--- 3 6 bull 6 -middot--1 5 bull 5 _ C bull 2 2 7 middotmiddot-middot-middot--- --middotmiddotmiddot --middot -middot - ------

1~45 480 366 145 C225 2000 495 366 150 0222

____2015 ___middot _i 10__ bullbull_____36o6_- JS_ Q_middotmiddotmiddot 0 220 2030 525 bullbullbull$bullbull 366 155 021ar 2045 540 366 155 0216 ___2100________ssbull_____ ---middot6J__ __1 s s _o 213 2115 570 bullbullbullbullbullbull 3os 165 c211 2130 585 bullbullbullbullbullbull 365 110 c210 2145 600 bull 365 175 0208

J --middotmiddot-middot2200 middotmiddotmiddot-middot--615middot-middotmiddotmiddotbullbullbull bull--middotmiddot--middotmiddot-364----middotmiddot iso middot o206

middotI 2215 630 bullbullbullbullbullbull 364 180 0204 _ -middotmiddot----middotmiddot2230 645__bullbullmiddotmiddotbullmiddotmiddot-middot--middotmiddotmiddot 31i bull 2_ 19 0203

2245 660 bullbullbullbullbullbull 364 195 c200

i1

zjo_ci ___---1s bullbullbullbull 362---middotmiddotiomiddotmiddotomiddotmiddotmiddot omiddot196 -r l 2315 690 bullbullbullbullbullbullbull 362 205 0195middotbull 2330 705 bullbullbullbullbullbullbull 36l 215 0193g 2345middot 720 bullbullbull ~ bullbullbull 36l 225 0190l

bullbullbullbullbullbull NO DATA TAKEN ---- DATA OISCARO~D QUESTlONAuLE DATA r ~ 1~

IT Q

~

105 F

AGC-217-2 S02 LIGHT DRY GLASS CHAMBER 1976 JUL 31

CLOCK ELAPSED OlONE TSl REL HUM S02 Tl~E TIMEIMNl IPPMI IDEG Cl 11 IPPMI

1 0 735 3bO 22C 0188 15 750 3bO 220 C185

_ 30 ---middot-middotmiddot--765__ 358 -middot-middotmiddot 220 0183 45 780 358 220 o1a1[ 100 795 bullbullbullbullbullbull 358 225 0180

115 810_bull___-middotmiddotmiddot-middotmiddot-middot 35 bull8 middot-middot-middot-middot225 0177

l 130 825 bullbullbullbullbullbull 357 225 0175

( 145 840 357 225 0112 200 855 bull _357_ ___ zzs c111

215 870 356 225 0169

f

I ( 230 885 35b 230 0168

245 coobull 356 230 c166 middot300 915 356 230 0163

C 315 930 356 230 C160 330 945 35bull6 230 C160 345 960 bullbullbullbullbullbull 356 230 0158 400 975 bullbullbullbullbullbull 354 230 0156

_415 _990 ~5~6 230 0154 430 10C5 356 235 0152 445 1020 354 235 C150

L -middot----middot-middot500__1035 __ -middotmiddot 354_ _ ___ 23 5 0148 515 1050 354 235 C147

( 530 1065 bullbullbullbullbullbull 354 235 0145 545 1000 354 235 0144 600 10lt5 354 235 C142 615 1110 354 235 0140

___630 ____ 1125 bull - ___ 35bull 4_ ___ 24o013lt 645 1140 354 240 0137 100 1155 bullbullbullbullbullbull 354 24o 0135

--- _715 1170bull 35 24-0 0134 730 1185 354 240 0133

l 745 1200 354 240 0131 800 121~bull -middot-middot____35~---middotmiddotmiddotmiddot24bull C_ _O 129 815 1230 354 240 0128 830 1245 354 245 0121

-middotmiddot----845 1260~ 34 245 0-126 9CO 1275 354 245 0124

( 915 1290 354 245 0122 -middot--middot_930___1305_ -middotmiddotmiddot)54___ 245 c120

945 1320 bullbullbullbullbullbull 354 245 011a ( 1000 1335 354 245 0116

________1015_ __ _1350 354 240 0115 1030 1365 middot-middot--356 240 0113 1045 13130 354 24C 0112 1100 1395 354 240 0111 1115 1410 354 240 0109

- middotmiddot--middot-~--- middotmiddotmiddotmiddotmiddotmiddot-middot--middotmiddot-lDO 1425 354 240 0 107

l 1145 1440 356 240 0 bull 106bullbull12cc 14gt5 bull bullbullbullbullbullbull 3gt6 40 0105 1215 14 70 0504 354 240 0 103

middotmiddotmiddotmiddot-middot- middot---middot-------middot--middotmiddotmiddot --middot middotmiddot-middotmiddot middot-middotmiddotmiddot-middotmiddotmiddot

__ middotmiddot-middot---------middotmiddotmiddotmiddot_ - ___ middotmiddotmiddotmiddotmiddot

----------middot--middot--middot- middot--middotmiddotmiddot--middotmiddotmiddotmiddotmiddotmiddot-middotmiddot -middot---

middotmiddotmiddot--middot middotmiddotmiddot-middotmiddot-middot--middotmiddotmiddotmiddotmiddot-middotmiddot-----

bullbullbullbullbullbull NO OATA TAKEN ---- DATA DISCARDED QU~STIUNABLE UATA

106

AGC-218-1 S02 40t RH GL~SS CHAMBER 1976 AUG 4

DARK AT 0850 FC-12 ANO S02 WERE INJECTED INTQ THE CH4~8ER THE OASIBI 1212 WAS CN THE CHA~~ER F~OM 1651 TO l65S BRADY 1296 CALISAATION 1Q7~ JUL 16 SAMPLING RATES IMLMINI TECO 43 - 1~33 CASIS 1212 - 600

CLCC~ ELAJSEO czc~~ TSl R~L HU~ 50 Tin TIMEl~Nl (P~gtI DEG Cl a1 PPM)

1100 c bull~~ 334 4J ~-377 1105 5 ~ 334 485 l3Sl 1110 10 bullbullbullbullbullbull ~34 485 C3BJ 1115 15 middotmiddotbullcent 334 460 0379 1120 C bullbullbull 334 475 0374 1125 2~ bullbullbullbullbullbull 33S ~70 0375 1130 30 middotmiddot-~middotmiddot 332 475 0371 1135 35 334 47o o372 1140 40 bull bullbullbullbullbullbull 334 65 C370r J 1145 45 bullbullbullbullbullbull 334 4~c 0111l i 1150 50 middotbull 334 465 03t9 1155 55 334 16 5 0364 1200 60 - 334 45 5 0366 1205 65 bull 335 450 036rl ~ 1210 70 ~bull~ ~)5 ~5J_ 035~

1215 7~~ bullbullbull 335 450 C162 1220 so bullbullbullbullbullbull 334 450 o~

di 1225 85 334 440 0362

iz3d o ~~bullbull 3J4 44o o3e2 1235 95 334 445 C355 1240 100 332 45 0355 middot--middot-middot---middot--middotbull- middotmiddotmiddot-middot --middot - _____ _ f24middot5middot 10smiddot~middot Jl 332 4middot4~ 6 middoto-353-middot

~ i C 12so 110 332 4~o o353 125 5 115 i__ 4 ) _ 0 bull 352_ _--bull-middot __ ----middotmiddot-middot __ middot-- _____ - _ ___13()0 __ 120-middot-- 332 435 0354

J 1305 125 334 430 0351i I J31 o __ _ uo __ ~bull-- u-~--middot middot-middot-42 bull0 o- 1ssmiddot--middotmiddot-middot-middot- ----________----middot- ---middot __

1315 135 334 420 0348 bull ( 1320 140 334 420 0348i l32S 145 -middot_ _3 bull~--4t5 Q352

1330 150 334 41middot) 037 1335 155 335 420 0344

1340 160 335 420 0344 middot 1345 -165 uu 3ibull 4 - middot41smiddot cl44

C 1350 170 ~bull 335 415 0343 1355 175 335 420 C343 1400 180 335 415 C341 1405 185 337 405 0341 1410 190 33 bull 5 400 0343 1415 liS bullbullbullbullbullbull 335 41C 0340 1420 2cc bullbullbullbullbullbull 337 41o 0331 1425 2cs bullbullbullbullbullbull 337 405 oJe 1430 210 bullbullbullbullbullbull 334 410 o33e 1435 215 33l 42v 0336 1440 220 bullbullbullbullbullbull 317 415 C]36 1445 225 middotmiddotmiddotmiddotmiddot~ 335 45 0332

ti~tmiddot -g 1450 230 bt~ 337 41 5 c~32

1455 2 35 33 7 bullbull 0 o 13cmiddotmiddotmiddotmiddot~ ~ 1500 240 33 7 42) 0330

$C t-kOt~ ~ 1505 745 H 7 42 D 0330

bull~ 11C f ~ () D~ TJ T ~r EI ---- ChT~ orsrA~ncn 0UST l1~111c [)TA ~ 4

J 1(

i[ i l bull1

~ ~ Imiddot

middoti_ ~

107

I

il ~ ij

1 i ii l

Ir

~ 11

ij

Ibull ~

J ~ l

j (

) AtC-21S-2 502 401 RHT CLASS CHAMBER

1976 AUG 4

i i

CLOCK ~LAP$) JlC TS l EL rIJ~ S72 Tl bullE TlEPlll I I P1 l lDEG CI (1) I PP~ I

1510 250 middot~ 337 415 o 32~ 1515 255 cie-(wt 337 t~ 0 032S 1520 2t) 337 420 0PI 152 5 265 bulltI 3l 7 42 1 I~bull)~ 1530 2 7 C=it~bull 334 41 5 0327

bull 1-tit~o

middot~

1535 27 D5 420 bulll 324 1540 middot2cu 335 42 C32C 1545 285 middot=~ 334 430 C322 155C 29J t rLI 334 430 0122 1555 295 o CJ3 334 4t 5 c 320 1600 3CO bull Iii- 334 420 0322 1605 3C5 emiddotbull= 334 42o J3lfl 1610 310 wc 33 4 425 0319 1615 315 ti 332 420 0316 160 32C 334 Z5 0 bull 114 deg 1625 325 -0laquot 33 t 430 0315 1630 330 335 430 ons~ li35 335 cent 33 5 435 0310 middotmiddot-- ____ -- 1640 340 $Qt 335 44) 0313

( 1645 345 33 5 435 o 311 1650 335 440 0309--~-- ~~~~-----middot~-~~-~-~-~--- ---middotmiddotmiddotmiddotmiddotmiddot-middotmiddotbullmiddot-- middotmiddotmiddot--middotmiddotmiddotmiddot--middot-middotmiddotmiddot-middotmiddotmiddotmiddotmiddotmiddot --- middot-middot-- middotmiddotmiddotmiddot--bullmiddot--middotmiddot-middot--middot middot-bull------middotmiddotmiddotmiddotmiddot-- ---middot-middotmiddotmiddotmiddotfo55 355 bull-c-t-t-it 33 r 43 5 C313 1700 360 $0~IZ 335 45 C305 l705 365 338 4 5 0308bullbull ---- middot-- middotmiddotbull---middot-middotmiddotmiddotmiddotmiddot--middot-- l7l0 370 ~~emiddot i8 440 CJC8 1715 3 75 bull-tt~iU 337 44J C310 1720_ 380 bull ie~~bull -~3 8 35 J303 - middotmiddotmiddotmiddotmiddotmiddotmiddotbull-middot-middotmiddotmiddotmiddotmiddot middotmiddot-middot- middotbullmiddotmiddotmiddot-middotmiddotmiddotmiddotmiddotmiddot-middotmiddot1725 385 -tttr~ 33a 440 0308 1730 39J ~cent n a 440 0303 1735 395 izc 338 440 0 3)2 middot--middotmiddotmiddot middotmiddotmiddot- 1740 co VIOct- lt= 338 430 o 30 1745 40J (rfl$~bull 338 430 0302

OJei1()01750 410 33 I 430 029d middotmiddot--middotmiddot---middotmiddotmiddotmiddotmiddot--middotmiddotmiddot-middot-middot 1755 415 t 338 44) 0299

1800 420 bullti-it 333 43 5 0296 1805 425 i-t-7Icent 33 8 430 0299 middotgt l8U 4 3 I cent46 317 3 0 029 l Bl 6 436 c-oilaquo4t 337 430 0298 lil21 441 33 7 43 5 ( ~9 7

~tf(p ~

middotmiddotmiddot--middot-middotmiddotmiddot--middotmiddotmiddot--middot middotmiddot----middotmiddotmiddotmiddot----I B26 4d plusmn~ 337 430 o 2-7 1831 451 (-tilll- 337 415 0296 1836 456 tdcmiddotC n13 430 C291 --middot - -- 1341 461 t(I~ 33 7 435 0292 le46 466 bullt~tci 33e 435 o 292 1851 4 71 33_ 3 425 Oll Hi56 4 76 337 425 0291

1901 4 il I it-Otcbull 33 43C bull)2Rq1906 96 t~illtt 338 475 J217

_Clt-~4t1911 t91 l3 7 42) middot t~HJ 1916 bull c( bull ie--iJtll)ill6 4l1) 0187n ___ iil 111 [t 1 T el rbullNJ Crf fISCAP[E) QU~ 5 T t 1Jt-bl E 1)1 TA

108

AGC-218-3 SOZ 40l RH 7 GLASS CHAMSER

__1976_ AU( 4

CLOCK ElAPSED oz~~~ TSl qEL HUM S02 TIME TfME (lfrjf- I PP~I oeG c- -ii --middotmiddotcigtTmiddot----

(

1lt121 sci-middot umiddotbullmiddotmiddotmiddotmiddotmiddotmiddot-- 3fmiddots~ 425 o~io6 1926 5~6 bullbullmiddot 338 42-0 0285

______1931_____511 ~-~- 33 1_ 41 s o_2s5___ 1936 516 337 425 ozss

( 1941 521 337 415 021a 1946 526 337 415 0282 19si ~31 bullbullbullbullbullbull 33i middotmiddot425 021a 1956 536 337 420 0278 2001 541 335 420 0283 200middot6 5t6 -middotubullu-middot----33s- 12s -0211 - middot middotmiddotmiddot middot ----------

( 2011 551 bullbullbullbullbullbull 335 420 0278 2016 556 334 415 0277 2021 561 334 425 0277

( 2026 566 bullbullbullbullbullbull 334 425 0276 2031 571 bullbullbullbullbullbull 33~-- 420 0278

middot-middotmiddot- 2036 576~ UU 334 425 0275 ( 2041 581 middotmiddotmiddotmiddotmiddot~ 335 420 0274

2046 586 335 420 0275 205( 591 337 430 0211

C 2056 596 335 425 0211 2101 601 337 --~2s 0210 2106 606- -middot~bullbulli 3~s 430 0211

C 2111 611- 337 425 0269 2116 616__ = 337 425 0270rmiddotmiddot- 2121 621 ibullbullbullibull 33~7 436 0210

C 2126 626 c 337 420 0270 -l 2131 631 ~ 337 __ 430 0210

2136 636 337 425 0267 C 2141 middot 641 bull 337- 425 0266

2146 646 337 430 0265 2151 651 337 425 0265

C 2156 656 middotmiddotmiddot~middotmiddot 335 425 0269 2201 661 33J__ 431) 0266 2206 666 335 425 0263

( 2211 671 335 425 0265 2216 676 337 430 264 2221 681 335 425 C261

( 2226 686 33S 435 0263 2231 691 bull h 335 430 Q2(3 2236 696 335 425 0259

( 2241 701 335 430 0256 2246 706 335 425 0258 2251 711 335 425 0255 2256 716 335 430 0256

OU~STICNA6LE DATA

109

AGC-ZIR-~ ~02 401 RH GLASS CHA~t1Fl-1976 AllG 4-5

AOO 660 MIN TO ELAPSEO llM

CLCCK fL~PSEe TS l l~L HJ~ Si~bull- T -IF Tl~cllO ING CI (o (r~M)

22C6 6 33S 4l5 C263 22tl 11 335 425 C265 2216 16 ~37 43i) i)264 2221 21 335 12 5 Obl 2226 71 D5 435 C26~ 2211 31 ns 430 0263 2236 36 335 425 i)5G 241 41 335 430 C256 24( 46 335 2 _5 middot 253 51 51 33 5 42S C 25 256 56 -3 ~ 43(1 0256 230 t 61 335 425 C254 2306 66 35 42 C25S 2311 71 33 5 430 C 50 2316 76 337 425 CZSv 231 81 33S 43) C 5) 2326 86 33gt 43J 0252 2331 91 334 420 0249 233b 96 335 430 C z5J

middotI 2341 1C1 ~35 425 C252 2_34~ 1C6 335 420 obull45 2351 111 33 middot-middotmiddot 42 5 G248 2356 116 334 420 0248

1 l21 334 425 0247 6 126 334 42~5 C~250

11 131 334 420 0244 16 l36 334 __ 425 c 245 21 141 334 42middoto 0244

26 146 334 420 0244 31 151 332 42o 0242 36 156 334 415 0242 41 161 334 425 0241

i 46 161 132 42 o G2391i 51 171 334 430 ~ 239-~

i 5b 176 332 430 oz3gmiddot 10 l lBt i 2 425 023ltgtt 106 186 332 435 C236

I -~ -~ 111 l SI 332 431) 0238 ~ ~ 116 l c6 33l 431) IJ2 1l 201 332 435 C23gt

126 2C6 332 430 a 233 I 131 211 3 2 435 0232

f 136 216 3 3 2 430 0233 p 14 l 221 3) 425 0233 I 146 226- 312 435 C233

I 151 23i 33 l 425 c22s

C (

~ ti

) ~ I ~i 6 236 332 4)5 cna 201 bull1 3 3 I 430 C bull J )

f 20lt 246 33 l 4 s C2 n E 211 251 3 3 l 4gt0 0231)]

Iimiddot~- ~ll QtTh TAK f1 fl AT

~ -- 1 l middotmiddot1

I 1

middotmiddotmiddotmiddot--middot-middotmiddotmiddotmiddotmiddotmiddotmiddot --middot-middotmiddot--middot-middot ----

_ - middot- --middot---- middotmiddot-middot-middotbullbullmiddotmiddot-middot -middot--- ---

--middot bullbullbullbullmiddot bull-bullbullbullbullbullbullbull M bull-bull 0 middot---middot-middotmiddot middotmiddot----middotmiddot - -

- --middot---middot- -- -~middotmiddotmiddotmiddot-middot--middot-middot middotmiddot--middot

____ ___ --- middotmiddotmiddotbullbullmiddotmiddot----- __ middotmiddotmiddot-middotmiddotmiddot -~ ~-

n1 s1or~o

110

AGC-218-5 S02 4Ct RH Gl ASS CHA~lrn lH6 lllJG 5

AOO 6amp0 HIN TO ELAPSED TtME

ClCCK l~llSFt 1$1 REL HiPl SO TIME TIMEl~lNl ID~G Cl Ill IPPM1

216 256 331 430 0211 221 u1 331 4-L~ c2n 226 ~66 33o 43~ C27 231 211 JJo 44o 022s 23~ 276 3l0 44S C28 241 281 330 435 C26 246 266 330 44 5 C2Z5 251 291middot 330 43s o22~ 256 296 33o 415 c23

middot301 301 bull3middot3omiddotmiddot---middot40 022s 3C6 306 328 435 0225 311 311 328 445 C226 316 316 32 1middotmiddot middot -4middot3smiddot c222

( 321 321 32S 440 C222 326_______ 36 32_ a______ 43 bull s__ c 221 middotmiddot---middot--bullmiddot-middotmiddotmiddot ___ __________ ----------middot-middotmiddotmiddot-middot 331 331 328 430 023 336 336 32S 435 C220

34134-1 e a~middotbull~- fl 9 0 211 346 346 3Z8 440 0220 351 351 32s 435 c220

1 ~t t---ttt-middot -t~g ____ --middotmiddotmiddot -middot-middot-middot-middot middotmiddot- middotmiddotmiddotmiddotmiddotmiddotmiddot--middot middotmiddotmiddotmiddotmiddot-middot--middot---middot middot--middotmiddotmiddot-middot- ---middot-bullbull _ 406 366 327 440 0216 411 311 n1 445 o_215 __ __ --------middot- middot--middot--- 416 376 326-middotmiddotmiddotmiddotmiddotmiddot43s-middot C211

( 421 381 327 445 C215 421 3~6 _32 bull6___~i1Lcn middot- ______ middotmiddotmiddot--middot--middotmiddot middot-middot--middotmiddot 4Jl 391 326 445 C211 436 396 32s 44o 0211 4 1l 401 326 450 0210 446 ~06 324 44o u211 451 411 34 45o 0213

_456_ 416 324 445 _C210 501 middotmiddot21 323 455 c211 506 426 323 445 c210 511 431 323 55 0204 516 436 323 44S 0209 s21 441 323 455 c210 526 _446 33 445 C208 531 451 3 3 455 003 536 456 323 445 0204 541 461 322 4S5 c20~ 546 466 322 445 C215 551 471 322 450 0206 556 476 316 4o 0210 601 481 316 450 020gt

C

606 4fl6 31 6 455 C zomiddotJ 611 491 316 5 ~ c2n 616 496 316 4tC on 621 501 316 455 C2J2

bullbull bullbull NO OAH T6KFN ---- ll 11T VJ ScAmiddot~~~u

111

AGC-218-6 S02 40l RH GLASS CHAIBER 1976 AUG 5

ADO 660 HIN TO ELAPSED TIME

CLCCK ELAPSED TSl REL HUM S02 TIME TIMEIM~) IOEG ti Ill (PPII

626 5C6 middot3f~6middot 46ci 0200 ( 631 s11 316 455 c2ao

636 516 316 45s c200 641 521 31~imiddot 4ampomiddot 019

( 646 526 315 45o 0199 651 531 316 455 0199 656 536 315middotmiddotmiddot 45S 0195

C 701 541 31a 45o 0191 706 546 319 45~5 C197 711 551 319 455 C115 716 556 320 45~ 0199 721 561 322 460 C197

566 323middotmiddotmiddotmiddotmiddotmiddot 45~5 C195- -middotmiddot - --middotmiddot--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot- ---- middotmiddot-middotmiddot-middot middot-middot-middotmiddotmiddot middot--726 ( 731 571 324 460 0194

736 5 76___32 bull middot-middot --4~-~~---middotmiddotmiddotc ~q_5 ______________ middot------middot-middotmiddot-middot--middot-middot-middot-- -- middotmiddotmiddotmiddotmiddotmiddot-middotmiddot-middotmiddot~--middotmiddotmiddot-~-middot-middotmiddot----- middotmiddotmiddot--- middotmiddotmiddot-----bullbulln-bullbull-middotmiddotmiddot -------middot-middot 741 581 3t4 455 0193

746 586 326 45o 012 751 591 327 455 0194 756 middotmiddot- middotmiddot-s96~-middot -- 32-amiddot- middotmiddot4smiddots middotmiddot middotc194 801 601 330 455 C193 806 606 33l 460 C191811 ------middotmiddotmiddot-middotmiddotmiddot-middotmiddot--middot----middotmiddot------middotmiddotmiddotmiddot-middot-middotmiddot----------middot- 611 33l 45bull 0 0171 ------middot-- middotmiddotmiddot-middot----------816 616 332 460 0191 821 621 332 455 0192

826 626 33--middot 460 o 183 C 831 631 334 455 C188

836 636 334 ____4S_o___Cl36 --middotmiddotbull---------841 641 -middotmiddot-middot-middot33 5 45 o o1ss

( 846 646 335 46 C137 851 651 335 455 CS6 856 656 335 40 0184

(

l

a ~ -

112

AGC-2ld-i s02 -~ r~ iliS5 (I--A~tl[f-

196 AUC ~

libulloHTS Cl 01CC 1nSlY lmiddotJOt lJ~ OA~JJI_ 12L r c~~ itmiddotE (Hit~t t~uG~j cic6 10 tll f-RC~ 1 Mi TJ S lf ftf-lt

Tt~ ~Ol~ fbull~0~ 1C~0 T2 l~Ji ~~~J TJ 113( ~2~1-~~C~ AU~ t VlOT--0110 s~tY 12s6 CAlt1 ~i11u- 1-h vl imiddot StPLllG RATES OL11) TcCU ~ -middot 123bull C~Slfl 12l - t()(

ccci- fL 0 )~middot) i Sl i l ht ~-it t-bullc r l -pound ( l 1imiddotc Cl 1 ~ ~~(

1 tti ~ C i t ( bull t ~ 1i1t ~) ~i cu

--bull-- -~ll __11 middot-- middot ~~) 5 ) -bull ~ __ S bull lmiddot~ __ _ gt le 1~J yen ~ ~s ~ss 1~1s~ 92l 21 ~bull~ 46C c11middotgt)c~~

S2C ~tbull 1 ~ ~ ~4 bull_ bull l ))(~-~

middot93 l 31 1 ~ _j_l bull bulltC Cl-bull 936 ~l 01 L

--------~ -~ ___ ______ 4_1 -1=i 1 5 0 l i 4t 41 tit~ 4 middot1 middotmiddot3 C -_ bull 1 i~l

( 951 roc -i 5~L 3 1 42 bull G ct 51 ~( - 3 f gt 41 i 0 1(_bull(

1)0 l c 1 ~centelaquo 4middot1 5 01X lOUc cc 15 ClL~ [011 7 l ~d~bullt~(c 3lt bull 7 41 bull -J16-t lOlt 76 it20 OltG t~~01gtt j4 9

102 l 81 (-ttI centicx 3i ~gt 01~2 iOU 8t i-uc~ ~2) C l 5t1oii -middot middotsf~- middotmiddot~~-~~- -----~-~ ~

)~bull- ~ l () middoto i5t1middot i03amp ~6 ~~ 4C bull i C lJ6 041 10 1 middot~bull-p(t 1t _ ----~ bull~-----~ ~+- ~ middottC46 [Ct bulllaquo 4 7 4 bull U r bull l bullmiddot

1051 111 ~~-~~ tCi ~gt 0 l i0~6 J1~- ~ 347 41u 01~ llOl 121 -middot--bullomiddot- -middot 41 c (i1smiddot1

C 1106 126 4s ) 153 llll l31 ~middot~ 34 5 4rJC middotO 140 lll6 136 bullbull~bull~ 3lt bull j =~- --~ O l4

( ~121 l~l $enyen 34 o 3i G 14ltgt i12o 146 ~~ 34Q Jl0 011

--i131 -middot-- 1s1middotmiddot middot_ __ middotf 3 ~ ---143 middot-- C 136 1f 3C 0112

~14_1 -middotmiddot--middotmiddotmiddot16_1 -e-~ )-t _ b5 1~2 qri middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot3middot4--_middot- Ji ~ C bull 1 j S bullmiddotmiddotmiddot - middotmiddot---middotmiddot-middotmiddot -middot middot-lee

( H51 171 3-1-ti ~ 7 5 013S 11~6 I 76 )) 3 1r ~ 37 0 0 1+C 220 l -- 1cimiddot1 x middot3middot- i~ bullmiddot 3( I Olle i06 d6 J ~ C6 34h 330 01n 21 I I l 31-9 middots o 0 131

l21 t I S6 - l(~q~cent 5middot ~middot0 ~4middot-~middot--middot-- bull i l2 ( 122 l 2Jl J~1 34 1 C l J

1226 2c1 c~bull~ 34~ 34C n 12s Tiit 2ll _(Ybullbull~- bull~bull~- i j~bull ~j cbull1it1 l23l 2 ll ~~UCO ~4a ~c Oi3~ i24l 221 bull~bull~ ~~-~ 3~~ Cll~

middot 124c 22~ v~-y 34~ 34i cmiddot ld

1251 iil laquoriribullmiddot ~middotmiddott o ~) 12middotmiddot 12~0 2 j() - bullrl-1- 3 ~ ~ ( 1bull~ 3C l -~ middot ~ ) J di ~ ~ l (l

113

AGC-2lS-8 S02 40l RH GLASS CHAMBfR l976 AUG 5

CtrCK TIME

EL AP SEO TlIOIMINI

Clf~C (PPM

TS l IOEG Cl

~FL HUf n1

SJZ C PPI I

1311 251 -$ H5 33middotbull 0125 l3lb 256 (centcent 345 n 5 0 129 1321 261 ltirtQlaquo- 34bull ~ 325 0 12 3

C 1321gt t31

266 27l

(~~laquo~ q~t~laquo

~4-7 3 9

335 340

0 12 S o 122

1336 1341

276 281

__ t

347 34 7

34J 31 5

0 122 0123

( 1346 286 1(11) 347 345 c120 1351 291 t l ~4-7 360 0-1 zo

( 1356 1401

296 301

346 346

36C 35S

0118 0117

140(gt 3C6 o 254 346 355 0 118

1411 1416 1421 146 1431

311 316 321 326 3 31

~YJJ

bullbullicent lCbullmiddot (11Ctlaquo

346 350 35l 35l 35o

34J 355 360 35 5 335

0118 0 118 0117 o ll amp o 114

1436 336 $$) 354 350 0 114 141 l 31 354 35S 0111 1446 1451

346 351

t(c=~

tit 354 353

355 350

C 112 0110

1456 1501

356 361

bull~

35 l 35l

360 34 5

o 111 0110

1506 1511

366 371

0287 $

35_o 1so

345 345

o1oq 0 lOl

1516 1521 1526

3 76 3A I 386

ICi -C ~IX$

349 347 347

340 340 355

0 109 0 109

0107 1531 391 tamp 347 36C D107 1536 396 346 365 010 1

1541 4 01 Or 346 36C 0106 1546

1551 406 4 l l

Cittcent

346 34o

36 5 365

010 0104

-15~6 416 6~ 346 365 0104 1601 421 ~( 345 365 0103 1606 426 c 302 346 36 C o 103 1611 1616

4 3 l 436

lJ rit II

~ 345 3 5

365 37 5

ClOJ 0100

1621 441 ltftt11 345 37 0 0100 1626 1631

446 451

~ 1tcent bull1Cc

345 345

36 C 36 0

0098 OCll

1636 456 tC06J 345 36 5 o 098 1641 1646

461 466

(Ittbullittbull

345 3 5

-c 365

o )Ya 0094

1651 1656

4 71 4 71

11)fI)

$$(1Jfbull 345 345

310 3 7 0

0 ))4 0 Oi4

middot7 1701 1706

4 81 48b o 315

3 s 34gt

0 3t 0

oogs o 094

1711 I 716

491 49amp

bulltttoJt--r

ittt t 345 345

355 H bull5

0014 oon

bullbullbullbull ijir mJ DU4 Tf~ fl -- middotmiddotmiddot- l)f TA 01 $ChIHG I OUET rorAILE tJIH

114

AGC-218~9 S02 401 RH GLASS CHA18ER 1976 AUG 5

AT 2059 PROPE~f (64 ML) ANO FC-12 1580 MLI WERE INJECTED

f (r CLOCllt El ~PSEO QZCNt___ J51 TIME TIME(~I~) 111 (DEG Cl

(

i7ii soi ~ 34~middot5middotmiddotmiddotmiddotmiddotbull-middotmiddotj4_Q 0092 bullmiddotmiddotmiddotmiddot----middot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot--~------middot----middot-middotmiddotmiddotmiddot----------middot-middotmiddotmiddot

C 1726 50~ 345 340 OC92 ll3 l_ middot--middot51 l ~~~~---3~--~middot-middotmiddotmiddotmiddot-3t i____QJJ12

1736 516 343 350 OC89 1741 521 bull 343 335 OC89

_1746 -middotmiddot ---526 u _ )45 _J3 O_ 0 bull C$8 __ _____ 1751 531 346 310 OJS7

C 1756 536 bull 350 305 035 1801 541 351 _no__ 0 bull0es___ _____ ______middot-middot-------middotmiddot 1806 ~4i~ 0313 3D~ 330 OC84

( 1811 551 358 320 0085 1816 559 ~-~-middot--middotmiddotmiddotmiddotmiddot~-58 32middotJ OC81 _____ -middotmiddot--bullmiddotmiddotmiddotmiddot-----middot---middotmiddot ----- 1s21 561 358 320 oc33 1826 566 360 315 0083 1831 571 36J 315 0083 1S36 ___ 576- 36o 320 oca1 1841 581 ~ 380 315 0078 1846 586 middot---middotmiddot 38 bull0_ 320 0081 1851 591 379 ~jo---6019

C 1856 596 377 335 007S 1901 60Jbull UUbull 376 330 0078 1906 606 0328 375 340 Q078 1911 611 375 335 0078 1916 616 376 330 0076 1921 middot621 376 33o middotocn

C 1926 626 376 335 0077 1931 631 376 34 0 OC7t 1936 636 bull 375 345 0070

C 1941 641 372 345 0074 1946 646 372 340 0074

0

1951 651 37~ 340 0074 ( 1956 656 37l 345 0073

2001 661 370 350 0071 2006 666~ 370 350 0072

( 2011 671 369 355 ocn 2016 676 36I 35 5 0068 2021 681 36l 36 0 OC68

( 2026 686 349 365 )069 2031 691 0 349 365 J070middot 203~ 696 349 370 OC6i 2041 701 350 370 0066 2046 706 349 3~o ooes 2osi 111 o341 35o 3Bo 0001

( 2056 116 0341 35o 38s o066 2101 121 0343 337 385 0066

115

r I

I~

) I I

H l

Ji

I

~ I

l _

I1 i

~ t 1 t

I r ~ ~

f ~bull1

1

1 r i

AGC-21S-IO 502 401 RH GLASS CHA~tHR 1976 AtlG 5-6

ADD 720 MIN TO ELAPSED TIME AT 2059 PR~~ENE 164 ML) AND FC-1 (590 Mll WE~E l~JECTED AT 2217 IO ML OF S82 WAS INJECTED

CLOC~ ELiDSEJ ri~~bull TSL ~fl HJ~ 5~~ TIM~ TIMEl~INI (PPM) (nEG Cl Ill (PP~)

2106 6 0 32l 345 390 2111 11 0314 34 bull 0 Crmiddot 2110 lf 0300 34 q_ 390 OJtO 211 21 () 2lJ 3bullbull 9 390 0057 2126 26 0231 350 ~9 0 JC56 2131 31 ()282 35Q 39bull 0 OC55 213b 36 tic 350 39 () or56

2141 41 O~ 35Q ~9J 0C54 2146 46 (~-ti 35bull Q 390 )054 2151 51 iei 350 390 0051 2156 56 ~laquo 35o 390 0053 2201 bl 35o 395 0053 2206 66 0241 35o 39S o)51 2211 71 35) 390 0051 2216 U 350 39S C85l - -middot--middot---- middot---middotmiddotmiddot39middotmiddot3middot -- - o middot2 ti -middotmiddot - --middot--middotmiddot-~---middot-middot-middot --- -middot middotbull-- ___________ ~middot-middotmiddotmiddot middot2 221 81 u-- 33 8 2226 34 7 395 0222

91 c2222231 middot 349 39s 2deg236 96 laquo 34middot9middot 390 0221 224 l l 01 =bulltll~ 350 390 0217 2246 bullioi ----- 34 9 _____ 38bull 5 __bull Gbull 22Q-middot-middotmiddot--bull-----middot-middot-middot---- middot_ _ --middotmiddot-middot - _ middot---middotmiddotmiddot -middot--middot--2is1 lll 39) 0220 349 2256 116 350 390 0219 2301 12 l cent 349 3llJ 0216 2306 126 349 8 15 0214 2311 131 t 349 385 0213

- -2316 136 t J(I~ 349 39) 0211 middotmiddotmiddotmiddot----141 2321 t~ 31 7 390middot 0209

2326 146 --Ccent0= 347 39o czoc 2331 151 4te 34 7 3Bs o2J1 2336 156 l) 347 390 0206 2341 lo fc 34 7 39) 0204 2346 166 -e~ 34 7 39 bull0 02l5

~obullicent-V235[ 1 71 347 385 0204 2~56 176 ~~ 34 7 385 02)3

1 l 81 ~ 346 390 0193 6 186 =1centCt 341 3 019

11 191 ~(r 345 390 0200 16 1S6 taici 345 ~85 0 19B middotmiddot- middot- -- --~ 21 201 Cdeg trtrbull) 345 38 ) 0195 26 206 345 39 G 0195 31 211 ltclI 345 3l() ~ 1 g1 36 2i6 V4-tiq 345 39 0 0 14 41 221 iocent 343 38 5 191 46 226 $ 345 rn s Clql 51 231 (r(c 343 ll 0 O lJ2

56 236 ~bullt~ 34~ ~9 ( J137 101 2 1l ftfilt 31-t 3 3e 5 c 188

0itW~106 246 34 3 JAS 0 1~9 11 l 251 4)QJ~4 Jlt bull j 3fl 5 C bull l 4

ibull1 DATA T~K rn ---- D~U DSCA~JEC 1 QIJ[ST tSbull~flLE DAT~

116

AGC-21d-11 S01 40t RH GLASS CHAltt8ER 1976 AUG 6

AOO 720 MIN TO ELAPSED TlE

CLOCK ELjPSED ozc~~ TSl ~~L HUM scz Tl~E T[MEt~l~l (PP~) IJEG Cl Ill l lP I

i16 121 176 131 136

256 261 266 271 276

bull ~bullbull bullbull~

343 343 343 342 342

365 e5 38C ~85 385

0183 01S4 0 I S2 0lSl 01s2

14 l 291 bullbullbullbullbullbull 342 8C 0 lilbullJ

( 140 151

236 291

-bullbull

342 342

360 3tiC

0 177 o 176

(

156 201 206

296 301 306

~~~~

342 342 342

385 330 8C

o fn0 176 0 l 75

211 3ll ~~~~ 342 38C o 172 216 22 l 226 231

316 32 326 331

bullbullbullbull middotmiddot

342 342 341 3 11

385 )35

85 3d5

0 173 0 171 0 161 0169

236 middot241

- 246

33~ 341 346

$ uuu

339 3go 339 3U533~9middot-- 355

J H5 C l 70

0 1 7J 251

middotmiddotmiddotmiddotmiddotmiddot--middotmiddot256 301

351 middotmiddot~middotmiddotmiddot ~5~--middotmiddot--- 361 bull-

339 33 9 339

385 39 0 ~ss

0165 0 167 o 166--

306 366 339 335 Q 164 311 316 321 326 331 336

311 376 361

_386 391 396

bullbullbullbullbullbull bullbullmiddotmiddot

339 339 339 338 338 338

3as 385 380 38Q 385 385

0161 C161 016) 0 161 0161 C 158

341 -346 401406

middotiimiddot-

33S 338

3BO335

0 159 0156

351 411 338 385 Q156 356

4151middot 406

- 411 - 416

421 426 431 436 441

416 421 426 431436~middotmiddotmiddot 441 446 451 456 461

~bullbull~ bullbullbull=bullmiddotmiddot OU

~~bull7

338 33S 33d 336 middot3)i3

338 33S 33S 33~8 337

320 385 385 390 a) 3B5 3dO 380 3d5 335

0 156 C151 J153 0153 0 15) -o l51 0 149 middot oi5o 0145 0149

middot middot middot middot

446 466 bullbullbullbullbullbull 33~B 365 0 14 3 451 456 middotsol

471 4t6 461

=~~~ ~bull

337 338 337

90 0ia ~~- 5

0 145 0 144 0148

J

506 $11 516 521

486 4l 496 5Cl

t fr(laquo ti~ lt0lf11

middot~ tI

33 IJ 337 3 3 3 3J a

R 5 ~f

~bulls lJ 3o o

0143 C14J D 142 0 1~ 1

bullobullbullbullbull NO fMTA TA~ fj ---- iHt Dl SCA 0 i)E0 OU Sr I~-bull ~-1 ~ ()A TA

117

l

u I

AGC-llS-12 SJl 4Jt ~H CLSS Crbullt~tH-~ 197 ~JC

bullco 720 ~IN JC ELAPSED JIME

__(_l CC -~-----EL I~bull-~ ___ )Jgtl________ T_~J Bf_t t1l~ smiddotmiddot-~ ~ TlMt TiMtlil l p- ( UCG ( l ( t) I Pi l

jIL szc gtt~ ~ ))~ti ~-3J 5~middotJ c1--

5ol Sl 336 3S ClgtC

-~-4 ~- t_ bull bullbull - t1-- ---~ ) bull ~ ___ _-bullbull__G_ Y~ l_~ l --middotmiddot- middotmiddotmiddotmiddotmiddot-middotmiddot middot--middot-middot-middotmiddotmiddotmiddotmiddotmiddot middot--------middot-middot-middotmiddotmiddot ---middotmiddotmiddotmiddot _ 541 521 ~~~~ 33H 75 CJ~7

( S4~ 52t _~ 33CI 370 01tti

ss1 31 _JJ1_ nc middotJ13bull 55~ 53~ middotmiddotbull ]31 7~ ~-1bull~

( 6~1 541 bullbullbullbullbullbull 331 ~7C Oi3J CC i 5 t l ~ i i_ 3_ gt bull imiddot-middot 1lt- bull bull_ Cbull _ 1 i 1 I 5~ j bullbullbullmiddotmiddotmiddot ~-~--~middot-middot- 3 3 bull ~ jt C l t - _______

616 gt~6 )__Q1bull 337 36i i l3i t i 1 lt 1 ~- -middot bull ( 3 ~ ii c C l _l- _

middot-626 G ~iu JJd J7G Qii

i 631 571bull bullbullbullabullbull 331 37C Ol~I 636 j76 ~=~~~ 335 ~7C 0t~S 6il 5ilbull (middot~vrr s1 31L Llmiddoti

64i Scit =~~bull~ 337 370 C126 t~ gt~1 bull to~-c~t i 7 3C 017 65c 5Stmiddot middotmiddottimiddotmiddotraquo=ii~middotti 3i 2lbull C lit 7Gl 6Cl bullbullbullbullbull 337 370 0127 7C6 lJ6 bullbullbullbullbullbull 33 J70 01257 11 611 -J 343 - ) 3 7 37 C ~ ~ 12 5 middot-middot-- middot-middot---middotmiddot-middotmiddot--middot- -----middot-----middotmiddot--middot-middot--middot-middot--middot--middot - middotmiddot-middotmiddot- middotmiddotmiddotmiddot-middotmiddot--middotmiddot

7lb 616 ~middot 33l 375 CJZl 721 62Jo HmiddotgtU 3)8 37a___ pU3_ _

middot-iii l2e middot bullbull --middot- 3i~imiddot 3c c c in l ( 731 631 bullbullbullbullbullbull J37 37s c121 I middotmiddotmiddot--- ]3l ________ l t_ 1 c~~_middot=_ ___ ____ 33 7 6 gt C bull l _~middot--middotmiddot bullbull middot---- ____

7itl 041 ~yen~~ 331 3~ C12 ( 74t 646 bullbullbullbullbull 331 385 c120

751 ~51 bull 3JI 3S0 C12~ _7 smiddotmiddotmiddotmiddot-- 6 56 ~ ~n-1~ 3 j rmiddotmiddotmiddotmiddotmiddot 3 bull~ j i r~ 8Cl 661 bull~bull 33B ~a OllE 80amp 666 yen~~___ 33 ~middot-middot---middot-middotmiddot ~9 5 ~middot-middot ~f--~

middot middota11 67i- tl~~ibull( ~ middotscmiddot e1 ~16 676 ~~~~ ~3b 36C C117

__s21_______ ~ci~ ~ 1r-t 3--z _bull J111 ti26 66 1-r~~~ middot3middotmiddotimiddot-middot middotH5 cflG-

( Sil c~jl centr(tiri 3-i2 1~bull t11 1

118

i I J I I j

l I

j

I AGC-218-ll 502 40t RHmiddotmiddot1 GLASS CHA~8E~

bullS 1970 AUG 6 t J

ACO 1410 MIN TO ELAPSED TtIEmiddot~ I l

t l I

~

CLOCK ELaPsrn ClCbullE TSI R~L HUM sn Tl ME TIMEPPil ( PP11 lo~ cY 01 IPPMI

l ~I l

829 -I ~ 342 390 0114abull

( 836 ( bullbull~bull 33CJ 19 0 aus middot

841 11 bullJ$rfll(cent 339 39S 0 l l 4 -- ~ _ __ _________ Il --middotmiddotmiddotmiddot-middot--middotbull- -- 846 16 nsmiddotmiddot 40) gt bull 112 ~- ( 851 21 Cit-o 337 4CO 0 116middotf 856 26 (I 337 c 0 0112

f I

901 31 ~ 337 nmiddoto 0112 i 1

~

- 906 36 =-= 338 380 c110 911 41 tt~ 34l 370 o 109 --middotmiddot ____ -middot-- __ ~ -- middot-middot--bull-middotmiddotmiddot middot- -middot lti16 4( =~ 3 3 370 o1oi middot 921 51 -tCio 35 365 c 11)6 926 56 tOO 3+7 3o5 c1-~r I

I

i

l

l

[ I

j

middot-

1~

931 61 3-7 38 0 C-104~ lt 936 11 H5 38 5 0 l) 3 middott 941 71 3t5 Jd5 0104 946 76 343 ]8 5 0105 ( 951 Sl laquo1tbull 342 385 I 104

950 86 34l 385 0103 middotbullmiddot1001 91 middot=+ 339 38 0 0103

1006 339 37 5 o 105 1011 101 339 375 C 10 l __

I - --middotmiddotmiddotmiddotmiddot-middot 1016 106 339 380 0C99 f

1021 ltl laquoO 339 380 c 099 1026 116 C10$C 339 370 0101 1031 121 Ct 33lt~ 37 0 0096 1036 126 buller 339 370 0096 1041 131 (e 339 375 0 99 l046 136 lit 34l 37 5 o middot]98 1051 141 t 339 no CJ98 1056 146 C~bull 339 370 0G95 110 1 15 l ~IIX$centU 3- l 3 7 5 00-~1 1106 156 bull )~t-C(t 342 37 C oc9s

~Q(~cent 1111 lbl 342 37C O C9 3o C1116 166 Ccent~~ 342 0 ]96

1121 171 bull4- 3 36 C 0093 1126 176 ilc(tOC~cent 342 009436 5 l I 31 161 tiOt(i$cent 3 1 2 36 5 C0)4middot 1136 middot l e6 t-r-oebullbullgtt 3- 2 36 C 0090 1141 Illbull 3 5 0 0094lrmiddot0-J(J 31 3 1146 l lt6 -C 343 35C ono

I 1151 201 e 343 340 0 CtJG 1156 2u iC111 3 3 340 0089

( 120 l 211 middot~ 34 3 33 5 ocn nliittiraodc1206 2H 343 ~o OCl7

1211 221 -~bull-1fJlic H5 330 O CH9 1216 226 -yen 345 320 0 Cl9

1221 2 31 (1$11r 3diams 5 3middot2s or~ 1226 736 bullcqtcentbull 345 3l 5 COil 7 1231 741 bullt-laquobullbullmiddot 3 5 11n middotJ J9bull l 236 24amp 3 6 30 0 i~lbull 4

(ATA ~-~middotbullbull TAtH[

119

rmiddot 11

AGC-213-14 S02 40yen RH GLASS CHAlfER 1976 AUG 6

ADO 1410 tN TO ELAPSED TIME AT 1424 1 Ml CF S02 AND l6 Ml OF PRCPENE WERE INJCTED CLIMET AND WHTSY WERE 0~ THE CHAMBER FRON 1313 TO 1645 DASIBI 1212 WAS ON THE CHAMBER FROM 1634 TO 1638

CLOCK LiPSED Ol0N~ TS REL H~~ Sl2 TIME Tl~~(~l~Imiddot IPP~I lb~G ti (Cl (PgtI)

middotmiddot-middotn41 middot -middotzsi~-- middotmiddot$~I middotj~t q 3zo ocas 1246 256 bulltbullbullbullcent 349 32J 0 C8 1+

-middotmiddotbullmiddotmiddot -- - middot---middotmiddotmiddotmiddotmiddot bull_ 34bull ~----1251 261 0lrU 31~ 9 Q_~_7_i 256 266 347 325 on2bullIt 1301 271 =to~ 34 7 325 oJS3 130 276 346 315 0083 ---middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot- 13 I 1 28 l O-ht~(I 346 Jl5 CJ83 1316 286 O 346 31C middotOOi33 132 r 2lt1 ~tc1 346 305 o_C81_ middot-middot-middot

i326 2ltJ6 - middotmiddot34~5 31 5 008 1331 3Gl 34 5 3 l 5 0082 1336 3C6 345 31 5 0C7t 1341 311 3bullbull 6 29 5 0078 1346 316 b~ 346 ZltJ5 OJ77 1351 321 --- _3_45 30 J ---- -1356 middotbull~ 0 j73 _ middotmiddot-middot--middotmiddot-middotmiddotbullmiddot middotmiddot-------middot--middotmiddotmiddotmiddot middot-middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotbullmiddotmiddot- middotmiddot-bull 326 345 ZltJO Q)71 1401 33 l 346 290 0)73

1406 336 middotlaquo 3 6 gtltJ bull S 0073gt 1411 341 34~6 30 C 0072It~- 1416 346 347 305 0071 ~ 1421 351 34 6 310 OJ73

~~ 1426 --middot middotmiddot--jsamp~ __ 33i middot--3middot1o C 13 $ middotmiddotmiddot-- --middotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddot- ____ middot--middot-----bullmiddotmiddotmiddotmiddotmiddot-middotmiddot-middot~---~~middot-middot

1431 361 343 310 0221 1436 366 ~ 345 2 0 0232

-middot-middotmiddotmiddot--middot-middot34 6 middotmiddotmiddota 231 middot ----middot-- --middot middotmiddot- middot-middot--middot-middotmiddotmiddotmiddot-middotmiddot-middot--middot-middot- middotmiddotmiddot--middot middot middotmiddot--middot--i441 3 71 33middot 5 1446 376 o 346 335 o 22a 1451 391 34 7 34l~~= 0 226 middot-middot- -middotmiddotmiddot------middot- middotmiddotmiddotmiddotbull -- --middotmiddot---middot--middotmiddot-middotmiddotmiddot- middotmiddotmiddot-middotmiddot --middotmiddotmiddot-middot----1456 336 ~ 34 i 340 0 223 1501 3lt 1 -ti~~ 347 345 0222 1506 396 347 345 0221 1511 401 ~ 347 350 0217 1516 406 347 35) 0214 1521 411 X 347 350 0211 1526 416 )$ 349 340 0209

( 1531 421 Ji 349 335 0206 153gt 426 Clltf 349 335 0202 1541 431 ~ 3t 9 33J 0 bull fJ2 1546 436 t=Cilc 349 325 0202 1551 441 ~=gt4 350 3 lj 0198

4461556 JO ~49 32G 0 195 1601 451 Jlrltlf~Tc 350 31 $ 0192

Vcent~~raquo1606 456 350 J 1 0 0 l llt 1611 461 lttlO-t 350 3J 1 fJ ll l 1616 466 ~~ 350 29 5 0186 1621 471 350 zq s C1A4middotmiddot 1626 476 350 31 C 018 1bull

~ ~ ~ 1631 481 1119$~rc 3o 31 5 0181 ~ ~~ 1636 4a6 0)7 351 2 5 c 161)

1641 49 l llir-4-it 35Q 32 0 Ol77L - (

166 496 middotbullbulltbulltr 35 l 34 s 0 IIH

middotbullbull-tiort ~ si bullmmiddot DATA TAK[i ---- OATA 01 $~APi)euroC QIJ ST 1(lLE LmiddotbullTA

~ - l f

r

120

i

1 --~middot---- ~- Ac-middot21q~f-sri~ middots~ ~H middot ~

q l r GLASS CHA~dER 197b AUG lo

--middot0middoti11t1 middotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddot-------- middot-middotmiddotmiddotmiddot--middotmiddot middotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddot bull AT 1545 FC-12 ~~S INJSCTEO INTJ TH CH~M~~R AT 1646 S02 WAS INJtCTEC INTJ THE C~AN~E~

-middotmiddot1ECC 43 SP~NNrn ll6SfC o-middotcHA-lEft trJtCTl)~ideg-------------middot------middot-middot-TECO 43 SANPLI~~ ~ATE 1213 ~LNlN SRACV ll9b CALIS~ATU~ 1976 JUL lb

-----middot soz COiRECTIGII o11s4 PigtM middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot-middotmiddotmiddot-middot-middotmiddot middotmiddotmiddotmiddot-middotmiddot----middotmiddot- --middot--middot- --middot--middotmiddotmiddotmiddotbull--middotmiddotmiddotmiddotmiddotmiddotmiddot

---r7JI 3 bullbullbullbullbull middot bull- 1735 5 3Zb 815 0237

1740 10 326 ot5 C29-J ------------------------------------r1-- 1s --32e air-middotmiddotc2middot- 1150 20 326 815 C297

1755 25 326 815 0302 -- lBOJ middotmiddot--3r-middotmiddot 32 7--olO -middoto ~ 3-)=o-----------------

C 1805 35 32T 80 0303 l 810 40 2 7 8~0 03J7_-----------------------~-------shy

--faf5 45---rz3 s1o o--io3 C 1a20 50 321 s1o o3C~

l 825 55 32 7 81 J J bull 3C~ middot-------------middot----------------------[830 60 na-middot~os--(rr-or 1835 65 328 SJ5 0302

middot l 84l 70 32 7 805 C 302________________________________ --1a-5 5 33~aoj -029~

1asc ao ]27 eos c303 1655 85 327 SJ5 C297

--r9li0--90-fzmiddot a ss o-middot211----------------------------------1905 95 3~2 aos 0292 1910 100 3 3 bull-2_ _middotg~-J~bull5_C=2~-92--~----------middot-------------------------~--nTs 1cs----3rL t105 02n 1920 110 33t ao5 c290 1925 115 331 aos c2a1

--1~Jo---uil------rr-ar--~-2-rmiddot3-------------------------------1935 125 331 ao5 o2ss 1940 130 33l 8J5 C233

--middot1945 135 330 d05 C282 1950 140 330 SJS 0281 1955 145 330 aos c201

--2000 150~2S 8JS C232 ( 2005 1ss 33o aos c200

2010 160 330 aos c216

C

--ni5 - 165 32a aJs a21~-----( 2020 110 328 ao5 c21i

2025 175 330 sos 06~6______ zoo-- ldegamiddoto middotmiddot-32s- eos tmiddot--n2 2035 185 334 79~5 C263C 2040 190 bull 33 S 790 0 bull 2b9________- ___________________

--2045 1ss middot335 785 o2s9 ( 2oso 200 33a 110 o2sa

2055 zos 33e 110 ozampo middotmiddot-- -------middot---------middotmiddot2lo)- 21c ----middot33s -middot--16s--middot-cmiddoti4 (_ 2105 215 339 7amp5 C259

2110 220 339 7os o1s1 --2115 ---22~ --middot-middot339 765 c2sa-middot

C ------ --middot- ----- --------------- ---------middot-----------~middotmiddot-bullmiddot--middotmiddotmiddot-middotmiddot----

j1 ---------------- -----middot---- 2120 236 342 76C C253

212s 235 347 7ampo o2so 2130 240 34l 760 OZSO

middot- n ---- 2135 middot - middotmiddot-z~-middotmiddot - imiddot-1-middotmiddot-middotgomiddot middotmiddot- o i4-1

-

l

1-~iI

_middotbull

1 ~ l

i

121

~

i

I~

I l I

middot1

------ --AGC-219middot2 S02 e 1~---middotmiddot -middotmiddot- - middot- --- -------GLASS C~Amiddot~~H 1916 AUG 16-17

-i C -- - - middot-middot-- --middot---- middotmiddotmiddotmiddot-------middotmiddotmiddotmiddotmiddotmiddot--middot-----middot -- - bullbullmiddot-middotmiddotmiddot---- - - -middot --- __ -------middot bull

-il _

-l ~ I

middot l

l CLCCK ELAPSED TSl qL ~U~ 502

--Me--TTfn Iff-middotccn------n1--rp-r~ -----------middot

I -~1

~ --71rcr------2cr~-z---7smiddot--c72o-4 2145 255 339 7ampJ 0247

2150 260 338 7bO 0244--middotzr5--middotzrs---n--s--middot16-0---y-2middot~----- -------

( 2200 middot 270 339 755 02J9 2205 275 J)$ 755 0247t I

A ----zz-r~1o--------yr----73-~~-u-r-r~ti ( 2215 2~5 339 7~5 C241 J 2220 2~~ 33 8 75S 0241---izz---2s~--3T7--s--o-ZTImiddot---------middot----------middot----middot-------f ( 2230 300 33~lt 755 023-

l 2235 3C5 338 75S 0235 ---z2-0---TIU--~3 -7 middot---s-u23c---------

224 S 315 339 755 C235~ f 2250 320 337 75_~5_ __o~2~3~~__-----------------~----------~---- l ~ ~ JlS--middot 33 bull 7 75 ~ bull ~

I 2300 330 33S 755 C231 2305 335 7 75 5 Czz_a__________________________________33 4 --middot--2n-~4middot07 J3 7 7575----U--ZZ ~middot 2315 345 337 755 0 224 l 2320 3 50 33 5 75 5 C22_1~------------------ ________________2325 355 33S sgt--e~z-2330 360 337- 755 0226--~ 2335 middot 365 33 s 75s c22o--____________________________

--i140 nc---3-i~1s--o--1 2345 375 33S 755 C224

~ J C

2350 3JO 334 755 0221middotf --n-sr--middot3r~~--~r---r5-c~2-i-20------------------------------

3 t 0 390 335 75 0213 1 ~~

___rs~ 3q5 334 1ss c21~6---------------------------- _______lO 400------rrz---nQ-zi l

~

C 15 405 334 755 0213 20 410 334 755 c211

---25 4 I 5---j3-7----gmiddot5---o2l____i ( 30 420 334 755 C209~

35 425 33 2 755 C214d l j I o 43b 33l 7~s 0211 45 435 332 755 C206l C _____________j50 440 332 755 C206

-middot----s-s 44-s---33-~---1-s-middot-o-zo~s----I

( 10c 450 332 755 C204 I -r ~ 105 455 B1 75 C204 l i HO 46C_ ]Lr ts C2)J bull -------------------1 Ii ( 115 465 332 75S 0197

I ~ 120 47C 33l 75i 0191 middoti

-- 12gt 33 l- Vi5 -----------------------middot7475 C20C

t_ bull

fi I

( I

middot---middot ______J--- ----- ------------------- --------middot----- ---------------

ad ----- middotmiddotmiddotmiddotmiddot----------- ________jrl -middot- llO --- 4-middot 311 0 20273 5 ~ i n 135 4F~ 330 155 C 1bull15

140 4S~ 33 1 7gt5 CIHf -----middot l4Sdeg- --- 45------ 33 l - --- middot-middot -- -- iI

755 QlHbullJ

~ 1 j 1

1 t

ibull1 l I 122lI middot1 I

1

----------

--------------

r ------ACC-219-3 s02middot soimiddot RH --middotmiddot---middot---middot--middotmiddot----- - middot--- middotmiddotmiddot---~--------------middot------ ------------

GLASS CtiA4t3ER

l~_7t AUG __17____middotr-- middot-middotmiddotmiddotmiddotmiddot-----------------middot middot---------middot----middot---middotmiddot-middot-----------middotmiddot--middot-

---------middot------------------------------------I (

---rso -middot-soo - ~3T___ 75bull middotci_94 ( 155 505 33~1 7~s c1s2

200 510 33l 75~ C~bull~l9~l_____ ---20gt 51s fJo iss--o 1a1

210 520 330 755 C192 215 525 331 755 C184

--- 220 ___ 530 middot iza 755 cc1s~o-------------- 22s 535 33~0 75o o1a1

230 540 3l 750 0137 --Z3s___545 328 755 J182-----

( 24C 550 328 750 Old3

215 555 33 o 75 o o tn-=--------------------------------- f50 -- 51o- 32a ---iTo - 1so 255 565 328 750 C179 300 570 328 750 01B0

---3tf5___575 3 l 1 1middot5o--odeg17le-------310 5SO 32 7 7iO 0176 315 5e5 3o 75o 0115

middot--320 5co 32 1 1o o 112 325 5S5 327 75Q 0173 330 6CC 328 750 0172 middot

-----3i5 6C5 327 10 011s 340 610 327 750 0171 345 615 32s 75o 0110

~5c 62c1~middot2-t-----ro--o-r6middot~------~---------------------( 355 625 321 middot 75o 0161

400 630 n a 75o ~ 165______________________________ --middot--cs 635 321 15o o i6s

( 410 640 ~27 7a 0lol

415 645 2 d 75 a O 102~---------------------------------middot-420middot-- b50-middot327 74S Cl~J ( 425 655 327 745 C158

430 660 3l8 745 C15~ middot 435 665 327 745 C15------------

( 440 67J 32 7 745 0155 445 675 32a 75o 1ss______ ----------middot--middot 4~b 680 327 745 C153

( 455 685 327 745 C153 500 610 32 7 74 5 C t S-igt_______________________---middot----middot----

--middot-50middot~---6lti5 2 1 145-middot-TT~l SIC 700 327 745 C55

____ 515 105___ 32_1 ____ 745__ c1s______________________

bullbullbullbullbullbull NO DAT4 TAKEN --- OAT4 DISCA~DED 1 QUE~TIONl~LE D4T4 --------------middot------------

---~~-----middot-----__________ -------------middotmiddot-------_-middot ---~--middot-middotmiddot -middot-

123

cl

I I

i

AGC-219-4 soi so ~H CLASS CHA~ilER 1916 AUG 17

l ACO 710 ~IN TO ELAPSED TINE

j

r 1bull

~ i_ CLCCK ELAPSED TSL qEl HU~ 502-1 Tl~= TIMEl~l~I l0EG Cl ltl (PPMI

I j (i

l

So O 326 745 C149 525 5 326 74S Cl5J

iJ 530 ________ 10~---middot-bullmiddot32bullT_____74_5___ _ Cbull11tt_____ middot---~--- ___ --middot-middotmiddot---- middot--middot----- --------- --middot- middotmiddot---- _ - -----middot--------~--------middotmiddot middoti 535 15 36 745 C148 C 540 20 326 745 C147

545 25 _32_____ 745 0143l 1 550 30 324 745 C144

~ C 555 35bull 3Z6 74s oi4l too 40 __ ~6 l45o 147_________________________________________ ---- _______ ----middot-middot ________ -----605 45 324 745 0138r l 610 50 324 745 C133

615 55 ~27 741 0139 620 60 32-4 745 0142

C 625 65 324 745 C136 d

f fi 631J 70 3gt 745 __C134 --middot-middot----------------- middot-----------------635 75 )4 745 0133 64C 80 324 740 0136l j C

-~ 645 85 324 740 0132 650 90 324 740 0131

4 C 655 c5 324 74o 0131

l 700 ____ 1JO_ 326 740 __O l31 ____ 7C5 105 324 740 0127

C 710 110 324 740 012Bii 715 middot 115 326 740 0127 ~ --middot----120---middotmiddot120 --middotnsmiddot-----nsmiddot c126 - middot--

725 125 no no 0121~ C --- 730__ 130 bull ___ 33 2 _ 72 5 QJ28_________________________________i 1 735 135 332 720 0121

l C 740 140 334 720 C125j 745_______ 145___ 31 5_____ 71 5_ 0 bull 122 ------middot--middot-middotmiddot-- ---------------------- --------- -------middot----i 750 150- 334 715 0121

C 755 155 334 715 0122 ----middot JQ 160o _______3)bull _ 7l o5 __ 0_122 L_--------middot-middot---~----middotmiddotmiddot--middot------middot-middot---------

eOS -------i65 332 720 0121 A 810 170 33I 720 0119

~ C I 815 175 33-0 720 0119 -------------------------------------------------middot--middotmiddot --------middot ------middotmiddot---1 i 820 180 3Jdeg-middoto _iz omiddot _ omiddot122 --middot--middot-middot- -middotmiddotmiddot-I C 825 185 330 720 C~ll9 ~ __ e30 1co 30______12o_____o 11 s ____________________________________________1

8)5 195 328 720 0120 I1 C 840 200 328 720 0112

845 205 32a 120 0119 i 850 210 3za 72omiddot oui

855 215 328 120 0114bull_ Cil o 220 3~Q __72_0 0bull llO __ ---------------- ~ 905 225 32~8 720 0112 middot-~ -(

~

JI middot (_

1 9lJ 230 328 721 C1)91r ( 915 235 32S 730 010ai ltO 240 327 735 C1J l J 925 245 32 1 7l5 () 10

(-1 bullbullbullbullbullbull NO DATA TAKf~4 ---- OATamp DISCAPO~G 1 OUESTin~ABLE CATA

~ l ~

t ~

I

ii l iJ

124

AGC-219-5 S02 SOC RH GLASS CHABER 976 AUG 17

AOO 710 MIN TO ELAPSD TIMeuro

CLCCt ELIIPSED TSl Rl HU~ soz TIME TIME IHlN) (DEG Cl lampI IP~l

930 250 3~$ 740 0Cl3 ( 935 255 32 7 740 Q)4

940 260 bull 327 110 O 04 945 265 32 8 741) o leamp

( 950 270 32 7 735 C108 955 275 na -middot 730 o 105

1000 280 32 7 730 0106

~-_CAT AbullDISCAROEO -middot- _1 QUSTOIIIABLE OATA

(

(

C

(

--middot-middot----middot ----middot--middot--middot------ -------(

--~-----------middot-----------------middot-middot------------ ---middotmiddot-------middotmiddot------middotmiddot----bull-bull------ -------------_______ ________ ----

-middot-middot - ___ ______________________________---------middot---middot------------

-- -middotmiddotmiddotmiddotmiddot---middot-----------middot---middot---middot--middot--middot-middot--------middot-middot ------middot middot-middot------middot ---- --middot

125

( I

rmiddot

l i

j

j J

j )

j j AGC-2~0-1 S02-03 PROPENE middot GLASS CnA18ER

1lt176 ~UG 19

bullj OA~K

S02 AND FC-12 INJfCTEO AT 1115 OZONE ADDED AT 1149 PRCPENE AT 1155 BRADY 1296 CALIBRATIJN lS7b JULY 16

CLCCK EtiPSED ~ZCfrac34E TSl ~~L HU~ S~2 P~CPfN lF lMEl~Nl (PPlt) lEG C) 11) (PPI-IJ (igtiI)

1200 o o~4 327 41 0 0363 1014 120 5 5 06)6 328 410 0344 middot 1211 11 0557 12s 410 middot~ $f r~middot 3t1216 16 0511 328 10 0318 0 BCl 1221 21 0 4 74 32 7 4 I 0 0304 0cent3-ii

1226 21 C4-+0 32 7 410 02l7 (q~cent-0(I

12 30 30 o 40 328 4ltJ 0291 0 (83 135 35 003 32 7 410 0283 ~4 1240 40 c~11 3 8 410 0 bull 776 1)lcent1 ltlaquo 1245 45 C bull 3i2 328 41C 0211 0~9J 1250 so o 335 328 410 026( deg6 12 15 55 0 318 330 405 0206 bullii t~ 1300 oO D3J3 no 405 0260 0522

C l 3C 5 65 l2 56 32S 40S 0258 -c11ie 1310 7J 0 24 32s 405 0254 itbullit ---------------- middot-middot-middotmiddot- ------- 1315 75 C 251 na 405 czso bull1320 sc o 29 32 d 405 024S bulllilCe 132 5 65 0231 32a 405 0249 -------middotmiddotmiddotmiddot-middotmiddotmiddotmiddot-133l 91 C2~) 328 400 0247 043 1336 t C 22 32 8 400 0244 ~ tP+l l 01 o 213 3 S 40 bull0 0 22 ________ __________ bull -middot middotmiddotmiddotmiddotmiddot-middot-middot middot--middotmiddot-middotmiddotmiddot middot- -middotmiddotmiddot middotmiddot- -----middot--middot---middot1316 l C6 ozos 328 400 0238 JOcentht

C 1350 110 on0 328 400 0239 bullc 1355 115 0191 328 400 0239 gt~ middotmiddotmiddotmiddotmiddot- ___ ________ __ middotmiddot---middot- -middotmiddotmiddotmiddot-middot ___ ----- ------ middot--1400 120 o ta6 33 omiddot- middotmiddot 395 o23i o 3 76

( 1405 125 C178 32amp 39S 0236 1410 130 D I 76___ 32bull 8 39 bull 5 02~---U bullbull --bullbullbull---bull -bull-bullbullbullbullbulln___ bull -bullbullbullbullbull bullbull bull---bull---bull-bull bull-bull--bullbull -bull-i415 135 0 lb6 326 395 0231 tlllllc bullitbull 140 140 o l SI 32 8 395 0232 cu~ Ji 142 5 145 0 159 32 bull 8 395 0230 16CC- --- ---middot-middot -middotmiddot __ --1430 150 I 151 32 S 3c5 0230 0336

( 1435 155 0147 33C 39 5 C226 (laquo 1440 160 C bull142 328 395 0225 gtccent( _____ middot-bullmiddot--middot ___ middotmiddot-middot--middot-middotmiddotmiddot-middot--- middotmiddotmiddotmiddot---middot-1445 165 J 1 39 331) 395 0225 ~ ( 14Sl 171 0 134 328 3-i5 C223 1456 1 76 012 middot 32 8 3) 5 0223 ~b 1501 181 0 0 I 21 328 3lt bull) 0222 0311 1506 l 56 o 122 32a 39) 0225 ctcr 1510 l SO c122 330 390 0221 bull~ _middot middotmiddot-151~ lltS Cld 32B 390 0221 I~ 150 2 co 0115 3ZR 390 0220 tTt 1525 2 cs C I lO 328 3SO 0220 bull15~0 210 C 11] 330 390 0221 0289

( 1535 21s C l middot~) ~20 390 0216 +rrmiddot 1540 220 tt~ 12Y 390 016 XlC-$1(1

1545 zc~ (lt(I~ 328 3()0 015 Cr4Ccent

1550 23-Cmiddot bull fl 328 39C o 715 tCit q

15~5 235 330 39 0 0215 lCi9bullbull 1(cot

160() 4C ~l)l-fl 130 390 o 13 0274 161)5 2 4 ~- _ bull C1~ ~ 328 390 0211 (rj

t1ilI ~~G DA Tf Ttt Li ---- DAT A Ol~rA~fJEO 7 OU Sr Pit tll I OIITt

126

r

middot1

AGC-220-2 $02-03 PROPENE GLASS CHAMBER 1976 AUG 19

t (

CLCCK ELAPSED ozmiddot-E TSl REL rlUI S02 PPCP EtliE TIME TME I Mll l I PPI J (DEG Cl 11 I DP-1 l I PPFgtI

(

1611 251 0085 3o 3t5 o 21-4 ~~lJltf ( 1616 256 C090 328 385 0211 middotmiddotmiddot 1621 261 0085 33o 3S5 c 211 (ercent

1626 261 QCd3 330 33 5 C208 = ( 1630 270 ocn 33o 5 0209 0254 1635 275 OCdl 330 35 0208 ~ 1640 280 0078 33 O 335 D209 bull~tbullitt

( 1645 285 0011 33l 3amp 5 0205 bullcentt41A

1650 290 0076 330 3B5 0 2J5 bulltcbull 1655 2cs 0076 330 385 0206 middot~

C 1700 300 (1071 33a o5 C205 024S

NO DATA TAKEN ---- DATA DSCARDO QUEST ON ABLE CATA ( middot-- -----middot-middot-middotbull ----- bull - middot-- -

(_

C

C

(

(

(

(

r 127 I

AGC--1 502-03 GLAaS (HAliH 1976 IIUC 20

DAIK BRADY 1296 C~LIBRAT[O~ 1976 JULY 16 ril NE WAS INJECTED AT 0933

CUXK fl ~rsrn Ol(lr lS l il El HUbullI smiddot 2 l I MF TJbullE ( NI ( r1) lCEG C) ()l ( PP I

I

845 o oc 32 7 440 0379 850 5 oo 330 435 C360 855 10 oo 330 435 C377 900 15 oc 331 435 C376 905 20 oo 33o 435 c J 76 110 25 oo 33Q 43 5 C370 915 30 oo J3l 430 0370 920 35 oc 330 430 0369 925 40 oo 33l 430 03amp9 930 4) oo 330 430 036 935 5C o~gtt2 324 425 0360 940 55 0576 330 425 035$ 946 61 0572 330 42 5 03~7 951 66 o 5 7 330 425 03~S 956 71 0569 33p 425 0352

1000 75 0567 330 425 o 3$2 1005 80 o 567- 330 425 0349 1010 e5middot 0562 30 425 C349 1015 ltO Cmiddot 551 330 420 C 34 7 1020 95 0557 330 42 0 a 34 7 1025 1 co 0554 33 l 420 0344 1030 105 o 552 330 420 c 34 1035 110 0552 33Q 42C o 342 1040 115 middot 550 330 420 o 34) 1045 120 0545 330 420 0342 1050 125 o 542 33l 420 middotO 340 1055 130 o 542 33 I 415 o 30 1100 135 o 540 331 4 l 5 C340 1106 141 0537 330 41~5 0336 1111 146 0537 33I 415 0335 1116 151 0532 330 415 0333 1120 155 o 5 32 33l il 5 035 1125 160 0530 33l 415 o 333 1130 165 C530 331 410 0332 1135 170 0528 330 410 033 1140 175 0528 330 41 () 0330 1145 1eo 0523 330 410 0 bull 325II

r 1150 185 0520 330 410 o 326

1155 190 05) 330 410 0325 1200 195 0515 130 41 0 0321 120~ 200 c~1e 311 4()5 034 1210 205 o13 330 45 O 32 l

ft 1215 2 LO I) 511 330 405 0311 1220 21 s f~ ec gtlC 33 I 405 c20~

i_ 1226 221 0503 330 405 0319 1231 226 osoa 331 40~ 0 bull 319

~ 1l J ii

1236 23 05ll l30 405 0119 1240 235 OiOl 330 40S 0318 1215 240 051)1 l3 o 4GO o~1s

f Ij

1250 24 04H1 BO 400 0 314~ I

middotbullbullyen ll() r11u TKEI DATA or ~c11ourc iIJl l)NeLE DATA f

f

~-

~ 1

f -~ 1l 1

~t 1 128 l

IJ 1

~-

1 1

bull

t-~ I

lIT 1 l

middot(I

11

AGC-221~2 S02-03 GLASS CHlMSER 1976 AUG 20

t J

middot

t

rr

a ~

bullmiddot ~

(

--1255 --middot- 250middot 049smiddotmiddotmiddotmiddotmiddot- 330 40omiddot---middotomiddot~jfi middot-middotmiddot-middotmiddot--------middot----middotmiddotmiddot-middot---~middot-middot--middotmiddot- middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

i l3b0 255 0493 331 40C 0313 ~ 1 1305 26J q 493 33 o 40 O C_309_____ middotmiddotmiddotmiddot--middot-middotmiddot-middotmiddotmiddotmiddot--middotmiddotmiddotmiddot------middotmiddot--middot -middotbull-middotmiddot-middotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot middotmiddotmiddot--middot-middot-

1310 265 o411 n 39s o3oa middot C 1315 270 0491 332 395 C308

1320 275 0489 331 39S C310 - --bullmiddot-middotmiddot- middotmiddot--bull-middotmiddot middotmiddotmiddot-middot-middotmiddot- _ middot--- -middotmiddotmiddot bull-middot

a tlmiddot

)

13zs-middotmiddotmiddotmiddot2ao~middotmiddotmiddot-omiddot4a9 33middoti--middotmiddotmiddot-ji~cmiddot middotmiddot 0309 C 1330 285 04114 332 39C 0307

1335 290 0484 332 39C 0308----middot13o middotmiddot 29s middotmiddotmiddotmiddotmiddot0middot4s1middotmiddot middot ir~middotxmiddotmiddot -middot59 c 0~middot3ci4 --middot bull--middot------ - middot--middot--------middotmiddot-middotbullmiddotmiddotbullmiddotmiddot- ---middotmiddotmiddotmiddot-----middotmiddotmiddot -C 1346 301- 0481 332 385 0303

1351 306 0479 33l 39C 0~304

H c

1356 middotmiddotmiddot311 middotmiddotmiddotmiddotmiddot-0middot~middot419middotmiddot middotbull middotmiddot33~1 39 omiddot o 303 1400 315 o476 33t 390 o302 14C5 320 C476 33l 390 0299

-1410middotmiddot -- 35 middoto474 33l 390 0298 1415 330 Q474 33l 385 0298 1420 335 0471 33l 385 o296

a i425 middotbullmiddot-340- 0~469middotmiddotmiddot 33 385 0294

1430 345 0457 332 385 0296 i

f J

ffi C ~

1[ C 1middot11

lf~middot i$~ C

(

(

(

(

(

129

i I i

-

j i iI

l j

l i i 1

ampGC-222-1 SJ2-N X-SURR-U GCASS CHAll~fi 1976 AUG H

O~RK CO FACTOR lq122 eR~OV 129~ 21 ~l ~ox INJECTED AT 0920 HJURS AT T=o ~c~-METH~~E ~ bull 1740 PSC MTHAN~ bull 32CO PPB

CLJClo ELAPSED 0ONE CJ TSl ctEL HUll SmiddotZ ---middotmiddotmiddotun TlM~(M1-ifmiddotmiddot-PPM)middot--(p y ID~G Cl - u IPP~I

q4~- middot-middotmiddot-middotomiddot oo 53 n2 465 o--j~ middot-------middot--middotmiddot-middot---------950 5 oo 56j 33l 465 034~ 955 10 0 002 5 65 n l 46 5 0344

1000 15 oo 561 HO 465 0344 ~ 1005 20 oo 560 ]30 465 0340

1010 25 bullbullmiddotbull bullbullbullbullbullbull bullbull~middotbullmiddot bullbullbullmiddotmiddot middot~middot~bullmiddot------bullri1s 30 oo middot 563 33o 465 o1Ja 1020 35 oo 564 330 465 0)38 1025 40 oo 5ss 330 465 0337 middot----103) 45 o bull i 556 330 4amp5 o333 1035 so oo 5-~6 130 465 0335 1040 55 00 556 330 460 0332______ -----middot---middotmiddotmiddot- --------------middot i 1045 60 00 551 330 4bO 0332 1050 65 OJ 552 330 4bO 0333 1055 70 oo 54il 330 460 0329_---------------------1100 75 co 548 330 455 0329 1105 so oo 548 330 455 Q327 1110 85 00 547 33l 455 03_6_______ middot-----middot--middot---- ------middotmiddotmiddot-middot 1115 90 OO 550 33l 455 Ollb 1120 S5 00 548 33l 455 0325 1125 lCO OO 55 33l 455 0324~------------------------(130 ____ 105-middot-middotmiddoto002__ 542-middot 330 -- 45o 0322 1135 110 oo 540 330 450 0319 1140 115 0002 542 330 450 0320---1145 middot -middot--120 0002 5ia 33o___45o omiddot319____________ middot------bullmiddot--middot 1150 125 oo 540 330 middot 450 0318 1151 0 o 541 330 45 0 03_1_8_________________________131

1200 135 OC 532 330 45C 0314 1205 140 0010 539 330 450 0311 1210 145 oo 535 330 450 0314 1215 15bull) oo 534 328 450 0313 1220 155 00 533 330 445 0310 122s 100 oo 534 33o 445 0313 1230 165bull 00 52b 330 445- 0313 1235 170 oo 531 330 445 0310

1240 175 00 53()___ 332 44C 0 0_3C________________________middot-middotmiddot-middotmiddotmiddotmiddot--middotmiddotmiddot-middotmiddotmiddotmiddotbullmiddot-middot--middot----- -middotmiddotmiddotmiddot--1245 180 00 526 33 l 440 0303 1250 1s5 oo sza 332 44c oJn 1255 190middot oo 529 332 435 0304~--~- -----------middotmiddotmiddotmiddot-----middot-----------1300 195 oo sn n2 435 aJes 1305 200 OO 52b ]32 435 03l4 1310 205 oo 524 332 435 0304 1315 210 oc-62 s24___ -~3i -middot--middot43s o302middotmiddot--middot------ middot- middot ----------------~-- -1370 215 00 523 332 435 0300 1325 220 oo 5 lil 332 43c ono 1330 225middot middot-oo middotmiddotmiddot-middot--s -19middot --middot~j~z--middot3if-middot 0300 ----middot--middotmiddot----middotmiddotmiddotmiddotmiddot-middot middot-- -middot--middotmiddot -----middot

r BH 230 oo 519 33l 43 G 03iO 1341 236 oon 5 IIgt 33 1 -3 0 in1

1345 240 oo 5 15 H l 430 J297 1350 245 oo 5 13 3l2 43C 01~

bullbullbullbullbullbull NO nTA TAKE~ ---- 0lTA 01 SCAPgtFl

130

AGC-222 2 S02-NOlt-SbulljRR-U CLASS CHAMBER 1976 AUG __ 24

0

----------middotmiddot-----

-- 1355 ____ 250middot-middotoo s13 332 41c 02 middot -----middotmiddotmiddot-------------( 1400 255 oo 5lZ 332 43C 0294

___1405__ 260 oo 5 ll __ H2__ 3t3C 0_293________ 1410 265 oo 512 330 43= 0291

1415 270 00 50ltgt 330 430 02ll 120 215 co 501 32s 43o o2bulln ___________________ ---- -------middot -middot--1425 280 00 503 328 43C 0211

C 430 285 oo 578 328 425 0291 143 s 290 o o s 04 32 s 42 5 o z_a_________________________--_

--To---i9middots oo 504--fj-middoto- 1t25 middoto-zag C l4t5 300 CO 502 330 425 0283

1450 305 oo 5oz 33o 425 ozss___________________________ lt55 310 00 497 330 420 0283

middot 1500 315 OO 499 330 _42C 0285 1505 320 00 496 330 42C 0285----------------

--Tsio 325 o-o---soo 33o 4z-o--ozas 1515 330 00 501 330 42C 0285 1520 335 0002 493 33o 415 o2a______

----1526___341 oomiddot---4~-33l 415 0281 1530 345 oo 493 334 415 0280

__J2~1__3j____~g_ 492 332 415 Q__1_80_________________________ 1540 355 0002 491 33t 415 0273 1545 360 0002 492 330 415 0280 1550 365 G0 4 93 32 8 41 5 0276--------------------------1555 370 oo 489 328 415 0276

C 1600 375 00 489 328 415 0275 1605 380 o o 4 88 33 o 41 s o__2_1-=1--------------------------c-------H io 3a~-middot002 490--ffa 410 f21-

( 1615 390 0002 483 330 410 0212 1620 3c5 oo 487 330 410 0211_______________ 1625 400 co 481 330 410 0274

C 1630 405 0002 481 330 410 0270 1635 410 0~002 487 330 410 027-=)---------------------------1640 415 oo 480 330 405 0270

( 1645 420 0002 4i5 330 4C5 0269 1650 425 0002 481 330 405 0210 ---- -----middot-- ----middotmiddot-middotmiddotmiddot -------------------1655 430 00 463 330 405 026b 1700 435- oo 484 330 405 0265

--~70115 ______ 440 _____ oo 482____330 405 _026_6_____ 446 oo 482 331 405 0266

1715 450 oo 4 77 332 40c o2u 1720 455 oo 4 74 332 40C 02E4 1125 460middot--middotmiddotoo middot 479 n2 40c 0265

1bull 1730 465 00 479 332 40C 02(5 1735 470 00 480 33l 400 02t4_____

--f140 475 co 4 75 n2 4oc 020

middotmiddot-middotmiddotmiddotmiddotmiddot-middotmiddotmiddotmiddot-middotmiddot ----middot-------middotmiddot---middot-------------middotmiddot---------middot-middot--middot--middotmiddot---middot------ --middot----middotmiddot

----------------C

bullbullbullbullbullbull NO OITA TAKE~ _1 QU~STlnNIHL~_CATA

r

131

0 AGC-Zll-3 smiddotczNOX-SUR~u CLASS CHAISER 1976_ AUG 24 -middot-middot middotmiddotmiddot-middot -middot

_CLOCI( _ELASEC ___ OZCNE_ CO ______T_Sl REL HU _ SC2 TlHE TIMEl~INJ IPPI (PPMI (DEG Cl (II IPPMI

-- 1805 -- 500 -- oo --2--331 395 02cl ( 1s10 so oo 472 332 395 ozs6

1815 middot 510 oo 4 70 339 395 0259___________________~----1820- 515 omiddotc middot 69 34 1 39 5 0-~lsi

( 1825 520 oo 469 34l 3gt5 0256 ___1830______ 525i __oo___46S__ 34t t9_5___ o2ss _________________________

1835 530 oo 467 34l 395 0256 ( 1840 535 oo 466 342 395 0254

1845 540 oo 469 342 3S5 0254_________________________ --irngt----5s oo 461 342 iis_____o--fsi

( 1856 551 oo 466 343 395 0255 1900 555 oc 4-oo 341 395 o254~---------1905 560 oo 470 34l 395 0254 1910 565 oo 465 341 395 0252 l 915 570 0 0 4 51 34 bull 1 39bull=5__0ebullc2-5-2__________________________ 1920 575 oo 464 341 395 0249 1925 580 oo 458 34 l 390 0 249

1930 585 oo 45a 341 39o o241____~------------~-------1935 590 oo 465 341 395 0249 1940 595bull middot oo 460 339 390 0~245 1945 600 oo 4ss 339 390 o~2~45__________________________

--C95(---6C5~--o~o 458 34l 39~0middotmiddot-0247 1955 610 oo 461 338 390 0244 2000 615 oo 460 338 390 0-2~4~5_____________________-----

2005 620 00 456 339 39C 0244 ( 2010 625 oo 454 339 390 0245

201 s 630 o 002 4 59 33 9 39 c__o-_=2_4J--------------------------2020 635 00 456 339 39C C245

( 2025 640 0002 453 339 390 0241 2030 645 middot oo 455 339 39o 0241 2015______ 650 ----middoto~--middotmiddot--453 - 33 9middot-middotmiddot 39omiddot o239=------------

C 2041 656 0002 459 339 390 0239 2045 660 0002 459 336 3B5 0238

--2050 - - - 665 -0002 45z -i3~B--3as middot 0231middot-----------( 2055 670 oo 451 339 3ii5 0237

2100 675 oo 451 339 385 0237--2105 680 --oo 44smiddot-----33-9---middot3s-smiddot--o237-- -------middotmiddot-middot--------- - -----

C 2110 685 oo 453 339 365 023 2115 6~o co 44a 339 3as o23~6___ 2120 695 oo 44) 33C 365 0236 ----middot----middotmiddot----

( 2125 700 oo 455 339 335 0232 2130 7os _____oo ______449 ______33 bull ____ 3-a 5 ____ 02 J4_____________________ middot------middotmiddot-----

bullbullbullbullbullbull NO DATA TA~EN ---- DATA DISCARDED 1 0UcSTIONASLE DATA

--------middot-middotmiddot---- middot--middot--middot---------middotmiddotmiddot-middotmiddotmiddot middot-middotmiddotmiddot------ middotmiddot- _________ middot------

132

l [

f

l i

t ~ C- 2 2 -middot 2 - bullj tmiddot- $ VXA- _ Gl~SS C 1~gt ti 1976 H Z -h

lC~ 710 ~IN TO ELAPSfC TIM~

CtCCk tlh~~~e middot_lC1Ji ~l T P f ll ~ Pi l p bull n I ) ( E Cl

middot13s middotc oo middotmiddot s i9 middot 21~0 JQ bull 51 3 C 2145 Le 1c bull 1~- J_a 2 l ~C cc 4 f 21~5 oo ~ ~ ~I~

22middot)0 2 CG 3 middotn0imiddot- middot3middot1 j ~~3 -cc

35 ~c 3 ~- 9 i) C t 3 l~

bc ~ bull ll middot3 - ( 222c 5 l ( c bull 4 2230 55 bullbullbull 1 ~ ~1 2235 middotc middotc ~ QC ~ ~ 1 I 224G C 5 C itbull 3 ~ 7 2~ 5 70 oc ~ 3 I 3L 8

2~5 1smiddotmiddotmiddot oc middotbullbull-i -~ 7 215 FC oc 230C CS 33 S 205 sc 3i 5 231C ~5 CO 440 ~3~4 2315 lCQ 0c____ l)~-__ i~middotzc------imiddotsmiddot~ - u c ibull ~s 2325 l l O oc ~ 4C

2BC ~-9 _____ 41 _ 235 u 3(61

2340 liS bull C C t 34 235 19 Cc middotmiddot------~middot])2350 1 5 bull 0 C bull 3 3 1

2355 l-8bull cc i3lt 33 1 0 l~ ov 43 )31

--middot-s middot-- iSv oomiddot ~31 331 ll 15 6 Oc ~-27 3i~C

C _)-(1 20 -middot iljmiddot oc I 2 2 d 25 17C J i2 32 B 30 _J 1 5 ___9 c_ ~7 G35middot-- 24 3 8 4C 125 oc bull 2i 3225 lCbull __QC 4 2~ - bull n 50 15 middot 3l55 2c i 2 5

l co_ _2 ~ ~21 10 ~ 21c oc bull z I lt1 11 J 21 r bull 4 bull ~middot 6 u______ -middotmiddot_ac o~ _____ it bull ( 120 2~ o~ ~2

15 130 j

middot I 7 tbull 1 J t 1

- --- - 1 1 r -

~-1 1~- SC_ l P)~)

c ~ ~7middot

~3T middotis4middotmiddotmiddot

3 bull 3 ~ ~

3 ~$ )

)

J8

3 J middot

3-3shyJS~ -

3G 3BJ i $

Id i c 3 j

3 3 5

3SC 3 middot-~c bull C _ bull C 3 (~ 3j imiddotbull 3

~ r middot i c

0220 1) 2 H ) bull ( 7

c~J ~ _ 7 G -- 0 u 2 2 gt J22o J2D imiddot

G bull (2 ) 2 ~2 c21 -21 bull 2 l cn Cl2t C 22l middot~ 2 3 7 2 G L t(t ( 2 l middot1 C1219 G~O 16 ) bull 216 0 216 cdmiddot i) bull 15 ~214 ) bull2 t 7 C ll 3 ) bull 13 bull 2l 1 )2 h

( 11 G bull 2 01

133

T

AGC-2l-S SC2-1x~~ltR~-LJ GUSS CHMmiddotWE

J l176 AJG l~ l

ACU 71C MIN 10 ELArsro Il~E

CLrCK EL~PStC CZ~NE cc 1 S l f L i Lbull S1 2 THit rmiddoti ME ( lbulll jmiddotJ ( po11 middot1 ppl(J iCtf~ (~I lPr-q

1 s middot-2smiddotc- 00 middot 4-~ middot 3middot C2CJ 150 255 U C 1-t~l ~L0 155 261 cc 421 32 3 - 200 26~ 4 b 3 _ s --~ l 205CbullC

20 5 2 7 C li bull ~ 4 bull t 2 3 ~~ i C i ~J bull C ~10 ~J_ ObullQ middotmiddot-bull~ rt ) 2bull~2 Jis-middotmiddot 2euro0 0Lo 1ll ~~~bull J 2(

220 2~middot oo 119 j 02c 225 2S0 0 bull1 Ui 3 3 bull 2C 2H i9smiddot cbullmiddotmiddot 4middot11 - l c) 235 JC C~ 46 ]2~~ ~- ( bull r G ~

2o 305 cc 1 _2l 3 020 middotmiddot 2smiddot------ middot 31c oo middot4middot2t 12 bull i 2~-

250 315 CO 416 3l5 C2Qj 255 32J o 4ll ____1~ 3S 5 lbull 2fJ2 3JO 35 OC 407 I i L bull 02 3C5 330 CC 414 3l~3 3S J l bull 2Cmiddot 310 33 cc 4 1J 31i 3 I~ 5 CtCl 31s middot30 cmiddotc middot--middotmiddotmiddot13 313 3S C Si) 20 345 o~ 414 31J 3middot ~) C2C) 325 350 oc 4Js 313 3 0196

330 3jJ -middotcc 410 31i 3( 5 J 14 7 335 360 uC 410 3l2 3 s gt i 1 S6 341 366 00 4C4 312 3 s_ C l_Y 7 3~5 370 GC 4d 3l2 3 - bull s ) 19 I 350 375 oo -t)8 312 S bull 3 L 1 e 355 38C OJ 401 312 _y~ C I l~ 400 3i~ oc middot 4~2 312 3S5 C195 ADS 390 OC 4J 311 ClSi

______41 c ______ ys______ n ~----- ____4c4 _______J_1 3 middots 5 01lt7 415 -tCO CQ 117 311 35 0 i 2 420 4C5 OC 4C 311 ymiddot J] 4 2 5 __________ 4 lO 0 ~ 4 ~_ -~ l I C I~ 43C 415 0bullJ 3S9 31 l 3 bull 5 (ts) 435 420 CC 47 JiI 3 middot - bull ls l

____40 4 __c_ __________ __2___ 31bull i - bull 8~ 445 430 )C 3S3 311 3 middot v1c1middot1 450 435 O~ 3middot3 31 l 3 middotbull n 1 c)

_4_)5 _____ 44~ 0 bull ~ It~_-) bull J 3 middot ~ bull 1 d 500 445 oo 4tl 30c 3 middot C lk ~cs 45G o ~ ~o zc~ 3~ 5 u te 510 1 j j 1 8 middot 55 460 0( 3 C middot ] ) 1_ s2O 405 0c 3 middot I 30 C j gt C l 8

52igt_____~1l __ ) c__________ i bull ~J___j middotmiddot-middotmiddotmiddot- -~ Gbull d J l 7 530 475 Ot 4l 3Ci bull S

4eo J

_middot 3-bull I 3 -d jJ -~ V I H

134

I J

A~C-2l2-6 5ji-NOK~S0KR-U GLASS Cf_cofJ 1976 AUG 25

ADO 710 MIN TO ELAPSED TIME

CLCCK EL1~SED middotrbull C i TS l t rl _ ~ t D c ~ ) (fI)TlH THfPbullIH I )G Cl l-l

55 500 oo 3C 7 I) 5 ) bull ~4 600 507i 3 93 3middot) I 3 middot) ~ J bullbull middot)2

605 51() ) bull 9~ 30 610 15 3 1S 3J 7 r~ ) ~ i 615 520 00 396 30 7 n5 -) bull l 6 620 ~) 5 ~ 0 bull]7 3( 7 -) ~

625 53C t- ~ 0 5gt~2 3iJ 7 ~ gt 630 5~5 oc 69 3~5 )13030 65 5) )0 3 - 3) 7 _ i ~ bull ~l

640 middoto os2-middot - 3 Ji o 7 j ~S -Jmiddot1middot7d 5 1t5 i 645 5~0 oo 391 305 ~ J131middot 650 555 oo ~dd 3G5

655 middotmiddotillf Cmiddot o 3 9J io ~ 7JO scs co 3 sc 3C 705 570 o ---middot-middotmiddotmiddot-nrmiddot middot - -- cmiddot o middot 715 seo Ii GJ2 middot1 middot 5 J l 76

57c 0 s 720 555 C 31 5 ol v J l 73

-- -725 sso o u ~ rmiddot-middot-- 3bull) 5 ~ ( -middot----y~rrr----- middot middotmiddot 730 gtlt3 o Cl2 lt 3C 39G J-l 71

735 6C-O oJn 382 3C5 ~--J bullJ i17o 746 - -ij~ c-002 3 37 3middott1 3middotmiddot~middotT- )itb

( 745 ~10 Omiddot) ll 30~ 3 ~ J Jl3 7$0 615 CJ 3 H l 3J I ------- -75 ~ - middot-- 62 --- o Jo2 ------middot Jaf -il (

( 800 625 Ci J 3 8 l 3 l 3 3 C ]72 805 6~~ G 3 3-t Higt 3 7 C J l 72 810 i 3 5 i iJ ] 1 3middot ) middotmiddotmiddotmiddot middotmiddot1 fj-middotmiddot --

( P15 610 ~ 3) J) - bull 73 20 6t _ c2 32 J bull 1 7 ~2 s 6) 0 bullbull ) i l l 3d l 3 ~I bullO ~ J (1 i

( 830 65 oo 3 l~6 3t3 3- 5 ~j -i1 i)

835 UC vo 3 77 3) 3 i bull 1 7) middota4Cl- bl C bull ) 3 31) 32 middot1- ) s -~ 1C)

a4 s 6n 76 middot 3 i) 3middot ) )ll ao o7 (i0 j gri 32 7 34 ~ a19

middotmiddotmiddotas1 middot---middot middoti8i omiddotmiddoto j o middotmiddotmiddot32ibull ~ t-~--cmiddot middotmiddot i ~middotmiddot 900 6 0 ) 7) ~ 2 l ~ 1- 7 ltJS 6Jj C 0 3 __bull -~ 32 bull 1 ~

-910 ftJ 00 L ~-~bulli

(

f 135

I

r

j I

AGC-222-l S(12-N]~1-St 11~-U GLASS (bull-Ufis 197( Au 25

ADO 710 HIN TO ELAPSEC TIME

CLOC~ fLlr5~J oz~-J~ CJ _TSl P~l 1U-~ _5J2 TIMf TPHlNJ (iPMJ (fgtbull-1 [IJEG Cl [) crPl

915 92~middot

7~ Jmiddot iCS

0 0 OOJ2

- bull lbull) 377

32 i 32

3 C~ --loz- iimiddot1-V O c 169

_925 7 ) 0 o 3 79 37 0 l c- 93) 715 00 3 79 32 7 0 l 6 935 7~C C0 n 32 7 0 l 64 940

i45 75 )

0) 0 0

~ 7_7 3 79

32 bull 8 3 3

middot3 ~ 33

0 Jc~ C lomiddotbull

75 oo 3 7l 32 raquo 330 O l l2 955 7~middotJ GO 3 79 32 a 33 0 0 16-t

middot1000 71 omiddoto bull middot1 33~ 3L 0 o 162 lmiddotl05 7middotC- oo 3 7S 3 bull3 33D O l 62 1010 1015

75 f-Jmiddot

uo 0 o

3 7o 3 7z

3) ~ 3) J

33 c 325

0 l 61 O l cD

1020 7c5 0(1 3 73 33 ltI 325 OHl 1025

-middot-1030 --770 7i5

oomiddotcomiddot

375 3middot middot1a

~-~- i 33 e

325 v _1593_i_-middot 0 bull I Sc 1035 co CG02 3 7) 3] ~ 32 ~ bull l 5j 1041 1045

7 7 0middot~

OD ( o 37S middot3middot~ f

13~ 33 7

3l~middot-z~middot ~- middotmiddotmiddot

Vlt~l c middot 1middot~~8

1050 7lt5 0 bull) 3 71gt 33 7 325 v158 1055 Smiddotjbull oo 3 75 336 3 2 5_ gt-t~-- _

~UES1l~NA8LE DAlA

136

l

Jbull j

---ACC-2~2-emiddotmiddot~c2-NC~-sugttl-1J _______________ --- -middot GLASS CHA-l~EQ 1middot91J liJC 25

-middott tc1-1rsmiddot O- 1100 -lH1STY 1Jf middotmiddot----- bullmiddot-middot -- --middotmiddotmiddotmiddot-- middotmiddotmiddotmiddot------middot-middot-middotmiddot middot- ---- -middotmiddotmiddot -- - bull middot- middot-------middot--middot- -middot co FACTuR l91Z e~ACY 1~1 TECO 14D ~IS ON TH CHl~OE~ FRO~ 11J5 TO 1111 1200 TO l2J5 1~00 TO 1305 1400

----middotmiddotmiddotro-1405middot lgtCJ TC 15J5 11 l01610 ANl lb55 TO 11Cv middotbullbullmiddot-bullmiddotmiddotmiddot- middot------middotmiddotmiddot TECO 140 s~raquoPLlG UTE 112a ILMIN PAN NOT ~EiSURED ~02 AND N~a VALUES NDT C0ARECTEO

---ATT=l5 MP NOS--ffVIE i-C =middotmiddot1130middot PP3C middotmiddot ~=TH~~E middotmiddot-middot29oc middotpamiddotmiddot ------ middot- ---middot-middotmiddotmiddot-middotmiddotmiddotmiddot---middot---middot-middotmiddotmiddotmiddotmiddotmiddot

CLQCK EUSED OZC~ J iJ2-P~N bull1-P~r ca TSl ~El llH Sl2 -T1~-e--1Mtnbull1Nrmiddotmiddotmiddotmiddotr11-r- - HbullJfr-middot middotmiddotr~- --- nirr-TPgt)n- middottoEG middotmiddotci--- ni middotmiddot-middotmiddot middot 1gtsi-1-middot--------------- ------- middotmiddotmiddot----

--middot-ruo c---rv----~i ~if----~----~-i---1middot-n-~1 o 32 lmiddot-middot -rrs 1105 5 OC27 ebullbullbullbull bullbullbullbullbull~ bullbullbullbull~bull l74 3Ja ~iO 0154 1110 10 oc54 a~3a csoa csJc 37bull 3~1 31s o153

---n 15 15middotmiddot--r-T~--t~bullJgtT--az-m------Ti-~-- bull 32 o middotmiddotoT~---------------l 12J 20 ~095 ~bullbullbull ~bullbullbullbullbull bullbullbullbull 373 34l 325 0149 1125 25 o11~ bullbullbullbull bull-bullbullbull H-u- 373 34l 35 014S middot

---rr3middot--middot-middot-middotmiddot3u---rzz-middotnH-----ymiddoti--nmiddotmiddot~---middot-rn-----r--n-smiddot-or~-----( 113s 35 0132 bullbullbullbullbullbull bullbullbullbullbullbull bull~bullbullbullbull 37ti 34l 325 014S

1140 40 0142 bullbullbull--bullbull bullbullbullbullbullbull bullbullubull 373 34l 325 0147-middot----x-Ps- middot----middots--middot -middot middotmiddotJI-z---middot-~i- middot --middoteimiddotn -- flyen----middot- 3-middot--J z----7)___ middotefv-2 ( 11so middotsc 0164 bullbullbullbullbullbull bullbullbullbull~bull bullbullbullbullbullbull J73 343 320 0143

1155 55 0176 bullmiddot 37 334 31-5 014312CO 5u---n1-middotomiddot1gt~-n-nmiddotmiddotmiddotbull--middot_bullmiddot~amiddot-~--nmiddot~--5- --v-1~4-----1205 65 0138 0~21 44~ 0468 371 33 31S 0140 1210 70 0198 middotmiddotmiddot~middotmiddot middot~bull 373 3)5 31J 014012(5 15 20d omiddotn n ~-n- 36l 3~ I 31V--lr~~--------------1220 80 0211 middotmiddotbullbulltbull middotmiddot~middotmiddotmiddot 372 337 310 0138 1226 86 0225 bullbull~bullbullbull bullbullbullbullbull~ bullbullbullbullbullbull 371 ~3S 305 0138

---rz3middotcr----middot- u--middot-rz-zr--nmiddot~bull-bullmiddotbulln--middoti-1f 3 1r--TS-e--rcmiddot~5-middotmiddoto-r3-1235 95 C234 bullbullbullbullbullbull 373 33~ 305 0138 1240 100 0244 u- 3 74 33S 30S 013b_______________

--r-245 105 o~middotmiddotn-~n---~nbull 3lamp-33 l~o7no 12somiddot 110 o2s bullbullbull bullbull 3 10 339 3co 0131 1255 115 021gt bullbullbullbullbullbull bullbullbullbullbullbull bullbullbullbullbullbull 369 33 30C 0136

--ncHr----zu-----zb-middot--tmiddotbullmiddot~-----middotpoundn----i-nu 3 11 - 34 l 30-imiddotmiddot-r-rn~----- ---------~ ( 1305 125 0263 OQZO C370 C390 362 34l 29S 0134

1310 130 0286 366 343 -295 0133--n-rr--rn---rz-middotr~- bullbullbullu 31- 3--z 2s 0133_______________

( 1320 140 0303 bullbullbullbullbullbull 367 343 295 0131 1325 145 0313 bullbullmiddot 310 35~ 295 0132

-----nomiddot----5u----o---Jr~nmiddot-----$--bull bull bull 3cs-middotmiddot-3middot5~ro--onmiddot9~---( 133 s 155 0325 bullbullmiddot ~ 367 345 290 0129

1340 middot 160 0332 bull 370 35b 29() 0129 -------r-s---n-TlT---Thh Ohu hmiddot 3b9 356 29J---omiddot129_---------------

( 1350 170 0144 middotbull~~-middot $ 360 356 235 0129 135S 175 0352 bullbullbull~bullbull bullbull~bullbullbull 36amp 351 2a5 0129

-middot-middot1400middot--middot--1middotpound0middot-----0---i-srmiddotmiddotbull~-yen----middot-middot-r-bull ------y-fi~---7-S-t---za--s-- (fTzz----------------( 1405 185 03b2 OJZ5 C31C 0335 367 357 285 0127

1411 -Ill 0371 364 357 28l 0125--ras-15---middot 0376 ~Tlaquo middotmiddotmiddotmiddotmiddotmiddotmiddot-bull J64 middotmiddotmiddot351 2lt1s o--lZ5~-------------

( l420 zco o3a3 bullbullbullbullbull bullbullbullbullbull bullbullbullbullbullbull 36- 357 zao o1z3 1425 2C5 0-391 bullbullbull bullbullbullbullbullbull bull~ 36 358 250 0125

--middotmiddot-1130 middot-middot-middot2lo oJmiddotu--- --- bullbull middotbull~bullbullbullbull - 3sd--JJ - zaJ middotmiddotmiddot 0-125 ---------( 1435 215 04Jl bull bullbullbullbullbullbull 362 36G 28J 0122

1440 220 0410 middotbullbullabullbull bullbullbullbullbullbull 362 34~ zsJ 0122 middot 145 - 225_ o413- bullbullbullbull --- -middotbullbullbull 362-middotmiddot- ~~-c-middotzao middot 0122=-------------

-----middot-middot--------middot- middot-------------------------

--middotr-so 230 D42~ bullbullbullbullbullbull bullbullbullbullbullbull bullbullbull~bullbull 3~~ 35~ 1= o_120

middotmiddotmiddotmiddotbull middotmiddotbull~~-1455 23~ 042~ bullbullbullbullbull ~ 36t 35ry z1s C 12 I 1500 240 04Z7 bullbullbullbullbullbull bullbullbullbullbull~ bullbullbullbullbull 3bJ J~l 27) o liO

1505 middot middotmiddot-z smiddot-middotmiddotmiddotmiddotmiddotmiddot o 43-s middotmiddotmiddot middot-- middot fy-middot-il6 t -- o Ao ______ 1~ s~ middot l5 Z 7~ ~-- middot- c-11c1

OlJI~ C) ~c f l l() 41JJ Pgt~-tI-i2

OLGlE CJ G S C10 41~ 12 o middot~r1 ~~2-PA~ CC A~ ~rmiddotmiddott~21 Jbull bulli-1 middotpi-~-middotmiddotqN

137 )

_j

j

I ___~ -Irr-=rgt--~ fi -~pJ13 microc w--7 Fria---+ a-bull---middot--=-r ---rc=u- r ~~1-- r-=~l ~~ _ _ ~l~ ~~- _j =middot1 - --1 middot~----=---i ~-~

i 97 7 -- ~

~- bull -_bullbull _ -

-~ middot o- l ~ middot_ _ --c 5

-_

- ~ __ -i1---)

-bullmiddotJ _ deg _~Li--lt Cttf~middot -~J_J Tl Slr-Y~ --- cbull T[C-T~ - l c 7f t C i_ I---lt

l bull - ~ ~ --~ - - _ _-- ---

~i~ gt bull Tftf- iJbull-~_ jl ~~SiF= middot middot1F ~1 _1~-CLD_

SY~ l-~l1~ 24-5-f o --tY VJL c C ~-~PL[ PCRT

--~ __ _] 5 bull1 - ltmiddot_-_middotbull bull --~ ~---r_ r~ -t imiddot c1-~-middot rrc-i c---middot--u1 1Nr =ii - ~ L _ middot L ~ -bullbull bull bull bull l ~ middot~-l_~ st lmiddot ~ ~--t1 iC cbullmiddotbull-_fCT LEil

_-- - __middott_i middot-middot LAT r= ~ ~- T ) r middotmiddot-1 r-- ~ - _- ~ ~- ~ - bull i I 1J 1 middot- 1 ~ j_ t __~i~ r-lbull bullbullXtL-JC nt1

middot -1-bull Ci--1-r bull

_ bull ~ middoti ~ - i) rtJ rmiddot

_J 1rmiddott

1_() l t ~ ) )20

i -~ bull middotmiddotmiddot- ti0

i middot - ___ --~bullrJ

l 111 i 300_

lbull~ 36)

lbtt5 _420 _

l l bull 1t50

2J ~ ~j

63G lJ-i)

vv Cl lgt

n-9C

L~middot--~TICf~S iPPl-1

~-~~--~-~--

c bulln

i t~ -t -~

_middot bull ~

)l J) J

i 3 1 3-J

) l tJ imiddottJ

middot 7 H middot)

-pbullJO 3-JltJ)

11 ri~J )100

il 1-1 3110

ai

9= (( ~ ~ -laquoiry

)- ~ (I

-- bulllt~

yenyen~11

) bull )bull 1)

3gt0

--bull- l -gt 1

bull1 bull 7 il)

3 7 2 1 J

396 Ibullbull 3

1 2 l bull

39 bull -gt

ld d 310 fu l

3d 1t

70 ii 36ltJ nJ

-

( tic

-0~i

iu~

~-

raquoyen) ~

j_-4

i q

I- w

_ ~ I i-1

i ~ bullj J bull j

)_)

ur fj

iJ (bullmiddot1 -)

~ (~ ~ 6 _

l 2 v2 u

126 o t~

t ~ 6 ~ --)bull-1

ltbull ~ -lt

rt gtltljcent-C

~gtltO~

it-~_~ L-J bull 3 12 l

0 - ~middot- imiddot ~- ~ - _ =~ i 1t f 2 3lt -1 bull 451 ~2J 42l l 0 478 ~ ~Jf(l yengtiO ~ 3middotbull 5 t r bull~ ~ i-1 i8 bull U15 6 JJ bull l 356 o~3 fi o 9i5 (ltti v1qgti c-c lltoi1 -11 l

- l - loz-__

i bull bull 5

l ~~ bull - ~ 7

l j bull 3 3- )

lJ bull lt 1 l C

l -t 1 1t 3

14 I t2 bull

lmiddot J 41

1 frac14 3 1t3 0

14 l 423

l iS 46 amp

~ middot~ 45-S

s s

pound 1 5 9

~J ~ ~

- 7

11 flgt~bull-

1- 11

lG _ l bullJ

l l bull f ) 1t t

lbull1 q s~ 6

l J 7 5 2

l O o Jl

tG 5 Jl lt1

11 ~ q6

10 l 303

)9 296

1-)0 323

62 lB e

(I 2 loo

(1 l cl 0

~ -_ l bull) middot ~-

_ 0gt i 1

Jr

rmiddot1 ctmiddottf-

aigt_ti

lUO r - l

loll (11J

1( hlH

l57 (110

~

160l

15lt t l_t

917 )(J -

91 l _-_

d7 3 i

c ~ middotmiddot ~ bullf ~rgt_(

1 Ibullbull 1t 1

1til 103

r 1i 92 lt

- 7 l9 t

3l) H 1middot1 6

4 02 b0 1t

402 804

40 t al l

6lttgto(t

(clE

4 l u 937

4l - 85 3

n4 41gt8

LJd 41o

ijO

9

r -- -- J

i~ middot- --

j _i bull 7 a

bull middot1

r 5 _fj

0 j 2l

0 j

L bull Ob 2

)6

middotbull ) bull 5

2 bull CH J bull i

07 l il

05 t9

o bull l~

0 1 t

_ f - I

PP C tJ

bullJ ~ C j_ 6 )~ 3

L 2 bull 50 5

P2 487

124 ti 3

t 49 o

liS 5JO

12 I 50 8

t2 t9 a

I 2 8 51 4

Ui 31 t

75 ltgt9

76 30 bull

78 H l

------ - -L )-middot _HmiddotrmiddotL r-__7bull=

Vimiddot~~c i-c~

1Y1ffbull

-t 6 7 ~~ g)

4J _ iJ

ltf 3 tt l d

ttfl -2 It

1t6 2 nr

1) 1 l l

middot15 6 274

4 -3

266 tlt

276 16 1

2 7o ll6

160 2( tl

lvi f2

2i6

L-i~bull-L ~~_pound_-- -bull~

-1_ bullbull 1

-Cbullli-

3 7 i l 7

383 d j

1 7 ltl

30 I 2 7o

39 1J

3o7 77

383 72

358 7 _

362 12

35B 4 3

21 7

221 7 l

3_4

~bullyen-- ----bull middot ~-- ~--~-- ~-Ibull_-bull_middot-(~~centbull f f _bull-_-bull ~-~~ --=middot-_- -~-tI ~~--~ middota1rbullbull middot _r~ -lt~lt-bull -_~ - middotbull bulli--e- -~- _ middotmiddotlr---bull

rmiddot=1=- r-~=bull1 l--Jfil1middot--1 rur=-=i -f~w-_a1 ~ _r~- r--ra-c=~ ~ f-1-tliiilllllit ~~ ~~~j bull~~-r--

l-i77 ~~~ 21 --- J- -

) ~ ---

L~~ T9~ _~-~i-J ri~rt~

bullmiddot_

- bull~ ~ l~ 1 101s

Jj 104-=i

(J

115 lcO

l 2t5 1 ~HJ

1345 240

l bull -~ 5 300

l )It 5 360

l t4 5 lt20

17 5 45C

2Cl5 t30

lJ4S ltgtov

ell i omiddotc

middot---middotmiddot rtC _t c

) 0 J 1)

(__ _

C5 l ~j bull bull__

( - bullt-eL

__ ) ftc_

middot- -) 3 15 l

lt)_o j 3

87 o06

~-ii-lt

$igt~((

~~n ~t-gti

e diams U

Gt1

~-q ti 6 ~J3

--~ r-

p C middot_7c _3 l _

bull ~7 3 3_-J - 2f1f

3 i 6_ 753

3l 9 2j

(

laquo 30_ 4 4 1

2$ _5____ ~-~ ~middot (t~

22 3 degdnt

UC

I ~ix

~bull r12

ff4yen

2 r 9u ~middot -~-- -bull 1middot- ~ ---~i 2bullmiddotJ

bull I ~middot 21

bull 2ltZ -

29t 1bull1

_20 ~ ~ nti

268 1a1

2H Bl

298 ~ bulli J

2~3 2~1

ilC J IC

l 72 l 1

75 [

middotbull -

~

middot middot

i ~ (J

bull-~J

~-- 01

1~middot1 lle-1 10j

tlgt~~ gt 111 middot)_middot3-~~middotlc 6(J3 1t 1J 0middothmiddot~

middotLgt7~ li-J3 ltbull=-

middot7lt1o i-_middotJ ~-rt_

S04H bull - j((bull)bullt

tlt~o

-JJ6 )JQf 1cLJJ

ll703 1101

) 1164~ llbfJ

~oc - imiddottI 0~middot1

V _deg J-44 l--r-

rt1 J bull 1 2- ) 12iJJ

f-- i

0

~ -~ _- -K_---middot~-~- --(middotmiddot -middot -middot---=-middot-)~7-- l(~f-~~ _-~- ~~middotgtamp--~ ~ _-1--gt ~ ~--~~~---~bull middot--bullmiddott~~ ____ ~~ J-P~---yen-4middotbullbull--middotmiddot-middot

i UO bullt _ Od_ (middot JJ ~ c C ltgt lj (l bull- N

rmiddot -1middot - bull~ ) l

bullI

I) middotd (middotJ J -~ - ~ middot JI 4 ) 0

~ bullJ ~ Jbull ~ 1 r M

i- t---

I

1 I00 bull lt CC NN 0 -0

lt)1l

middot)

-~ - -300 NN middotbull Cmiddot ii NN S (1- O 0-- ~ r- -

I I

~- rmiddotcshy -1 NJ bull1---1-

J middotshy

ltbull 0 s- bull middotl _ _ middotc o

0 -- j r-I-j r-- _

ru middot

0

~ rmiddotmiddot - lj a)

-J O

I lJ(_ - r- -

~ middot~~- _

r

_ (bull - ~J middot-- -

~ -j

middot -

I

middotmiddotmiddotbullbull I middotbull bull bull

-shyJ middotmiddotbullbull I JI -bull r ) 1 ~- I -

C bullmiddot -bull _ 11

i ) ) )

141

- ~

_

ij (Y

1

l

j t ~

1 l

l i

r t

1 i I

i I

I

i e clf ~~j

i Ii

J --1 c--c- r-middot rJ

llJmiddot t middot C C r-bull

- )

middotmiddot

1J middot

-~ CJ-- bullS- bullbull

middotC - lt ()~--

tJ~-r ~- r bull J)

-r--middot J 1 I ~ ~ - -~ _ _

~

~ middotbull1 r~1 J

middotr

I ~-1bull11 J

)bull ~ --

142

bullbullbullbullbullbull

__

SURROGATE RUN 223-U CLASS CHAMSER 1976 OCT 5

LIGHTS ON 1215 INTENSITY IOOt OF MAXIHU~ 39 CC SAMPLES TAKEN CO FACTJR l9lOl PA~ CALIBq 9 6~ADV 1296 1215 PAN SAMPLE WAS TAKEN AT TbullO TOTAL NON-METHANE

CLOCK ELAPSED TJ~e nx2uaN)

1215 middotomiddot ( 1230 15

124s 30_~ t3bo 45

( 1315 60 1330 75 1345 90

( 1400 1~5 1415 120 143()-middotmiddot 135

C 1445 150 1500 165isismiddot-middot-middot--middotiso 1530 195

1615 1630

---i645 1700 1715

--1730 1745 1800

OZCNC ltPPmiddot~middotmiddot

omiddotmiddoto 0020 q04 0011 00~8

5139 0159 C181

AT 1221 HCbull 2346 PPSC METHANE= 2950 PPB

middotmiddotc~J3middotmiddotmiddotmiddotmiddotmiddotmiddot~J24deg 0222 0)12 0242 011

~1 t 0 M1

O 150 oJ94 005s oo3s OJ28 oJ23 oJ20 0)17 1))15

- omiddot2sgmiddotbullbullo1middot0middotmiddotmiddot 0147 o154 5~53 0022 0081 0276 OJO 0140 0145 546 bullbullbullbullbullbull

N02-PAN ~OX-PAN er PAN _ H(fO 1orM1 11gtPM1 tPPll (PPrl IPPHI

0143 cz1H 5S~ OOCl OC40 o1s1 0212 s75 bullbullbullbullbullbull bullbullbullbullbullbull c200 o2s1 s 15 __ 0000 llt~bull ozca 0237 s12 bullbullbullbullbullbull bullbullbullbullbull C2)0 0214 572 OJll 0063 o194 0214 510 bull~bullbullbullbull o1ss 020s 563 o~14 bullbullbullbullbull~ 0181 0194 561 bullbullbullbullbullbullbullbullbullbullbullbull

cgtbull11) 0195 ~5_7____ 0_1)_15 _______009~ 0157 0176 ~56 M~deg 0161 C16g 552 0021 bull~bullbullbullbull oJ53 ()160 s51

~~~-- -middot -JJtmiddot-middotmiddotmiddotmiddotmiddottfrac12H----middot1middot-middotbullgffr-bull-g ilb----middot-middotmiddot11~------~-~-middotzmiddot

iii5middotmiddotmiddot-- 360 middot middot omiddoti19 oco2middotmiddot c068 middot o069 middot53i 0039 C

-- DATA DISCARDED

OZONE CJSAGE GT OlJ 5~53 PP-IIN OZONE DJSAre GT )gt~ 6466 PPl-N

N02-PAN CJSIGE GT 025 J0 gtPbull-MN

C

(

middot1-bull

(middot middot middot

(

143

240 0337 0012 0124 0131 539 0027 0024 255 0354 OJJ7 0114 0116 543 bullbullbullbullbullbull

middotmiddot210~---middot-middot0middot37-middotmiddot -oSoimiddot--middot-middoto10s o 10g middotsmiddotimiddot - 0~03fmiddot bullbull 265 0393 OJ~5 0099 0101 536 bullbullbullbullbullbull 3JO 041() 0l05 Cl93 0095 5~z -U_9Q11

_____ 3l5 0427 0()05 oomiddotsamiddotmiddot--middotomiddot8f-middots~~-B 330 0445 oaos C081 OORl 535 bullbullbullbullbullbull 345 0462 0007 C074 0075 539 bulllaquobullbullbullbull

TSl REL HUM IOEG Cl Ill

31 610 33I 630 338 630 336 625 336 620 336 61 5 337 610 33il 60 5

_y_o _____ 59 ~ 341 590 34 o 58 5 t bull 2 58 5 343 575 345 575

3t 5_______ 57 0 34 6 56 5 347 SbO 34 s 56 0 349 555 34 9 55 5 34 8 ------- 55 bullo 34I 550

lt 550bullmiddot 54534 55 0

middott--1_r_-0- ~-ur1~_1 ~-m1=-middot cacalJ-aej qr-middot_~=~ f 1r~bull~1 ~ ii~ ~~-lt a -~ -bull-I ------ ----bull----- -- -middot-- --- ------middot-----------

middot-------- ------ - -- -- ----l lt T 1 I~ l ~

LwO(~ATE 223-U-1

USS (i-A3cK lS76 CT 5

----middotmiddotmiddot--------- ------------ ------------------fgtCCP ne1PRATuRE STA3li TY ori POROiiiK-~I-T1isrRuMENT 134~- u~ SA~rLE lJ~fC if~ POOPA~ II 4UP GEHrJF iRCPIC-LCftbullYDE ACETONE _lltJTYAlPEt-YDE ANDMl1Cf8011 C-600 _____

T LUEhE A~J ~-iYL2NE fRCM 3P

cirrr T J tltI 10 l 5 l 112 1215 1230 ll 1t5 1 middotmo 1315 1no lJ45 l 4DO lbull I~ l 3J l bullttgt LJOELLco r [ME tMl -) -12c -43 0 1~ 30 45 oomiddot 75 90 105 120 lJ5 ljj 165

-------middot-------------- ---~--------bull------------ -middot---- ---bull- -- --CONCENTRATIONS IPPB

MfTt-~ ll20 29Su_ _1QI ---- - ____ 2920 middotmiddot---1~L- t 2060 bull t bullbull $V- +- 0

-0fJlfljlP~UC lllO 29~0 )~$ yen 2920 ti -( bullbullbullbull 2B 80 lti

1Tt--f bull~ ld 4b11) bulltn)it middot(c middot~IQmiddot middotmiddot 3u I 21 5 yen_ ~yen -ilgt11$

Pb[ 2b 61 4 550 yen ~~ ~middot ~

bullE Tbulltbull~ _bull~ i middotmiddot--- ~v ~--~~-----~-~~~----___ __~--~_ _~~---~~__at bull9 ____-q~~ ______ a10 ~middot-I~ -gt-~bull $

Cr)(tl((PP8C 34 ~ yen4 17J )) 162 bullbullov lj[ middot ltCETfl~-E ( SPCJPM li 24 ~-~ ~IX $ O icbullbull 423 I)middotmiddot 38i

Pl1 BC 48 ~Ct bull(I bull bullbullbull bullbullbullbull bullierbull~ bullbullbullbull 846 112 bullbullbullbull bullbullyen t

bull QJ~~~tE _____ 4_J___________2_0 _Q~__-~___l)_6____l_o_---18_L_o__L____lt__---_-_~__iJ8 _ _bull_e____laquo_middotmiddot-middot---lo 2_________________ -middotmiddot-

I- P8C 129 bull~bullbull 600 586 567 564 bull gt4b ~

Igt)~gt)~ p~ -P~~E 07 _12 9 12q )iJ~--middot amp~1___-_J4 _____ ~s ~--~-middot~~ ___c_U_-0~ 4C O-ilt bull f igtPBC 21 38 7 387 2bt 195 120 IC fd-- middotmiddotmiddot-l _ I_SJ81JTAIE________________QL_ bullbullbullbull - __ --- middot-~-- -- bullbull ___________ _bull PPBC 04 bullbullbullbull bull bullbull~bull bull bull~~ ~ -bull~bull bullbullbull~ bull9bullbull bullbullbull

Nmiddot-Bur i1E -- 1 5____ 196 l ____ middot--middot-middotmiddot l8lt_____ _____deg _ - ______ 171 ~ 164bullshyPPBC 1 10 790 784 744 bull bullbullbullbull bull b64 bull+bullbull middotbullbull=bull o5

__A_ CETYL~iE__j QI I ____________25__4_~___425___gt1lt-bull__t25 ____bull__lt25_-13lt____i-~L__bull----___l __iof_lt____-----1~2 --- -- --middot --middotmiddot PttC 5o uco aso ~bull 85O aso bull~ bull~bullbullmiddot 02e bullbullbullbull yen~ 1a4

TP~ rs-2-aur c bullE oo C_i _____() 0 _ ____03 -middot---deg-degmiddot----middotQbullO --- _ oo bull bullbull -bulloishy va ~middot~middotshyPPtC oo 32 32 12 oo bull oo bullyenbull 00

-- i S0PENTAIJE____ ---middot-middot --- ___o_ L ____c_J ___ 0_2____gt1lt_bull__-1o_____(lt_______l_bull L__________o____ ~-bullbull___J_l____gtlltbull____U~-----1-L__ PPBC 15 35 4i bullbullbullbull 50 55- middotgtjlmiddot~ bullobull bOiS bull-ttlll

CIS-2-SUTEIE _ JJ__ _ 14 6 ___ __ 14 o ___ _-yen~~~------5 2middot-----~--~ ____l 7-----~bull-~~- bull-laquo~ ~ -- o o ---middot~U----~bullbull - v c PPac oo 592 584 bullbullbullbull 208 68 00 bull oo

_ fi-gtE~TANE ____ _________o D C L_O_bullL_~gttlt______o_l__llt~tt___Q 5---~~---middotmiddotmiddotjlt________-D5 -~----bullbullfltltgtl___lflt__ ______________ -PPBC OO lO 15 15 bullbullbullbull Z5 bull 25 bullbulloi bull bullbullbullbull

2 3-0 iMET_Hll ilU_TAIJ~ ____Q_Q ____ _0_9_____1 lQ_ bull-~-bull- 99 5-~___9JJ____~bull~-bull-middotmiddot-middotmiddot~--- ~-~ __ 84bull 6 --bull~bull----- __ Zt5 __ PPBC OO 652 658 bullbullbullbull 597 559 bullbullbullbull bullbullbullbull bullbullbull 509 gt77

__z_- ETHYI __SJ TE gt E~-- _______Q__Q____l6__2___16 bull 6_bull~---middotlldeg___-1lQ__5gtI-- -------2- ___i)C___tl deg-_JtlltbullL ___JlQ _____________

- _ -~--- bull-------__ _____ __ -----~~ - -_--~--------bull~bullr- t-=~~t~~= _~f~~~~~~~1bull~~~~~frac34lf-~~m~~bull~r~-~-fq~l~-~~~~----~-~~~~r-fltbullbullmiddot -r-middot ~ middotmiddot--bull----~-

bullbull

--

---- -_micro__middot1 _---j--- _- irr I-- ---1~ f~i=lbullaj i---r-J-p---1 --or __ ~ 0 I -lt-cc--l~~f1- ~~middot

1971 lltAR 18 i J Sl~~OGATE 223-li

GlhSS CrA-CR l-76 CCT 5

CL~CK TllE 1015 1132 l~ lL l230 _l245____ DOO____ JHgt l3JO _ lH5 l 400 _ l415 lo30 - llttlttgt l00 fLAPStD TtMEIMl~i -120 -43 0 l 5 30 45 60 75 90 105 120 135 ljO 165

PlllC ____(l(L__i lQ__l)l o____5_____ t2 bull0__~_jltjlt__i)_~~-4___ ___ OO _middot- __gt-yen ____ v C

j(ETALCEhYOE 28 ~~ qbull bullbullbullbull bullbull bull

_ PBC _5_ b___ _ 4~ middot-middot-~ -- bullbull~~ - bullc t _itoo -- ~-- middot - --- bullbullbullbull middotmiddotmiddot -~-- bull -- bullbullbullbull PllJlNALCEHYOF 02 03 bull~ $lt-))(l bulltctll yen bullbullbullbull 26 bullbullbullbull ia ~middotmiddotmiddot middot~llillP_lly

( -~-- (t~---middot Ci _9___ nill-1) -_ ~ ---middot _____ __ middotmiddotmiddot- 7B ~ bullClfc~

ACiTCI-E 07 79lit O bull~middotmiddot ~~ 366 ~ ~9 bull~~-PH 1 (tV~_ 2)bullJ --bull--bull bullmiddot-- --middot~bull---middot-bullbulllaquobull ~bullbullbull___ t(- _____l_l_O __ _--~bull~ __ bull 9 --~-- ltill diams 11 bullbullmiddotmiddotmiddotmiddot--

METHYL ETHYL KETONE 03 1a 82 yen$t9 ljllf-bulliimiddotbull~ bull~middot yenbullbull middot~ bullbullbull middot~middotmiddot ~ Ibullmiddot bullrPc_ i 2 Amiddot 7_2__ ~___ -~_ -~J__~~~ - -bull~----middotmiddot Imiddot----~ yen 32o lClO~ -0

T CltJEN 02 155 16l middotbullCt 144 135 126 bullbullbull deg PPHC l _(____ 1()8 bullyenljlCl lJ 3 ~bulletbull 101_ __--- 94bull L ___ --middot-- 111 87 J _J~~

4ET4-HLENE oo 523 53 l -4t 3fl ~ 219 4(Uit4 rcit U3 -bullljl flt PPBC 0() 418 _4_25 11_ 297 bull~ 23i t l 78 1)jff laquolI ~middotmiddot iHryRtLCEHYlc Ol Ol middot~bullmiddot bullbullbullbull bull yen0~ middot~bull 10 +9~ bullbull

-------middotmiddot-middot-middot--------middot---- PPDC 04 04 ---~- ____ ilit middotmiddot~middot _-I -- 40_ __cent~___ $~ bullbull ~iarabullbull

0 ICHLCHltO UI I-UJbullllgt01f TlbullMJpound oo 3S~ 351 347 J39 iyen0c 1jl$~middot jl7I- QI middotmiddot~ - bull q 3H

ishy _Poec O~Q 355 3_51 347 middotmiddot- ___ 339 ~ --bull~~- -- middot~bull--middot- 3 37 lit~yen j ~ 7 middot--middot -- ICr TCfAL HC PPBC

v ll7ij3 bullbullbull 56471 43268 52043 bullbullbull~ bull~bull~ bullbullbull

__TAL 101-ETHPE _t_C____ _ 583 l24l5 2345Q 00 19495 00 1068l 00 3158 QO l9872 middot 00 oo lldJZ TCfAl SU~fltJGATE 46-~5 zz37 middotomiddot 2307 i-------19-4degici---- i060~- imiddot----- -315 ~a----bullbull --- 1624amiddot ---- ---- i 21- 2

--~---middot-----middotmiddotmiddot------bull middot--middotmiddot------ middot----middotmiddot---middotmiddot-----middot--middot-middot----

bull-bull-bullbull bull-----bull---bull-bull ---r--~ --bull--bull----~bullbull-

- - - - - - - ------ -- ----------middot-bull------middot-middot------middotmiddot-- --

------------------middot-middot-middotmiddot- middot- ----

--------- --------middot-middot - middot----middot - ---- - - -- - - ---- -

-~lf4~--bull_~ ~~~~-~-~_-~~-~ -__~~bull- fF-~~~~~-g-~lT~~~~~~~pound~~etflitlilJ _~~~~flf-middot-bulltrmiddot--middot~- -middot-v--~--~-middot--~~ bull--bull~ ( s-~V __- -- bull bull bull

-~sgtlt-bull=ns-~ 1=_1i l-mc-a-1 __~bullmiddotloii1 ~bullbullcai=r J_t-~~ip7 -= __tJ~ ~ -__ __ j-Diii~I ~ ~~ ~_J IJcSi~~-~ J -=- -

1977 gt1~ ci Si~~C~~7E 223-0 ll~r (~middothPJ~ 1~76 CCT ~

(

CLCCie TJ~E l5l5 150 15 5 1600 1615 __1630 _l 6 4 5 ____ l 7 00 _ 1715 _______ --------middot middot- middot- --------[LAPSEC TMti~l~I 180 (95 2 l ) 225 240 255 270 285 300

CONCENTRATICNS_ PP6)

ME T-it rti 2900 bull bullbullbullbull bull 2Hl0 2880 pcgt~C 21 )J -------____2_810 - _ ___2_880 ________________ ---- -------------------------------

Tipound yen4l231 f~ ~ 203 ~~~ ~~~~ ~ 16 fJP~C 4 7 ir ~dbullflcent ~~$~ 40( 32 2bull~~ ~bull

E Tbullbull4E 78amp middot~lll ~ middotbull~-t 780 4el(( 749 PPH( l i r yenltI~ bull~ bull 7 9 _____ lJU_ ~-~e-~----2_~-~---middot-~tlt_~---middot ~----- -middot------------middot------- middot-- middot------- middotmiddot- -

A(middotfyi_t~~C (PfJPlbullr ) 35tJ 4 bullJ) Jqu~ J~7 ~4bull 3( iJii _ic 7 6 ) ~q (Jc 71 bull Cc~ ~-ii 7(

prmiddotPPE 184 ~ tnmiddoto 10a bullbull bullbull 116 1-~fiC ------- 552____ bull~ _ 540 ___ _itL__ -~---528

PJltbull)micro( bull-s -O l bull 7 tc l4 09 06 )pl)_l~PirC ti 5 l 42 Z l ___ l bull d lll middot~~- bull~~-

l rnu f hf -+--+=bull ittcagtICI middot ~ (I diamsdiamsbull -bullmiddot ~ POtC 4~~--- ~6 irc q ~ -~~-middot~ middot

I- N-~iiT ~E ~4tlllC l ~) 2 6-middot) 15b It 154 (lt l bull4f- lPhC diams (t4lt t~- t~gt-111 62_12_ ---~-lltmiddotbull--middot 01bulli___ yen$ia~_ lI~--- _57~ _ ______ --

deg ~ ACETYlffH ((JIJ~) 40 bull Jjl-C 395 bull 30d bull 373

PfflC ytlbull 806 790_ _l7 fJ____bullbullbullbull ------bullbullbull-bull----1t6 i TRtiS-7-BU_TUiF bullbull-amp oo oo yenbull oo middot~bull ~~middotmiddot oo pmicrolbullC yen~bull o_o ltcbull o_o _____________QJl___bull~-~--------obullo _________ --bull-----

I SOPcIITANE ~-90-~ 13 ~ l3 iU ~ ~~ l6 PP8C __ 65 ~~-~-_____ 6_5 ______~ _____a_v __ vbullbull~-- bullet __9o _____

C I-J-a1Jrrbull1- obullJ 00bull~bull middot~ oo ~middotmiddotmiddot oo middotmiddot~~ bull+bull~PPi3C ~c-~ ~o_ _______ oo ____ ----obullo - 00

N-PEl-ltTANE os o6 bullbullbullbull os bull 01 PPC t-6-bullo middotmiddot-middot 2_5___ ~-bull___ JQ___ bullbull~middot _2 2__ bullbullbull _0l __ ____]_5____ ----------

2l-0111 EThYL B1JT flff Vyen-(-9 -6 6 41(nr(c 122 bullbull(-II- 63 5 PPBC 1tOE-fl 460 Jl(I 4J3 -- ___1s -~bull- bullbullbull middot 3tll

z-~ET~YL e~Tc~E-2 oo 162 166 bull 24 oo bullbullbullbull

(9 7 bulliibull

PPBC____o_o___JU_Q__ijJ__Q______ __ _____120________)J)__ _gtlt__________

ACULCEt-tYOc bull9ic ric 9 Ii PPilC yenyenct -- ~~-middot- __~~bull_ middot-----middot-iiiyen___ ~~ ___ _______ -bull-middotmiddot--~---middot~middotmiddot PIJlICNALCEhYGE $$ bull4~ q bullbullbull 40 vbull bullbullbullbull ~bull 48

PPBC __ -- _ ---middot-bull _____l2J_Q __ L ----- __ lt~4____________ _

-_

--- ~~~~ -----_-~~-~--r----middot~--~ ----~-_____ ~0ltmiddot~bull_bull~~~cmiddotbull=-~~1~~rJ~~lt~~-~~~~yen-9 rr~~~~~~~~~~~~~~bull1~~~-Jf-it~~frac34WMP~~fUffM~~-~~~-~-middotmiddotmiddotmiddot1

bull-L)c~iJgt ~JJJI~ amp=-=-middot f-i~ aa-J-_e__jI micro-i~ismiddot --gtbull____- -=---- _ ~Jr i~~-( ____--__p_f I __rei -~~--1r---- l rbull~~h P~bullwii ~~iiI~

7 SLlt~4F 2pound3-U 177 ~~ ltgt

IJL1)~ C-oYjf-P

i-1 er 5

(LCV TJJ 1~ l~ 1~30 ___ J545 ____ l600____ 16l~ ___ H30_____ H4~---- 1700 ____171- ______ -------------ELAPSED Tl~fl~i~J liJv l95 210 225 240 255 270 285 300

_4CE rbull~ PPiC

--middot~~gt)_

icibullbull _(ot$

lI raquo-1c ----bull er lfrtJ11( yen

_360 ll4

-~-~------- ~~ bullbull deg

-bulliibullbull bullbullbull l(l

_i-HHYl ETHYL lttTC~~C pp_c

~icbull

yen(t )C --~~~ ____ii-------- _9_7_ ~-middot~ ~ 388

~--yen

middot~il$___18 --------------~ 728

--~----------- --- ------- -- - -

TtiE~IE P9rtC

109 763

yen-) ttgtlt-

(c~ laquoY bull 107

1fi - bull

(16JCtt

bullicebull iaibullmiddot bullic(t~

102 7lb

MET-4-Xllf E PPflC

__7 f l V

-middot~~- -- ~$ IF (n~v~

-----bull~~ 12-i ------------gt1lt______ 94_ --000 bullbull~bull bullbull~bull ~ 75L

L ry __ Cf 1 tYf rr~c

) ( ~yen

yen~0$

v(r

bulll- _ iV

~ --r1(

2 z 88

Jcentii

it) ~(

~ ~llf

gtii -2 6 lJ4

u-bull1Lor JffLiJ--uirt-lf PPpoundgtC

~ (I~

~ 330 330

( 1t-4

26 326

v~bull

_____ n2___ ------I) bullbull322 Hl 311

rr~t-L TCTAL

lfC -gt~ ~J~-Y

c iHl~E HC

jjJlt3 494middot3

middotbullbull13393

irbullilr

630 bull~ 34Jq _7_

l2 C5 5 tgtZil1 tilt~bull -- middotmiddot--middot-middot--- U------- __ 4713(___

11770 00 oo l5229 ___

TCTAL St~PC AT~ 49tdiamsbull 3 1330 3 830 ll lt60 455l l166 5 14128

middot---middotmiddotmiddot------

I- ~

~l~-~ ___gt-_____ bullA ___ _9~~--bull ______-~7~~~~tqt1f~~1_4_~tP-amp-i-~ffltW-iff~~~iitt~~laquoFifampoiijiM1l~trt~~ -_ Cl-iII~~~ --v-~ -middot ____ ~yen-

APPENDIX C

Plots of ln so2

vs time for

AGC Runs 216 through 222

bullf

lmiddot1

148

RGC-216-1-3 se2 DARK DECRY 2 RH PURE RIA

C) 1976 JUL 27-28 C) C)

p

I

0 C) _ - 0

ru (I) 0

C)

() ()

() Ce() () () -00197 plusmn 00003 hr

-1

() ()

() () C) ri)[J

~() I

~

C)~c CO(L Q_ CJO()

0CLc o--_(I)

_ (J

CJ I 0 0 (J)

o zo

en

_J~

0 =

I

()

f P1

0 Cl co -- 0I

4 8 TJME

12 CHA)

16 20

CJ 0 CJ

24deg

0 Cl LJ)bull

N -0

ll-

149

I

C)

0 ()

bull

AGC-217-1-2 SC2 LlGHT DECAY 151 RH PURE RIA

(r)0 1976 JUL 30-31 (I)0 (I) 0

0 I ti)

N 0

0 0 LI)

I o - C)E ~ a_ (Lo Oo_

CLo __ r- ru (J I 0

()El U1

0C) Lilzo

_J~ 0 I

D D CI

I

0 0 C) 0

~+------r---------------------------+~ltil0 50 100 150 200 250 30P

I TIME (HA)

150

RGC-218-1-3 se2 DARK DECAY 40 RH PURE AIR

0 tO

1976 RUG 4 O)

f I

c

I

C)

r C)

a N-

-1-00327 plusmn 00002 hr

(I

I

0

c co

bull

C) (Jr ~

0~ --L CL CL CLI o_g

(J

(J E

0 en en

0 co

zro CJ _J~ 0

a

~ ~ ~-i------------------------------------~-- o 2 4 s a 1o 12deg I TIME (HR)

151

RGC-218-7-9 se2 LT DECRY 401 RH PURE AIR

C) 1976 AUG 5 C)

CD

C) Cl Q-0 C)

0 (J

I

-00830 plusmn 00005 hr-l

CI (J I

~ (f1

Cl Cl CD (J

I

CJ 0 (I 0

a -(D

bull 0

oshyNE -a ca

-

(J

0 en

0 (I) 0 0

C) -

W O

-r---------------------r------------------~W 0

0 2 4 6 8 10 I TIME (HAl

152

r-

i]1

l _

middot

AGC 219-1-5 i 5~2 DARK DECAY 80 RH~1

PURE AIR 1976 AUG 16-17i 0

-middot 0

f 71 l

l ii gj

I

0- U)

CJ

I i I IC)

0

f II) i

r-- l I

~-- -~ o_ Oa_I ~ j(l g - r- I ~

- middot -00689 plusmn 00004 hr-l Ibull t 7 I (Ji ~ i

~] 0 l_ zo l~~

_J~ - iIu i _E I C

i 0 0

I I~- - I(J

I

-

() Ifr

I I

fl L

CJC)

~ 10bullq er [

C)

~------------------------------r------ N

I (j 4 8 12 16 20 24deg

TIME fHRl ~ Q

153

l

RGC-220-1-2 se2 DARK DECRY ijQ RH (jZCJNE-PRCPENE

ro0 1976 AUG 19 tO0 C) t

~~ r~I I

i (

c

-l a

0f

L 0 C

(J

-- ~I ()f c 7

~

()n

l c co

~ CI 0 C) () o

(j() () -poundo

Q_ Q_

(X)(1 I

( z (middot

(J_Jo (J0

=J ~h 0~ r (I)

()() (J -I 0ePgt~

()efJ(JJ 0 0 ~ (JLI)

- ~~()

~ () lt() lt()

0 ()yen ~ o ~ a

~-----------------r----------------~----~~-G 1 2 3 4 5 6deg

I TIME (HR)

154

AGC-22O 00-05 H~UA5 502 CPRk DECAY 401 RH C2l3r~E-PRCJPENE

0 197S AlJG 19 C)

0 bull 7

I I

l CD

I

~J r ~7 Q_

0 _

~I ru- J 81 en

z -1c

tO-c c ru

t =I

+--------------------6 00

I 0 10 020 030

TIME (H AJ

a tO (I)

bull 0

ti (I)

bull ti

--- 0

(j

0 cn

C)

Ol a CJ

0 lO

155 )

AGC-220 1 75-50 HQURSSD2 DARK DECAY 401 AH D2DNE-PR()PENE

r-0 1976 AUG 19 Lf)(P (I()

I ro 0 0 J

I

0 J N bull0 0J-J

c CL CL ~

0 tO

CJ r D ~ Cf) I Cl

0 -a z

CI-1o () CI (J[J

U) oO en-I

()()

middot~ c CD () ()1)

bull ~ ()-I 0~

(J0 CJ0

co eI -t 60 2LJO 320 400 480 560 6 4ij

I - 0TJME (HA)

156

RGC-221-1-2 5~2 DARK DECAY 40 RH ADD ~2~NE 080 HRS

co 1976 AUG 20 If)

(D r 0 0

I 0 D r 0

r CJ) Cl

I

0 D

I I

Qj I

-J 71

v 00 100 200 300 4 00 500

C)

rO

0 ~ (L

CL-

TJME fHASl

157 j

-

-003009 plusmn 000008 hr-l

~

RGC-222-1-7 rr

~ 1

l If

t f

t

l [

r l_

~ ti

1c l

L

Q

1 ~

a

[J ~ I

-

IL

S02 DARK DECRY_ 401 RH SURR(jGHTE-N(jX

00 1976 AUG 24-25 30 0 r

~1 iI

0

~1I

0 (J (tl

t 0 CI-I

-- -~ ~ o_ aa_g oO -r

(Jr - (J -I OCJ

0~ en(1

01 zc --deg-I

0 C) 0co -tO

I 0

Ul

-(

~1 -

(I 0 s 10 15 20 25 300 I TI ME (HRJ

158

PG f-2--Jc_~ __ Q _ --

se2 LIGHT OECHl 30Z AH SUAr-rCRTE-NQX

CI0 w 1976 AUG 25 r-r- -bull l

71 rol gj 0

-=f I I

()()

0

r ---= ~ oa_ a

(j

0

~ (1

1- bull middot-0

() tD

al

~~ i

~I j

1 ()

0 ZtP J~

I

I

-00574 plusmn 00007 hr-l

O ~ 0

~-t-------------------------------------~~~ ~o 1 2 3 4 s 6deg

TIME (HR)

159

I

Page 2: Report: 1977-05-00 (Part 2) Chemical Consequences of Air

(Reprinted from the Journal of Physical Chemistry 80 789 (1976)] Copyright 1976 by the American Chemical Society and reprinted by permission of the copyright owner

l

l Relative Rate Constants for Reaction of the Hydroxyl Radical

J with a Series of Alkanes Alkenes and Aromatic Hydrocarbons l

f Alan C Lloyd Karen R Darnall Arthur M Winer and James N Pitts Jrbull

l Statewide Air Pollution Research Center University of California RiV8flSide California 92502 bull(Received October 21 1975)

Publlcatlon costs assisted by the National Science Foundation-RANN and Calltomia Air Resources Board

The relative rates of disappearance in air at 305 I 2 K of aset of14 alkanes alkenes and aromatic hydroshycarbons were measured in an environmental chamber under simulated atmospheric conditions The obshyserve~ rates of disappearance were used to derive relative rates of reaction with the hydroxyl radical (OH) on the previously validated basis that OH is the species dominantly responsible for the hydrocarbon disapshypearance under the experimental conditions employed Absolute rate constants obtained from the relative values by using the mean of the published rate constants for OH+ n-butane (18 X 109 M-1 s-1) are (k X 10-9 M-1 s-1) isopentane 20 I 04 2-methylpentane 32 I 06 3-methylpentane 43 I 09 n-hexane 38 1 08 m-xylene 129 I 26 n-propylbenzene 37 I 08 isopropylbe~zene 37 I 08 ethylbenzene 48 plusmn 10 o-ethyltoluene 82 I 16 m-ethyltoluene 117 I 23 p-ethtoluene 78 plusmn 16 ethene 52 plusmn 10 proshypene 175 I 35 cis-2-butene 392 plusmn 80 13-butadiene 464 plusmn 93 In the case of seven of the compounds investigated these results are shown to be in good agreement with literature values reported for elementary rate constant determinations For the remaining seven compounds no previous determinations have been made

Introduction

The hydroxyl radical is well known to be an important species in the chemistry of combustion systems12 the stratosphere3-5 and the troposphere6-9 Recent direct deshyterminations of its concentration in ambient air1011 have

shown average daytime levels of about 5 X 106 molecule cm-3 in good agreement with predictions from computer

middot models of the formation of photochemical air pollu-tions12-14

In order to develop satisfactory chemical mechanisms for modeling combustion and photooxidation systems includ-

middot 11le Journal of Physical Chemistry Vol BO Na 8 1976

59

790

ing urban airshed models15middot16 kinetic data for the reactions of the OH radical with hydrocarbons as well as various inshyorganic species are necessary Prior to 1970 relatively few absolute rate constants were available for OH reactions with organic species however since then a large number of determinations have been reported for alkanes17-27 and

23 28-36alkenes 21 - Although aromatic compounds such as toluene xylenes propylbenzene m-ethyltoluene and 123-and 124-trimethylbenzenes are present in polluted ambishyent air3i-39 only in the past few years have significant studies been reported on the reactions of the OH radical with some of these aromatics2140-42 For example recently we reported the use of an environmental chamber to obtain accurate relative rate constants for the gas phase reaction of hydroxyl radicals with a series of aromatic hydrocarbons using n-butane as the reference compound42 Although a number of other species are present in these experiments (ie O(3P) HO2 03 NO3 etc) with the exception ofOa in

l the case of the alkenes these species have been shown to

I make at most minor contributions to the observed disapshypearance of the hydrocarbons investigated Thus the rate constants determined in our previous study42 are in good agreement with those determined subsequently in separate studies of the reactions of individual compounds with OH using a flash photolysis-resonance fluorescence techshynique4041

On the basis of this validation of the environmental chamber method we have extended our investigation to inshyclude an additional six aromatic hydrocarbons four alshykanes and four alkenes

Experimental Section

Irradiations of the HC-NOx-air system were carried out in an all-glass (Pyrex) chamber of approximately 6400-l volume equipped with two externally mounted diametrishycally opposed banks of Sylvania 40 BL fluorescent lamps43 Before each experiment the chamber was flushed for a minimum of 2 hat a rate of 12-15 scfm with a purified air stream44 The resulting matrix air contained less than~1 X 10-9 M (100 ppb C) of nonmethane hydrocarbons All reacshytants were injected into the chamber using 100-ml precishysion bore syringes and rapid mixing was obtained using Teflon-coated sonic pumps During irradiation the chamshyber temperature was maintah1ed at 305 plusmn 2 K by passing chilled air between the chamber walls and the fluorescent lamp banks

Hydrocarbon disappearance was measured by gas chroshymatography using the columns and techniques developed by Stephens and Burleson3745 Ozone46 was monitored by means of ultravioletabsorption (Dasibi Model 1003 analyzshyer) carbon monoxide by gas chromatography (Beckman 6800 Air Quality analyzer) and NO-NOz-NO by the chemiluminescent reaction of NO with ozone (TECO Model 14B)

The concentrations of the reactants ranged between 45 and 90 X 10-10 M (11-22 ppb in air) except for ethene ethane acetylene and n-butane whose concentrations were 18 37 18 and 83 X 10-9 M (45 92 45 and 203 ppb jn air) respectively In addition low concentrations of carbonshyyl compounds (formaldehyde acetaldehyde and acetone) were present Initial concentrations in the photolysis exshyperiments were 27 X 10-9 M (2900 ppb C) of total nonshymethane hydrocarbons 175 X 10-9 M (043 ppm) of NO (with an NOzNOr ratio of 012) 285 X 10-9 M (7ppm) of CO and 1129 X 10-9 M (2775 ppb) of methane together

The Journal of Physical Chemistry Vol 80 No 8 1976

Lloyd Darnall Winer and Pitts

with water at 50 relative humidity Four replicate experishyments were carried out in which this mixture was irradishyated for 3 h with continuous analysis of inorganic species and analysis of hydrocarbons every hour The irradiation period was extended from 2 to 3 h compared with our earshylier study in order to obtain additional data points The light intensity measured as the rate of NO2 photolysis in nitrogen k147 was approximately 026 min-1 All data were corrected for losses due to sampling from the chamber (09-20h) by subtraction of the average dilution rate from the observed hydrocarbon disappearance rate Alshythough the HCNOr ratio was chosen to delay the formashytion of ozone after 3 h of irradiation the ozone concentrashytion was 0065 X 10-9 M (0016 ppm) or less in three of the runs and 013 X 10-9 M (0031 ppm) in the fourth (whichmiddot had a higher initial formaldehyde concentration) A small correction for loss of hydrocarbon due to reaction with ozone was applied to the alkene disappearance rates

Results

The rates of disappearance observed during a 3-h run for the seven aromatic hydrocarbons four alkanes and four alkenes areshown in Figures 1-3 respectively (n-butane is included as the reference compound in each figure) Table I gives the disappearance rates for these reactants (after apshyplication of the dilution correction and for alkenes the ozone correction) relative to that for n-butane based on data from the four separate experiments

With the assumption that the OH radical is the species responsible for the hydrocarbon depletion during the 3-h irradiation absolute rate constants were derived from the relative rates of disappearance using a value of 18 X 109

M-1 s-1 as the mean of the existing literature values for the reaction of OH with n-butane21232427

(1)

These results are shown in Table I and are compared with existing literature values whenever possible in Table II

middot Discussion

As seen from Table II the validation of the assumption that the OH radical is by far the major species depleting the hydrocarbons (during the first 2-3 h of reaction) has been provided by the good agreement observed between OH rate constants determined in our previous chamber study42 for benzene toluene o- m- and p-xylenes and the trimethylbenzenes with those determined in elementary rebull action studies of each individual hydrocarbon4041 The exshytent to which this assumption is valid is indicated by the results of computer modeling calculations48 (shown in Figshyure 4) for an HC-NOr system of overall concentrations identical with that used in this study In the computer simshyulation a propene and n-butane mixture was used as a surshyrogate for the complex hydrocarbon mixture employed in the experiment and the rate of attack on propene by OH 0 3 O(3P) and HO2 was calculated The relative and total concentrations of propene and n-butane were chosen such that the overall hydrocarbon reactivity toward the OH radshyical would equal that predicted for the complex mixture It is clear from Figure 4 that although OH is the major atshytacking species in these experiments the 0 3 contribution to the disappearance rates of the alkenes increases with time of irradiation In contrast the rates of reaction of 0 3 with alkanes and aromatics are many orders of magnitude slower50-52 than with alkenes4953 and no correction for

60

791 Kinetics of OH-Hydrocarbon Reactions

TABLE I Rates of Disappearance and Rate Constants for Selected Alkanes Alkenes and Aromatic Hydrocarbons at l middotatm in Air at 305 plusmn 2 K

c Relative ~

rate of 10-9k0 g M-1s-1Compound disappearancei5 sect z 18bn-Butane 1C

110 20 plusmn 04 Isopentane~ 0 177 32 plusmn 06 2-Methylpentanez w 3-Methylpentane 240 43 plusmn09 u z 38 plusmn08n-Hexane 2090 u m-Xylene 718 129 plusmn 26 0 w 207 37 plusmn 08n-Propylbenzenegt 0 203 37 plusmn 08 lsopropylbenzenew V) a Ethylbenzene 265 48 i 10 0

o-Ethyltoluene 457 82 plusmn 16 m-XYLENE

m-Ethyltoluene 649 117 plusmn 23 20

j

100--I

9

n-PROPYLBENZENE

3

2 3 p-Ethyltoluene 433 78 plusmn 16 HOURS OF IRRADIATION Ethene 288 52 plusmn 10

970 175 plusmn 35PropeneFigure 1 Logarithm of the aromatic hydrocarbon concentration durshy 13-Butadiene 258 464 plusmn 93 ing 3-h photolysis of HC-NOc mixture In air at 305 plusmn 2 K and 1 atm 392 plusmn 80cis-2-Butene 218

a The indicated error limits are plusmn20 and are the estimated

l overall error limits b Placed on an absolute basis using the mean~3r-----r-----~--------1L i of the literature values ref 21 23 24 and 27

~ 0- ~

I ----uu~---------0------~c- middot -0 n - BUT~NE0 ~2~-----01SOPENTANE - TABLE II Rate Constants k for OH Radical Reactions with

n-Butane and Selected Alkane Alkenes and Aromatic ~ I v-------0---U__ 2-METHYLPENTANE Hydrocarbons at Room Temperature -----c_____-ltgt--_____ 3-METHYLPElHANE 1r 81 In-HEXANE o I

Environmental Compound chamber studies0 b Lit values t II I

~ 0 2 3 O HOURS OF IRRADIATION ~23degBenzene 074 plusmn 007lt

095 plusmn007dFigure 2 Loga-ithm of concentrations of alkanes during 3-h photolyshy25 plusmn 094

sis of HC-NOc mixture in air at 305 plusmn 2 K and 1 atm Toluene 347 plusmn 035C 367 plusmn 024d

o-Xylene 77 plusmn 23deg 918 plusmn 090C 11bull m-Xylene 14plusmn 1deg 142 plusmn 14c

129 plusmn 26b 11bull p-Xylene 74 plusmn 154 732 plusmn 072C 11bull 123-Trimeth- 14 plusmn 3deg 158 plusmn 16C

ylbenzene 124-Trimeth- 20plusmn 3deg 201 plusmn 2oc

ylbenzene 135-Trimeth- 31 plusmn 4deg 283 plusmn 29lt

ylbenzene lsopentane 20 plusmn 04b 27 2-Methylpent- 32 plusmn 06b 34

ane 3-Methylpent- 43 plusmn 09b 34

ane n-Hexane 29138 plusmn o8b Ethene 57 plusmn 0652 plusmn IOb

1111 30i 32 plusmn 04i 30 18 plusmn 061

10 plusmn 03m 13 plusmn 01n

Propene 175 plusmn 35b 217 plusmn 248 102 plusmn 2611i 87 plusmn 131151 plusmn 150 r 96 plusmn 03P 30 plusmn 10m

z 5 0 u lt( 4 a 0

~ 3

0

l-o

~ 2

Iz

-----o---------0_____-o

n-BUTANE

30 plusmn06n 13-BUTADIENEl) cis-2-Butene 392 plusmn 80b 367 323 plusmn 320

~ 257 plusmn 15Pu

1o------------J2L------3---- 0 Reference 42 b From Table I c Reference 40 d Reference 41 bull Reference 21 for a mixture of xylene isomers I Reference 24HOURS OF IRRADlATION

11 Reference 33 h References 30 and 21 i Reference 31 i Reference Figure 3 Logarithm of concentrations of alkenes during 3-h photolyshy 36 k Reference 29 1 Reference 28 m Reference 22 n Reference 32 sisbull or HC-NO mixture in air at 305 plusmn 2 Kand 1 atm Reference 35 P Reference 340

The Journal al Physical Chemistry Vol 80 No 8 1976

61

792

100 w_ ltl 90 i5 i z 80 w ~ u 0 INITIAL7w xa NO 389

0 N02 middot049

gt- pound6 C3H6 149 C4H10 596

a

0 ID

0

COllC (ppm)

~ ~ 5 wz

0 ~ 4 ll

0 J ~ 3~

0~ _ u -z 0

w_ Iltl

ll

0

HOURS OF IRRADIATION

OH

Figure 4 Predicted relative importance of several reactive intermeshydiates during photooxidation of propene-nbutane mixture under simulated atmospheric conditions

their reaction with ozone was necessary For example the rate constant for the reaction of ozone with toluene is about nine orders of magnitude lower than that for OH with tolushyene During the initial hours of irradiation other species such as NO355 and HO256 may contribute slightly to hydroshycarbon disappearance rates especially for alkenes but since their concentrations and in some cases rate conshystants are not known correction was not possible

Hydroxyl Radical Source in this System The major sources of OH in our experimental system are probably the reactions781315

NO + NO2 + H2O =2HONO (2)

HONO + hv (290-410 nm) - OH+ NO (3)

HO2+NO-OH+NO2 (4)

Nitrous acid has been observed in a chamber study of simshyulated atmospheres carried out in our laboratory57 when a mixture of propene and nitrogen oxides in moist air was

g photolyzed indicating that HONO can be formed in HC NO systems under conditions similar to those employed in the present study (Nash58 claims to have measured HONO in ambient air at levels up to 11 ppb) Direct evidence for formation of OH radicals in environmental chambers has been provided recently by Niki Weinstock and coworkshyers1154 Reaction 4 of major importance provides a further source of the OH radical HO2 can be formed in air56-59 by any mechanism producing H atoms or formyl radicals via the reactions

H+O2+ M-HO2+M (5)

HCO + 02 - HO2 + CO (6)

Thus any mechanism producing HO2 in our system is also a means of furnishing OH radicals via reaction 4

The concentration of OH radicals present during these experiments was calculated to be (15-20) X 106 molecules cm-3 using the observed rates of m-xylene disappearance (corrected for dilution) and the previously determined rate constant for OH + m-xylene4042 These concentrations are

The Journal of Physical Chemistry Vol 80 No 8 1976

62

Lloyd Darnall Winer and Pitts

of the same order as those observed directly in ambient air10u as discussed above

Aromatic Hydrocarbons Present results for the rate constant for the reaction of OH with m-xylene show good agreement with the previous study42 carried out in our labshyoratory (Table II) indicating good reproducibility for this technique

Rate constants for the reaction of OH with the propylshybenzenes and ethyltoluenes have not been reported preshyviously However the trend in rate constants for the reacshytion with o- mbull and p-ethyltoluene is identical with that previously determined for the xylenes40bull42 which supports the concept that OH is an electrophilic species since attack on the meta compound is favored

Davis et al41 have studied the reaction of OH with benshyzene and toluene and from the observed pressure depenshydence of the reactions conclude that addition occurs at least 50 of the time In an environmental chamber study similar to that reported here Schwartz et aI60 tentatively identified a number of aerosol products such as phenols and aromatic nitro compounds from the photooxidation of toluene in the presence of nitrogen oxides A mechanism was proposed assuming initial addition of OH to the aroshymatic ring In the case of the more highly substituted aroshymatic compounds studied here it may be possible that hyshydrogen abstraction from the side chain could possibly be as important as addition This is supported by the fact that a log plot of the OH-aromatic hydrocarbon rate constants vs the ionization potential of the hydrocarbon (which for abshystraction reactions is expected to be linear) in this case did not yield a straight line

Detailed product studies are required in order to obtain the quantitative data necessary to further elucidate the mechanism of OH attack on various aromatic hydrocarshybons

Alkanes Greiner24 has derived an empirical formula for calculating the rates of reaction of OH with alkanes based on his experimental results for the reaction of the OH radishycal with selected alkanes

k = 615 X 108N 1exp(-1635RT) + 141 X 108N 2 exp(-850RT)

+ 126 X 108N 3 exp(+190RT) M-1 s-1

where N1 N2 and N3 are the numbers of primary seconshydary and tertiary hydrogen atoms respectively in the alshykane We have used this equation to calculate the rate conshystants for isopentane 2- and 3-methylpentane and n-hexshyane The calculated values are in quite good agreement with the experimental values Although Greiners formula predicts the same rate constants for the 2- and 3-methylshypentanes our study suggests that the latter is somewhat higher Indeed this may be expected since the stability of the radical formed by the abstraction of the tertiary H atom from 3-methylpentane should be greater than that for the radical formed from similar attack in the 2-methylpenshytane case

Alkenes Unlike the alkanes and the aromatic comshypounds alkenes react with ozone at a significant rate Thus in our experimental system the small amounts of 0 3 formed during the 3-h photolyses contributed to the alkene disappearance rates From the measured concentrations of ozone and the published rate constants for the reaction of 03 with the alkenes studied49-5361 -63 a correction was made to the alkene disappearance rates for loss due to reaction with ozone This amounted to ~3 for ethene ~7 for

l

Kinetics of OH~Hydrocarbon Reactions

propene ~21 for cis-2-butene and ~2 for 13-butadishyene

Our results for the reaction of OH with propene

OH + C3Hs -- products (7)

are within experimental error of a recent absolute determishynation of k using flash photolysis-resonance fluoresshycence35 while the value of k 7 given in Table II for the reshysult of Cox33 incorporates a stoichiometry factor of 2-to 3 In parallel studies in this laboratory using flash photolysisshyresonance fluorescence35 no evidence was found within exshyperimental error of a pressure effect for k1 by varying the totai pressure from 25 to 100 Torr of argon but additional studies should be carried out especially at lower pressures where such an effect would become evident to see whether k exhibits any pressure dependence

The value of the rate constant obtained in this study for the reaction of OH with cis-2-butene though somewhat high is within experimental error of values previously reshyported from direct determinations213435 In this case a sigshynificant (21) correction for reaction with 0 3 had to be apshyplied to the data

No previous determinations of absolute rate constants have been reported for the reaction of OH with 13-butadishyene However the close agreement between our values for cis-2-butene and 13-butadiene is consistent with the workmiddot by Cvetanovic and Doyle64 who showed that these two compounds reacted at similar rates with oxygen atoms

The value obtained in this study for the rate constant of _the reaction

(8)

of 52 X 109 M-1 s-1 is about a factor of 2 higher than

II published values from low pressure ( lt300 Torr) studshymiddot 22middot 32ies21middot 28- 36 The only other study to date carried out at

atmospheric pressure is that recently reported by Cox33 in which OH was generated by photolyzing gaseous nitrous acid in nitrogenoxygen mixtures (21) at 760 Torr and the effect of added alkenes on the photolysis of nitrous acid was studied A rate constant aka = (57 plusmn 06) X 109 M-1

s-1 was obtained relative to a value of 90 X 107 M-1 s-1for the reaction of OH with CO where a is a stoichiometry facshytor Cox suggests that a is between 2 and 3 based on pubshylished values for the direct determination of k8bull Davis et al36 have shown that the significant differences between low pressure measurements of reaction 8 can be rationalshyized by the fact that the reaction exhibits a pressure depenshydence over the region studied (3 to 300 Torr of He)

This pressure dependence is probably due to the initial formation of the adduct observed by Niki and coworkshyers21middot30 Presumably this adduct becomes stabilized by colshylisional deactivation

(8a)

While it is possible that our determination of k8 is higher than previous values due to the fact that species other than Q

t OH -and 03 are depleting the ethene at least part of the discrepancy may be due to the difference in pressure reshygions studied Figure 5 shows a plot of log ks vs log P where P is the total pressure in the system for studies carshyried out using N2 02 or N2O as diluent gases Studies carshyried out using less efficient third body gases such as He are not plotted since the present study is focused on ambient atmospheric conditions and third bodies such as N2 or the

middot793

100

- u

-- 0 E

95 C

~ a

gt

0 0

900~--J----J--___________~bull------- 10 20 30

rog PCP in torr)

Figure 5 Variation with pressure of the rate constant k8 for the reshyaction of OH with C2H4 M is bath gas in reaction 8 ltbullgt Davis et al38 ( ) Smith and Zellner31 (reg) this work

equivalent Thus at 3 Torr of diluent gas the results of Davis et ai36 differ by a factor of 16 depending on whether N2or He is used as the diluent gas Although our results for ethene are subject to some uncertainty it appears possible that reaction 8 is not at the limiting high pressure kinetics region until the pressure exceeds 1 atm

Conclusions

Relative rate constants have been determined for the reshyaction of OH with 14 hydrocarbons and these rate conshystants have been placed on an absolute basis using the litshyerature values for the rate constant of OH + n-butane No previous determinations have been reported in the case of seven of these compounds

Our results indicate that the reaction of OH with ethene possibly does not obey second-order kinetics until presshysures exceed 1 atm while for propene and the higher alkshyenes the reactions are second order at atmospheric presshysure

The comparatively high rates of reaction observed for the aromatic hydrocarbons have significant implications for the control of photochemical air pollution This subject and the use of the present data in the formulation of a hyshydrocarbon reactivity scale has been treated in detail elseshywhere65

Acknowledgments The authors gratefully acknowledge the helpful comments of Dr R Atkinson Dr George Doyle and Dr Jeremy Sprung during the preparation of this paper and thank Dr William P Carter for carrying out the computer calculations used to construct Figure 4 and Ms Sharon Harris for the hydrocarbon GC analyses

This work was supported in part by the National Science Foundation-RANN (Grant No AEN73-02904 A02) and the California Air Resources Board (Contract No 5-385) The contents do not necessarily reflect the views and policies of the National Science Foundation-RANN or the California Air Resources Board nor does mention of trade names or commercial products constitute endorsement or recomshymendation for use

References and Notes

(1) R R Baker R R Baldwin and R W Walker Symp (Int) Combust [Proc] 13th 291 (1971)

(2) D D Drysdale and A C Lloyd Oxid Combust Rev 4 157 (1970) W

The Journal of Physical Chemistry Vol 80 No 8 1976

63

794

E Wilson Jr J Phys Chem Ref Data 1535 (1972) (3) H S Johnston Adv Environ Sci Technot 4263 (1974) (4) P Crutzen Can J Chem 52 1569 (1974) (5) M 8 McElroy S C Wolsy J E Penner and J C McConnell J

Atmos Sci 31 287 (1974) (6) H Levy II Adv Photochem 9369 (1974) (7) K L Demerjian J A Kerr and J G Calvert Adv Environ Sci Techshy

nol 4 1 (1974) (8) H Niki E E Daby and B Weinstock Adv Chem Ser No 113 16

(1972) (9) J N Pitts Jr and B J Finlayson Angew Chem Int Edit Engl bull 14 1

(1975) (10) C C Wang and L I Davis Jr Phys Rev Lett 32349 (1974) (11) C C Wang L I Davis Jr C H Wu S Japar H Niki and 8 Wein-

stock Science 189 797 (1975) (12) 8 Weinstock and H Niki Science 176290 (1972) (13) 8 Weinstock and T Y Chang Telus 26 108 (1974) (14) J G Calvert and R D McQuigg Proceedings of the Symposium on

Chemical Kinetics Data for the Upper and Lower Atmosphere Warrenshyton Va Sept 15-18 1974 Int J Chem Kinet Symposium No 1 113 (1975)

(15) T A Hecht J H Seinfeld and M C Dodge Environ Sci Technol 6 327 (1974)

(16) A a Eschenroeder and J R Martinez Adv Chem Ser No 113 101 (1972)

l (17) D D Davis S Fischer and R Schiff J Chem Phys 61 2213 (1974) (18) R Overend G Paraskevopoulos and R J Cvetanovlc 11th Informal

Conference on Photochemistry Vanderbilt University Tenn June 1974

I (19) J Margltan F Kaufman and J G Anderson Geophys Res Lett 1 80

(1974) (20) S Gordon and W A Mulac Proceedings of the Symposium on Chemishy

cal Kinetics Data for the Lower and Upper Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Symposium No 1 289 (1975)

(21) E D Morris Jr and H Niki J Phys Chem 75 3640 (1971) (22) J N Bradley W Hack K Hoyermann and H Gg Wagner J Chem

Soc Faraday Trans 1 69 1889 (1973) (23) R A Gorse and D H Volman J Photochem 1 1 (1972) 3 115

(1974) (24) N R Greiner J Chem Phys 53 1070 (1970)

t (25) N R Greiner J Chem Phys 46 3389 (1967) (26) J Peeters and G Mahnen Symp (Int) Combust [Proc] 14th 113

(1973) (27) F Stuhl Z Naturlorsch A 28 1383 (1973) (28) F Stuhl Ber Bunsenges Phys Chem 77 674 (1973) (29) N R Greiner J Chem Phys 53 1284 (1970) (30) E D Morris Jr D H Stedman and H Niki J Am Chem Soc 93

3570 (1971) (31) I W M Smith and R Zellner J Chem Soc Faraday Trans 2 69

1617 (1973) (32) A V Pastrana and R W Carr Jr J Phys Chem 79 765 (1975) (33) R A Cox Proceedings of the Symposium on Chemical Kinetics Data

for the Lower and Upper Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Sypposium No 1379 (1975)

(34) S Fischer R Schiff E Machado W Bollinger and D D Davis 169th National Meeting of the American Chemical Society Philadelphia Pa April 6-11 1975

(35) R Atkinson and J N Pitts Jr J Chem Phys 63 3591 (1975) (36) D D Davis S Fischer R Schiff R T Watson and W Bollinger J

Chem Phys 63 1707 (1975)

Lloyd Darnall Winer and Pitts

(37) E R Stephens Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973

(38) A P Altshuller S L Kopczynski W A Lonneman F D Sutterfield and D L Walson Environ Sci Technol 4 44 (1970)

(39) H Mayrsohn M Kuramoto J H Crabtree T D Sothern and S H Mano Atmospheric Hydrocarbon Concentrations June-Sept 1974 California Air Resources Board April 1975

(40) D A Hansen R Atkinson and J N Pitts Jr J Phys Chem 79 1763 (1975)

(41) D D Davis W Bollinger and S Fischer J Phys Chem 79 293 (1975)

(42) G J Doyle A C Lloyd K R Darnall A M Winer and J N Pitts Jr Environ Sci Technof 9 237 (1975)

(43) J N Pitts Jr P J Bekowies G J Doyle J M McAfee and A M Wirier An Environmental Chamber-Solar Simulator Facility for the Study of Atmospheric Photochemistry to be submitted for publication

(44) G J Doyle P J Bekowies A M Winer and J N Pitts Jrbull A Charshycoal-Adsorption Air Purification System for Chamber Studies Investigatshying Atmospheric Photochemistry Environ Sci Technol submitted for publication

(45) E R Stephens and F R Burleson J Air Pollut Control Assoc 17 147 (1967)

(46) Ozone measurement was based on calibration by the 2 neutral buffshyered Kl method and was subsequently corrected from spectroscopic calibration data (see J N Pitts Jr J M McAfee W Long and A M Winer Environ Sci Technol in press)

(47) J R Holmes R J OBrien J H Crabtree T A Hecht and J H Sein-feld Environ Sci Technol 1519 (1973)

(48) W P Carter A C Lloyd and J N Pitts Jr unpublished results (49) D H Stedman CH Wu and H Niki J Phys Chem 11 2511 (1973) (50) D H Stedman and H Niki Environ Lett 4303 (1973) (51) J J Bufallnl and A P Altshuller Can J Chem 45 2243 (1965) (52) P L Hans E R Stephens W E Scott and R C Doerr Atmospheric

Ozone-Olefin Reactions The Franklin Institute Philadelphia Pa 1958

(53) S M Japar CH Wu and H Niki J Phys Chem 18 2318 (1974) (54) H Niki and B Weinstock Environmental Protection Agency Seminar

Washington DC Feb 1975 (55) S M Japar and H Niki J Phys Chem 79 1629 (1975) (56) A C Lloyd Int J Chem Kinet VI 169 (1974) (57) J M McAfee J N Pitts Jr and A M Winer In-Situ Long-Path Inshy

frared Spectroscopy of Photochemical Air Pollutants In an Environmenshytal Chamber presented at the Pacific Conference on Chemistry and Spectroscopy San Francisco Calif Oct 16-18 1974

(58) T Nash Telus 26 175 (1974) (59) J G Calvert J A Kerr K L Demerjian and R D McQulgg Science

175 751 (1972) (60) W i Schwartz P W Jones C J Riggle and D F Miller Chemical

Characterization of Model Aerosols EPA-6503-74-011 Aug 1974 (61) F S Toby and S Toby Proceedings of the Symposium on Chemical Kishy

netics Data for the Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Symposium No 1 197 (1975)

(62) K H Becker U Schurath and H Seitz Int J Chem Kinet 6 725 (1974)

(63) R E Huie and J T Herron Proceedings of the Symposium on Chemishycal Kinetics Data for the Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Kinet Symposium No 1 165 (1975)

(64) R J Cvetanovic and L C Doyle Can J Chem 38 2187 (1960) middot (65) K R Darnall A C Lloyd A M Winer and J N Pitts Jr Environ Sci

Technol in press

middotThe Journal of Physical Chemistry Vol 80 No 8 1976

64

rl

i

8 ~

ct il

Introduction

During the last six years the major role of the hydroxyl radical (OH) in atmospheric chemistry and photochemical air pollution has been recognized1-7 and kinetic data for the reshyaction of OH with both organic and inorganic species have increased substantially8 However there are currently no published rate constant determinations for the reaction of OH with ketones chloroethenes or any of the naturally occurring hydrocarbons such as the nionoterpenes Such rate constant data for the reaction of OH with these three classes of com-middot pounds would be useful in part because of their increasing importance for modeling the atmospheric processes occurring both in urban and rural atmospheres Specifically ketones and chlorinated hydrocarbons are components of commercial solvents910 Both tri- and tetrachloroethene have been obshyserved in the troposphere at part per trillion (ppt) concenshytrations of lt511 and 20 ppt1112 respectively while methyl ethyl ketone has been observed at concentrations of 1-6 parts per billion (ppb)13 Monoterpene hydrocarbons have been shown to be present in the atmosphere with source strengths of millions of tons annually14 Thus Rasmussen1516 and coshyworkers have estimated that on an individual basis such naturally occurring hydrocarbons have ambient concentrashytions in the low ppb range and are largely responsible for the blue haze occurring in certain forested areas 17

This paper describes an extension of our recent experiments in which an environmental chamber has been employed to obtain relative rate constants for the gas phase reaction of the hydroxyl radical with a series of hydrocarbons1819 In this case we report data for the reaction of OH with three ketones two chloroethenes and three monoterpene hydrocarbons using isobutene as a reference compound

bullExperimental Section

The experimental methods and procedures employed have been described in detail e1Rewhere1819 and are only briefly summarized here Irradiations of the hydrocarbon-NO_-air system were carried out in a Pyrex chamber20 of approxishymately 64001 volume equipped with externally mounted

tteprmteo _rrom me urna1 I tnys1ca1 ~em1suy liU 1_01_ l l~ m1f Copyright 1976 by the American Chemical Society and reprinted by perm1ss10n of the copyright owner

Relative Rate Constants for the Reaction of the Hydroxyl Radical with

Selected Ketones Chloroethenes and Monoterpene Hydrocarbons

Arthur M Winer Alan C Lloyd Karen R Darnall and James N Pitts Jrbull

Statewide Air Pollution Research Center University of California Riverside California 92502 (Received January 30 1976)

Publication costs assisted by the University of California Riverside

The relative rates of disappearance of three monoterpmiddotene hydrocarbons two chloroethenes and three alishyphatic ketones were measured in an environmental chamber under simulated atmospheric conditions at 305 middot plusmn 2 K The observed rates of disappearance were used to derive relative rates of reaction of these organic compounds with the hydroxyl radical (OH) on the previously validated basis that OH is the species domishynantly responsible for the hydrocarbon disappearance under the experimental conditions employed Absoshylute rate constants obtained from the relative values using the published rate constant for OH + isobutene (305 X 1010 M-1s-1) are (k X 10-10 M-1s-1) o-pinene 35 plusmn 05 B-pinene 41 plusmn 06 d-limonene 90 plusmn 14 methyl ethyl ketone 020 plusmn 006 methyl isobutyl ketone 09 plusmn 03 diisobutyl ketone 15 plusmn 05 trichloshyroethene 027 plusmn 008 tetrachloroethene 013 plusmn 004 No previous determinations of these rate constants have been found in the literature Rate constants for an additional nine monoterpene hydrocarbons have been derived from data recently published by Grimsrud Westberg and Rasmussen

Sylvania 40-BL fluorescent lamps whose spectral distribution has been reported elsewhere21 (photon flux at 300 nm is apshyproximately 1 of the photon flux maximum at 360 nm) The light intensity measured as the rate of NO2 photolysis in nishytrogen22 k1 was approximately 04 min-1bull All gaseous reacshytants were injected into pure matrix air23in the chamber using 100-ml precision bore syringes Mixtures of the liquid reacshytants were injected using micropipettes During irradiation the chamber temperature was maintained at 305 plusmn 2 K

Alkene terpene and ketone concentrations were measured by gas chromatography (GC) with flame ionization detection (FID) using the columns and techniques developed by Steshyphens and Burleson2425 The chloroethenes were also monishytored with GC(FID) using a 10 ft X frac34instainless steel column packed with 10 Carbowax 600 on C22 Firebrick (100110 mesh) Ozone26 was monitored by means of ultraviolet abshysorption (Dasibi Model 1003 analyzer) carbon monoxide by gas chromatography (Beckman 6800 air quality analyzer) and NO-NOrNO by the chemiluminescent reaction of NO with ozone (TECO Model 14B)

The initial concentrations of reactants are shown in Table I In addition to these compounds ethene (20-28 ppb) ethane (48-61 ppb) acetylene (25-37 ppb) propane (13-15 ppb) and variable concentrations of formaldehyde (16-134 ppb) acshyetaldehyde (0-7 ppb) and acetone (3-19 ppb) were present Initial concentrations in these experiments were 1200-2100 ppb C of total nonmethane hydrocarbons 058 ppm of NO (with an NOvNOx ratio of005-010) 5 ppm of CO and 2900 ppb of methane together with water vapor at 50 relative humidity Replicate experiments were carried out in which this mixture was irradiated for 2-3 h with continuous analysis of inorganic species analysis of hydrocarbons every 15 min and analysis of monoterpenes chloroethenes and ketones every middot30 min

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilution rate (12 per hour) from the observed hydrocarbon disappearance rate The HCNO and NONO2 ratios were chosen to delay the forshymation of ozone and ozone was not detected during the irra-

The Journal of Physical Chemistry Vol 80 No 14 1976

65

i

1636

TABLE I Rates of Disappearance and Rate Constantsa for Selected Ketones Chloroethenes and Monoterpene Hydrocarbons at 1 atm in Air at 305 plusmn 2 K

middot Relative Initial rate of concn disap- koH0 Mmiddot

Compound ppb pearance smiddotbull X 10middot10

C

A M Winer A_ C Lloyd K R Darnall and J N Pitts

100-------~-------r-------- _eo___J-__

--~bull middot METHYL ETHYL KETONE 60

~ r-----__ g 2o+---__ ~--------t5 -- __ middot METHYL ISOBUTYL KETONE

u bull --------8 - middot---- 0 10 -- DIISOBUTYL KETONE ~ a

~ 6 ~bull ISOBUTENE

0 05 10 15 20 HOURS OF IRRADIATION

Figure 1 Concentrations of ketones (plotted on a logarithmic scale) during 2-h photolysis of HC-NO mixture in air at 305 plusmn 2 Kand 1 atm

-60

-~ ~-- I - -~ 40bull __ middot---

~ ~ __ ------~ 2 ----_ middot-middot- ~20~ _____ ISOBUTENE

~ ----- middot---0 bull bull

~ bull -~ a-PINENE

z 10 ---8 8 bull --

~6 - --

ll d-LIMONENE e-PINENE (D

0 4~----__---_________J_~_ 0 2 3

HOURS OF IRRADIATION

Figure 2 Concentrations of monoterpene hydrocarbons (plotted on a logarithmic scale) during 3-h photolysis of HC-NO mixture in air at 305 plusmn 2 K and 1 atm

X 106 radicals cm-3 using the observed rates of isobutene disappearance (corrected for dilution) and the previously determined rate constant for OH + isobutene35These con-

centrations are of the same order as those observed directly 32 36 37in ambient air31

Results and Discussion

Typical rates of disappearance observed during a 2-h irrashydiation of the three ketones and 3-h irradiations of the three monoterpene hydrocarbons and the two chloroethenes are shown in Figures 1 2 and 3 respectively Isobutene was used as the reference compound (and is included in each figure) rather than n-butane which was used in our previous studshyies1819 because its reactivity was closer to that of the terpenes and its rate of decay could be measured more accurately in our system In addition the ratio of k0Hlk0a for isobutene is greater3235 than that for any of the other olefi ns studied thus minimizing any contribution to the disappearance rate due to reaction with ozone Table I gives the disappearance rates

66

lsobuene Prop-ne cis-2-Butene Methyl ethyl

ketore Methyl isobutyl

ktgttone Diisobutyl ketone o-Pinene 3-Pinene d-Limonene frichloroethene Tetrachloroethene

17-20 5-7 7-8

50-100

20-70

20-32 10-20 10-20 10-20 41-161 14-88

10 049 122 007

03

05 114 133 295 0088 0044

305 plusmn 031 149 plusmn 022 372 plusmn 056 020 plusmn 006

09 plusmn 03

15 plusmn 05

a Placed on an absolute basis using 305 X 10 0

OH isobutene from ref 35 b The indicated error limits are plusmn 15 except in the case of the chloroethenes and ketones for which they are plusmn 30 These represent the estimated overall error limits and include both experimental errors and uncertainties which may occur in assuming that hydroshycarbon disappearance is due solely to reaction with OH

diation period except in the case of one experiment for which a small correction for the loss of hydrocarbon due to reaction with ozone was applied to the alkene disappearance rates

In order to obtain additional data (at lower OH concen- trations) to correct for the concurrent photolysis of the ketones as discussed below irradiations of a mixture of ketones and isobotene were carried out In these experiments NO CO and other hydrocarbons were not added and under these conditions relatively low concentrations of OH ( lt5 X 105 radicals cm-3) were obtained

Hydroxyl Radical Source in this System As discussed previously19 the major sources of OH and its precursors in our experimental system are probably the reactions452728

NO + N02 + H20 plusmn 2HONO (1)

H02 + N02 - HONO + 02 (2)

HONO + hv (290-410 nm) - OH + NO (3)

H02+NO--OH+N02 (4)

The first reaction is now thought to occur slowly homogeshyneously29 but its rate is probably significantly faster when the reaction is catalyzed by surfaces Thus nitrous acid has been observed in a chamber study of simulated atmospheres carried out in our laboratory30 while direct evidence for formation of OH radicals in an environmental chamber has been proshy

32vided recently by Niki Weinstock and co-workers31

Reaction 4 of major importance provides a further source 34of the OH radical H02 can be formed in air33 by any

mechanism producing H atoms or formyl radicals (eg formaldehyde photolysis) via the reactions

H + 02+ M-H02 +M (5)

HCO + 02 - H02 + CO (6)

Thus any mechanism producing H02 in our system is also a means of furnishing OH radicals via reaction 4

The concentration of OH radicals present during these irshyradiated HC-NO experiments was calculated to be (14-35)

The Journal of Physical Chemistry Vol 80 No 14 1976

348 plusmn 052 406 plusmn 061 900 plusmn 135 027 plusmn 008 013 plusmn 004

M-1 s-bull for

OH Radical Reaction with Selected Hydrocarbons

50------------~----~--

-middot---middot TRICHLOROETHENE

bull TETRACHLOROETHENE ---middot

IOloz--------l--------l2-----1-3---

HOURS OF I RRAOIATION

Fgure 3 Concentrations of chloroethenes (plotted on a logarithmic scale) during 3-h photolysis of HC-NOx mixture in air at 305 plusmn 2 Kand 1 atm

l (corrected for dilution) for these reactants relative to that for isobutene based on data for the three separate experiments for monoterpenes and four separate experiments for methyl

t isobutyl and diisobutyl ketone and chloroethenes Methyll ethyl ketone was present in all experiments

Employing the fact that a range of OH concentrations (20 X 105-35 X 106 radicals cm-3) was observed in these experishy

[ ments corrections to the measured rates of disappearance of the ketones were made for the possible small contribution

middotfrom photolysis of these compounds These corrections were made in the following manner The observed rate of disapshypearance ofa ketone is given by

d ln (ketone]dt = kK[OH] + khv (7)

where kK and khv are the rate constants for reaction with OH and photolysis respectively The isobutene disappearance rate is controlled solely by reaction with OH hence

[OH] =d In [isobutene] (8)dt ks

where kB is the rate constant for reaction of OH with isobushytene Thus substituting for [OH] in eq 7

d In [ketone] _ kK d In [isobutene] dt - kiB dt + kh (9)

Based on eq 9 the relative rates of ketone disappearance were determined from the slopes of plots of d In [ketone]dt vs d ln [isobutene]dt The intercepts of these plots gave the rate constants for photolysis For methyl ethyl methyl isobutyl and diisobutyl ketone the ratios k Kfk iB were 007 03 and 05 respectively and the photolysis rate constants khv were 0007 0014 and 025 h-1 respectively

On the basis that the OH radical is the species dominantly responsible for the hydrocarbon depletion during the 2- or 3-h irradiations (as discussed in detail in our earliermiddotpapers)1819 absolute rate constants were derived from the relative rates of disappearance using Atkinson and Pitts35 value of (305 plusmn 031) X 1010 M-1s-1for the reaction of OH with isobutene These results are shown in Table I It should be noted that the ratio of rate constants (05 and 12 respectively) obtained here for propene and cis-2-butene relative to isobutene are in exshycellent agreement with the ratios obtained by Atkinson and Pitts (05 and 11 respectively)35

1637

Ketones To our knowledge the data presented here repshyresent the first experimental determination of rate constants for the reaction of the OH radical with any ketones in the gas phase The only literature value for ketones is an estimated rate constant of 21 X 109 M-1s-1for the reaction of OH with methyl ethyl ketone which was made by Demerjian Kerr and Calvert5 on a thermochemical basis This value is in remarkshyably good agreement with the experimental value obtained here (20 X 109 M-1 s-1) middot

The rate constants for the reaction of OH with the two other ketones reported here are significantly larger than that for methyl ethyl ketone Thus the rate constant for diisobutyl ketone is about the same as that for OH+ propeneB1935 The dominant mode of reaction of OH with ketones is expected to be one of hydrogen abstraction This is consistent with the increased rate constant in going from methyl ethyl ketone to diisobutyl ketone reflecting a weaker C-H bond strength in going to more highly substituted ketone

Acetone is relatively stable under conditions employed in our photooxidation studies and consequently the rate conshystant for OH + acetone was not measured Based on the fact that the C-H bond strength in acetone (98 kcal) is 6 kcal stronger than that for methyl ethyl ketone (92 kcal) one would e~pect OH to react significantly slower with acetone than with methyl ethyl ketone

Chloroethenes Rate constants for the gas phase reactions of OH with tri- and tetrachloroethene (C2HC3 and C2CI4

respectively) have not been reported previously The rat constants found in this study are 05 and 025 respectively of the rate constant for OH + C2Hi19 This difference in reshyactivity for the chloro-substituted ethenes and ethene is consistent with the results of Sanhueza and Heicklen38-40 who reported that the rates of reaction of 0(3P) with C2HC13and C2C4 were the same and were both a factor of 10 less than that for the reaction of 0(3P) with ethene

Our results show that trichloroethene is mor~ reactive with respect to attack by OH than tetrachloroethene This is in agreement with the results ofLissi41 for CH30 reactions and Franklin et al42 for CI atom reactions with these compounds These workers found relative rates for attack on C2HC3 and C2C4 of 22 and 26 for CH30 and Cl respectively compared to 20 for OH as found in the present study Gay et aI43 reshycently reported results from a photooxidation study of chloc roethenes which while not directly comparable to the present study due to the presence of substantial concentrations of ozone showed that C2HCI3 disappeared more rapidly than C2Cl4 (near the beginning of their irradiations when ozone concentrations were relatively low the ratio of the rates of disappearance was ~2)

Since addition is likely to be the primary reaction pathway for attack by OH the relative reactivity of C2H4 C2HCia and C2Cl4 should reflect the relative magnitudes of the ionization potentials of these molecules which are 1066 948 and 934 eV respectively Our results are consistent with this trend

Monoterpene Hydrocarbons The terpenes experimentally investigated were a-pinene (I) 1-pinene (II) and d-limonene (III) The detection limit for ozone in these experiments was

XI) xD -0-lt II III

~1 ppb and since no ozone was detected during irradiations of the terpenes an upper limit to the contribution due to reshyaction with ozone to the observed rates of terpene disap-

The Journal of Physical Chemistry Vol 80 No 14 1976

67

1638

TABLE II Reactivity of Selected Monoterpenes with O(P) 0

3 and OH

Rate constant M-1 s- 1

Compound O(P)l 03 OHe

o-Pinene 160 plusmn 006 20 X 105 b 35x10 0

X 10 0 10 X 105c 88 X l0~d

J-Pinene 151 ~ 006 22 X l0bulld 41 X 10 0

X 10 0

d-Limonene 650 plusmn 052 39 x 105 d 90 X 10 0

X 10 0

a Reference 49 b Reference 48 c Reference 45 d Referbull ence 16 e This work

pearance can be calculated Thus assuming an ozone conshycentration of 10 ppb and using published rate constants for the reaction of ozone with the terpenes1643-45 an upper limit of 7 of the overall disappearance rate is obtained for the case of d-limonene (the worst case) at the lowest OH concentration present in these experiments (14 X 106radicals cm-3)

l It is interesting to note that the rate constant 37 X 1010

M- 1 s-1 obtained in this study for OH + cis-2-butene a component in the hydrocarbon mix (Table I) used in this set of experiments is in good agreement with the values of 32 X

l 1010 and 37 X 1010 M-1 s-1 obtained by Atkinson and Pitts35 and Morris and Niki46 respectively although our value is somewhat higher than the value of 26 X 1010 M-1 s-1obtained by Fischer et al47 in these three studies the rate constant was r determined from elementary reaction measurements

Table I shows the absolute rate constant values obtained for the terpenes Clearly these natural hydrocarbons react very rapidly with OH For example a-pinene reacts about 3 X 105 times faster with OH than with ozone1648 Thus for an ozone concentration of 3 X 1012 molecules cm-3 (012 ppm) and an OH concentration of 107 radicals cm-3 the rates of disappearance of a-pinene due to reaction with 0 3 and OH respectively will be essentially equal A comparison of the rates of the three terpenes with O(3P) 0 3 and OH is given in Table 1116bull4546 Within the experimental errors for the rate constants for OH + a- and 6-pinene the trend observed for reaction with OH is the same as that observed for reaction with O(3P) and 03

Grimsrud Westberg and Rasmussen (GWR)16 have reshyported the relative rates of photooxidation of a series of monoterpene hydrocarbons using mixtures of 10 ppb of the monoterpene and 7 ppb of nitric oxide which were irradiated for periods ranging between 60 and 120 min Making the rsasonable assumption that as in the case of our studies OH is the major species depleting the hydrccarbon in their exshyperiments then a series of rate constants relative to isobutene (which was included in the GWR study) can be generated in the same manner as described above The data from GWR are given in T-able III relative to isobutene = 10

Considering the- uncertainties involved in this approach (including a lack of knowledge of the exact ozone concentrashytions formed in the experiments of GWR) the agreement between our results for the reaction of OH with a- and 6-pinene and d-limonene and those shown in the fourth column of Table III is quite good and except in the case of a-pinene well within the estimated experimental uncertainty for our determinations The fact that our value of OH + d-limonene is only slightly higher than GWR suggests that little or no 03 was formed in their experiments since there was less than 1 ppb formed during our irradiations

The Journal of Physical Chemistry Vol 80 No 14 1976

A M Winer A C Lloyd K A Darnall and J N Pitts

TABLE III Relative Reaction Rates of Monoterpene Hydrocarbons and Rate Constantsl for Their Reaction with the OH Radical Based on Data from Grimsrud Westberg and Rasmussen (Ref 16)

Rel koH M-bull Hydrocarbon Structure reactivity s-bull X 10-10

p-Menthane 013 040-0-lt p-Cymene 030 092 (078 -0-lt plusmn 016)b

Isobutene )= 10 305

~Pinene 13 40 (41 gtQ) plusmn 06)C

Isoprene 155 47 (46 ~ plusmn 0 9)d

o-Pinene 15s 47 (35 plusmn 05)C~

3-Carene 17 52-cl-~Phellandrene 23 70-0-lt Carvomenthene 25 76-0-lt d-Limonene 29 88 (90-0-lt plusmn 14)C

Dihydromyrcene 36 101~ Myrcene 45 137~ cis-Ocimene 63 192~

a Placed on an absolute basis using 305 x 10 0 M- 1 s-bull for OH+ isobutene from ref 35 b For p-ethyltoluene which is structurally similar (ref 19) c Present work (see Table II) d For 13-butadiene which is structurally similar (ref 19)

A further check on the validity of using the results of Grimsrud Westberg and Rasmussen16 to obtain OH rate constant data is provided by the values derived for the reacshytion of OH with p-cymene and isoprene p-Cymene is structurally very similar to p-ethyltoluene and hence the OH rate constants for these two compounds should be comparable In fact this is the case with the value for OH+ p-cymene of 91 X 109 M-1 s-1 derived from the data of GWR being very close to that obtained for OH+ p-ethyltoluene 78 X 109 M-1

s-1 in our previous study19 Likewise isoprene is structurally similar to 13-butadiene and the rate constant derived for isoprene of 47 X 1010 M-1 s-1 is consistent with that preshyviously measured19 for OH+ 13-butadiene of 46 X 1010 M-1

s-1 On the basis of these comparisons it appears valid to use the photooxidation data of Grimsrud Westberg and Rasshymussen16 to obtain OH rate constant data for the series of monoterpenes which they investigated

Conclusion

Relative rate constants have been experimentally detershymined for the reaction of OH with eight compounds and these rate constants have been placed on an absolute basis using the literature value for the rate constant for OH + isobutene35

In the same manner rate constants for the reaction of OH with nine additional compounds (monoterpene hydrocarbons) for

68

OH Radical Reaction with Selected Hydrocarbons

which no previous rate constants are available have been deshyrived from data recently published by Grimsrud Westberg and Rasmussen16

The comparatively large rate constants obtained for the ketones and monoterpene hydrocarbons indicate that they will be quite reactive in the troposphere The implications for photochemical oxidant control strategies of the chemical reshyactivity of the ketones chloroethenes and terpenes are disshycussed in detail elsewhere5051

Acknowledgments The authors gratefully acknowledge the helpful comments of Drs R Atkinson and E R Stephens during the preparation of this manuscript G Vogelaar and F Burleson for the gas chromatographic analyses and W D Long for valuable assistance in conducting the chamber exshyperiments

This work was supported in part by the California Air Reshysources Board (Contract No 5-385) and the National Science Foundation-RANN (Grant No AEN73-02904-A02) The contents do not necessarily reflect the views and policies of the California Air Resources Board or the National Science Foundation-RANN nor does mention of trade names or commercial products constitute endorsement or recommenshydation for use

References and Notes

(1) J Heicklen K Westberg and N Cohen Publication No 114-69 Center for Air Environmental Studies Pennsylvania State University University Park Pa 1969

(2) D H Stedman E D Morris Jr E E Daby H Niki and B Weinstock presented at the 160th National Meeting of the American Chemical Society Chicago Ill Sept 14-18 1970

(3) B Weinstock E E Daby and H Niki Discussion on Paper Presented by E R Stephens in Chemical Reactions in Urban Atmospheres C S Tuesday Ed Elsevier New York NY 1971 pp 54-55

(4) H Niki E E Daby and B Weinstock Adv Chem Ser No 113 16 (1972) (5) K L Demerjian J A Kerr and J G Calvert Advances in Environmental

Science and Technology Vol 4 Wiley-lntersclence New York NY 1974 p 1

(6) H Levy 11 Advances in Photochemistry Vol 9 Wiley-ln1erscience New York NY 1974 p 1

(7) S C Wofsy and M B McElroy Can J Chembull 52 1582 (1974) (8) R F Hampson Jr and D Garvin Ed Chemical Kinetic and Photoshy

chemical Data for Modeling Atmospheric Chemistry NBS Technical Note No 866 June 1975

(9) A Levy and S E Miller Final Technical Report on the Role of Solvents in Photochemical Smog Formation National Paint Varnish and Lacquer Association Washington DC 1970

( 10) M F Brunelle JE Dickinson and W J Hamming Effectiveness of Orshyganic Solvents in Photochemical Smog Formation Solvent Project Final Report County of Los Angeles Air Pollution Control District July 1966

(11) E P Grimsrud and R A Rasmussen Atmos Environ 9 1014 (1975) (12) J E Lovelock Nature (London) 252 292 (1974) (13) E R Stephens and F A Burleson private communication of unpublished

data (14) R A Rasmussen and F W Went Proc Natl Acad Sci USA 53215

(1965) R A Rasmussen J Air Polut Control Assoc 22537 (1972) (15) R A Rasmussen and M W Holdren Analysis of Cs to C 10 Hydrocarbons

in Rural Atmospheres J Air Pollut Control Assoc Paper no 72-19 presented at 65th Annual Meeting (June 1972)

(16) E P Grimsrud H H Westberg and R A Rasmussen Atmospheric Reshyactivity of Monoterpene Hydrocarbons NOx Photooxldation and Ozonolshyysls middot Proceedings of the Symposium on Chemical Kinetics Data for the

1639

Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Kinet Symp No 1 183 (1975)

(17) F W Went Nature(London) 187641 (1960) bull (18) G J Doyle A C Lloyd K R Darnall A M Winer andJ N Pitts Jr Enshy

viron Sci Technol 9237 (1975) (19) A C Lloyd K R Darnall A M Winer and J N Pitts Jr J Phys Chem

80 789 (1976) (20) J N Pitts Jr P J Bekowies A M Winer G J Doyle JM McAfee and

K W Wilson The Design and Construction of an Environmental Chamber Facility for the Study of Photochemical Air Pollution Final Report Calishyfornia ARB Grant No 5-067-1 in preparation

(21) Sylvania Technical Bulletin No 0-306 Lighting Center Danvers Mass 01923 1967

(22) J R Holmes R J OBrien J H Crabtree T A Hecht and J H Seinfeld Environ Sci Technol 7 519 (1973)

(23) G J Doyle P J Bekowies A M Winer and J N Pitts Jr Environ Sci Technol accepted for publication

(24) E R Stephens Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973 NTIS No PB 230 993AS

(25) E R Stephens and F R Burleson J Air Pollut Control Assoc 17 147 (1967)

(26) Ozone measurement was based on calibration by the 2 neutral buffered Kl method and was subsequently corrected from spectroscopic calibration data [-see J N Pitts Jr J M McAfee W Long and A M Winer Environ Sci Technol in pressJ

(27) B Weinstock and T Y Chang Telus 26 108 (1974) (28) T A Hecht J H Seinfeld and M C Dodge Environ Sci Technol 8 327

(1974) (29) L Zafonte P L Rieger and J R Holmes Some Aspects of the Atmoshy

spheric Chemistry of Nitrous Acid presented at 1975 Pacific Conference on Chemistry and Spectroscopy Los Angeles Calif Oct 28-30 1975 W H Chan R J Nordstrum J G Calvert and J N Shaw Chem Phys Lett 37441 (1976)

(30) J M McAfee A M Winer and J N Pitts Jr unpublished results (31) C C Wang L I Davis Jr CH Wu S Japar H Niki and B Weinstock

Science 189 797 (1975) (32) H Niki and B Weinstock Environmental Protection Agency Seminar

Washington DC Feb 1975 (33) A C Lloyd Int J Chem Kinet 6 169 (1974) (34) J G Calvert J A Kerr K L Demerjian and R D McQuigg Science 175

751 (1972) (35) R Atkinson and J N Pitts Jr J Chem Phys 63 3591 (1975) (36) D Perner D H Ehhalt H W Patz U Platt E P Roth and A Volz OH

Radicals In the Lower Troposphere 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(37) D D Davis T McGee and W Heaps Direct Tropospheric OH Radical Measurements Via an Aircraft Platform Laser Induced Fluorescence 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(38) E Sanhueza and J Helcklen Can J Chem 52 3870 (1974) (39) E Sanhueza and J Helcklen Int J Chem Kinet 6 553 (1974) (40) E Sanhueza I C Hisatsune and J Heicklen Oxidation of Haloethylenes

Center for Air Environment Studies The Pennsylvania State University CAES Publication No 387-75 Jan 1975

(41) E A Lissi private communication to authors of ref 40 and quoted therein (42) J A Franklin G Huybrechts and C Cillien Trans Faraday Soc 65 2094

(1969) (43) B W Gay Jr P L Hans J J Bufalinl and R C Noonan Environ Sci

Technol 10 58 (1976) (44) R F Lake and H Thompson Proc R Soc London Ser A 315 323

(1970) (45) LA Ripperton and H E Jefferies Adv Chem Ser No 113 219 (1972) (46) E D Morris Jr and H Niki J Phys Chem 75 3640 (1971) (47) S Fischer R Schiff E Machado W Bollinger and D D Davis 169th

National Meeting of the American Chemical Society Philadelphia Pa April 6-11 1975

(48) S M Japar CH Wu and H Niki Environ Lett 7245 (1974) (49) J S Gaffney R Atkinson andJ N Pitts Jr J Am Chem Soc 97 5049

(1975) (50) K R Darnall A C Lloyd A M Winer and J N Pitts Jr Environ Sci

Technol in press (51) J N Pitts Jr A C Lloyd A M Winer K R Darnall and G J Doyle

Development and Application of a Hydrocarbon Reactivity Scale Based on Reaction with the Hydroxyl Radical to be presented at 69th Annual APCA Meeting Portland Oreg June 27-July 1 1976

The Journal of Physical Chemistry Vol 80 No 14 1978

69

l

Reactivity Scale for Atmospheric Hydrocarbons Based on Reaction with Hydroxyl Radical

Karen R Darnall Alan C Lloyd Arthur M Winer and James N Pitts Jrbull

Statewide Air Pollution Research Center University of California Riverside Calif 92502

Bv use of relative and absolute rate constants for the reshyactiltn of the hydroxyl radical (OH) with a number of alkanes alkenes aromatics and ketones a reactivity scale is formushylated based on the rate of removal of hydrocarbons and oxyshygenates by reaction with OH In this five-class scale each class spans an order of magnitude in reactivity relative to methane Thus assigned reactivities range from lt10 fo~ ~lass I (conshytaining oniv methane) togt104 for Class V cotammg te mo~t reactive compounds (eg d-limonene) This scale differs m several significant ways from those presently utilized by _air p(llution control agencies and various industrial laboratories For example in contrast to other scales based o~ s_eco~dar_y marifestations such as yields of ozone and eye 1rritat1on it focuses directlv on initial rates of photooxidation The proshyposed scale als~ provides a clearer understandin~ of the_imshyportance of alkanes in the generation of ozone durmg per10~s of prolonged irradiation The present ~cale can be readily extended to include additional orgamc compounds (eg natural and anthropogenic hydrocarbons oxygenates chloshyrinated solvents) once their rate of reaction with OH is known

It has been recognized for many years (1-21) that all hyshydrocarbons occurring in polluted atmospheres are not equally effective in producing photochemical oxidant and hence that the application of cost effective strategies for the control of hydrocarbons requires that more stringent emissions reducshytions be applied to the more reactive organic compounds (22-25) This in turn has led to a continuing requirement for a rational assessment of hydrocarbon reactivity as a basis for control decisions Such an assessment is particularly critical since attainment of the Federal air quality standard for phoshytochemical oxidant has been sought largely through the stringent control of hydrocarbon emissions (26-27)

The first effort to formulate and apply a practical hydroshycarbon reactivity scale was taken in 1966 with the impleshymentation by the Los Angeles Air Pollution Control District (LAAPCD) of a regulation known as Rule 66 to limit solvent organic emissions on the basis of their capacity for promoting photochemical smog formation (24-25) This rule an~ other conceptions of reactivity scales (28) represented a maJor adshyvance in the application of the information then available concerning the mechanisms of photochemical smog formation to the development of practical air pollutant emission control strategies

Not surprisingly however both in the past and present there have been significant differences in hydrocarbon reacshytivity scales proposed by local regional and national air pollution control agencies (23 29-31) as well as by industy (14 16) As shown in Table I this can lead to very large difshyferences in emission inventory estimates and in approaches to hydrocarbon control (29 32 33) In this case reactive hyshydrocarbon emission inventory levels calculated by Goeller et al (32) using hvdrocarbon reactivity definitions of the Envishyronmental Protection Agency (EPA) on tlie one hand and the California Air Resources Board (ARB) and LAAPCD on the other differed by factors of 3 to 4

A second problem common to virtually all previous reacbull tivity classifications has been their reliance on smog chamber data obtained for relatively short irradiation (~2-6 h) periods

Thus the recent concern over oxidant formation resulting from ionger irradiations during pollutant tr~sport ~o ~egio_ns downwind of urban sources introduces additional d1fficult1es both in defining what constitutes a reactive hydr~carbon and in categorizing degrees of reactivity For example a compound such as propane the major component in liquefied petroleum gas (LPG) and often cited as a clean fuel is now known (34-36) to contribute to the formation of photochemical oxishydants in the later stages of day-long irradiation periods However on the basis of data obtained during short-term ir- middot radiations propane has been classified as unreactive in a reactivity scale proposed (23) by B Dimitriades of the EPA (hereafter referred to as the EPA reactivity scale)

Altshuller ald Bufalini (9 17) have reviewed the various definitions of hydrocarbon reactivity ~nd summarized results of numerous studies up to 1970 The criteria used for evalushyating hydrocarbon reactivity include hydrocarbon conshysumption the conversion of nitric oxide to nitrogen dioxide ozone formation aerosol formation eye irritation and plant damage It is generally agreed that the criteria most suitable with respect to photochemical oxidant control strategies are ozone dosage or maximum ozone concentration (29) However establishing a definitive hydrocarbon reactivity scale to be applied specifically to the control of ozone formation requires an extensive and lengthy experimental program in which the ozone-forming capability of each individual hydrocarbon is determined under simulated atmospheric conditions inshycluding long-term irradiation (ie 12-14 h)

An alternative basis for assessing hydrocarbon reactivity which would appear to have considerable utility and a valid experimental foundation is the formulation of a reactivity scale based on the rate of disappearance of hydrocarbons due to reaction with the hydroxyl radical the key intermediate spcies in photochemical air pollution

Results and Discussion

It is only in the last six years that the critical role-of OH in photochemical smog formation has been generally recognized (37-40) and that appreciable rate constant data have become available for the reaction of OH with several classes of hyshydrocarbons The importance of OH as a reactive intermediate relative to species such as Oa 0(3P) and H02 has been shown previously (39-41) through computer modeling of smog chamber data For example Niki et al (39) showed that the reactivity of a number of hydrocarbons as measured by the rate of conversion of NO to N02 correlated significantly better with OH rate constants than with either 0(3P) or Oa rate constants

Table I Comparison of Reactive Hydrocarbon Inventory Levels for Fixed Sources Under Alternative Reactivity Assumptions (from Ref 32 Based on Pre-1973 Data)

Reactive hydrocarbons tonsday

Control Conslslenl ARB-

strat-iy EPA lAAPCD Rand Corp

1970 8760 2283 6363 1975 nominal 4273 1022 2399 1975 maximal 2906 577 1299

Reprinted from ENVIRONMENTAL SCIENCEamp TECHNOLOGY yo 10 Page 692 ~uly 1976 Copyright 1976 by the American Chemical Society an1 0eprinted by perm1ss1on of the copynght owner

The utility of a large environmental chamber in obtaining relative rate constants with an accuracy of plusmn20 for the reshyaction of the hydroxyl radical with a variety of hydrocarbons was demonstrated in an earlier study in this laboratory (41 ) This method has recently been extended to an investigation of more than a dozen additional hydrocarbons including seven compounds for which OH rate constants are not currently available The detailed kinetic data derived from this invesshytigation have been reported elsewhere (42) In these studies we determined the rPlative rates of disappearance of selected alkanes alkenes and aromatic hydrocarbons under simulated atmospheric conditions of temperature pressure concenshy

l

middottrations light intensity and other trace contaminants (NO CO hydrocarbons water) These relative rate constants were placed on an absolute basis using the published rate cons~ts for OH+ n-butane The assumption that OH was responsible for the hydrocarbon disappearance under the experimental conditions employed (41) was subsequently supported by the very good agreement between OH rate constants determined for the individual compounds using flash photolysis-resoshynance fluorescence techniques (43 44) and those obtained in

l the initial chamber study (41) The general validity of the chamber method for obtaining OH rate constants is illustrated in Figure 1 where the good correspondence between chamber values (41 42) and the available literature values [(45) and references in Table IV] is shown graphically

The importance of the chamber method for the purposes of formulating a reactivity scale is the simultaneous detershymination of valid rate constants for reactions of OH with a large number and wide variety of atmospherically important hydrocarbons This substantially expands the number of compounds which can be incorporated now and in the near future in the resulting reactivity scale In this regard we are currently extending (46) the chamber method to the detershymination of rate constants for reactions of OH with natural hydrocarbons such as terpenes and solvent hydrocarbons such as ketones and chloroethenes for which no data currently exist Preliminary kinetic data (46) for selected natural hyshydrocarbons and ketones are included in our proposed reacshytivity scale

Use of OH Rate Constants as a Reactivity Index From the successful correlation of OH rate constants with the rates of hydrocarbon disappearance observed in our chamber simulations we conclude that to a good approximation this

Ill 1-- 25 z

~~ a ii ~ lt 20 ux ow ~ f5 ~ ~ 15 u lt(0 c

()

~ ~ 10 14

~ tla z ILI lt(

~ 1i 5 I- w lt( Q __ Q

ILI lt(a Ill

i5 o 5 ~ ~ W ~ ~ ~ 40

PUBLISHED RATE CONSTANTS ( J mol-1sec-I x 10-9)

Figure 1 Comparison of relative rates of hydrocarbon disappearan~e determined by environmental chamber method (refs 41 a~d 42) with selected published rate constants (cited in Table IV) for reaction of those hydrocarbons with OH radicals Line shown represents one to one correspondence and has slope of ( 1 18) X 10-9 mol s 1- 1bull Compounds shown are 1 n-butane 2 isopentane 3 toluene 4 2-methylpentane 5 n-hexane 6 ethane 7 3-melhylpentane 8 p-xylene 9 erxylene 10-11 m-xylene 12 123-trimeth~lbenzene_ 13 propane 14 124--trimethylbenzene 15 135-trimethylbenzene 16 cs-2-butene

71

Table II Effect of 0 1 PPM Ozone on Calculated Lifetimes of Selected Alkenes Based on Reaction with OH Radicals (1 X 107 Radicalscm3 ) a at 300 K

OH rate constants b Hall-Ille c tor Hall-Ille d lor Alkenamp I mo1- 1 bull-1 [o3J=0 h (03) = 01 ppm h

Ethene 38 X 109 30 28

Propene 15 X 1010 076 067

cis-2- 32 X 1010 036 020 Butene

13-Buta- 46 X 1010 025 024 diene bull b bull

bull Concentration used in these calculations-see text See references on Table IV c t112 = 0693kOH[OH] under the assumption ol attack only by OH d t12 = 0693(kOH[OH] + ko(03]) ko3 taken from refs 45 and 59

correlation can be extr~polated to the atmosphere for alkenes in ambient air parcels during the early morning hours when ozone levels are generally quite low (5005 ppm) and for alshykanes and aromatics at essentially all times and locations The latter assumption namely that an OH rate constant is a good reactivity index for alkanes and aromatics throughout an irradiation day (or multiple irradiation days) rests upon the fact that the rates of reaction of these classes of hydrocarbons with species such as ozone 0(3P) atoms and hydroperoxyl radicals are several orders of magnitude slower than with OH (45 47-49) For example even at the highest ozone concenshytrations experienced in ambient atmospheres 03 will not contribute significantly to the photooxidation of alkanes and aromatics

This is in contrast to the case for alkenes which although the rate constants for reaction of Oa with alkenes are not particularly large (45) react rapidly with ozone at the average concentrations commonly encountered in polluted ambient air (---01-02 ppm) The approximate magnitude of the effect of ozone on the atmospheric lifetimes of alkenes is given in Table II From their OH rate constants (see Table IV) atshymospheric lifetimes for four alkenes were obtained by asshysuming an OH radical concentration in polluted atmospher~s of 107 radicals cm-3 which is a reasonable value on the bass of both model calculations (50) and recent atmospheric measurements (51-53) The half-life given in column 3 of Table II is defined as t 1 2 = 0693k(OH) and assumes deshypletion of the hydrocarbon solely by the hydroxyl radical When one assumes an average concentration of 010 ppm of 0 3 the more reactive alkenes show considerably shorter half-lives (column 4) For example the lifetime of cis-2-butene in the atmosphere is 036 h assuming only reaction with OH but this is reduced to 020 h when reaction with Oa at a conshycentration of 01 ppm is considered

Proposed Reactivity Scale Under the assumption that hydrocarbon depletion is due solely to attack by OH (with the qualification noted for alkenes) we propose a five-class reshyactivity scale based on hydrocarbon disappearance rates due to reaction with OH The ranges of reactivities for the five proposed classes each span an order of magnitude in reactivity relative to methane and are shown in Table III The hydroshycarbon half-lives as defined above are also shown for each reactivity range

Hydroxyl radical rate constant data for a wide ra~ge of atshymospheric hydrocarbons have been taken from the literature as well as from our own studies and are compiled and refshyerenced in Table IV The assignment of these compounds in the various classes of our proposed reactivity scale is shown in the last column of Table IV For interest carbon monoxide is included in this table since although it is not a hydrocarbon it is present in polluted urban atmospheres but is generally regarded as being unreactive in ambient air Thus carbon

Volume 10 Number 7 July 1976 693

l

monoxide appears as being somewhat reactive in Class 11 Cohen (o) and Glasson and Tuesday (8) was essentially the which also includes ethane and acetylene In our current same as that obtained from the studies of hydrocarbon conshycompilation of compounds methane is the only compound sumption carried out by Schuck and Doyle (1 ) Stephens and listed which appears in Class I and 2-methyl- and 23-dishy Scott (3) and Tuesday (5) We are currently investigating methyl-2-butene and d-limonene are the only compounds in methods of quantitatively relating hydrocarbon consumption Class V Several of the higher alkenes and 13-butadiene apshy to nitric oxide oxidation and ozone formation the parameter pear at the upper end of Class IV Data from our recent study of greatest interest in formulating control strategies for oxishyof monoterpeiie hydrocarbons ( 46) indicate that many of these dant reduction compounds will appear in Class V (54) As indicated above Rule 66 formulated by the LAAPCD

Comparison with Other Scales The ranking of reacshy in 1966 represented the first hydrocarbon control measure tivities for the aromatic hydrocarbons in our scale is essentially based on photochemical reactivity Although this regulation the same as that obtained by Altshuller et al (4) and by has been effective results from recent studies (34-36) indicate Kopczynski (7 17) Although our proposed scale is based that the 4-6 h irradiations (25) from which assignments of solely on hydrocarbon disappearance rates Altshuller and the degree of reactivity of hydrocarbons were made in forshyBufalini ( 17) have shown that this measure of reactivity is very mulating Rule 66 did not give sufficient recognition to the similar to the one based on nitric oxide oxidation rates They ozone-forming potential of slow reactors such as n-butane and showed that the ranking of reactivities of hydrocarbons from propane Consequently it is now realized that measures more the nitric oxide photooxidation studies of Altshuller and stringent than Rule 66 are necessary to achieve reductions in

ozone formation to levels approaching th(se mandated by the US Clean Air Act Amendments of 1970

Table Ill Reactivity Scale for Hydrocarbons Based on Recognition of such deficiencies in current hydrocarbon Rate of Disappearance of Hydrocarbon Due to control regulations has led to reexamination of present hyshyReaction with Hydroxyl Radicals drocarbon reactivity classifications The focus of these reshy

evaluations has been the five-class reactivity scale (see TableClasa Hall-Hiebull Reactivity rel to methane ( =1)

I gt99 days lt10 V) proposed by B Dimitriades at the EPA Solvent Reactivity II 24 h to 99 days 10-100 Conference in 1974 (23) Significant changes have been sugshy

gested for this reactivity classification by the California ARB (29 30) the LAAPCD (31) the EPA (55) and by industry

Ill 24-24 h 100-1000 IV 024-24 h 1000-10 000

However since no final conclusions have been reached by any V lt024 h gt10 000 t112 = 0693kOH[OH] of these agencies at this time we will restrict comparison of

our proposed scale to the 1974 EPA scale

r Table IV Proposed Reactivity Classification of Hydrocarbons and CO Based on Reaction with Hydroxyl Radicals

Compound koH + Cpd (I mo1- 1 s-1) X 10-9 Rat Reactivity rel to methane ProPQsad class see Table Ill

Methane 00048 (60) 1 I co 0084 (45) 18 II Acetylene 011 (45 61 66) 23 II Ethane 016 (62) 33 II Benzene 085 (43 44) 180 Ill Propane 13 (63) 270 Ill n-Butane 18 (41 42) 375 Ill lsopentane 20 (42) 420 Ill Methyl ethyl ketone 21 (46) 440 Ill 2-Methylpentane 32 (42) 670 Ill Toluene 36 (43 44) 750 Ill n-Propylbenzene 37 (42) 770 ill lsopropylbenzene 37 (42) 770 ill Ethane 38 (42 64-66) 790 Ill n-Hexane 38 (42) 790 Ill 3-Methylpentane 43 (42) 900 Ill Ethylbenzene 48 (42) 1000 Ill-IV P-Xylene 745 (41 43) 1530 IV p-Ethyltoluene 78 (42) 1625 IV o-Ethyltoluene 82 (42) 1710 IV o-Xylene 84 (41 43) 1750 IV Methyl isobutyl ketone 92 (46) 1920 IV m-Ethyltoluene 117 (42) 2420 IV m-Xylene 141 (4143) 2920 IV 123-Trimethylbenzene 149 (41 43) 3100 IV Propene 151 (67) 3150 IV 124-Trimethylbenzene 20 (41 43) 4170 IV 135-Trimethylbenzene 297 (41 43) 6190 IV cis-2-Butene 323 (67) 6730 IV 8-Pinene 42 (46) 8750 IV 13-Butadiene 464 (42) 9670 IV-V 2-Methyl-2-butene 48 (68) 10 000 V 23-Dimethyl-2-butene 67 (69) 14 000 V d-Limonene 90 (46) 18800 V

bull Where more than one reference is cited an average value is given for the rate constant

694 Environmental Science amp Technology 72

i

Table V Proposed EPA Reactivity Classification of Organics (from Ref 23 1974) Claul Class II Class Ill Class IV Class V

nonreactive reactive reactive reactlVe reactive

C-C3 paraffins Mono-tertiary- CH paraffins Primary and secondary Aliphatic olefins

Acetylene Cycloparaffins a-Methyl styrene alkyl benzeries alkyl benzenes

Cyclic ketones Dialkyl benzenes

Benzaldehyde Tertiary-alkyl n-Alkyl ketones Branched alkyl Tri- and tetra-alkyl acetates ketones

Benzene Styrene Aliphatic aldehydes

benzenes 2-Nitropropane Primary and secondary

Acetone Primary and secondary alkyl acetates Unsaturated ketones Methanol alkyl alcohols N-methyl pyrrolidone Diacetone alcohol Tertiary-alkyl Cellosolve acetate

3lcohols NN-dimethyl Ethers ace tam Ide Partially halogenated

Phenyl acetate CellosolvesolefinsPartially halogenated paraffins Methyl benzoate

Partially halogenated Ethyl amines paraffins

Dimethyl formamlde

Perhalogenated hydrocarbons

Reactivity rating 10 35 65 97 143

Briefly the EPA has proposed on the basis of previous experimental studies that methane ethane acetylene proshypane and benzene are essentially nonreactive for typical urban ambient hydrocarbon-NOx ratios (23) and these compounds are placed in Class I on their scale Three other classes have been proposed for mobile source hydrocarbon emissions (56)-Class III (C4 and higher alkanes) Class IV (aromatics less benzene) and Class V (alkenes) When stashytionary source hydrocarbons including solvents (Class II) are added to the list five classes are suggested as shown in Table V

Thmiddot reactivity classification proposed here (Tables III and IV) can be compared with that suggested by the EPA (Table V) It is evident that several significant differences emerge

bull The C1-C3 alkanes are given equal weighting in the EPA scale and all are designated unreactive whereas our scale clearly differentiates among the three compounds from methane in Class I and ethane in Class II to the more reactive propane in Class III

bull According to our proposed classification benzene and n-butane are of similar reactivity whereas the EPA scale places them in Class I and III respectively

bull All the alkenes are placed in Class V of the EPA scale whereas our proposed scale shows a differentiation in reacshytivity from ethene in Class III to 23-dimethyl-2sbutene in Class V

bull Our scale g1ves recognition to the high reactivity of natshyural hydrocarbons such as 3-pinene and d-limonene placing these in Class IV and V respectively The present published EPA scale does not give a classification for natural hydroshycarbons although they could be loosely categorized as subshystituted alkenes in Class V

In addition to noting these differences some similarities exist between the two scales For example our scale shows that 13-butadiene is highly reactive which is consistent with preshyvious studies indicating it to be a facile precursor of eye irrishytants (17) and highly effective in producing oxidant during irradiation of HC-NOx mixtures (57) Also methanol would appear in the low half of Class II in our scale based on a recent dstermination of the rate constant for OH attack on methanol (58) The value found was k(OH+CH30H)lkltOH+CO) = 063 at 298 K This reduces to 53 X 107 1 mo1-1 s-1 based on k(oH+CO) = 84 X 107 1 mo1-1s-1 (45) Hence both our scale and the EPAs show methanol to be relatively unreactive

It should be emphasized that the classification proposed in our scale is not strictly applicable to compounds which

73

undergo significant photodissociation in the atmosphere for example aliphatic aldehydes In such cases the compound will be more reactive than predicted from a scale based on hydrocarbon depletion due solely to OH attack However our proposed classification emphasizes that most compounds react in polluted atmospheres and suggests that thf Class I scale be reserved only for the few compounds which have half-lives greater than about 10 days

Conclusion

Our proposed reactivity scale based on the depletion of hydrocarbons by reaction with the OH radical has utility in assessing hydrocarbon chemical behavior in polluted ambient air Since only those organic compounds which participate in atmospheric reactions are of consequence in the chemical transformations in ambient air their relative reactivity toward OH is a useful and directly measurable index of their potential importance in the production of secondary pollutants

Ohe advantage of the proposed scale is that because it is based on the individual rate constants for hydrocarbon reacshytion with OH any degree of gradation in reactivity may be used to formulate any desired number of classes-from relashytively few to a large number of classes or even an ordered ranking of compounds A second strength of the present scale is that it can be readily extended to include additional organic compounds once their rate of reaction with OH is known Fishynally the proposed scale gives greater weight than previous reactivity scales to the alkanes and a number of aromatic hydrocarbons which require a longer period of time to react but can contribute significantly to ozone formation during longer irradiation periods eg during their transport downshywind from urban centers-a phenomenon of increasing conshycern to air pollution control agencies

Acknowledgment

We gratefully acknowledge helpful discussions with R Atkinson G J Doyle D M Grosjean and E R Stephens

Literature Cited

(1) Schuck E A Doyle G bull J Photooxidation of Hydrocarbons in Mixtures Containing Oxides of Nitrogen and Sulfur Dioxide Rept No 29 Air Pollution Foundation San Marino Calif 1959

(2) Leighton PA Photochemistry of Air Pollution Academic Press New York NY 1961

(3) Stephens E R Scott W E Proc Am Pet Inst 42 (111)665 (1962)

Volume 10 Number 7 July 1976 695

l

1 I l

(4) Altshuller A P Cohen I R Sleva S F Kopczynski S L Sciena 135442 (1962)

(5) Tuesday C S Arch Emmiddotiron Health 7 188 (1963) (6) Altshuller A P Cohen I R Int J Air Water Pollut 7 787

(19631 (7) Kopczynski S L ibid 8 107 (1964) (8) Glasson W A Tuesday C S paper presented at the 150th

National Meeting ACS Atlantic City NJ September 1965 (9) Altshuller A P Bufalini J J J Photochem Photobiol 4 97

(J96fi (10) Heuss JM Glasson W A Environ Sci Technol 2 1109

(19681 (11) Altshuller A P Kopczynski S L Wilson D Lonneman W

Sutterfield F D J Air Pollut Control Assoc 19 787 (1969) (12) Altshuller A P Kopczynski S L Wilson D Lonneman W

Sutterfield F D ibid p 791 (13) Dimitriades B Eccleston B H Hurn R W ibid 20 150

(19701 (14) Levy A Miller S E Final Technical Report on the Role of

Solvents in Photochemical Smog Formation National Paint Varnish and Lacquer Assoc Washington DC 1970

(15) Wilson K W Doyle G J Investigation of Photochemical Reactimiddotities of Organic Solvents Final Report SRI Project PSU-8029 Stanford Research Institute Irvine Calif September 1970

(16) Glasson W A Tuesday C S J Air Pollut Control Assoc 20 239 (1970)

(17) Altshuller A P Bufalini J J Environ Sci Technol 5 39 (1971)

(18) Glasson W A Tuesday C S ibid p 153 (19) Stephens E R in Chemical Reactions in Urban Atmospheres

pp 45-54 C Tuesday Ed American Elsevier New York NY 1971

(20) Stephens E R Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973

(21) Kopczynski S L Kuntz R L Bufalini J J Environ Sci Technol 9608 (1975)

(22) Control Techniques for Hydrocarbon and Organic Solvent Emissions from Stationary Sources Nat Air Pollut Control Admin Publication AP-68 March 1970

(23) Proceedings of the Solvent Reactivity Conference US Enshyvironmental Protection Agency Research Triangle Park NC EPA-6503-74-010 November 1974

(24) Hamming W J SAE Trans 76 159 (1968) (25) Brunelle M F Dickinson JE Hamming W J Effectiveness

of Orga1ic Solvents in Photochemical Smog Formation Solvent Project Final Report Los Angeles County Air Pollution Control District July 1966

(26) Emironmental Protection Agency Region IX Technical Support Document January 15 1973

(27) Feldstein J J Air Polut Control Assoc 24469 (1974) (28) Altshuller A P ibid 16257 (1966) (29) California Air Resources Board Informational Report Progress

Report on Hydrocarbon Reactivity Study June 1975 (30) Organic Compound Reactivity System for Assessing Emission

Control Strategies ARB Staff Report No 75-17-4 September 29 1975

(31) Los Angeles County APCD Proposed Reactivity Classification of Organic Compounds with Respect to Photochemical Oxidant Formation Los Angeles County Air Pollution Control Departshyment July 21 1975

(32) Goeller B F Bigelow J H DeHaven JC Mikolowsky W T Petruschell R L Woodfill B M Strategy Alternatives for Oxidant Control in the Los Angeles Region R-1368-EPA Rand Corp Santa Monica Calif December 1973

(33) Impact of Reactivity Criteria on Organic Emission Control Strategies in the Metropolitan Los Angeles AQCR TRW Interim Report March 1975

(34) Holmes J California Air Resources Board private communishycation 1975

(35) Pitts J N Jr Winer A M Darnall K R Doyle G J McAfee JM Chemical Consequences of Air Quality Standards an~ of Control Implementation Programs Roles of Hydrocarbons Oxides of Nitrogen and Aged Smog in the Production of Photoshychemical Oxidant Final Report California Air Resources Board Contract No 3-017 July 1975

(36) Altshuller A P in Proceedings of the Solvent Reactivity Conference US Environmental Protection Agency Research Triangle Park NC EPA-6503-74-010 pp 2-5 November 1974

(37) Heicklen J Westberg K Cohen N Puhl 115-69 Center for Air Environmental Studies University Park Pa 1961

(38) Weinstock R Daby E E Niki H Discussion on Paper Presented by E R Stephens in Chemical Reactions in Urban Atmospheres pp 54-55 C S Tuesday Ed Elsevier New York NY 1971

(39) Niki H Daby E E Weinstock B AdLbull Chem Ser 113 16 (197)

(40) Demerjian K L Kerr J A Calvert J G Adv Environ Sci Technol 4 1 (1974)

(41) Doyle G J Lloyd A C Darnall K R Winer A M Pitts J N Jr Environ Sci Technol 9237 (1975)

(42) Lloyd A C Darnall K R Winer A M Pitts J N Jr J Phys Chem 80 789 (1976)

(43) Hansen D A Atkinson R Pitts J N Jr ibid 79 1763 (1975) (44) Davis D D Bollinger W Fischer S ibid p 293 (45) Chemical Kinetic and Photochemical Data for Modeling Atshy

mospheric Chemistry NBS Technical Note 866 R F Hampson Jr llQJJQarvin Eds Ju_ne 1975_____~ middot middot

(46)rloyd A C~arnliltKR-XWiner A JI_) Pitts J N Jr J Phys Chem 80 lflgti (1976)

(47) Pate C T Atkmiddot ori R Pitts J N Jr J Environ Sci Health All 1 (1976)

(48) Atkinson R Pitts J N Jr J Phys Chem 78 1780 (1974) (49) Stedman D H Niki H Environ Lett 4303 (1973) (50) Calvert J McQuigg R Proceedings of the Symposium on

Chemical Kinetics Data for the Upper and Lower Atmosphere Warrenton Va September 15-18 1974 Int J Chem Kinet Symposium No 1 113 (1975)

(51) Wang C C Davis L I Jr Wu CH Japar S Niki H Weinstock B Science 189 797 (1975)

(52) Perner D Ehhalt D H Patz H W Platt U Roth E P Volz A OH Radicals in the Lower Troposphere 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(53) Davis D D McGee T Heaps W Direct Tropospheric OH Radical Measurements via an Aircraft Platform Laser Induced Fluorescence ibid

(54) Pitts J N Jr Lloyd A C Winer A M Darnall K R Doyle G J Development and Application of a Hydrocarbon Reactivity Scale Based on Reaction with the Hydroxyl Radical to be preshysented at 69th Annual APCA Meeting Portland Ore June 27-July 1 1976

(55) Informal EPA meeting Philadelphia Pa July 30-31 1975 (56) Black M High L E Sigsby JE Methodology for Assignshy

ment of a Hydrocarbon Photochemical Reactivity Index for Emissions from Mobile Sources US Environmental Protection Agency Research Triangle Park NC EPA-6502-75-025 March 1975

(57) Haagen-Smit A J Fox M M Ind Eng Chem 48 1484 (1956)

(58) Osif T L Simonaitis R Heicklen J J Photochem 4 233 (1975)

(59) Japar S M Wu CH Niki H J Phys Chem 78 2318 (1974) (60) Davis D D Fischer S Schiff R J Chem Phys 61 2213

(1974) (61) Pastrana A Carr R W Jr Int J Chem Kinet 6587 (1974) (62) Overend R Paraskevopoulos G Cvetanovic R J Hydroxyl

Radical Rate Measurement for Simple Species by Flash Photolysis Kinetic Spectroscopy Eleventh Informal Conference on Photoshychemistry Vanderbilt University Nashville Tenn June 1974

(63) Gorse R A Volman D HJ Photochem 3115 (1974) (64) Greiner N R J Chem Phys 53 1284 (1970) (65) Smith I W M Zellner R J Chem Soc Faraday Trans II

69 1617 (1973) (66) Davis D D Fischer S Schiff R Watson R T Bollinger W

J Chem Phys 63 1707 (1975) (67) Atkinson R Pitts J N Jr ibid p 3591 (68) Atkinson R Perry R A Pitts J N Jr Chem Phys Lett

38607 (1976) (69) Atkinson R Perry R A Pitts J N Jr unpublished results

1975 Received for review November 3 1975 Accepted January 30 1976 Work supported by the California Air Resources Board (Contract No 4-214) and the National Science Foundation-RANN (Grant No AEN73-02904 A02) The contents do not necessarily reflect the vieumiddots and policies of the California Air Resources Board or the National Science Foundation-RANN nor does mention of trade names or commercial products constitute endorsement or recommendation for use

696 Environmental Science amp Technology 74

Ii

rl

I r I

G

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE

BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Statewide Air Pollution Research Center University of California

Riverside CA 92521

Paper No 76-311

Presented at the 69th Annual Air Pollution Control Association Meeting

Portland Oregon

June 27 - July 1 1976

75

76-311 rII 2

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Statewide Air Pollution Research Center University of California

Riverside CA 92502

Abstract

Measurements of the relative rate constants for the reaction of the hydroxyl radical (OH) with some 35 atmospherically important hydrocarbons have been made in the SAPRC 6400 i glass irradiation chamber These rate constants were placed on an absolute basis using literature values for either n-butane or isobutene and have been augmented with OH rate data obtained by elementary reaction measurements and other appropriate data such as that from photoshy

l oxidation studies from which relative and absolute OH rate constants could be calculated

l Utilizing these data a reactivity scale for some 80 compounds including alkenes alkanes aromatics oxygenates and naturally occurring hydrocarbons has been formulated based on the removal of the hydrocarbons by reaction with OH The resulting scale is an ordering of the reactivities of the hydrocarbons relative to methane The scale can be divided into an arbitrary number of classes for purposes of application to control strategies or comparison with other reactivity scales

Some comparisons of the present scale with proposed EPA and ARB reactivity scales are made and the implications of the present scale for the role of alkanes and a number of aromatic hydrocarbons in the formation of ozone in regions downwind of urban centers is analyzed

76

r I

I D

-I

f

76-311 3

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Introduction

1A major result of the photooxidation studies of the past 20 years - 26 has been the recognition that atmospherically important hydrocarbons do not all contribute equally to the production of photochemical oxidant and hence that the application of cost effective strategies for the control of hydrocarbons requires that more stringent emissions reductions be applied to the more reactive organic compounds 10lll9 26 This in turn has led to a continuing requirement for a rational assessment of hydrocarbon reactivity as a basis for control decisions Such an assessment is particularly critical since attainshyment of the Federal air quality standard for photochemical oxidant has been sought largely through the stringent control of hydrocarbon emissions2728

The first effort to formulate and apply a practical hydrocarbon reactivity scale was taken in 1966 with the implementation by the Los Angeles Air Pollution Control Districtmiddot (LAAPCD) of a regulation known as Rule 66 to limit solvent organic emissions on the basis of their capacity for promoting photoshychemical smog formation 10ll This rule and other conceptions of reactivity scales29 represented a major advance in the application of the information then available concerning the mechanisms of photochemical smog formation to the development of practical air pollutant emission control strategies Thus the basic concept of selective control of emissions based on their reactivity is now widely established

Not surprisingly however there have been significant differences in hydrocarbon reactivity scales proposed by local regional and national air pollution control agencies2530-34 as well as by industry161823 This in turn can lead to quite large differences in emission inventory estimates and in approaches to hydrocarbon control303536

Most although not all previous reactivity classifications have relied primarily on smog chamber data obtained for relatively short irradiation (~ 6 hrs) periods Thus the recent concern over oxidant formation resulting from longer irradiations during pollutant transport to regions downwind of urban sources introduces additional difficulties both in defining what constishytutes a reactive hydrocarbon and in categorizing degrees of reactivity For example a compound such as propane the major component in liquified petroleum gas (LPG) and often cited as a clean fuel is now known37-39 to contribute to the formation of photochemical oxidants in the later stages of day-long irradiation periods However on the basis of data obtained during short-term irradiations propane has been classified as unreactive in a reactivity scale

77

76-311

[

r I l

J

I

4

proposed25 in 1974 by B Dimitriades of the EPA (hereafter referred to as the EPA reactivity scale)

A third difficulty with reactivity scales which are based on previous smog chamber data concerns their reliance on measurements of smog manifestations such as maximum ozone concentrations Observed values of such secondary properties of a photooxidation system can be significantly affected by the particular chamber materials light source purity of matrix air and other aspects of the chamber methodology employed This fact can account in large measure for the significant number of discrepancies which arise from comparison of the specific ranking of hydrocarbons in reactivity scales formulated on the basis of different sets of chamber data

Altshuller and Bufalini9 zo have reviewed the various definitions of hydroshycarbon reactivity and summarized results of numerous studies up to 1970 The criteria used for evaluating hydrocarbon reactivity include hydrocarbon conshysumption the conversion of nitric oxide to nitrogen dioxide ozone formation aerosol formation eye irritation and plant damage It is generally agreed that the criteria most suitable with respect to photochemical oxidant control strategies are ozone dosage or maximum ozone concentration30 However establishing a definitive hydrocarbon reactivity scale to be applied specifishycally to the control of ozone formation requires an extensive and lengthy experimental program in which the ozone-forming capability of each individual hydrocarbon is determined under simulated atmospheric conditions including long-term irradiation (ie 10-12 hrs)

An alternative and perhaps supplementary basis for assessing hydrocarbon reactivity which appears to have considerable utility and a valid experimental foundation is the formulation of a reactivity scale based on the rate of disshyappearance of hydrocarbons due to their reaction with the hydroxyl radical the key intermediate species in photochemical air pollution

Results and Discussion

It is only comparatively recently that the critical role of OH in photoshychemical smog formation has been generally recognized40-44 and that appreciable rate constant data have become available for the reaction of OH with several classes of hydrocarbons The importance of OH as a reactive intermediatz

46relative to species such as o3 o(3P) and H02 has been shown previously 3-through computer modeling of smog chamber data For example Niki Daby and Weinstock43 showed that the reactivity of a number of hydrocarbons as measured by the rate of conversion of NO to NOz correlated significantly betterwith OH rate constants than with either 0(3P) or 03 rate constants

The utility of a large environmental chamber in obtaining relative rate constants with an accuracy of plusmn20 for the reaction of the hydroxyl radical with a variety of hydrocarbons has been demonstrated in a number of recent studies both in this45-48 and other laboratories49 To date we have measured relative rates for the reaction of OH with some 35 organic compounds The

78

l l t

l

r L

76-31 1 5

detailed kinetic data derived from these investigations have been reported48elsewhere 45 - In these studies we determined the relative rates of disshy

appearance of selected alkanes alkenes and aromatic hydrocarbons under simushylated atmospheric conditions of temperature pressure concentrations light intensity and other trace contaminants (NOx CO hydrocarbons water) These relative rate constants were placed on an absolute basis using the published rate constants for OH+ n-butane or isobutene The assumption that OH was responsible for the hydrocarbon disappearance under the experimental conditions employed was subsequently supported by the very good agreement between OH rate constants determined for the individual compounds using flash photolysisshyresonance fluorescence techniquesS051 and those obtained in our initial chamber experiments4546

The importance of the chamber method for the purposes of formulating a reactivity scale is that it permits the simultaneous determination of valid rate constants for reactions of OH with a large number and wide variety of atmospherically important hydrocarbons This substantially expands the number of compounds which can be incorporated now and in the near future in the resulting reactivity scale

Use of OH Rate Constants as a Reactivity Index

From the successful correlation of OH rate constants with the rates of hydrocarbon disappearance observed in chamber simulations at the SAPRc45-48 and Ford49 laboratories we conclude that to a good approximation this correlation can be extrapolated to the atmosphere (a) for alkenes in ambient air parcels during the early morning hours when ozone levels are generally quite low (~005 ppm) and (b) for alkanes and aromatics at essentially all times and locations The latter assumption namely that an OH rate constant is a good reactivity index for alkanes and aromatics throughout an irradiation day (or multiple irradiation days) rests upon the fact that the rates of reaction of these classes of hydrocarbons with species such as ozone 0(3P) atoms and the hydroperoxyl radical are several orders of magnitude slower than

52- 54with OH 8 For example even at the highest ozone concentrations experienced in ambient atmospheres 03 will not contribute significantly to the photooxidation of alkanes and aromatics This is in contrast to the case for alkenes which although the rate constants for reaction of 03 with alkenes are not particularly large55-57 react rapidly with ozone at the average concenshytrations connnonly encountered in polluted ambient air (~01-02 ppm)

Proposed Reactivity Scale

Under the assumption that hydrocarbon depletion is due solely to attack by OH (with the qualification noted for alkenes) we propose a five-class reacshytivity scale based on hydrocarbon disappearance rates due to reaction with OH The ranges of reactivities for the five proposed classes each span an order of magnitude in reactivity rel~tive to methane and are shown in Table I Although a scale based on OH rate constants can be divided into an arbitrary number of classes we have found it convenient and useful (particularly for purposes of

79

l r f

1

76-311 6

comparison with other scales) to employ the order of magnitude divisions which lead to a five-class scale

The hydrocarbon half-lives (defined as t12 ~ 0693k[OH]) corresponding to each class are also shown in Table I These half-lives were calculated assuming depletion of the hydrocarbon solely due to reaction with the hydroxyl radical and assuming an OH radical concentration in polluted atmospheres of 107 radicals cm-3 a reasonable value on the basis of both model calculations58 and recent atmospheric measurements59-61

Table II shows the compounds for which OH rate constants have been found or calculated distributed among the five classes of our proposed reactivity scale in the order of increasing rates of reaction within each class Employing OH rate constants obtained from hydrocarbon disappearance rates measured in photooxidation studies62 63 as well as those from elementary rate determinations and our chamber studies has permitted tabulation of OH rate constant data for 80 hydrocarbons These 80 hydrocarbons are incorporated in Table II

For interest carbon monoxide although not a hydrocarbon is included in Table II since it is present in polluted urban atmospheres Although CO is generally regarded as being unreactive in ambient air in our scale it appears in Class II which also includes ethane and acetylene

In our current compilation of compounds methane is the only compound listed which appears in Class I although the recent work of Chameides and Stedman has shown that even methane will react given sufficient time64 Most of the straight chain alkenes appear in Class IV with the substituted alkenes occurring in the upper half of Class IV and in Class V The alcohols fall into Class III while the monoterpene hydrocarbons are highly reactive and most of them appear in Class V with a- and $-pinene occurring in the upper half of Class IV The reactivity classification shown in Table II is similar to an earlier one we have formulated65 but many more compounds have now been included

Comparison with Other Scales

The ranking of reactivities for the aromatic hydrocarbons in our scale is essentially the same as that obtained by Altshuller et al4 and by Kopczynski 7 66 Although our proposed scale is based solely on hydrocarbon disappearance rates Altshuller and Bufalini20 have shown that this measure of reactivity is very similar to the one based on nitric oxide oxidation rates They showed that the ranking of reactivities of hydrocarbons from the nitric oxide photooxidation studies of Altshuller and Cohen6 and Glasson and Tuesdays was essentially the same as that obtained from the studies of hydrocarbon conshysuinption carried out by Schuck and Doyle 2 Stephens and Scott3 and Tuesday 5

As indicated above Rule 66 formulated by the LAAPCD in 1966 represented the first hydrocarbon control measure based on photochemical reactivity Although this and similar regulations have been effective results from recent

80

T

I I t

I Ii

76-31 1 7

d 37-39 d h h ffmiddot hstu ies in icate tat t ey give insu icient recognition tote ozone-forming potential of slow reactors such as g_-butane and propane under longshyterm irradiation conditions Consequently it is now realized that measures more stringent than Rule 66 are necessary to achieve reductions in ozone formation to levels approaching those mandated by the U S Clean Air Act Amendments of 1970

Recognition of such deficiencies in current hydrocarbon control regulations has led to re-examination of present hydrocarbon reactivity classifications The focus of these re-evaluations has been the five-class reactivity scale (see Table III) proposed by B Dimitriades at the EPA Solvent Reactivity Conference in 1974 25 Significant changes have been suggested for this reactivity classishyfication by the California ARB30-33 the LAAPCn34 the EPA67 and by industry The EPA is currently examining this question and since no final conclusions have been reached at this time we will restrict comparison of our proposed sci=Lle to the scale proposed in 1974 by Dimitriades of the EPA In addition we will discuss our proposed scale in the context of the three-class system r~cently approved32 by the ARB for application to hydrocarbon pollutant invenshytories and for planning future control strategies

Briefly the EPA has proposed on the basis of previous experimental studies that methane ethane acetylene propane and benzene are essentially non-reactive for typical urban ambient hydrocarbon-NOx ratios25 and these compounds are placed in Class I on their scale Three other classes have been proposed for mobile source hydrocarbon ernissions68__Class III (C4 and higher alkanes) Class IV (aromatics less benzene) and Class V (alkenes) When stationary source hydrocarbons including solvents (Class II) are added to the list five classes are suggested as shown in Table III

The reactivity classification proposed here (Tables I II) can be compared with that suggested by the EPA (Table III) It is evident that several signifishycant differences emerge

(1) The C1-C3 alkanes are given equal weighting in the EPA scale and all are designated unreactive while our scale clearly differentiates between the three compounds methane ethane and propane in Classes I II and III respectively

(2) According to our proposed classification benzene and n-butane are of similar reactivity while the EPA scale places them in Class I and III respectively

(3) All the alkenes are placed in Class V of the EPA scale while our proposed scale shows a differentiation in reactivity from ethene in Class III to 23-dimethyl-2-butene in Class V

(4) Our scale gives recognition to the high reactivity of natural hydroshycarbons such as the pinenes_and i-limonene placing these in Class IV and V respectively The present published EPA scale does not give a classification for natural hydrocarbons although they could be loosely categorized as substituted alkenes in Class V

81

l l

i

l

76-311 8

In addition to noting these differences some similarities exist between the two scales For example our scale shows that 13-butadiene ts highly reactive which is consistent with previous studies indicating it to be a facile precursor of eye irritants20 and highly effective in producing oxidant during irradiation of HC-NOx mixtures1 Both our scale and the EPAs show methanol to be relatively unreactive with a greater reactivity exhibited by the higher alcohols although our sc-ale predicts a lower overall reactivity than that of the EPA

The three-class system recently approved by the ARB is shown in Table IV and is similar to one being considered by the EPA30 According to the ARB 32

Class I would include low reactivity organic compounds yielding little if any ozone under urban conditions Class II would consist of moderately reactive organic compounds which give an intermediate yield of ozone within the first day of solar irradiation Class III would be limited to highly reactive organic compounds which give very high yields of ozone within a few hours of irradiation

In general the three-class ARB scale is in line with the scale presented here based on OH rate constants with only minor exceptions For example the ARB scale shows the primary and secondary Cz+ alcohols to be highly reactive in Class III while our scale shows them to be of moderate reactivity

Finally we wish to note two limitations of the reactivity scale proposed here One limitation of our scale is that it is not strictly applicable to compounds which undergo significant photodissociation in the atmosphere and aldehydes have been omitted for this reason In such cases the compound will be more reactive than predicted from a scale based on hydrocarbon depletion due solely to reaction with OH A second limitation in the application of our scale concerns the inherent problem arising from uncertainties in the identity and fates of subsequent products33

Conclusion middot

Our proposed reactivity scale based on the depletion of hydrocarbons by reaction with the OH radical has utility in assessing hydrocarbon chemical behavior in polluted ambient air Since only those organic compounds which participate in atmospheric reactions are of consequence in the chemical transshyformations in ambient air their relative reactivity towards OH is a useful and directly measurable index of their potential importance in the production of secondary pollutants

One advantage of the proposed scale is that because it is based on the individual rate constants for hydrocarbon reaction with OH any degree of gradation in reactivity may be used to formulate any desired number of classes-shyfrom relatively few to a large number of classes or even an ordered ranking of compounds A second strength of the present scale is that it can be readily extended to include additional organic compounds once their rate of reaction

82

76-311 9

~

l

I

with OH is known Finally the proposed scale gives adequate weight to alkanes and a number of aromatic hydrocarbons which require a significant period of time to react but can contribute substantially to ozone formation during longer irradiation periods eg during their transport downwind from urban centers-shya phenomenon of increasing concern to air pollution control agencies

Acknowledgement

We gratefully acknowledge access to the final report of the ARB Reactivity Committee prior to official release

This work was supported by the California Air Resources Board (ARB Contract No 5-385) and the National Science Foundation-Research Applied to National Needs (NSF-RANN Grant No ENV73-02904-A03) The contents do not necessarily reflect the views and policies of the ARB or the NSF-RANN nor does mention of trade names or commercial products constitute endorsement or recomshymendation for use

References

1 A J Haagen-Smit and M M Fox Ozone formation in photochemical oxidashytion of organic substances Ind Eng Chem 48 1484 (1956)

2 E A Schuck and G J Doyle Photooxidation of hydrocarbons in mixtures containing oxides of nitrogen and sulfur dioxide Rept No 29 Air Pollution Foundation San Marino California 1959

3 E R Stephens and W E Scott Relative reactivity of various hydrocarbons in polluted atmospheres 11 Proc Amer Petrol Inst 42 (III) 665 (1962)

4 A P Altshuller I R Cohen S F Sleva and S L Kopczynski Air pollutionphotooxidation of aromatic hydrocarbons Science 138 442 (1962)

5 C S Tuesday Atmospheric photooxidation of olefins Effect of nitrogen oxides Arch Environ Health l 188 (1963)

6 A P Altshuller and I R Cohen Structural effects on the rate of nitrogen dioxide formation in the photooxidation of organic compound-nitric oxide mixtures in air Int J Air Water Pollut l 787 (1963)

7 s L Kopczynski Photooxidation of alkylbenzene-nitrogen dioxide mixtures in air Int J Air Water Pollut _ 107 (1964)

B W A Glasson and C S Tuesday paper presented at the 150th National Meeting ACS Atlantic City N J September 1965

9 A P Altshuller and J J Bufalini Photochemical aspects of air pollution a review J Photochem Photobiol _ 97 (1965)

10 M F Brunelle JE Dickinson and W J Hannning Effectiveness of organic solvents in photochemical smog formation Solvent Project Final Report Los Angeles County Air Pollution Control District July 1966

11 W J Hamming Photochemical reactivity of solvents SAE Transactions Ji 159 (1968)

83

10 76-311

12 JM Reuss and W A Glasson Hydrocarbon reactivity and eye irritation Environ Sci Technol I 1109 (1968)

13 A P Altshuller S L Kopczynski D Wilson W Lonneman and F D Sutterfield Photochemical reactivities of n-butane and other paraffinic hydrocarbons J Air Pollut Contr Assoc 19 787 (1969)

14 A P Altshuller S L Kopczynski D Wilson W Lonneman and F D Sutterfield Photochemical reactivities of paraffinic hydrocarbonshynitrogen oxides mixtures upon addition of propylene or toluene J Air Pollut Contr Assoc 19 791 (1969)

15 B Dimitriades B H Eccleston and R W Hurn An evaluation of the fuel factor through direct measurement of photochemical reactivity of

l emissions J Air Pollut Contr Assoc 20 150 (1970)

l 16 A Levy and S E Miller Final technical report on the role of solvents

in photochemical smog formation National Paint Varnish and Lacquer Association Washington DC April 1970

17 K W Wilson and G J Doyle Investigation of photochemical reactivities organic solvents Final Report SRI Project PSU-8029 Stanford Research Institute Irvine California September 1970

18 W A Glasson and C S Tuesday Hydrocarbon reactivity and the kinetics of the atmospheric photooxidation of nitric oxide J Air Pollut Contrl

t Assoc 20 239 (1970)

19 Control Techniques for hydrocarbon and organic solvent emissions from stationary sources Nat Air Pollut Contr Admin Publication IIAP-68 March 1970

20 A P Altshuller and J J Bufalini Photochemical aspects of air pollution a review Environ Sci Technol i 39 (1971)

21 W A Glasson and C S Tuesday Reactivity relationships of hydrocarbon c mixtures in atmospheric photooxidation Environ Sci Technol 5 151 I (1971) -

22 E R Stephens Hydrocarbon reactivities and nitric oxide conversion in real atmospheres in Chemical Reactions in Urban Atmospheres C S Tuesday Ed American Elsevier Inc N Y 1971 pp 45-54

23 Solvents Theory and Practice R W Tess Ed Adv Chem Series 124 (1973)

24 E R Stephens Hydrocarbons in polluted air Sunnnary Report CRC Project CAPA-5-68 June 1973 NTIS No PB 230 993AS

25 Proceedings of the solvent reactivity conference U S Environmental Protection Agency Research Triangle Park N C EPA-6503-74-010 November 1974

26 S L Kopczynski R L Kuntz and J J Bufalini Reactivities of complex hydrocarbon mbtures Environ Sci Technol 2_ 648 (1975)

ltL

27 Environmental Protection Agency Region IX Technical Support Document January 15 1973

28 M Feldstein A critical review of regulations for the control of hydroshycarbon emissions from stationary sources J Air Pollut Contr Assoc 24 469 (1974)

84

l l f [

l

middot-i~ I~ ~ 4 -

11 76-311

29 A P Altshuller An evaluation of techniques for the determination of the photochemical reactivity of organic emissions J Air Pollut Contr Assoc 16 257 (1966)

30 Progress report on hydrocarbon reactivity study California Air Resources Board Informational Report No 72-12-10 June 12 1975_

31 Organic compound reactivity system for assessing emission control strageshygies California Air Resources Board Staff Report No 75-17-4 September 29 1975

32 Board approves reactivity classification California Air Resources Board Bulletin March 1976 p 4

33 Tinalreport of the committee on photochemical reactivity to the Air Resources Board of the State of California Draft April 1976

34 Los Angeles County APCD proposed reactivity classification of organic compounds with respect to photochemical oxidant formation Los Angeles County Air Pollution Control Department July 21 1975

35 B F Goeller J H Bigelow J C DeHaven W T Mikolowsky R L Petruschell and B M Woodfill Strategy alternatives for oxidant control in the Los Angeles region The RAND Corporation Santa Monica California R-1368-EPA December 1973

36 J C Trijonis and K W Arledge Utility of reactivity criteria in organic emission control strategies for Los Angeles TRW Environmental Services Redondo Beach California December 1975

37 J Holmes California Air Resources Board private communication 1975

38 J N Pitts Jr A M Winer K R Darnall G J Doyle and JM McAfee Chemical consequences of air quality standards and of control implementation programs roles of hydrocarbons oxides of nitrogen and aged smog in the production of photochemical oxidant Final Report California Air Resources Board Contract No 3-017 July 1975

39 A P Altshuller in reference 25 pp 2-5

40 N R Greiner Hydroxyl-radical kinetics by kinetic spectroscopy II Reactions with c H6 c H8 and iso-c H at 300 K J Chern Phys 462 3 4 103389 (1967)

41 K Westberg and N Cohen The chemical kinetics of photochemical smog as analyzed by computer The Aerospace Corporation El Segundo California ATR-70(8107)-1 December 30 1969

42 B Weinstock E E Daby and H Niki Discussion on paper presented by E R Stephens in Chemical Reactions in Urban Atmospheres C S Tuesday Ed Elsevier N Y 1971 pp 54-55

43 H Niki E E Daby and B Weinstock Mechanisms of smog reactions Adv Chem Series 113 16 (1972)

44 K L Demerjian J A Kerr and J G Calvert The mechanism of photoshychemical smog formation Adv Environ Sci Technol ~ 1 (1974)

45 G J Doyle A C Lloyd K R Darnall A M Winer and J N Pitts Jr Gas phase kinetic study of relative rates of reaction of selected aromatic compounds with hydroxyl radicals in an environmental chamber Environ Sci Technol 2_ 237 (1975)

85

12 76-311

46 A C Lloyd K R Darnall A M Winer and J N Pitts Jr Relative rate constants forreaction of the hydroxyl radical with a series of alkanes alkenes and aromatic hydrocarbons J Phys Chem 80 789 (1976)

47 A M Winer A C Lloyd K R Darnall and J N Pitts Jr Relative rate constants for the reaction of the hydroxyl radical with selected ketones chloroethenes and monoterpene hydrocarbons J Phys Chem 80 1635 (1976) -

48 A C Lloyd K R Darnall A M Winer and J N Pitts Jr Relative rate constants for the reactions of OH radicals with isopropyl alcohol diethyl and di-n-propyl ether at 305 plusmn 2 K Chem Phys Lett~ 405 (1976)

49 CH Wu S M Japar and H Niki Relative reactivities of HO-hydrocarbon reactions from smog reactor studies J Environ Sci Health All 191 (1976)

i 50 D A Hansen R Atkinson and J N Pitts Jr Rate constants for the reaction of OH radicals with a series of aromatic hydrocarbons J Phys Chern JJ 1763 (1975)

51 D D Davis W Bollinger S Fischer A kinetics study of the reaction of the OH free radical with aromatic compounds I Absolute rate constants for reaction with benzene and toluene at 300degK J Phys Chem J_J_ 293 (1975)

f 52 C T Pate R Atkinson and J N Pitts Jr The gas phase reaction ofi 03 with a series of aromatic hydrocarbonsmiddot J Environ Sci Health All

1 (1976)

53 R Atkinson and J N Pitts Jr Absolute rate constants for the reaction of o(3P) atoms with selected alkanes alkenes and aromatics as determined by a modulation technique J Phys Chem 78 1780 (1974)

54 D H Stedman and H Niki Ozonolysis rates of some atmospheric gases Environ Lett_ 303 (1973)

55 Chemical kinetic and photochemical data for modeling atmospheric chemistry R F Hampson Jr and D Garvin Eds NBS Technical Note 866 June 1975

56 D H Stedman CH Wu and Hbull Niki Kinetics of gas phase reactions of ozone with some olefins J Phys Chem ]J_ 2511 (1973)

57 S M Japar CH Wu and H Niki Rate constants for the reaction of ozone with olefins in the gas phase J Phys Chem 78 2318 (1974)

58 J G Calvert and R D McQuigg The computer simulation of the rates and mechanisms of photochemical smog formation Int J Chem Kinetics Symposium No 1 113 (1975)

59 C C Wang L I Davis Jr CH Wu S Japar H Niki and B Weinstock Hydroxyl radical concentrations measured in ambient air Science 189 797 (1975)

60 D Perner D H Ehhalt H W Patz U Platt E P Roth and A Volz OH radicals in the lower troposphere 12th International Symposium on Free Radicals Laguna Beach California January 4-9 1976

61 D D Davis T McGee and W Heaps Direct tropospheric OH radical measurements via an aircraft platform laser induced fluorescence 12th International Symposium on Free Radicals Laguna Beach California January 4-9 1976

86

13 76-311

62 J L Laity I G Burstain and B R Appel Photochemical smog and the atmospheric reactions of solvents in Reference 23 p 95

63 E P Grimsrud H H Westberg and R A Rasmussen Atmospheric reactivity of monoterpene hydrocarbons NOx photooxidation and ozonolysis Int J Chem Kinetics Symposium No 1 183 (1975)

64 W L Chameides and D H Stedman Ozone formation from NOx in clean air Environ Sci Technol 10 150 (1976)

65 K R Darnall A C Lloyd A M Winer and J N Pitts Jr A reactivity scale for atmospheric hydrocarbons based on reaction with the hydroxyl radical Environ Sci Technol 10692 (1976)

66 S L Kopczynski quoted in Reference 20

67 Informal EPA meeting Philadelphia Pennsylvania July 30-31 1975 l 68 M Black L E High and JE Sigsby Methodology for assignment of al hydrocarbon photochemical reactivity index for emissions from mobile

soucres EPA-6502-75-025 U S Environmental Protection Agency Research Triangle Park North Carolina March 1975

J i

J

s

87

ii

1

14 76-311

Table I R~activity Scale fer Hydrocarbons Based on Rate of Disappearance

of the Hydrocarbon due to Reaction wih the Hydroxyl Radical

Reactivity Relative Class Half-lifea (days) to Methane(== 1)

I gt 10 ~ 10

II 1 - 10 10 - 100

III 01 - 1 100 - 1000

IV 001 - 01 1000 - 10000

V 001 ~ 10000

a 7 -3[OR] is assumed to be 10 radicals cm

88

-- _1---c=r- FFIT~ Ja--~uli -~4 P-iJJia-degR j_--CL[Jl_j i---i_ 0-1 j-____-~ ~ -Ji=-ej ~~~ ~~- I -middot~1--c--aC-

Table II Proposed Reactivity Classification of Hydrocarbons and CO Based on Reaction with the Hydroxyl Radical

CLASS I CLASS II CLASS III CLASS IV CLASS V (S48 x107a (48 X 107 - 48 X lQB)a (48 X 108- 48 X 109) 8 (48 x 109 - 48 x 10lO)a 4 8 X 1Ql0) a

Methane Methanol Neopentane n-Octane 2-Mcthyl-2-butene Carbon monoxide Cyclobutane Diethyl ether 3-Carene Acetylene 2233-Tetramethylbutane pXylene 23-Dirnethyl-2-butene Ethane Benzene p-Ethyltoluene 13-Phellandrene

Ethyl acetate o-Ethyltoluene Carvomenthene Isobutane o-Xylene d-LimoneneshyPropane p-Cymene Dihydromyrcene Diethyl ketone Methyl isobutyl ketone Myrcene Isopropyl acetate Di-n-propyl ether cis-Ocimene n_Butane m-Ethyltoluene n-Butyl acetate m-Xyle~e Ethanol 123-Trimethylbenzene Methylethyl ketone Propene Isopentane 1-Butene 1-Propanol 33-Dimethyl-1-butene 224-Trimethylbutane 1-Pentene V

23-Dimethylbutane 1-Hexene co 223-Trimethylbutane 124-Trimethylbenzene0

Tetrahydrofuran Isobutene 2-Methylpentane 135-Trimethylbenzene Toluene cis-2-Butene Cyclopentane Diisobutyl ketone n-Propylbenzene 2-Methyl-1-butene Isopropylbenzene a-Pinene Ethene Cyclohexene n-Hexane cis-2-Pentene Cyclohexane trans-2-Butene n-Pentane 13-Pinene p-Menthane 13-Butadiene 1-Butanol Isoprene Isopropyl alcohol 4-Methyl-2-pentanol 3-Methylpentane Ethylbenzene

--J 0 a -1 -1Range of values (in liter mole sec ) for the rate constant for reaction of the OH radical with the listed w

compounds

I

------t-L ~- ~ J---1 bull middotmiddott1- lTLJ_J 1--___r _ ~II ~Ai ~-_c11 )----_-J1bull~

Table III Proposed EPA Reactivity Classification of Organics (from reference 25 1974)

CLASS I CLASS II CLASS III CLASS IV CLASS V ~Nonreactive~ (Reactive) (Reactive) (Reactive) (Reactive)

c1-c paraffins3

Acetylene

Benzene

Benzaldehyde

Acetone

Methanol

Tertiary-alkyl alcohols

Phenyl acetate

Methyl benzoate

Ethyl amines

Dimethyl formamide

IO Perhalogenated 0 hydrocarbons

RFACTIVITY RATING 10

Mono-tertiary-alkyl benzenes

Cyclic ketones

Tertiary-alkyl acetates

2-nitropropane

35

c4+ paraffins

Cycloparaffins

Styrene

n-Alkyl ketones

Primary amp Secondary alkyl acetates

N-methyl pyrrolidone

NN-dimethyl acetamide

Partially halogenated paraffins

6S

Primary amp Secondary alkyl benzenes

Dialkyl benzenes

Branched alkyl ketones

Primary amp Secondary alkyl alcohols

Cellosolve acetate

Partially halogenated olefins

97

Aliphatic olefins

a-Methyl styrene

Aliphatic aldehydes

Tri- amp tetra-alkyl benzenes

Unsaturated ketones

Diacetone alcohol

Ethers

Cellosolves

deg

143

-J OI

I) I-

I

17 76-311

Table IV California Air Resources Board (ARB) Reactivity Classification of Org_a1ic Compounds 32

Class I Class II Class III (Low Reactivity (Moderate Reactivity) (High Reaccivity)

c1-c Paraffins2 Acetylene

l

l B2nz2ne

Benzaldehyde

Acetone

Methanol

Tert-alkyl alcohols

Phenyl acetate

Methyl benzoate

Ethyl Amin-lts

Dim2thyl fcr-amide

Perhalogenated Hydrocarbons

Partially halogenated paraffins

Phthalic Anhydride

Phthalic Acids

Acetonitrile

Acetic Acid

Aromatic Amines

Hydroxyl Amines

Naphthalene

Chlorobenzenas

Nitrobenzenes

Phenol 1

Hono-tert-alkyl-benzenes

Cyclic Ketones

Alkyl acetates

2-Nitropropane

c + Paraffins3

Cycloparaffins

n-alkyl Ketones

N-Methyl pynolidone

NN-dimethyl acetamide

Alkyl Phenols

Methyl phthalates

All other aromatic hydroshycarbons

All Olefinic hydrocarbons (including partially haloshygenated)

Aliphatic aldehydes

Branched alkyl Ketones

Cellosolve acetate

Unsaturated Ketones

Primary amp Secondary c + alcohols

2 Diacetone alcohol

Ethers

Cellosolves

Glycols

c + Alkyl phthalates2

Other Esters

Alcohol Amines

c + Organic acids+ di acid3

c + di acid anhydrides3

Fannin Hexa methylene-tetramine)

Terpenic hydrocarbons

Olefin oxides

Reactivity data are either non-existent or inconclusive but conclusive data from similar compounds are available therefore rating is uncertain but reasonable

Reactivity data are uncertain

91

r1_

l

Volume 42 number 2 CHEMICAL PHYSICS LETTERS 1 September 1976

RELATIVE RATE CONST ANTS FOR THE REACTIONS OF OH RADICALS

WITH ISOPROPYL ALCOHOL DIETHYL AND DI-11-PROPYL ETHER AT 305 plusmn 2 K

Alan C LLOYD Karen R DARNALL Arthur M WINER and James N PITTS Jr Statewide Air Pollution Research Center University ofCalifornia Riverside California 92502 USA middot

Received 27 April 1976

Relative rate constants have been obtained for the reaction of the hydroxyl radical (OH) with isopropyl alcohol and diethyl and di-n-propyl ether in environmental chamber photooxidation studies employing hydrocarbon-NOx mixtures in air it 1 atmosphere and 305 plusmn 2 K These results were obtained from measurements of the relative rates of disappearance of these compounds on the previously validated basis that OH radicals are dominantly responsible for their disappearance in the initial stages of reaction under the experimental conditions employed Absolute rate constants obtained by using the published rate constant for OH+ isobutcne of 305 X 1010 Q mole-1 s-1 are (k X 10-9 I mole-1 s-1) isopropyl alcohol 43 plusmn 13 diethyl ether 56 plusmn II and di-nbullpropyl ether 104 plusmn 21 No previous determinations of these rate constants have been reported

1 Introduction 2 Experimental

The hydroxyl radical plays a fundamental role in The technique used to determine relative OH rate chemical transformations in photochemical air pollushy constants in this study has been previously employed tion [ l -7] With the realization of the importance of to obtain kinetic data for reactions of OH with alkanes OH has come an extensive experimental effort to [14 15] alkenes [ l 115) ketones [ l l] aromatics determine rate constants for the reaction of OH with a [1415] and halogenated [I 116) and natural hydroshylarge number of organic compounds These studies carbons [I l] Briefly irradiations of the hydrocarbonshyhave been documented in recent reviews [7] and in a NOx-air system were carried out in a Pyrex chamber critical compilation [8] of approximately 6400-liter volume at a light intensity

To date however comparatively few data have been measured as the rate of N02 photolysis in nitrogen obtained for the gas phase reactions of OH with oxyshy (k1) of 04 min- 1 All gaseous reactants were injected genated hydrocarbons [9-1 l] In this work rate conbull into pure matrix air [ 17] in the chamber using l 00-ml stants are reported for the reaction of OH with three precision bore syringes Liquid reactants were injected ingredients of commercial solvents [1213] - isoshy with micropipettes During irradiation the chamber propyl alcohol and diethyl and di-n-propyl ether temperature was maintained at 305 plusmn 2 K Such data are of fundamental importance in assessing The alcohol and ether concentrations were monitored the role of these oxygenated hydrocarbons in atmosshy with gas chromatography (FID) using a 5-ft X I 8-in pheric chemistry particularly since as controls on stainless steel column packed with Poropak Q (80-

automobiles reduce the contribution of hydrocarbons 100 mesh) operated at 393 and 423 K respectively from mobile sources emissions of such oxygenates Ozone was monitored by means of ultraviolet absorpbull from stationary sources become increasingly of tion CO by gas chromatography and NO-NO2-NOx greater concern by the chemiluminescent reaction of NO with ozone

92

205

Volume 42 number 2 CHEMICAL PHYSICS LETTERS I September 1976

i l

l

The initial concentrations of reactant were isoproshypyl alcohol 60 ppb ( 1 ppb in air= 40 X I o- 11 mole liter - I at 305 K and I atmosphere) diethyl ether 20 ppb and di-11-propyl ether 55 ppb In addition to these compounds traces of several alkanes alkenes and oxygenates were present [I 115) Initial concenshytrations in these experiments were 800-1500 ppbC of total non-methane hydrocarbons 060 ppm of NOx (with an NO2 NOx ratio of 003-008) 6 ppm of CO and 3000 ppb of methane together with warer vapor at 50 relative humidity Replicate 3-hour irradiations vere carried out with continuous analysis of inorganic species analysis of hydrocarbons every 15 minutes and analysis of isopropyl alcohol and the ethers every 30 minutes

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilushytion rate (12-l6 per hour) from the observed hydrocarbon disappearance rate The HCNOx and NON02 ratios were chosen to delay the formation of ozone and ozone was not detected during the irrashydiation period [11 14]

As discussed in detail previously [1115] the major sources of OH in our experimental system are probably the photolysis of HONO and the reaction of H02 with NO [561819]

NO+ N02 + H20-= 2 HONO (l)

H02 + N02 HONO + P2 (2)

HONO + hv(290-410 nm) OH+ NO (3)

l-102 +NO OH+N02 (4)

The first reaction is thought to occur relatively slowly homogeneously [2021] but its rate is probably sigshynificantly faster when the reaction is catalyzed by surfaces Thus nitrous acid has been observed in a chamber study of simulated atmospheres carried out in our laboratory (22] while direct evidence for formation of OH radicals in an environmental chamber hasbeen provided recently by Niki Weinstock and co-workers [2324]

The concentration of OH radicals present during these irradiation experiments was calculated to range from 14 to 35 X 106 radicals cm-3 depending upon the conditions of the specific experiment The calculashytions employed the observed rates of isobutene dis-

206

appearance ( corrected for dilution) and the previously determined rate constant for OH+ isobutene [25] These concentrations are the same order as those calshyculated [182627] and observed directly 232428 29] by other workers

3 Results and discussion

Typical rates of disappearance observed during the irradiations of isopropyl alcohol and of the two ethers are shown in figs I and 2 respectively lsobutene wJs

used as the reference compound and is included in the figures From these pseudo-first-order rates of disshyappearance of the hydrocarbons rate constants reshylative to that of isobutene were obtained for the reshyaction of the PH radical with isopropyl alcohol and diethyl and di-n-propyl ether These were placed on an absolute basis using a value of 305 X 1010 Q

mole- 1 s-1 for the reaction of OH with isobutene [25] These results are presented in table I

There are no rate constants currently available for the reaction of OH radicals with ethers Assuming that hydrogen abstraction is the major reaction pathway one would expect these rate constants to be larger than

z 0

~ a 5 z w lt) z 0 u

0 w gta w ()

ID

ISOPROPYLALCOHOL

0

3 ______________________

omiddot 05 10 15 20 HOURS OF IRRADIATION

Fig 1 Concentrations of isopropyl alcohol and isobu tene plotted on a logarithmic scale) during photolysis of HC-NOx mixture in air at 305 plusmn 2 K and I atm

93

l

Volume 42 number 2 CHEMICAL PHYSICS LETTERS 1 September 1976

50

Fig 2 Concentrations of diethyl and di-n-propyl ether and isobutene (plotted on a logarithmic scale) during -photolysis of HC-NOx mixture in air at 305 plusmn 2 Kand 1 atm

those for the corresponding alkane since the C-H bond strengths in the ethers are at least several kiloshycalories weaker [30] Thus our rate constants ( at 305 K) for diethyl and di-n-propyl ethers of 56 and 104 X 109 Q mole-1 s-1 respectively compare with values for the corresponding alkanes n-butane and n-hexane (at 298 K) of 16 and 29 X 109 Q mole-I s- 1 respectively calculated from the formula of Greiner [31]

Two recent measurements of the rate constants for the gas phase reaction of OH radicals with alcohols

Table 1

iftltt a z w ~ 10 0 u

0 gta S 5

0 05

a DIETHYL ETHER

--0--

10 15 20 25 HOURS OF IRRADIATION

have been reported Osif et al [9) obtained a value of 53 X 107 Q mole- 1 smiddot- 1 for OH+ methanol using a value of 84 X 107

Q moiemiddotmiddot 1 s- 1 for OH reaction with CO [8] Recently Campbell et al [IO] have carried out studies of the reaction of OH With a series of alcohols-shymethanol ethanol 1-propanol and 1-butanol Our value for OH+ isopropyl alcohol of (43 plusmn 13) X 109 Q mole- 1

s-1 at 305 K is consistent with the value of (2 3 plusmn 02) X lQ9Q moie- 1 s-1reported for 1-propanol by Campbell et ai (10) at 292 K middot Although as mentioned no literature data are availshyable for the reaction of OH with ethers it is interesting to examine the data for solvent photooxidations obshytained by Laity et al [32] in chamber studies These workers irradiated separate solvent-NOx-air mixshytures in a stainless steel chamber at 305 K and reshyported t_he maximum rate of hydrocarbon disappearshyance observed in these experiments relative to toluene If this disappearance is assumed to be predominantly duemiddotto attack by OH then absolute rate constants may be derived from these data using a value of 36 X 109 Q moie- 1 s-1 for the reaction of OH+ toluene [3334] Values for OH+ isopropyl alcohol and OH+ diethyl ether are 31 X 109 and 54 X 109 Q mole-1 s-1 respectively compared to our results of 43 and 56 X 109 Q moie-1 s-1 Considering the differences in experimental methods and apparatus as well as the uncertainties involved in such an interpretation of the data of Laity et al [32] the agreement obtained for isopropyl alcohol and diethyl ether is quite satisshyfactory Similar treatment of their chamber data for other compounds for which the OH rate constants are known yields results (35] in fair agreement with literature values

Relative and absolute rate constants for the reaction of OH with selected hydrocarbons

Compound Relative rate of k(ll mole-1 s-1 X 10-9 )

disappearance this work a) literature

isobutene 1 305 isopropyl alcohol 014 43 31b) diethyl ether 0185 56 54 b) di-ndegpropyl ether 034 104

a) Using a literature value of 305 X 1010 ll mole- I s-1 for OH+ isobutene (25] b) Using the data of Laity et al [32] and attributing the HC loss solely to reaction with OH results placed on an absolute basis

using a value of 36 X 109 ll mole-1 s-1 for OH+ toluene (see text) middot

94

207

Volume 42 number 2 CHEMICAL PHYSICS LETTERS I September 1976

r

I l i l l r il

l11e atmospheric half lives tl2 = 0693kou +RH

X [01-1] for isoprupyl alcohol and diethyl and di-11-propyl ether are akubted to be 5 4 41 and 22 hours respectivdy using an ambient OH concentrashytion of 5 X 106 radicals cm-3 [18232426-29] and our rate constants Thus these compounds react with OH at rates similar to ethene c6 - c7 alkanes and mono-alkyl substituted benzenes [36] The relative importance of alcohols ethers and other oxygenated hydrocarbons in photochemical smog formation are discussed in detail elsewhere [35-37]

Acknowledgement

The authors gratefully acknowledge the assistance of FR Burleson in carrying out the gas chromatoshygraphic analyses WD Long for valuable assistance in conducting the chamber experiments and Dr R Atkinson for useful comments concerning this manushyscript This work was supported in part by the California Air Resourses Board (Contract No ARB 5-385) and the National Science Foundation-Research Applied to National Needs (NSF~RANN Grant No AEN73-02904-A02)

References

[I] NR Greiner J Chem Phys 46 (1967) 3389 [2] J 1-Ieicklen K Westberg and N Cohen Center for Air

Environmental Studies Pennsylvania State University University Park PA Pub 114-69 (1969)

[3] DH Stedman EE Morris Jr EE Daby H Niki and B Weinstock 160th Natl Meeting American Chemical Society Chicago September 14-18 1970

(4] B Weinstock EE Daby and H Niki Discussion on paper presented by ER Stepens in Chemical reactions in urban atmospheres ed CS Tuesday (Elsevier Amsterdam 1971) pp 5455

(51 H Niki EE Daby and B Weinstock in Advances in Chemistry Series No 113 (American Chemical Society Washington 1972) p 16

(6) KL Demerjian JA Kerr and JG Calvert Advances in environmental science and technology Vol 4 eds JN Pitts Jr and RL Metcalf (Wiley-lnterscience New York 1974) p 1

(7) JN Pitts Jr and BJ Finlayson Angew Chem Intern Ed 14 (1975) l BJ Finlayson and JN Pitts Jr Science 191 _(1976) 111

(8) RF Hampson Jr and D Garvin eds Chemical kinetic and

208

photochemical data for modeling atmospheric d1cmi~try NBS Tbullchnk11 Note 866 ltJune 1975)

[9] TL Osif R Sinrnnaitis and J lkicklcn J Photod1cm 4 (1975) 233

[10] JM Campbell DF McLaughlin and BJ Handy Ch~m Phys Letters 38 ( 1976) 362

[11] AM Winer AC Lloyd KR Darnall and JN Pitts Jr J Phys Chem 80 (I 976) to be published

( 12] KW Wilson and GJ Doyle Investigation of photocmiddothemishycal reactivities of organic solvents Stanford Research Inmiddot stitute Repor EPA Contract IICPA 22-9-125 (September 1970)

(13) Solvents theory and practice Advances in Chemistry Series No 124 (American Chemical Society W1hingtrn 1973)

[14] GJ Doyle AC Lloyd K Darnall AM Winer and JN Pitts Jr Environ Sci Technol 9 (1975) 237

[ 15) AC Lloyd KR Darnall AM Viner and J N Pitts Jr J Phys Chem 80 (1976) 789

(16) R Atkinson KR Darnall AM Winer and JN Pitts Jr Environ Sci Technol (1976) submitted for publication

(17) GJ Doyle PJ Bekowics AM Winer and JN Pitts Jr A charcoal-adsorption air purification system for clrnmshyber studies investigating atmospheric photochemistry Environ Sci Technol (1976) to be published

(18] B Weinstock and TY Chang Tellus 26 (1974) 108 [19] TA Hecht IH Seinfeld and MC Dodge Environ

Sci Technol 8 (1974) 327 (20] R Graham and BJ Tyler J Chem Soc Faraday Trans

I 68 (1972) 683 [21) WH Chan RJ Nordstrom JG Calvert and JN Shaw

Chem Phys Letters 37 (1976) 441 (22] JM McAfee AM Winer and JN Pitts Jr unpublished

results (1974) (23] CC Wang LI Davis Jr CH Wu S Japar H Niki and

B Weinstock Science 189 (1975) 797 (24) H Niki and B Weinstock Environmental Protection

Agency Seminar Washington (February 1975) [25] R Atkinson and JN Pitts Jr J Chem Phys 63 (1975)

3591 (26) H Levy II Advan Photochem 9 (1974) 369 [27) J G Calvert Environ Sci Technol 10 (1976) 256 (28) D Perner DH Ehhalt HW Patz U Platt EP Roth

and A Volz OH radicals in the lower troPosphere 12th International Symposium on Free Radicals Laguna Beach CA January 4-9 1976

(29) DD Davis T McGee and W Heaps Direct tropospheric OH radical measurements via an aircraft platform laser induced fluorescence 12th International Symposium on Free Radicals Laguna Beach CA January 4-9 1976

(30] JA Kerr and AF Trotman-Dickenson in Handbook of chemistry and physics 57th Ed (The Chemical Rubber Company Cleveland 197677)

[31] NR Greiner J Chem Phys 53 (1970) 1070 [32] JL Laity IG Burstein and BR Appel Solvents

theory and practice Advances in Chemistry Series No 124 (American Chemical Society Washington1973) p 95

95

Volume 42 number 2 CIIEMICAL PHYSICS LETTERS 1 September 1976

[33] DA Hansen R Atkinson and JN Pitts Jr J Phys Chem 79 ( 1975) 1763

[ 34 I DD Davis Bollinger and S Fischer J Phys Chem 79 (I 975) 293

[35 I JN Pitts Jr AC Lloyd AM Winer KR DamaII and GJ Doyle Demiddotelopment and application of a hydroshycarbon rlactivity scale based on reaction with the hydroxyl radical presented at the 69th Annual APCA Meeting Portland OR June 27-July I 1976

l

f I

If

i )

(36] KR Darnall AC Lloyd AM Winer and JN Pitts Jr Environ Sci Technol 10 (1976) to bl published

(37] JN Pitts Jr AM Winer KR Darnall AC Lloyd and GJ Doyle Smog chamber studies concerning hydrocarbon reactivity and the role of hydrocarbons oxides of nitrogen and aged smog in the production of photochemical oxidants to be presented at the In-tershynational Conference on Photochemical Oxidant Pollushytion and Its Control Research Triangle Park NC September I2-17 I 976

96

209

Volume 44 number 3 CHEMICAL PHYSICS LETTERS 15 December 1976

I

l

i

RELATIVE RATE CONST ANTS FOR THE REACTION OF OH RADICALS

WITH SELECTED C6 AND C7 ALKANES AND ALKENES AT 305 plusmn 2 K

Karen R DARNALL Arthur M WINER Alan C LLOYD and James N PITTS Jr Statewide Air Pollution Research Celter University of California Riverside California 92502 USA

Received 16 August 1976

Measurements of the rates of disappearance of three alkenes and two alkanes relative to isobutene in environmental chamber photooxidation studies employing hydrocarbon-NOx mixtures in air at 1 atmosphere have been used to obtain relative rate constants for the reaction of these compounds with the hydroxyl radical Absolute rate constants at 305

1plusmn 2 K obtained using a published rate constant for OH+ isobutene of 305 X 1010 l2 mole-1 s- are (k X 10-9 Q mole-I

s- 1) cyclohexene 47 plusmn 9 1-methylcyclohexene 58 plusmn 12 1-heptene 22 plusmn 5 23-dimethylbutane 31 plusmn 05 223-trishymethylbutane 23 plusmn 05 No previous determinations of OH rate constants have been reported for 1-heptene and 1-methylshycyclohexene For the remaining compounds these results are shown to be in good agreement with literature values reported for elementary or relative rate constant determinations

I Introduction

Recently we have reported rate constant determinashytions for the reaction of OH with alkanes [l 2] alshykenes [2 3] aromatic hydrocarbons_ [I 2) monoshyterpene hydrocarbons [3) halogenated hydrocarbons [3 4 J ketones [3] and ethers and isopropyl alcohol [5] These rate constants were obtained by measuring the relative rates of disappearance of hydrocarbons in a hydrocarbon-NOx mixture in air at 1 atmosphere and at 305 plusmn 2 K Absolute rate constants were obshytained [1--3 5] by using literature values for OH+ nshybutane andor isobutene at least one of which was employed as a reference compound in each study A similar technique has recently been employed by Niki and co-workers [6] Results obtained from these relative rate studies have uniformly been in very good agreement with literature values reported for elemenshytary rate constant determinations [7]

Here we report rate constant data at 305 plusmn 2 K for the reaction of OH with 1-heptene 1-methylcycloshyhexene cyclohexene and two substituted alkanes -2 3-dimethylbutane and 2 2 3-trimethylbutane These long-chain alkanes and cyclic alkenes have been suggested to play a major role in the formation of the organic portion of aerosols found in polluted ambient air (89)

2 Experimental

The experimental technique used to determine relashytive OH rate constants in this study has been described in detail previously [1-3) Briefly irradiations of the hydrocarbon-NOx-air system were carried out in a Pyrex chamber of approximately 6400-liter volume at a light intensity measured as the rate of NO2 photoshylysis in nitrogen (k1) of 04 min- 1bull During irradiation the chamber temperature was maintained at 305 plusmn 2 K

The alkane and alkene concentrations were monishytored with gas chromatography (FID) using a 5 X 18 SS of Poropak Q (80-100 mesh) column and a 36 X 18 SS column of 10 dimethylsulfolane on AW C-22 Firebrick (60-80 mesh) followed by 18 X 18 SS column of 10 Carbowax 600 operated at 433 and 273 K respectively Ozone was monitored by means of ultraviolet absorption CO by gas chroshymatography and NO-NO2-NOx by the chemiluminesshycent reaction of NO with ozone

The initial concentrations of reactants were 2 3-dimethylbutane 7 ppb (I ppb in air= 40 X 10-11

mole liter-I at 305 Kand 1 atmosphere) 223-trishymethylbutane 14 ppb cyclohexene 10 ppb I meshythylcyclohexene 21 ppb and 1-heptene 14 ppb In addition to these compounds traces of several alkanes alkenes and oxygenates were present [2 3] Initial

97

415

Vol um~ 44 number 3 CHEMICAL PHYSICS LETTERS 15 December 1976

i l

l

concentrations in these experiments were 700-800 ppbC of total non-methane hydrocarbons 061 ppm of NOx (with an NO2NOx ratio of 004-005) 6 ppm of CO and 2900 ppb of methane together with water vapor at 50 relative humidity Replicate three-hour irradiations were carried out with continshyuous analysis of inorganic species and analysis of hydrocarbons eve~y 30 minutes

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilushytion rate (16 per hour) from the observed hydrocarshybon disappearance rate The HCNOx and NON02 ratios were chosen to delay the formation of ozone and ozone was not detected during the irradiation peshyriod [13)

As discussed in detail previously [23) the major sources of OH in our experimental system are probably the photolysis of HONO and the reaction of HO2 with NO [10-13)

NO+ NO2 + H2O ~ 2 HONO (1)

HONO + hv (290-410 nm) OH+ NO (2)

HO2 + NO OH + NO2 (3)

The first reaction is thought to occur relatively slowly homogeneously [14-16) but its rate is probably sigshynificantly faster when the reaction is catalyzed by surshyfaces Thus nitrous acid has been observed in a chamshyber study of simulated atmospheres carried out in our laboratory [ 17] while direct evidence for formation of OH radicals in an environmental chamber has been provided recently by Niki Weinstock and co-workers [6 18 19] The reaction of HO2 with NO2 has also been proposed a~ a source

(4)

of nitrous acid [20 21] but recent results [22 23) suggest that peroxynitric acid is the major product of reaction (4)

(5)

The peroxynitric acid may decompose back to HO2 and NO2 or possibly give HONO but this is currently uncertain [22 23]

The concentration of OH radicals present during these irradiation experiments was calculated to range

416

from (25-50) X 06 radicals cm- 3 depending upon the conditions of the specific experiment The calculashytions of OH concentrations employed the o~served rates of isobutene disappearance ( corrected for dilushytion) and the previously determined rate constant for OH + isobutene [24] These concentrations are the same order as those calculated [12 25 26) and obshyserved directly [I 8 27 28) by other workers

3 Results and discussion

lsobutene was used as the reference compound in this series of experiments From the pseudo-first-order rates of disappearance of the hydrocarbons rate conshystants relative to that of isobutene were obtained for the reaction of the OH radical with 2 3-dimethylbushytane 2 2 3-trimethylbutane cyclohexene 1-methylshycyclohexene and 1-heptene These were placed on an absolute basis using a value of 305 X 1010 Q mole-ls-I for the reaction of OH with isobutene [24] These reshysults are presented in table 1 together with the availshyable literature data

Within the estimated 20 uncertainty in our rate constant values the agreement among our data and the literature values is good For example our value of (31 plusmn 06) X 109 Q mole- 1s-1 for 2 3-dimethylbutane agrees within experimental uncertainty with that of (26 plusmn 03) X 109 Qmole-1s- 1 recentlY determined in a separate study in this laboratory by Atkinson et al [4] This latter value was derived from the relative

1

rates of disappearance of 2 3-dimethylbutane and ethane during a 216-hour irradiation in the Pyrex chamber Both of these values are significantly lower than the value directly determined by Greiner [29] at 300 K of (516 plusmn 013) X 109 However it is expected [28) that the rate constant for the reaction of OH radicals with 2 3-bulldimethylbutane would be less than twice as fast as with isobutane on the basis of the numshybers of primary and tertiary hydrogen atoms in these two alkanes The absolute rate constant for the reaction of OH radicals with isobutane has been determined to be 15 X 109 Qmole-1s-1 at 304 K [29) and hence the OH rate constant for 23-dimethylbutane is exshypected to belt 3 X 109 Q mole-1 s-1 which is in agreement with both the determination of Atkinson et al [4) and with the present work

Similarly our value of (23 plusmn 05) X 109 Qmole-I

98

Volume 44 number 3 CIIEIICAL PHYSICS LETTERS 15 December 1976

Table l Pclativc and absolute rate constants for the reaction of OH anltl 0(3P) with selected hydrocarbons

---middot-middot--------

ko11 + compound at 305 K Compourd Relative rdte ko(3P) + compound

of disappearance this work a) literature at 298 K

------ -middot-middotmiddotmiddotmiddotmiddotmiddotbull-middot-middot----------------------isobutene 1 305 L2 e)

2 3-dimethylbutane 010 031 plusmn 006 045 b) 026 plusmn Oo3 c) 0012 e)

2 2 3-trimethylbutane 0074 023 plusmn 005 029 b) 1-pentene 18 plusmn 02 d) 028 e)

1-hexene 19 plusmn 02 d) 031 e) 1-heptenc 073 22 plusmn 05 cyclohexene 153 47 plusmn 09 38 plusmn 04 d) 13 e)

f 1-mcthylcyclohexene 191 58 12 49 plusmn 02 f)

a) Using a literature value of 305 X 1010 Q mole-1 s-~ for OH+ isobutene (24 ] b) Ref [29) T= 298 K c) Ref [4] T= 305 K d) Ref (16) using a literature value of 31 X 1010 Q mole-1 s-1 at 303 K for OH + cis-2-butene [24 ] e) Rcf(32] ORef(31) bull

s-1 for 22 3-trimethylbutane is in reasonable agreeshy addition reaction of 03P) atoms with cyclohexene l ment with the value of 29 plusmn 01) X 109 Q mole-1 s-1 and 1-methylcyclohexene (091 and 421 relative to obtai_ned by Greiner at 303 K (29] In addition the O (3P) + cyclopentene) (31] decrease in rate constant in going from 2 3-dimethylshy Table 1 shows a comparison of the reactivity of butane to the larger molecule 2 2 3-trimethylbutane 0(3P) atoms (31 32] as well as OH radicals towards is consistent with a decrease from two to one in the the compounds studied here and other selected comshynumber of tertiary hydrogen atoms [29] These atoms pounds Since both 0(3P) and OH are expected to are the most easily abstracted since the C-H bond primarily undergo addition to the alkenes one would strength for tertiary hydrogens is 3 kcal mole-1 and expect the same trend in going from 1-pentene to cyshy6 kcal mole- 1 weaker than that for secondary and clohexene and this is in fact observed In addition primary hydrogens respectively [30) the value of 18 X 1010 Qmole-1 s-1 obtained for

Recently Wu et al (6] us~d a technique similar 1-hexene by Wu et al [6] and our value of to the one employed here namely the photooxidation 22 X 1010 Q mole-1 s-1 for 1-heptene both obtained of hydrocarbons in the presence of NOx in air at 1 atshy by similar methods are consistent with the trend obshymosphere and 303 K middotunder the assumption that OH served by Wu et al (6] of an increase in rate constant was the principal species depleting the hydrocarbon with the larger molecular size of the alkene they obtained rate constants relative to cis-2-butene As mentioned above the higher straight chain and for several of the higher alkenes Using a value of cyclic alkenes are assumed to be important precursors 31 X 1010 Qmole-I s-1 for OH+ ds-2-butene at of the organic content of ambient aerosols found in 303 K [24] one obtains a value of 38 X 1010 mole-I polluted air [9 10] The rapid rate of reaction of OH s- 1 for cyclohexene at 303 K from the data of Wu et with these species ensures that in addition to 0 3-al [6] This value is in reasonable agreement with our alkene reactions OH attack will be an important reacshyvalue of (47 plusmn 09) X 1010 Qmole-I s-1 at 305 K tion pathway in real and simulated atmospheres posshy

Substitution of a methyl group for one of the hyshy sibly yielding multifunctional oxygenated species in drogen atoms in cyclohexene increases the rate conshy the aerosol phase (9 33] stant slightly since we obtain a value of Assuming an ambient OH concentration of 5 X 106 (58 plusmn 12) X 1010 Q mole-1 s-1 for 1-methylcycloshy radicals cm-3 (18 2728] the atmospheric halfclives hexene This is expected by analogy with the similar t112 =middot0693koH+RH [OH] based solely on reaction

middot 417

99

l

Volume 44 number 3 CHEIICAL PHYSICS LETTERS 15 December 1976

[

with OH are (in hours) 2 3-dimethylbutane 75 2 2 3-crimcthylbutanc 100 cyclohexcne 049 1-methylcyclohexcne 039 and 1-heptene 10 In the case of the alkenes the actual half-lives in the atmosshyphere are expected to be significantly less since 0 3 reacts with the alkenes at significant rates [934]

Acknowledgement

The authors gratefully acknowledge the assistance of FR Burleson in carrying out the gas chromato-

graphic analyses WD Long for valuable assistance in conducting the chamber experiments and Dr R Atkinson for helpful comments concerning this manushyscript This work was supported in part by the California Air Resources Board (ARB Contract No 5-385)

References

[ l] GJ Doyle AC Lloyd KR Darnall AM Winer and JN Pitts Jr Environ Sci Technol 9 (1975) 237

[2] AC Lloyd KR Darnall AM Winer and JN Pitts Jr J Phys Chem 80 (1976) 789

(3) AM Winer AC Lloyd KR Darnall and JN Pitts Jr J Phys Chem 80 (1976) 1635

[4 J R Atkinson KR Darnall AM Winer and JN Pitts Jr Tropospheric Reactivity of Halocarbons Final Report to EI DuPont de Nemours amp Co Inc February l 1976

[5] AC Lloyd KR Darnall AM Winer and JN Pitts Jr Chem Phys Letters 42 ( 1976) 205

[6] CH Wu SM Japar and II Niki J Environ Sci HealthshyEnviron Sci Eng A11 (1976) 19 l

(7] R Atkinson KR Darnall AC Lloyd AM Winer and JN Pitts Jr Accounts Chem Res submitted for publication (1976)

[8] D Grosjean National Academy of Sciences Report (1976)

(9] WE Schwartz PW Jones CJ Riggle and DF Miller Chemical Characterization of Model Aerosols Office of Research and Development US Environmental Proshytection Agency EPA-6503-74-011 August 1974

(10] H Niki EE Daby and B Weinstock Photochemical Smog and Ozone Reactions Advances in Chemistry Series No 113 (American Chemical Society Washington 1972) p 16

I11] KL Demerjian JA Kerr and J G Calvert in Advances in enviromi1ental science and technology Vol 4 eds JN Pitts Jr and RL Metcalr(Wiley-lnterscience New York 1974) p 1

418

[12] B Weinstock and TY Chang Tcllus 26 (1974) 108 [13) TA Hecht JH Seinfeld and MC Dodge Environ Sci

Technol 8 (1974) 327 [14] R Graham and BJ Tyler J Chem Soc Faraday Trans

I 68 (1972) 683 (15] WH Chan RJ Nordscrom JG Calvert and JN Shaw

Chem Phys Letters 37 (1976) 441 Environ Sci Techshynol 10 (1976) 674

(16) L Zafontc PL Rieger and JR Holmes Some Aspects of the Atmospheric Chemistry of Nitrous Acid presented at the 1975 Pacific Conference on Chemistry and pecshytroscopy Los Angeles CA October 28-30 1975

(17] JM McAfce AM Winer and JN Pitts Jr unpublished results (1974)

(18] CC Wang LI Davis Jr C11 Wu S Japar II Niki and B Weinstock Science 189 (1975) 797

(19) H Niki and B Weinstock Environmental Protection Agency Seminar Washington DC February 1975

[20] R Simonaitis and J Heicklen J Phys Chem 78 ( 1974) 653 80 (1976) 1

(21) RA Cox and RG Derwent J Photochem 4 (1975) 139 (22] H Niki P Meker C Savage and L Breitenbach 12th

Informal Photochemistry Conference National Bureau of Standards Gaithersburg MD June 28-July 2 1976

(23) J Heicklen 12th Informal Photochemistry Conference National Bureau of Standards Gaithersburg MD June 28-July 2 1976

[24) R Atkinson and JN Pitts Jr J Chem Phys 63 (1975) 3591

(25) H Levy 11 in Advances in photochemistry Vol 9 eds JN Pitts Jr GS Hammond and K Gollnick (VileyshyInterscience New York 1974) p 1

[26] JG Calvert Environ Sci Technol 10 (1976) 256 [27] D Perner DH Ehhalt HW Patz U Platt EP Roth

and A Volz OH Radicals in the Lower Troposphere 12th International Symposium on Free Radicals Laguna BeachCAJanuary 4-9 1976

[28] DD Davis T McGee and W Heaps Direct Tropospheric OH Radical Measurements Via an Aircraft Platform Laser Induced Fluorescence 12th International Symposhysium on Free Radicals Laguna Beach CA January 4-9 1976

(29] NR Greiner J Chem Phys 53 (1970) 1070 (30] JA Kerr and AF Trotman-Dickenson in Handbook

of Chemistry and Physics 57th Ed (The Chemical Rubber Company Cleveland 1976)

(31] JS Gaffney R Atkinson and JN Pitts Jr J Arn Chem Soc 97 (l 975) 5049

(32) JT Herron and RE Huie J Phys Chem Ref Data 2 (1973) 467

[33] WPL Carter KR Darnall AC Lloyd AM Winer and JN Pitts Jr 12th Informal Photochemistry Confershyence Gaithersburg MD June 28-July 2 1976

(34] JN Pitts Jr and BJ Finlayson Angew Chem Intern Ed14 (1975) 1 BJ Finlayson and JN Pitts Jr Science 191 (1976) 111

100

APPENDIX B

i Inorganic and Hydrocarbon Data for

AGC Runs 216 through 223

l Jl

[

l

101

AGC-216-l S02 CRY C GLASS CHA~SER

1976 JUL 27

OiRK FROM 1200 TO 1545 HIE TE~PERATURES ~ERE TAiltE~ FRC~ IHE LCG __ MOK__ FROM 16QQ__ Cgt ---middot-middotmiddotmiddotmiddotmiddot----middot- ---------middotmiddotmiddotmiddot-middotmiddotbull- TH~ TEMPERATURE~ WE~E TAK~N )R6MTHE iOMPUTER REicoui TECO ~3 SAMPLING RATE 1161 HLMlN

ClCCtlt __ ELMSpound0 ___ TSL _Rl HUI _____ SC2 ----middot--bullmiddot-middot ----middotmiddotmiddot-----middot-middotmiddotmiddotmiddotmiddot-------middot-middot-------middot-middot-middotmiddotmiddot-middot-middotmiddot-middot--middot TIME TIMEl~lNI IOEG Cl 11 (~PHI

bull1200 bullbullo 29-4bullbull bull---bullbullbull1bullo---middotbullo3bull59middot--bull bullbull-- bullbull--bullbullbull --bullbull-bull----bull-middotbull---- bullbullbullbull-bull------bullbullbullbullbullmiddot------ -bullbull bullbullbull-bull-bullbull-bullbullbullbull bull bull bull-bullbullORbullbullbullbullbull-bullbullbullbullbullbull~bullbullbull bullO O O bullbull-

1215 15 294 00 C353 _____ 1230 _______30_ ___22r__ aa ___ c~s_9 ____bull ________________________________________________________ _

124s 45 2ltJ6 Jo aJss 1300 60 296 2s c355 1315 75 29 ~--- _________2_o _C ~ 344 ---middot--- ______________________ __________ - middot-middotbull--middot ---------middot------middot--middot - --middot-middotmiddot - middot--middotmiddot 1330 JO 294 20 C357 1345 105 296 20 0344

____ 14_0_0 _____ 1o ____ J9 bull 7 __z_o ___ o_342__________________________ __________________________________________ ______ __ 1415 135 297 15 C344 1430 1sc 297 1s c34q

-- _ --~_lt45__ middot--- J6_5_ _______29_7_ --middotbull-middotmiddot2bull Q_______QU5____ middotmiddotmiddotmiddotmiddotmiddot---1500 160 297 1S C330 1515 195 299 15 C338

_______1530 ____ 210 ______3c bullo _1s____c_32g middot-----middotmiddotmiddotmiddot-1s4 22s 267 15 c331 1600 240 middotmiddotmiddotmiddotmiddot~ bullbullbullbullbullbullbullbullbullbullbullbull

l615______ 255___ _ _bullo~~__________

NO DATA TAKE~ ---- CATA OISCARCED QUESTIONABLE QATA

____________________ __ __ -middot

102

AGC-216-2 SC2 CRY GLASS CHA~eER 1976 JUL 27-2~

CLCCK El~PSfC TSl REL rUM S02 1111pound middotT111emiddot(M1~middotmiddot1oec cT (g (PPII

middoti63amiddotmiddot- -210 -middot33~middot4middot--middot--1--smiddot c3f3-middotmiddot---middot-- - middot 1646 286bull 334 15 C315

--middotmiddotmiddot- po1 middot--middot-middot301_ ____ 334 middotmiddotmiddotmiddotmiddotmiddotmiddot--middotl bull5 middot-middot (320 ___ middot----- _ middotmiddot--middot---- ----middot--bull-middotmiddot----middot-middot-middot middotmiddotbullbullmiddotmiddotmiddot-middot--middot-------middot--l7l6 316 335 15 C10 1731 331 335 l5 C315

-middotmiddot middot- _1746 346 _ 3~_5_ --middotmiddot 15C 3l4___ -------middot---middotmiddotmiddot---- _____ __ 1800 360 337 15 C321 1a1s 375 335 1s 0313

_ JSJO __ 390_335___1_5 C03______ middotmiddot-----------1845 405 335 15 C303

bull1900 420 334 20 0305 _______ middot1915___ middot-- 4 3_5bull middot-middot 3 3 2 ---middot- 2 o __ Cbull 309 -----middot----middotmiddotmiddotmiddot

193C 450bull 33 2 20 C299 1945 465 331 20 0297 2000 480 332 20 C300

- middot 2015- --middotmiddot45middotmiddotmiddotmiddot-- 334 - - 20 C 310 2030 510 335 20 0296 2045 525 337 20 C3072ico middot 540 middot3jmiddot----i~o-middotmiddotc299-middot-middot----bullmiddot-211s 555 338 20 0294

__ 21Jo ____ 5_7c_ __ 33 1 20 _o 300________

~~

il middot 2145 585 338 middot 20 0296J 1middot 2200 600 337 20 0296 2215 615 33 7 20 0296

~-middot 223c 630- middot 33 1 2 o a294 middot 1 C 2245 645 337 20 0294

2300 660 337 20 C291_____middot1 -------middot--------------middotmiddot------middot 2315 675 337 20 0237

C 2330 690 337 20 0293 2345 705 33~~middot-middot 20 0291 --------middotmiddot-middot-----------------middot-middot ---middot---- --- middot- middotmiddot o 120 334 2 a o2as

( 15 735 334 20 0268

(

103

t bull middotmiddotmiddotmiddot--

AGC-216-3 S02 CRY L GLASS CHAMlgtER

1976 JUL 2E

c1oc_~ ELAPSEC rs1 l=L HU S02 Tl~E Tl~~ibull~l IDEG Cl Ii) (PPMI

30 750 339 20 C287 45 765 346 zo 0278

- _lOQ_ middot- _]so ~sr 2 O C ~Obull middot-middot-middot-bullmiddot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot----middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middot-middotmiddot-middot-middotmiddotmiddotmiddot-middot---- middot-middot-middot- middotmiddot-middotmiddot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot------115 7~5 354 15 C276 130 810 354 l 5 C2ol

J45 sect25 35bull1_ 1 _CZJ7 middotmiddot--middotmiddotmiddot -middot--bullmiddotmiddot-middotmiddotmiddotmiddotmiddot-bullmiddotmiddot---middotmiddot-bull---middotmiddotmiddot--middot -middotmiddotmiddotmiddotmiddot --------- --bullmiddotmiddot--- middot-200 840 354 15 C277

l 215 855 356 15 C277 ___ _230 870 _356 _ l5 _C bull ZH ---middotmiddot-middotmiddotmiddotmiddotmiddot---- ----middotmiddot-------------middot--

245 8S5 354 15 C275f 300 900 356 15 C27J

_ 315 915 bullbull~5bull4 bullmiddotbull-middotmiddotmiddotmiddot-middots middotmiddotmiddot- cZ69____---middotmiddotmiddotmiddot-middot-middotmiddot -------- --middotmiddot--middotmiddot--middot----- -middotmiddotmiddot-330 93() 356 15 C271 345 945 354 zo 0271

_ 400 __96Q___ 3_j4 --middotmiddot--bulll5 C2l_________________________________ 415 975 354 20 C250 430 990 354 20 C264 445 1005 353 20 C264 500 1020-~ 354 20 C260 515 1035 353 20 C250 530 1050 353 20 0254 -----middotmiddot--------middot-middot------middot ------middot-middot-middot-545 1065 354 20 C250 6~C 1080 35l 20 0252 615 lOC5 bull350 20 C49 middotmiddot-middot-middot-- middotmiddotmiddot-middotmiddot-middotmiddotmiddotmiddot-_ 630 1110 350 20 0248

C 645 1125 350 zo 0249 ____100 1140 bull_3s o middot--middotmiddotmiddotmiddotmiddot zo__o 2t9 middot-bull-bullmiddotmiddot--middotmiddot--------middotmiddot------------middot----middot---middotmiddotmiddotmiddotmiddot ______

715 1155 350 20 0243 C 730 1170 350 20 024

745 118S 350 25 C239 800 1200 middotmiddot37 25 C233

C 815 1215 347 25 0238

830 l 23() middot- 34 5 _ 2 5 middot-middotmiddot 0 236 ----middot--middot----middot 845 124) 345 25 C241

( 930 1260 347 25 C237 9J5 1275 4 bull7 2bull ~23) 930 129J 347 25 0236

( 945 13C5 347 25 C231 middotmiddotmiddot-~middotmiddotmiddotmiddot l Obull C l 3 0 bull 3 4 7 2 5 C 23 3 middotmiddot- middotmiddot-middot- __ middot-middotmiddotmiddotmiddot-middot- middotmiddot- -middotmiddot bull middot-bullmiddot---bull middot-middot--middot middotmiddot bull _____ -middot middot-middotmiddotmiddotmiddot-- -middot _ _ -

1015 1335 34 7 25 C232 1030 us 34 1 2s c221 1045 131gt5 34 7 2bull~ C225 1100 13eo 349 2s c221 lllS 1395 349 2s c22c

--middotmiddotmiddotmiddotmiddotU30 ltLO 349 z- _C2l6 1145 1475 347 25 C215

1

104

AGC-217-1 S02 LIGHT ORY7 GLASS CtlAHBER

1976 JUL 30 CONTINUATION Of AGC-216 LIGHTLIGHTS ON JUL 29 AT COO ~TENSITY 1ooi OATA FOR 216-LIGHT USELESS DUE TO FAULTY OACS CHANNEL S02 STRIP CHiRT DATA USEO FOR THIS RUN 25 HL CF S02 INJECTED HITH 90 ML Of NZ ON JULY 30 AT 1003 OASIBI 1212 ON CHAMBER AT ABOUT 1534 TO 1537 ON JULY 30 ANO FROM 1201 TO

1230 CN JULY 31 SAMPLING RATES tHLHINI TECO 43 - 1161 DASIBI 1212 - 600

middot~ CLOCK ELAPSED OZCNE TSl REL HUH SC2 ~

ii TIME TIHEIMINI tPPH) IOEG Cl Ill (PPM)

l 1130 -15 bullbullbullbullbullbull bullbullbullbullbullbull o3ze 1145 o bullbullbullbullbullbull 346 220 0321 1200 15 351 215 0315 1215 30 354 195 C310

l 1230 45 bullbullbullbullbullbull 356 18J 0307 1245 60 bullbullbullbullbullbull 357 17Q 0305 1300 75 bullbullbullbullbullbull 360 165 0301 1315 90 bullbullbullbullbullbull 360 155 0296

l 1330 lC5 bull bullbullbullbullbullbull- 36l 145 0 292 1345 120 bullbullbullbullbullbull 364 130 C290 1400 135 bullbullbullbullbullbull 366 110 0286

1415 150 366 _ll5 0282 1430 165 bullbullbullbullbullbull 365 115 027~ 1445 180 bullbullbullbullbullbull 365 110 021 1500 195 362 11C 0273 1515 210 36l 130 0269 1530 225 0519 360 140 0265

~[ ~~ i~~-- ~~ ~ ~~ - middotmiddotmiddotmiddot-- -middotmiddotmiddotmiddot- --middot - -middot middotmiddotmiddot-middot--------middot

sect ~ 1615 270 bullbullbullbullbullbull 357 160 0255

l ____1630 _______2s5 --bullbullbull _____ 35 bull7__Jo 5middot-middot--middotmiddot-cmiddot253middotmiddotmiddotmiddotmiddotmiddotmiddot--middot

1645 300 bullbullbullbullbullbull 357 110 025C l7CO 315 357 170 025C

___ 111s___330 __ bullbullbullbullbullbull __35 bull 7 -middot--- 1a bullomiddotmiddot--middotmiddotmiddotmiddot0241 middotmiddot--middot--middotmiddotmiddot----middot---middot-middot--middotbullmiddotmiddotmiddotmiddot-middot-middot middot-------------1130 345 357 190 0245 1745 360 bullbullbullbullbullbull 356 20c 0242

___a_oo_~--middotmiddot--3_15_ __bull___S_bullt____ 21 o -bullmiddot _o 24c middot-middot--middotmiddotmiddotmiddotmiddot--------middotmiddot----------------I 1815 390 bullbullbullbullbullbull 354 225 0231 1 1830 4C5 357 21~ 0236

___J_B4~ middot- ____420-~bullbull middot---middot _3l bull l___19 0 0 235 1900 435 bullbullbullbullbullbull 364 170 0233

) 1915 450 bullbullbullbullbullbull 365 160 0230

i 1 _ ____19 3 0 __ ---middotmiddotmiddot 465 bull bull bull middotmiddotmiddotmiddot--- 3 6 bull 6 -middot--1 5 bull 5 _ C bull 2 2 7 middotmiddot-middot-middot--- --middotmiddotmiddot --middot -middot - ------

1~45 480 366 145 C225 2000 495 366 150 0222

____2015 ___middot _i 10__ bullbull_____36o6_- JS_ Q_middotmiddotmiddot 0 220 2030 525 bullbullbull$bullbull 366 155 021ar 2045 540 366 155 0216 ___2100________ssbull_____ ---middot6J__ __1 s s _o 213 2115 570 bullbullbullbullbullbull 3os 165 c211 2130 585 bullbullbullbullbullbull 365 110 c210 2145 600 bull 365 175 0208

J --middotmiddot-middot2200 middotmiddotmiddot-middot--615middot-middotmiddotmiddotbullbullbull bull--middotmiddot--middotmiddot-364----middotmiddot iso middot o206

middotI 2215 630 bullbullbullbullbullbull 364 180 0204 _ -middotmiddot----middotmiddot2230 645__bullbullmiddotmiddotbullmiddotmiddot-middot--middotmiddotmiddot 31i bull 2_ 19 0203

2245 660 bullbullbullbullbullbull 364 195 c200

i1

zjo_ci ___---1s bullbullbullbull 362---middotmiddotiomiddotmiddotomiddotmiddotmiddot omiddot196 -r l 2315 690 bullbullbullbullbullbullbull 362 205 0195middotbull 2330 705 bullbullbullbullbullbullbull 36l 215 0193g 2345middot 720 bullbullbull ~ bullbullbull 36l 225 0190l

bullbullbullbullbullbull NO DATA TAKEN ---- DATA OISCARO~D QUESTlONAuLE DATA r ~ 1~

IT Q

~

105 F

AGC-217-2 S02 LIGHT DRY GLASS CHAMBER 1976 JUL 31

CLOCK ELAPSED OlONE TSl REL HUM S02 Tl~E TIMEIMNl IPPMI IDEG Cl 11 IPPMI

1 0 735 3bO 22C 0188 15 750 3bO 220 C185

_ 30 ---middot-middotmiddot--765__ 358 -middot-middotmiddot 220 0183 45 780 358 220 o1a1[ 100 795 bullbullbullbullbullbull 358 225 0180

115 810_bull___-middotmiddotmiddot-middotmiddot-middot 35 bull8 middot-middot-middot-middot225 0177

l 130 825 bullbullbullbullbullbull 357 225 0175

( 145 840 357 225 0112 200 855 bull _357_ ___ zzs c111

215 870 356 225 0169

f

I ( 230 885 35b 230 0168

245 coobull 356 230 c166 middot300 915 356 230 0163

C 315 930 356 230 C160 330 945 35bull6 230 C160 345 960 bullbullbullbullbullbull 356 230 0158 400 975 bullbullbullbullbullbull 354 230 0156

_415 _990 ~5~6 230 0154 430 10C5 356 235 0152 445 1020 354 235 C150

L -middot----middot-middot500__1035 __ -middotmiddot 354_ _ ___ 23 5 0148 515 1050 354 235 C147

( 530 1065 bullbullbullbullbullbull 354 235 0145 545 1000 354 235 0144 600 10lt5 354 235 C142 615 1110 354 235 0140

___630 ____ 1125 bull - ___ 35bull 4_ ___ 24o013lt 645 1140 354 240 0137 100 1155 bullbullbullbullbullbull 354 24o 0135

--- _715 1170bull 35 24-0 0134 730 1185 354 240 0133

l 745 1200 354 240 0131 800 121~bull -middot-middot____35~---middotmiddotmiddotmiddot24bull C_ _O 129 815 1230 354 240 0128 830 1245 354 245 0121

-middotmiddot----845 1260~ 34 245 0-126 9CO 1275 354 245 0124

( 915 1290 354 245 0122 -middot--middot_930___1305_ -middotmiddotmiddot)54___ 245 c120

945 1320 bullbullbullbullbullbull 354 245 011a ( 1000 1335 354 245 0116

________1015_ __ _1350 354 240 0115 1030 1365 middot-middot--356 240 0113 1045 13130 354 24C 0112 1100 1395 354 240 0111 1115 1410 354 240 0109

- middotmiddot--middot-~--- middotmiddotmiddotmiddotmiddotmiddot-middot--middotmiddot-lDO 1425 354 240 0 107

l 1145 1440 356 240 0 bull 106bullbull12cc 14gt5 bull bullbullbullbullbullbull 3gt6 40 0105 1215 14 70 0504 354 240 0 103

middotmiddotmiddotmiddot-middot- middot---middot-------middot--middotmiddotmiddot --middot middotmiddot-middotmiddot middot-middotmiddotmiddot-middotmiddotmiddot

__ middotmiddot-middot---------middotmiddotmiddotmiddot_ - ___ middotmiddotmiddotmiddotmiddot

----------middot--middot--middot- middot--middotmiddotmiddot--middotmiddotmiddotmiddotmiddotmiddot-middotmiddot -middot---

middotmiddotmiddot--middot middotmiddotmiddot-middotmiddot-middot--middotmiddotmiddotmiddotmiddot-middotmiddot-----

bullbullbullbullbullbull NO OATA TAKEN ---- DATA DISCARDED QU~STIUNABLE UATA

106

AGC-218-1 S02 40t RH GL~SS CHAMBER 1976 AUG 4

DARK AT 0850 FC-12 ANO S02 WERE INJECTED INTQ THE CH4~8ER THE OASIBI 1212 WAS CN THE CHA~~ER F~OM 1651 TO l65S BRADY 1296 CALISAATION 1Q7~ JUL 16 SAMPLING RATES IMLMINI TECO 43 - 1~33 CASIS 1212 - 600

CLCC~ ELAJSEO czc~~ TSl R~L HU~ 50 Tin TIMEl~Nl (P~gtI DEG Cl a1 PPM)

1100 c bull~~ 334 4J ~-377 1105 5 ~ 334 485 l3Sl 1110 10 bullbullbullbullbullbull ~34 485 C3BJ 1115 15 middotmiddotbullcent 334 460 0379 1120 C bullbullbull 334 475 0374 1125 2~ bullbullbullbullbullbull 33S ~70 0375 1130 30 middotmiddot-~middotmiddot 332 475 0371 1135 35 334 47o o372 1140 40 bull bullbullbullbullbullbull 334 65 C370r J 1145 45 bullbullbullbullbullbull 334 4~c 0111l i 1150 50 middotbull 334 465 03t9 1155 55 334 16 5 0364 1200 60 - 334 45 5 0366 1205 65 bull 335 450 036rl ~ 1210 70 ~bull~ ~)5 ~5J_ 035~

1215 7~~ bullbullbull 335 450 C162 1220 so bullbullbullbullbullbull 334 450 o~

di 1225 85 334 440 0362

iz3d o ~~bullbull 3J4 44o o3e2 1235 95 334 445 C355 1240 100 332 45 0355 middot--middot-middot---middot--middotbull- middotmiddotmiddot-middot --middot - _____ _ f24middot5middot 10smiddot~middot Jl 332 4middot4~ 6 middoto-353-middot

~ i C 12so 110 332 4~o o353 125 5 115 i__ 4 ) _ 0 bull 352_ _--bull-middot __ ----middotmiddot-middot __ middot-- _____ - _ ___13()0 __ 120-middot-- 332 435 0354

J 1305 125 334 430 0351i I J31 o __ _ uo __ ~bull-- u-~--middot middot-middot-42 bull0 o- 1ssmiddot--middotmiddot-middot-middot- ----________----middot- ---middot __

1315 135 334 420 0348 bull ( 1320 140 334 420 0348i l32S 145 -middot_ _3 bull~--4t5 Q352

1330 150 334 41middot) 037 1335 155 335 420 0344

1340 160 335 420 0344 middot 1345 -165 uu 3ibull 4 - middot41smiddot cl44

C 1350 170 ~bull 335 415 0343 1355 175 335 420 C343 1400 180 335 415 C341 1405 185 337 405 0341 1410 190 33 bull 5 400 0343 1415 liS bullbullbullbullbullbull 335 41C 0340 1420 2cc bullbullbullbullbullbull 337 41o 0331 1425 2cs bullbullbullbullbullbull 337 405 oJe 1430 210 bullbullbullbullbullbull 334 410 o33e 1435 215 33l 42v 0336 1440 220 bullbullbullbullbullbull 317 415 C]36 1445 225 middotmiddotmiddotmiddotmiddot~ 335 45 0332

ti~tmiddot -g 1450 230 bt~ 337 41 5 c~32

1455 2 35 33 7 bullbull 0 o 13cmiddotmiddotmiddotmiddot~ ~ 1500 240 33 7 42) 0330

$C t-kOt~ ~ 1505 745 H 7 42 D 0330

bull~ 11C f ~ () D~ TJ T ~r EI ---- ChT~ orsrA~ncn 0UST l1~111c [)TA ~ 4

J 1(

i[ i l bull1

~ ~ Imiddot

middoti_ ~

107

I

il ~ ij

1 i ii l

Ir

~ 11

ij

Ibull ~

J ~ l

j (

) AtC-21S-2 502 401 RHT CLASS CHAMBER

1976 AUG 4

i i

CLOCK ~LAP$) JlC TS l EL rIJ~ S72 Tl bullE TlEPlll I I P1 l lDEG CI (1) I PP~ I

1510 250 middot~ 337 415 o 32~ 1515 255 cie-(wt 337 t~ 0 032S 1520 2t) 337 420 0PI 152 5 265 bulltI 3l 7 42 1 I~bull)~ 1530 2 7 C=it~bull 334 41 5 0327

bull 1-tit~o

middot~

1535 27 D5 420 bulll 324 1540 middot2cu 335 42 C32C 1545 285 middot=~ 334 430 C322 155C 29J t rLI 334 430 0122 1555 295 o CJ3 334 4t 5 c 320 1600 3CO bull Iii- 334 420 0322 1605 3C5 emiddotbull= 334 42o J3lfl 1610 310 wc 33 4 425 0319 1615 315 ti 332 420 0316 160 32C 334 Z5 0 bull 114 deg 1625 325 -0laquot 33 t 430 0315 1630 330 335 430 ons~ li35 335 cent 33 5 435 0310 middotmiddot-- ____ -- 1640 340 $Qt 335 44) 0313

( 1645 345 33 5 435 o 311 1650 335 440 0309--~-- ~~~~-----middot~-~~-~-~-~--- ---middotmiddotmiddotmiddotmiddotmiddot-middotmiddotbullmiddot-- middotmiddotmiddot--middotmiddotmiddotmiddot--middot-middotmiddotmiddot-middotmiddotmiddotmiddotmiddotmiddot --- middot-middot-- middotmiddotmiddotmiddot--bullmiddot--middotmiddot-middot--middot middot-bull------middotmiddotmiddotmiddotmiddot-- ---middot-middotmiddotmiddotmiddotfo55 355 bull-c-t-t-it 33 r 43 5 C313 1700 360 $0~IZ 335 45 C305 l705 365 338 4 5 0308bullbull ---- middot-- middotmiddotbull---middot-middotmiddotmiddotmiddotmiddot--middot-- l7l0 370 ~~emiddot i8 440 CJC8 1715 3 75 bull-tt~iU 337 44J C310 1720_ 380 bull ie~~bull -~3 8 35 J303 - middotmiddotmiddotmiddotmiddotmiddotmiddotbull-middot-middotmiddotmiddotmiddotmiddot middotmiddot-middot- middotbullmiddotmiddotmiddot-middotmiddotmiddotmiddotmiddotmiddot-middotmiddot1725 385 -tttr~ 33a 440 0308 1730 39J ~cent n a 440 0303 1735 395 izc 338 440 0 3)2 middot--middotmiddotmiddot middotmiddotmiddot- 1740 co VIOct- lt= 338 430 o 30 1745 40J (rfl$~bull 338 430 0302

OJei1()01750 410 33 I 430 029d middotmiddot--middotmiddot---middotmiddotmiddotmiddotmiddot--middotmiddotmiddot-middot-middot 1755 415 t 338 44) 0299

1800 420 bullti-it 333 43 5 0296 1805 425 i-t-7Icent 33 8 430 0299 middotgt l8U 4 3 I cent46 317 3 0 029 l Bl 6 436 c-oilaquo4t 337 430 0298 lil21 441 33 7 43 5 ( ~9 7

~tf(p ~

middotmiddotmiddot--middot-middotmiddotmiddot--middotmiddotmiddot--middot middotmiddot----middotmiddotmiddotmiddot----I B26 4d plusmn~ 337 430 o 2-7 1831 451 (-tilll- 337 415 0296 1836 456 tdcmiddotC n13 430 C291 --middot - -- 1341 461 t(I~ 33 7 435 0292 le46 466 bullt~tci 33e 435 o 292 1851 4 71 33_ 3 425 Oll Hi56 4 76 337 425 0291

1901 4 il I it-Otcbull 33 43C bull)2Rq1906 96 t~illtt 338 475 J217

_Clt-~4t1911 t91 l3 7 42) middot t~HJ 1916 bull c( bull ie--iJtll)ill6 4l1) 0187n ___ iil 111 [t 1 T el rbullNJ Crf fISCAP[E) QU~ 5 T t 1Jt-bl E 1)1 TA

108

AGC-218-3 SOZ 40l RH 7 GLASS CHAMSER

__1976_ AU( 4

CLOCK ElAPSED oz~~~ TSl qEL HUM S02 TIME TfME (lfrjf- I PP~I oeG c- -ii --middotmiddotcigtTmiddot----

(

1lt121 sci-middot umiddotbullmiddotmiddotmiddotmiddotmiddotmiddot-- 3fmiddots~ 425 o~io6 1926 5~6 bullbullmiddot 338 42-0 0285

______1931_____511 ~-~- 33 1_ 41 s o_2s5___ 1936 516 337 425 ozss

( 1941 521 337 415 021a 1946 526 337 415 0282 19si ~31 bullbullbullbullbullbull 33i middotmiddot425 021a 1956 536 337 420 0278 2001 541 335 420 0283 200middot6 5t6 -middotubullu-middot----33s- 12s -0211 - middot middotmiddotmiddot middot ----------

( 2011 551 bullbullbullbullbullbull 335 420 0278 2016 556 334 415 0277 2021 561 334 425 0277

( 2026 566 bullbullbullbullbullbull 334 425 0276 2031 571 bullbullbullbullbullbull 33~-- 420 0278

middot-middotmiddot- 2036 576~ UU 334 425 0275 ( 2041 581 middotmiddotmiddotmiddotmiddot~ 335 420 0274

2046 586 335 420 0275 205( 591 337 430 0211

C 2056 596 335 425 0211 2101 601 337 --~2s 0210 2106 606- -middot~bullbulli 3~s 430 0211

C 2111 611- 337 425 0269 2116 616__ = 337 425 0270rmiddotmiddot- 2121 621 ibullbullbullibull 33~7 436 0210

C 2126 626 c 337 420 0270 -l 2131 631 ~ 337 __ 430 0210

2136 636 337 425 0267 C 2141 middot 641 bull 337- 425 0266

2146 646 337 430 0265 2151 651 337 425 0265

C 2156 656 middotmiddotmiddot~middotmiddot 335 425 0269 2201 661 33J__ 431) 0266 2206 666 335 425 0263

( 2211 671 335 425 0265 2216 676 337 430 264 2221 681 335 425 C261

( 2226 686 33S 435 0263 2231 691 bull h 335 430 Q2(3 2236 696 335 425 0259

( 2241 701 335 430 0256 2246 706 335 425 0258 2251 711 335 425 0255 2256 716 335 430 0256

OU~STICNA6LE DATA

109

AGC-ZIR-~ ~02 401 RH GLASS CHA~t1Fl-1976 AllG 4-5

AOO 660 MIN TO ELAPSEO llM

CLCCK fL~PSEe TS l l~L HJ~ Si~bull- T -IF Tl~cllO ING CI (o (r~M)

22C6 6 33S 4l5 C263 22tl 11 335 425 C265 2216 16 ~37 43i) i)264 2221 21 335 12 5 Obl 2226 71 D5 435 C26~ 2211 31 ns 430 0263 2236 36 335 425 i)5G 241 41 335 430 C256 24( 46 335 2 _5 middot 253 51 51 33 5 42S C 25 256 56 -3 ~ 43(1 0256 230 t 61 335 425 C254 2306 66 35 42 C25S 2311 71 33 5 430 C 50 2316 76 337 425 CZSv 231 81 33S 43) C 5) 2326 86 33gt 43J 0252 2331 91 334 420 0249 233b 96 335 430 C z5J

middotI 2341 1C1 ~35 425 C252 2_34~ 1C6 335 420 obull45 2351 111 33 middot-middotmiddot 42 5 G248 2356 116 334 420 0248

1 l21 334 425 0247 6 126 334 42~5 C~250

11 131 334 420 0244 16 l36 334 __ 425 c 245 21 141 334 42middoto 0244

26 146 334 420 0244 31 151 332 42o 0242 36 156 334 415 0242 41 161 334 425 0241

i 46 161 132 42 o G2391i 51 171 334 430 ~ 239-~

i 5b 176 332 430 oz3gmiddot 10 l lBt i 2 425 023ltgtt 106 186 332 435 C236

I -~ -~ 111 l SI 332 431) 0238 ~ ~ 116 l c6 33l 431) IJ2 1l 201 332 435 C23gt

126 2C6 332 430 a 233 I 131 211 3 2 435 0232

f 136 216 3 3 2 430 0233 p 14 l 221 3) 425 0233 I 146 226- 312 435 C233

I 151 23i 33 l 425 c22s

C (

~ ti

) ~ I ~i 6 236 332 4)5 cna 201 bull1 3 3 I 430 C bull J )

f 20lt 246 33 l 4 s C2 n E 211 251 3 3 l 4gt0 0231)]

Iimiddot~- ~ll QtTh TAK f1 fl AT

~ -- 1 l middotmiddot1

I 1

middotmiddotmiddotmiddot--middot-middotmiddotmiddotmiddotmiddotmiddotmiddot --middot-middotmiddot--middot-middot ----

_ - middot- --middot---- middotmiddot-middot-middotbullbullmiddotmiddot-middot -middot--- ---

--middot bullbullbullbullmiddot bull-bullbullbullbullbullbullbull M bull-bull 0 middot---middot-middotmiddot middotmiddot----middotmiddot - -

- --middot---middot- -- -~middotmiddotmiddotmiddot-middot--middot-middot middotmiddot--middot

____ ___ --- middotmiddotmiddotbullbullmiddotmiddot----- __ middotmiddotmiddot-middotmiddotmiddot -~ ~-

n1 s1or~o

110

AGC-218-5 S02 4Ct RH Gl ASS CHA~lrn lH6 lllJG 5

AOO 6amp0 HIN TO ELAPSED TtME

ClCCK l~llSFt 1$1 REL HiPl SO TIME TIMEl~lNl ID~G Cl Ill IPPM1

216 256 331 430 0211 221 u1 331 4-L~ c2n 226 ~66 33o 43~ C27 231 211 JJo 44o 022s 23~ 276 3l0 44S C28 241 281 330 435 C26 246 266 330 44 5 C2Z5 251 291middot 330 43s o22~ 256 296 33o 415 c23

middot301 301 bull3middot3omiddotmiddot---middot40 022s 3C6 306 328 435 0225 311 311 328 445 C226 316 316 32 1middotmiddot middot -4middot3smiddot c222

( 321 321 32S 440 C222 326_______ 36 32_ a______ 43 bull s__ c 221 middotmiddot---middot--bullmiddot-middotmiddotmiddot ___ __________ ----------middot-middotmiddotmiddot-middot 331 331 328 430 023 336 336 32S 435 C220

34134-1 e a~middotbull~- fl 9 0 211 346 346 3Z8 440 0220 351 351 32s 435 c220

1 ~t t---ttt-middot -t~g ____ --middotmiddotmiddot -middot-middot-middot-middot middotmiddot- middotmiddotmiddotmiddotmiddotmiddotmiddot--middot middotmiddotmiddotmiddotmiddot-middot--middot---middot middot--middotmiddotmiddot-middot- ---middot-bullbull _ 406 366 327 440 0216 411 311 n1 445 o_215 __ __ --------middot- middot--middot--- 416 376 326-middotmiddotmiddotmiddotmiddotmiddot43s-middot C211

( 421 381 327 445 C215 421 3~6 _32 bull6___~i1Lcn middot- ______ middotmiddotmiddot--middot--middotmiddot middot-middot--middotmiddot 4Jl 391 326 445 C211 436 396 32s 44o 0211 4 1l 401 326 450 0210 446 ~06 324 44o u211 451 411 34 45o 0213

_456_ 416 324 445 _C210 501 middotmiddot21 323 455 c211 506 426 323 445 c210 511 431 323 55 0204 516 436 323 44S 0209 s21 441 323 455 c210 526 _446 33 445 C208 531 451 3 3 455 003 536 456 323 445 0204 541 461 322 4S5 c20~ 546 466 322 445 C215 551 471 322 450 0206 556 476 316 4o 0210 601 481 316 450 020gt

C

606 4fl6 31 6 455 C zomiddotJ 611 491 316 5 ~ c2n 616 496 316 4tC on 621 501 316 455 C2J2

bullbull bullbull NO OAH T6KFN ---- ll 11T VJ ScAmiddot~~~u

111

AGC-218-6 S02 40l RH GLASS CHAIBER 1976 AUG 5

ADO 660 HIN TO ELAPSED TIME

CLCCK ELAPSED TSl REL HUM S02 TIME TIMEIM~) IOEG ti Ill (PPII

626 5C6 middot3f~6middot 46ci 0200 ( 631 s11 316 455 c2ao

636 516 316 45s c200 641 521 31~imiddot 4ampomiddot 019

( 646 526 315 45o 0199 651 531 316 455 0199 656 536 315middotmiddotmiddot 45S 0195

C 701 541 31a 45o 0191 706 546 319 45~5 C197 711 551 319 455 C115 716 556 320 45~ 0199 721 561 322 460 C197

566 323middotmiddotmiddotmiddotmiddotmiddot 45~5 C195- -middotmiddot - --middotmiddot--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot- ---- middotmiddot-middotmiddot-middot middot-middot-middotmiddotmiddot middot--726 ( 731 571 324 460 0194

736 5 76___32 bull middot-middot --4~-~~---middotmiddotmiddotc ~q_5 ______________ middot------middot-middotmiddot-middot--middot-middot-middot-- -- middotmiddotmiddotmiddotmiddotmiddot-middotmiddot-middotmiddot~--middotmiddotmiddot-~-middot-middotmiddot----- middotmiddotmiddot--- middotmiddotmiddot-----bullbulln-bullbull-middotmiddotmiddot -------middot-middot 741 581 3t4 455 0193

746 586 326 45o 012 751 591 327 455 0194 756 middotmiddot- middotmiddot-s96~-middot -- 32-amiddot- middotmiddot4smiddots middotmiddot middotc194 801 601 330 455 C193 806 606 33l 460 C191811 ------middotmiddotmiddot-middotmiddotmiddot-middotmiddot--middot----middotmiddot------middotmiddotmiddotmiddot-middot-middotmiddot----------middot- 611 33l 45bull 0 0171 ------middot-- middotmiddotmiddot-middot----------816 616 332 460 0191 821 621 332 455 0192

826 626 33--middot 460 o 183 C 831 631 334 455 C188

836 636 334 ____4S_o___Cl36 --middotmiddotbull---------841 641 -middotmiddot-middot-middot33 5 45 o o1ss

( 846 646 335 46 C137 851 651 335 455 CS6 856 656 335 40 0184

(

l

a ~ -

112

AGC-2ld-i s02 -~ r~ iliS5 (I--A~tl[f-

196 AUC ~

libulloHTS Cl 01CC 1nSlY lmiddotJOt lJ~ OA~JJI_ 12L r c~~ itmiddotE (Hit~t t~uG~j cic6 10 tll f-RC~ 1 Mi TJ S lf ftf-lt

Tt~ ~Ol~ fbull~0~ 1C~0 T2 l~Ji ~~~J TJ 113( ~2~1-~~C~ AU~ t VlOT--0110 s~tY 12s6 CAlt1 ~i11u- 1-h vl imiddot StPLllG RATES OL11) TcCU ~ -middot 123bull C~Slfl 12l - t()(

ccci- fL 0 )~middot) i Sl i l ht ~-it t-bullc r l -pound ( l 1imiddotc Cl 1 ~ ~~(

1 tti ~ C i t ( bull t ~ 1i1t ~) ~i cu

--bull-- -~ll __11 middot-- middot ~~) 5 ) -bull ~ __ S bull lmiddot~ __ _ gt le 1~J yen ~ ~s ~ss 1~1s~ 92l 21 ~bull~ 46C c11middotgt)c~~

S2C ~tbull 1 ~ ~ ~4 bull_ bull l ))(~-~

middot93 l 31 1 ~ _j_l bull bulltC Cl-bull 936 ~l 01 L

--------~ -~ ___ ______ 4_1 -1=i 1 5 0 l i 4t 41 tit~ 4 middot1 middotmiddot3 C -_ bull 1 i~l

( 951 roc -i 5~L 3 1 42 bull G ct 51 ~( - 3 f gt 41 i 0 1(_bull(

1)0 l c 1 ~centelaquo 4middot1 5 01X lOUc cc 15 ClL~ [011 7 l ~d~bullt~(c 3lt bull 7 41 bull -J16-t lOlt 76 it20 OltG t~~01gtt j4 9

102 l 81 (-ttI centicx 3i ~gt 01~2 iOU 8t i-uc~ ~2) C l 5t1oii -middot middotsf~- middotmiddot~~-~~- -----~-~ ~

)~bull- ~ l () middoto i5t1middot i03amp ~6 ~~ 4C bull i C lJ6 041 10 1 middot~bull-p(t 1t _ ----~ bull~-----~ ~+- ~ middottC46 [Ct bulllaquo 4 7 4 bull U r bull l bullmiddot

1051 111 ~~-~~ tCi ~gt 0 l i0~6 J1~- ~ 347 41u 01~ llOl 121 -middot--bullomiddot- -middot 41 c (i1smiddot1

C 1106 126 4s ) 153 llll l31 ~middot~ 34 5 4rJC middotO 140 lll6 136 bullbull~bull~ 3lt bull j =~- --~ O l4

( ~121 l~l $enyen 34 o 3i G 14ltgt i12o 146 ~~ 34Q Jl0 011

--i131 -middot-- 1s1middotmiddot middot_ __ middotf 3 ~ ---143 middot-- C 136 1f 3C 0112

~14_1 -middotmiddot--middotmiddotmiddot16_1 -e-~ )-t _ b5 1~2 qri middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot3middot4--_middot- Ji ~ C bull 1 j S bullmiddotmiddotmiddot - middotmiddot---middotmiddot-middotmiddot -middot middot-lee

( H51 171 3-1-ti ~ 7 5 013S 11~6 I 76 )) 3 1r ~ 37 0 0 1+C 220 l -- 1cimiddot1 x middot3middot- i~ bullmiddot 3( I Olle i06 d6 J ~ C6 34h 330 01n 21 I I l 31-9 middots o 0 131

l21 t I S6 - l(~q~cent 5middot ~middot0 ~4middot-~middot--middot-- bull i l2 ( 122 l 2Jl J~1 34 1 C l J

1226 2c1 c~bull~ 34~ 34C n 12s Tiit 2ll _(Ybullbull~- bull~bull~- i j~bull ~j cbull1it1 l23l 2 ll ~~UCO ~4a ~c Oi3~ i24l 221 bull~bull~ ~~-~ 3~~ Cll~

middot 124c 22~ v~-y 34~ 34i cmiddot ld

1251 iil laquoriribullmiddot ~middotmiddott o ~) 12middotmiddot 12~0 2 j() - bullrl-1- 3 ~ ~ ( 1bull~ 3C l -~ middot ~ ) J di ~ ~ l (l

113

AGC-2lS-8 S02 40l RH GLASS CHAMBfR l976 AUG 5

CtrCK TIME

EL AP SEO TlIOIMINI

Clf~C (PPM

TS l IOEG Cl

~FL HUf n1

SJZ C PPI I

1311 251 -$ H5 33middotbull 0125 l3lb 256 (centcent 345 n 5 0 129 1321 261 ltirtQlaquo- 34bull ~ 325 0 12 3

C 1321gt t31

266 27l

(~~laquo~ q~t~laquo

~4-7 3 9

335 340

0 12 S o 122

1336 1341

276 281

__ t

347 34 7

34J 31 5

0 122 0123

( 1346 286 1(11) 347 345 c120 1351 291 t l ~4-7 360 0-1 zo

( 1356 1401

296 301

346 346

36C 35S

0118 0117

140(gt 3C6 o 254 346 355 0 118

1411 1416 1421 146 1431

311 316 321 326 3 31

~YJJ

bullbullicent lCbullmiddot (11Ctlaquo

346 350 35l 35l 35o

34J 355 360 35 5 335

0118 0 118 0117 o ll amp o 114

1436 336 $$) 354 350 0 114 141 l 31 354 35S 0111 1446 1451

346 351

t(c=~

tit 354 353

355 350

C 112 0110

1456 1501

356 361

bull~

35 l 35l

360 34 5

o 111 0110

1506 1511

366 371

0287 $

35_o 1so

345 345

o1oq 0 lOl

1516 1521 1526

3 76 3A I 386

ICi -C ~IX$

349 347 347

340 340 355

0 109 0 109

0107 1531 391 tamp 347 36C D107 1536 396 346 365 010 1

1541 4 01 Or 346 36C 0106 1546

1551 406 4 l l

Cittcent

346 34o

36 5 365

010 0104

-15~6 416 6~ 346 365 0104 1601 421 ~( 345 365 0103 1606 426 c 302 346 36 C o 103 1611 1616

4 3 l 436

lJ rit II

~ 345 3 5

365 37 5

ClOJ 0100

1621 441 ltftt11 345 37 0 0100 1626 1631

446 451

~ 1tcent bull1Cc

345 345

36 C 36 0

0098 OCll

1636 456 tC06J 345 36 5 o 098 1641 1646

461 466

(Ittbullittbull

345 3 5

-c 365

o )Ya 0094

1651 1656

4 71 4 71

11)fI)

$$(1Jfbull 345 345

310 3 7 0

0 ))4 0 Oi4

middot7 1701 1706

4 81 48b o 315

3 s 34gt

0 3t 0

oogs o 094

1711 I 716

491 49amp

bulltttoJt--r

ittt t 345 345

355 H bull5

0014 oon

bullbullbullbull ijir mJ DU4 Tf~ fl -- middotmiddotmiddot- l)f TA 01 $ChIHG I OUET rorAILE tJIH

114

AGC-218~9 S02 401 RH GLASS CHA18ER 1976 AUG 5

AT 2059 PROPE~f (64 ML) ANO FC-12 1580 MLI WERE INJECTED

f (r CLOCllt El ~PSEO QZCNt___ J51 TIME TIME(~I~) 111 (DEG Cl

(

i7ii soi ~ 34~middot5middotmiddotmiddotmiddotmiddotbull-middotmiddotj4_Q 0092 bullmiddotmiddotmiddotmiddot----middot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot--~------middot----middot-middotmiddotmiddotmiddot----------middot-middotmiddotmiddot

C 1726 50~ 345 340 OC92 ll3 l_ middot--middot51 l ~~~~---3~--~middot-middotmiddotmiddotmiddot-3t i____QJJ12

1736 516 343 350 OC89 1741 521 bull 343 335 OC89

_1746 -middotmiddot ---526 u _ )45 _J3 O_ 0 bull C$8 __ _____ 1751 531 346 310 OJS7

C 1756 536 bull 350 305 035 1801 541 351 _no__ 0 bull0es___ _____ ______middot-middot-------middotmiddot 1806 ~4i~ 0313 3D~ 330 OC84

( 1811 551 358 320 0085 1816 559 ~-~-middot--middotmiddotmiddotmiddotmiddot~-58 32middotJ OC81 _____ -middotmiddot--bullmiddotmiddotmiddotmiddot-----middot---middotmiddot ----- 1s21 561 358 320 oc33 1826 566 360 315 0083 1831 571 36J 315 0083 1S36 ___ 576- 36o 320 oca1 1841 581 ~ 380 315 0078 1846 586 middot---middotmiddot 38 bull0_ 320 0081 1851 591 379 ~jo---6019

C 1856 596 377 335 007S 1901 60Jbull UUbull 376 330 0078 1906 606 0328 375 340 Q078 1911 611 375 335 0078 1916 616 376 330 0076 1921 middot621 376 33o middotocn

C 1926 626 376 335 0077 1931 631 376 34 0 OC7t 1936 636 bull 375 345 0070

C 1941 641 372 345 0074 1946 646 372 340 0074

0

1951 651 37~ 340 0074 ( 1956 656 37l 345 0073

2001 661 370 350 0071 2006 666~ 370 350 0072

( 2011 671 369 355 ocn 2016 676 36I 35 5 0068 2021 681 36l 36 0 OC68

( 2026 686 349 365 )069 2031 691 0 349 365 J070middot 203~ 696 349 370 OC6i 2041 701 350 370 0066 2046 706 349 3~o ooes 2osi 111 o341 35o 3Bo 0001

( 2056 116 0341 35o 38s o066 2101 121 0343 337 385 0066

115

r I

I~

) I I

H l

Ji

I

~ I

l _

I1 i

~ t 1 t

I r ~ ~

f ~bull1

1

1 r i

AGC-21S-IO 502 401 RH GLASS CHA~tHR 1976 AtlG 5-6

ADD 720 MIN TO ELAPSED TIME AT 2059 PR~~ENE 164 ML) AND FC-1 (590 Mll WE~E l~JECTED AT 2217 IO ML OF S82 WAS INJECTED

CLOC~ ELiDSEJ ri~~bull TSL ~fl HJ~ 5~~ TIM~ TIMEl~INI (PPM) (nEG Cl Ill (PP~)

2106 6 0 32l 345 390 2111 11 0314 34 bull 0 Crmiddot 2110 lf 0300 34 q_ 390 OJtO 211 21 () 2lJ 3bullbull 9 390 0057 2126 26 0231 350 ~9 0 JC56 2131 31 ()282 35Q 39bull 0 OC55 213b 36 tic 350 39 () or56

2141 41 O~ 35Q ~9J 0C54 2146 46 (~-ti 35bull Q 390 )054 2151 51 iei 350 390 0051 2156 56 ~laquo 35o 390 0053 2201 bl 35o 395 0053 2206 66 0241 35o 39S o)51 2211 71 35) 390 0051 2216 U 350 39S C85l - -middot--middot---- middot---middotmiddotmiddot39middotmiddot3middot -- - o middot2 ti -middotmiddot - --middot--middotmiddot-~---middot-middot-middot --- -middot middotbull-- ___________ ~middot-middotmiddotmiddot middot2 221 81 u-- 33 8 2226 34 7 395 0222

91 c2222231 middot 349 39s 2deg236 96 laquo 34middot9middot 390 0221 224 l l 01 =bulltll~ 350 390 0217 2246 bullioi ----- 34 9 _____ 38bull 5 __bull Gbull 22Q-middot-middotmiddot--bull-----middot-middot-middot---- middot_ _ --middotmiddot-middot - _ middot---middotmiddotmiddot -middot--middot--2is1 lll 39) 0220 349 2256 116 350 390 0219 2301 12 l cent 349 3llJ 0216 2306 126 349 8 15 0214 2311 131 t 349 385 0213

- -2316 136 t J(I~ 349 39) 0211 middotmiddotmiddotmiddot----141 2321 t~ 31 7 390middot 0209

2326 146 --Ccent0= 347 39o czoc 2331 151 4te 34 7 3Bs o2J1 2336 156 l) 347 390 0206 2341 lo fc 34 7 39) 0204 2346 166 -e~ 34 7 39 bull0 02l5

~obullicent-V235[ 1 71 347 385 0204 2~56 176 ~~ 34 7 385 02)3

1 l 81 ~ 346 390 0193 6 186 =1centCt 341 3 019

11 191 ~(r 345 390 0200 16 1S6 taici 345 ~85 0 19B middotmiddot- middot- -- --~ 21 201 Cdeg trtrbull) 345 38 ) 0195 26 206 345 39 G 0195 31 211 ltclI 345 3l() ~ 1 g1 36 2i6 V4-tiq 345 39 0 0 14 41 221 iocent 343 38 5 191 46 226 $ 345 rn s Clql 51 231 (r(c 343 ll 0 O lJ2

56 236 ~bullt~ 34~ ~9 ( J137 101 2 1l ftfilt 31-t 3 3e 5 c 188

0itW~106 246 34 3 JAS 0 1~9 11 l 251 4)QJ~4 Jlt bull j 3fl 5 C bull l 4

ibull1 DATA T~K rn ---- D~U DSCA~JEC 1 QIJ[ST tSbull~flLE DAT~

116

AGC-21d-11 S01 40t RH GLASS CHAltt8ER 1976 AUG 6

AOO 720 MIN TO ELAPSED TlE

CLOCK ELjPSED ozc~~ TSl ~~L HUM scz Tl~E T[MEt~l~l (PP~) IJEG Cl Ill l lP I

i16 121 176 131 136

256 261 266 271 276

bull ~bullbull bullbull~

343 343 343 342 342

365 e5 38C ~85 385

0183 01S4 0 I S2 0lSl 01s2

14 l 291 bullbullbullbullbullbull 342 8C 0 lilbullJ

( 140 151

236 291

-bullbull

342 342

360 3tiC

0 177 o 176

(

156 201 206

296 301 306

~~~~

342 342 342

385 330 8C

o fn0 176 0 l 75

211 3ll ~~~~ 342 38C o 172 216 22 l 226 231

316 32 326 331

bullbullbullbull middotmiddot

342 342 341 3 11

385 )35

85 3d5

0 173 0 171 0 161 0169

236 middot241

- 246

33~ 341 346

$ uuu

339 3go 339 3U533~9middot-- 355

J H5 C l 70

0 1 7J 251

middotmiddotmiddotmiddotmiddotmiddot--middotmiddot256 301

351 middotmiddot~middotmiddotmiddot ~5~--middotmiddot--- 361 bull-

339 33 9 339

385 39 0 ~ss

0165 0 167 o 166--

306 366 339 335 Q 164 311 316 321 326 331 336

311 376 361

_386 391 396

bullbullbullbullbullbull bullbullmiddotmiddot

339 339 339 338 338 338

3as 385 380 38Q 385 385

0161 C161 016) 0 161 0161 C 158

341 -346 401406

middotiimiddot-

33S 338

3BO335

0 159 0156

351 411 338 385 Q156 356

4151middot 406

- 411 - 416

421 426 431 436 441

416 421 426 431436~middotmiddotmiddot 441 446 451 456 461

~bullbull~ bullbullbull=bullmiddotmiddot OU

~~bull7

338 33S 33d 336 middot3)i3

338 33S 33S 33~8 337

320 385 385 390 a) 3B5 3dO 380 3d5 335

0 156 C151 J153 0153 0 15) -o l51 0 149 middot oi5o 0145 0149

middot middot middot middot

446 466 bullbullbullbullbullbull 33~B 365 0 14 3 451 456 middotsol

471 4t6 461

=~~~ ~bull

337 338 337

90 0ia ~~- 5

0 145 0 144 0148

J

506 $11 516 521

486 4l 496 5Cl

t fr(laquo ti~ lt0lf11

middot~ tI

33 IJ 337 3 3 3 3J a

R 5 ~f

~bulls lJ 3o o

0143 C14J D 142 0 1~ 1

bullobullbullbullbull NO fMTA TA~ fj ---- iHt Dl SCA 0 i)E0 OU Sr I~-bull ~-1 ~ ()A TA

117

l

u I

AGC-llS-12 SJl 4Jt ~H CLSS Crbullt~tH-~ 197 ~JC

bullco 720 ~IN JC ELAPSED JIME

__(_l CC -~-----EL I~bull-~ ___ )Jgtl________ T_~J Bf_t t1l~ smiddotmiddot-~ ~ TlMt TiMtlil l p- ( UCG ( l ( t) I Pi l

jIL szc gtt~ ~ ))~ti ~-3J 5~middotJ c1--

5ol Sl 336 3S ClgtC

-~-4 ~- t_ bull bullbull - t1-- ---~ ) bull ~ ___ _-bullbull__G_ Y~ l_~ l --middotmiddot- middotmiddotmiddotmiddotmiddot-middotmiddot middot--middot-middot-middotmiddotmiddotmiddotmiddotmiddot middot--------middot-middot-middotmiddotmiddot ---middotmiddotmiddotmiddot _ 541 521 ~~~~ 33H 75 CJ~7

( S4~ 52t _~ 33CI 370 01tti

ss1 31 _JJ1_ nc middotJ13bull 55~ 53~ middotmiddotbull ]31 7~ ~-1bull~

( 6~1 541 bullbullbullbullbullbull 331 ~7C Oi3J CC i 5 t l ~ i i_ 3_ gt bull imiddot-middot 1lt- bull bull_ Cbull _ 1 i 1 I 5~ j bullbullbullmiddotmiddotmiddot ~-~--~middot-middot- 3 3 bull ~ jt C l t - _______

616 gt~6 )__Q1bull 337 36i i l3i t i 1 lt 1 ~- -middot bull ( 3 ~ ii c C l _l- _

middot-626 G ~iu JJd J7G Qii

i 631 571bull bullbullbullabullbull 331 37C Ol~I 636 j76 ~=~~~ 335 ~7C 0t~S 6il 5ilbull (middot~vrr s1 31L Llmiddoti

64i Scit =~~bull~ 337 370 C126 t~ gt~1 bull to~-c~t i 7 3C 017 65c 5Stmiddot middotmiddottimiddotmiddotraquo=ii~middotti 3i 2lbull C lit 7Gl 6Cl bullbullbullbullbull 337 370 0127 7C6 lJ6 bullbullbullbullbullbull 33 J70 01257 11 611 -J 343 - ) 3 7 37 C ~ ~ 12 5 middot-middot-- middot-middot---middotmiddot-middotmiddot--middot- -----middot-----middotmiddot--middot-middot--middot-middot--middot--middot - middotmiddot-middotmiddot- middotmiddotmiddotmiddot-middotmiddot--middotmiddot

7lb 616 ~middot 33l 375 CJZl 721 62Jo HmiddotgtU 3)8 37a___ pU3_ _

middot-iii l2e middot bullbull --middot- 3i~imiddot 3c c c in l ( 731 631 bullbullbullbullbullbull J37 37s c121 I middotmiddotmiddot--- ]3l ________ l t_ 1 c~~_middot=_ ___ ____ 33 7 6 gt C bull l _~middot--middotmiddot bullbull middot---- ____

7itl 041 ~yen~~ 331 3~ C12 ( 74t 646 bullbullbullbullbull 331 385 c120

751 ~51 bull 3JI 3S0 C12~ _7 smiddotmiddotmiddotmiddot-- 6 56 ~ ~n-1~ 3 j rmiddotmiddotmiddotmiddotmiddot 3 bull~ j i r~ 8Cl 661 bull~bull 33B ~a OllE 80amp 666 yen~~___ 33 ~middot-middot---middot-middotmiddot ~9 5 ~middot-middot ~f--~

middot middota11 67i- tl~~ibull( ~ middotscmiddot e1 ~16 676 ~~~~ ~3b 36C C117

__s21_______ ~ci~ ~ 1r-t 3--z _bull J111 ti26 66 1-r~~~ middot3middotmiddotimiddot-middot middotH5 cflG-

( Sil c~jl centr(tiri 3-i2 1~bull t11 1

118

i I J I I j

l I

j

I AGC-218-ll 502 40t RHmiddotmiddot1 GLASS CHA~8E~

bullS 1970 AUG 6 t J

ACO 1410 MIN TO ELAPSED TtIEmiddot~ I l

t l I

~

CLOCK ELaPsrn ClCbullE TSI R~L HUM sn Tl ME TIMEPPil ( PP11 lo~ cY 01 IPPMI

l ~I l

829 -I ~ 342 390 0114abull

( 836 ( bullbull~bull 33CJ 19 0 aus middot

841 11 bullJ$rfll(cent 339 39S 0 l l 4 -- ~ _ __ _________ Il --middotmiddotmiddotmiddot-middot--middotbull- -- 846 16 nsmiddotmiddot 40) gt bull 112 ~- ( 851 21 Cit-o 337 4CO 0 116middotf 856 26 (I 337 c 0 0112

f I

901 31 ~ 337 nmiddoto 0112 i 1

~

- 906 36 =-= 338 380 c110 911 41 tt~ 34l 370 o 109 --middotmiddot ____ -middot-- __ ~ -- middot-middot--bull-middotmiddotmiddot middot- -middot lti16 4( =~ 3 3 370 o1oi middot 921 51 -tCio 35 365 c 11)6 926 56 tOO 3+7 3o5 c1-~r I

I

i

l

l

[ I

j

middot-

1~

931 61 3-7 38 0 C-104~ lt 936 11 H5 38 5 0 l) 3 middott 941 71 3t5 Jd5 0104 946 76 343 ]8 5 0105 ( 951 Sl laquo1tbull 342 385 I 104

950 86 34l 385 0103 middotbullmiddot1001 91 middot=+ 339 38 0 0103

1006 339 37 5 o 105 1011 101 339 375 C 10 l __

I - --middotmiddotmiddotmiddotmiddot-middot 1016 106 339 380 0C99 f

1021 ltl laquoO 339 380 c 099 1026 116 C10$C 339 370 0101 1031 121 Ct 33lt~ 37 0 0096 1036 126 buller 339 370 0096 1041 131 (e 339 375 0 99 l046 136 lit 34l 37 5 o middot]98 1051 141 t 339 no CJ98 1056 146 C~bull 339 370 0G95 110 1 15 l ~IIX$centU 3- l 3 7 5 00-~1 1106 156 bull )~t-C(t 342 37 C oc9s

~Q(~cent 1111 lbl 342 37C O C9 3o C1116 166 Ccent~~ 342 0 ]96

1121 171 bull4- 3 36 C 0093 1126 176 ilc(tOC~cent 342 009436 5 l I 31 161 tiOt(i$cent 3 1 2 36 5 C0)4middot 1136 middot l e6 t-r-oebullbullgtt 3- 2 36 C 0090 1141 Illbull 3 5 0 0094lrmiddot0-J(J 31 3 1146 l lt6 -C 343 35C ono

I 1151 201 e 343 340 0 CtJG 1156 2u iC111 3 3 340 0089

( 120 l 211 middot~ 34 3 33 5 ocn nliittiraodc1206 2H 343 ~o OCl7

1211 221 -~bull-1fJlic H5 330 O CH9 1216 226 -yen 345 320 0 Cl9

1221 2 31 (1$11r 3diams 5 3middot2s or~ 1226 736 bullcqtcentbull 345 3l 5 COil 7 1231 741 bullt-laquobullbullmiddot 3 5 11n middotJ J9bull l 236 24amp 3 6 30 0 i~lbull 4

(ATA ~-~middotbullbull TAtH[

119

rmiddot 11

AGC-213-14 S02 40yen RH GLASS CHAlfER 1976 AUG 6

ADO 1410 tN TO ELAPSED TIME AT 1424 1 Ml CF S02 AND l6 Ml OF PRCPENE WERE INJCTED CLIMET AND WHTSY WERE 0~ THE CHAMBER FRON 1313 TO 1645 DASIBI 1212 WAS ON THE CHAMBER FROM 1634 TO 1638

CLOCK LiPSED Ol0N~ TS REL H~~ Sl2 TIME Tl~~(~l~Imiddot IPP~I lb~G ti (Cl (PgtI)

middotmiddot-middotn41 middot -middotzsi~-- middotmiddot$~I middotj~t q 3zo ocas 1246 256 bulltbullbullbullcent 349 32J 0 C8 1+

-middotmiddotbullmiddotmiddot -- - middot---middotmiddotmiddotmiddotmiddot bull_ 34bull ~----1251 261 0lrU 31~ 9 Q_~_7_i 256 266 347 325 on2bullIt 1301 271 =to~ 34 7 325 oJS3 130 276 346 315 0083 ---middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot- 13 I 1 28 l O-ht~(I 346 Jl5 CJ83 1316 286 O 346 31C middotOOi33 132 r 2lt1 ~tc1 346 305 o_C81_ middot-middot-middot

i326 2ltJ6 - middotmiddot34~5 31 5 008 1331 3Gl 34 5 3 l 5 0082 1336 3C6 345 31 5 0C7t 1341 311 3bullbull 6 29 5 0078 1346 316 b~ 346 ZltJ5 OJ77 1351 321 --- _3_45 30 J ---- -1356 middotbull~ 0 j73 _ middotmiddot-middot--middotmiddot-middotmiddotbullmiddot middotmiddot-------middot--middotmiddotmiddotmiddot middot-middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotbullmiddotmiddot- middotmiddot-bull 326 345 ZltJO Q)71 1401 33 l 346 290 0)73

1406 336 middotlaquo 3 6 gtltJ bull S 0073gt 1411 341 34~6 30 C 0072It~- 1416 346 347 305 0071 ~ 1421 351 34 6 310 OJ73

~~ 1426 --middot middotmiddot--jsamp~ __ 33i middot--3middot1o C 13 $ middotmiddotmiddot-- --middotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddot- ____ middot--middot-----bullmiddotmiddotmiddotmiddotmiddot-middotmiddot-middot~---~~middot-middot

1431 361 343 310 0221 1436 366 ~ 345 2 0 0232

-middot-middotmiddotmiddot--middot-middot34 6 middotmiddotmiddota 231 middot ----middot-- --middot middotmiddot- middot-middot--middot-middotmiddotmiddotmiddot-middotmiddot-middot--middot-middot- middotmiddotmiddot--middot middot middotmiddot--middot--i441 3 71 33middot 5 1446 376 o 346 335 o 22a 1451 391 34 7 34l~~= 0 226 middot-middot- -middotmiddotmiddot------middot- middotmiddotmiddotmiddotbull -- --middotmiddot---middot--middotmiddot-middotmiddotmiddot- middotmiddotmiddot-middotmiddot --middotmiddotmiddot-middot----1456 336 ~ 34 i 340 0 223 1501 3lt 1 -ti~~ 347 345 0222 1506 396 347 345 0221 1511 401 ~ 347 350 0217 1516 406 347 35) 0214 1521 411 X 347 350 0211 1526 416 )$ 349 340 0209

( 1531 421 Ji 349 335 0206 153gt 426 Clltf 349 335 0202 1541 431 ~ 3t 9 33J 0 bull fJ2 1546 436 t=Cilc 349 325 0202 1551 441 ~=gt4 350 3 lj 0198

4461556 JO ~49 32G 0 195 1601 451 Jlrltlf~Tc 350 31 $ 0192

Vcent~~raquo1606 456 350 J 1 0 0 l llt 1611 461 lttlO-t 350 3J 1 fJ ll l 1616 466 ~~ 350 29 5 0186 1621 471 350 zq s C1A4middotmiddot 1626 476 350 31 C 018 1bull

~ ~ ~ 1631 481 1119$~rc 3o 31 5 0181 ~ ~~ 1636 4a6 0)7 351 2 5 c 161)

1641 49 l llir-4-it 35Q 32 0 Ol77L - (

166 496 middotbullbulltbulltr 35 l 34 s 0 IIH

middotbullbull-tiort ~ si bullmmiddot DATA TAK[i ---- OATA 01 $~APi)euroC QIJ ST 1(lLE LmiddotbullTA

~ - l f

r

120

i

1 --~middot---- ~- Ac-middot21q~f-sri~ middots~ ~H middot ~

q l r GLASS CHA~dER 197b AUG lo

--middot0middoti11t1 middotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddot-------- middot-middotmiddotmiddotmiddot--middotmiddot middotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddot bull AT 1545 FC-12 ~~S INJSCTEO INTJ TH CH~M~~R AT 1646 S02 WAS INJtCTEC INTJ THE C~AN~E~

-middotmiddot1ECC 43 SP~NNrn ll6SfC o-middotcHA-lEft trJtCTl)~ideg-------------middot------middot-middot-TECO 43 SANPLI~~ ~ATE 1213 ~LNlN SRACV ll9b CALIS~ATU~ 1976 JUL lb

-----middot soz COiRECTIGII o11s4 PigtM middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot-middotmiddotmiddot-middot-middotmiddot middotmiddotmiddotmiddot-middotmiddot----middotmiddot- --middot--middot- --middot--middotmiddotmiddotmiddotbull--middotmiddotmiddotmiddotmiddotmiddotmiddot

---r7JI 3 bullbullbullbullbull middot bull- 1735 5 3Zb 815 0237

1740 10 326 ot5 C29-J ------------------------------------r1-- 1s --32e air-middotmiddotc2middot- 1150 20 326 815 C297

1755 25 326 815 0302 -- lBOJ middotmiddot--3r-middotmiddot 32 7--olO -middoto ~ 3-)=o-----------------

C 1805 35 32T 80 0303 l 810 40 2 7 8~0 03J7_-----------------------~-------shy

--faf5 45---rz3 s1o o--io3 C 1a20 50 321 s1o o3C~

l 825 55 32 7 81 J J bull 3C~ middot-------------middot----------------------[830 60 na-middot~os--(rr-or 1835 65 328 SJ5 0302

middot l 84l 70 32 7 805 C 302________________________________ --1a-5 5 33~aoj -029~

1asc ao ]27 eos c303 1655 85 327 SJ5 C297

--r9li0--90-fzmiddot a ss o-middot211----------------------------------1905 95 3~2 aos 0292 1910 100 3 3 bull-2_ _middotg~-J~bull5_C=2~-92--~----------middot-------------------------~--nTs 1cs----3rL t105 02n 1920 110 33t ao5 c290 1925 115 331 aos c2a1

--1~Jo---uil------rr-ar--~-2-rmiddot3-------------------------------1935 125 331 ao5 o2ss 1940 130 33l 8J5 C233

--middot1945 135 330 d05 C282 1950 140 330 SJS 0281 1955 145 330 aos c201

--2000 150~2S 8JS C232 ( 2005 1ss 33o aos c200

2010 160 330 aos c216

C

--ni5 - 165 32a aJs a21~-----( 2020 110 328 ao5 c21i

2025 175 330 sos 06~6______ zoo-- ldegamiddoto middotmiddot-32s- eos tmiddot--n2 2035 185 334 79~5 C263C 2040 190 bull 33 S 790 0 bull 2b9________- ___________________

--2045 1ss middot335 785 o2s9 ( 2oso 200 33a 110 o2sa

2055 zos 33e 110 ozampo middotmiddot-- -------middot---------middotmiddot2lo)- 21c ----middot33s -middot--16s--middot-cmiddoti4 (_ 2105 215 339 7amp5 C259

2110 220 339 7os o1s1 --2115 ---22~ --middot-middot339 765 c2sa-middot

C ------ --middot- ----- --------------- ---------middot-----------~middotmiddot-bullmiddot--middotmiddotmiddot-middotmiddot----

j1 ---------------- -----middot---- 2120 236 342 76C C253

212s 235 347 7ampo o2so 2130 240 34l 760 OZSO

middot- n ---- 2135 middot - middotmiddot-z~-middotmiddot - imiddot-1-middotmiddot-middotgomiddot middotmiddot- o i4-1

-

l

1-~iI

_middotbull

1 ~ l

i

121

~

i

I~

I l I

middot1

------ --AGC-219middot2 S02 e 1~---middotmiddot -middotmiddot- - middot- --- -------GLASS C~Amiddot~~H 1916 AUG 16-17

-i C -- - - middot-middot-- --middot---- middotmiddotmiddotmiddot-------middotmiddotmiddotmiddotmiddotmiddot--middot-----middot -- - bullbullmiddot-middotmiddotmiddot---- - - -middot --- __ -------middot bull

-il _

-l ~ I

middot l

l CLCCK ELAPSED TSl qL ~U~ 502

--Me--TTfn Iff-middotccn------n1--rp-r~ -----------middot

I -~1

~ --71rcr------2cr~-z---7smiddot--c72o-4 2145 255 339 7ampJ 0247

2150 260 338 7bO 0244--middotzr5--middotzrs---n--s--middot16-0---y-2middot~----- -------

( 2200 middot 270 339 755 02J9 2205 275 J)$ 755 0247t I

A ----zz-r~1o--------yr----73-~~-u-r-r~ti ( 2215 2~5 339 7~5 C241 J 2220 2~~ 33 8 75S 0241---izz---2s~--3T7--s--o-ZTImiddot---------middot----------middot----middot-------f ( 2230 300 33~lt 755 023-

l 2235 3C5 338 75S 0235 ---z2-0---TIU--~3 -7 middot---s-u23c---------

224 S 315 339 755 C235~ f 2250 320 337 75_~5_ __o~2~3~~__-----------------~----------~---- l ~ ~ JlS--middot 33 bull 7 75 ~ bull ~

I 2300 330 33S 755 C231 2305 335 7 75 5 Czz_a__________________________________33 4 --middot--2n-~4middot07 J3 7 7575----U--ZZ ~middot 2315 345 337 755 0 224 l 2320 3 50 33 5 75 5 C22_1~------------------ ________________2325 355 33S sgt--e~z-2330 360 337- 755 0226--~ 2335 middot 365 33 s 75s c22o--____________________________

--i140 nc---3-i~1s--o--1 2345 375 33S 755 C224

~ J C

2350 3JO 334 755 0221middotf --n-sr--middot3r~~--~r---r5-c~2-i-20------------------------------

3 t 0 390 335 75 0213 1 ~~

___rs~ 3q5 334 1ss c21~6---------------------------- _______lO 400------rrz---nQ-zi l

~

C 15 405 334 755 0213 20 410 334 755 c211

---25 4 I 5---j3-7----gmiddot5---o2l____i ( 30 420 334 755 C209~

35 425 33 2 755 C214d l j I o 43b 33l 7~s 0211 45 435 332 755 C206l C _____________j50 440 332 755 C206

-middot----s-s 44-s---33-~---1-s-middot-o-zo~s----I

( 10c 450 332 755 C204 I -r ~ 105 455 B1 75 C204 l i HO 46C_ ]Lr ts C2)J bull -------------------1 Ii ( 115 465 332 75S 0197

I ~ 120 47C 33l 75i 0191 middoti

-- 12gt 33 l- Vi5 -----------------------middot7475 C20C

t_ bull

fi I

( I

middot---middot ______J--- ----- ------------------- --------middot----- ---------------

ad ----- middotmiddotmiddotmiddotmiddot----------- ________jrl -middot- llO --- 4-middot 311 0 20273 5 ~ i n 135 4F~ 330 155 C 1bull15

140 4S~ 33 1 7gt5 CIHf -----middot l4Sdeg- --- 45------ 33 l - --- middot-middot -- -- iI

755 QlHbullJ

~ 1 j 1

1 t

ibull1 l I 122lI middot1 I

1

----------

--------------

r ------ACC-219-3 s02middot soimiddot RH --middotmiddot---middot---middot--middotmiddot----- - middot--- middotmiddotmiddot---~--------------middot------ ------------

GLASS CtiA4t3ER

l~_7t AUG __17____middotr-- middot-middotmiddotmiddotmiddotmiddot-----------------middot middot---------middot----middot---middotmiddot-middot-----------middotmiddot--middot-

---------middot------------------------------------I (

---rso -middot-soo - ~3T___ 75bull middotci_94 ( 155 505 33~1 7~s c1s2

200 510 33l 75~ C~bull~l9~l_____ ---20gt 51s fJo iss--o 1a1

210 520 330 755 C192 215 525 331 755 C184

--- 220 ___ 530 middot iza 755 cc1s~o-------------- 22s 535 33~0 75o o1a1

230 540 3l 750 0137 --Z3s___545 328 755 J182-----

( 24C 550 328 750 Old3

215 555 33 o 75 o o tn-=--------------------------------- f50 -- 51o- 32a ---iTo - 1so 255 565 328 750 C179 300 570 328 750 01B0

---3tf5___575 3 l 1 1middot5o--odeg17le-------310 5SO 32 7 7iO 0176 315 5e5 3o 75o 0115

middot--320 5co 32 1 1o o 112 325 5S5 327 75Q 0173 330 6CC 328 750 0172 middot

-----3i5 6C5 327 10 011s 340 610 327 750 0171 345 615 32s 75o 0110

~5c 62c1~middot2-t-----ro--o-r6middot~------~---------------------( 355 625 321 middot 75o 0161

400 630 n a 75o ~ 165______________________________ --middot--cs 635 321 15o o i6s

( 410 640 ~27 7a 0lol

415 645 2 d 75 a O 102~---------------------------------middot-420middot-- b50-middot327 74S Cl~J ( 425 655 327 745 C158

430 660 3l8 745 C15~ middot 435 665 327 745 C15------------

( 440 67J 32 7 745 0155 445 675 32a 75o 1ss______ ----------middot--middot 4~b 680 327 745 C153

( 455 685 327 745 C153 500 610 32 7 74 5 C t S-igt_______________________---middot----middot----

--middot-50middot~---6lti5 2 1 145-middot-TT~l SIC 700 327 745 C55

____ 515 105___ 32_1 ____ 745__ c1s______________________

bullbullbullbullbullbull NO DAT4 TAKEN --- OAT4 DISCA~DED 1 QUE~TIONl~LE D4T4 --------------middot------------

---~~-----middot-----__________ -------------middotmiddot-------_-middot ---~--middot-middotmiddot -middot-

123

cl

I I

i

AGC-219-4 soi so ~H CLASS CHA~ilER 1916 AUG 17

l ACO 710 ~IN TO ELAPSED TINE

j

r 1bull

~ i_ CLCCK ELAPSED TSL qEl HU~ 502-1 Tl~= TIMEl~l~I l0EG Cl ltl (PPMI

I j (i

l

So O 326 745 C149 525 5 326 74S Cl5J

iJ 530 ________ 10~---middot-bullmiddot32bullT_____74_5___ _ Cbull11tt_____ middot---~--- ___ --middot-middotmiddot---- middot--middot----- --------- --middot- middotmiddot---- _ - -----middot--------~--------middotmiddot middoti 535 15 36 745 C148 C 540 20 326 745 C147

545 25 _32_____ 745 0143l 1 550 30 324 745 C144

~ C 555 35bull 3Z6 74s oi4l too 40 __ ~6 l45o 147_________________________________________ ---- _______ ----middot-middot ________ -----605 45 324 745 0138r l 610 50 324 745 C133

615 55 ~27 741 0139 620 60 32-4 745 0142

C 625 65 324 745 C136 d

f fi 631J 70 3gt 745 __C134 --middot-middot----------------- middot-----------------635 75 )4 745 0133 64C 80 324 740 0136l j C

-~ 645 85 324 740 0132 650 90 324 740 0131

4 C 655 c5 324 74o 0131

l 700 ____ 1JO_ 326 740 __O l31 ____ 7C5 105 324 740 0127

C 710 110 324 740 012Bii 715 middot 115 326 740 0127 ~ --middot----120---middotmiddot120 --middotnsmiddot-----nsmiddot c126 - middot--

725 125 no no 0121~ C --- 730__ 130 bull ___ 33 2 _ 72 5 QJ28_________________________________i 1 735 135 332 720 0121

l C 740 140 334 720 C125j 745_______ 145___ 31 5_____ 71 5_ 0 bull 122 ------middot--middot-middotmiddot-- ---------------------- --------- -------middot----i 750 150- 334 715 0121

C 755 155 334 715 0122 ----middot JQ 160o _______3)bull _ 7l o5 __ 0_122 L_--------middot-middot---~----middotmiddotmiddot--middot------middot-middot---------

eOS -------i65 332 720 0121 A 810 170 33I 720 0119

~ C I 815 175 33-0 720 0119 -------------------------------------------------middot--middotmiddot --------middot ------middotmiddot---1 i 820 180 3Jdeg-middoto _iz omiddot _ omiddot122 --middot--middot-middot- -middotmiddotmiddot-I C 825 185 330 720 C~ll9 ~ __ e30 1co 30______12o_____o 11 s ____________________________________________1

8)5 195 328 720 0120 I1 C 840 200 328 720 0112

845 205 32a 120 0119 i 850 210 3za 72omiddot oui

855 215 328 120 0114bull_ Cil o 220 3~Q __72_0 0bull llO __ ---------------- ~ 905 225 32~8 720 0112 middot-~ -(

~

JI middot (_

1 9lJ 230 328 721 C1)91r ( 915 235 32S 730 010ai ltO 240 327 735 C1J l J 925 245 32 1 7l5 () 10

(-1 bullbullbullbullbullbull NO DATA TAKf~4 ---- OATamp DISCAPO~G 1 OUESTin~ABLE CATA

~ l ~

t ~

I

ii l iJ

124

AGC-219-5 S02 SOC RH GLASS CHABER 976 AUG 17

AOO 710 MIN TO ELAPSD TIMeuro

CLCCt ELIIPSED TSl Rl HU~ soz TIME TIME IHlN) (DEG Cl lampI IP~l

930 250 3~$ 740 0Cl3 ( 935 255 32 7 740 Q)4

940 260 bull 327 110 O 04 945 265 32 8 741) o leamp

( 950 270 32 7 735 C108 955 275 na -middot 730 o 105

1000 280 32 7 730 0106

~-_CAT AbullDISCAROEO -middot- _1 QUSTOIIIABLE OATA

(

(

C

(

--middot-middot----middot ----middot--middot--middot------ -------(

--~-----------middot-----------------middot-middot------------ ---middotmiddot-------middotmiddot------middotmiddot----bull-bull------ -------------_______ ________ ----

-middot-middot - ___ ______________________________---------middot---middot------------

-- -middotmiddotmiddotmiddotmiddot---middot-----------middot---middot---middot--middot--middot-middot--------middot-middot ------middot middot-middot------middot ---- --middot

125

( I

rmiddot

l i

j

j J

j )

j j AGC-2~0-1 S02-03 PROPENE middot GLASS CnA18ER

1lt176 ~UG 19

bullj OA~K

S02 AND FC-12 INJfCTEO AT 1115 OZONE ADDED AT 1149 PRCPENE AT 1155 BRADY 1296 CALIBRATIJN lS7b JULY 16

CLCCK EtiPSED ~ZCfrac34E TSl ~~L HU~ S~2 P~CPfN lF lMEl~Nl (PPlt) lEG C) 11) (PPI-IJ (igtiI)

1200 o o~4 327 41 0 0363 1014 120 5 5 06)6 328 410 0344 middot 1211 11 0557 12s 410 middot~ $f r~middot 3t1216 16 0511 328 10 0318 0 BCl 1221 21 0 4 74 32 7 4 I 0 0304 0cent3-ii

1226 21 C4-+0 32 7 410 02l7 (q~cent-0(I

12 30 30 o 40 328 4ltJ 0291 0 (83 135 35 003 32 7 410 0283 ~4 1240 40 c~11 3 8 410 0 bull 776 1)lcent1 ltlaquo 1245 45 C bull 3i2 328 41C 0211 0~9J 1250 so o 335 328 410 026( deg6 12 15 55 0 318 330 405 0206 bullii t~ 1300 oO D3J3 no 405 0260 0522

C l 3C 5 65 l2 56 32S 40S 0258 -c11ie 1310 7J 0 24 32s 405 0254 itbullit ---------------- middot-middot-middotmiddot- ------- 1315 75 C 251 na 405 czso bull1320 sc o 29 32 d 405 024S bulllilCe 132 5 65 0231 32a 405 0249 -------middotmiddotmiddotmiddot-middotmiddotmiddotmiddot-133l 91 C2~) 328 400 0247 043 1336 t C 22 32 8 400 0244 ~ tP+l l 01 o 213 3 S 40 bull0 0 22 ________ __________ bull -middot middotmiddotmiddotmiddotmiddot-middot-middot middot--middotmiddot-middotmiddotmiddot middot- -middotmiddotmiddot middotmiddot- -----middot--middot---middot1316 l C6 ozos 328 400 0238 JOcentht

C 1350 110 on0 328 400 0239 bullc 1355 115 0191 328 400 0239 gt~ middotmiddotmiddotmiddotmiddot- ___ ________ __ middotmiddot---middot- -middotmiddotmiddotmiddot-middot ___ ----- ------ middot--1400 120 o ta6 33 omiddot- middotmiddot 395 o23i o 3 76

( 1405 125 C178 32amp 39S 0236 1410 130 D I 76___ 32bull 8 39 bull 5 02~---U bullbull --bullbullbull---bull -bull-bullbullbullbullbulln___ bull -bullbullbullbullbull bullbull bull---bull---bull-bull bull-bull--bullbull -bull-i415 135 0 lb6 326 395 0231 tlllllc bullitbull 140 140 o l SI 32 8 395 0232 cu~ Ji 142 5 145 0 159 32 bull 8 395 0230 16CC- --- ---middot-middot -middotmiddot __ --1430 150 I 151 32 S 3c5 0230 0336

( 1435 155 0147 33C 39 5 C226 (laquo 1440 160 C bull142 328 395 0225 gtccent( _____ middot-bullmiddot--middot ___ middotmiddot-middot--middot-middotmiddotmiddot-middot--- middotmiddotmiddotmiddot---middot-1445 165 J 1 39 331) 395 0225 ~ ( 14Sl 171 0 134 328 3-i5 C223 1456 1 76 012 middot 32 8 3) 5 0223 ~b 1501 181 0 0 I 21 328 3lt bull) 0222 0311 1506 l 56 o 122 32a 39) 0225 ctcr 1510 l SO c122 330 390 0221 bull~ _middot middotmiddot-151~ lltS Cld 32B 390 0221 I~ 150 2 co 0115 3ZR 390 0220 tTt 1525 2 cs C I lO 328 3SO 0220 bull15~0 210 C 11] 330 390 0221 0289

( 1535 21s C l middot~) ~20 390 0216 +rrmiddot 1540 220 tt~ 12Y 390 016 XlC-$1(1

1545 zc~ (lt(I~ 328 3()0 015 Cr4Ccent

1550 23-Cmiddot bull fl 328 39C o 715 tCit q

15~5 235 330 39 0 0215 lCi9bullbull 1(cot

160() 4C ~l)l-fl 130 390 o 13 0274 161)5 2 4 ~- _ bull C1~ ~ 328 390 0211 (rj

t1ilI ~~G DA Tf Ttt Li ---- DAT A Ol~rA~fJEO 7 OU Sr Pit tll I OIITt

126

r

middot1

AGC-220-2 $02-03 PROPENE GLASS CHAMBER 1976 AUG 19

t (

CLCCK ELAPSED ozmiddot-E TSl REL rlUI S02 PPCP EtliE TIME TME I Mll l I PPI J (DEG Cl 11 I DP-1 l I PPFgtI

(

1611 251 0085 3o 3t5 o 21-4 ~~lJltf ( 1616 256 C090 328 385 0211 middotmiddotmiddot 1621 261 0085 33o 3S5 c 211 (ercent

1626 261 QCd3 330 33 5 C208 = ( 1630 270 ocn 33o 5 0209 0254 1635 275 OCdl 330 35 0208 ~ 1640 280 0078 33 O 335 D209 bull~tbullitt

( 1645 285 0011 33l 3amp 5 0205 bullcentt41A

1650 290 0076 330 3B5 0 2J5 bulltcbull 1655 2cs 0076 330 385 0206 middot~

C 1700 300 (1071 33a o5 C205 024S

NO DATA TAKEN ---- DATA DSCARDO QUEST ON ABLE CATA ( middot-- -----middot-middot-middotbull ----- bull - middot-- -

(_

C

C

(

(

(

(

r 127 I

AGC--1 502-03 GLAaS (HAliH 1976 IIUC 20

DAIK BRADY 1296 C~LIBRAT[O~ 1976 JULY 16 ril NE WAS INJECTED AT 0933

CUXK fl ~rsrn Ol(lr lS l il El HUbullI smiddot 2 l I MF TJbullE ( NI ( r1) lCEG C) ()l ( PP I

I

845 o oc 32 7 440 0379 850 5 oo 330 435 C360 855 10 oo 330 435 C377 900 15 oc 331 435 C376 905 20 oo 33o 435 c J 76 110 25 oo 33Q 43 5 C370 915 30 oo J3l 430 0370 920 35 oc 330 430 0369 925 40 oo 33l 430 03amp9 930 4) oo 330 430 036 935 5C o~gtt2 324 425 0360 940 55 0576 330 425 035$ 946 61 0572 330 42 5 03~7 951 66 o 5 7 330 425 03~S 956 71 0569 33p 425 0352

1000 75 0567 330 425 o 3$2 1005 80 o 567- 330 425 0349 1010 e5middot 0562 30 425 C349 1015 ltO Cmiddot 551 330 420 C 34 7 1020 95 0557 330 42 0 a 34 7 1025 1 co 0554 33 l 420 0344 1030 105 o 552 330 420 c 34 1035 110 0552 33Q 42C o 342 1040 115 middot 550 330 420 o 34) 1045 120 0545 330 420 0342 1050 125 o 542 33l 420 middotO 340 1055 130 o 542 33 I 415 o 30 1100 135 o 540 331 4 l 5 C340 1106 141 0537 330 41~5 0336 1111 146 0537 33I 415 0335 1116 151 0532 330 415 0333 1120 155 o 5 32 33l il 5 035 1125 160 0530 33l 415 o 333 1130 165 C530 331 410 0332 1135 170 0528 330 410 033 1140 175 0528 330 41 () 0330 1145 1eo 0523 330 410 0 bull 325II

r 1150 185 0520 330 410 o 326

1155 190 05) 330 410 0325 1200 195 0515 130 41 0 0321 120~ 200 c~1e 311 4()5 034 1210 205 o13 330 45 O 32 l

ft 1215 2 LO I) 511 330 405 0311 1220 21 s f~ ec gtlC 33 I 405 c20~

i_ 1226 221 0503 330 405 0319 1231 226 osoa 331 40~ 0 bull 319

~ 1l J ii

1236 23 05ll l30 405 0119 1240 235 OiOl 330 40S 0318 1215 240 051)1 l3 o 4GO o~1s

f Ij

1250 24 04H1 BO 400 0 314~ I

middotbullbullyen ll() r11u TKEI DATA or ~c11ourc iIJl l)NeLE DATA f

f

~-

~ 1

f -~ 1l 1

~t 1 128 l

IJ 1

~-

1 1

bull

t-~ I

lIT 1 l

middot(I

11

AGC-221~2 S02-03 GLASS CHlMSER 1976 AUG 20

t J

middot

t

rr

a ~

bullmiddot ~

(

--1255 --middot- 250middot 049smiddotmiddotmiddotmiddotmiddot- 330 40omiddot---middotomiddot~jfi middot-middotmiddot-middotmiddot--------middot----middotmiddotmiddot-middot---~middot-middot--middotmiddot- middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

i l3b0 255 0493 331 40C 0313 ~ 1 1305 26J q 493 33 o 40 O C_309_____ middotmiddotmiddotmiddot--middot-middotmiddot-middotmiddotmiddotmiddot--middotmiddotmiddotmiddot------middotmiddot--middot -middotbull-middotmiddot-middotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot middotmiddotmiddot--middot-middot-

1310 265 o411 n 39s o3oa middot C 1315 270 0491 332 395 C308

1320 275 0489 331 39S C310 - --bullmiddot-middotmiddot- middotmiddot--bull-middotmiddot middotmiddotmiddot-middot-middotmiddot- _ middot--- -middotmiddotmiddot bull-middot

a tlmiddot

)

13zs-middotmiddotmiddotmiddot2ao~middotmiddotmiddot-omiddot4a9 33middoti--middotmiddotmiddot-ji~cmiddot middotmiddot 0309 C 1330 285 04114 332 39C 0307

1335 290 0484 332 39C 0308----middot13o middotmiddot 29s middotmiddotmiddotmiddotmiddot0middot4s1middotmiddot middot ir~middotxmiddotmiddot -middot59 c 0~middot3ci4 --middot bull--middot------ - middot--middot--------middotmiddot-middotbullmiddotmiddotbullmiddotmiddot- ---middotmiddotmiddotmiddot-----middotmiddotmiddot -C 1346 301- 0481 332 385 0303

1351 306 0479 33l 39C 0~304

H c

1356 middotmiddotmiddot311 middotmiddotmiddotmiddotmiddot-0middot~middot419middotmiddot middotbull middotmiddot33~1 39 omiddot o 303 1400 315 o476 33t 390 o302 14C5 320 C476 33l 390 0299

-1410middotmiddot -- 35 middoto474 33l 390 0298 1415 330 Q474 33l 385 0298 1420 335 0471 33l 385 o296

a i425 middotbullmiddot-340- 0~469middotmiddotmiddot 33 385 0294

1430 345 0457 332 385 0296 i

f J

ffi C ~

1[ C 1middot11

lf~middot i$~ C

(

(

(

(

(

129

i I i

-

j i iI

l j

l i i 1

ampGC-222-1 SJ2-N X-SURR-U GCASS CHAll~fi 1976 AUG H

O~RK CO FACTOR lq122 eR~OV 129~ 21 ~l ~ox INJECTED AT 0920 HJURS AT T=o ~c~-METH~~E ~ bull 1740 PSC MTHAN~ bull 32CO PPB

CLJClo ELAPSED 0ONE CJ TSl ctEL HUll SmiddotZ ---middotmiddotmiddotun TlM~(M1-ifmiddotmiddot-PPM)middot--(p y ID~G Cl - u IPP~I

q4~- middot-middotmiddot-middotomiddot oo 53 n2 465 o--j~ middot-------middot--middotmiddot-middot---------950 5 oo 56j 33l 465 034~ 955 10 0 002 5 65 n l 46 5 0344

1000 15 oo 561 HO 465 0344 ~ 1005 20 oo 560 ]30 465 0340

1010 25 bullbullmiddotbull bullbullbullbullbullbull bullbull~middotbullmiddot bullbullbullmiddotmiddot middot~middot~bullmiddot------bullri1s 30 oo middot 563 33o 465 o1Ja 1020 35 oo 564 330 465 0)38 1025 40 oo 5ss 330 465 0337 middot----103) 45 o bull i 556 330 4amp5 o333 1035 so oo 5-~6 130 465 0335 1040 55 00 556 330 460 0332______ -----middot---middotmiddotmiddot- --------------middot i 1045 60 00 551 330 4bO 0332 1050 65 OJ 552 330 4bO 0333 1055 70 oo 54il 330 460 0329_---------------------1100 75 co 548 330 455 0329 1105 so oo 548 330 455 Q327 1110 85 00 547 33l 455 03_6_______ middot-----middot--middot---- ------middotmiddotmiddot-middot 1115 90 OO 550 33l 455 Ollb 1120 S5 00 548 33l 455 0325 1125 lCO OO 55 33l 455 0324~------------------------(130 ____ 105-middot-middotmiddoto002__ 542-middot 330 -- 45o 0322 1135 110 oo 540 330 450 0319 1140 115 0002 542 330 450 0320---1145 middot -middot--120 0002 5ia 33o___45o omiddot319____________ middot------bullmiddot--middot 1150 125 oo 540 330 middot 450 0318 1151 0 o 541 330 45 0 03_1_8_________________________131

1200 135 OC 532 330 45C 0314 1205 140 0010 539 330 450 0311 1210 145 oo 535 330 450 0314 1215 15bull) oo 534 328 450 0313 1220 155 00 533 330 445 0310 122s 100 oo 534 33o 445 0313 1230 165bull 00 52b 330 445- 0313 1235 170 oo 531 330 445 0310

1240 175 00 53()___ 332 44C 0 0_3C________________________middot-middotmiddot-middotmiddotmiddotmiddot--middotmiddotmiddot-middotmiddotmiddotmiddotbullmiddot-middot--middot----- -middotmiddotmiddotmiddot--1245 180 00 526 33 l 440 0303 1250 1s5 oo sza 332 44c oJn 1255 190middot oo 529 332 435 0304~--~- -----------middotmiddotmiddotmiddot-----middot-----------1300 195 oo sn n2 435 aJes 1305 200 OO 52b ]32 435 03l4 1310 205 oo 524 332 435 0304 1315 210 oc-62 s24___ -~3i -middot--middot43s o302middotmiddot--middot------ middot- middot ----------------~-- -1370 215 00 523 332 435 0300 1325 220 oo 5 lil 332 43c ono 1330 225middot middot-oo middotmiddotmiddot-middot--s -19middot --middot~j~z--middot3if-middot 0300 ----middot--middotmiddot----middotmiddotmiddotmiddotmiddot-middot middot-- -middot--middotmiddot -----middot

r BH 230 oo 519 33l 43 G 03iO 1341 236 oon 5 IIgt 33 1 -3 0 in1

1345 240 oo 5 15 H l 430 J297 1350 245 oo 5 13 3l2 43C 01~

bullbullbullbullbullbull NO nTA TAKE~ ---- 0lTA 01 SCAPgtFl

130

AGC-222 2 S02-NOlt-SbulljRR-U CLASS CHAMBER 1976 AUG __ 24

0

----------middotmiddot-----

-- 1355 ____ 250middot-middotoo s13 332 41c 02 middot -----middotmiddotmiddot-------------( 1400 255 oo 5lZ 332 43C 0294

___1405__ 260 oo 5 ll __ H2__ 3t3C 0_293________ 1410 265 oo 512 330 43= 0291

1415 270 00 50ltgt 330 430 02ll 120 215 co 501 32s 43o o2bulln ___________________ ---- -------middot -middot--1425 280 00 503 328 43C 0211

C 430 285 oo 578 328 425 0291 143 s 290 o o s 04 32 s 42 5 o z_a_________________________--_

--To---i9middots oo 504--fj-middoto- 1t25 middoto-zag C l4t5 300 CO 502 330 425 0283

1450 305 oo 5oz 33o 425 ozss___________________________ lt55 310 00 497 330 420 0283

middot 1500 315 OO 499 330 _42C 0285 1505 320 00 496 330 42C 0285----------------

--Tsio 325 o-o---soo 33o 4z-o--ozas 1515 330 00 501 330 42C 0285 1520 335 0002 493 33o 415 o2a______

----1526___341 oomiddot---4~-33l 415 0281 1530 345 oo 493 334 415 0280

__J2~1__3j____~g_ 492 332 415 Q__1_80_________________________ 1540 355 0002 491 33t 415 0273 1545 360 0002 492 330 415 0280 1550 365 G0 4 93 32 8 41 5 0276--------------------------1555 370 oo 489 328 415 0276

C 1600 375 00 489 328 415 0275 1605 380 o o 4 88 33 o 41 s o__2_1-=1--------------------------c-------H io 3a~-middot002 490--ffa 410 f21-

( 1615 390 0002 483 330 410 0212 1620 3c5 oo 487 330 410 0211_______________ 1625 400 co 481 330 410 0274

C 1630 405 0002 481 330 410 0270 1635 410 0~002 487 330 410 027-=)---------------------------1640 415 oo 480 330 405 0270

( 1645 420 0002 4i5 330 4C5 0269 1650 425 0002 481 330 405 0210 ---- -----middot-- ----middotmiddot-middotmiddotmiddot -------------------1655 430 00 463 330 405 026b 1700 435- oo 484 330 405 0265

--~70115 ______ 440 _____ oo 482____330 405 _026_6_____ 446 oo 482 331 405 0266

1715 450 oo 4 77 332 40c o2u 1720 455 oo 4 74 332 40C 02E4 1125 460middot--middotmiddotoo middot 479 n2 40c 0265

1bull 1730 465 00 479 332 40C 02(5 1735 470 00 480 33l 400 02t4_____

--f140 475 co 4 75 n2 4oc 020

middotmiddot-middotmiddotmiddotmiddotmiddot-middotmiddotmiddotmiddot-middotmiddot ----middot-------middotmiddot---middot-------------middotmiddot---------middot-middot--middot--middotmiddot---middot------ --middot----middotmiddot

----------------C

bullbullbullbullbullbull NO OITA TAKE~ _1 QU~STlnNIHL~_CATA

r

131

0 AGC-Zll-3 smiddotczNOX-SUR~u CLASS CHAISER 1976_ AUG 24 -middot-middot middotmiddotmiddot-middot -middot

_CLOCI( _ELASEC ___ OZCNE_ CO ______T_Sl REL HU _ SC2 TlHE TIMEl~INJ IPPI (PPMI (DEG Cl (II IPPMI

-- 1805 -- 500 -- oo --2--331 395 02cl ( 1s10 so oo 472 332 395 ozs6

1815 middot 510 oo 4 70 339 395 0259___________________~----1820- 515 omiddotc middot 69 34 1 39 5 0-~lsi

( 1825 520 oo 469 34l 3gt5 0256 ___1830______ 525i __oo___46S__ 34t t9_5___ o2ss _________________________

1835 530 oo 467 34l 395 0256 ( 1840 535 oo 466 342 395 0254

1845 540 oo 469 342 3S5 0254_________________________ --irngt----5s oo 461 342 iis_____o--fsi

( 1856 551 oo 466 343 395 0255 1900 555 oc 4-oo 341 395 o254~---------1905 560 oo 470 34l 395 0254 1910 565 oo 465 341 395 0252 l 915 570 0 0 4 51 34 bull 1 39bull=5__0ebullc2-5-2__________________________ 1920 575 oo 464 341 395 0249 1925 580 oo 458 34 l 390 0 249

1930 585 oo 45a 341 39o o241____~------------~-------1935 590 oo 465 341 395 0249 1940 595bull middot oo 460 339 390 0~245 1945 600 oo 4ss 339 390 o~2~45__________________________

--C95(---6C5~--o~o 458 34l 39~0middotmiddot-0247 1955 610 oo 461 338 390 0244 2000 615 oo 460 338 390 0-2~4~5_____________________-----

2005 620 00 456 339 39C 0244 ( 2010 625 oo 454 339 390 0245

201 s 630 o 002 4 59 33 9 39 c__o-_=2_4J--------------------------2020 635 00 456 339 39C C245

( 2025 640 0002 453 339 390 0241 2030 645 middot oo 455 339 39o 0241 2015______ 650 ----middoto~--middotmiddot--453 - 33 9middot-middotmiddot 39omiddot o239=------------

C 2041 656 0002 459 339 390 0239 2045 660 0002 459 336 3B5 0238

--2050 - - - 665 -0002 45z -i3~B--3as middot 0231middot-----------( 2055 670 oo 451 339 3ii5 0237

2100 675 oo 451 339 385 0237--2105 680 --oo 44smiddot-----33-9---middot3s-smiddot--o237-- -------middotmiddot-middot--------- - -----

C 2110 685 oo 453 339 365 023 2115 6~o co 44a 339 3as o23~6___ 2120 695 oo 44) 33C 365 0236 ----middot----middotmiddot----

( 2125 700 oo 455 339 335 0232 2130 7os _____oo ______449 ______33 bull ____ 3-a 5 ____ 02 J4_____________________ middot------middotmiddot-----

bullbullbullbullbullbull NO DATA TA~EN ---- DATA DISCARDED 1 0UcSTIONASLE DATA

--------middot-middotmiddot---- middot--middot--middot---------middotmiddotmiddot-middotmiddotmiddot middot-middotmiddotmiddot------ middotmiddot- _________ middot------

132

l [

f

l i

t ~ C- 2 2 -middot 2 - bullj tmiddot- $ VXA- _ Gl~SS C 1~gt ti 1976 H Z -h

lC~ 710 ~IN TO ELAPSfC TIM~

CtCCk tlh~~~e middot_lC1Ji ~l T P f ll ~ Pi l p bull n I ) ( E Cl

middot13s middotc oo middotmiddot s i9 middot 21~0 JQ bull 51 3 C 2145 Le 1c bull 1~- J_a 2 l ~C cc 4 f 21~5 oo ~ ~ ~I~

22middot)0 2 CG 3 middotn0imiddot- middot3middot1 j ~~3 -cc

35 ~c 3 ~- 9 i) C t 3 l~

bc ~ bull ll middot3 - ( 222c 5 l ( c bull 4 2230 55 bullbullbull 1 ~ ~1 2235 middotc middotc ~ QC ~ ~ 1 I 224G C 5 C itbull 3 ~ 7 2~ 5 70 oc ~ 3 I 3L 8

2~5 1smiddotmiddotmiddot oc middotbullbull-i -~ 7 215 FC oc 230C CS 33 S 205 sc 3i 5 231C ~5 CO 440 ~3~4 2315 lCQ 0c____ l)~-__ i~middotzc------imiddotsmiddot~ - u c ibull ~s 2325 l l O oc ~ 4C

2BC ~-9 _____ 41 _ 235 u 3(61

2340 liS bull C C t 34 235 19 Cc middotmiddot------~middot])2350 1 5 bull 0 C bull 3 3 1

2355 l-8bull cc i3lt 33 1 0 l~ ov 43 )31

--middot-s middot-- iSv oomiddot ~31 331 ll 15 6 Oc ~-27 3i~C

C _)-(1 20 -middot iljmiddot oc I 2 2 d 25 17C J i2 32 B 30 _J 1 5 ___9 c_ ~7 G35middot-- 24 3 8 4C 125 oc bull 2i 3225 lCbull __QC 4 2~ - bull n 50 15 middot 3l55 2c i 2 5

l co_ _2 ~ ~21 10 ~ 21c oc bull z I lt1 11 J 21 r bull 4 bull ~middot 6 u______ -middotmiddot_ac o~ _____ it bull ( 120 2~ o~ ~2

15 130 j

middot I 7 tbull 1 J t 1

- --- - 1 1 r -

~-1 1~- SC_ l P)~)

c ~ ~7middot

~3T middotis4middotmiddotmiddot

3 bull 3 ~ ~

3 ~$ )

)

J8

3 J middot

3-3shyJS~ -

3G 3BJ i $

Id i c 3 j

3 3 5

3SC 3 middot-~c bull C _ bull C 3 (~ 3j imiddotbull 3

~ r middot i c

0220 1) 2 H ) bull ( 7

c~J ~ _ 7 G -- 0 u 2 2 gt J22o J2D imiddot

G bull (2 ) 2 ~2 c21 -21 bull 2 l cn Cl2t C 22l middot~ 2 3 7 2 G L t(t ( 2 l middot1 C1219 G~O 16 ) bull 216 0 216 cdmiddot i) bull 15 ~214 ) bull2 t 7 C ll 3 ) bull 13 bull 2l 1 )2 h

( 11 G bull 2 01

133

T

AGC-2l-S SC2-1x~~ltR~-LJ GUSS CHMmiddotWE

J l176 AJG l~ l

ACU 71C MIN 10 ELArsro Il~E

CLrCK EL~PStC CZ~NE cc 1 S l f L i Lbull S1 2 THit rmiddoti ME ( lbulll jmiddotJ ( po11 middot1 ppl(J iCtf~ (~I lPr-q

1 s middot-2smiddotc- 00 middot 4-~ middot 3middot C2CJ 150 255 U C 1-t~l ~L0 155 261 cc 421 32 3 - 200 26~ 4 b 3 _ s --~ l 205CbullC

20 5 2 7 C li bull ~ 4 bull t 2 3 ~~ i C i ~J bull C ~10 ~J_ ObullQ middotmiddot-bull~ rt ) 2bull~2 Jis-middotmiddot 2euro0 0Lo 1ll ~~~bull J 2(

220 2~middot oo 119 j 02c 225 2S0 0 bull1 Ui 3 3 bull 2C 2H i9smiddot cbullmiddotmiddot 4middot11 - l c) 235 JC C~ 46 ]2~~ ~- ( bull r G ~

2o 305 cc 1 _2l 3 020 middotmiddot 2smiddot------ middot 31c oo middot4middot2t 12 bull i 2~-

250 315 CO 416 3l5 C2Qj 255 32J o 4ll ____1~ 3S 5 lbull 2fJ2 3JO 35 OC 407 I i L bull 02 3C5 330 CC 414 3l~3 3S J l bull 2Cmiddot 310 33 cc 4 1J 31i 3 I~ 5 CtCl 31s middot30 cmiddotc middot--middotmiddotmiddot13 313 3S C Si) 20 345 o~ 414 31J 3middot ~) C2C) 325 350 oc 4Js 313 3 0196

330 3jJ -middotcc 410 31i 3( 5 J 14 7 335 360 uC 410 3l2 3 s gt i 1 S6 341 366 00 4C4 312 3 s_ C l_Y 7 3~5 370 GC 4d 3l2 3 - bull s ) 19 I 350 375 oo -t)8 312 S bull 3 L 1 e 355 38C OJ 401 312 _y~ C I l~ 400 3i~ oc middot 4~2 312 3S5 C195 ADS 390 OC 4J 311 ClSi

______41 c ______ ys______ n ~----- ____4c4 _______J_1 3 middots 5 01lt7 415 -tCO CQ 117 311 35 0 i 2 420 4C5 OC 4C 311 ymiddot J] 4 2 5 __________ 4 lO 0 ~ 4 ~_ -~ l I C I~ 43C 415 0bullJ 3S9 31 l 3 bull 5 (ts) 435 420 CC 47 JiI 3 middot - bull ls l

____40 4 __c_ __________ __2___ 31bull i - bull 8~ 445 430 )C 3S3 311 3 middot v1c1middot1 450 435 O~ 3middot3 31 l 3 middotbull n 1 c)

_4_)5 _____ 44~ 0 bull ~ It~_-) bull J 3 middot ~ bull 1 d 500 445 oo 4tl 30c 3 middot C lk ~cs 45G o ~ ~o zc~ 3~ 5 u te 510 1 j j 1 8 middot 55 460 0( 3 C middot ] ) 1_ s2O 405 0c 3 middot I 30 C j gt C l 8

52igt_____~1l __ ) c__________ i bull ~J___j middotmiddot-middotmiddotmiddot- -~ Gbull d J l 7 530 475 Ot 4l 3Ci bull S

4eo J

_middot 3-bull I 3 -d jJ -~ V I H

134

I J

A~C-2l2-6 5ji-NOK~S0KR-U GLASS Cf_cofJ 1976 AUG 25

ADO 710 MIN TO ELAPSED TIME

CLCCK EL1~SED middotrbull C i TS l t rl _ ~ t D c ~ ) (fI)TlH THfPbullIH I )G Cl l-l

55 500 oo 3C 7 I) 5 ) bull ~4 600 507i 3 93 3middot) I 3 middot) ~ J bullbull middot)2

605 51() ) bull 9~ 30 610 15 3 1S 3J 7 r~ ) ~ i 615 520 00 396 30 7 n5 -) bull l 6 620 ~) 5 ~ 0 bull]7 3( 7 -) ~

625 53C t- ~ 0 5gt~2 3iJ 7 ~ gt 630 5~5 oc 69 3~5 )13030 65 5) )0 3 - 3) 7 _ i ~ bull ~l

640 middoto os2-middot - 3 Ji o 7 j ~S -Jmiddot1middot7d 5 1t5 i 645 5~0 oo 391 305 ~ J131middot 650 555 oo ~dd 3G5

655 middotmiddotillf Cmiddot o 3 9J io ~ 7JO scs co 3 sc 3C 705 570 o ---middot-middotmiddotmiddot-nrmiddot middot - -- cmiddot o middot 715 seo Ii GJ2 middot1 middot 5 J l 76

57c 0 s 720 555 C 31 5 ol v J l 73

-- -725 sso o u ~ rmiddot-middot-- 3bull) 5 ~ ( -middot----y~rrr----- middot middotmiddot 730 gtlt3 o Cl2 lt 3C 39G J-l 71

735 6C-O oJn 382 3C5 ~--J bullJ i17o 746 - -ij~ c-002 3 37 3middott1 3middotmiddot~middotT- )itb

( 745 ~10 Omiddot) ll 30~ 3 ~ J Jl3 7$0 615 CJ 3 H l 3J I ------- -75 ~ - middot-- 62 --- o Jo2 ------middot Jaf -il (

( 800 625 Ci J 3 8 l 3 l 3 3 C ]72 805 6~~ G 3 3-t Higt 3 7 C J l 72 810 i 3 5 i iJ ] 1 3middot ) middotmiddotmiddotmiddot middotmiddot1 fj-middotmiddot --

( P15 610 ~ 3) J) - bull 73 20 6t _ c2 32 J bull 1 7 ~2 s 6) 0 bullbull ) i l l 3d l 3 ~I bullO ~ J (1 i

( 830 65 oo 3 l~6 3t3 3- 5 ~j -i1 i)

835 UC vo 3 77 3) 3 i bull 1 7) middota4Cl- bl C bull ) 3 31) 32 middot1- ) s -~ 1C)

a4 s 6n 76 middot 3 i) 3middot ) )ll ao o7 (i0 j gri 32 7 34 ~ a19

middotmiddotmiddotas1 middot---middot middoti8i omiddotmiddoto j o middotmiddotmiddot32ibull ~ t-~--cmiddot middotmiddot i ~middotmiddot 900 6 0 ) 7) ~ 2 l ~ 1- 7 ltJS 6Jj C 0 3 __bull -~ 32 bull 1 ~

-910 ftJ 00 L ~-~bulli

(

f 135

I

r

j I

AGC-222-l S(12-N]~1-St 11~-U GLASS (bull-Ufis 197( Au 25

ADO 710 HIN TO ELAPSEC TIME

CLOC~ fLlr5~J oz~-J~ CJ _TSl P~l 1U-~ _5J2 TIMf TPHlNJ (iPMJ (fgtbull-1 [IJEG Cl [) crPl

915 92~middot

7~ Jmiddot iCS

0 0 OOJ2

- bull lbull) 377

32 i 32

3 C~ --loz- iimiddot1-V O c 169

_925 7 ) 0 o 3 79 37 0 l c- 93) 715 00 3 79 32 7 0 l 6 935 7~C C0 n 32 7 0 l 64 940

i45 75 )

0) 0 0

~ 7_7 3 79

32 bull 8 3 3

middot3 ~ 33

0 Jc~ C lomiddotbull

75 oo 3 7l 32 raquo 330 O l l2 955 7~middotJ GO 3 79 32 a 33 0 0 16-t

middot1000 71 omiddoto bull middot1 33~ 3L 0 o 162 lmiddotl05 7middotC- oo 3 7S 3 bull3 33D O l 62 1010 1015

75 f-Jmiddot

uo 0 o

3 7o 3 7z

3) ~ 3) J

33 c 325

0 l 61 O l cD

1020 7c5 0(1 3 73 33 ltI 325 OHl 1025

-middot-1030 --770 7i5

oomiddotcomiddot

375 3middot middot1a

~-~- i 33 e

325 v _1593_i_-middot 0 bull I Sc 1035 co CG02 3 7) 3] ~ 32 ~ bull l 5j 1041 1045

7 7 0middot~

OD ( o 37S middot3middot~ f

13~ 33 7

3l~middot-z~middot ~- middotmiddotmiddot

Vlt~l c middot 1middot~~8

1050 7lt5 0 bull) 3 71gt 33 7 325 v158 1055 Smiddotjbull oo 3 75 336 3 2 5_ gt-t~-- _

~UES1l~NA8LE DAlA

136

l

Jbull j

---ACC-2~2-emiddotmiddot~c2-NC~-sugttl-1J _______________ --- -middot GLASS CHA-l~EQ 1middot91J liJC 25

-middott tc1-1rsmiddot O- 1100 -lH1STY 1Jf middotmiddot----- bullmiddot-middot -- --middotmiddotmiddotmiddot-- middotmiddotmiddotmiddot------middot-middot-middotmiddot middot- ---- -middotmiddotmiddot -- - bull middot- middot-------middot--middot- -middot co FACTuR l91Z e~ACY 1~1 TECO 14D ~IS ON TH CHl~OE~ FRO~ 11J5 TO 1111 1200 TO l2J5 1~00 TO 1305 1400

----middotmiddotmiddotro-1405middot lgtCJ TC 15J5 11 l01610 ANl lb55 TO 11Cv middotbullbullmiddot-bullmiddotmiddotmiddot- middot------middotmiddotmiddot TECO 140 s~raquoPLlG UTE 112a ILMIN PAN NOT ~EiSURED ~02 AND N~a VALUES NDT C0ARECTEO

---ATT=l5 MP NOS--ffVIE i-C =middotmiddot1130middot PP3C middotmiddot ~=TH~~E middotmiddot-middot29oc middotpamiddotmiddot ------ middot- ---middot-middotmiddotmiddot-middotmiddotmiddotmiddot---middot---middot-middotmiddotmiddotmiddotmiddotmiddot

CLQCK EUSED OZC~ J iJ2-P~N bull1-P~r ca TSl ~El llH Sl2 -T1~-e--1Mtnbull1Nrmiddotmiddotmiddotmiddotr11-r- - HbullJfr-middot middotmiddotr~- --- nirr-TPgt)n- middottoEG middotmiddotci--- ni middotmiddot-middotmiddot middot 1gtsi-1-middot--------------- ------- middotmiddotmiddot----

--middot-ruo c---rv----~i ~if----~----~-i---1middot-n-~1 o 32 lmiddot-middot -rrs 1105 5 OC27 ebullbullbullbull bullbullbullbullbull~ bullbullbullbull~bull l74 3Ja ~iO 0154 1110 10 oc54 a~3a csoa csJc 37bull 3~1 31s o153

---n 15 15middotmiddot--r-T~--t~bullJgtT--az-m------Ti-~-- bull 32 o middotmiddotoT~---------------l 12J 20 ~095 ~bullbullbull ~bullbullbullbullbull bullbullbullbull 373 34l 325 0149 1125 25 o11~ bullbullbullbull bull-bullbullbull H-u- 373 34l 35 014S middot

---rr3middot--middot-middot-middotmiddot3u---rzz-middotnH-----ymiddoti--nmiddotmiddot~---middot-rn-----r--n-smiddot-or~-----( 113s 35 0132 bullbullbullbullbullbull bullbullbullbullbullbull bull~bullbullbullbull 37ti 34l 325 014S

1140 40 0142 bullbullbull--bullbull bullbullbullbullbullbull bullbullubull 373 34l 325 0147-middot----x-Ps- middot----middots--middot -middot middotmiddotJI-z---middot-~i- middot --middoteimiddotn -- flyen----middot- 3-middot--J z----7)___ middotefv-2 ( 11so middotsc 0164 bullbullbullbullbullbull bullbullbullbull~bull bullbullbullbullbullbull J73 343 320 0143

1155 55 0176 bullmiddot 37 334 31-5 014312CO 5u---n1-middotomiddot1gt~-n-nmiddotmiddotmiddotbull--middot_bullmiddot~amiddot-~--nmiddot~--5- --v-1~4-----1205 65 0138 0~21 44~ 0468 371 33 31S 0140 1210 70 0198 middotmiddotmiddot~middotmiddot middot~bull 373 3)5 31J 014012(5 15 20d omiddotn n ~-n- 36l 3~ I 31V--lr~~--------------1220 80 0211 middotmiddotbullbulltbull middotmiddot~middotmiddotmiddot 372 337 310 0138 1226 86 0225 bullbull~bullbullbull bullbullbullbullbull~ bullbullbullbullbullbull 371 ~3S 305 0138

---rz3middotcr----middot- u--middot-rz-zr--nmiddot~bull-bullmiddotbulln--middoti-1f 3 1r--TS-e--rcmiddot~5-middotmiddoto-r3-1235 95 C234 bullbullbullbullbullbull 373 33~ 305 0138 1240 100 0244 u- 3 74 33S 30S 013b_______________

--r-245 105 o~middotmiddotn-~n---~nbull 3lamp-33 l~o7no 12somiddot 110 o2s bullbullbull bullbull 3 10 339 3co 0131 1255 115 021gt bullbullbullbullbullbull bullbullbullbullbullbull bullbullbullbullbullbull 369 33 30C 0136

--ncHr----zu-----zb-middot--tmiddotbullmiddot~-----middotpoundn----i-nu 3 11 - 34 l 30-imiddotmiddot-r-rn~----- ---------~ ( 1305 125 0263 OQZO C370 C390 362 34l 29S 0134

1310 130 0286 366 343 -295 0133--n-rr--rn---rz-middotr~- bullbullbullu 31- 3--z 2s 0133_______________

( 1320 140 0303 bullbullbullbullbullbull 367 343 295 0131 1325 145 0313 bullbullmiddot 310 35~ 295 0132

-----nomiddot----5u----o---Jr~nmiddot-----$--bull bull bull 3cs-middotmiddot-3middot5~ro--onmiddot9~---( 133 s 155 0325 bullbullmiddot ~ 367 345 290 0129

1340 middot 160 0332 bull 370 35b 29() 0129 -------r-s---n-TlT---Thh Ohu hmiddot 3b9 356 29J---omiddot129_---------------

( 1350 170 0144 middotbull~~-middot $ 360 356 235 0129 135S 175 0352 bullbullbull~bullbull bullbull~bullbullbull 36amp 351 2a5 0129

-middot-middot1400middot--middot--1middotpound0middot-----0---i-srmiddotmiddotbull~-yen----middot-middot-r-bull ------y-fi~---7-S-t---za--s-- (fTzz----------------( 1405 185 03b2 OJZ5 C31C 0335 367 357 285 0127

1411 -Ill 0371 364 357 28l 0125--ras-15---middot 0376 ~Tlaquo middotmiddotmiddotmiddotmiddotmiddotmiddot-bull J64 middotmiddotmiddot351 2lt1s o--lZ5~-------------

( l420 zco o3a3 bullbullbullbullbull bullbullbullbullbull bullbullbullbullbullbull 36- 357 zao o1z3 1425 2C5 0-391 bullbullbull bullbullbullbullbullbull bull~ 36 358 250 0125

--middotmiddot-1130 middot-middot-middot2lo oJmiddotu--- --- bullbull middotbull~bullbullbullbull - 3sd--JJ - zaJ middotmiddotmiddot 0-125 ---------( 1435 215 04Jl bull bullbullbullbullbullbull 362 36G 28J 0122

1440 220 0410 middotbullbullabullbull bullbullbullbullbullbull 362 34~ zsJ 0122 middot 145 - 225_ o413- bullbullbullbull --- -middotbullbullbull 362-middotmiddot- ~~-c-middotzao middot 0122=-------------

-----middot-middot--------middot- middot-------------------------

--middotr-so 230 D42~ bullbullbullbullbullbull bullbullbullbullbullbull bullbullbull~bullbull 3~~ 35~ 1= o_120

middotmiddotmiddotmiddotbull middotmiddotbull~~-1455 23~ 042~ bullbullbullbullbull ~ 36t 35ry z1s C 12 I 1500 240 04Z7 bullbullbullbullbullbull bullbullbullbullbull~ bullbullbullbullbull 3bJ J~l 27) o liO

1505 middot middotmiddot-z smiddot-middotmiddotmiddotmiddotmiddotmiddot o 43-s middotmiddotmiddot middot-- middot fy-middot-il6 t -- o Ao ______ 1~ s~ middot l5 Z 7~ ~-- middot- c-11c1

OlJI~ C) ~c f l l() 41JJ Pgt~-tI-i2

OLGlE CJ G S C10 41~ 12 o middot~r1 ~~2-PA~ CC A~ ~rmiddotmiddott~21 Jbull bulli-1 middotpi-~-middotmiddotqN

137 )

_j

j

I ___~ -Irr-=rgt--~ fi -~pJ13 microc w--7 Fria---+ a-bull---middot--=-r ---rc=u- r ~~1-- r-=~l ~~ _ _ ~l~ ~~- _j =middot1 - --1 middot~----=---i ~-~

i 97 7 -- ~

~- bull -_bullbull _ -

-~ middot o- l ~ middot_ _ --c 5

-_

- ~ __ -i1---)

-bullmiddotJ _ deg _~Li--lt Cttf~middot -~J_J Tl Slr-Y~ --- cbull T[C-T~ - l c 7f t C i_ I---lt

l bull - ~ ~ --~ - - _ _-- ---

~i~ gt bull Tftf- iJbull-~_ jl ~~SiF= middot middot1F ~1 _1~-CLD_

SY~ l-~l1~ 24-5-f o --tY VJL c C ~-~PL[ PCRT

--~ __ _] 5 bull1 - ltmiddot_-_middotbull bull --~ ~---r_ r~ -t imiddot c1-~-middot rrc-i c---middot--u1 1Nr =ii - ~ L _ middot L ~ -bullbull bull bull bull l ~ middot~-l_~ st lmiddot ~ ~--t1 iC cbullmiddotbull-_fCT LEil

_-- - __middott_i middot-middot LAT r= ~ ~- T ) r middotmiddot-1 r-- ~ - _- ~ ~- ~ - bull i I 1J 1 middot- 1 ~ j_ t __~i~ r-lbull bullbullXtL-JC nt1

middot -1-bull Ci--1-r bull

_ bull ~ middoti ~ - i) rtJ rmiddot

_J 1rmiddott

1_() l t ~ ) )20

i -~ bull middotmiddotmiddot- ti0

i middot - ___ --~bullrJ

l 111 i 300_

lbull~ 36)

lbtt5 _420 _

l l bull 1t50

2J ~ ~j

63G lJ-i)

vv Cl lgt

n-9C

L~middot--~TICf~S iPPl-1

~-~~--~-~--

c bulln

i t~ -t -~

_middot bull ~

)l J) J

i 3 1 3-J

) l tJ imiddottJ

middot 7 H middot)

-pbullJO 3-JltJ)

11 ri~J )100

il 1-1 3110

ai

9= (( ~ ~ -laquoiry

)- ~ (I

-- bulllt~

yenyen~11

) bull )bull 1)

3gt0

--bull- l -gt 1

bull1 bull 7 il)

3 7 2 1 J

396 Ibullbull 3

1 2 l bull

39 bull -gt

ld d 310 fu l

3d 1t

70 ii 36ltJ nJ

-

( tic

-0~i

iu~

~-

raquoyen) ~

j_-4

i q

I- w

_ ~ I i-1

i ~ bullj J bull j

)_)

ur fj

iJ (bullmiddot1 -)

~ (~ ~ 6 _

l 2 v2 u

126 o t~

t ~ 6 ~ --)bull-1

ltbull ~ -lt

rt gtltljcent-C

~gtltO~

it-~_~ L-J bull 3 12 l

0 - ~middot- imiddot ~- ~ - _ =~ i 1t f 2 3lt -1 bull 451 ~2J 42l l 0 478 ~ ~Jf(l yengtiO ~ 3middotbull 5 t r bull~ ~ i-1 i8 bull U15 6 JJ bull l 356 o~3 fi o 9i5 (ltti v1qgti c-c lltoi1 -11 l

- l - loz-__

i bull bull 5

l ~~ bull - ~ 7

l j bull 3 3- )

lJ bull lt 1 l C

l -t 1 1t 3

14 I t2 bull

lmiddot J 41

1 frac14 3 1t3 0

14 l 423

l iS 46 amp

~ middot~ 45-S

s s

pound 1 5 9

~J ~ ~

- 7

11 flgt~bull-

1- 11

lG _ l bullJ

l l bull f ) 1t t

lbull1 q s~ 6

l J 7 5 2

l O o Jl

tG 5 Jl lt1

11 ~ q6

10 l 303

)9 296

1-)0 323

62 lB e

(I 2 loo

(1 l cl 0

~ -_ l bull) middot ~-

_ 0gt i 1

Jr

rmiddot1 ctmiddottf-

aigt_ti

lUO r - l

loll (11J

1( hlH

l57 (110

~

160l

15lt t l_t

917 )(J -

91 l _-_

d7 3 i

c ~ middotmiddot ~ bullf ~rgt_(

1 Ibullbull 1t 1

1til 103

r 1i 92 lt

- 7 l9 t

3l) H 1middot1 6

4 02 b0 1t

402 804

40 t al l

6lttgto(t

(clE

4 l u 937

4l - 85 3

n4 41gt8

LJd 41o

ijO

9

r -- -- J

i~ middot- --

j _i bull 7 a

bull middot1

r 5 _fj

0 j 2l

0 j

L bull Ob 2

)6

middotbull ) bull 5

2 bull CH J bull i

07 l il

05 t9

o bull l~

0 1 t

_ f - I

PP C tJ

bullJ ~ C j_ 6 )~ 3

L 2 bull 50 5

P2 487

124 ti 3

t 49 o

liS 5JO

12 I 50 8

t2 t9 a

I 2 8 51 4

Ui 31 t

75 ltgt9

76 30 bull

78 H l

------ - -L )-middot _HmiddotrmiddotL r-__7bull=

Vimiddot~~c i-c~

1Y1ffbull

-t 6 7 ~~ g)

4J _ iJ

ltf 3 tt l d

ttfl -2 It

1t6 2 nr

1) 1 l l

middot15 6 274

4 -3

266 tlt

276 16 1

2 7o ll6

160 2( tl

lvi f2

2i6

L-i~bull-L ~~_pound_-- -bull~

-1_ bullbull 1

-Cbullli-

3 7 i l 7

383 d j

1 7 ltl

30 I 2 7o

39 1J

3o7 77

383 72

358 7 _

362 12

35B 4 3

21 7

221 7 l

3_4

~bullyen-- ----bull middot ~-- ~--~-- ~-Ibull_-bull_middot-(~~centbull f f _bull-_-bull ~-~~ --=middot-_- -~-tI ~~--~ middota1rbullbull middot _r~ -lt~lt-bull -_~ - middotbull bulli--e- -~- _ middotmiddotlr---bull

rmiddot=1=- r-~=bull1 l--Jfil1middot--1 rur=-=i -f~w-_a1 ~ _r~- r--ra-c=~ ~ f-1-tliiilllllit ~~ ~~~j bull~~-r--

l-i77 ~~~ 21 --- J- -

) ~ ---

L~~ T9~ _~-~i-J ri~rt~

bullmiddot_

- bull~ ~ l~ 1 101s

Jj 104-=i

(J

115 lcO

l 2t5 1 ~HJ

1345 240

l bull -~ 5 300

l )It 5 360

l t4 5 lt20

17 5 45C

2Cl5 t30

lJ4S ltgtov

ell i omiddotc

middot---middotmiddot rtC _t c

) 0 J 1)

(__ _

C5 l ~j bull bull__

( - bullt-eL

__ ) ftc_

middot- -) 3 15 l

lt)_o j 3

87 o06

~-ii-lt

$igt~((

~~n ~t-gti

e diams U

Gt1

~-q ti 6 ~J3

--~ r-

p C middot_7c _3 l _

bull ~7 3 3_-J - 2f1f

3 i 6_ 753

3l 9 2j

(

laquo 30_ 4 4 1

2$ _5____ ~-~ ~middot (t~

22 3 degdnt

UC

I ~ix

~bull r12

ff4yen

2 r 9u ~middot -~-- -bull 1middot- ~ ---~i 2bullmiddotJ

bull I ~middot 21

bull 2ltZ -

29t 1bull1

_20 ~ ~ nti

268 1a1

2H Bl

298 ~ bulli J

2~3 2~1

ilC J IC

l 72 l 1

75 [

middotbull -

~

middot middot

i ~ (J

bull-~J

~-- 01

1~middot1 lle-1 10j

tlgt~~ gt 111 middot)_middot3-~~middotlc 6(J3 1t 1J 0middothmiddot~

middotLgt7~ li-J3 ltbull=-

middot7lt1o i-_middotJ ~-rt_

S04H bull - j((bull)bullt

tlt~o

-JJ6 )JQf 1cLJJ

ll703 1101

) 1164~ llbfJ

~oc - imiddottI 0~middot1

V _deg J-44 l--r-

rt1 J bull 1 2- ) 12iJJ

f-- i

0

~ -~ _- -K_---middot~-~- --(middotmiddot -middot -middot---=-middot-)~7-- l(~f-~~ _-~- ~~middotgtamp--~ ~ _-1--gt ~ ~--~~~---~bull middot--bullmiddott~~ ____ ~~ J-P~---yen-4middotbullbull--middotmiddot-middot

i UO bullt _ Od_ (middot JJ ~ c C ltgt lj (l bull- N

rmiddot -1middot - bull~ ) l

bullI

I) middotd (middotJ J -~ - ~ middot JI 4 ) 0

~ bullJ ~ Jbull ~ 1 r M

i- t---

I

1 I00 bull lt CC NN 0 -0

lt)1l

middot)

-~ - -300 NN middotbull Cmiddot ii NN S (1- O 0-- ~ r- -

I I

~- rmiddotcshy -1 NJ bull1---1-

J middotshy

ltbull 0 s- bull middotl _ _ middotc o

0 -- j r-I-j r-- _

ru middot

0

~ rmiddotmiddot - lj a)

-J O

I lJ(_ - r- -

~ middot~~- _

r

_ (bull - ~J middot-- -

~ -j

middot -

I

middotmiddotmiddotbullbull I middotbull bull bull

-shyJ middotmiddotbullbull I JI -bull r ) 1 ~- I -

C bullmiddot -bull _ 11

i ) ) )

141

- ~

_

ij (Y

1

l

j t ~

1 l

l i

r t

1 i I

i I

I

i e clf ~~j

i Ii

J --1 c--c- r-middot rJ

llJmiddot t middot C C r-bull

- )

middotmiddot

1J middot

-~ CJ-- bullS- bullbull

middotC - lt ()~--

tJ~-r ~- r bull J)

-r--middot J 1 I ~ ~ - -~ _ _

~

~ middotbull1 r~1 J

middotr

I ~-1bull11 J

)bull ~ --

142

bullbullbullbullbullbull

__

SURROGATE RUN 223-U CLASS CHAMSER 1976 OCT 5

LIGHTS ON 1215 INTENSITY IOOt OF MAXIHU~ 39 CC SAMPLES TAKEN CO FACTJR l9lOl PA~ CALIBq 9 6~ADV 1296 1215 PAN SAMPLE WAS TAKEN AT TbullO TOTAL NON-METHANE

CLOCK ELAPSED TJ~e nx2uaN)

1215 middotomiddot ( 1230 15

124s 30_~ t3bo 45

( 1315 60 1330 75 1345 90

( 1400 1~5 1415 120 143()-middotmiddot 135

C 1445 150 1500 165isismiddot-middot-middot--middotiso 1530 195

1615 1630

---i645 1700 1715

--1730 1745 1800

OZCNC ltPPmiddot~middotmiddot

omiddotmiddoto 0020 q04 0011 00~8

5139 0159 C181

AT 1221 HCbull 2346 PPSC METHANE= 2950 PPB

middotmiddotc~J3middotmiddotmiddotmiddotmiddotmiddotmiddot~J24deg 0222 0)12 0242 011

~1 t 0 M1

O 150 oJ94 005s oo3s OJ28 oJ23 oJ20 0)17 1))15

- omiddot2sgmiddotbullbullo1middot0middotmiddotmiddot 0147 o154 5~53 0022 0081 0276 OJO 0140 0145 546 bullbullbullbullbullbull

N02-PAN ~OX-PAN er PAN _ H(fO 1orM1 11gtPM1 tPPll (PPrl IPPHI

0143 cz1H 5S~ OOCl OC40 o1s1 0212 s75 bullbullbullbullbullbull bullbullbullbullbullbull c200 o2s1 s 15 __ 0000 llt~bull ozca 0237 s12 bullbullbullbullbullbull bullbullbullbullbull C2)0 0214 572 OJll 0063 o194 0214 510 bull~bullbullbullbull o1ss 020s 563 o~14 bullbullbullbullbull~ 0181 0194 561 bullbullbullbullbullbullbullbullbullbullbullbull

cgtbull11) 0195 ~5_7____ 0_1)_15 _______009~ 0157 0176 ~56 M~deg 0161 C16g 552 0021 bull~bullbullbullbull oJ53 ()160 s51

~~~-- -middot -JJtmiddot-middotmiddotmiddotmiddotmiddottfrac12H----middot1middot-middotbullgffr-bull-g ilb----middot-middotmiddot11~------~-~-middotzmiddot

iii5middotmiddotmiddot-- 360 middot middot omiddoti19 oco2middotmiddot c068 middot o069 middot53i 0039 C

-- DATA DISCARDED

OZONE CJSAGE GT OlJ 5~53 PP-IIN OZONE DJSAre GT )gt~ 6466 PPl-N

N02-PAN CJSIGE GT 025 J0 gtPbull-MN

C

(

middot1-bull

(middot middot middot

(

143

240 0337 0012 0124 0131 539 0027 0024 255 0354 OJJ7 0114 0116 543 bullbullbullbullbullbull

middotmiddot210~---middot-middot0middot37-middotmiddot -oSoimiddot--middot-middoto10s o 10g middotsmiddotimiddot - 0~03fmiddot bullbull 265 0393 OJ~5 0099 0101 536 bullbullbullbullbullbull 3JO 041() 0l05 Cl93 0095 5~z -U_9Q11

_____ 3l5 0427 0()05 oomiddotsamiddotmiddot--middotomiddot8f-middots~~-B 330 0445 oaos C081 OORl 535 bullbullbullbullbullbull 345 0462 0007 C074 0075 539 bulllaquobullbullbullbull

TSl REL HUM IOEG Cl Ill

31 610 33I 630 338 630 336 625 336 620 336 61 5 337 610 33il 60 5

_y_o _____ 59 ~ 341 590 34 o 58 5 t bull 2 58 5 343 575 345 575

3t 5_______ 57 0 34 6 56 5 347 SbO 34 s 56 0 349 555 34 9 55 5 34 8 ------- 55 bullo 34I 550

lt 550bullmiddot 54534 55 0

middott--1_r_-0- ~-ur1~_1 ~-m1=-middot cacalJ-aej qr-middot_~=~ f 1r~bull~1 ~ ii~ ~~-lt a -~ -bull-I ------ ----bull----- -- -middot-- --- ------middot-----------

middot-------- ------ - -- -- ----l lt T 1 I~ l ~

LwO(~ATE 223-U-1

USS (i-A3cK lS76 CT 5

----middotmiddotmiddot--------- ------------ ------------------fgtCCP ne1PRATuRE STA3li TY ori POROiiiK-~I-T1isrRuMENT 134~- u~ SA~rLE lJ~fC if~ POOPA~ II 4UP GEHrJF iRCPIC-LCftbullYDE ACETONE _lltJTYAlPEt-YDE ANDMl1Cf8011 C-600 _____

T LUEhE A~J ~-iYL2NE fRCM 3P

cirrr T J tltI 10 l 5 l 112 1215 1230 ll 1t5 1 middotmo 1315 1no lJ45 l 4DO lbull I~ l 3J l bullttgt LJOELLco r [ME tMl -) -12c -43 0 1~ 30 45 oomiddot 75 90 105 120 lJ5 ljj 165

-------middot-------------- ---~--------bull------------ -middot---- ---bull- -- --CONCENTRATIONS IPPB

MfTt-~ ll20 29Su_ _1QI ---- - ____ 2920 middotmiddot---1~L- t 2060 bull t bullbull $V- +- 0

-0fJlfljlP~UC lllO 29~0 )~$ yen 2920 ti -( bullbullbullbull 2B 80 lti

1Tt--f bull~ ld 4b11) bulltn)it middot(c middot~IQmiddot middotmiddot 3u I 21 5 yen_ ~yen -ilgt11$

Pb[ 2b 61 4 550 yen ~~ ~middot ~

bullE Tbulltbull~ _bull~ i middotmiddot--- ~v ~--~~-----~-~~~----___ __~--~_ _~~---~~__at bull9 ____-q~~ ______ a10 ~middot-I~ -gt-~bull $

Cr)(tl((PP8C 34 ~ yen4 17J )) 162 bullbullov lj[ middot ltCETfl~-E ( SPCJPM li 24 ~-~ ~IX $ O icbullbull 423 I)middotmiddot 38i

Pl1 BC 48 ~Ct bull(I bull bullbullbull bullbullbullbull bullierbull~ bullbullbullbull 846 112 bullbullbullbull bullbullyen t

bull QJ~~~tE _____ 4_J___________2_0 _Q~__-~___l)_6____l_o_---18_L_o__L____lt__---_-_~__iJ8 _ _bull_e____laquo_middotmiddot-middot---lo 2_________________ -middotmiddot-

I- P8C 129 bull~bullbull 600 586 567 564 bull gt4b ~

Igt)~gt)~ p~ -P~~E 07 _12 9 12q )iJ~--middot amp~1___-_J4 _____ ~s ~--~-middot~~ ___c_U_-0~ 4C O-ilt bull f igtPBC 21 38 7 387 2bt 195 120 IC fd-- middotmiddotmiddot-l _ I_SJ81JTAIE________________QL_ bullbullbullbull - __ --- middot-~-- -- bullbull ___________ _bull PPBC 04 bullbullbullbull bull bullbull~bull bull bull~~ ~ -bull~bull bullbullbull~ bull9bullbull bullbullbull

Nmiddot-Bur i1E -- 1 5____ 196 l ____ middot--middot-middotmiddot l8lt_____ _____deg _ - ______ 171 ~ 164bullshyPPBC 1 10 790 784 744 bull bullbullbullbull bull b64 bull+bullbull middotbullbull=bull o5

__A_ CETYL~iE__j QI I ____________25__4_~___425___gt1lt-bull__t25 ____bull__lt25_-13lt____i-~L__bull----___l __iof_lt____-----1~2 --- -- --middot --middotmiddot PttC 5o uco aso ~bull 85O aso bull~ bull~bullbullmiddot 02e bullbullbullbull yen~ 1a4

TP~ rs-2-aur c bullE oo C_i _____() 0 _ ____03 -middot---deg-degmiddot----middotQbullO --- _ oo bull bullbull -bulloishy va ~middot~middotshyPPtC oo 32 32 12 oo bull oo bullyenbull 00

-- i S0PENTAIJE____ ---middot-middot --- ___o_ L ____c_J ___ 0_2____gt1lt_bull__-1o_____(lt_______l_bull L__________o____ ~-bullbull___J_l____gtlltbull____U~-----1-L__ PPBC 15 35 4i bullbullbullbull 50 55- middotgtjlmiddot~ bullobull bOiS bull-ttlll

CIS-2-SUTEIE _ JJ__ _ 14 6 ___ __ 14 o ___ _-yen~~~------5 2middot-----~--~ ____l 7-----~bull-~~- bull-laquo~ ~ -- o o ---middot~U----~bullbull - v c PPac oo 592 584 bullbullbullbull 208 68 00 bull oo

_ fi-gtE~TANE ____ _________o D C L_O_bullL_~gttlt______o_l__llt~tt___Q 5---~~---middotmiddotmiddotjlt________-D5 -~----bullbullfltltgtl___lflt__ ______________ -PPBC OO lO 15 15 bullbullbullbull Z5 bull 25 bullbulloi bull bullbullbullbull

2 3-0 iMET_Hll ilU_TAIJ~ ____Q_Q ____ _0_9_____1 lQ_ bull-~-bull- 99 5-~___9JJ____~bull~-bull-middotmiddot-middotmiddot~--- ~-~ __ 84bull 6 --bull~bull----- __ Zt5 __ PPBC OO 652 658 bullbullbullbull 597 559 bullbullbullbull bullbullbullbull bullbullbull 509 gt77

__z_- ETHYI __SJ TE gt E~-- _______Q__Q____l6__2___16 bull 6_bull~---middotlldeg___-1lQ__5gtI-- -------2- ___i)C___tl deg-_JtlltbullL ___JlQ _____________

- _ -~--- bull-------__ _____ __ -----~~ - -_--~--------bull~bullr- t-=~~t~~= _~f~~~~~~~1bull~~~~~frac34lf-~~m~~bull~r~-~-fq~l~-~~~~----~-~~~~r-fltbullbullmiddot -r-middot ~ middotmiddot--bull----~-

bullbull

--

---- -_micro__middot1 _---j--- _- irr I-- ---1~ f~i=lbullaj i---r-J-p---1 --or __ ~ 0 I -lt-cc--l~~f1- ~~middot

1971 lltAR 18 i J Sl~~OGATE 223-li

GlhSS CrA-CR l-76 CCT 5

CL~CK TllE 1015 1132 l~ lL l230 _l245____ DOO____ JHgt l3JO _ lH5 l 400 _ l415 lo30 - llttlttgt l00 fLAPStD TtMEIMl~i -120 -43 0 l 5 30 45 60 75 90 105 120 135 ljO 165

PlllC ____(l(L__i lQ__l)l o____5_____ t2 bull0__~_jltjlt__i)_~~-4___ ___ OO _middot- __gt-yen ____ v C

j(ETALCEhYOE 28 ~~ qbull bullbullbullbull bullbull bull

_ PBC _5_ b___ _ 4~ middot-middot-~ -- bullbull~~ - bullc t _itoo -- ~-- middot - --- bullbullbullbull middotmiddotmiddot -~-- bull -- bullbullbullbull PllJlNALCEHYOF 02 03 bull~ $lt-))(l bulltctll yen bullbullbullbull 26 bullbullbullbull ia ~middotmiddotmiddot middot~llillP_lly

( -~-- (t~---middot Ci _9___ nill-1) -_ ~ ---middot _____ __ middotmiddotmiddot- 7B ~ bullClfc~

ACiTCI-E 07 79lit O bull~middotmiddot ~~ 366 ~ ~9 bull~~-PH 1 (tV~_ 2)bullJ --bull--bull bullmiddot-- --middot~bull---middot-bullbulllaquobull ~bullbullbull___ t(- _____l_l_O __ _--~bull~ __ bull 9 --~-- ltill diams 11 bullbullmiddotmiddotmiddotmiddot--

METHYL ETHYL KETONE 03 1a 82 yen$t9 ljllf-bulliimiddotbull~ bull~middot yenbullbull middot~ bullbullbull middot~middotmiddot ~ Ibullmiddot bullrPc_ i 2 Amiddot 7_2__ ~___ -~_ -~J__~~~ - -bull~----middotmiddot Imiddot----~ yen 32o lClO~ -0

T CltJEN 02 155 16l middotbullCt 144 135 126 bullbullbull deg PPHC l _(____ 1()8 bullyenljlCl lJ 3 ~bulletbull 101_ __--- 94bull L ___ --middot-- 111 87 J _J~~

4ET4-HLENE oo 523 53 l -4t 3fl ~ 219 4(Uit4 rcit U3 -bullljl flt PPBC 0() 418 _4_25 11_ 297 bull~ 23i t l 78 1)jff laquolI ~middotmiddot iHryRtLCEHYlc Ol Ol middot~bullmiddot bullbullbullbull bull yen0~ middot~bull 10 +9~ bullbull

-------middotmiddot-middot-middot--------middot---- PPDC 04 04 ---~- ____ ilit middotmiddot~middot _-I -- 40_ __cent~___ $~ bullbull ~iarabullbull

0 ICHLCHltO UI I-UJbullllgt01f TlbullMJpound oo 3S~ 351 347 J39 iyen0c 1jl$~middot jl7I- QI middotmiddot~ - bull q 3H

ishy _Poec O~Q 355 3_51 347 middotmiddot- ___ 339 ~ --bull~~- -- middot~bull--middot- 3 37 lit~yen j ~ 7 middot--middot -- ICr TCfAL HC PPBC

v ll7ij3 bullbullbull 56471 43268 52043 bullbullbull~ bull~bull~ bullbullbull

__TAL 101-ETHPE _t_C____ _ 583 l24l5 2345Q 00 19495 00 1068l 00 3158 QO l9872 middot 00 oo lldJZ TCfAl SU~fltJGATE 46-~5 zz37 middotomiddot 2307 i-------19-4degici---- i060~- imiddot----- -315 ~a----bullbull --- 1624amiddot ---- ---- i 21- 2

--~---middot-----middotmiddotmiddot------bull middot--middotmiddot------ middot----middotmiddot---middotmiddot-----middot--middot-middot----

bull-bull-bullbull bull-----bull---bull-bull ---r--~ --bull--bull----~bullbull-

- - - - - - - ------ -- ----------middot-bull------middot-middot------middotmiddot-- --

------------------middot-middot-middotmiddot- middot- ----

--------- --------middot-middot - middot----middot - ---- - - -- - - ---- -

-~lf4~--bull_~ ~~~~-~-~_-~~-~ -__~~bull- fF-~~~~~-g-~lT~~~~~~~pound~~etflitlilJ _~~~~flf-middot-bulltrmiddot--middot~- -middot-v--~--~-middot--~~ bull--bull~ ( s-~V __- -- bull bull bull

-~sgtlt-bull=ns-~ 1=_1i l-mc-a-1 __~bullmiddotloii1 ~bullbullcai=r J_t-~~ip7 -= __tJ~ ~ -__ __ j-Diii~I ~ ~~ ~_J IJcSi~~-~ J -=- -

1977 gt1~ ci Si~~C~~7E 223-0 ll~r (~middothPJ~ 1~76 CCT ~

(

CLCCie TJ~E l5l5 150 15 5 1600 1615 __1630 _l 6 4 5 ____ l 7 00 _ 1715 _______ --------middot middot- middot- --------[LAPSEC TMti~l~I 180 (95 2 l ) 225 240 255 270 285 300

CONCENTRATICNS_ PP6)

ME T-it rti 2900 bull bullbullbullbull bull 2Hl0 2880 pcgt~C 21 )J -------____2_810 - _ ___2_880 ________________ ---- -------------------------------

Tipound yen4l231 f~ ~ 203 ~~~ ~~~~ ~ 16 fJP~C 4 7 ir ~dbullflcent ~~$~ 40( 32 2bull~~ ~bull

E Tbullbull4E 78amp middot~lll ~ middotbull~-t 780 4el(( 749 PPH( l i r yenltI~ bull~ bull 7 9 _____ lJU_ ~-~e-~----2_~-~---middot-~tlt_~---middot ~----- -middot------------middot------- middot-- middot------- middotmiddot- -

A(middotfyi_t~~C (PfJPlbullr ) 35tJ 4 bullJ) Jqu~ J~7 ~4bull 3( iJii _ic 7 6 ) ~q (Jc 71 bull Cc~ ~-ii 7(

prmiddotPPE 184 ~ tnmiddoto 10a bullbull bullbull 116 1-~fiC ------- 552____ bull~ _ 540 ___ _itL__ -~---528

PJltbull)micro( bull-s -O l bull 7 tc l4 09 06 )pl)_l~PirC ti 5 l 42 Z l ___ l bull d lll middot~~- bull~~-

l rnu f hf -+--+=bull ittcagtICI middot ~ (I diamsdiamsbull -bullmiddot ~ POtC 4~~--- ~6 irc q ~ -~~-middot~ middot

I- N-~iiT ~E ~4tlllC l ~) 2 6-middot) 15b It 154 (lt l bull4f- lPhC diams (t4lt t~- t~gt-111 62_12_ ---~-lltmiddotbull--middot 01bulli___ yen$ia~_ lI~--- _57~ _ ______ --

deg ~ ACETYlffH ((JIJ~) 40 bull Jjl-C 395 bull 30d bull 373

PfflC ytlbull 806 790_ _l7 fJ____bullbullbullbull ------bullbullbull-bull----1t6 i TRtiS-7-BU_TUiF bullbull-amp oo oo yenbull oo middot~bull ~~middotmiddot oo pmicrolbullC yen~bull o_o ltcbull o_o _____________QJl___bull~-~--------obullo _________ --bull-----

I SOPcIITANE ~-90-~ 13 ~ l3 iU ~ ~~ l6 PP8C __ 65 ~~-~-_____ 6_5 ______~ _____a_v __ vbullbull~-- bullet __9o _____

C I-J-a1Jrrbull1- obullJ 00bull~bull middot~ oo ~middotmiddotmiddot oo middotmiddot~~ bull+bull~PPi3C ~c-~ ~o_ _______ oo ____ ----obullo - 00

N-PEl-ltTANE os o6 bullbullbullbull os bull 01 PPC t-6-bullo middotmiddot-middot 2_5___ ~-bull___ JQ___ bullbull~middot _2 2__ bullbullbull _0l __ ____]_5____ ----------

2l-0111 EThYL B1JT flff Vyen-(-9 -6 6 41(nr(c 122 bullbull(-II- 63 5 PPBC 1tOE-fl 460 Jl(I 4J3 -- ___1s -~bull- bullbullbull middot 3tll

z-~ET~YL e~Tc~E-2 oo 162 166 bull 24 oo bullbullbullbull

(9 7 bulliibull

PPBC____o_o___JU_Q__ijJ__Q______ __ _____120________)J)__ _gtlt__________

ACULCEt-tYOc bull9ic ric 9 Ii PPilC yenyenct -- ~~-middot- __~~bull_ middot-----middot-iiiyen___ ~~ ___ _______ -bull-middotmiddot--~---middot~middotmiddot PIJlICNALCEhYGE $$ bull4~ q bullbullbull 40 vbull bullbullbullbull ~bull 48

PPBC __ -- _ ---middot-bull _____l2J_Q __ L ----- __ lt~4____________ _

-_

--- ~~~~ -----_-~~-~--r----middot~--~ ----~-_____ ~0ltmiddot~bull_bull~~~cmiddotbull=-~~1~~rJ~~lt~~-~~~~yen-9 rr~~~~~~~~~~~~~~bull1~~~-Jf-it~~frac34WMP~~fUffM~~-~~~-~-middotmiddotmiddotmiddot1

bull-L)c~iJgt ~JJJI~ amp=-=-middot f-i~ aa-J-_e__jI micro-i~ismiddot --gtbull____- -=---- _ ~Jr i~~-( ____--__p_f I __rei -~~--1r---- l rbull~~h P~bullwii ~~iiI~

7 SLlt~4F 2pound3-U 177 ~~ ltgt

IJL1)~ C-oYjf-P

i-1 er 5

(LCV TJJ 1~ l~ 1~30 ___ J545 ____ l600____ 16l~ ___ H30_____ H4~---- 1700 ____171- ______ -------------ELAPSED Tl~fl~i~J liJv l95 210 225 240 255 270 285 300

_4CE rbull~ PPiC

--middot~~gt)_

icibullbull _(ot$

lI raquo-1c ----bull er lfrtJ11( yen

_360 ll4

-~-~------- ~~ bullbull deg

-bulliibullbull bullbullbull l(l

_i-HHYl ETHYL lttTC~~C pp_c

~icbull

yen(t )C --~~~ ____ii-------- _9_7_ ~-middot~ ~ 388

~--yen

middot~il$___18 --------------~ 728

--~----------- --- ------- -- - -

TtiE~IE P9rtC

109 763

yen-) ttgtlt-

(c~ laquoY bull 107

1fi - bull

(16JCtt

bullicebull iaibullmiddot bullic(t~

102 7lb

MET-4-Xllf E PPflC

__7 f l V

-middot~~- -- ~$ IF (n~v~

-----bull~~ 12-i ------------gt1lt______ 94_ --000 bullbull~bull bullbull~bull ~ 75L

L ry __ Cf 1 tYf rr~c

) ( ~yen

yen~0$

v(r

bulll- _ iV

~ --r1(

2 z 88

Jcentii

it) ~(

~ ~llf

gtii -2 6 lJ4

u-bull1Lor JffLiJ--uirt-lf PPpoundgtC

~ (I~

~ 330 330

( 1t-4

26 326

v~bull

_____ n2___ ------I) bullbull322 Hl 311

rr~t-L TCTAL

lfC -gt~ ~J~-Y

c iHl~E HC

jjJlt3 494middot3

middotbullbull13393

irbullilr

630 bull~ 34Jq _7_

l2 C5 5 tgtZil1 tilt~bull -- middotmiddot--middot-middot--- U------- __ 4713(___

11770 00 oo l5229 ___

TCTAL St~PC AT~ 49tdiamsbull 3 1330 3 830 ll lt60 455l l166 5 14128

middot---middotmiddotmiddot------

I- ~

~l~-~ ___gt-_____ bullA ___ _9~~--bull ______-~7~~~~tqt1f~~1_4_~tP-amp-i-~ffltW-iff~~~iitt~~laquoFifampoiijiM1l~trt~~ -_ Cl-iII~~~ --v-~ -middot ____ ~yen-

APPENDIX C

Plots of ln so2

vs time for

AGC Runs 216 through 222

bullf

lmiddot1

148

RGC-216-1-3 se2 DARK DECRY 2 RH PURE RIA

C) 1976 JUL 27-28 C) C)

p

I

0 C) _ - 0

ru (I) 0

C)

() ()

() Ce() () () -00197 plusmn 00003 hr

-1

() ()

() () C) ri)[J

~() I

~

C)~c CO(L Q_ CJO()

0CLc o--_(I)

_ (J

CJ I 0 0 (J)

o zo

en

_J~

0 =

I

()

f P1

0 Cl co -- 0I

4 8 TJME

12 CHA)

16 20

CJ 0 CJ

24deg

0 Cl LJ)bull

N -0

ll-

149

I

C)

0 ()

bull

AGC-217-1-2 SC2 LlGHT DECAY 151 RH PURE RIA

(r)0 1976 JUL 30-31 (I)0 (I) 0

0 I ti)

N 0

0 0 LI)

I o - C)E ~ a_ (Lo Oo_

CLo __ r- ru (J I 0

()El U1

0C) Lilzo

_J~ 0 I

D D CI

I

0 0 C) 0

~+------r---------------------------+~ltil0 50 100 150 200 250 30P

I TIME (HA)

150

RGC-218-1-3 se2 DARK DECAY 40 RH PURE AIR

0 tO

1976 RUG 4 O)

f I

c

I

C)

r C)

a N-

-1-00327 plusmn 00002 hr

(I

I

0

c co

bull

C) (Jr ~

0~ --L CL CL CLI o_g

(J

(J E

0 en en

0 co

zro CJ _J~ 0

a

~ ~ ~-i------------------------------------~-- o 2 4 s a 1o 12deg I TIME (HR)

151

RGC-218-7-9 se2 LT DECRY 401 RH PURE AIR

C) 1976 AUG 5 C)

CD

C) Cl Q-0 C)

0 (J

I

-00830 plusmn 00005 hr-l

CI (J I

~ (f1

Cl Cl CD (J

I

CJ 0 (I 0

a -(D

bull 0

oshyNE -a ca

-

(J

0 en

0 (I) 0 0

C) -

W O

-r---------------------r------------------~W 0

0 2 4 6 8 10 I TIME (HAl

152

r-

i]1

l _

middot

AGC 219-1-5 i 5~2 DARK DECAY 80 RH~1

PURE AIR 1976 AUG 16-17i 0

-middot 0

f 71 l

l ii gj

I

0- U)

CJ

I i I IC)

0

f II) i

r-- l I

~-- -~ o_ Oa_I ~ j(l g - r- I ~

- middot -00689 plusmn 00004 hr-l Ibull t 7 I (Ji ~ i

~] 0 l_ zo l~~

_J~ - iIu i _E I C

i 0 0

I I~- - I(J

I

-

() Ifr

I I

fl L

CJC)

~ 10bullq er [

C)

~------------------------------r------ N

I (j 4 8 12 16 20 24deg

TIME fHRl ~ Q

153

l

RGC-220-1-2 se2 DARK DECRY ijQ RH (jZCJNE-PRCPENE

ro0 1976 AUG 19 tO0 C) t

~~ r~I I

i (

c

-l a

0f

L 0 C

(J

-- ~I ()f c 7

~

()n

l c co

~ CI 0 C) () o

(j() () -poundo

Q_ Q_

(X)(1 I

( z (middot

(J_Jo (J0

=J ~h 0~ r (I)

()() (J -I 0ePgt~

()efJ(JJ 0 0 ~ (JLI)

- ~~()

~ () lt() lt()

0 ()yen ~ o ~ a

~-----------------r----------------~----~~-G 1 2 3 4 5 6deg

I TIME (HR)

154

AGC-22O 00-05 H~UA5 502 CPRk DECAY 401 RH C2l3r~E-PRCJPENE

0 197S AlJG 19 C)

0 bull 7

I I

l CD

I

~J r ~7 Q_

0 _

~I ru- J 81 en

z -1c

tO-c c ru

t =I

+--------------------6 00

I 0 10 020 030

TIME (H AJ

a tO (I)

bull 0

ti (I)

bull ti

--- 0

(j

0 cn

C)

Ol a CJ

0 lO

155 )

AGC-220 1 75-50 HQURSSD2 DARK DECAY 401 AH D2DNE-PR()PENE

r-0 1976 AUG 19 Lf)(P (I()

I ro 0 0 J

I

0 J N bull0 0J-J

c CL CL ~

0 tO

CJ r D ~ Cf) I Cl

0 -a z

CI-1o () CI (J[J

U) oO en-I

()()

middot~ c CD () ()1)

bull ~ ()-I 0~

(J0 CJ0

co eI -t 60 2LJO 320 400 480 560 6 4ij

I - 0TJME (HA)

156

RGC-221-1-2 5~2 DARK DECAY 40 RH ADD ~2~NE 080 HRS

co 1976 AUG 20 If)

(D r 0 0

I 0 D r 0

r CJ) Cl

I

0 D

I I

Qj I

-J 71

v 00 100 200 300 4 00 500

C)

rO

0 ~ (L

CL-

TJME fHASl

157 j

-

-003009 plusmn 000008 hr-l

~

RGC-222-1-7 rr

~ 1

l If

t f

t

l [

r l_

~ ti

1c l

L

Q

1 ~

a

[J ~ I

-

IL

S02 DARK DECRY_ 401 RH SURR(jGHTE-N(jX

00 1976 AUG 24-25 30 0 r

~1 iI

0

~1I

0 (J (tl

t 0 CI-I

-- -~ ~ o_ aa_g oO -r

(Jr - (J -I OCJ

0~ en(1

01 zc --deg-I

0 C) 0co -tO

I 0

Ul

-(

~1 -

(I 0 s 10 15 20 25 300 I TI ME (HRJ

158

PG f-2--Jc_~ __ Q _ --

se2 LIGHT OECHl 30Z AH SUAr-rCRTE-NQX

CI0 w 1976 AUG 25 r-r- -bull l

71 rol gj 0

-=f I I

()()

0

r ---= ~ oa_ a

(j

0

~ (1

1- bull middot-0

() tD

al

~~ i

~I j

1 ()

0 ZtP J~

I

I

-00574 plusmn 00007 hr-l

O ~ 0

~-t-------------------------------------~~~ ~o 1 2 3 4 s 6deg

TIME (HR)

159

I

Page 3: Report: 1977-05-00 (Part 2) Chemical Consequences of Air

790

ing urban airshed models15middot16 kinetic data for the reactions of the OH radical with hydrocarbons as well as various inshyorganic species are necessary Prior to 1970 relatively few absolute rate constants were available for OH reactions with organic species however since then a large number of determinations have been reported for alkanes17-27 and

23 28-36alkenes 21 - Although aromatic compounds such as toluene xylenes propylbenzene m-ethyltoluene and 123-and 124-trimethylbenzenes are present in polluted ambishyent air3i-39 only in the past few years have significant studies been reported on the reactions of the OH radical with some of these aromatics2140-42 For example recently we reported the use of an environmental chamber to obtain accurate relative rate constants for the gas phase reaction of hydroxyl radicals with a series of aromatic hydrocarbons using n-butane as the reference compound42 Although a number of other species are present in these experiments (ie O(3P) HO2 03 NO3 etc) with the exception ofOa in

l the case of the alkenes these species have been shown to

I make at most minor contributions to the observed disapshypearance of the hydrocarbons investigated Thus the rate constants determined in our previous study42 are in good agreement with those determined subsequently in separate studies of the reactions of individual compounds with OH using a flash photolysis-resonance fluorescence techshynique4041

On the basis of this validation of the environmental chamber method we have extended our investigation to inshyclude an additional six aromatic hydrocarbons four alshykanes and four alkenes

Experimental Section

Irradiations of the HC-NOx-air system were carried out in an all-glass (Pyrex) chamber of approximately 6400-l volume equipped with two externally mounted diametrishycally opposed banks of Sylvania 40 BL fluorescent lamps43 Before each experiment the chamber was flushed for a minimum of 2 hat a rate of 12-15 scfm with a purified air stream44 The resulting matrix air contained less than~1 X 10-9 M (100 ppb C) of nonmethane hydrocarbons All reacshytants were injected into the chamber using 100-ml precishysion bore syringes and rapid mixing was obtained using Teflon-coated sonic pumps During irradiation the chamshyber temperature was maintah1ed at 305 plusmn 2 K by passing chilled air between the chamber walls and the fluorescent lamp banks

Hydrocarbon disappearance was measured by gas chroshymatography using the columns and techniques developed by Stephens and Burleson3745 Ozone46 was monitored by means of ultravioletabsorption (Dasibi Model 1003 analyzshyer) carbon monoxide by gas chromatography (Beckman 6800 Air Quality analyzer) and NO-NOz-NO by the chemiluminescent reaction of NO with ozone (TECO Model 14B)

The concentrations of the reactants ranged between 45 and 90 X 10-10 M (11-22 ppb in air) except for ethene ethane acetylene and n-butane whose concentrations were 18 37 18 and 83 X 10-9 M (45 92 45 and 203 ppb jn air) respectively In addition low concentrations of carbonshyyl compounds (formaldehyde acetaldehyde and acetone) were present Initial concentrations in the photolysis exshyperiments were 27 X 10-9 M (2900 ppb C) of total nonshymethane hydrocarbons 175 X 10-9 M (043 ppm) of NO (with an NOzNOr ratio of 012) 285 X 10-9 M (7ppm) of CO and 1129 X 10-9 M (2775 ppb) of methane together

The Journal of Physical Chemistry Vol 80 No 8 1976

Lloyd Darnall Winer and Pitts

with water at 50 relative humidity Four replicate experishyments were carried out in which this mixture was irradishyated for 3 h with continuous analysis of inorganic species and analysis of hydrocarbons every hour The irradiation period was extended from 2 to 3 h compared with our earshylier study in order to obtain additional data points The light intensity measured as the rate of NO2 photolysis in nitrogen k147 was approximately 026 min-1 All data were corrected for losses due to sampling from the chamber (09-20h) by subtraction of the average dilution rate from the observed hydrocarbon disappearance rate Alshythough the HCNOr ratio was chosen to delay the formashytion of ozone after 3 h of irradiation the ozone concentrashytion was 0065 X 10-9 M (0016 ppm) or less in three of the runs and 013 X 10-9 M (0031 ppm) in the fourth (whichmiddot had a higher initial formaldehyde concentration) A small correction for loss of hydrocarbon due to reaction with ozone was applied to the alkene disappearance rates

Results

The rates of disappearance observed during a 3-h run for the seven aromatic hydrocarbons four alkanes and four alkenes areshown in Figures 1-3 respectively (n-butane is included as the reference compound in each figure) Table I gives the disappearance rates for these reactants (after apshyplication of the dilution correction and for alkenes the ozone correction) relative to that for n-butane based on data from the four separate experiments

With the assumption that the OH radical is the species responsible for the hydrocarbon depletion during the 3-h irradiation absolute rate constants were derived from the relative rates of disappearance using a value of 18 X 109

M-1 s-1 as the mean of the existing literature values for the reaction of OH with n-butane21232427

(1)

These results are shown in Table I and are compared with existing literature values whenever possible in Table II

middot Discussion

As seen from Table II the validation of the assumption that the OH radical is by far the major species depleting the hydrocarbons (during the first 2-3 h of reaction) has been provided by the good agreement observed between OH rate constants determined in our previous chamber study42 for benzene toluene o- m- and p-xylenes and the trimethylbenzenes with those determined in elementary rebull action studies of each individual hydrocarbon4041 The exshytent to which this assumption is valid is indicated by the results of computer modeling calculations48 (shown in Figshyure 4) for an HC-NOr system of overall concentrations identical with that used in this study In the computer simshyulation a propene and n-butane mixture was used as a surshyrogate for the complex hydrocarbon mixture employed in the experiment and the rate of attack on propene by OH 0 3 O(3P) and HO2 was calculated The relative and total concentrations of propene and n-butane were chosen such that the overall hydrocarbon reactivity toward the OH radshyical would equal that predicted for the complex mixture It is clear from Figure 4 that although OH is the major atshytacking species in these experiments the 0 3 contribution to the disappearance rates of the alkenes increases with time of irradiation In contrast the rates of reaction of 0 3 with alkanes and aromatics are many orders of magnitude slower50-52 than with alkenes4953 and no correction for

60

791 Kinetics of OH-Hydrocarbon Reactions

TABLE I Rates of Disappearance and Rate Constants for Selected Alkanes Alkenes and Aromatic Hydrocarbons at l middotatm in Air at 305 plusmn 2 K

c Relative ~

rate of 10-9k0 g M-1s-1Compound disappearancei5 sect z 18bn-Butane 1C

110 20 plusmn 04 Isopentane~ 0 177 32 plusmn 06 2-Methylpentanez w 3-Methylpentane 240 43 plusmn09 u z 38 plusmn08n-Hexane 2090 u m-Xylene 718 129 plusmn 26 0 w 207 37 plusmn 08n-Propylbenzenegt 0 203 37 plusmn 08 lsopropylbenzenew V) a Ethylbenzene 265 48 i 10 0

o-Ethyltoluene 457 82 plusmn 16 m-XYLENE

m-Ethyltoluene 649 117 plusmn 23 20

j

100--I

9

n-PROPYLBENZENE

3

2 3 p-Ethyltoluene 433 78 plusmn 16 HOURS OF IRRADIATION Ethene 288 52 plusmn 10

970 175 plusmn 35PropeneFigure 1 Logarithm of the aromatic hydrocarbon concentration durshy 13-Butadiene 258 464 plusmn 93 ing 3-h photolysis of HC-NOc mixture In air at 305 plusmn 2 K and 1 atm 392 plusmn 80cis-2-Butene 218

a The indicated error limits are plusmn20 and are the estimated

l overall error limits b Placed on an absolute basis using the mean~3r-----r-----~--------1L i of the literature values ref 21 23 24 and 27

~ 0- ~

I ----uu~---------0------~c- middot -0 n - BUT~NE0 ~2~-----01SOPENTANE - TABLE II Rate Constants k for OH Radical Reactions with

n-Butane and Selected Alkane Alkenes and Aromatic ~ I v-------0---U__ 2-METHYLPENTANE Hydrocarbons at Room Temperature -----c_____-ltgt--_____ 3-METHYLPElHANE 1r 81 In-HEXANE o I

Environmental Compound chamber studies0 b Lit values t II I

~ 0 2 3 O HOURS OF IRRADIATION ~23degBenzene 074 plusmn 007lt

095 plusmn007dFigure 2 Loga-ithm of concentrations of alkanes during 3-h photolyshy25 plusmn 094

sis of HC-NOc mixture in air at 305 plusmn 2 K and 1 atm Toluene 347 plusmn 035C 367 plusmn 024d

o-Xylene 77 plusmn 23deg 918 plusmn 090C 11bull m-Xylene 14plusmn 1deg 142 plusmn 14c

129 plusmn 26b 11bull p-Xylene 74 plusmn 154 732 plusmn 072C 11bull 123-Trimeth- 14 plusmn 3deg 158 plusmn 16C

ylbenzene 124-Trimeth- 20plusmn 3deg 201 plusmn 2oc

ylbenzene 135-Trimeth- 31 plusmn 4deg 283 plusmn 29lt

ylbenzene lsopentane 20 plusmn 04b 27 2-Methylpent- 32 plusmn 06b 34

ane 3-Methylpent- 43 plusmn 09b 34

ane n-Hexane 29138 plusmn o8b Ethene 57 plusmn 0652 plusmn IOb

1111 30i 32 plusmn 04i 30 18 plusmn 061

10 plusmn 03m 13 plusmn 01n

Propene 175 plusmn 35b 217 plusmn 248 102 plusmn 2611i 87 plusmn 131151 plusmn 150 r 96 plusmn 03P 30 plusmn 10m

z 5 0 u lt( 4 a 0

~ 3

0

l-o

~ 2

Iz

-----o---------0_____-o

n-BUTANE

30 plusmn06n 13-BUTADIENEl) cis-2-Butene 392 plusmn 80b 367 323 plusmn 320

~ 257 plusmn 15Pu

1o------------J2L------3---- 0 Reference 42 b From Table I c Reference 40 d Reference 41 bull Reference 21 for a mixture of xylene isomers I Reference 24HOURS OF IRRADlATION

11 Reference 33 h References 30 and 21 i Reference 31 i Reference Figure 3 Logarithm of concentrations of alkenes during 3-h photolyshy 36 k Reference 29 1 Reference 28 m Reference 22 n Reference 32 sisbull or HC-NO mixture in air at 305 plusmn 2 Kand 1 atm Reference 35 P Reference 340

The Journal al Physical Chemistry Vol 80 No 8 1976

61

792

100 w_ ltl 90 i5 i z 80 w ~ u 0 INITIAL7w xa NO 389

0 N02 middot049

gt- pound6 C3H6 149 C4H10 596

a

0 ID

0

COllC (ppm)

~ ~ 5 wz

0 ~ 4 ll

0 J ~ 3~

0~ _ u -z 0

w_ Iltl

ll

0

HOURS OF IRRADIATION

OH

Figure 4 Predicted relative importance of several reactive intermeshydiates during photooxidation of propene-nbutane mixture under simulated atmospheric conditions

their reaction with ozone was necessary For example the rate constant for the reaction of ozone with toluene is about nine orders of magnitude lower than that for OH with tolushyene During the initial hours of irradiation other species such as NO355 and HO256 may contribute slightly to hydroshycarbon disappearance rates especially for alkenes but since their concentrations and in some cases rate conshystants are not known correction was not possible

Hydroxyl Radical Source in this System The major sources of OH in our experimental system are probably the reactions781315

NO + NO2 + H2O =2HONO (2)

HONO + hv (290-410 nm) - OH+ NO (3)

HO2+NO-OH+NO2 (4)

Nitrous acid has been observed in a chamber study of simshyulated atmospheres carried out in our laboratory57 when a mixture of propene and nitrogen oxides in moist air was

g photolyzed indicating that HONO can be formed in HC NO systems under conditions similar to those employed in the present study (Nash58 claims to have measured HONO in ambient air at levels up to 11 ppb) Direct evidence for formation of OH radicals in environmental chambers has been provided recently by Niki Weinstock and coworkshyers1154 Reaction 4 of major importance provides a further source of the OH radical HO2 can be formed in air56-59 by any mechanism producing H atoms or formyl radicals via the reactions

H+O2+ M-HO2+M (5)

HCO + 02 - HO2 + CO (6)

Thus any mechanism producing HO2 in our system is also a means of furnishing OH radicals via reaction 4

The concentration of OH radicals present during these experiments was calculated to be (15-20) X 106 molecules cm-3 using the observed rates of m-xylene disappearance (corrected for dilution) and the previously determined rate constant for OH + m-xylene4042 These concentrations are

The Journal of Physical Chemistry Vol 80 No 8 1976

62

Lloyd Darnall Winer and Pitts

of the same order as those observed directly in ambient air10u as discussed above

Aromatic Hydrocarbons Present results for the rate constant for the reaction of OH with m-xylene show good agreement with the previous study42 carried out in our labshyoratory (Table II) indicating good reproducibility for this technique

Rate constants for the reaction of OH with the propylshybenzenes and ethyltoluenes have not been reported preshyviously However the trend in rate constants for the reacshytion with o- mbull and p-ethyltoluene is identical with that previously determined for the xylenes40bull42 which supports the concept that OH is an electrophilic species since attack on the meta compound is favored

Davis et al41 have studied the reaction of OH with benshyzene and toluene and from the observed pressure depenshydence of the reactions conclude that addition occurs at least 50 of the time In an environmental chamber study similar to that reported here Schwartz et aI60 tentatively identified a number of aerosol products such as phenols and aromatic nitro compounds from the photooxidation of toluene in the presence of nitrogen oxides A mechanism was proposed assuming initial addition of OH to the aroshymatic ring In the case of the more highly substituted aroshymatic compounds studied here it may be possible that hyshydrogen abstraction from the side chain could possibly be as important as addition This is supported by the fact that a log plot of the OH-aromatic hydrocarbon rate constants vs the ionization potential of the hydrocarbon (which for abshystraction reactions is expected to be linear) in this case did not yield a straight line

Detailed product studies are required in order to obtain the quantitative data necessary to further elucidate the mechanism of OH attack on various aromatic hydrocarshybons

Alkanes Greiner24 has derived an empirical formula for calculating the rates of reaction of OH with alkanes based on his experimental results for the reaction of the OH radishycal with selected alkanes

k = 615 X 108N 1exp(-1635RT) + 141 X 108N 2 exp(-850RT)

+ 126 X 108N 3 exp(+190RT) M-1 s-1

where N1 N2 and N3 are the numbers of primary seconshydary and tertiary hydrogen atoms respectively in the alshykane We have used this equation to calculate the rate conshystants for isopentane 2- and 3-methylpentane and n-hexshyane The calculated values are in quite good agreement with the experimental values Although Greiners formula predicts the same rate constants for the 2- and 3-methylshypentanes our study suggests that the latter is somewhat higher Indeed this may be expected since the stability of the radical formed by the abstraction of the tertiary H atom from 3-methylpentane should be greater than that for the radical formed from similar attack in the 2-methylpenshytane case

Alkenes Unlike the alkanes and the aromatic comshypounds alkenes react with ozone at a significant rate Thus in our experimental system the small amounts of 0 3 formed during the 3-h photolyses contributed to the alkene disappearance rates From the measured concentrations of ozone and the published rate constants for the reaction of 03 with the alkenes studied49-5361 -63 a correction was made to the alkene disappearance rates for loss due to reaction with ozone This amounted to ~3 for ethene ~7 for

l

Kinetics of OH~Hydrocarbon Reactions

propene ~21 for cis-2-butene and ~2 for 13-butadishyene

Our results for the reaction of OH with propene

OH + C3Hs -- products (7)

are within experimental error of a recent absolute determishynation of k using flash photolysis-resonance fluoresshycence35 while the value of k 7 given in Table II for the reshysult of Cox33 incorporates a stoichiometry factor of 2-to 3 In parallel studies in this laboratory using flash photolysisshyresonance fluorescence35 no evidence was found within exshyperimental error of a pressure effect for k1 by varying the totai pressure from 25 to 100 Torr of argon but additional studies should be carried out especially at lower pressures where such an effect would become evident to see whether k exhibits any pressure dependence

The value of the rate constant obtained in this study for the reaction of OH with cis-2-butene though somewhat high is within experimental error of values previously reshyported from direct determinations213435 In this case a sigshynificant (21) correction for reaction with 0 3 had to be apshyplied to the data

No previous determinations of absolute rate constants have been reported for the reaction of OH with 13-butadishyene However the close agreement between our values for cis-2-butene and 13-butadiene is consistent with the workmiddot by Cvetanovic and Doyle64 who showed that these two compounds reacted at similar rates with oxygen atoms

The value obtained in this study for the rate constant of _the reaction

(8)

of 52 X 109 M-1 s-1 is about a factor of 2 higher than

II published values from low pressure ( lt300 Torr) studshymiddot 22middot 32ies21middot 28- 36 The only other study to date carried out at

atmospheric pressure is that recently reported by Cox33 in which OH was generated by photolyzing gaseous nitrous acid in nitrogenoxygen mixtures (21) at 760 Torr and the effect of added alkenes on the photolysis of nitrous acid was studied A rate constant aka = (57 plusmn 06) X 109 M-1

s-1 was obtained relative to a value of 90 X 107 M-1 s-1for the reaction of OH with CO where a is a stoichiometry facshytor Cox suggests that a is between 2 and 3 based on pubshylished values for the direct determination of k8bull Davis et al36 have shown that the significant differences between low pressure measurements of reaction 8 can be rationalshyized by the fact that the reaction exhibits a pressure depenshydence over the region studied (3 to 300 Torr of He)

This pressure dependence is probably due to the initial formation of the adduct observed by Niki and coworkshyers21middot30 Presumably this adduct becomes stabilized by colshylisional deactivation

(8a)

While it is possible that our determination of k8 is higher than previous values due to the fact that species other than Q

t OH -and 03 are depleting the ethene at least part of the discrepancy may be due to the difference in pressure reshygions studied Figure 5 shows a plot of log ks vs log P where P is the total pressure in the system for studies carshyried out using N2 02 or N2O as diluent gases Studies carshyried out using less efficient third body gases such as He are not plotted since the present study is focused on ambient atmospheric conditions and third bodies such as N2 or the

middot793

100

- u

-- 0 E

95 C

~ a

gt

0 0

900~--J----J--___________~bull------- 10 20 30

rog PCP in torr)

Figure 5 Variation with pressure of the rate constant k8 for the reshyaction of OH with C2H4 M is bath gas in reaction 8 ltbullgt Davis et al38 ( ) Smith and Zellner31 (reg) this work

equivalent Thus at 3 Torr of diluent gas the results of Davis et ai36 differ by a factor of 16 depending on whether N2or He is used as the diluent gas Although our results for ethene are subject to some uncertainty it appears possible that reaction 8 is not at the limiting high pressure kinetics region until the pressure exceeds 1 atm

Conclusions

Relative rate constants have been determined for the reshyaction of OH with 14 hydrocarbons and these rate conshystants have been placed on an absolute basis using the litshyerature values for the rate constant of OH + n-butane No previous determinations have been reported in the case of seven of these compounds

Our results indicate that the reaction of OH with ethene possibly does not obey second-order kinetics until presshysures exceed 1 atm while for propene and the higher alkshyenes the reactions are second order at atmospheric presshysure

The comparatively high rates of reaction observed for the aromatic hydrocarbons have significant implications for the control of photochemical air pollution This subject and the use of the present data in the formulation of a hyshydrocarbon reactivity scale has been treated in detail elseshywhere65

Acknowledgments The authors gratefully acknowledge the helpful comments of Dr R Atkinson Dr George Doyle and Dr Jeremy Sprung during the preparation of this paper and thank Dr William P Carter for carrying out the computer calculations used to construct Figure 4 and Ms Sharon Harris for the hydrocarbon GC analyses

This work was supported in part by the National Science Foundation-RANN (Grant No AEN73-02904 A02) and the California Air Resources Board (Contract No 5-385) The contents do not necessarily reflect the views and policies of the National Science Foundation-RANN or the California Air Resources Board nor does mention of trade names or commercial products constitute endorsement or recomshymendation for use

References and Notes

(1) R R Baker R R Baldwin and R W Walker Symp (Int) Combust [Proc] 13th 291 (1971)

(2) D D Drysdale and A C Lloyd Oxid Combust Rev 4 157 (1970) W

The Journal of Physical Chemistry Vol 80 No 8 1976

63

794

E Wilson Jr J Phys Chem Ref Data 1535 (1972) (3) H S Johnston Adv Environ Sci Technot 4263 (1974) (4) P Crutzen Can J Chem 52 1569 (1974) (5) M 8 McElroy S C Wolsy J E Penner and J C McConnell J

Atmos Sci 31 287 (1974) (6) H Levy II Adv Photochem 9369 (1974) (7) K L Demerjian J A Kerr and J G Calvert Adv Environ Sci Techshy

nol 4 1 (1974) (8) H Niki E E Daby and B Weinstock Adv Chem Ser No 113 16

(1972) (9) J N Pitts Jr and B J Finlayson Angew Chem Int Edit Engl bull 14 1

(1975) (10) C C Wang and L I Davis Jr Phys Rev Lett 32349 (1974) (11) C C Wang L I Davis Jr C H Wu S Japar H Niki and 8 Wein-

stock Science 189 797 (1975) (12) 8 Weinstock and H Niki Science 176290 (1972) (13) 8 Weinstock and T Y Chang Telus 26 108 (1974) (14) J G Calvert and R D McQuigg Proceedings of the Symposium on

Chemical Kinetics Data for the Upper and Lower Atmosphere Warrenshyton Va Sept 15-18 1974 Int J Chem Kinet Symposium No 1 113 (1975)

(15) T A Hecht J H Seinfeld and M C Dodge Environ Sci Technol 6 327 (1974)

(16) A a Eschenroeder and J R Martinez Adv Chem Ser No 113 101 (1972)

l (17) D D Davis S Fischer and R Schiff J Chem Phys 61 2213 (1974) (18) R Overend G Paraskevopoulos and R J Cvetanovlc 11th Informal

Conference on Photochemistry Vanderbilt University Tenn June 1974

I (19) J Margltan F Kaufman and J G Anderson Geophys Res Lett 1 80

(1974) (20) S Gordon and W A Mulac Proceedings of the Symposium on Chemishy

cal Kinetics Data for the Lower and Upper Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Symposium No 1 289 (1975)

(21) E D Morris Jr and H Niki J Phys Chem 75 3640 (1971) (22) J N Bradley W Hack K Hoyermann and H Gg Wagner J Chem

Soc Faraday Trans 1 69 1889 (1973) (23) R A Gorse and D H Volman J Photochem 1 1 (1972) 3 115

(1974) (24) N R Greiner J Chem Phys 53 1070 (1970)

t (25) N R Greiner J Chem Phys 46 3389 (1967) (26) J Peeters and G Mahnen Symp (Int) Combust [Proc] 14th 113

(1973) (27) F Stuhl Z Naturlorsch A 28 1383 (1973) (28) F Stuhl Ber Bunsenges Phys Chem 77 674 (1973) (29) N R Greiner J Chem Phys 53 1284 (1970) (30) E D Morris Jr D H Stedman and H Niki J Am Chem Soc 93

3570 (1971) (31) I W M Smith and R Zellner J Chem Soc Faraday Trans 2 69

1617 (1973) (32) A V Pastrana and R W Carr Jr J Phys Chem 79 765 (1975) (33) R A Cox Proceedings of the Symposium on Chemical Kinetics Data

for the Lower and Upper Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Sypposium No 1379 (1975)

(34) S Fischer R Schiff E Machado W Bollinger and D D Davis 169th National Meeting of the American Chemical Society Philadelphia Pa April 6-11 1975

(35) R Atkinson and J N Pitts Jr J Chem Phys 63 3591 (1975) (36) D D Davis S Fischer R Schiff R T Watson and W Bollinger J

Chem Phys 63 1707 (1975)

Lloyd Darnall Winer and Pitts

(37) E R Stephens Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973

(38) A P Altshuller S L Kopczynski W A Lonneman F D Sutterfield and D L Walson Environ Sci Technol 4 44 (1970)

(39) H Mayrsohn M Kuramoto J H Crabtree T D Sothern and S H Mano Atmospheric Hydrocarbon Concentrations June-Sept 1974 California Air Resources Board April 1975

(40) D A Hansen R Atkinson and J N Pitts Jr J Phys Chem 79 1763 (1975)

(41) D D Davis W Bollinger and S Fischer J Phys Chem 79 293 (1975)

(42) G J Doyle A C Lloyd K R Darnall A M Winer and J N Pitts Jr Environ Sci Technof 9 237 (1975)

(43) J N Pitts Jr P J Bekowies G J Doyle J M McAfee and A M Wirier An Environmental Chamber-Solar Simulator Facility for the Study of Atmospheric Photochemistry to be submitted for publication

(44) G J Doyle P J Bekowies A M Winer and J N Pitts Jrbull A Charshycoal-Adsorption Air Purification System for Chamber Studies Investigatshying Atmospheric Photochemistry Environ Sci Technol submitted for publication

(45) E R Stephens and F R Burleson J Air Pollut Control Assoc 17 147 (1967)

(46) Ozone measurement was based on calibration by the 2 neutral buffshyered Kl method and was subsequently corrected from spectroscopic calibration data (see J N Pitts Jr J M McAfee W Long and A M Winer Environ Sci Technol in press)

(47) J R Holmes R J OBrien J H Crabtree T A Hecht and J H Sein-feld Environ Sci Technol 1519 (1973)

(48) W P Carter A C Lloyd and J N Pitts Jr unpublished results (49) D H Stedman CH Wu and H Niki J Phys Chem 11 2511 (1973) (50) D H Stedman and H Niki Environ Lett 4303 (1973) (51) J J Bufallnl and A P Altshuller Can J Chem 45 2243 (1965) (52) P L Hans E R Stephens W E Scott and R C Doerr Atmospheric

Ozone-Olefin Reactions The Franklin Institute Philadelphia Pa 1958

(53) S M Japar CH Wu and H Niki J Phys Chem 18 2318 (1974) (54) H Niki and B Weinstock Environmental Protection Agency Seminar

Washington DC Feb 1975 (55) S M Japar and H Niki J Phys Chem 79 1629 (1975) (56) A C Lloyd Int J Chem Kinet VI 169 (1974) (57) J M McAfee J N Pitts Jr and A M Winer In-Situ Long-Path Inshy

frared Spectroscopy of Photochemical Air Pollutants In an Environmenshytal Chamber presented at the Pacific Conference on Chemistry and Spectroscopy San Francisco Calif Oct 16-18 1974

(58) T Nash Telus 26 175 (1974) (59) J G Calvert J A Kerr K L Demerjian and R D McQulgg Science

175 751 (1972) (60) W i Schwartz P W Jones C J Riggle and D F Miller Chemical

Characterization of Model Aerosols EPA-6503-74-011 Aug 1974 (61) F S Toby and S Toby Proceedings of the Symposium on Chemical Kishy

netics Data for the Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Symposium No 1 197 (1975)

(62) K H Becker U Schurath and H Seitz Int J Chem Kinet 6 725 (1974)

(63) R E Huie and J T Herron Proceedings of the Symposium on Chemishycal Kinetics Data for the Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Kinet Symposium No 1 165 (1975)

(64) R J Cvetanovic and L C Doyle Can J Chem 38 2187 (1960) middot (65) K R Darnall A C Lloyd A M Winer and J N Pitts Jr Environ Sci

Technol in press

middotThe Journal of Physical Chemistry Vol 80 No 8 1976

64

rl

i

8 ~

ct il

Introduction

During the last six years the major role of the hydroxyl radical (OH) in atmospheric chemistry and photochemical air pollution has been recognized1-7 and kinetic data for the reshyaction of OH with both organic and inorganic species have increased substantially8 However there are currently no published rate constant determinations for the reaction of OH with ketones chloroethenes or any of the naturally occurring hydrocarbons such as the nionoterpenes Such rate constant data for the reaction of OH with these three classes of com-middot pounds would be useful in part because of their increasing importance for modeling the atmospheric processes occurring both in urban and rural atmospheres Specifically ketones and chlorinated hydrocarbons are components of commercial solvents910 Both tri- and tetrachloroethene have been obshyserved in the troposphere at part per trillion (ppt) concenshytrations of lt511 and 20 ppt1112 respectively while methyl ethyl ketone has been observed at concentrations of 1-6 parts per billion (ppb)13 Monoterpene hydrocarbons have been shown to be present in the atmosphere with source strengths of millions of tons annually14 Thus Rasmussen1516 and coshyworkers have estimated that on an individual basis such naturally occurring hydrocarbons have ambient concentrashytions in the low ppb range and are largely responsible for the blue haze occurring in certain forested areas 17

This paper describes an extension of our recent experiments in which an environmental chamber has been employed to obtain relative rate constants for the gas phase reaction of the hydroxyl radical with a series of hydrocarbons1819 In this case we report data for the reaction of OH with three ketones two chloroethenes and three monoterpene hydrocarbons using isobutene as a reference compound

bullExperimental Section

The experimental methods and procedures employed have been described in detail e1Rewhere1819 and are only briefly summarized here Irradiations of the hydrocarbon-NO_-air system were carried out in a Pyrex chamber20 of approxishymately 64001 volume equipped with externally mounted

tteprmteo _rrom me urna1 I tnys1ca1 ~em1suy liU 1_01_ l l~ m1f Copyright 1976 by the American Chemical Society and reprinted by perm1ss10n of the copyright owner

Relative Rate Constants for the Reaction of the Hydroxyl Radical with

Selected Ketones Chloroethenes and Monoterpene Hydrocarbons

Arthur M Winer Alan C Lloyd Karen R Darnall and James N Pitts Jrbull

Statewide Air Pollution Research Center University of California Riverside California 92502 (Received January 30 1976)

Publication costs assisted by the University of California Riverside

The relative rates of disappearance of three monoterpmiddotene hydrocarbons two chloroethenes and three alishyphatic ketones were measured in an environmental chamber under simulated atmospheric conditions at 305 middot plusmn 2 K The observed rates of disappearance were used to derive relative rates of reaction of these organic compounds with the hydroxyl radical (OH) on the previously validated basis that OH is the species domishynantly responsible for the hydrocarbon disappearance under the experimental conditions employed Absoshylute rate constants obtained from the relative values using the published rate constant for OH + isobutene (305 X 1010 M-1s-1) are (k X 10-10 M-1s-1) o-pinene 35 plusmn 05 B-pinene 41 plusmn 06 d-limonene 90 plusmn 14 methyl ethyl ketone 020 plusmn 006 methyl isobutyl ketone 09 plusmn 03 diisobutyl ketone 15 plusmn 05 trichloshyroethene 027 plusmn 008 tetrachloroethene 013 plusmn 004 No previous determinations of these rate constants have been found in the literature Rate constants for an additional nine monoterpene hydrocarbons have been derived from data recently published by Grimsrud Westberg and Rasmussen

Sylvania 40-BL fluorescent lamps whose spectral distribution has been reported elsewhere21 (photon flux at 300 nm is apshyproximately 1 of the photon flux maximum at 360 nm) The light intensity measured as the rate of NO2 photolysis in nishytrogen22 k1 was approximately 04 min-1bull All gaseous reacshytants were injected into pure matrix air23in the chamber using 100-ml precision bore syringes Mixtures of the liquid reacshytants were injected using micropipettes During irradiation the chamber temperature was maintained at 305 plusmn 2 K

Alkene terpene and ketone concentrations were measured by gas chromatography (GC) with flame ionization detection (FID) using the columns and techniques developed by Steshyphens and Burleson2425 The chloroethenes were also monishytored with GC(FID) using a 10 ft X frac34instainless steel column packed with 10 Carbowax 600 on C22 Firebrick (100110 mesh) Ozone26 was monitored by means of ultraviolet abshysorption (Dasibi Model 1003 analyzer) carbon monoxide by gas chromatography (Beckman 6800 air quality analyzer) and NO-NOrNO by the chemiluminescent reaction of NO with ozone (TECO Model 14B)

The initial concentrations of reactants are shown in Table I In addition to these compounds ethene (20-28 ppb) ethane (48-61 ppb) acetylene (25-37 ppb) propane (13-15 ppb) and variable concentrations of formaldehyde (16-134 ppb) acshyetaldehyde (0-7 ppb) and acetone (3-19 ppb) were present Initial concentrations in these experiments were 1200-2100 ppb C of total nonmethane hydrocarbons 058 ppm of NO (with an NOvNOx ratio of005-010) 5 ppm of CO and 2900 ppb of methane together with water vapor at 50 relative humidity Replicate experiments were carried out in which this mixture was irradiated for 2-3 h with continuous analysis of inorganic species analysis of hydrocarbons every 15 min and analysis of monoterpenes chloroethenes and ketones every middot30 min

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilution rate (12 per hour) from the observed hydrocarbon disappearance rate The HCNO and NONO2 ratios were chosen to delay the forshymation of ozone and ozone was not detected during the irra-

The Journal of Physical Chemistry Vol 80 No 14 1976

65

i

1636

TABLE I Rates of Disappearance and Rate Constantsa for Selected Ketones Chloroethenes and Monoterpene Hydrocarbons at 1 atm in Air at 305 plusmn 2 K

middot Relative Initial rate of concn disap- koH0 Mmiddot

Compound ppb pearance smiddotbull X 10middot10

C

A M Winer A_ C Lloyd K R Darnall and J N Pitts

100-------~-------r-------- _eo___J-__

--~bull middot METHYL ETHYL KETONE 60

~ r-----__ g 2o+---__ ~--------t5 -- __ middot METHYL ISOBUTYL KETONE

u bull --------8 - middot---- 0 10 -- DIISOBUTYL KETONE ~ a

~ 6 ~bull ISOBUTENE

0 05 10 15 20 HOURS OF IRRADIATION

Figure 1 Concentrations of ketones (plotted on a logarithmic scale) during 2-h photolysis of HC-NO mixture in air at 305 plusmn 2 Kand 1 atm

-60

-~ ~-- I - -~ 40bull __ middot---

~ ~ __ ------~ 2 ----_ middot-middot- ~20~ _____ ISOBUTENE

~ ----- middot---0 bull bull

~ bull -~ a-PINENE

z 10 ---8 8 bull --

~6 - --

ll d-LIMONENE e-PINENE (D

0 4~----__---_________J_~_ 0 2 3

HOURS OF IRRADIATION

Figure 2 Concentrations of monoterpene hydrocarbons (plotted on a logarithmic scale) during 3-h photolysis of HC-NO mixture in air at 305 plusmn 2 K and 1 atm

X 106 radicals cm-3 using the observed rates of isobutene disappearance (corrected for dilution) and the previously determined rate constant for OH + isobutene35These con-

centrations are of the same order as those observed directly 32 36 37in ambient air31

Results and Discussion

Typical rates of disappearance observed during a 2-h irrashydiation of the three ketones and 3-h irradiations of the three monoterpene hydrocarbons and the two chloroethenes are shown in Figures 1 2 and 3 respectively Isobutene was used as the reference compound (and is included in each figure) rather than n-butane which was used in our previous studshyies1819 because its reactivity was closer to that of the terpenes and its rate of decay could be measured more accurately in our system In addition the ratio of k0Hlk0a for isobutene is greater3235 than that for any of the other olefi ns studied thus minimizing any contribution to the disappearance rate due to reaction with ozone Table I gives the disappearance rates

66

lsobuene Prop-ne cis-2-Butene Methyl ethyl

ketore Methyl isobutyl

ktgttone Diisobutyl ketone o-Pinene 3-Pinene d-Limonene frichloroethene Tetrachloroethene

17-20 5-7 7-8

50-100

20-70

20-32 10-20 10-20 10-20 41-161 14-88

10 049 122 007

03

05 114 133 295 0088 0044

305 plusmn 031 149 plusmn 022 372 plusmn 056 020 plusmn 006

09 plusmn 03

15 plusmn 05

a Placed on an absolute basis using 305 X 10 0

OH isobutene from ref 35 b The indicated error limits are plusmn 15 except in the case of the chloroethenes and ketones for which they are plusmn 30 These represent the estimated overall error limits and include both experimental errors and uncertainties which may occur in assuming that hydroshycarbon disappearance is due solely to reaction with OH

diation period except in the case of one experiment for which a small correction for the loss of hydrocarbon due to reaction with ozone was applied to the alkene disappearance rates

In order to obtain additional data (at lower OH concen- trations) to correct for the concurrent photolysis of the ketones as discussed below irradiations of a mixture of ketones and isobotene were carried out In these experiments NO CO and other hydrocarbons were not added and under these conditions relatively low concentrations of OH ( lt5 X 105 radicals cm-3) were obtained

Hydroxyl Radical Source in this System As discussed previously19 the major sources of OH and its precursors in our experimental system are probably the reactions452728

NO + N02 + H20 plusmn 2HONO (1)

H02 + N02 - HONO + 02 (2)

HONO + hv (290-410 nm) - OH + NO (3)

H02+NO--OH+N02 (4)

The first reaction is now thought to occur slowly homogeshyneously29 but its rate is probably significantly faster when the reaction is catalyzed by surfaces Thus nitrous acid has been observed in a chamber study of simulated atmospheres carried out in our laboratory30 while direct evidence for formation of OH radicals in an environmental chamber has been proshy

32vided recently by Niki Weinstock and co-workers31

Reaction 4 of major importance provides a further source 34of the OH radical H02 can be formed in air33 by any

mechanism producing H atoms or formyl radicals (eg formaldehyde photolysis) via the reactions

H + 02+ M-H02 +M (5)

HCO + 02 - H02 + CO (6)

Thus any mechanism producing H02 in our system is also a means of furnishing OH radicals via reaction 4

The concentration of OH radicals present during these irshyradiated HC-NO experiments was calculated to be (14-35)

The Journal of Physical Chemistry Vol 80 No 14 1976

348 plusmn 052 406 plusmn 061 900 plusmn 135 027 plusmn 008 013 plusmn 004

M-1 s-bull for

OH Radical Reaction with Selected Hydrocarbons

50------------~----~--

-middot---middot TRICHLOROETHENE

bull TETRACHLOROETHENE ---middot

IOloz--------l--------l2-----1-3---

HOURS OF I RRAOIATION

Fgure 3 Concentrations of chloroethenes (plotted on a logarithmic scale) during 3-h photolysis of HC-NOx mixture in air at 305 plusmn 2 Kand 1 atm

l (corrected for dilution) for these reactants relative to that for isobutene based on data for the three separate experiments for monoterpenes and four separate experiments for methyl

t isobutyl and diisobutyl ketone and chloroethenes Methyll ethyl ketone was present in all experiments

Employing the fact that a range of OH concentrations (20 X 105-35 X 106 radicals cm-3) was observed in these experishy

[ ments corrections to the measured rates of disappearance of the ketones were made for the possible small contribution

middotfrom photolysis of these compounds These corrections were made in the following manner The observed rate of disapshypearance ofa ketone is given by

d ln (ketone]dt = kK[OH] + khv (7)

where kK and khv are the rate constants for reaction with OH and photolysis respectively The isobutene disappearance rate is controlled solely by reaction with OH hence

[OH] =d In [isobutene] (8)dt ks

where kB is the rate constant for reaction of OH with isobushytene Thus substituting for [OH] in eq 7

d In [ketone] _ kK d In [isobutene] dt - kiB dt + kh (9)

Based on eq 9 the relative rates of ketone disappearance were determined from the slopes of plots of d In [ketone]dt vs d ln [isobutene]dt The intercepts of these plots gave the rate constants for photolysis For methyl ethyl methyl isobutyl and diisobutyl ketone the ratios k Kfk iB were 007 03 and 05 respectively and the photolysis rate constants khv were 0007 0014 and 025 h-1 respectively

On the basis that the OH radical is the species dominantly responsible for the hydrocarbon depletion during the 2- or 3-h irradiations (as discussed in detail in our earliermiddotpapers)1819 absolute rate constants were derived from the relative rates of disappearance using Atkinson and Pitts35 value of (305 plusmn 031) X 1010 M-1s-1for the reaction of OH with isobutene These results are shown in Table I It should be noted that the ratio of rate constants (05 and 12 respectively) obtained here for propene and cis-2-butene relative to isobutene are in exshycellent agreement with the ratios obtained by Atkinson and Pitts (05 and 11 respectively)35

1637

Ketones To our knowledge the data presented here repshyresent the first experimental determination of rate constants for the reaction of the OH radical with any ketones in the gas phase The only literature value for ketones is an estimated rate constant of 21 X 109 M-1s-1for the reaction of OH with methyl ethyl ketone which was made by Demerjian Kerr and Calvert5 on a thermochemical basis This value is in remarkshyably good agreement with the experimental value obtained here (20 X 109 M-1 s-1) middot

The rate constants for the reaction of OH with the two other ketones reported here are significantly larger than that for methyl ethyl ketone Thus the rate constant for diisobutyl ketone is about the same as that for OH+ propeneB1935 The dominant mode of reaction of OH with ketones is expected to be one of hydrogen abstraction This is consistent with the increased rate constant in going from methyl ethyl ketone to diisobutyl ketone reflecting a weaker C-H bond strength in going to more highly substituted ketone

Acetone is relatively stable under conditions employed in our photooxidation studies and consequently the rate conshystant for OH + acetone was not measured Based on the fact that the C-H bond strength in acetone (98 kcal) is 6 kcal stronger than that for methyl ethyl ketone (92 kcal) one would e~pect OH to react significantly slower with acetone than with methyl ethyl ketone

Chloroethenes Rate constants for the gas phase reactions of OH with tri- and tetrachloroethene (C2HC3 and C2CI4

respectively) have not been reported previously The rat constants found in this study are 05 and 025 respectively of the rate constant for OH + C2Hi19 This difference in reshyactivity for the chloro-substituted ethenes and ethene is consistent with the results of Sanhueza and Heicklen38-40 who reported that the rates of reaction of 0(3P) with C2HC13and C2C4 were the same and were both a factor of 10 less than that for the reaction of 0(3P) with ethene

Our results show that trichloroethene is mor~ reactive with respect to attack by OH than tetrachloroethene This is in agreement with the results ofLissi41 for CH30 reactions and Franklin et al42 for CI atom reactions with these compounds These workers found relative rates for attack on C2HC3 and C2C4 of 22 and 26 for CH30 and Cl respectively compared to 20 for OH as found in the present study Gay et aI43 reshycently reported results from a photooxidation study of chloc roethenes which while not directly comparable to the present study due to the presence of substantial concentrations of ozone showed that C2HCI3 disappeared more rapidly than C2Cl4 (near the beginning of their irradiations when ozone concentrations were relatively low the ratio of the rates of disappearance was ~2)

Since addition is likely to be the primary reaction pathway for attack by OH the relative reactivity of C2H4 C2HCia and C2Cl4 should reflect the relative magnitudes of the ionization potentials of these molecules which are 1066 948 and 934 eV respectively Our results are consistent with this trend

Monoterpene Hydrocarbons The terpenes experimentally investigated were a-pinene (I) 1-pinene (II) and d-limonene (III) The detection limit for ozone in these experiments was

XI) xD -0-lt II III

~1 ppb and since no ozone was detected during irradiations of the terpenes an upper limit to the contribution due to reshyaction with ozone to the observed rates of terpene disap-

The Journal of Physical Chemistry Vol 80 No 14 1976

67

1638

TABLE II Reactivity of Selected Monoterpenes with O(P) 0

3 and OH

Rate constant M-1 s- 1

Compound O(P)l 03 OHe

o-Pinene 160 plusmn 006 20 X 105 b 35x10 0

X 10 0 10 X 105c 88 X l0~d

J-Pinene 151 ~ 006 22 X l0bulld 41 X 10 0

X 10 0

d-Limonene 650 plusmn 052 39 x 105 d 90 X 10 0

X 10 0

a Reference 49 b Reference 48 c Reference 45 d Referbull ence 16 e This work

pearance can be calculated Thus assuming an ozone conshycentration of 10 ppb and using published rate constants for the reaction of ozone with the terpenes1643-45 an upper limit of 7 of the overall disappearance rate is obtained for the case of d-limonene (the worst case) at the lowest OH concentration present in these experiments (14 X 106radicals cm-3)

l It is interesting to note that the rate constant 37 X 1010

M- 1 s-1 obtained in this study for OH + cis-2-butene a component in the hydrocarbon mix (Table I) used in this set of experiments is in good agreement with the values of 32 X

l 1010 and 37 X 1010 M-1 s-1 obtained by Atkinson and Pitts35 and Morris and Niki46 respectively although our value is somewhat higher than the value of 26 X 1010 M-1 s-1obtained by Fischer et al47 in these three studies the rate constant was r determined from elementary reaction measurements

Table I shows the absolute rate constant values obtained for the terpenes Clearly these natural hydrocarbons react very rapidly with OH For example a-pinene reacts about 3 X 105 times faster with OH than with ozone1648 Thus for an ozone concentration of 3 X 1012 molecules cm-3 (012 ppm) and an OH concentration of 107 radicals cm-3 the rates of disappearance of a-pinene due to reaction with 0 3 and OH respectively will be essentially equal A comparison of the rates of the three terpenes with O(3P) 0 3 and OH is given in Table 1116bull4546 Within the experimental errors for the rate constants for OH + a- and 6-pinene the trend observed for reaction with OH is the same as that observed for reaction with O(3P) and 03

Grimsrud Westberg and Rasmussen (GWR)16 have reshyported the relative rates of photooxidation of a series of monoterpene hydrocarbons using mixtures of 10 ppb of the monoterpene and 7 ppb of nitric oxide which were irradiated for periods ranging between 60 and 120 min Making the rsasonable assumption that as in the case of our studies OH is the major species depleting the hydrccarbon in their exshyperiments then a series of rate constants relative to isobutene (which was included in the GWR study) can be generated in the same manner as described above The data from GWR are given in T-able III relative to isobutene = 10

Considering the- uncertainties involved in this approach (including a lack of knowledge of the exact ozone concentrashytions formed in the experiments of GWR) the agreement between our results for the reaction of OH with a- and 6-pinene and d-limonene and those shown in the fourth column of Table III is quite good and except in the case of a-pinene well within the estimated experimental uncertainty for our determinations The fact that our value of OH + d-limonene is only slightly higher than GWR suggests that little or no 03 was formed in their experiments since there was less than 1 ppb formed during our irradiations

The Journal of Physical Chemistry Vol 80 No 14 1976

A M Winer A C Lloyd K A Darnall and J N Pitts

TABLE III Relative Reaction Rates of Monoterpene Hydrocarbons and Rate Constantsl for Their Reaction with the OH Radical Based on Data from Grimsrud Westberg and Rasmussen (Ref 16)

Rel koH M-bull Hydrocarbon Structure reactivity s-bull X 10-10

p-Menthane 013 040-0-lt p-Cymene 030 092 (078 -0-lt plusmn 016)b

Isobutene )= 10 305

~Pinene 13 40 (41 gtQ) plusmn 06)C

Isoprene 155 47 (46 ~ plusmn 0 9)d

o-Pinene 15s 47 (35 plusmn 05)C~

3-Carene 17 52-cl-~Phellandrene 23 70-0-lt Carvomenthene 25 76-0-lt d-Limonene 29 88 (90-0-lt plusmn 14)C

Dihydromyrcene 36 101~ Myrcene 45 137~ cis-Ocimene 63 192~

a Placed on an absolute basis using 305 x 10 0 M- 1 s-bull for OH+ isobutene from ref 35 b For p-ethyltoluene which is structurally similar (ref 19) c Present work (see Table II) d For 13-butadiene which is structurally similar (ref 19)

A further check on the validity of using the results of Grimsrud Westberg and Rasmussen16 to obtain OH rate constant data is provided by the values derived for the reacshytion of OH with p-cymene and isoprene p-Cymene is structurally very similar to p-ethyltoluene and hence the OH rate constants for these two compounds should be comparable In fact this is the case with the value for OH+ p-cymene of 91 X 109 M-1 s-1 derived from the data of GWR being very close to that obtained for OH+ p-ethyltoluene 78 X 109 M-1

s-1 in our previous study19 Likewise isoprene is structurally similar to 13-butadiene and the rate constant derived for isoprene of 47 X 1010 M-1 s-1 is consistent with that preshyviously measured19 for OH+ 13-butadiene of 46 X 1010 M-1

s-1 On the basis of these comparisons it appears valid to use the photooxidation data of Grimsrud Westberg and Rasshymussen16 to obtain OH rate constant data for the series of monoterpenes which they investigated

Conclusion

Relative rate constants have been experimentally detershymined for the reaction of OH with eight compounds and these rate constants have been placed on an absolute basis using the literature value for the rate constant for OH + isobutene35

In the same manner rate constants for the reaction of OH with nine additional compounds (monoterpene hydrocarbons) for

68

OH Radical Reaction with Selected Hydrocarbons

which no previous rate constants are available have been deshyrived from data recently published by Grimsrud Westberg and Rasmussen16

The comparatively large rate constants obtained for the ketones and monoterpene hydrocarbons indicate that they will be quite reactive in the troposphere The implications for photochemical oxidant control strategies of the chemical reshyactivity of the ketones chloroethenes and terpenes are disshycussed in detail elsewhere5051

Acknowledgments The authors gratefully acknowledge the helpful comments of Drs R Atkinson and E R Stephens during the preparation of this manuscript G Vogelaar and F Burleson for the gas chromatographic analyses and W D Long for valuable assistance in conducting the chamber exshyperiments

This work was supported in part by the California Air Reshysources Board (Contract No 5-385) and the National Science Foundation-RANN (Grant No AEN73-02904-A02) The contents do not necessarily reflect the views and policies of the California Air Resources Board or the National Science Foundation-RANN nor does mention of trade names or commercial products constitute endorsement or recommenshydation for use

References and Notes

(1) J Heicklen K Westberg and N Cohen Publication No 114-69 Center for Air Environmental Studies Pennsylvania State University University Park Pa 1969

(2) D H Stedman E D Morris Jr E E Daby H Niki and B Weinstock presented at the 160th National Meeting of the American Chemical Society Chicago Ill Sept 14-18 1970

(3) B Weinstock E E Daby and H Niki Discussion on Paper Presented by E R Stephens in Chemical Reactions in Urban Atmospheres C S Tuesday Ed Elsevier New York NY 1971 pp 54-55

(4) H Niki E E Daby and B Weinstock Adv Chem Ser No 113 16 (1972) (5) K L Demerjian J A Kerr and J G Calvert Advances in Environmental

Science and Technology Vol 4 Wiley-lntersclence New York NY 1974 p 1

(6) H Levy 11 Advances in Photochemistry Vol 9 Wiley-ln1erscience New York NY 1974 p 1

(7) S C Wofsy and M B McElroy Can J Chembull 52 1582 (1974) (8) R F Hampson Jr and D Garvin Ed Chemical Kinetic and Photoshy

chemical Data for Modeling Atmospheric Chemistry NBS Technical Note No 866 June 1975

(9) A Levy and S E Miller Final Technical Report on the Role of Solvents in Photochemical Smog Formation National Paint Varnish and Lacquer Association Washington DC 1970

( 10) M F Brunelle JE Dickinson and W J Hamming Effectiveness of Orshyganic Solvents in Photochemical Smog Formation Solvent Project Final Report County of Los Angeles Air Pollution Control District July 1966

(11) E P Grimsrud and R A Rasmussen Atmos Environ 9 1014 (1975) (12) J E Lovelock Nature (London) 252 292 (1974) (13) E R Stephens and F A Burleson private communication of unpublished

data (14) R A Rasmussen and F W Went Proc Natl Acad Sci USA 53215

(1965) R A Rasmussen J Air Polut Control Assoc 22537 (1972) (15) R A Rasmussen and M W Holdren Analysis of Cs to C 10 Hydrocarbons

in Rural Atmospheres J Air Pollut Control Assoc Paper no 72-19 presented at 65th Annual Meeting (June 1972)

(16) E P Grimsrud H H Westberg and R A Rasmussen Atmospheric Reshyactivity of Monoterpene Hydrocarbons NOx Photooxldation and Ozonolshyysls middot Proceedings of the Symposium on Chemical Kinetics Data for the

1639

Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Kinet Symp No 1 183 (1975)

(17) F W Went Nature(London) 187641 (1960) bull (18) G J Doyle A C Lloyd K R Darnall A M Winer andJ N Pitts Jr Enshy

viron Sci Technol 9237 (1975) (19) A C Lloyd K R Darnall A M Winer and J N Pitts Jr J Phys Chem

80 789 (1976) (20) J N Pitts Jr P J Bekowies A M Winer G J Doyle JM McAfee and

K W Wilson The Design and Construction of an Environmental Chamber Facility for the Study of Photochemical Air Pollution Final Report Calishyfornia ARB Grant No 5-067-1 in preparation

(21) Sylvania Technical Bulletin No 0-306 Lighting Center Danvers Mass 01923 1967

(22) J R Holmes R J OBrien J H Crabtree T A Hecht and J H Seinfeld Environ Sci Technol 7 519 (1973)

(23) G J Doyle P J Bekowies A M Winer and J N Pitts Jr Environ Sci Technol accepted for publication

(24) E R Stephens Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973 NTIS No PB 230 993AS

(25) E R Stephens and F R Burleson J Air Pollut Control Assoc 17 147 (1967)

(26) Ozone measurement was based on calibration by the 2 neutral buffered Kl method and was subsequently corrected from spectroscopic calibration data [-see J N Pitts Jr J M McAfee W Long and A M Winer Environ Sci Technol in pressJ

(27) B Weinstock and T Y Chang Telus 26 108 (1974) (28) T A Hecht J H Seinfeld and M C Dodge Environ Sci Technol 8 327

(1974) (29) L Zafonte P L Rieger and J R Holmes Some Aspects of the Atmoshy

spheric Chemistry of Nitrous Acid presented at 1975 Pacific Conference on Chemistry and Spectroscopy Los Angeles Calif Oct 28-30 1975 W H Chan R J Nordstrum J G Calvert and J N Shaw Chem Phys Lett 37441 (1976)

(30) J M McAfee A M Winer and J N Pitts Jr unpublished results (31) C C Wang L I Davis Jr CH Wu S Japar H Niki and B Weinstock

Science 189 797 (1975) (32) H Niki and B Weinstock Environmental Protection Agency Seminar

Washington DC Feb 1975 (33) A C Lloyd Int J Chem Kinet 6 169 (1974) (34) J G Calvert J A Kerr K L Demerjian and R D McQuigg Science 175

751 (1972) (35) R Atkinson and J N Pitts Jr J Chem Phys 63 3591 (1975) (36) D Perner D H Ehhalt H W Patz U Platt E P Roth and A Volz OH

Radicals In the Lower Troposphere 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(37) D D Davis T McGee and W Heaps Direct Tropospheric OH Radical Measurements Via an Aircraft Platform Laser Induced Fluorescence 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(38) E Sanhueza and J Helcklen Can J Chem 52 3870 (1974) (39) E Sanhueza and J Helcklen Int J Chem Kinet 6 553 (1974) (40) E Sanhueza I C Hisatsune and J Heicklen Oxidation of Haloethylenes

Center for Air Environment Studies The Pennsylvania State University CAES Publication No 387-75 Jan 1975

(41) E A Lissi private communication to authors of ref 40 and quoted therein (42) J A Franklin G Huybrechts and C Cillien Trans Faraday Soc 65 2094

(1969) (43) B W Gay Jr P L Hans J J Bufalinl and R C Noonan Environ Sci

Technol 10 58 (1976) (44) R F Lake and H Thompson Proc R Soc London Ser A 315 323

(1970) (45) LA Ripperton and H E Jefferies Adv Chem Ser No 113 219 (1972) (46) E D Morris Jr and H Niki J Phys Chem 75 3640 (1971) (47) S Fischer R Schiff E Machado W Bollinger and D D Davis 169th

National Meeting of the American Chemical Society Philadelphia Pa April 6-11 1975

(48) S M Japar CH Wu and H Niki Environ Lett 7245 (1974) (49) J S Gaffney R Atkinson andJ N Pitts Jr J Am Chem Soc 97 5049

(1975) (50) K R Darnall A C Lloyd A M Winer and J N Pitts Jr Environ Sci

Technol in press (51) J N Pitts Jr A C Lloyd A M Winer K R Darnall and G J Doyle

Development and Application of a Hydrocarbon Reactivity Scale Based on Reaction with the Hydroxyl Radical to be presented at 69th Annual APCA Meeting Portland Oreg June 27-July 1 1976

The Journal of Physical Chemistry Vol 80 No 14 1978

69

l

Reactivity Scale for Atmospheric Hydrocarbons Based on Reaction with Hydroxyl Radical

Karen R Darnall Alan C Lloyd Arthur M Winer and James N Pitts Jrbull

Statewide Air Pollution Research Center University of California Riverside Calif 92502

Bv use of relative and absolute rate constants for the reshyactiltn of the hydroxyl radical (OH) with a number of alkanes alkenes aromatics and ketones a reactivity scale is formushylated based on the rate of removal of hydrocarbons and oxyshygenates by reaction with OH In this five-class scale each class spans an order of magnitude in reactivity relative to methane Thus assigned reactivities range from lt10 fo~ ~lass I (conshytaining oniv methane) togt104 for Class V cotammg te mo~t reactive compounds (eg d-limonene) This scale differs m several significant ways from those presently utilized by _air p(llution control agencies and various industrial laboratories For example in contrast to other scales based o~ s_eco~dar_y marifestations such as yields of ozone and eye 1rritat1on it focuses directlv on initial rates of photooxidation The proshyposed scale als~ provides a clearer understandin~ of the_imshyportance of alkanes in the generation of ozone durmg per10~s of prolonged irradiation The present ~cale can be readily extended to include additional orgamc compounds (eg natural and anthropogenic hydrocarbons oxygenates chloshyrinated solvents) once their rate of reaction with OH is known

It has been recognized for many years (1-21) that all hyshydrocarbons occurring in polluted atmospheres are not equally effective in producing photochemical oxidant and hence that the application of cost effective strategies for the control of hydrocarbons requires that more stringent emissions reducshytions be applied to the more reactive organic compounds (22-25) This in turn has led to a continuing requirement for a rational assessment of hydrocarbon reactivity as a basis for control decisions Such an assessment is particularly critical since attainment of the Federal air quality standard for phoshytochemical oxidant has been sought largely through the stringent control of hydrocarbon emissions (26-27)

The first effort to formulate and apply a practical hydroshycarbon reactivity scale was taken in 1966 with the impleshymentation by the Los Angeles Air Pollution Control District (LAAPCD) of a regulation known as Rule 66 to limit solvent organic emissions on the basis of their capacity for promoting photochemical smog formation (24-25) This rule an~ other conceptions of reactivity scales (28) represented a maJor adshyvance in the application of the information then available concerning the mechanisms of photochemical smog formation to the development of practical air pollutant emission control strategies

Not surprisingly however both in the past and present there have been significant differences in hydrocarbon reacshytivity scales proposed by local regional and national air pollution control agencies (23 29-31) as well as by industy (14 16) As shown in Table I this can lead to very large difshyferences in emission inventory estimates and in approaches to hydrocarbon control (29 32 33) In this case reactive hyshydrocarbon emission inventory levels calculated by Goeller et al (32) using hvdrocarbon reactivity definitions of the Envishyronmental Protection Agency (EPA) on tlie one hand and the California Air Resources Board (ARB) and LAAPCD on the other differed by factors of 3 to 4

A second problem common to virtually all previous reacbull tivity classifications has been their reliance on smog chamber data obtained for relatively short irradiation (~2-6 h) periods

Thus the recent concern over oxidant formation resulting from ionger irradiations during pollutant tr~sport ~o ~egio_ns downwind of urban sources introduces additional d1fficult1es both in defining what constitutes a reactive hydr~carbon and in categorizing degrees of reactivity For example a compound such as propane the major component in liquefied petroleum gas (LPG) and often cited as a clean fuel is now known (34-36) to contribute to the formation of photochemical oxishydants in the later stages of day-long irradiation periods However on the basis of data obtained during short-term ir- middot radiations propane has been classified as unreactive in a reactivity scale proposed (23) by B Dimitriades of the EPA (hereafter referred to as the EPA reactivity scale)

Altshuller ald Bufalini (9 17) have reviewed the various definitions of hydrocarbon reactivity ~nd summarized results of numerous studies up to 1970 The criteria used for evalushyating hydrocarbon reactivity include hydrocarbon conshysumption the conversion of nitric oxide to nitrogen dioxide ozone formation aerosol formation eye irritation and plant damage It is generally agreed that the criteria most suitable with respect to photochemical oxidant control strategies are ozone dosage or maximum ozone concentration (29) However establishing a definitive hydrocarbon reactivity scale to be applied specifically to the control of ozone formation requires an extensive and lengthy experimental program in which the ozone-forming capability of each individual hydrocarbon is determined under simulated atmospheric conditions inshycluding long-term irradiation (ie 12-14 h)

An alternative basis for assessing hydrocarbon reactivity which would appear to have considerable utility and a valid experimental foundation is the formulation of a reactivity scale based on the rate of disappearance of hydrocarbons due to reaction with the hydroxyl radical the key intermediate spcies in photochemical air pollution

Results and Discussion

It is only in the last six years that the critical role-of OH in photochemical smog formation has been generally recognized (37-40) and that appreciable rate constant data have become available for the reaction of OH with several classes of hyshydrocarbons The importance of OH as a reactive intermediate relative to species such as Oa 0(3P) and H02 has been shown previously (39-41) through computer modeling of smog chamber data For example Niki et al (39) showed that the reactivity of a number of hydrocarbons as measured by the rate of conversion of NO to N02 correlated significantly better with OH rate constants than with either 0(3P) or Oa rate constants

Table I Comparison of Reactive Hydrocarbon Inventory Levels for Fixed Sources Under Alternative Reactivity Assumptions (from Ref 32 Based on Pre-1973 Data)

Reactive hydrocarbons tonsday

Control Conslslenl ARB-

strat-iy EPA lAAPCD Rand Corp

1970 8760 2283 6363 1975 nominal 4273 1022 2399 1975 maximal 2906 577 1299

Reprinted from ENVIRONMENTAL SCIENCEamp TECHNOLOGY yo 10 Page 692 ~uly 1976 Copyright 1976 by the American Chemical Society an1 0eprinted by perm1ss1on of the copynght owner

The utility of a large environmental chamber in obtaining relative rate constants with an accuracy of plusmn20 for the reshyaction of the hydroxyl radical with a variety of hydrocarbons was demonstrated in an earlier study in this laboratory (41 ) This method has recently been extended to an investigation of more than a dozen additional hydrocarbons including seven compounds for which OH rate constants are not currently available The detailed kinetic data derived from this invesshytigation have been reported elsewhere (42) In these studies we determined the rPlative rates of disappearance of selected alkanes alkenes and aromatic hydrocarbons under simulated atmospheric conditions of temperature pressure concenshy

l

middottrations light intensity and other trace contaminants (NO CO hydrocarbons water) These relative rate constants were placed on an absolute basis using the published rate cons~ts for OH+ n-butane The assumption that OH was responsible for the hydrocarbon disappearance under the experimental conditions employed (41) was subsequently supported by the very good agreement between OH rate constants determined for the individual compounds using flash photolysis-resoshynance fluorescence techniques (43 44) and those obtained in

l the initial chamber study (41) The general validity of the chamber method for obtaining OH rate constants is illustrated in Figure 1 where the good correspondence between chamber values (41 42) and the available literature values [(45) and references in Table IV] is shown graphically

The importance of the chamber method for the purposes of formulating a reactivity scale is the simultaneous detershymination of valid rate constants for reactions of OH with a large number and wide variety of atmospherically important hydrocarbons This substantially expands the number of compounds which can be incorporated now and in the near future in the resulting reactivity scale In this regard we are currently extending (46) the chamber method to the detershymination of rate constants for reactions of OH with natural hydrocarbons such as terpenes and solvent hydrocarbons such as ketones and chloroethenes for which no data currently exist Preliminary kinetic data (46) for selected natural hyshydrocarbons and ketones are included in our proposed reacshytivity scale

Use of OH Rate Constants as a Reactivity Index From the successful correlation of OH rate constants with the rates of hydrocarbon disappearance observed in our chamber simulations we conclude that to a good approximation this

Ill 1-- 25 z

~~ a ii ~ lt 20 ux ow ~ f5 ~ ~ 15 u lt(0 c

()

~ ~ 10 14

~ tla z ILI lt(

~ 1i 5 I- w lt( Q __ Q

ILI lt(a Ill

i5 o 5 ~ ~ W ~ ~ ~ 40

PUBLISHED RATE CONSTANTS ( J mol-1sec-I x 10-9)

Figure 1 Comparison of relative rates of hydrocarbon disappearan~e determined by environmental chamber method (refs 41 a~d 42) with selected published rate constants (cited in Table IV) for reaction of those hydrocarbons with OH radicals Line shown represents one to one correspondence and has slope of ( 1 18) X 10-9 mol s 1- 1bull Compounds shown are 1 n-butane 2 isopentane 3 toluene 4 2-methylpentane 5 n-hexane 6 ethane 7 3-melhylpentane 8 p-xylene 9 erxylene 10-11 m-xylene 12 123-trimeth~lbenzene_ 13 propane 14 124--trimethylbenzene 15 135-trimethylbenzene 16 cs-2-butene

71

Table II Effect of 0 1 PPM Ozone on Calculated Lifetimes of Selected Alkenes Based on Reaction with OH Radicals (1 X 107 Radicalscm3 ) a at 300 K

OH rate constants b Hall-Ille c tor Hall-Ille d lor Alkenamp I mo1- 1 bull-1 [o3J=0 h (03) = 01 ppm h

Ethene 38 X 109 30 28

Propene 15 X 1010 076 067

cis-2- 32 X 1010 036 020 Butene

13-Buta- 46 X 1010 025 024 diene bull b bull

bull Concentration used in these calculations-see text See references on Table IV c t112 = 0693kOH[OH] under the assumption ol attack only by OH d t12 = 0693(kOH[OH] + ko(03]) ko3 taken from refs 45 and 59

correlation can be extr~polated to the atmosphere for alkenes in ambient air parcels during the early morning hours when ozone levels are generally quite low (5005 ppm) and for alshykanes and aromatics at essentially all times and locations The latter assumption namely that an OH rate constant is a good reactivity index for alkanes and aromatics throughout an irradiation day (or multiple irradiation days) rests upon the fact that the rates of reaction of these classes of hydrocarbons with species such as ozone 0(3P) atoms and hydroperoxyl radicals are several orders of magnitude slower than with OH (45 47-49) For example even at the highest ozone concenshytrations experienced in ambient atmospheres 03 will not contribute significantly to the photooxidation of alkanes and aromatics

This is in contrast to the case for alkenes which although the rate constants for reaction of Oa with alkenes are not particularly large (45) react rapidly with ozone at the average concentrations commonly encountered in polluted ambient air (---01-02 ppm) The approximate magnitude of the effect of ozone on the atmospheric lifetimes of alkenes is given in Table II From their OH rate constants (see Table IV) atshymospheric lifetimes for four alkenes were obtained by asshysuming an OH radical concentration in polluted atmospher~s of 107 radicals cm-3 which is a reasonable value on the bass of both model calculations (50) and recent atmospheric measurements (51-53) The half-life given in column 3 of Table II is defined as t 1 2 = 0693k(OH) and assumes deshypletion of the hydrocarbon solely by the hydroxyl radical When one assumes an average concentration of 010 ppm of 0 3 the more reactive alkenes show considerably shorter half-lives (column 4) For example the lifetime of cis-2-butene in the atmosphere is 036 h assuming only reaction with OH but this is reduced to 020 h when reaction with Oa at a conshycentration of 01 ppm is considered

Proposed Reactivity Scale Under the assumption that hydrocarbon depletion is due solely to attack by OH (with the qualification noted for alkenes) we propose a five-class reshyactivity scale based on hydrocarbon disappearance rates due to reaction with OH The ranges of reactivities for the five proposed classes each span an order of magnitude in reactivity relative to methane and are shown in Table III The hydroshycarbon half-lives as defined above are also shown for each reactivity range

Hydroxyl radical rate constant data for a wide ra~ge of atshymospheric hydrocarbons have been taken from the literature as well as from our own studies and are compiled and refshyerenced in Table IV The assignment of these compounds in the various classes of our proposed reactivity scale is shown in the last column of Table IV For interest carbon monoxide is included in this table since although it is not a hydrocarbon it is present in polluted urban atmospheres but is generally regarded as being unreactive in ambient air Thus carbon

Volume 10 Number 7 July 1976 693

l

monoxide appears as being somewhat reactive in Class 11 Cohen (o) and Glasson and Tuesday (8) was essentially the which also includes ethane and acetylene In our current same as that obtained from the studies of hydrocarbon conshycompilation of compounds methane is the only compound sumption carried out by Schuck and Doyle (1 ) Stephens and listed which appears in Class I and 2-methyl- and 23-dishy Scott (3) and Tuesday (5) We are currently investigating methyl-2-butene and d-limonene are the only compounds in methods of quantitatively relating hydrocarbon consumption Class V Several of the higher alkenes and 13-butadiene apshy to nitric oxide oxidation and ozone formation the parameter pear at the upper end of Class IV Data from our recent study of greatest interest in formulating control strategies for oxishyof monoterpeiie hydrocarbons ( 46) indicate that many of these dant reduction compounds will appear in Class V (54) As indicated above Rule 66 formulated by the LAAPCD

Comparison with Other Scales The ranking of reacshy in 1966 represented the first hydrocarbon control measure tivities for the aromatic hydrocarbons in our scale is essentially based on photochemical reactivity Although this regulation the same as that obtained by Altshuller et al (4) and by has been effective results from recent studies (34-36) indicate Kopczynski (7 17) Although our proposed scale is based that the 4-6 h irradiations (25) from which assignments of solely on hydrocarbon disappearance rates Altshuller and the degree of reactivity of hydrocarbons were made in forshyBufalini ( 17) have shown that this measure of reactivity is very mulating Rule 66 did not give sufficient recognition to the similar to the one based on nitric oxide oxidation rates They ozone-forming potential of slow reactors such as n-butane and showed that the ranking of reactivities of hydrocarbons from propane Consequently it is now realized that measures more the nitric oxide photooxidation studies of Altshuller and stringent than Rule 66 are necessary to achieve reductions in

ozone formation to levels approaching th(se mandated by the US Clean Air Act Amendments of 1970

Table Ill Reactivity Scale for Hydrocarbons Based on Recognition of such deficiencies in current hydrocarbon Rate of Disappearance of Hydrocarbon Due to control regulations has led to reexamination of present hyshyReaction with Hydroxyl Radicals drocarbon reactivity classifications The focus of these reshy

evaluations has been the five-class reactivity scale (see TableClasa Hall-Hiebull Reactivity rel to methane ( =1)

I gt99 days lt10 V) proposed by B Dimitriades at the EPA Solvent Reactivity II 24 h to 99 days 10-100 Conference in 1974 (23) Significant changes have been sugshy

gested for this reactivity classification by the California ARB (29 30) the LAAPCD (31) the EPA (55) and by industry

Ill 24-24 h 100-1000 IV 024-24 h 1000-10 000

However since no final conclusions have been reached by any V lt024 h gt10 000 t112 = 0693kOH[OH] of these agencies at this time we will restrict comparison of

our proposed scale to the 1974 EPA scale

r Table IV Proposed Reactivity Classification of Hydrocarbons and CO Based on Reaction with Hydroxyl Radicals

Compound koH + Cpd (I mo1- 1 s-1) X 10-9 Rat Reactivity rel to methane ProPQsad class see Table Ill

Methane 00048 (60) 1 I co 0084 (45) 18 II Acetylene 011 (45 61 66) 23 II Ethane 016 (62) 33 II Benzene 085 (43 44) 180 Ill Propane 13 (63) 270 Ill n-Butane 18 (41 42) 375 Ill lsopentane 20 (42) 420 Ill Methyl ethyl ketone 21 (46) 440 Ill 2-Methylpentane 32 (42) 670 Ill Toluene 36 (43 44) 750 Ill n-Propylbenzene 37 (42) 770 ill lsopropylbenzene 37 (42) 770 ill Ethane 38 (42 64-66) 790 Ill n-Hexane 38 (42) 790 Ill 3-Methylpentane 43 (42) 900 Ill Ethylbenzene 48 (42) 1000 Ill-IV P-Xylene 745 (41 43) 1530 IV p-Ethyltoluene 78 (42) 1625 IV o-Ethyltoluene 82 (42) 1710 IV o-Xylene 84 (41 43) 1750 IV Methyl isobutyl ketone 92 (46) 1920 IV m-Ethyltoluene 117 (42) 2420 IV m-Xylene 141 (4143) 2920 IV 123-Trimethylbenzene 149 (41 43) 3100 IV Propene 151 (67) 3150 IV 124-Trimethylbenzene 20 (41 43) 4170 IV 135-Trimethylbenzene 297 (41 43) 6190 IV cis-2-Butene 323 (67) 6730 IV 8-Pinene 42 (46) 8750 IV 13-Butadiene 464 (42) 9670 IV-V 2-Methyl-2-butene 48 (68) 10 000 V 23-Dimethyl-2-butene 67 (69) 14 000 V d-Limonene 90 (46) 18800 V

bull Where more than one reference is cited an average value is given for the rate constant

694 Environmental Science amp Technology 72

i

Table V Proposed EPA Reactivity Classification of Organics (from Ref 23 1974) Claul Class II Class Ill Class IV Class V

nonreactive reactive reactive reactlVe reactive

C-C3 paraffins Mono-tertiary- CH paraffins Primary and secondary Aliphatic olefins

Acetylene Cycloparaffins a-Methyl styrene alkyl benzeries alkyl benzenes

Cyclic ketones Dialkyl benzenes

Benzaldehyde Tertiary-alkyl n-Alkyl ketones Branched alkyl Tri- and tetra-alkyl acetates ketones

Benzene Styrene Aliphatic aldehydes

benzenes 2-Nitropropane Primary and secondary

Acetone Primary and secondary alkyl acetates Unsaturated ketones Methanol alkyl alcohols N-methyl pyrrolidone Diacetone alcohol Tertiary-alkyl Cellosolve acetate

3lcohols NN-dimethyl Ethers ace tam Ide Partially halogenated

Phenyl acetate CellosolvesolefinsPartially halogenated paraffins Methyl benzoate

Partially halogenated Ethyl amines paraffins

Dimethyl formamlde

Perhalogenated hydrocarbons

Reactivity rating 10 35 65 97 143

Briefly the EPA has proposed on the basis of previous experimental studies that methane ethane acetylene proshypane and benzene are essentially nonreactive for typical urban ambient hydrocarbon-NOx ratios (23) and these compounds are placed in Class I on their scale Three other classes have been proposed for mobile source hydrocarbon emissions (56)-Class III (C4 and higher alkanes) Class IV (aromatics less benzene) and Class V (alkenes) When stashytionary source hydrocarbons including solvents (Class II) are added to the list five classes are suggested as shown in Table V

Thmiddot reactivity classification proposed here (Tables III and IV) can be compared with that suggested by the EPA (Table V) It is evident that several significant differences emerge

bull The C1-C3 alkanes are given equal weighting in the EPA scale and all are designated unreactive whereas our scale clearly differentiates among the three compounds from methane in Class I and ethane in Class II to the more reactive propane in Class III

bull According to our proposed classification benzene and n-butane are of similar reactivity whereas the EPA scale places them in Class I and III respectively

bull All the alkenes are placed in Class V of the EPA scale whereas our proposed scale shows a differentiation in reacshytivity from ethene in Class III to 23-dimethyl-2sbutene in Class V

bull Our scale g1ves recognition to the high reactivity of natshyural hydrocarbons such as 3-pinene and d-limonene placing these in Class IV and V respectively The present published EPA scale does not give a classification for natural hydroshycarbons although they could be loosely categorized as subshystituted alkenes in Class V

In addition to noting these differences some similarities exist between the two scales For example our scale shows that 13-butadiene is highly reactive which is consistent with preshyvious studies indicating it to be a facile precursor of eye irrishytants (17) and highly effective in producing oxidant during irradiation of HC-NOx mixtures (57) Also methanol would appear in the low half of Class II in our scale based on a recent dstermination of the rate constant for OH attack on methanol (58) The value found was k(OH+CH30H)lkltOH+CO) = 063 at 298 K This reduces to 53 X 107 1 mo1-1 s-1 based on k(oH+CO) = 84 X 107 1 mo1-1s-1 (45) Hence both our scale and the EPAs show methanol to be relatively unreactive

It should be emphasized that the classification proposed in our scale is not strictly applicable to compounds which

73

undergo significant photodissociation in the atmosphere for example aliphatic aldehydes In such cases the compound will be more reactive than predicted from a scale based on hydrocarbon depletion due solely to OH attack However our proposed classification emphasizes that most compounds react in polluted atmospheres and suggests that thf Class I scale be reserved only for the few compounds which have half-lives greater than about 10 days

Conclusion

Our proposed reactivity scale based on the depletion of hydrocarbons by reaction with the OH radical has utility in assessing hydrocarbon chemical behavior in polluted ambient air Since only those organic compounds which participate in atmospheric reactions are of consequence in the chemical transformations in ambient air their relative reactivity toward OH is a useful and directly measurable index of their potential importance in the production of secondary pollutants

Ohe advantage of the proposed scale is that because it is based on the individual rate constants for hydrocarbon reacshytion with OH any degree of gradation in reactivity may be used to formulate any desired number of classes-from relashytively few to a large number of classes or even an ordered ranking of compounds A second strength of the present scale is that it can be readily extended to include additional organic compounds once their rate of reaction with OH is known Fishynally the proposed scale gives greater weight than previous reactivity scales to the alkanes and a number of aromatic hydrocarbons which require a longer period of time to react but can contribute significantly to ozone formation during longer irradiation periods eg during their transport downshywind from urban centers-a phenomenon of increasing conshycern to air pollution control agencies

Acknowledgment

We gratefully acknowledge helpful discussions with R Atkinson G J Doyle D M Grosjean and E R Stephens

Literature Cited

(1) Schuck E A Doyle G bull J Photooxidation of Hydrocarbons in Mixtures Containing Oxides of Nitrogen and Sulfur Dioxide Rept No 29 Air Pollution Foundation San Marino Calif 1959

(2) Leighton PA Photochemistry of Air Pollution Academic Press New York NY 1961

(3) Stephens E R Scott W E Proc Am Pet Inst 42 (111)665 (1962)

Volume 10 Number 7 July 1976 695

l

1 I l

(4) Altshuller A P Cohen I R Sleva S F Kopczynski S L Sciena 135442 (1962)

(5) Tuesday C S Arch Emmiddotiron Health 7 188 (1963) (6) Altshuller A P Cohen I R Int J Air Water Pollut 7 787

(19631 (7) Kopczynski S L ibid 8 107 (1964) (8) Glasson W A Tuesday C S paper presented at the 150th

National Meeting ACS Atlantic City NJ September 1965 (9) Altshuller A P Bufalini J J J Photochem Photobiol 4 97

(J96fi (10) Heuss JM Glasson W A Environ Sci Technol 2 1109

(19681 (11) Altshuller A P Kopczynski S L Wilson D Lonneman W

Sutterfield F D J Air Pollut Control Assoc 19 787 (1969) (12) Altshuller A P Kopczynski S L Wilson D Lonneman W

Sutterfield F D ibid p 791 (13) Dimitriades B Eccleston B H Hurn R W ibid 20 150

(19701 (14) Levy A Miller S E Final Technical Report on the Role of

Solvents in Photochemical Smog Formation National Paint Varnish and Lacquer Assoc Washington DC 1970

(15) Wilson K W Doyle G J Investigation of Photochemical Reactimiddotities of Organic Solvents Final Report SRI Project PSU-8029 Stanford Research Institute Irvine Calif September 1970

(16) Glasson W A Tuesday C S J Air Pollut Control Assoc 20 239 (1970)

(17) Altshuller A P Bufalini J J Environ Sci Technol 5 39 (1971)

(18) Glasson W A Tuesday C S ibid p 153 (19) Stephens E R in Chemical Reactions in Urban Atmospheres

pp 45-54 C Tuesday Ed American Elsevier New York NY 1971

(20) Stephens E R Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973

(21) Kopczynski S L Kuntz R L Bufalini J J Environ Sci Technol 9608 (1975)

(22) Control Techniques for Hydrocarbon and Organic Solvent Emissions from Stationary Sources Nat Air Pollut Control Admin Publication AP-68 March 1970

(23) Proceedings of the Solvent Reactivity Conference US Enshyvironmental Protection Agency Research Triangle Park NC EPA-6503-74-010 November 1974

(24) Hamming W J SAE Trans 76 159 (1968) (25) Brunelle M F Dickinson JE Hamming W J Effectiveness

of Orga1ic Solvents in Photochemical Smog Formation Solvent Project Final Report Los Angeles County Air Pollution Control District July 1966

(26) Emironmental Protection Agency Region IX Technical Support Document January 15 1973

(27) Feldstein J J Air Polut Control Assoc 24469 (1974) (28) Altshuller A P ibid 16257 (1966) (29) California Air Resources Board Informational Report Progress

Report on Hydrocarbon Reactivity Study June 1975 (30) Organic Compound Reactivity System for Assessing Emission

Control Strategies ARB Staff Report No 75-17-4 September 29 1975

(31) Los Angeles County APCD Proposed Reactivity Classification of Organic Compounds with Respect to Photochemical Oxidant Formation Los Angeles County Air Pollution Control Departshyment July 21 1975

(32) Goeller B F Bigelow J H DeHaven JC Mikolowsky W T Petruschell R L Woodfill B M Strategy Alternatives for Oxidant Control in the Los Angeles Region R-1368-EPA Rand Corp Santa Monica Calif December 1973

(33) Impact of Reactivity Criteria on Organic Emission Control Strategies in the Metropolitan Los Angeles AQCR TRW Interim Report March 1975

(34) Holmes J California Air Resources Board private communishycation 1975

(35) Pitts J N Jr Winer A M Darnall K R Doyle G J McAfee JM Chemical Consequences of Air Quality Standards an~ of Control Implementation Programs Roles of Hydrocarbons Oxides of Nitrogen and Aged Smog in the Production of Photoshychemical Oxidant Final Report California Air Resources Board Contract No 3-017 July 1975

(36) Altshuller A P in Proceedings of the Solvent Reactivity Conference US Environmental Protection Agency Research Triangle Park NC EPA-6503-74-010 pp 2-5 November 1974

(37) Heicklen J Westberg K Cohen N Puhl 115-69 Center for Air Environmental Studies University Park Pa 1961

(38) Weinstock R Daby E E Niki H Discussion on Paper Presented by E R Stephens in Chemical Reactions in Urban Atmospheres pp 54-55 C S Tuesday Ed Elsevier New York NY 1971

(39) Niki H Daby E E Weinstock B AdLbull Chem Ser 113 16 (197)

(40) Demerjian K L Kerr J A Calvert J G Adv Environ Sci Technol 4 1 (1974)

(41) Doyle G J Lloyd A C Darnall K R Winer A M Pitts J N Jr Environ Sci Technol 9237 (1975)

(42) Lloyd A C Darnall K R Winer A M Pitts J N Jr J Phys Chem 80 789 (1976)

(43) Hansen D A Atkinson R Pitts J N Jr ibid 79 1763 (1975) (44) Davis D D Bollinger W Fischer S ibid p 293 (45) Chemical Kinetic and Photochemical Data for Modeling Atshy

mospheric Chemistry NBS Technical Note 866 R F Hampson Jr llQJJQarvin Eds Ju_ne 1975_____~ middot middot

(46)rloyd A C~arnliltKR-XWiner A JI_) Pitts J N Jr J Phys Chem 80 lflgti (1976)

(47) Pate C T Atkmiddot ori R Pitts J N Jr J Environ Sci Health All 1 (1976)

(48) Atkinson R Pitts J N Jr J Phys Chem 78 1780 (1974) (49) Stedman D H Niki H Environ Lett 4303 (1973) (50) Calvert J McQuigg R Proceedings of the Symposium on

Chemical Kinetics Data for the Upper and Lower Atmosphere Warrenton Va September 15-18 1974 Int J Chem Kinet Symposium No 1 113 (1975)

(51) Wang C C Davis L I Jr Wu CH Japar S Niki H Weinstock B Science 189 797 (1975)

(52) Perner D Ehhalt D H Patz H W Platt U Roth E P Volz A OH Radicals in the Lower Troposphere 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(53) Davis D D McGee T Heaps W Direct Tropospheric OH Radical Measurements via an Aircraft Platform Laser Induced Fluorescence ibid

(54) Pitts J N Jr Lloyd A C Winer A M Darnall K R Doyle G J Development and Application of a Hydrocarbon Reactivity Scale Based on Reaction with the Hydroxyl Radical to be preshysented at 69th Annual APCA Meeting Portland Ore June 27-July 1 1976

(55) Informal EPA meeting Philadelphia Pa July 30-31 1975 (56) Black M High L E Sigsby JE Methodology for Assignshy

ment of a Hydrocarbon Photochemical Reactivity Index for Emissions from Mobile Sources US Environmental Protection Agency Research Triangle Park NC EPA-6502-75-025 March 1975

(57) Haagen-Smit A J Fox M M Ind Eng Chem 48 1484 (1956)

(58) Osif T L Simonaitis R Heicklen J J Photochem 4 233 (1975)

(59) Japar S M Wu CH Niki H J Phys Chem 78 2318 (1974) (60) Davis D D Fischer S Schiff R J Chem Phys 61 2213

(1974) (61) Pastrana A Carr R W Jr Int J Chem Kinet 6587 (1974) (62) Overend R Paraskevopoulos G Cvetanovic R J Hydroxyl

Radical Rate Measurement for Simple Species by Flash Photolysis Kinetic Spectroscopy Eleventh Informal Conference on Photoshychemistry Vanderbilt University Nashville Tenn June 1974

(63) Gorse R A Volman D HJ Photochem 3115 (1974) (64) Greiner N R J Chem Phys 53 1284 (1970) (65) Smith I W M Zellner R J Chem Soc Faraday Trans II

69 1617 (1973) (66) Davis D D Fischer S Schiff R Watson R T Bollinger W

J Chem Phys 63 1707 (1975) (67) Atkinson R Pitts J N Jr ibid p 3591 (68) Atkinson R Perry R A Pitts J N Jr Chem Phys Lett

38607 (1976) (69) Atkinson R Perry R A Pitts J N Jr unpublished results

1975 Received for review November 3 1975 Accepted January 30 1976 Work supported by the California Air Resources Board (Contract No 4-214) and the National Science Foundation-RANN (Grant No AEN73-02904 A02) The contents do not necessarily reflect the vieumiddots and policies of the California Air Resources Board or the National Science Foundation-RANN nor does mention of trade names or commercial products constitute endorsement or recommendation for use

696 Environmental Science amp Technology 74

Ii

rl

I r I

G

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE

BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Statewide Air Pollution Research Center University of California

Riverside CA 92521

Paper No 76-311

Presented at the 69th Annual Air Pollution Control Association Meeting

Portland Oregon

June 27 - July 1 1976

75

76-311 rII 2

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Statewide Air Pollution Research Center University of California

Riverside CA 92502

Abstract

Measurements of the relative rate constants for the reaction of the hydroxyl radical (OH) with some 35 atmospherically important hydrocarbons have been made in the SAPRC 6400 i glass irradiation chamber These rate constants were placed on an absolute basis using literature values for either n-butane or isobutene and have been augmented with OH rate data obtained by elementary reaction measurements and other appropriate data such as that from photoshy

l oxidation studies from which relative and absolute OH rate constants could be calculated

l Utilizing these data a reactivity scale for some 80 compounds including alkenes alkanes aromatics oxygenates and naturally occurring hydrocarbons has been formulated based on the removal of the hydrocarbons by reaction with OH The resulting scale is an ordering of the reactivities of the hydrocarbons relative to methane The scale can be divided into an arbitrary number of classes for purposes of application to control strategies or comparison with other reactivity scales

Some comparisons of the present scale with proposed EPA and ARB reactivity scales are made and the implications of the present scale for the role of alkanes and a number of aromatic hydrocarbons in the formation of ozone in regions downwind of urban centers is analyzed

76

r I

I D

-I

f

76-311 3

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Introduction

1A major result of the photooxidation studies of the past 20 years - 26 has been the recognition that atmospherically important hydrocarbons do not all contribute equally to the production of photochemical oxidant and hence that the application of cost effective strategies for the control of hydrocarbons requires that more stringent emissions reductions be applied to the more reactive organic compounds 10lll9 26 This in turn has led to a continuing requirement for a rational assessment of hydrocarbon reactivity as a basis for control decisions Such an assessment is particularly critical since attainshyment of the Federal air quality standard for photochemical oxidant has been sought largely through the stringent control of hydrocarbon emissions2728

The first effort to formulate and apply a practical hydrocarbon reactivity scale was taken in 1966 with the implementation by the Los Angeles Air Pollution Control Districtmiddot (LAAPCD) of a regulation known as Rule 66 to limit solvent organic emissions on the basis of their capacity for promoting photoshychemical smog formation 10ll This rule and other conceptions of reactivity scales29 represented a major advance in the application of the information then available concerning the mechanisms of photochemical smog formation to the development of practical air pollutant emission control strategies Thus the basic concept of selective control of emissions based on their reactivity is now widely established

Not surprisingly however there have been significant differences in hydrocarbon reactivity scales proposed by local regional and national air pollution control agencies2530-34 as well as by industry161823 This in turn can lead to quite large differences in emission inventory estimates and in approaches to hydrocarbon control303536

Most although not all previous reactivity classifications have relied primarily on smog chamber data obtained for relatively short irradiation (~ 6 hrs) periods Thus the recent concern over oxidant formation resulting from longer irradiations during pollutant transport to regions downwind of urban sources introduces additional difficulties both in defining what constishytutes a reactive hydrocarbon and in categorizing degrees of reactivity For example a compound such as propane the major component in liquified petroleum gas (LPG) and often cited as a clean fuel is now known37-39 to contribute to the formation of photochemical oxidants in the later stages of day-long irradiation periods However on the basis of data obtained during short-term irradiations propane has been classified as unreactive in a reactivity scale

77

76-311

[

r I l

J

I

4

proposed25 in 1974 by B Dimitriades of the EPA (hereafter referred to as the EPA reactivity scale)

A third difficulty with reactivity scales which are based on previous smog chamber data concerns their reliance on measurements of smog manifestations such as maximum ozone concentrations Observed values of such secondary properties of a photooxidation system can be significantly affected by the particular chamber materials light source purity of matrix air and other aspects of the chamber methodology employed This fact can account in large measure for the significant number of discrepancies which arise from comparison of the specific ranking of hydrocarbons in reactivity scales formulated on the basis of different sets of chamber data

Altshuller and Bufalini9 zo have reviewed the various definitions of hydroshycarbon reactivity and summarized results of numerous studies up to 1970 The criteria used for evaluating hydrocarbon reactivity include hydrocarbon conshysumption the conversion of nitric oxide to nitrogen dioxide ozone formation aerosol formation eye irritation and plant damage It is generally agreed that the criteria most suitable with respect to photochemical oxidant control strategies are ozone dosage or maximum ozone concentration30 However establishing a definitive hydrocarbon reactivity scale to be applied specifishycally to the control of ozone formation requires an extensive and lengthy experimental program in which the ozone-forming capability of each individual hydrocarbon is determined under simulated atmospheric conditions including long-term irradiation (ie 10-12 hrs)

An alternative and perhaps supplementary basis for assessing hydrocarbon reactivity which appears to have considerable utility and a valid experimental foundation is the formulation of a reactivity scale based on the rate of disshyappearance of hydrocarbons due to their reaction with the hydroxyl radical the key intermediate species in photochemical air pollution

Results and Discussion

It is only comparatively recently that the critical role of OH in photoshychemical smog formation has been generally recognized40-44 and that appreciable rate constant data have become available for the reaction of OH with several classes of hydrocarbons The importance of OH as a reactive intermediatz

46relative to species such as o3 o(3P) and H02 has been shown previously 3-through computer modeling of smog chamber data For example Niki Daby and Weinstock43 showed that the reactivity of a number of hydrocarbons as measured by the rate of conversion of NO to NOz correlated significantly betterwith OH rate constants than with either 0(3P) or 03 rate constants

The utility of a large environmental chamber in obtaining relative rate constants with an accuracy of plusmn20 for the reaction of the hydroxyl radical with a variety of hydrocarbons has been demonstrated in a number of recent studies both in this45-48 and other laboratories49 To date we have measured relative rates for the reaction of OH with some 35 organic compounds The

78

l l t

l

r L

76-31 1 5

detailed kinetic data derived from these investigations have been reported48elsewhere 45 - In these studies we determined the relative rates of disshy

appearance of selected alkanes alkenes and aromatic hydrocarbons under simushylated atmospheric conditions of temperature pressure concentrations light intensity and other trace contaminants (NOx CO hydrocarbons water) These relative rate constants were placed on an absolute basis using the published rate constants for OH+ n-butane or isobutene The assumption that OH was responsible for the hydrocarbon disappearance under the experimental conditions employed was subsequently supported by the very good agreement between OH rate constants determined for the individual compounds using flash photolysisshyresonance fluorescence techniquesS051 and those obtained in our initial chamber experiments4546

The importance of the chamber method for the purposes of formulating a reactivity scale is that it permits the simultaneous determination of valid rate constants for reactions of OH with a large number and wide variety of atmospherically important hydrocarbons This substantially expands the number of compounds which can be incorporated now and in the near future in the resulting reactivity scale

Use of OH Rate Constants as a Reactivity Index

From the successful correlation of OH rate constants with the rates of hydrocarbon disappearance observed in chamber simulations at the SAPRc45-48 and Ford49 laboratories we conclude that to a good approximation this correlation can be extrapolated to the atmosphere (a) for alkenes in ambient air parcels during the early morning hours when ozone levels are generally quite low (~005 ppm) and (b) for alkanes and aromatics at essentially all times and locations The latter assumption namely that an OH rate constant is a good reactivity index for alkanes and aromatics throughout an irradiation day (or multiple irradiation days) rests upon the fact that the rates of reaction of these classes of hydrocarbons with species such as ozone 0(3P) atoms and the hydroperoxyl radical are several orders of magnitude slower than

52- 54with OH 8 For example even at the highest ozone concentrations experienced in ambient atmospheres 03 will not contribute significantly to the photooxidation of alkanes and aromatics This is in contrast to the case for alkenes which although the rate constants for reaction of 03 with alkenes are not particularly large55-57 react rapidly with ozone at the average concenshytrations connnonly encountered in polluted ambient air (~01-02 ppm)

Proposed Reactivity Scale

Under the assumption that hydrocarbon depletion is due solely to attack by OH (with the qualification noted for alkenes) we propose a five-class reacshytivity scale based on hydrocarbon disappearance rates due to reaction with OH The ranges of reactivities for the five proposed classes each span an order of magnitude in reactivity rel~tive to methane and are shown in Table I Although a scale based on OH rate constants can be divided into an arbitrary number of classes we have found it convenient and useful (particularly for purposes of

79

l r f

1

76-311 6

comparison with other scales) to employ the order of magnitude divisions which lead to a five-class scale

The hydrocarbon half-lives (defined as t12 ~ 0693k[OH]) corresponding to each class are also shown in Table I These half-lives were calculated assuming depletion of the hydrocarbon solely due to reaction with the hydroxyl radical and assuming an OH radical concentration in polluted atmospheres of 107 radicals cm-3 a reasonable value on the basis of both model calculations58 and recent atmospheric measurements59-61

Table II shows the compounds for which OH rate constants have been found or calculated distributed among the five classes of our proposed reactivity scale in the order of increasing rates of reaction within each class Employing OH rate constants obtained from hydrocarbon disappearance rates measured in photooxidation studies62 63 as well as those from elementary rate determinations and our chamber studies has permitted tabulation of OH rate constant data for 80 hydrocarbons These 80 hydrocarbons are incorporated in Table II

For interest carbon monoxide although not a hydrocarbon is included in Table II since it is present in polluted urban atmospheres Although CO is generally regarded as being unreactive in ambient air in our scale it appears in Class II which also includes ethane and acetylene

In our current compilation of compounds methane is the only compound listed which appears in Class I although the recent work of Chameides and Stedman has shown that even methane will react given sufficient time64 Most of the straight chain alkenes appear in Class IV with the substituted alkenes occurring in the upper half of Class IV and in Class V The alcohols fall into Class III while the monoterpene hydrocarbons are highly reactive and most of them appear in Class V with a- and $-pinene occurring in the upper half of Class IV The reactivity classification shown in Table II is similar to an earlier one we have formulated65 but many more compounds have now been included

Comparison with Other Scales

The ranking of reactivities for the aromatic hydrocarbons in our scale is essentially the same as that obtained by Altshuller et al4 and by Kopczynski 7 66 Although our proposed scale is based solely on hydrocarbon disappearance rates Altshuller and Bufalini20 have shown that this measure of reactivity is very similar to the one based on nitric oxide oxidation rates They showed that the ranking of reactivities of hydrocarbons from the nitric oxide photooxidation studies of Altshuller and Cohen6 and Glasson and Tuesdays was essentially the same as that obtained from the studies of hydrocarbon conshysuinption carried out by Schuck and Doyle 2 Stephens and Scott3 and Tuesday 5

As indicated above Rule 66 formulated by the LAAPCD in 1966 represented the first hydrocarbon control measure based on photochemical reactivity Although this and similar regulations have been effective results from recent

80

T

I I t

I Ii

76-31 1 7

d 37-39 d h h ffmiddot hstu ies in icate tat t ey give insu icient recognition tote ozone-forming potential of slow reactors such as g_-butane and propane under longshyterm irradiation conditions Consequently it is now realized that measures more stringent than Rule 66 are necessary to achieve reductions in ozone formation to levels approaching those mandated by the U S Clean Air Act Amendments of 1970

Recognition of such deficiencies in current hydrocarbon control regulations has led to re-examination of present hydrocarbon reactivity classifications The focus of these re-evaluations has been the five-class reactivity scale (see Table III) proposed by B Dimitriades at the EPA Solvent Reactivity Conference in 1974 25 Significant changes have been suggested for this reactivity classishyfication by the California ARB30-33 the LAAPCn34 the EPA67 and by industry The EPA is currently examining this question and since no final conclusions have been reached at this time we will restrict comparison of our proposed sci=Lle to the scale proposed in 1974 by Dimitriades of the EPA In addition we will discuss our proposed scale in the context of the three-class system r~cently approved32 by the ARB for application to hydrocarbon pollutant invenshytories and for planning future control strategies

Briefly the EPA has proposed on the basis of previous experimental studies that methane ethane acetylene propane and benzene are essentially non-reactive for typical urban ambient hydrocarbon-NOx ratios25 and these compounds are placed in Class I on their scale Three other classes have been proposed for mobile source hydrocarbon ernissions68__Class III (C4 and higher alkanes) Class IV (aromatics less benzene) and Class V (alkenes) When stationary source hydrocarbons including solvents (Class II) are added to the list five classes are suggested as shown in Table III

The reactivity classification proposed here (Tables I II) can be compared with that suggested by the EPA (Table III) It is evident that several signifishycant differences emerge

(1) The C1-C3 alkanes are given equal weighting in the EPA scale and all are designated unreactive while our scale clearly differentiates between the three compounds methane ethane and propane in Classes I II and III respectively

(2) According to our proposed classification benzene and n-butane are of similar reactivity while the EPA scale places them in Class I and III respectively

(3) All the alkenes are placed in Class V of the EPA scale while our proposed scale shows a differentiation in reactivity from ethene in Class III to 23-dimethyl-2-butene in Class V

(4) Our scale gives recognition to the high reactivity of natural hydroshycarbons such as the pinenes_and i-limonene placing these in Class IV and V respectively The present published EPA scale does not give a classification for natural hydrocarbons although they could be loosely categorized as substituted alkenes in Class V

81

l l

i

l

76-311 8

In addition to noting these differences some similarities exist between the two scales For example our scale shows that 13-butadiene ts highly reactive which is consistent with previous studies indicating it to be a facile precursor of eye irritants20 and highly effective in producing oxidant during irradiation of HC-NOx mixtures1 Both our scale and the EPAs show methanol to be relatively unreactive with a greater reactivity exhibited by the higher alcohols although our sc-ale predicts a lower overall reactivity than that of the EPA

The three-class system recently approved by the ARB is shown in Table IV and is similar to one being considered by the EPA30 According to the ARB 32

Class I would include low reactivity organic compounds yielding little if any ozone under urban conditions Class II would consist of moderately reactive organic compounds which give an intermediate yield of ozone within the first day of solar irradiation Class III would be limited to highly reactive organic compounds which give very high yields of ozone within a few hours of irradiation

In general the three-class ARB scale is in line with the scale presented here based on OH rate constants with only minor exceptions For example the ARB scale shows the primary and secondary Cz+ alcohols to be highly reactive in Class III while our scale shows them to be of moderate reactivity

Finally we wish to note two limitations of the reactivity scale proposed here One limitation of our scale is that it is not strictly applicable to compounds which undergo significant photodissociation in the atmosphere and aldehydes have been omitted for this reason In such cases the compound will be more reactive than predicted from a scale based on hydrocarbon depletion due solely to reaction with OH A second limitation in the application of our scale concerns the inherent problem arising from uncertainties in the identity and fates of subsequent products33

Conclusion middot

Our proposed reactivity scale based on the depletion of hydrocarbons by reaction with the OH radical has utility in assessing hydrocarbon chemical behavior in polluted ambient air Since only those organic compounds which participate in atmospheric reactions are of consequence in the chemical transshyformations in ambient air their relative reactivity towards OH is a useful and directly measurable index of their potential importance in the production of secondary pollutants

One advantage of the proposed scale is that because it is based on the individual rate constants for hydrocarbon reaction with OH any degree of gradation in reactivity may be used to formulate any desired number of classes-shyfrom relatively few to a large number of classes or even an ordered ranking of compounds A second strength of the present scale is that it can be readily extended to include additional organic compounds once their rate of reaction

82

76-311 9

~

l

I

with OH is known Finally the proposed scale gives adequate weight to alkanes and a number of aromatic hydrocarbons which require a significant period of time to react but can contribute substantially to ozone formation during longer irradiation periods eg during their transport downwind from urban centers-shya phenomenon of increasing concern to air pollution control agencies

Acknowledgement

We gratefully acknowledge access to the final report of the ARB Reactivity Committee prior to official release

This work was supported by the California Air Resources Board (ARB Contract No 5-385) and the National Science Foundation-Research Applied to National Needs (NSF-RANN Grant No ENV73-02904-A03) The contents do not necessarily reflect the views and policies of the ARB or the NSF-RANN nor does mention of trade names or commercial products constitute endorsement or recomshymendation for use

References

1 A J Haagen-Smit and M M Fox Ozone formation in photochemical oxidashytion of organic substances Ind Eng Chem 48 1484 (1956)

2 E A Schuck and G J Doyle Photooxidation of hydrocarbons in mixtures containing oxides of nitrogen and sulfur dioxide Rept No 29 Air Pollution Foundation San Marino California 1959

3 E R Stephens and W E Scott Relative reactivity of various hydrocarbons in polluted atmospheres 11 Proc Amer Petrol Inst 42 (III) 665 (1962)

4 A P Altshuller I R Cohen S F Sleva and S L Kopczynski Air pollutionphotooxidation of aromatic hydrocarbons Science 138 442 (1962)

5 C S Tuesday Atmospheric photooxidation of olefins Effect of nitrogen oxides Arch Environ Health l 188 (1963)

6 A P Altshuller and I R Cohen Structural effects on the rate of nitrogen dioxide formation in the photooxidation of organic compound-nitric oxide mixtures in air Int J Air Water Pollut l 787 (1963)

7 s L Kopczynski Photooxidation of alkylbenzene-nitrogen dioxide mixtures in air Int J Air Water Pollut _ 107 (1964)

B W A Glasson and C S Tuesday paper presented at the 150th National Meeting ACS Atlantic City N J September 1965

9 A P Altshuller and J J Bufalini Photochemical aspects of air pollution a review J Photochem Photobiol _ 97 (1965)

10 M F Brunelle JE Dickinson and W J Hannning Effectiveness of organic solvents in photochemical smog formation Solvent Project Final Report Los Angeles County Air Pollution Control District July 1966

11 W J Hamming Photochemical reactivity of solvents SAE Transactions Ji 159 (1968)

83

10 76-311

12 JM Reuss and W A Glasson Hydrocarbon reactivity and eye irritation Environ Sci Technol I 1109 (1968)

13 A P Altshuller S L Kopczynski D Wilson W Lonneman and F D Sutterfield Photochemical reactivities of n-butane and other paraffinic hydrocarbons J Air Pollut Contr Assoc 19 787 (1969)

14 A P Altshuller S L Kopczynski D Wilson W Lonneman and F D Sutterfield Photochemical reactivities of paraffinic hydrocarbonshynitrogen oxides mixtures upon addition of propylene or toluene J Air Pollut Contr Assoc 19 791 (1969)

15 B Dimitriades B H Eccleston and R W Hurn An evaluation of the fuel factor through direct measurement of photochemical reactivity of

l emissions J Air Pollut Contr Assoc 20 150 (1970)

l 16 A Levy and S E Miller Final technical report on the role of solvents

in photochemical smog formation National Paint Varnish and Lacquer Association Washington DC April 1970

17 K W Wilson and G J Doyle Investigation of photochemical reactivities organic solvents Final Report SRI Project PSU-8029 Stanford Research Institute Irvine California September 1970

18 W A Glasson and C S Tuesday Hydrocarbon reactivity and the kinetics of the atmospheric photooxidation of nitric oxide J Air Pollut Contrl

t Assoc 20 239 (1970)

19 Control Techniques for hydrocarbon and organic solvent emissions from stationary sources Nat Air Pollut Contr Admin Publication IIAP-68 March 1970

20 A P Altshuller and J J Bufalini Photochemical aspects of air pollution a review Environ Sci Technol i 39 (1971)

21 W A Glasson and C S Tuesday Reactivity relationships of hydrocarbon c mixtures in atmospheric photooxidation Environ Sci Technol 5 151 I (1971) -

22 E R Stephens Hydrocarbon reactivities and nitric oxide conversion in real atmospheres in Chemical Reactions in Urban Atmospheres C S Tuesday Ed American Elsevier Inc N Y 1971 pp 45-54

23 Solvents Theory and Practice R W Tess Ed Adv Chem Series 124 (1973)

24 E R Stephens Hydrocarbons in polluted air Sunnnary Report CRC Project CAPA-5-68 June 1973 NTIS No PB 230 993AS

25 Proceedings of the solvent reactivity conference U S Environmental Protection Agency Research Triangle Park N C EPA-6503-74-010 November 1974

26 S L Kopczynski R L Kuntz and J J Bufalini Reactivities of complex hydrocarbon mbtures Environ Sci Technol 2_ 648 (1975)

ltL

27 Environmental Protection Agency Region IX Technical Support Document January 15 1973

28 M Feldstein A critical review of regulations for the control of hydroshycarbon emissions from stationary sources J Air Pollut Contr Assoc 24 469 (1974)

84

l l f [

l

middot-i~ I~ ~ 4 -

11 76-311

29 A P Altshuller An evaluation of techniques for the determination of the photochemical reactivity of organic emissions J Air Pollut Contr Assoc 16 257 (1966)

30 Progress report on hydrocarbon reactivity study California Air Resources Board Informational Report No 72-12-10 June 12 1975_

31 Organic compound reactivity system for assessing emission control strageshygies California Air Resources Board Staff Report No 75-17-4 September 29 1975

32 Board approves reactivity classification California Air Resources Board Bulletin March 1976 p 4

33 Tinalreport of the committee on photochemical reactivity to the Air Resources Board of the State of California Draft April 1976

34 Los Angeles County APCD proposed reactivity classification of organic compounds with respect to photochemical oxidant formation Los Angeles County Air Pollution Control Department July 21 1975

35 B F Goeller J H Bigelow J C DeHaven W T Mikolowsky R L Petruschell and B M Woodfill Strategy alternatives for oxidant control in the Los Angeles region The RAND Corporation Santa Monica California R-1368-EPA December 1973

36 J C Trijonis and K W Arledge Utility of reactivity criteria in organic emission control strategies for Los Angeles TRW Environmental Services Redondo Beach California December 1975

37 J Holmes California Air Resources Board private communication 1975

38 J N Pitts Jr A M Winer K R Darnall G J Doyle and JM McAfee Chemical consequences of air quality standards and of control implementation programs roles of hydrocarbons oxides of nitrogen and aged smog in the production of photochemical oxidant Final Report California Air Resources Board Contract No 3-017 July 1975

39 A P Altshuller in reference 25 pp 2-5

40 N R Greiner Hydroxyl-radical kinetics by kinetic spectroscopy II Reactions with c H6 c H8 and iso-c H at 300 K J Chern Phys 462 3 4 103389 (1967)

41 K Westberg and N Cohen The chemical kinetics of photochemical smog as analyzed by computer The Aerospace Corporation El Segundo California ATR-70(8107)-1 December 30 1969

42 B Weinstock E E Daby and H Niki Discussion on paper presented by E R Stephens in Chemical Reactions in Urban Atmospheres C S Tuesday Ed Elsevier N Y 1971 pp 54-55

43 H Niki E E Daby and B Weinstock Mechanisms of smog reactions Adv Chem Series 113 16 (1972)

44 K L Demerjian J A Kerr and J G Calvert The mechanism of photoshychemical smog formation Adv Environ Sci Technol ~ 1 (1974)

45 G J Doyle A C Lloyd K R Darnall A M Winer and J N Pitts Jr Gas phase kinetic study of relative rates of reaction of selected aromatic compounds with hydroxyl radicals in an environmental chamber Environ Sci Technol 2_ 237 (1975)

85

12 76-311

46 A C Lloyd K R Darnall A M Winer and J N Pitts Jr Relative rate constants forreaction of the hydroxyl radical with a series of alkanes alkenes and aromatic hydrocarbons J Phys Chem 80 789 (1976)

47 A M Winer A C Lloyd K R Darnall and J N Pitts Jr Relative rate constants for the reaction of the hydroxyl radical with selected ketones chloroethenes and monoterpene hydrocarbons J Phys Chem 80 1635 (1976) -

48 A C Lloyd K R Darnall A M Winer and J N Pitts Jr Relative rate constants for the reactions of OH radicals with isopropyl alcohol diethyl and di-n-propyl ether at 305 plusmn 2 K Chem Phys Lett~ 405 (1976)

49 CH Wu S M Japar and H Niki Relative reactivities of HO-hydrocarbon reactions from smog reactor studies J Environ Sci Health All 191 (1976)

i 50 D A Hansen R Atkinson and J N Pitts Jr Rate constants for the reaction of OH radicals with a series of aromatic hydrocarbons J Phys Chern JJ 1763 (1975)

51 D D Davis W Bollinger S Fischer A kinetics study of the reaction of the OH free radical with aromatic compounds I Absolute rate constants for reaction with benzene and toluene at 300degK J Phys Chem J_J_ 293 (1975)

f 52 C T Pate R Atkinson and J N Pitts Jr The gas phase reaction ofi 03 with a series of aromatic hydrocarbonsmiddot J Environ Sci Health All

1 (1976)

53 R Atkinson and J N Pitts Jr Absolute rate constants for the reaction of o(3P) atoms with selected alkanes alkenes and aromatics as determined by a modulation technique J Phys Chem 78 1780 (1974)

54 D H Stedman and H Niki Ozonolysis rates of some atmospheric gases Environ Lett_ 303 (1973)

55 Chemical kinetic and photochemical data for modeling atmospheric chemistry R F Hampson Jr and D Garvin Eds NBS Technical Note 866 June 1975

56 D H Stedman CH Wu and Hbull Niki Kinetics of gas phase reactions of ozone with some olefins J Phys Chem ]J_ 2511 (1973)

57 S M Japar CH Wu and H Niki Rate constants for the reaction of ozone with olefins in the gas phase J Phys Chem 78 2318 (1974)

58 J G Calvert and R D McQuigg The computer simulation of the rates and mechanisms of photochemical smog formation Int J Chem Kinetics Symposium No 1 113 (1975)

59 C C Wang L I Davis Jr CH Wu S Japar H Niki and B Weinstock Hydroxyl radical concentrations measured in ambient air Science 189 797 (1975)

60 D Perner D H Ehhalt H W Patz U Platt E P Roth and A Volz OH radicals in the lower troposphere 12th International Symposium on Free Radicals Laguna Beach California January 4-9 1976

61 D D Davis T McGee and W Heaps Direct tropospheric OH radical measurements via an aircraft platform laser induced fluorescence 12th International Symposium on Free Radicals Laguna Beach California January 4-9 1976

86

13 76-311

62 J L Laity I G Burstain and B R Appel Photochemical smog and the atmospheric reactions of solvents in Reference 23 p 95

63 E P Grimsrud H H Westberg and R A Rasmussen Atmospheric reactivity of monoterpene hydrocarbons NOx photooxidation and ozonolysis Int J Chem Kinetics Symposium No 1 183 (1975)

64 W L Chameides and D H Stedman Ozone formation from NOx in clean air Environ Sci Technol 10 150 (1976)

65 K R Darnall A C Lloyd A M Winer and J N Pitts Jr A reactivity scale for atmospheric hydrocarbons based on reaction with the hydroxyl radical Environ Sci Technol 10692 (1976)

66 S L Kopczynski quoted in Reference 20

67 Informal EPA meeting Philadelphia Pennsylvania July 30-31 1975 l 68 M Black L E High and JE Sigsby Methodology for assignment of al hydrocarbon photochemical reactivity index for emissions from mobile

soucres EPA-6502-75-025 U S Environmental Protection Agency Research Triangle Park North Carolina March 1975

J i

J

s

87

ii

1

14 76-311

Table I R~activity Scale fer Hydrocarbons Based on Rate of Disappearance

of the Hydrocarbon due to Reaction wih the Hydroxyl Radical

Reactivity Relative Class Half-lifea (days) to Methane(== 1)

I gt 10 ~ 10

II 1 - 10 10 - 100

III 01 - 1 100 - 1000

IV 001 - 01 1000 - 10000

V 001 ~ 10000

a 7 -3[OR] is assumed to be 10 radicals cm

88

-- _1---c=r- FFIT~ Ja--~uli -~4 P-iJJia-degR j_--CL[Jl_j i---i_ 0-1 j-____-~ ~ -Ji=-ej ~~~ ~~- I -middot~1--c--aC-

Table II Proposed Reactivity Classification of Hydrocarbons and CO Based on Reaction with the Hydroxyl Radical

CLASS I CLASS II CLASS III CLASS IV CLASS V (S48 x107a (48 X 107 - 48 X lQB)a (48 X 108- 48 X 109) 8 (48 x 109 - 48 x 10lO)a 4 8 X 1Ql0) a

Methane Methanol Neopentane n-Octane 2-Mcthyl-2-butene Carbon monoxide Cyclobutane Diethyl ether 3-Carene Acetylene 2233-Tetramethylbutane pXylene 23-Dirnethyl-2-butene Ethane Benzene p-Ethyltoluene 13-Phellandrene

Ethyl acetate o-Ethyltoluene Carvomenthene Isobutane o-Xylene d-LimoneneshyPropane p-Cymene Dihydromyrcene Diethyl ketone Methyl isobutyl ketone Myrcene Isopropyl acetate Di-n-propyl ether cis-Ocimene n_Butane m-Ethyltoluene n-Butyl acetate m-Xyle~e Ethanol 123-Trimethylbenzene Methylethyl ketone Propene Isopentane 1-Butene 1-Propanol 33-Dimethyl-1-butene 224-Trimethylbutane 1-Pentene V

23-Dimethylbutane 1-Hexene co 223-Trimethylbutane 124-Trimethylbenzene0

Tetrahydrofuran Isobutene 2-Methylpentane 135-Trimethylbenzene Toluene cis-2-Butene Cyclopentane Diisobutyl ketone n-Propylbenzene 2-Methyl-1-butene Isopropylbenzene a-Pinene Ethene Cyclohexene n-Hexane cis-2-Pentene Cyclohexane trans-2-Butene n-Pentane 13-Pinene p-Menthane 13-Butadiene 1-Butanol Isoprene Isopropyl alcohol 4-Methyl-2-pentanol 3-Methylpentane Ethylbenzene

--J 0 a -1 -1Range of values (in liter mole sec ) for the rate constant for reaction of the OH radical with the listed w

compounds

I

------t-L ~- ~ J---1 bull middotmiddott1- lTLJ_J 1--___r _ ~II ~Ai ~-_c11 )----_-J1bull~

Table III Proposed EPA Reactivity Classification of Organics (from reference 25 1974)

CLASS I CLASS II CLASS III CLASS IV CLASS V ~Nonreactive~ (Reactive) (Reactive) (Reactive) (Reactive)

c1-c paraffins3

Acetylene

Benzene

Benzaldehyde

Acetone

Methanol

Tertiary-alkyl alcohols

Phenyl acetate

Methyl benzoate

Ethyl amines

Dimethyl formamide

IO Perhalogenated 0 hydrocarbons

RFACTIVITY RATING 10

Mono-tertiary-alkyl benzenes

Cyclic ketones

Tertiary-alkyl acetates

2-nitropropane

35

c4+ paraffins

Cycloparaffins

Styrene

n-Alkyl ketones

Primary amp Secondary alkyl acetates

N-methyl pyrrolidone

NN-dimethyl acetamide

Partially halogenated paraffins

6S

Primary amp Secondary alkyl benzenes

Dialkyl benzenes

Branched alkyl ketones

Primary amp Secondary alkyl alcohols

Cellosolve acetate

Partially halogenated olefins

97

Aliphatic olefins

a-Methyl styrene

Aliphatic aldehydes

Tri- amp tetra-alkyl benzenes

Unsaturated ketones

Diacetone alcohol

Ethers

Cellosolves

deg

143

-J OI

I) I-

I

17 76-311

Table IV California Air Resources Board (ARB) Reactivity Classification of Org_a1ic Compounds 32

Class I Class II Class III (Low Reactivity (Moderate Reactivity) (High Reaccivity)

c1-c Paraffins2 Acetylene

l

l B2nz2ne

Benzaldehyde

Acetone

Methanol

Tert-alkyl alcohols

Phenyl acetate

Methyl benzoate

Ethyl Amin-lts

Dim2thyl fcr-amide

Perhalogenated Hydrocarbons

Partially halogenated paraffins

Phthalic Anhydride

Phthalic Acids

Acetonitrile

Acetic Acid

Aromatic Amines

Hydroxyl Amines

Naphthalene

Chlorobenzenas

Nitrobenzenes

Phenol 1

Hono-tert-alkyl-benzenes

Cyclic Ketones

Alkyl acetates

2-Nitropropane

c + Paraffins3

Cycloparaffins

n-alkyl Ketones

N-Methyl pynolidone

NN-dimethyl acetamide

Alkyl Phenols

Methyl phthalates

All other aromatic hydroshycarbons

All Olefinic hydrocarbons (including partially haloshygenated)

Aliphatic aldehydes

Branched alkyl Ketones

Cellosolve acetate

Unsaturated Ketones

Primary amp Secondary c + alcohols

2 Diacetone alcohol

Ethers

Cellosolves

Glycols

c + Alkyl phthalates2

Other Esters

Alcohol Amines

c + Organic acids+ di acid3

c + di acid anhydrides3

Fannin Hexa methylene-tetramine)

Terpenic hydrocarbons

Olefin oxides

Reactivity data are either non-existent or inconclusive but conclusive data from similar compounds are available therefore rating is uncertain but reasonable

Reactivity data are uncertain

91

r1_

l

Volume 42 number 2 CHEMICAL PHYSICS LETTERS 1 September 1976

RELATIVE RATE CONST ANTS FOR THE REACTIONS OF OH RADICALS

WITH ISOPROPYL ALCOHOL DIETHYL AND DI-11-PROPYL ETHER AT 305 plusmn 2 K

Alan C LLOYD Karen R DARNALL Arthur M WINER and James N PITTS Jr Statewide Air Pollution Research Center University ofCalifornia Riverside California 92502 USA middot

Received 27 April 1976

Relative rate constants have been obtained for the reaction of the hydroxyl radical (OH) with isopropyl alcohol and diethyl and di-n-propyl ether in environmental chamber photooxidation studies employing hydrocarbon-NOx mixtures in air it 1 atmosphere and 305 plusmn 2 K These results were obtained from measurements of the relative rates of disappearance of these compounds on the previously validated basis that OH radicals are dominantly responsible for their disappearance in the initial stages of reaction under the experimental conditions employed Absolute rate constants obtained by using the published rate constant for OH+ isobutcne of 305 X 1010 Q mole-1 s-1 are (k X 10-9 I mole-1 s-1) isopropyl alcohol 43 plusmn 13 diethyl ether 56 plusmn II and di-nbullpropyl ether 104 plusmn 21 No previous determinations of these rate constants have been reported

1 Introduction 2 Experimental

The hydroxyl radical plays a fundamental role in The technique used to determine relative OH rate chemical transformations in photochemical air pollushy constants in this study has been previously employed tion [ l -7] With the realization of the importance of to obtain kinetic data for reactions of OH with alkanes OH has come an extensive experimental effort to [14 15] alkenes [ l 115) ketones [ l l] aromatics determine rate constants for the reaction of OH with a [1415] and halogenated [I 116) and natural hydroshylarge number of organic compounds These studies carbons [I l] Briefly irradiations of the hydrocarbonshyhave been documented in recent reviews [7] and in a NOx-air system were carried out in a Pyrex chamber critical compilation [8] of approximately 6400-liter volume at a light intensity

To date however comparatively few data have been measured as the rate of N02 photolysis in nitrogen obtained for the gas phase reactions of OH with oxyshy (k1) of 04 min- 1 All gaseous reactants were injected genated hydrocarbons [9-1 l] In this work rate conbull into pure matrix air [ 17] in the chamber using l 00-ml stants are reported for the reaction of OH with three precision bore syringes Liquid reactants were injected ingredients of commercial solvents [1213] - isoshy with micropipettes During irradiation the chamber propyl alcohol and diethyl and di-n-propyl ether temperature was maintained at 305 plusmn 2 K Such data are of fundamental importance in assessing The alcohol and ether concentrations were monitored the role of these oxygenated hydrocarbons in atmosshy with gas chromatography (FID) using a 5-ft X I 8-in pheric chemistry particularly since as controls on stainless steel column packed with Poropak Q (80-

automobiles reduce the contribution of hydrocarbons 100 mesh) operated at 393 and 423 K respectively from mobile sources emissions of such oxygenates Ozone was monitored by means of ultraviolet absorpbull from stationary sources become increasingly of tion CO by gas chromatography and NO-NO2-NOx greater concern by the chemiluminescent reaction of NO with ozone

92

205

Volume 42 number 2 CHEMICAL PHYSICS LETTERS I September 1976

i l

l

The initial concentrations of reactant were isoproshypyl alcohol 60 ppb ( 1 ppb in air= 40 X I o- 11 mole liter - I at 305 K and I atmosphere) diethyl ether 20 ppb and di-11-propyl ether 55 ppb In addition to these compounds traces of several alkanes alkenes and oxygenates were present [I 115) Initial concenshytrations in these experiments were 800-1500 ppbC of total non-methane hydrocarbons 060 ppm of NOx (with an NO2 NOx ratio of 003-008) 6 ppm of CO and 3000 ppb of methane together with warer vapor at 50 relative humidity Replicate 3-hour irradiations vere carried out with continuous analysis of inorganic species analysis of hydrocarbons every 15 minutes and analysis of isopropyl alcohol and the ethers every 30 minutes

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilushytion rate (12-l6 per hour) from the observed hydrocarbon disappearance rate The HCNOx and NON02 ratios were chosen to delay the formation of ozone and ozone was not detected during the irrashydiation period [11 14]

As discussed in detail previously [1115] the major sources of OH in our experimental system are probably the photolysis of HONO and the reaction of H02 with NO [561819]

NO+ N02 + H20-= 2 HONO (l)

H02 + N02 HONO + P2 (2)

HONO + hv(290-410 nm) OH+ NO (3)

l-102 +NO OH+N02 (4)

The first reaction is thought to occur relatively slowly homogeneously [2021] but its rate is probably sigshynificantly faster when the reaction is catalyzed by surfaces Thus nitrous acid has been observed in a chamber study of simulated atmospheres carried out in our laboratory (22] while direct evidence for formation of OH radicals in an environmental chamber hasbeen provided recently by Niki Weinstock and co-workers [2324]

The concentration of OH radicals present during these irradiation experiments was calculated to range from 14 to 35 X 106 radicals cm-3 depending upon the conditions of the specific experiment The calculashytions employed the observed rates of isobutene dis-

206

appearance ( corrected for dilution) and the previously determined rate constant for OH+ isobutene [25] These concentrations are the same order as those calshyculated [182627] and observed directly 232428 29] by other workers

3 Results and discussion

Typical rates of disappearance observed during the irradiations of isopropyl alcohol and of the two ethers are shown in figs I and 2 respectively lsobutene wJs

used as the reference compound and is included in the figures From these pseudo-first-order rates of disshyappearance of the hydrocarbons rate constants reshylative to that of isobutene were obtained for the reshyaction of the PH radical with isopropyl alcohol and diethyl and di-n-propyl ether These were placed on an absolute basis using a value of 305 X 1010 Q

mole- 1 s-1 for the reaction of OH with isobutene [25] These results are presented in table I

There are no rate constants currently available for the reaction of OH radicals with ethers Assuming that hydrogen abstraction is the major reaction pathway one would expect these rate constants to be larger than

z 0

~ a 5 z w lt) z 0 u

0 w gta w ()

ID

ISOPROPYLALCOHOL

0

3 ______________________

omiddot 05 10 15 20 HOURS OF IRRADIATION

Fig 1 Concentrations of isopropyl alcohol and isobu tene plotted on a logarithmic scale) during photolysis of HC-NOx mixture in air at 305 plusmn 2 K and I atm

93

l

Volume 42 number 2 CHEMICAL PHYSICS LETTERS 1 September 1976

50

Fig 2 Concentrations of diethyl and di-n-propyl ether and isobutene (plotted on a logarithmic scale) during -photolysis of HC-NOx mixture in air at 305 plusmn 2 Kand 1 atm

those for the corresponding alkane since the C-H bond strengths in the ethers are at least several kiloshycalories weaker [30] Thus our rate constants ( at 305 K) for diethyl and di-n-propyl ethers of 56 and 104 X 109 Q mole-1 s-1 respectively compare with values for the corresponding alkanes n-butane and n-hexane (at 298 K) of 16 and 29 X 109 Q mole-I s- 1 respectively calculated from the formula of Greiner [31]

Two recent measurements of the rate constants for the gas phase reaction of OH radicals with alcohols

Table 1

iftltt a z w ~ 10 0 u

0 gta S 5

0 05

a DIETHYL ETHER

--0--

10 15 20 25 HOURS OF IRRADIATION

have been reported Osif et al [9) obtained a value of 53 X 107 Q mole- 1 smiddot- 1 for OH+ methanol using a value of 84 X 107

Q moiemiddotmiddot 1 s- 1 for OH reaction with CO [8] Recently Campbell et al [IO] have carried out studies of the reaction of OH With a series of alcohols-shymethanol ethanol 1-propanol and 1-butanol Our value for OH+ isopropyl alcohol of (43 plusmn 13) X 109 Q mole- 1

s-1 at 305 K is consistent with the value of (2 3 plusmn 02) X lQ9Q moie- 1 s-1reported for 1-propanol by Campbell et ai (10) at 292 K middot Although as mentioned no literature data are availshyable for the reaction of OH with ethers it is interesting to examine the data for solvent photooxidations obshytained by Laity et al [32] in chamber studies These workers irradiated separate solvent-NOx-air mixshytures in a stainless steel chamber at 305 K and reshyported t_he maximum rate of hydrocarbon disappearshyance observed in these experiments relative to toluene If this disappearance is assumed to be predominantly duemiddotto attack by OH then absolute rate constants may be derived from these data using a value of 36 X 109 Q moie- 1 s-1 for the reaction of OH+ toluene [3334] Values for OH+ isopropyl alcohol and OH+ diethyl ether are 31 X 109 and 54 X 109 Q mole-1 s-1 respectively compared to our results of 43 and 56 X 109 Q moie-1 s-1 Considering the differences in experimental methods and apparatus as well as the uncertainties involved in such an interpretation of the data of Laity et al [32] the agreement obtained for isopropyl alcohol and diethyl ether is quite satisshyfactory Similar treatment of their chamber data for other compounds for which the OH rate constants are known yields results (35] in fair agreement with literature values

Relative and absolute rate constants for the reaction of OH with selected hydrocarbons

Compound Relative rate of k(ll mole-1 s-1 X 10-9 )

disappearance this work a) literature

isobutene 1 305 isopropyl alcohol 014 43 31b) diethyl ether 0185 56 54 b) di-ndegpropyl ether 034 104

a) Using a literature value of 305 X 1010 ll mole- I s-1 for OH+ isobutene (25] b) Using the data of Laity et al [32] and attributing the HC loss solely to reaction with OH results placed on an absolute basis

using a value of 36 X 109 ll mole-1 s-1 for OH+ toluene (see text) middot

94

207

Volume 42 number 2 CHEMICAL PHYSICS LETTERS I September 1976

r

I l i l l r il

l11e atmospheric half lives tl2 = 0693kou +RH

X [01-1] for isoprupyl alcohol and diethyl and di-11-propyl ether are akubted to be 5 4 41 and 22 hours respectivdy using an ambient OH concentrashytion of 5 X 106 radicals cm-3 [18232426-29] and our rate constants Thus these compounds react with OH at rates similar to ethene c6 - c7 alkanes and mono-alkyl substituted benzenes [36] The relative importance of alcohols ethers and other oxygenated hydrocarbons in photochemical smog formation are discussed in detail elsewhere [35-37]

Acknowledgement

The authors gratefully acknowledge the assistance of FR Burleson in carrying out the gas chromatoshygraphic analyses WD Long for valuable assistance in conducting the chamber experiments and Dr R Atkinson for useful comments concerning this manushyscript This work was supported in part by the California Air Resourses Board (Contract No ARB 5-385) and the National Science Foundation-Research Applied to National Needs (NSF~RANN Grant No AEN73-02904-A02)

References

[I] NR Greiner J Chem Phys 46 (1967) 3389 [2] J 1-Ieicklen K Westberg and N Cohen Center for Air

Environmental Studies Pennsylvania State University University Park PA Pub 114-69 (1969)

[3] DH Stedman EE Morris Jr EE Daby H Niki and B Weinstock 160th Natl Meeting American Chemical Society Chicago September 14-18 1970

(4] B Weinstock EE Daby and H Niki Discussion on paper presented by ER Stepens in Chemical reactions in urban atmospheres ed CS Tuesday (Elsevier Amsterdam 1971) pp 5455

(51 H Niki EE Daby and B Weinstock in Advances in Chemistry Series No 113 (American Chemical Society Washington 1972) p 16

(6) KL Demerjian JA Kerr and JG Calvert Advances in environmental science and technology Vol 4 eds JN Pitts Jr and RL Metcalf (Wiley-lnterscience New York 1974) p 1

(7) JN Pitts Jr and BJ Finlayson Angew Chem Intern Ed 14 (1975) l BJ Finlayson and JN Pitts Jr Science 191 _(1976) 111

(8) RF Hampson Jr and D Garvin eds Chemical kinetic and

208

photochemical data for modeling atmospheric d1cmi~try NBS Tbullchnk11 Note 866 ltJune 1975)

[9] TL Osif R Sinrnnaitis and J lkicklcn J Photod1cm 4 (1975) 233

[10] JM Campbell DF McLaughlin and BJ Handy Ch~m Phys Letters 38 ( 1976) 362

[11] AM Winer AC Lloyd KR Darnall and JN Pitts Jr J Phys Chem 80 (I 976) to be published

( 12] KW Wilson and GJ Doyle Investigation of photocmiddothemishycal reactivities of organic solvents Stanford Research Inmiddot stitute Repor EPA Contract IICPA 22-9-125 (September 1970)

(13) Solvents theory and practice Advances in Chemistry Series No 124 (American Chemical Society W1hingtrn 1973)

[14] GJ Doyle AC Lloyd K Darnall AM Winer and JN Pitts Jr Environ Sci Technol 9 (1975) 237

[ 15) AC Lloyd KR Darnall AM Viner and J N Pitts Jr J Phys Chem 80 (1976) 789

(16) R Atkinson KR Darnall AM Winer and JN Pitts Jr Environ Sci Technol (1976) submitted for publication

(17) GJ Doyle PJ Bekowics AM Winer and JN Pitts Jr A charcoal-adsorption air purification system for clrnmshyber studies investigating atmospheric photochemistry Environ Sci Technol (1976) to be published

(18] B Weinstock and TY Chang Tellus 26 (1974) 108 [19] TA Hecht IH Seinfeld and MC Dodge Environ

Sci Technol 8 (1974) 327 (20] R Graham and BJ Tyler J Chem Soc Faraday Trans

I 68 (1972) 683 [21) WH Chan RJ Nordstrom JG Calvert and JN Shaw

Chem Phys Letters 37 (1976) 441 (22] JM McAfee AM Winer and JN Pitts Jr unpublished

results (1974) (23] CC Wang LI Davis Jr CH Wu S Japar H Niki and

B Weinstock Science 189 (1975) 797 (24) H Niki and B Weinstock Environmental Protection

Agency Seminar Washington (February 1975) [25] R Atkinson and JN Pitts Jr J Chem Phys 63 (1975)

3591 (26) H Levy II Advan Photochem 9 (1974) 369 [27) J G Calvert Environ Sci Technol 10 (1976) 256 (28) D Perner DH Ehhalt HW Patz U Platt EP Roth

and A Volz OH radicals in the lower troPosphere 12th International Symposium on Free Radicals Laguna Beach CA January 4-9 1976

(29) DD Davis T McGee and W Heaps Direct tropospheric OH radical measurements via an aircraft platform laser induced fluorescence 12th International Symposium on Free Radicals Laguna Beach CA January 4-9 1976

(30] JA Kerr and AF Trotman-Dickenson in Handbook of chemistry and physics 57th Ed (The Chemical Rubber Company Cleveland 197677)

[31] NR Greiner J Chem Phys 53 (1970) 1070 [32] JL Laity IG Burstein and BR Appel Solvents

theory and practice Advances in Chemistry Series No 124 (American Chemical Society Washington1973) p 95

95

Volume 42 number 2 CIIEMICAL PHYSICS LETTERS 1 September 1976

[33] DA Hansen R Atkinson and JN Pitts Jr J Phys Chem 79 ( 1975) 1763

[ 34 I DD Davis Bollinger and S Fischer J Phys Chem 79 (I 975) 293

[35 I JN Pitts Jr AC Lloyd AM Winer KR DamaII and GJ Doyle Demiddotelopment and application of a hydroshycarbon rlactivity scale based on reaction with the hydroxyl radical presented at the 69th Annual APCA Meeting Portland OR June 27-July I 1976

l

f I

If

i )

(36] KR Darnall AC Lloyd AM Winer and JN Pitts Jr Environ Sci Technol 10 (1976) to bl published

(37] JN Pitts Jr AM Winer KR Darnall AC Lloyd and GJ Doyle Smog chamber studies concerning hydrocarbon reactivity and the role of hydrocarbons oxides of nitrogen and aged smog in the production of photochemical oxidants to be presented at the In-tershynational Conference on Photochemical Oxidant Pollushytion and Its Control Research Triangle Park NC September I2-17 I 976

96

209

Volume 44 number 3 CHEMICAL PHYSICS LETTERS 15 December 1976

I

l

i

RELATIVE RATE CONST ANTS FOR THE REACTION OF OH RADICALS

WITH SELECTED C6 AND C7 ALKANES AND ALKENES AT 305 plusmn 2 K

Karen R DARNALL Arthur M WINER Alan C LLOYD and James N PITTS Jr Statewide Air Pollution Research Celter University of California Riverside California 92502 USA

Received 16 August 1976

Measurements of the rates of disappearance of three alkenes and two alkanes relative to isobutene in environmental chamber photooxidation studies employing hydrocarbon-NOx mixtures in air at 1 atmosphere have been used to obtain relative rate constants for the reaction of these compounds with the hydroxyl radical Absolute rate constants at 305

1plusmn 2 K obtained using a published rate constant for OH+ isobutene of 305 X 1010 l2 mole-1 s- are (k X 10-9 Q mole-I

s- 1) cyclohexene 47 plusmn 9 1-methylcyclohexene 58 plusmn 12 1-heptene 22 plusmn 5 23-dimethylbutane 31 plusmn 05 223-trishymethylbutane 23 plusmn 05 No previous determinations of OH rate constants have been reported for 1-heptene and 1-methylshycyclohexene For the remaining compounds these results are shown to be in good agreement with literature values reported for elementary or relative rate constant determinations

I Introduction

Recently we have reported rate constant determinashytions for the reaction of OH with alkanes [l 2] alshykenes [2 3] aromatic hydrocarbons_ [I 2) monoshyterpene hydrocarbons [3) halogenated hydrocarbons [3 4 J ketones [3] and ethers and isopropyl alcohol [5] These rate constants were obtained by measuring the relative rates of disappearance of hydrocarbons in a hydrocarbon-NOx mixture in air at 1 atmosphere and at 305 plusmn 2 K Absolute rate constants were obshytained [1--3 5] by using literature values for OH+ nshybutane andor isobutene at least one of which was employed as a reference compound in each study A similar technique has recently been employed by Niki and co-workers [6] Results obtained from these relative rate studies have uniformly been in very good agreement with literature values reported for elemenshytary rate constant determinations [7]

Here we report rate constant data at 305 plusmn 2 K for the reaction of OH with 1-heptene 1-methylcycloshyhexene cyclohexene and two substituted alkanes -2 3-dimethylbutane and 2 2 3-trimethylbutane These long-chain alkanes and cyclic alkenes have been suggested to play a major role in the formation of the organic portion of aerosols found in polluted ambient air (89)

2 Experimental

The experimental technique used to determine relashytive OH rate constants in this study has been described in detail previously [1-3) Briefly irradiations of the hydrocarbon-NOx-air system were carried out in a Pyrex chamber of approximately 6400-liter volume at a light intensity measured as the rate of NO2 photoshylysis in nitrogen (k1) of 04 min- 1bull During irradiation the chamber temperature was maintained at 305 plusmn 2 K

The alkane and alkene concentrations were monishytored with gas chromatography (FID) using a 5 X 18 SS of Poropak Q (80-100 mesh) column and a 36 X 18 SS column of 10 dimethylsulfolane on AW C-22 Firebrick (60-80 mesh) followed by 18 X 18 SS column of 10 Carbowax 600 operated at 433 and 273 K respectively Ozone was monitored by means of ultraviolet absorption CO by gas chroshymatography and NO-NO2-NOx by the chemiluminesshycent reaction of NO with ozone

The initial concentrations of reactants were 2 3-dimethylbutane 7 ppb (I ppb in air= 40 X 10-11

mole liter-I at 305 Kand 1 atmosphere) 223-trishymethylbutane 14 ppb cyclohexene 10 ppb I meshythylcyclohexene 21 ppb and 1-heptene 14 ppb In addition to these compounds traces of several alkanes alkenes and oxygenates were present [2 3] Initial

97

415

Vol um~ 44 number 3 CHEMICAL PHYSICS LETTERS 15 December 1976

i l

l

concentrations in these experiments were 700-800 ppbC of total non-methane hydrocarbons 061 ppm of NOx (with an NO2NOx ratio of 004-005) 6 ppm of CO and 2900 ppb of methane together with water vapor at 50 relative humidity Replicate three-hour irradiations were carried out with continshyuous analysis of inorganic species and analysis of hydrocarbons eve~y 30 minutes

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilushytion rate (16 per hour) from the observed hydrocarshybon disappearance rate The HCNOx and NON02 ratios were chosen to delay the formation of ozone and ozone was not detected during the irradiation peshyriod [13)

As discussed in detail previously [23) the major sources of OH in our experimental system are probably the photolysis of HONO and the reaction of HO2 with NO [10-13)

NO+ NO2 + H2O ~ 2 HONO (1)

HONO + hv (290-410 nm) OH+ NO (2)

HO2 + NO OH + NO2 (3)

The first reaction is thought to occur relatively slowly homogeneously [14-16) but its rate is probably sigshynificantly faster when the reaction is catalyzed by surshyfaces Thus nitrous acid has been observed in a chamshyber study of simulated atmospheres carried out in our laboratory [ 17] while direct evidence for formation of OH radicals in an environmental chamber has been provided recently by Niki Weinstock and co-workers [6 18 19] The reaction of HO2 with NO2 has also been proposed a~ a source

(4)

of nitrous acid [20 21] but recent results [22 23) suggest that peroxynitric acid is the major product of reaction (4)

(5)

The peroxynitric acid may decompose back to HO2 and NO2 or possibly give HONO but this is currently uncertain [22 23]

The concentration of OH radicals present during these irradiation experiments was calculated to range

416

from (25-50) X 06 radicals cm- 3 depending upon the conditions of the specific experiment The calculashytions of OH concentrations employed the o~served rates of isobutene disappearance ( corrected for dilushytion) and the previously determined rate constant for OH + isobutene [24] These concentrations are the same order as those calculated [12 25 26) and obshyserved directly [I 8 27 28) by other workers

3 Results and discussion

lsobutene was used as the reference compound in this series of experiments From the pseudo-first-order rates of disappearance of the hydrocarbons rate conshystants relative to that of isobutene were obtained for the reaction of the OH radical with 2 3-dimethylbushytane 2 2 3-trimethylbutane cyclohexene 1-methylshycyclohexene and 1-heptene These were placed on an absolute basis using a value of 305 X 1010 Q mole-ls-I for the reaction of OH with isobutene [24] These reshysults are presented in table 1 together with the availshyable literature data

Within the estimated 20 uncertainty in our rate constant values the agreement among our data and the literature values is good For example our value of (31 plusmn 06) X 109 Q mole- 1s-1 for 2 3-dimethylbutane agrees within experimental uncertainty with that of (26 plusmn 03) X 109 Qmole-1s- 1 recentlY determined in a separate study in this laboratory by Atkinson et al [4] This latter value was derived from the relative

1

rates of disappearance of 2 3-dimethylbutane and ethane during a 216-hour irradiation in the Pyrex chamber Both of these values are significantly lower than the value directly determined by Greiner [29] at 300 K of (516 plusmn 013) X 109 However it is expected [28) that the rate constant for the reaction of OH radicals with 2 3-bulldimethylbutane would be less than twice as fast as with isobutane on the basis of the numshybers of primary and tertiary hydrogen atoms in these two alkanes The absolute rate constant for the reaction of OH radicals with isobutane has been determined to be 15 X 109 Qmole-1s-1 at 304 K [29) and hence the OH rate constant for 23-dimethylbutane is exshypected to belt 3 X 109 Q mole-1 s-1 which is in agreement with both the determination of Atkinson et al [4) and with the present work

Similarly our value of (23 plusmn 05) X 109 Qmole-I

98

Volume 44 number 3 CIIEIICAL PHYSICS LETTERS 15 December 1976

Table l Pclativc and absolute rate constants for the reaction of OH anltl 0(3P) with selected hydrocarbons

---middot-middot--------

ko11 + compound at 305 K Compourd Relative rdte ko(3P) + compound

of disappearance this work a) literature at 298 K

------ -middot-middotmiddotmiddotmiddotmiddotmiddotbull-middot-middot----------------------isobutene 1 305 L2 e)

2 3-dimethylbutane 010 031 plusmn 006 045 b) 026 plusmn Oo3 c) 0012 e)

2 2 3-trimethylbutane 0074 023 plusmn 005 029 b) 1-pentene 18 plusmn 02 d) 028 e)

1-hexene 19 plusmn 02 d) 031 e) 1-heptenc 073 22 plusmn 05 cyclohexene 153 47 plusmn 09 38 plusmn 04 d) 13 e)

f 1-mcthylcyclohexene 191 58 12 49 plusmn 02 f)

a) Using a literature value of 305 X 1010 Q mole-1 s-~ for OH+ isobutene (24 ] b) Ref [29) T= 298 K c) Ref [4] T= 305 K d) Ref (16) using a literature value of 31 X 1010 Q mole-1 s-1 at 303 K for OH + cis-2-butene [24 ] e) Rcf(32] ORef(31) bull

s-1 for 22 3-trimethylbutane is in reasonable agreeshy addition reaction of 03P) atoms with cyclohexene l ment with the value of 29 plusmn 01) X 109 Q mole-1 s-1 and 1-methylcyclohexene (091 and 421 relative to obtai_ned by Greiner at 303 K (29] In addition the O (3P) + cyclopentene) (31] decrease in rate constant in going from 2 3-dimethylshy Table 1 shows a comparison of the reactivity of butane to the larger molecule 2 2 3-trimethylbutane 0(3P) atoms (31 32] as well as OH radicals towards is consistent with a decrease from two to one in the the compounds studied here and other selected comshynumber of tertiary hydrogen atoms [29] These atoms pounds Since both 0(3P) and OH are expected to are the most easily abstracted since the C-H bond primarily undergo addition to the alkenes one would strength for tertiary hydrogens is 3 kcal mole-1 and expect the same trend in going from 1-pentene to cyshy6 kcal mole- 1 weaker than that for secondary and clohexene and this is in fact observed In addition primary hydrogens respectively [30) the value of 18 X 1010 Qmole-1 s-1 obtained for

Recently Wu et al (6] us~d a technique similar 1-hexene by Wu et al [6] and our value of to the one employed here namely the photooxidation 22 X 1010 Q mole-1 s-1 for 1-heptene both obtained of hydrocarbons in the presence of NOx in air at 1 atshy by similar methods are consistent with the trend obshymosphere and 303 K middotunder the assumption that OH served by Wu et al (6] of an increase in rate constant was the principal species depleting the hydrocarbon with the larger molecular size of the alkene they obtained rate constants relative to cis-2-butene As mentioned above the higher straight chain and for several of the higher alkenes Using a value of cyclic alkenes are assumed to be important precursors 31 X 1010 Qmole-I s-1 for OH+ ds-2-butene at of the organic content of ambient aerosols found in 303 K [24] one obtains a value of 38 X 1010 mole-I polluted air [9 10] The rapid rate of reaction of OH s- 1 for cyclohexene at 303 K from the data of Wu et with these species ensures that in addition to 0 3-al [6] This value is in reasonable agreement with our alkene reactions OH attack will be an important reacshyvalue of (47 plusmn 09) X 1010 Qmole-I s-1 at 305 K tion pathway in real and simulated atmospheres posshy

Substitution of a methyl group for one of the hyshy sibly yielding multifunctional oxygenated species in drogen atoms in cyclohexene increases the rate conshy the aerosol phase (9 33] stant slightly since we obtain a value of Assuming an ambient OH concentration of 5 X 106 (58 plusmn 12) X 1010 Q mole-1 s-1 for 1-methylcycloshy radicals cm-3 (18 2728] the atmospheric halfclives hexene This is expected by analogy with the similar t112 =middot0693koH+RH [OH] based solely on reaction

middot 417

99

l

Volume 44 number 3 CHEIICAL PHYSICS LETTERS 15 December 1976

[

with OH are (in hours) 2 3-dimethylbutane 75 2 2 3-crimcthylbutanc 100 cyclohexcne 049 1-methylcyclohexcne 039 and 1-heptene 10 In the case of the alkenes the actual half-lives in the atmosshyphere are expected to be significantly less since 0 3 reacts with the alkenes at significant rates [934]

Acknowledgement

The authors gratefully acknowledge the assistance of FR Burleson in carrying out the gas chromato-

graphic analyses WD Long for valuable assistance in conducting the chamber experiments and Dr R Atkinson for helpful comments concerning this manushyscript This work was supported in part by the California Air Resources Board (ARB Contract No 5-385)

References

[ l] GJ Doyle AC Lloyd KR Darnall AM Winer and JN Pitts Jr Environ Sci Technol 9 (1975) 237

[2] AC Lloyd KR Darnall AM Winer and JN Pitts Jr J Phys Chem 80 (1976) 789

(3) AM Winer AC Lloyd KR Darnall and JN Pitts Jr J Phys Chem 80 (1976) 1635

[4 J R Atkinson KR Darnall AM Winer and JN Pitts Jr Tropospheric Reactivity of Halocarbons Final Report to EI DuPont de Nemours amp Co Inc February l 1976

[5] AC Lloyd KR Darnall AM Winer and JN Pitts Jr Chem Phys Letters 42 ( 1976) 205

[6] CH Wu SM Japar and II Niki J Environ Sci HealthshyEnviron Sci Eng A11 (1976) 19 l

(7] R Atkinson KR Darnall AC Lloyd AM Winer and JN Pitts Jr Accounts Chem Res submitted for publication (1976)

[8] D Grosjean National Academy of Sciences Report (1976)

(9] WE Schwartz PW Jones CJ Riggle and DF Miller Chemical Characterization of Model Aerosols Office of Research and Development US Environmental Proshytection Agency EPA-6503-74-011 August 1974

(10] H Niki EE Daby and B Weinstock Photochemical Smog and Ozone Reactions Advances in Chemistry Series No 113 (American Chemical Society Washington 1972) p 16

I11] KL Demerjian JA Kerr and J G Calvert in Advances in enviromi1ental science and technology Vol 4 eds JN Pitts Jr and RL Metcalr(Wiley-lnterscience New York 1974) p 1

418

[12] B Weinstock and TY Chang Tcllus 26 (1974) 108 [13) TA Hecht JH Seinfeld and MC Dodge Environ Sci

Technol 8 (1974) 327 [14] R Graham and BJ Tyler J Chem Soc Faraday Trans

I 68 (1972) 683 (15] WH Chan RJ Nordscrom JG Calvert and JN Shaw

Chem Phys Letters 37 (1976) 441 Environ Sci Techshynol 10 (1976) 674

(16) L Zafontc PL Rieger and JR Holmes Some Aspects of the Atmospheric Chemistry of Nitrous Acid presented at the 1975 Pacific Conference on Chemistry and pecshytroscopy Los Angeles CA October 28-30 1975

(17] JM McAfce AM Winer and JN Pitts Jr unpublished results (1974)

(18] CC Wang LI Davis Jr C11 Wu S Japar II Niki and B Weinstock Science 189 (1975) 797

(19) H Niki and B Weinstock Environmental Protection Agency Seminar Washington DC February 1975

[20] R Simonaitis and J Heicklen J Phys Chem 78 ( 1974) 653 80 (1976) 1

(21) RA Cox and RG Derwent J Photochem 4 (1975) 139 (22] H Niki P Meker C Savage and L Breitenbach 12th

Informal Photochemistry Conference National Bureau of Standards Gaithersburg MD June 28-July 2 1976

(23) J Heicklen 12th Informal Photochemistry Conference National Bureau of Standards Gaithersburg MD June 28-July 2 1976

[24) R Atkinson and JN Pitts Jr J Chem Phys 63 (1975) 3591

(25) H Levy 11 in Advances in photochemistry Vol 9 eds JN Pitts Jr GS Hammond and K Gollnick (VileyshyInterscience New York 1974) p 1

[26] JG Calvert Environ Sci Technol 10 (1976) 256 [27] D Perner DH Ehhalt HW Patz U Platt EP Roth

and A Volz OH Radicals in the Lower Troposphere 12th International Symposium on Free Radicals Laguna BeachCAJanuary 4-9 1976

[28] DD Davis T McGee and W Heaps Direct Tropospheric OH Radical Measurements Via an Aircraft Platform Laser Induced Fluorescence 12th International Symposhysium on Free Radicals Laguna Beach CA January 4-9 1976

(29] NR Greiner J Chem Phys 53 (1970) 1070 (30] JA Kerr and AF Trotman-Dickenson in Handbook

of Chemistry and Physics 57th Ed (The Chemical Rubber Company Cleveland 1976)

(31] JS Gaffney R Atkinson and JN Pitts Jr J Arn Chem Soc 97 (l 975) 5049

(32) JT Herron and RE Huie J Phys Chem Ref Data 2 (1973) 467

[33] WPL Carter KR Darnall AC Lloyd AM Winer and JN Pitts Jr 12th Informal Photochemistry Confershyence Gaithersburg MD June 28-July 2 1976

(34] JN Pitts Jr and BJ Finlayson Angew Chem Intern Ed14 (1975) 1 BJ Finlayson and JN Pitts Jr Science 191 (1976) 111

100

APPENDIX B

i Inorganic and Hydrocarbon Data for

AGC Runs 216 through 223

l Jl

[

l

101

AGC-216-l S02 CRY C GLASS CHA~SER

1976 JUL 27

OiRK FROM 1200 TO 1545 HIE TE~PERATURES ~ERE TAiltE~ FRC~ IHE LCG __ MOK__ FROM 16QQ__ Cgt ---middot-middotmiddotmiddotmiddotmiddot----middot- ---------middotmiddotmiddotmiddot-middotmiddotbull- TH~ TEMPERATURE~ WE~E TAK~N )R6MTHE iOMPUTER REicoui TECO ~3 SAMPLING RATE 1161 HLMlN

ClCCtlt __ ELMSpound0 ___ TSL _Rl HUI _____ SC2 ----middot--bullmiddot-middot ----middotmiddotmiddot-----middot-middotmiddotmiddotmiddotmiddot-------middot-middot-------middot-middot-middotmiddotmiddot-middot-middotmiddot-middot--middot TIME TIMEl~lNI IOEG Cl 11 (~PHI

bull1200 bullbullo 29-4bullbull bull---bullbullbull1bullo---middotbullo3bull59middot--bull bullbull-- bullbull--bullbullbull --bullbull-bull----bull-middotbull---- bullbullbullbull-bull------bullbullbullbullbullmiddot------ -bullbull bullbullbull-bull-bullbull-bullbullbullbull bull bull bull-bullbullORbullbullbullbullbull-bullbullbullbullbullbull~bullbullbull bullO O O bullbull-

1215 15 294 00 C353 _____ 1230 _______30_ ___22r__ aa ___ c~s_9 ____bull ________________________________________________________ _

124s 45 2ltJ6 Jo aJss 1300 60 296 2s c355 1315 75 29 ~--- _________2_o _C ~ 344 ---middot--- ______________________ __________ - middot-middotbull--middot ---------middot------middot--middot - --middot-middotmiddot - middot--middotmiddot 1330 JO 294 20 C357 1345 105 296 20 0344

____ 14_0_0 _____ 1o ____ J9 bull 7 __z_o ___ o_342__________________________ __________________________________________ ______ __ 1415 135 297 15 C344 1430 1sc 297 1s c34q

-- _ --~_lt45__ middot--- J6_5_ _______29_7_ --middotbull-middotmiddot2bull Q_______QU5____ middotmiddotmiddotmiddotmiddotmiddot---1500 160 297 1S C330 1515 195 299 15 C338

_______1530 ____ 210 ______3c bullo _1s____c_32g middot-----middotmiddotmiddotmiddot-1s4 22s 267 15 c331 1600 240 middotmiddotmiddotmiddotmiddot~ bullbullbullbullbullbullbullbullbullbullbullbull

l615______ 255___ _ _bullo~~__________

NO DATA TAKE~ ---- CATA OISCARCED QUESTIONABLE QATA

____________________ __ __ -middot

102

AGC-216-2 SC2 CRY GLASS CHA~eER 1976 JUL 27-2~

CLCCK El~PSfC TSl REL rUM S02 1111pound middotT111emiddot(M1~middotmiddot1oec cT (g (PPII

middoti63amiddotmiddot- -210 -middot33~middot4middot--middot--1--smiddot c3f3-middotmiddot---middot-- - middot 1646 286bull 334 15 C315

--middotmiddotmiddot- po1 middot--middot-middot301_ ____ 334 middotmiddotmiddotmiddotmiddotmiddotmiddot--middotl bull5 middot-middot (320 ___ middot----- _ middotmiddot--middot---- ----middot--bull-middotmiddot----middot-middot-middot middotmiddotbullbullmiddotmiddotmiddot-middot--middot-------middot--l7l6 316 335 15 C10 1731 331 335 l5 C315

-middotmiddot middot- _1746 346 _ 3~_5_ --middotmiddot 15C 3l4___ -------middot---middotmiddotmiddot---- _____ __ 1800 360 337 15 C321 1a1s 375 335 1s 0313

_ JSJO __ 390_335___1_5 C03______ middotmiddot-----------1845 405 335 15 C303

bull1900 420 334 20 0305 _______ middot1915___ middot-- 4 3_5bull middot-middot 3 3 2 ---middot- 2 o __ Cbull 309 -----middot----middotmiddotmiddotmiddot

193C 450bull 33 2 20 C299 1945 465 331 20 0297 2000 480 332 20 C300

- middot 2015- --middotmiddot45middotmiddotmiddotmiddot-- 334 - - 20 C 310 2030 510 335 20 0296 2045 525 337 20 C3072ico middot 540 middot3jmiddot----i~o-middotmiddotc299-middot-middot----bullmiddot-211s 555 338 20 0294

__ 21Jo ____ 5_7c_ __ 33 1 20 _o 300________

~~

il middot 2145 585 338 middot 20 0296J 1middot 2200 600 337 20 0296 2215 615 33 7 20 0296

~-middot 223c 630- middot 33 1 2 o a294 middot 1 C 2245 645 337 20 0294

2300 660 337 20 C291_____middot1 -------middot--------------middotmiddot------middot 2315 675 337 20 0237

C 2330 690 337 20 0293 2345 705 33~~middot-middot 20 0291 --------middotmiddot-middot-----------------middot-middot ---middot---- --- middot- middotmiddot o 120 334 2 a o2as

( 15 735 334 20 0268

(

103

t bull middotmiddotmiddotmiddot--

AGC-216-3 S02 CRY L GLASS CHAMlgtER

1976 JUL 2E

c1oc_~ ELAPSEC rs1 l=L HU S02 Tl~E Tl~~ibull~l IDEG Cl Ii) (PPMI

30 750 339 20 C287 45 765 346 zo 0278

- _lOQ_ middot- _]so ~sr 2 O C ~Obull middot-middot-middot-bullmiddot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot----middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middot-middotmiddot-middot-middotmiddotmiddotmiddot-middot---- middot-middot-middot- middotmiddot-middotmiddot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot------115 7~5 354 15 C276 130 810 354 l 5 C2ol

J45 sect25 35bull1_ 1 _CZJ7 middotmiddot--middotmiddotmiddot -middot--bullmiddotmiddot-middotmiddotmiddotmiddotmiddot-bullmiddotmiddot---middotmiddot-bull---middotmiddotmiddot--middot -middotmiddotmiddotmiddotmiddot --------- --bullmiddotmiddot--- middot-200 840 354 15 C277

l 215 855 356 15 C277 ___ _230 870 _356 _ l5 _C bull ZH ---middotmiddot-middotmiddotmiddotmiddotmiddot---- ----middotmiddot-------------middot--

245 8S5 354 15 C275f 300 900 356 15 C27J

_ 315 915 bullbull~5bull4 bullmiddotbull-middotmiddotmiddotmiddot-middots middotmiddotmiddot- cZ69____---middotmiddotmiddotmiddot-middot-middotmiddot -------- --middotmiddot--middotmiddot--middot----- -middotmiddotmiddot-330 93() 356 15 C271 345 945 354 zo 0271

_ 400 __96Q___ 3_j4 --middotmiddot--bulll5 C2l_________________________________ 415 975 354 20 C250 430 990 354 20 C264 445 1005 353 20 C264 500 1020-~ 354 20 C260 515 1035 353 20 C250 530 1050 353 20 0254 -----middotmiddot--------middot-middot------middot ------middot-middot-middot-545 1065 354 20 C250 6~C 1080 35l 20 0252 615 lOC5 bull350 20 C49 middotmiddot-middot-middot-- middotmiddotmiddot-middotmiddot-middotmiddotmiddotmiddot-_ 630 1110 350 20 0248

C 645 1125 350 zo 0249 ____100 1140 bull_3s o middot--middotmiddotmiddotmiddotmiddot zo__o 2t9 middot-bull-bullmiddotmiddot--middotmiddot--------middotmiddot------------middot----middot---middotmiddotmiddotmiddotmiddot ______

715 1155 350 20 0243 C 730 1170 350 20 024

745 118S 350 25 C239 800 1200 middotmiddot37 25 C233

C 815 1215 347 25 0238

830 l 23() middot- 34 5 _ 2 5 middot-middotmiddot 0 236 ----middot--middot----middot 845 124) 345 25 C241

( 930 1260 347 25 C237 9J5 1275 4 bull7 2bull ~23) 930 129J 347 25 0236

( 945 13C5 347 25 C231 middotmiddotmiddot-~middotmiddotmiddotmiddot l Obull C l 3 0 bull 3 4 7 2 5 C 23 3 middotmiddot- middotmiddot-middot- __ middot-middotmiddotmiddotmiddot-middot- middotmiddot- -middotmiddot bull middot-bullmiddot---bull middot-middot--middot middotmiddot bull _____ -middot middot-middotmiddotmiddotmiddot-- -middot _ _ -

1015 1335 34 7 25 C232 1030 us 34 1 2s c221 1045 131gt5 34 7 2bull~ C225 1100 13eo 349 2s c221 lllS 1395 349 2s c22c

--middotmiddotmiddotmiddotmiddotU30 ltLO 349 z- _C2l6 1145 1475 347 25 C215

1

104

AGC-217-1 S02 LIGHT ORY7 GLASS CtlAHBER

1976 JUL 30 CONTINUATION Of AGC-216 LIGHTLIGHTS ON JUL 29 AT COO ~TENSITY 1ooi OATA FOR 216-LIGHT USELESS DUE TO FAULTY OACS CHANNEL S02 STRIP CHiRT DATA USEO FOR THIS RUN 25 HL CF S02 INJECTED HITH 90 ML Of NZ ON JULY 30 AT 1003 OASIBI 1212 ON CHAMBER AT ABOUT 1534 TO 1537 ON JULY 30 ANO FROM 1201 TO

1230 CN JULY 31 SAMPLING RATES tHLHINI TECO 43 - 1161 DASIBI 1212 - 600

middot~ CLOCK ELAPSED OZCNE TSl REL HUH SC2 ~

ii TIME TIHEIMINI tPPH) IOEG Cl Ill (PPM)

l 1130 -15 bullbullbullbullbullbull bullbullbullbullbullbull o3ze 1145 o bullbullbullbullbullbull 346 220 0321 1200 15 351 215 0315 1215 30 354 195 C310

l 1230 45 bullbullbullbullbullbull 356 18J 0307 1245 60 bullbullbullbullbullbull 357 17Q 0305 1300 75 bullbullbullbullbullbull 360 165 0301 1315 90 bullbullbullbullbullbull 360 155 0296

l 1330 lC5 bull bullbullbullbullbullbull- 36l 145 0 292 1345 120 bullbullbullbullbullbull 364 130 C290 1400 135 bullbullbullbullbullbull 366 110 0286

1415 150 366 _ll5 0282 1430 165 bullbullbullbullbullbull 365 115 027~ 1445 180 bullbullbullbullbullbull 365 110 021 1500 195 362 11C 0273 1515 210 36l 130 0269 1530 225 0519 360 140 0265

~[ ~~ i~~-- ~~ ~ ~~ - middotmiddotmiddotmiddot-- -middotmiddotmiddotmiddot- --middot - -middot middotmiddotmiddot-middot--------middot

sect ~ 1615 270 bullbullbullbullbullbull 357 160 0255

l ____1630 _______2s5 --bullbullbull _____ 35 bull7__Jo 5middot-middot--middotmiddot-cmiddot253middotmiddotmiddotmiddotmiddotmiddotmiddot--middot

1645 300 bullbullbullbullbullbull 357 110 025C l7CO 315 357 170 025C

___ 111s___330 __ bullbullbullbullbullbull __35 bull 7 -middot--- 1a bullomiddotmiddot--middotmiddotmiddotmiddot0241 middotmiddot--middot--middotmiddotmiddot----middot---middot-middot--middotbullmiddotmiddotmiddotmiddot-middot-middot middot-------------1130 345 357 190 0245 1745 360 bullbullbullbullbullbull 356 20c 0242

___a_oo_~--middotmiddot--3_15_ __bull___S_bullt____ 21 o -bullmiddot _o 24c middot-middot--middotmiddotmiddotmiddotmiddot--------middotmiddot----------------I 1815 390 bullbullbullbullbullbull 354 225 0231 1 1830 4C5 357 21~ 0236

___J_B4~ middot- ____420-~bullbull middot---middot _3l bull l___19 0 0 235 1900 435 bullbullbullbullbullbull 364 170 0233

) 1915 450 bullbullbullbullbullbull 365 160 0230

i 1 _ ____19 3 0 __ ---middotmiddotmiddot 465 bull bull bull middotmiddotmiddotmiddot--- 3 6 bull 6 -middot--1 5 bull 5 _ C bull 2 2 7 middotmiddot-middot-middot--- --middotmiddotmiddot --middot -middot - ------

1~45 480 366 145 C225 2000 495 366 150 0222

____2015 ___middot _i 10__ bullbull_____36o6_- JS_ Q_middotmiddotmiddot 0 220 2030 525 bullbullbull$bullbull 366 155 021ar 2045 540 366 155 0216 ___2100________ssbull_____ ---middot6J__ __1 s s _o 213 2115 570 bullbullbullbullbullbull 3os 165 c211 2130 585 bullbullbullbullbullbull 365 110 c210 2145 600 bull 365 175 0208

J --middotmiddot-middot2200 middotmiddotmiddot-middot--615middot-middotmiddotmiddotbullbullbull bull--middotmiddot--middotmiddot-364----middotmiddot iso middot o206

middotI 2215 630 bullbullbullbullbullbull 364 180 0204 _ -middotmiddot----middotmiddot2230 645__bullbullmiddotmiddotbullmiddotmiddot-middot--middotmiddotmiddot 31i bull 2_ 19 0203

2245 660 bullbullbullbullbullbull 364 195 c200

i1

zjo_ci ___---1s bullbullbullbull 362---middotmiddotiomiddotmiddotomiddotmiddotmiddot omiddot196 -r l 2315 690 bullbullbullbullbullbullbull 362 205 0195middotbull 2330 705 bullbullbullbullbullbullbull 36l 215 0193g 2345middot 720 bullbullbull ~ bullbullbull 36l 225 0190l

bullbullbullbullbullbull NO DATA TAKEN ---- DATA OISCARO~D QUESTlONAuLE DATA r ~ 1~

IT Q

~

105 F

AGC-217-2 S02 LIGHT DRY GLASS CHAMBER 1976 JUL 31

CLOCK ELAPSED OlONE TSl REL HUM S02 Tl~E TIMEIMNl IPPMI IDEG Cl 11 IPPMI

1 0 735 3bO 22C 0188 15 750 3bO 220 C185

_ 30 ---middot-middotmiddot--765__ 358 -middot-middotmiddot 220 0183 45 780 358 220 o1a1[ 100 795 bullbullbullbullbullbull 358 225 0180

115 810_bull___-middotmiddotmiddot-middotmiddot-middot 35 bull8 middot-middot-middot-middot225 0177

l 130 825 bullbullbullbullbullbull 357 225 0175

( 145 840 357 225 0112 200 855 bull _357_ ___ zzs c111

215 870 356 225 0169

f

I ( 230 885 35b 230 0168

245 coobull 356 230 c166 middot300 915 356 230 0163

C 315 930 356 230 C160 330 945 35bull6 230 C160 345 960 bullbullbullbullbullbull 356 230 0158 400 975 bullbullbullbullbullbull 354 230 0156

_415 _990 ~5~6 230 0154 430 10C5 356 235 0152 445 1020 354 235 C150

L -middot----middot-middot500__1035 __ -middotmiddot 354_ _ ___ 23 5 0148 515 1050 354 235 C147

( 530 1065 bullbullbullbullbullbull 354 235 0145 545 1000 354 235 0144 600 10lt5 354 235 C142 615 1110 354 235 0140

___630 ____ 1125 bull - ___ 35bull 4_ ___ 24o013lt 645 1140 354 240 0137 100 1155 bullbullbullbullbullbull 354 24o 0135

--- _715 1170bull 35 24-0 0134 730 1185 354 240 0133

l 745 1200 354 240 0131 800 121~bull -middot-middot____35~---middotmiddotmiddotmiddot24bull C_ _O 129 815 1230 354 240 0128 830 1245 354 245 0121

-middotmiddot----845 1260~ 34 245 0-126 9CO 1275 354 245 0124

( 915 1290 354 245 0122 -middot--middot_930___1305_ -middotmiddotmiddot)54___ 245 c120

945 1320 bullbullbullbullbullbull 354 245 011a ( 1000 1335 354 245 0116

________1015_ __ _1350 354 240 0115 1030 1365 middot-middot--356 240 0113 1045 13130 354 24C 0112 1100 1395 354 240 0111 1115 1410 354 240 0109

- middotmiddot--middot-~--- middotmiddotmiddotmiddotmiddotmiddot-middot--middotmiddot-lDO 1425 354 240 0 107

l 1145 1440 356 240 0 bull 106bullbull12cc 14gt5 bull bullbullbullbullbullbull 3gt6 40 0105 1215 14 70 0504 354 240 0 103

middotmiddotmiddotmiddot-middot- middot---middot-------middot--middotmiddotmiddot --middot middotmiddot-middotmiddot middot-middotmiddotmiddot-middotmiddotmiddot

__ middotmiddot-middot---------middotmiddotmiddotmiddot_ - ___ middotmiddotmiddotmiddotmiddot

----------middot--middot--middot- middot--middotmiddotmiddot--middotmiddotmiddotmiddotmiddotmiddot-middotmiddot -middot---

middotmiddotmiddot--middot middotmiddotmiddot-middotmiddot-middot--middotmiddotmiddotmiddotmiddot-middotmiddot-----

bullbullbullbullbullbull NO OATA TAKEN ---- DATA DISCARDED QU~STIUNABLE UATA

106

AGC-218-1 S02 40t RH GL~SS CHAMBER 1976 AUG 4

DARK AT 0850 FC-12 ANO S02 WERE INJECTED INTQ THE CH4~8ER THE OASIBI 1212 WAS CN THE CHA~~ER F~OM 1651 TO l65S BRADY 1296 CALISAATION 1Q7~ JUL 16 SAMPLING RATES IMLMINI TECO 43 - 1~33 CASIS 1212 - 600

CLCC~ ELAJSEO czc~~ TSl R~L HU~ 50 Tin TIMEl~Nl (P~gtI DEG Cl a1 PPM)

1100 c bull~~ 334 4J ~-377 1105 5 ~ 334 485 l3Sl 1110 10 bullbullbullbullbullbull ~34 485 C3BJ 1115 15 middotmiddotbullcent 334 460 0379 1120 C bullbullbull 334 475 0374 1125 2~ bullbullbullbullbullbull 33S ~70 0375 1130 30 middotmiddot-~middotmiddot 332 475 0371 1135 35 334 47o o372 1140 40 bull bullbullbullbullbullbull 334 65 C370r J 1145 45 bullbullbullbullbullbull 334 4~c 0111l i 1150 50 middotbull 334 465 03t9 1155 55 334 16 5 0364 1200 60 - 334 45 5 0366 1205 65 bull 335 450 036rl ~ 1210 70 ~bull~ ~)5 ~5J_ 035~

1215 7~~ bullbullbull 335 450 C162 1220 so bullbullbullbullbullbull 334 450 o~

di 1225 85 334 440 0362

iz3d o ~~bullbull 3J4 44o o3e2 1235 95 334 445 C355 1240 100 332 45 0355 middot--middot-middot---middot--middotbull- middotmiddotmiddot-middot --middot - _____ _ f24middot5middot 10smiddot~middot Jl 332 4middot4~ 6 middoto-353-middot

~ i C 12so 110 332 4~o o353 125 5 115 i__ 4 ) _ 0 bull 352_ _--bull-middot __ ----middotmiddot-middot __ middot-- _____ - _ ___13()0 __ 120-middot-- 332 435 0354

J 1305 125 334 430 0351i I J31 o __ _ uo __ ~bull-- u-~--middot middot-middot-42 bull0 o- 1ssmiddot--middotmiddot-middot-middot- ----________----middot- ---middot __

1315 135 334 420 0348 bull ( 1320 140 334 420 0348i l32S 145 -middot_ _3 bull~--4t5 Q352

1330 150 334 41middot) 037 1335 155 335 420 0344

1340 160 335 420 0344 middot 1345 -165 uu 3ibull 4 - middot41smiddot cl44

C 1350 170 ~bull 335 415 0343 1355 175 335 420 C343 1400 180 335 415 C341 1405 185 337 405 0341 1410 190 33 bull 5 400 0343 1415 liS bullbullbullbullbullbull 335 41C 0340 1420 2cc bullbullbullbullbullbull 337 41o 0331 1425 2cs bullbullbullbullbullbull 337 405 oJe 1430 210 bullbullbullbullbullbull 334 410 o33e 1435 215 33l 42v 0336 1440 220 bullbullbullbullbullbull 317 415 C]36 1445 225 middotmiddotmiddotmiddotmiddot~ 335 45 0332

ti~tmiddot -g 1450 230 bt~ 337 41 5 c~32

1455 2 35 33 7 bullbull 0 o 13cmiddotmiddotmiddotmiddot~ ~ 1500 240 33 7 42) 0330

$C t-kOt~ ~ 1505 745 H 7 42 D 0330

bull~ 11C f ~ () D~ TJ T ~r EI ---- ChT~ orsrA~ncn 0UST l1~111c [)TA ~ 4

J 1(

i[ i l bull1

~ ~ Imiddot

middoti_ ~

107

I

il ~ ij

1 i ii l

Ir

~ 11

ij

Ibull ~

J ~ l

j (

) AtC-21S-2 502 401 RHT CLASS CHAMBER

1976 AUG 4

i i

CLOCK ~LAP$) JlC TS l EL rIJ~ S72 Tl bullE TlEPlll I I P1 l lDEG CI (1) I PP~ I

1510 250 middot~ 337 415 o 32~ 1515 255 cie-(wt 337 t~ 0 032S 1520 2t) 337 420 0PI 152 5 265 bulltI 3l 7 42 1 I~bull)~ 1530 2 7 C=it~bull 334 41 5 0327

bull 1-tit~o

middot~

1535 27 D5 420 bulll 324 1540 middot2cu 335 42 C32C 1545 285 middot=~ 334 430 C322 155C 29J t rLI 334 430 0122 1555 295 o CJ3 334 4t 5 c 320 1600 3CO bull Iii- 334 420 0322 1605 3C5 emiddotbull= 334 42o J3lfl 1610 310 wc 33 4 425 0319 1615 315 ti 332 420 0316 160 32C 334 Z5 0 bull 114 deg 1625 325 -0laquot 33 t 430 0315 1630 330 335 430 ons~ li35 335 cent 33 5 435 0310 middotmiddot-- ____ -- 1640 340 $Qt 335 44) 0313

( 1645 345 33 5 435 o 311 1650 335 440 0309--~-- ~~~~-----middot~-~~-~-~-~--- ---middotmiddotmiddotmiddotmiddotmiddot-middotmiddotbullmiddot-- middotmiddotmiddot--middotmiddotmiddotmiddot--middot-middotmiddotmiddot-middotmiddotmiddotmiddotmiddotmiddot --- middot-middot-- middotmiddotmiddotmiddot--bullmiddot--middotmiddot-middot--middot middot-bull------middotmiddotmiddotmiddotmiddot-- ---middot-middotmiddotmiddotmiddotfo55 355 bull-c-t-t-it 33 r 43 5 C313 1700 360 $0~IZ 335 45 C305 l705 365 338 4 5 0308bullbull ---- middot-- middotmiddotbull---middot-middotmiddotmiddotmiddotmiddot--middot-- l7l0 370 ~~emiddot i8 440 CJC8 1715 3 75 bull-tt~iU 337 44J C310 1720_ 380 bull ie~~bull -~3 8 35 J303 - middotmiddotmiddotmiddotmiddotmiddotmiddotbull-middot-middotmiddotmiddotmiddotmiddot middotmiddot-middot- middotbullmiddotmiddotmiddot-middotmiddotmiddotmiddotmiddotmiddot-middotmiddot1725 385 -tttr~ 33a 440 0308 1730 39J ~cent n a 440 0303 1735 395 izc 338 440 0 3)2 middot--middotmiddotmiddot middotmiddotmiddot- 1740 co VIOct- lt= 338 430 o 30 1745 40J (rfl$~bull 338 430 0302

OJei1()01750 410 33 I 430 029d middotmiddot--middotmiddot---middotmiddotmiddotmiddotmiddot--middotmiddotmiddot-middot-middot 1755 415 t 338 44) 0299

1800 420 bullti-it 333 43 5 0296 1805 425 i-t-7Icent 33 8 430 0299 middotgt l8U 4 3 I cent46 317 3 0 029 l Bl 6 436 c-oilaquo4t 337 430 0298 lil21 441 33 7 43 5 ( ~9 7

~tf(p ~

middotmiddotmiddot--middot-middotmiddotmiddot--middotmiddotmiddot--middot middotmiddot----middotmiddotmiddotmiddot----I B26 4d plusmn~ 337 430 o 2-7 1831 451 (-tilll- 337 415 0296 1836 456 tdcmiddotC n13 430 C291 --middot - -- 1341 461 t(I~ 33 7 435 0292 le46 466 bullt~tci 33e 435 o 292 1851 4 71 33_ 3 425 Oll Hi56 4 76 337 425 0291

1901 4 il I it-Otcbull 33 43C bull)2Rq1906 96 t~illtt 338 475 J217

_Clt-~4t1911 t91 l3 7 42) middot t~HJ 1916 bull c( bull ie--iJtll)ill6 4l1) 0187n ___ iil 111 [t 1 T el rbullNJ Crf fISCAP[E) QU~ 5 T t 1Jt-bl E 1)1 TA

108

AGC-218-3 SOZ 40l RH 7 GLASS CHAMSER

__1976_ AU( 4

CLOCK ElAPSED oz~~~ TSl qEL HUM S02 TIME TfME (lfrjf- I PP~I oeG c- -ii --middotmiddotcigtTmiddot----

(

1lt121 sci-middot umiddotbullmiddotmiddotmiddotmiddotmiddotmiddot-- 3fmiddots~ 425 o~io6 1926 5~6 bullbullmiddot 338 42-0 0285

______1931_____511 ~-~- 33 1_ 41 s o_2s5___ 1936 516 337 425 ozss

( 1941 521 337 415 021a 1946 526 337 415 0282 19si ~31 bullbullbullbullbullbull 33i middotmiddot425 021a 1956 536 337 420 0278 2001 541 335 420 0283 200middot6 5t6 -middotubullu-middot----33s- 12s -0211 - middot middotmiddotmiddot middot ----------

( 2011 551 bullbullbullbullbullbull 335 420 0278 2016 556 334 415 0277 2021 561 334 425 0277

( 2026 566 bullbullbullbullbullbull 334 425 0276 2031 571 bullbullbullbullbullbull 33~-- 420 0278

middot-middotmiddot- 2036 576~ UU 334 425 0275 ( 2041 581 middotmiddotmiddotmiddotmiddot~ 335 420 0274

2046 586 335 420 0275 205( 591 337 430 0211

C 2056 596 335 425 0211 2101 601 337 --~2s 0210 2106 606- -middot~bullbulli 3~s 430 0211

C 2111 611- 337 425 0269 2116 616__ = 337 425 0270rmiddotmiddot- 2121 621 ibullbullbullibull 33~7 436 0210

C 2126 626 c 337 420 0270 -l 2131 631 ~ 337 __ 430 0210

2136 636 337 425 0267 C 2141 middot 641 bull 337- 425 0266

2146 646 337 430 0265 2151 651 337 425 0265

C 2156 656 middotmiddotmiddot~middotmiddot 335 425 0269 2201 661 33J__ 431) 0266 2206 666 335 425 0263

( 2211 671 335 425 0265 2216 676 337 430 264 2221 681 335 425 C261

( 2226 686 33S 435 0263 2231 691 bull h 335 430 Q2(3 2236 696 335 425 0259

( 2241 701 335 430 0256 2246 706 335 425 0258 2251 711 335 425 0255 2256 716 335 430 0256

OU~STICNA6LE DATA

109

AGC-ZIR-~ ~02 401 RH GLASS CHA~t1Fl-1976 AllG 4-5

AOO 660 MIN TO ELAPSEO llM

CLCCK fL~PSEe TS l l~L HJ~ Si~bull- T -IF Tl~cllO ING CI (o (r~M)

22C6 6 33S 4l5 C263 22tl 11 335 425 C265 2216 16 ~37 43i) i)264 2221 21 335 12 5 Obl 2226 71 D5 435 C26~ 2211 31 ns 430 0263 2236 36 335 425 i)5G 241 41 335 430 C256 24( 46 335 2 _5 middot 253 51 51 33 5 42S C 25 256 56 -3 ~ 43(1 0256 230 t 61 335 425 C254 2306 66 35 42 C25S 2311 71 33 5 430 C 50 2316 76 337 425 CZSv 231 81 33S 43) C 5) 2326 86 33gt 43J 0252 2331 91 334 420 0249 233b 96 335 430 C z5J

middotI 2341 1C1 ~35 425 C252 2_34~ 1C6 335 420 obull45 2351 111 33 middot-middotmiddot 42 5 G248 2356 116 334 420 0248

1 l21 334 425 0247 6 126 334 42~5 C~250

11 131 334 420 0244 16 l36 334 __ 425 c 245 21 141 334 42middoto 0244

26 146 334 420 0244 31 151 332 42o 0242 36 156 334 415 0242 41 161 334 425 0241

i 46 161 132 42 o G2391i 51 171 334 430 ~ 239-~

i 5b 176 332 430 oz3gmiddot 10 l lBt i 2 425 023ltgtt 106 186 332 435 C236

I -~ -~ 111 l SI 332 431) 0238 ~ ~ 116 l c6 33l 431) IJ2 1l 201 332 435 C23gt

126 2C6 332 430 a 233 I 131 211 3 2 435 0232

f 136 216 3 3 2 430 0233 p 14 l 221 3) 425 0233 I 146 226- 312 435 C233

I 151 23i 33 l 425 c22s

C (

~ ti

) ~ I ~i 6 236 332 4)5 cna 201 bull1 3 3 I 430 C bull J )

f 20lt 246 33 l 4 s C2 n E 211 251 3 3 l 4gt0 0231)]

Iimiddot~- ~ll QtTh TAK f1 fl AT

~ -- 1 l middotmiddot1

I 1

middotmiddotmiddotmiddot--middot-middotmiddotmiddotmiddotmiddotmiddotmiddot --middot-middotmiddot--middot-middot ----

_ - middot- --middot---- middotmiddot-middot-middotbullbullmiddotmiddot-middot -middot--- ---

--middot bullbullbullbullmiddot bull-bullbullbullbullbullbullbull M bull-bull 0 middot---middot-middotmiddot middotmiddot----middotmiddot - -

- --middot---middot- -- -~middotmiddotmiddotmiddot-middot--middot-middot middotmiddot--middot

____ ___ --- middotmiddotmiddotbullbullmiddotmiddot----- __ middotmiddotmiddot-middotmiddotmiddot -~ ~-

n1 s1or~o

110

AGC-218-5 S02 4Ct RH Gl ASS CHA~lrn lH6 lllJG 5

AOO 6amp0 HIN TO ELAPSED TtME

ClCCK l~llSFt 1$1 REL HiPl SO TIME TIMEl~lNl ID~G Cl Ill IPPM1

216 256 331 430 0211 221 u1 331 4-L~ c2n 226 ~66 33o 43~ C27 231 211 JJo 44o 022s 23~ 276 3l0 44S C28 241 281 330 435 C26 246 266 330 44 5 C2Z5 251 291middot 330 43s o22~ 256 296 33o 415 c23

middot301 301 bull3middot3omiddotmiddot---middot40 022s 3C6 306 328 435 0225 311 311 328 445 C226 316 316 32 1middotmiddot middot -4middot3smiddot c222

( 321 321 32S 440 C222 326_______ 36 32_ a______ 43 bull s__ c 221 middotmiddot---middot--bullmiddot-middotmiddotmiddot ___ __________ ----------middot-middotmiddotmiddot-middot 331 331 328 430 023 336 336 32S 435 C220

34134-1 e a~middotbull~- fl 9 0 211 346 346 3Z8 440 0220 351 351 32s 435 c220

1 ~t t---ttt-middot -t~g ____ --middotmiddotmiddot -middot-middot-middot-middot middotmiddot- middotmiddotmiddotmiddotmiddotmiddotmiddot--middot middotmiddotmiddotmiddotmiddot-middot--middot---middot middot--middotmiddotmiddot-middot- ---middot-bullbull _ 406 366 327 440 0216 411 311 n1 445 o_215 __ __ --------middot- middot--middot--- 416 376 326-middotmiddotmiddotmiddotmiddotmiddot43s-middot C211

( 421 381 327 445 C215 421 3~6 _32 bull6___~i1Lcn middot- ______ middotmiddotmiddot--middot--middotmiddot middot-middot--middotmiddot 4Jl 391 326 445 C211 436 396 32s 44o 0211 4 1l 401 326 450 0210 446 ~06 324 44o u211 451 411 34 45o 0213

_456_ 416 324 445 _C210 501 middotmiddot21 323 455 c211 506 426 323 445 c210 511 431 323 55 0204 516 436 323 44S 0209 s21 441 323 455 c210 526 _446 33 445 C208 531 451 3 3 455 003 536 456 323 445 0204 541 461 322 4S5 c20~ 546 466 322 445 C215 551 471 322 450 0206 556 476 316 4o 0210 601 481 316 450 020gt

C

606 4fl6 31 6 455 C zomiddotJ 611 491 316 5 ~ c2n 616 496 316 4tC on 621 501 316 455 C2J2

bullbull bullbull NO OAH T6KFN ---- ll 11T VJ ScAmiddot~~~u

111

AGC-218-6 S02 40l RH GLASS CHAIBER 1976 AUG 5

ADO 660 HIN TO ELAPSED TIME

CLCCK ELAPSED TSl REL HUM S02 TIME TIMEIM~) IOEG ti Ill (PPII

626 5C6 middot3f~6middot 46ci 0200 ( 631 s11 316 455 c2ao

636 516 316 45s c200 641 521 31~imiddot 4ampomiddot 019

( 646 526 315 45o 0199 651 531 316 455 0199 656 536 315middotmiddotmiddot 45S 0195

C 701 541 31a 45o 0191 706 546 319 45~5 C197 711 551 319 455 C115 716 556 320 45~ 0199 721 561 322 460 C197

566 323middotmiddotmiddotmiddotmiddotmiddot 45~5 C195- -middotmiddot - --middotmiddot--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot- ---- middotmiddot-middotmiddot-middot middot-middot-middotmiddotmiddot middot--726 ( 731 571 324 460 0194

736 5 76___32 bull middot-middot --4~-~~---middotmiddotmiddotc ~q_5 ______________ middot------middot-middotmiddot-middot--middot-middot-middot-- -- middotmiddotmiddotmiddotmiddotmiddot-middotmiddot-middotmiddot~--middotmiddotmiddot-~-middot-middotmiddot----- middotmiddotmiddot--- middotmiddotmiddot-----bullbulln-bullbull-middotmiddotmiddot -------middot-middot 741 581 3t4 455 0193

746 586 326 45o 012 751 591 327 455 0194 756 middotmiddot- middotmiddot-s96~-middot -- 32-amiddot- middotmiddot4smiddots middotmiddot middotc194 801 601 330 455 C193 806 606 33l 460 C191811 ------middotmiddotmiddot-middotmiddotmiddot-middotmiddot--middot----middotmiddot------middotmiddotmiddotmiddot-middot-middotmiddot----------middot- 611 33l 45bull 0 0171 ------middot-- middotmiddotmiddot-middot----------816 616 332 460 0191 821 621 332 455 0192

826 626 33--middot 460 o 183 C 831 631 334 455 C188

836 636 334 ____4S_o___Cl36 --middotmiddotbull---------841 641 -middotmiddot-middot-middot33 5 45 o o1ss

( 846 646 335 46 C137 851 651 335 455 CS6 856 656 335 40 0184

(

l

a ~ -

112

AGC-2ld-i s02 -~ r~ iliS5 (I--A~tl[f-

196 AUC ~

libulloHTS Cl 01CC 1nSlY lmiddotJOt lJ~ OA~JJI_ 12L r c~~ itmiddotE (Hit~t t~uG~j cic6 10 tll f-RC~ 1 Mi TJ S lf ftf-lt

Tt~ ~Ol~ fbull~0~ 1C~0 T2 l~Ji ~~~J TJ 113( ~2~1-~~C~ AU~ t VlOT--0110 s~tY 12s6 CAlt1 ~i11u- 1-h vl imiddot StPLllG RATES OL11) TcCU ~ -middot 123bull C~Slfl 12l - t()(

ccci- fL 0 )~middot) i Sl i l ht ~-it t-bullc r l -pound ( l 1imiddotc Cl 1 ~ ~~(

1 tti ~ C i t ( bull t ~ 1i1t ~) ~i cu

--bull-- -~ll __11 middot-- middot ~~) 5 ) -bull ~ __ S bull lmiddot~ __ _ gt le 1~J yen ~ ~s ~ss 1~1s~ 92l 21 ~bull~ 46C c11middotgt)c~~

S2C ~tbull 1 ~ ~ ~4 bull_ bull l ))(~-~

middot93 l 31 1 ~ _j_l bull bulltC Cl-bull 936 ~l 01 L

--------~ -~ ___ ______ 4_1 -1=i 1 5 0 l i 4t 41 tit~ 4 middot1 middotmiddot3 C -_ bull 1 i~l

( 951 roc -i 5~L 3 1 42 bull G ct 51 ~( - 3 f gt 41 i 0 1(_bull(

1)0 l c 1 ~centelaquo 4middot1 5 01X lOUc cc 15 ClL~ [011 7 l ~d~bullt~(c 3lt bull 7 41 bull -J16-t lOlt 76 it20 OltG t~~01gtt j4 9

102 l 81 (-ttI centicx 3i ~gt 01~2 iOU 8t i-uc~ ~2) C l 5t1oii -middot middotsf~- middotmiddot~~-~~- -----~-~ ~

)~bull- ~ l () middoto i5t1middot i03amp ~6 ~~ 4C bull i C lJ6 041 10 1 middot~bull-p(t 1t _ ----~ bull~-----~ ~+- ~ middottC46 [Ct bulllaquo 4 7 4 bull U r bull l bullmiddot

1051 111 ~~-~~ tCi ~gt 0 l i0~6 J1~- ~ 347 41u 01~ llOl 121 -middot--bullomiddot- -middot 41 c (i1smiddot1

C 1106 126 4s ) 153 llll l31 ~middot~ 34 5 4rJC middotO 140 lll6 136 bullbull~bull~ 3lt bull j =~- --~ O l4

( ~121 l~l $enyen 34 o 3i G 14ltgt i12o 146 ~~ 34Q Jl0 011

--i131 -middot-- 1s1middotmiddot middot_ __ middotf 3 ~ ---143 middot-- C 136 1f 3C 0112

~14_1 -middotmiddot--middotmiddotmiddot16_1 -e-~ )-t _ b5 1~2 qri middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot3middot4--_middot- Ji ~ C bull 1 j S bullmiddotmiddotmiddot - middotmiddot---middotmiddot-middotmiddot -middot middot-lee

( H51 171 3-1-ti ~ 7 5 013S 11~6 I 76 )) 3 1r ~ 37 0 0 1+C 220 l -- 1cimiddot1 x middot3middot- i~ bullmiddot 3( I Olle i06 d6 J ~ C6 34h 330 01n 21 I I l 31-9 middots o 0 131

l21 t I S6 - l(~q~cent 5middot ~middot0 ~4middot-~middot--middot-- bull i l2 ( 122 l 2Jl J~1 34 1 C l J

1226 2c1 c~bull~ 34~ 34C n 12s Tiit 2ll _(Ybullbull~- bull~bull~- i j~bull ~j cbull1it1 l23l 2 ll ~~UCO ~4a ~c Oi3~ i24l 221 bull~bull~ ~~-~ 3~~ Cll~

middot 124c 22~ v~-y 34~ 34i cmiddot ld

1251 iil laquoriribullmiddot ~middotmiddott o ~) 12middotmiddot 12~0 2 j() - bullrl-1- 3 ~ ~ ( 1bull~ 3C l -~ middot ~ ) J di ~ ~ l (l

113

AGC-2lS-8 S02 40l RH GLASS CHAMBfR l976 AUG 5

CtrCK TIME

EL AP SEO TlIOIMINI

Clf~C (PPM

TS l IOEG Cl

~FL HUf n1

SJZ C PPI I

1311 251 -$ H5 33middotbull 0125 l3lb 256 (centcent 345 n 5 0 129 1321 261 ltirtQlaquo- 34bull ~ 325 0 12 3

C 1321gt t31

266 27l

(~~laquo~ q~t~laquo

~4-7 3 9

335 340

0 12 S o 122

1336 1341

276 281

__ t

347 34 7

34J 31 5

0 122 0123

( 1346 286 1(11) 347 345 c120 1351 291 t l ~4-7 360 0-1 zo

( 1356 1401

296 301

346 346

36C 35S

0118 0117

140(gt 3C6 o 254 346 355 0 118

1411 1416 1421 146 1431

311 316 321 326 3 31

~YJJ

bullbullicent lCbullmiddot (11Ctlaquo

346 350 35l 35l 35o

34J 355 360 35 5 335

0118 0 118 0117 o ll amp o 114

1436 336 $$) 354 350 0 114 141 l 31 354 35S 0111 1446 1451

346 351

t(c=~

tit 354 353

355 350

C 112 0110

1456 1501

356 361

bull~

35 l 35l

360 34 5

o 111 0110

1506 1511

366 371

0287 $

35_o 1so

345 345

o1oq 0 lOl

1516 1521 1526

3 76 3A I 386

ICi -C ~IX$

349 347 347

340 340 355

0 109 0 109

0107 1531 391 tamp 347 36C D107 1536 396 346 365 010 1

1541 4 01 Or 346 36C 0106 1546

1551 406 4 l l

Cittcent

346 34o

36 5 365

010 0104

-15~6 416 6~ 346 365 0104 1601 421 ~( 345 365 0103 1606 426 c 302 346 36 C o 103 1611 1616

4 3 l 436

lJ rit II

~ 345 3 5

365 37 5

ClOJ 0100

1621 441 ltftt11 345 37 0 0100 1626 1631

446 451

~ 1tcent bull1Cc

345 345

36 C 36 0

0098 OCll

1636 456 tC06J 345 36 5 o 098 1641 1646

461 466

(Ittbullittbull

345 3 5

-c 365

o )Ya 0094

1651 1656

4 71 4 71

11)fI)

$$(1Jfbull 345 345

310 3 7 0

0 ))4 0 Oi4

middot7 1701 1706

4 81 48b o 315

3 s 34gt

0 3t 0

oogs o 094

1711 I 716

491 49amp

bulltttoJt--r

ittt t 345 345

355 H bull5

0014 oon

bullbullbullbull ijir mJ DU4 Tf~ fl -- middotmiddotmiddot- l)f TA 01 $ChIHG I OUET rorAILE tJIH

114

AGC-218~9 S02 401 RH GLASS CHA18ER 1976 AUG 5

AT 2059 PROPE~f (64 ML) ANO FC-12 1580 MLI WERE INJECTED

f (r CLOCllt El ~PSEO QZCNt___ J51 TIME TIME(~I~) 111 (DEG Cl

(

i7ii soi ~ 34~middot5middotmiddotmiddotmiddotmiddotbull-middotmiddotj4_Q 0092 bullmiddotmiddotmiddotmiddot----middot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot--~------middot----middot-middotmiddotmiddotmiddot----------middot-middotmiddotmiddot

C 1726 50~ 345 340 OC92 ll3 l_ middot--middot51 l ~~~~---3~--~middot-middotmiddotmiddotmiddot-3t i____QJJ12

1736 516 343 350 OC89 1741 521 bull 343 335 OC89

_1746 -middotmiddot ---526 u _ )45 _J3 O_ 0 bull C$8 __ _____ 1751 531 346 310 OJS7

C 1756 536 bull 350 305 035 1801 541 351 _no__ 0 bull0es___ _____ ______middot-middot-------middotmiddot 1806 ~4i~ 0313 3D~ 330 OC84

( 1811 551 358 320 0085 1816 559 ~-~-middot--middotmiddotmiddotmiddotmiddot~-58 32middotJ OC81 _____ -middotmiddot--bullmiddotmiddotmiddotmiddot-----middot---middotmiddot ----- 1s21 561 358 320 oc33 1826 566 360 315 0083 1831 571 36J 315 0083 1S36 ___ 576- 36o 320 oca1 1841 581 ~ 380 315 0078 1846 586 middot---middotmiddot 38 bull0_ 320 0081 1851 591 379 ~jo---6019

C 1856 596 377 335 007S 1901 60Jbull UUbull 376 330 0078 1906 606 0328 375 340 Q078 1911 611 375 335 0078 1916 616 376 330 0076 1921 middot621 376 33o middotocn

C 1926 626 376 335 0077 1931 631 376 34 0 OC7t 1936 636 bull 375 345 0070

C 1941 641 372 345 0074 1946 646 372 340 0074

0

1951 651 37~ 340 0074 ( 1956 656 37l 345 0073

2001 661 370 350 0071 2006 666~ 370 350 0072

( 2011 671 369 355 ocn 2016 676 36I 35 5 0068 2021 681 36l 36 0 OC68

( 2026 686 349 365 )069 2031 691 0 349 365 J070middot 203~ 696 349 370 OC6i 2041 701 350 370 0066 2046 706 349 3~o ooes 2osi 111 o341 35o 3Bo 0001

( 2056 116 0341 35o 38s o066 2101 121 0343 337 385 0066

115

r I

I~

) I I

H l

Ji

I

~ I

l _

I1 i

~ t 1 t

I r ~ ~

f ~bull1

1

1 r i

AGC-21S-IO 502 401 RH GLASS CHA~tHR 1976 AtlG 5-6

ADD 720 MIN TO ELAPSED TIME AT 2059 PR~~ENE 164 ML) AND FC-1 (590 Mll WE~E l~JECTED AT 2217 IO ML OF S82 WAS INJECTED

CLOC~ ELiDSEJ ri~~bull TSL ~fl HJ~ 5~~ TIM~ TIMEl~INI (PPM) (nEG Cl Ill (PP~)

2106 6 0 32l 345 390 2111 11 0314 34 bull 0 Crmiddot 2110 lf 0300 34 q_ 390 OJtO 211 21 () 2lJ 3bullbull 9 390 0057 2126 26 0231 350 ~9 0 JC56 2131 31 ()282 35Q 39bull 0 OC55 213b 36 tic 350 39 () or56

2141 41 O~ 35Q ~9J 0C54 2146 46 (~-ti 35bull Q 390 )054 2151 51 iei 350 390 0051 2156 56 ~laquo 35o 390 0053 2201 bl 35o 395 0053 2206 66 0241 35o 39S o)51 2211 71 35) 390 0051 2216 U 350 39S C85l - -middot--middot---- middot---middotmiddotmiddot39middotmiddot3middot -- - o middot2 ti -middotmiddot - --middot--middotmiddot-~---middot-middot-middot --- -middot middotbull-- ___________ ~middot-middotmiddotmiddot middot2 221 81 u-- 33 8 2226 34 7 395 0222

91 c2222231 middot 349 39s 2deg236 96 laquo 34middot9middot 390 0221 224 l l 01 =bulltll~ 350 390 0217 2246 bullioi ----- 34 9 _____ 38bull 5 __bull Gbull 22Q-middot-middotmiddot--bull-----middot-middot-middot---- middot_ _ --middotmiddot-middot - _ middot---middotmiddotmiddot -middot--middot--2is1 lll 39) 0220 349 2256 116 350 390 0219 2301 12 l cent 349 3llJ 0216 2306 126 349 8 15 0214 2311 131 t 349 385 0213

- -2316 136 t J(I~ 349 39) 0211 middotmiddotmiddotmiddot----141 2321 t~ 31 7 390middot 0209

2326 146 --Ccent0= 347 39o czoc 2331 151 4te 34 7 3Bs o2J1 2336 156 l) 347 390 0206 2341 lo fc 34 7 39) 0204 2346 166 -e~ 34 7 39 bull0 02l5

~obullicent-V235[ 1 71 347 385 0204 2~56 176 ~~ 34 7 385 02)3

1 l 81 ~ 346 390 0193 6 186 =1centCt 341 3 019

11 191 ~(r 345 390 0200 16 1S6 taici 345 ~85 0 19B middotmiddot- middot- -- --~ 21 201 Cdeg trtrbull) 345 38 ) 0195 26 206 345 39 G 0195 31 211 ltclI 345 3l() ~ 1 g1 36 2i6 V4-tiq 345 39 0 0 14 41 221 iocent 343 38 5 191 46 226 $ 345 rn s Clql 51 231 (r(c 343 ll 0 O lJ2

56 236 ~bullt~ 34~ ~9 ( J137 101 2 1l ftfilt 31-t 3 3e 5 c 188

0itW~106 246 34 3 JAS 0 1~9 11 l 251 4)QJ~4 Jlt bull j 3fl 5 C bull l 4

ibull1 DATA T~K rn ---- D~U DSCA~JEC 1 QIJ[ST tSbull~flLE DAT~

116

AGC-21d-11 S01 40t RH GLASS CHAltt8ER 1976 AUG 6

AOO 720 MIN TO ELAPSED TlE

CLOCK ELjPSED ozc~~ TSl ~~L HUM scz Tl~E T[MEt~l~l (PP~) IJEG Cl Ill l lP I

i16 121 176 131 136

256 261 266 271 276

bull ~bullbull bullbull~

343 343 343 342 342

365 e5 38C ~85 385

0183 01S4 0 I S2 0lSl 01s2

14 l 291 bullbullbullbullbullbull 342 8C 0 lilbullJ

( 140 151

236 291

-bullbull

342 342

360 3tiC

0 177 o 176

(

156 201 206

296 301 306

~~~~

342 342 342

385 330 8C

o fn0 176 0 l 75

211 3ll ~~~~ 342 38C o 172 216 22 l 226 231

316 32 326 331

bullbullbullbull middotmiddot

342 342 341 3 11

385 )35

85 3d5

0 173 0 171 0 161 0169

236 middot241

- 246

33~ 341 346

$ uuu

339 3go 339 3U533~9middot-- 355

J H5 C l 70

0 1 7J 251

middotmiddotmiddotmiddotmiddotmiddot--middotmiddot256 301

351 middotmiddot~middotmiddotmiddot ~5~--middotmiddot--- 361 bull-

339 33 9 339

385 39 0 ~ss

0165 0 167 o 166--

306 366 339 335 Q 164 311 316 321 326 331 336

311 376 361

_386 391 396

bullbullbullbullbullbull bullbullmiddotmiddot

339 339 339 338 338 338

3as 385 380 38Q 385 385

0161 C161 016) 0 161 0161 C 158

341 -346 401406

middotiimiddot-

33S 338

3BO335

0 159 0156

351 411 338 385 Q156 356

4151middot 406

- 411 - 416

421 426 431 436 441

416 421 426 431436~middotmiddotmiddot 441 446 451 456 461

~bullbull~ bullbullbull=bullmiddotmiddot OU

~~bull7

338 33S 33d 336 middot3)i3

338 33S 33S 33~8 337

320 385 385 390 a) 3B5 3dO 380 3d5 335

0 156 C151 J153 0153 0 15) -o l51 0 149 middot oi5o 0145 0149

middot middot middot middot

446 466 bullbullbullbullbullbull 33~B 365 0 14 3 451 456 middotsol

471 4t6 461

=~~~ ~bull

337 338 337

90 0ia ~~- 5

0 145 0 144 0148

J

506 $11 516 521

486 4l 496 5Cl

t fr(laquo ti~ lt0lf11

middot~ tI

33 IJ 337 3 3 3 3J a

R 5 ~f

~bulls lJ 3o o

0143 C14J D 142 0 1~ 1

bullobullbullbullbull NO fMTA TA~ fj ---- iHt Dl SCA 0 i)E0 OU Sr I~-bull ~-1 ~ ()A TA

117

l

u I

AGC-llS-12 SJl 4Jt ~H CLSS Crbullt~tH-~ 197 ~JC

bullco 720 ~IN JC ELAPSED JIME

__(_l CC -~-----EL I~bull-~ ___ )Jgtl________ T_~J Bf_t t1l~ smiddotmiddot-~ ~ TlMt TiMtlil l p- ( UCG ( l ( t) I Pi l

jIL szc gtt~ ~ ))~ti ~-3J 5~middotJ c1--

5ol Sl 336 3S ClgtC

-~-4 ~- t_ bull bullbull - t1-- ---~ ) bull ~ ___ _-bullbull__G_ Y~ l_~ l --middotmiddot- middotmiddotmiddotmiddotmiddot-middotmiddot middot--middot-middot-middotmiddotmiddotmiddotmiddotmiddot middot--------middot-middot-middotmiddotmiddot ---middotmiddotmiddotmiddot _ 541 521 ~~~~ 33H 75 CJ~7

( S4~ 52t _~ 33CI 370 01tti

ss1 31 _JJ1_ nc middotJ13bull 55~ 53~ middotmiddotbull ]31 7~ ~-1bull~

( 6~1 541 bullbullbullbullbullbull 331 ~7C Oi3J CC i 5 t l ~ i i_ 3_ gt bull imiddot-middot 1lt- bull bull_ Cbull _ 1 i 1 I 5~ j bullbullbullmiddotmiddotmiddot ~-~--~middot-middot- 3 3 bull ~ jt C l t - _______

616 gt~6 )__Q1bull 337 36i i l3i t i 1 lt 1 ~- -middot bull ( 3 ~ ii c C l _l- _

middot-626 G ~iu JJd J7G Qii

i 631 571bull bullbullbullabullbull 331 37C Ol~I 636 j76 ~=~~~ 335 ~7C 0t~S 6il 5ilbull (middot~vrr s1 31L Llmiddoti

64i Scit =~~bull~ 337 370 C126 t~ gt~1 bull to~-c~t i 7 3C 017 65c 5Stmiddot middotmiddottimiddotmiddotraquo=ii~middotti 3i 2lbull C lit 7Gl 6Cl bullbullbullbullbull 337 370 0127 7C6 lJ6 bullbullbullbullbullbull 33 J70 01257 11 611 -J 343 - ) 3 7 37 C ~ ~ 12 5 middot-middot-- middot-middot---middotmiddot-middotmiddot--middot- -----middot-----middotmiddot--middot-middot--middot-middot--middot--middot - middotmiddot-middotmiddot- middotmiddotmiddotmiddot-middotmiddot--middotmiddot

7lb 616 ~middot 33l 375 CJZl 721 62Jo HmiddotgtU 3)8 37a___ pU3_ _

middot-iii l2e middot bullbull --middot- 3i~imiddot 3c c c in l ( 731 631 bullbullbullbullbullbull J37 37s c121 I middotmiddotmiddot--- ]3l ________ l t_ 1 c~~_middot=_ ___ ____ 33 7 6 gt C bull l _~middot--middotmiddot bullbull middot---- ____

7itl 041 ~yen~~ 331 3~ C12 ( 74t 646 bullbullbullbullbull 331 385 c120

751 ~51 bull 3JI 3S0 C12~ _7 smiddotmiddotmiddotmiddot-- 6 56 ~ ~n-1~ 3 j rmiddotmiddotmiddotmiddotmiddot 3 bull~ j i r~ 8Cl 661 bull~bull 33B ~a OllE 80amp 666 yen~~___ 33 ~middot-middot---middot-middotmiddot ~9 5 ~middot-middot ~f--~

middot middota11 67i- tl~~ibull( ~ middotscmiddot e1 ~16 676 ~~~~ ~3b 36C C117

__s21_______ ~ci~ ~ 1r-t 3--z _bull J111 ti26 66 1-r~~~ middot3middotmiddotimiddot-middot middotH5 cflG-

( Sil c~jl centr(tiri 3-i2 1~bull t11 1

118

i I J I I j

l I

j

I AGC-218-ll 502 40t RHmiddotmiddot1 GLASS CHA~8E~

bullS 1970 AUG 6 t J

ACO 1410 MIN TO ELAPSED TtIEmiddot~ I l

t l I

~

CLOCK ELaPsrn ClCbullE TSI R~L HUM sn Tl ME TIMEPPil ( PP11 lo~ cY 01 IPPMI

l ~I l

829 -I ~ 342 390 0114abull

( 836 ( bullbull~bull 33CJ 19 0 aus middot

841 11 bullJ$rfll(cent 339 39S 0 l l 4 -- ~ _ __ _________ Il --middotmiddotmiddotmiddot-middot--middotbull- -- 846 16 nsmiddotmiddot 40) gt bull 112 ~- ( 851 21 Cit-o 337 4CO 0 116middotf 856 26 (I 337 c 0 0112

f I

901 31 ~ 337 nmiddoto 0112 i 1

~

- 906 36 =-= 338 380 c110 911 41 tt~ 34l 370 o 109 --middotmiddot ____ -middot-- __ ~ -- middot-middot--bull-middotmiddotmiddot middot- -middot lti16 4( =~ 3 3 370 o1oi middot 921 51 -tCio 35 365 c 11)6 926 56 tOO 3+7 3o5 c1-~r I

I

i

l

l

[ I

j

middot-

1~

931 61 3-7 38 0 C-104~ lt 936 11 H5 38 5 0 l) 3 middott 941 71 3t5 Jd5 0104 946 76 343 ]8 5 0105 ( 951 Sl laquo1tbull 342 385 I 104

950 86 34l 385 0103 middotbullmiddot1001 91 middot=+ 339 38 0 0103

1006 339 37 5 o 105 1011 101 339 375 C 10 l __

I - --middotmiddotmiddotmiddotmiddot-middot 1016 106 339 380 0C99 f

1021 ltl laquoO 339 380 c 099 1026 116 C10$C 339 370 0101 1031 121 Ct 33lt~ 37 0 0096 1036 126 buller 339 370 0096 1041 131 (e 339 375 0 99 l046 136 lit 34l 37 5 o middot]98 1051 141 t 339 no CJ98 1056 146 C~bull 339 370 0G95 110 1 15 l ~IIX$centU 3- l 3 7 5 00-~1 1106 156 bull )~t-C(t 342 37 C oc9s

~Q(~cent 1111 lbl 342 37C O C9 3o C1116 166 Ccent~~ 342 0 ]96

1121 171 bull4- 3 36 C 0093 1126 176 ilc(tOC~cent 342 009436 5 l I 31 161 tiOt(i$cent 3 1 2 36 5 C0)4middot 1136 middot l e6 t-r-oebullbullgtt 3- 2 36 C 0090 1141 Illbull 3 5 0 0094lrmiddot0-J(J 31 3 1146 l lt6 -C 343 35C ono

I 1151 201 e 343 340 0 CtJG 1156 2u iC111 3 3 340 0089

( 120 l 211 middot~ 34 3 33 5 ocn nliittiraodc1206 2H 343 ~o OCl7

1211 221 -~bull-1fJlic H5 330 O CH9 1216 226 -yen 345 320 0 Cl9

1221 2 31 (1$11r 3diams 5 3middot2s or~ 1226 736 bullcqtcentbull 345 3l 5 COil 7 1231 741 bullt-laquobullbullmiddot 3 5 11n middotJ J9bull l 236 24amp 3 6 30 0 i~lbull 4

(ATA ~-~middotbullbull TAtH[

119

rmiddot 11

AGC-213-14 S02 40yen RH GLASS CHAlfER 1976 AUG 6

ADO 1410 tN TO ELAPSED TIME AT 1424 1 Ml CF S02 AND l6 Ml OF PRCPENE WERE INJCTED CLIMET AND WHTSY WERE 0~ THE CHAMBER FRON 1313 TO 1645 DASIBI 1212 WAS ON THE CHAMBER FROM 1634 TO 1638

CLOCK LiPSED Ol0N~ TS REL H~~ Sl2 TIME Tl~~(~l~Imiddot IPP~I lb~G ti (Cl (PgtI)

middotmiddot-middotn41 middot -middotzsi~-- middotmiddot$~I middotj~t q 3zo ocas 1246 256 bulltbullbullbullcent 349 32J 0 C8 1+

-middotmiddotbullmiddotmiddot -- - middot---middotmiddotmiddotmiddotmiddot bull_ 34bull ~----1251 261 0lrU 31~ 9 Q_~_7_i 256 266 347 325 on2bullIt 1301 271 =to~ 34 7 325 oJS3 130 276 346 315 0083 ---middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot- 13 I 1 28 l O-ht~(I 346 Jl5 CJ83 1316 286 O 346 31C middotOOi33 132 r 2lt1 ~tc1 346 305 o_C81_ middot-middot-middot

i326 2ltJ6 - middotmiddot34~5 31 5 008 1331 3Gl 34 5 3 l 5 0082 1336 3C6 345 31 5 0C7t 1341 311 3bullbull 6 29 5 0078 1346 316 b~ 346 ZltJ5 OJ77 1351 321 --- _3_45 30 J ---- -1356 middotbull~ 0 j73 _ middotmiddot-middot--middotmiddot-middotmiddotbullmiddot middotmiddot-------middot--middotmiddotmiddotmiddot middot-middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotbullmiddotmiddot- middotmiddot-bull 326 345 ZltJO Q)71 1401 33 l 346 290 0)73

1406 336 middotlaquo 3 6 gtltJ bull S 0073gt 1411 341 34~6 30 C 0072It~- 1416 346 347 305 0071 ~ 1421 351 34 6 310 OJ73

~~ 1426 --middot middotmiddot--jsamp~ __ 33i middot--3middot1o C 13 $ middotmiddotmiddot-- --middotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddot- ____ middot--middot-----bullmiddotmiddotmiddotmiddotmiddot-middotmiddot-middot~---~~middot-middot

1431 361 343 310 0221 1436 366 ~ 345 2 0 0232

-middot-middotmiddotmiddot--middot-middot34 6 middotmiddotmiddota 231 middot ----middot-- --middot middotmiddot- middot-middot--middot-middotmiddotmiddotmiddot-middotmiddot-middot--middot-middot- middotmiddotmiddot--middot middot middotmiddot--middot--i441 3 71 33middot 5 1446 376 o 346 335 o 22a 1451 391 34 7 34l~~= 0 226 middot-middot- -middotmiddotmiddot------middot- middotmiddotmiddotmiddotbull -- --middotmiddot---middot--middotmiddot-middotmiddotmiddot- middotmiddotmiddot-middotmiddot --middotmiddotmiddot-middot----1456 336 ~ 34 i 340 0 223 1501 3lt 1 -ti~~ 347 345 0222 1506 396 347 345 0221 1511 401 ~ 347 350 0217 1516 406 347 35) 0214 1521 411 X 347 350 0211 1526 416 )$ 349 340 0209

( 1531 421 Ji 349 335 0206 153gt 426 Clltf 349 335 0202 1541 431 ~ 3t 9 33J 0 bull fJ2 1546 436 t=Cilc 349 325 0202 1551 441 ~=gt4 350 3 lj 0198

4461556 JO ~49 32G 0 195 1601 451 Jlrltlf~Tc 350 31 $ 0192

Vcent~~raquo1606 456 350 J 1 0 0 l llt 1611 461 lttlO-t 350 3J 1 fJ ll l 1616 466 ~~ 350 29 5 0186 1621 471 350 zq s C1A4middotmiddot 1626 476 350 31 C 018 1bull

~ ~ ~ 1631 481 1119$~rc 3o 31 5 0181 ~ ~~ 1636 4a6 0)7 351 2 5 c 161)

1641 49 l llir-4-it 35Q 32 0 Ol77L - (

166 496 middotbullbulltbulltr 35 l 34 s 0 IIH

middotbullbull-tiort ~ si bullmmiddot DATA TAK[i ---- OATA 01 $~APi)euroC QIJ ST 1(lLE LmiddotbullTA

~ - l f

r

120

i

1 --~middot---- ~- Ac-middot21q~f-sri~ middots~ ~H middot ~

q l r GLASS CHA~dER 197b AUG lo

--middot0middoti11t1 middotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddot-------- middot-middotmiddotmiddotmiddot--middotmiddot middotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddot bull AT 1545 FC-12 ~~S INJSCTEO INTJ TH CH~M~~R AT 1646 S02 WAS INJtCTEC INTJ THE C~AN~E~

-middotmiddot1ECC 43 SP~NNrn ll6SfC o-middotcHA-lEft trJtCTl)~ideg-------------middot------middot-middot-TECO 43 SANPLI~~ ~ATE 1213 ~LNlN SRACV ll9b CALIS~ATU~ 1976 JUL lb

-----middot soz COiRECTIGII o11s4 PigtM middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot-middotmiddotmiddot-middot-middotmiddot middotmiddotmiddotmiddot-middotmiddot----middotmiddot- --middot--middot- --middot--middotmiddotmiddotmiddotbull--middotmiddotmiddotmiddotmiddotmiddotmiddot

---r7JI 3 bullbullbullbullbull middot bull- 1735 5 3Zb 815 0237

1740 10 326 ot5 C29-J ------------------------------------r1-- 1s --32e air-middotmiddotc2middot- 1150 20 326 815 C297

1755 25 326 815 0302 -- lBOJ middotmiddot--3r-middotmiddot 32 7--olO -middoto ~ 3-)=o-----------------

C 1805 35 32T 80 0303 l 810 40 2 7 8~0 03J7_-----------------------~-------shy

--faf5 45---rz3 s1o o--io3 C 1a20 50 321 s1o o3C~

l 825 55 32 7 81 J J bull 3C~ middot-------------middot----------------------[830 60 na-middot~os--(rr-or 1835 65 328 SJ5 0302

middot l 84l 70 32 7 805 C 302________________________________ --1a-5 5 33~aoj -029~

1asc ao ]27 eos c303 1655 85 327 SJ5 C297

--r9li0--90-fzmiddot a ss o-middot211----------------------------------1905 95 3~2 aos 0292 1910 100 3 3 bull-2_ _middotg~-J~bull5_C=2~-92--~----------middot-------------------------~--nTs 1cs----3rL t105 02n 1920 110 33t ao5 c290 1925 115 331 aos c2a1

--1~Jo---uil------rr-ar--~-2-rmiddot3-------------------------------1935 125 331 ao5 o2ss 1940 130 33l 8J5 C233

--middot1945 135 330 d05 C282 1950 140 330 SJS 0281 1955 145 330 aos c201

--2000 150~2S 8JS C232 ( 2005 1ss 33o aos c200

2010 160 330 aos c216

C

--ni5 - 165 32a aJs a21~-----( 2020 110 328 ao5 c21i

2025 175 330 sos 06~6______ zoo-- ldegamiddoto middotmiddot-32s- eos tmiddot--n2 2035 185 334 79~5 C263C 2040 190 bull 33 S 790 0 bull 2b9________- ___________________

--2045 1ss middot335 785 o2s9 ( 2oso 200 33a 110 o2sa

2055 zos 33e 110 ozampo middotmiddot-- -------middot---------middotmiddot2lo)- 21c ----middot33s -middot--16s--middot-cmiddoti4 (_ 2105 215 339 7amp5 C259

2110 220 339 7os o1s1 --2115 ---22~ --middot-middot339 765 c2sa-middot

C ------ --middot- ----- --------------- ---------middot-----------~middotmiddot-bullmiddot--middotmiddotmiddot-middotmiddot----

j1 ---------------- -----middot---- 2120 236 342 76C C253

212s 235 347 7ampo o2so 2130 240 34l 760 OZSO

middot- n ---- 2135 middot - middotmiddot-z~-middotmiddot - imiddot-1-middotmiddot-middotgomiddot middotmiddot- o i4-1

-

l

1-~iI

_middotbull

1 ~ l

i

121

~

i

I~

I l I

middot1

------ --AGC-219middot2 S02 e 1~---middotmiddot -middotmiddot- - middot- --- -------GLASS C~Amiddot~~H 1916 AUG 16-17

-i C -- - - middot-middot-- --middot---- middotmiddotmiddotmiddot-------middotmiddotmiddotmiddotmiddotmiddot--middot-----middot -- - bullbullmiddot-middotmiddotmiddot---- - - -middot --- __ -------middot bull

-il _

-l ~ I

middot l

l CLCCK ELAPSED TSl qL ~U~ 502

--Me--TTfn Iff-middotccn------n1--rp-r~ -----------middot

I -~1

~ --71rcr------2cr~-z---7smiddot--c72o-4 2145 255 339 7ampJ 0247

2150 260 338 7bO 0244--middotzr5--middotzrs---n--s--middot16-0---y-2middot~----- -------

( 2200 middot 270 339 755 02J9 2205 275 J)$ 755 0247t I

A ----zz-r~1o--------yr----73-~~-u-r-r~ti ( 2215 2~5 339 7~5 C241 J 2220 2~~ 33 8 75S 0241---izz---2s~--3T7--s--o-ZTImiddot---------middot----------middot----middot-------f ( 2230 300 33~lt 755 023-

l 2235 3C5 338 75S 0235 ---z2-0---TIU--~3 -7 middot---s-u23c---------

224 S 315 339 755 C235~ f 2250 320 337 75_~5_ __o~2~3~~__-----------------~----------~---- l ~ ~ JlS--middot 33 bull 7 75 ~ bull ~

I 2300 330 33S 755 C231 2305 335 7 75 5 Czz_a__________________________________33 4 --middot--2n-~4middot07 J3 7 7575----U--ZZ ~middot 2315 345 337 755 0 224 l 2320 3 50 33 5 75 5 C22_1~------------------ ________________2325 355 33S sgt--e~z-2330 360 337- 755 0226--~ 2335 middot 365 33 s 75s c22o--____________________________

--i140 nc---3-i~1s--o--1 2345 375 33S 755 C224

~ J C

2350 3JO 334 755 0221middotf --n-sr--middot3r~~--~r---r5-c~2-i-20------------------------------

3 t 0 390 335 75 0213 1 ~~

___rs~ 3q5 334 1ss c21~6---------------------------- _______lO 400------rrz---nQ-zi l

~

C 15 405 334 755 0213 20 410 334 755 c211

---25 4 I 5---j3-7----gmiddot5---o2l____i ( 30 420 334 755 C209~

35 425 33 2 755 C214d l j I o 43b 33l 7~s 0211 45 435 332 755 C206l C _____________j50 440 332 755 C206

-middot----s-s 44-s---33-~---1-s-middot-o-zo~s----I

( 10c 450 332 755 C204 I -r ~ 105 455 B1 75 C204 l i HO 46C_ ]Lr ts C2)J bull -------------------1 Ii ( 115 465 332 75S 0197

I ~ 120 47C 33l 75i 0191 middoti

-- 12gt 33 l- Vi5 -----------------------middot7475 C20C

t_ bull

fi I

( I

middot---middot ______J--- ----- ------------------- --------middot----- ---------------

ad ----- middotmiddotmiddotmiddotmiddot----------- ________jrl -middot- llO --- 4-middot 311 0 20273 5 ~ i n 135 4F~ 330 155 C 1bull15

140 4S~ 33 1 7gt5 CIHf -----middot l4Sdeg- --- 45------ 33 l - --- middot-middot -- -- iI

755 QlHbullJ

~ 1 j 1

1 t

ibull1 l I 122lI middot1 I

1

----------

--------------

r ------ACC-219-3 s02middot soimiddot RH --middotmiddot---middot---middot--middotmiddot----- - middot--- middotmiddotmiddot---~--------------middot------ ------------

GLASS CtiA4t3ER

l~_7t AUG __17____middotr-- middot-middotmiddotmiddotmiddotmiddot-----------------middot middot---------middot----middot---middotmiddot-middot-----------middotmiddot--middot-

---------middot------------------------------------I (

---rso -middot-soo - ~3T___ 75bull middotci_94 ( 155 505 33~1 7~s c1s2

200 510 33l 75~ C~bull~l9~l_____ ---20gt 51s fJo iss--o 1a1

210 520 330 755 C192 215 525 331 755 C184

--- 220 ___ 530 middot iza 755 cc1s~o-------------- 22s 535 33~0 75o o1a1

230 540 3l 750 0137 --Z3s___545 328 755 J182-----

( 24C 550 328 750 Old3

215 555 33 o 75 o o tn-=--------------------------------- f50 -- 51o- 32a ---iTo - 1so 255 565 328 750 C179 300 570 328 750 01B0

---3tf5___575 3 l 1 1middot5o--odeg17le-------310 5SO 32 7 7iO 0176 315 5e5 3o 75o 0115

middot--320 5co 32 1 1o o 112 325 5S5 327 75Q 0173 330 6CC 328 750 0172 middot

-----3i5 6C5 327 10 011s 340 610 327 750 0171 345 615 32s 75o 0110

~5c 62c1~middot2-t-----ro--o-r6middot~------~---------------------( 355 625 321 middot 75o 0161

400 630 n a 75o ~ 165______________________________ --middot--cs 635 321 15o o i6s

( 410 640 ~27 7a 0lol

415 645 2 d 75 a O 102~---------------------------------middot-420middot-- b50-middot327 74S Cl~J ( 425 655 327 745 C158

430 660 3l8 745 C15~ middot 435 665 327 745 C15------------

( 440 67J 32 7 745 0155 445 675 32a 75o 1ss______ ----------middot--middot 4~b 680 327 745 C153

( 455 685 327 745 C153 500 610 32 7 74 5 C t S-igt_______________________---middot----middot----

--middot-50middot~---6lti5 2 1 145-middot-TT~l SIC 700 327 745 C55

____ 515 105___ 32_1 ____ 745__ c1s______________________

bullbullbullbullbullbull NO DAT4 TAKEN --- OAT4 DISCA~DED 1 QUE~TIONl~LE D4T4 --------------middot------------

---~~-----middot-----__________ -------------middotmiddot-------_-middot ---~--middot-middotmiddot -middot-

123

cl

I I

i

AGC-219-4 soi so ~H CLASS CHA~ilER 1916 AUG 17

l ACO 710 ~IN TO ELAPSED TINE

j

r 1bull

~ i_ CLCCK ELAPSED TSL qEl HU~ 502-1 Tl~= TIMEl~l~I l0EG Cl ltl (PPMI

I j (i

l

So O 326 745 C149 525 5 326 74S Cl5J

iJ 530 ________ 10~---middot-bullmiddot32bullT_____74_5___ _ Cbull11tt_____ middot---~--- ___ --middot-middotmiddot---- middot--middot----- --------- --middot- middotmiddot---- _ - -----middot--------~--------middotmiddot middoti 535 15 36 745 C148 C 540 20 326 745 C147

545 25 _32_____ 745 0143l 1 550 30 324 745 C144

~ C 555 35bull 3Z6 74s oi4l too 40 __ ~6 l45o 147_________________________________________ ---- _______ ----middot-middot ________ -----605 45 324 745 0138r l 610 50 324 745 C133

615 55 ~27 741 0139 620 60 32-4 745 0142

C 625 65 324 745 C136 d

f fi 631J 70 3gt 745 __C134 --middot-middot----------------- middot-----------------635 75 )4 745 0133 64C 80 324 740 0136l j C

-~ 645 85 324 740 0132 650 90 324 740 0131

4 C 655 c5 324 74o 0131

l 700 ____ 1JO_ 326 740 __O l31 ____ 7C5 105 324 740 0127

C 710 110 324 740 012Bii 715 middot 115 326 740 0127 ~ --middot----120---middotmiddot120 --middotnsmiddot-----nsmiddot c126 - middot--

725 125 no no 0121~ C --- 730__ 130 bull ___ 33 2 _ 72 5 QJ28_________________________________i 1 735 135 332 720 0121

l C 740 140 334 720 C125j 745_______ 145___ 31 5_____ 71 5_ 0 bull 122 ------middot--middot-middotmiddot-- ---------------------- --------- -------middot----i 750 150- 334 715 0121

C 755 155 334 715 0122 ----middot JQ 160o _______3)bull _ 7l o5 __ 0_122 L_--------middot-middot---~----middotmiddotmiddot--middot------middot-middot---------

eOS -------i65 332 720 0121 A 810 170 33I 720 0119

~ C I 815 175 33-0 720 0119 -------------------------------------------------middot--middotmiddot --------middot ------middotmiddot---1 i 820 180 3Jdeg-middoto _iz omiddot _ omiddot122 --middot--middot-middot- -middotmiddotmiddot-I C 825 185 330 720 C~ll9 ~ __ e30 1co 30______12o_____o 11 s ____________________________________________1

8)5 195 328 720 0120 I1 C 840 200 328 720 0112

845 205 32a 120 0119 i 850 210 3za 72omiddot oui

855 215 328 120 0114bull_ Cil o 220 3~Q __72_0 0bull llO __ ---------------- ~ 905 225 32~8 720 0112 middot-~ -(

~

JI middot (_

1 9lJ 230 328 721 C1)91r ( 915 235 32S 730 010ai ltO 240 327 735 C1J l J 925 245 32 1 7l5 () 10

(-1 bullbullbullbullbullbull NO DATA TAKf~4 ---- OATamp DISCAPO~G 1 OUESTin~ABLE CATA

~ l ~

t ~

I

ii l iJ

124

AGC-219-5 S02 SOC RH GLASS CHABER 976 AUG 17

AOO 710 MIN TO ELAPSD TIMeuro

CLCCt ELIIPSED TSl Rl HU~ soz TIME TIME IHlN) (DEG Cl lampI IP~l

930 250 3~$ 740 0Cl3 ( 935 255 32 7 740 Q)4

940 260 bull 327 110 O 04 945 265 32 8 741) o leamp

( 950 270 32 7 735 C108 955 275 na -middot 730 o 105

1000 280 32 7 730 0106

~-_CAT AbullDISCAROEO -middot- _1 QUSTOIIIABLE OATA

(

(

C

(

--middot-middot----middot ----middot--middot--middot------ -------(

--~-----------middot-----------------middot-middot------------ ---middotmiddot-------middotmiddot------middotmiddot----bull-bull------ -------------_______ ________ ----

-middot-middot - ___ ______________________________---------middot---middot------------

-- -middotmiddotmiddotmiddotmiddot---middot-----------middot---middot---middot--middot--middot-middot--------middot-middot ------middot middot-middot------middot ---- --middot

125

( I

rmiddot

l i

j

j J

j )

j j AGC-2~0-1 S02-03 PROPENE middot GLASS CnA18ER

1lt176 ~UG 19

bullj OA~K

S02 AND FC-12 INJfCTEO AT 1115 OZONE ADDED AT 1149 PRCPENE AT 1155 BRADY 1296 CALIBRATIJN lS7b JULY 16

CLCCK EtiPSED ~ZCfrac34E TSl ~~L HU~ S~2 P~CPfN lF lMEl~Nl (PPlt) lEG C) 11) (PPI-IJ (igtiI)

1200 o o~4 327 41 0 0363 1014 120 5 5 06)6 328 410 0344 middot 1211 11 0557 12s 410 middot~ $f r~middot 3t1216 16 0511 328 10 0318 0 BCl 1221 21 0 4 74 32 7 4 I 0 0304 0cent3-ii

1226 21 C4-+0 32 7 410 02l7 (q~cent-0(I

12 30 30 o 40 328 4ltJ 0291 0 (83 135 35 003 32 7 410 0283 ~4 1240 40 c~11 3 8 410 0 bull 776 1)lcent1 ltlaquo 1245 45 C bull 3i2 328 41C 0211 0~9J 1250 so o 335 328 410 026( deg6 12 15 55 0 318 330 405 0206 bullii t~ 1300 oO D3J3 no 405 0260 0522

C l 3C 5 65 l2 56 32S 40S 0258 -c11ie 1310 7J 0 24 32s 405 0254 itbullit ---------------- middot-middot-middotmiddot- ------- 1315 75 C 251 na 405 czso bull1320 sc o 29 32 d 405 024S bulllilCe 132 5 65 0231 32a 405 0249 -------middotmiddotmiddotmiddot-middotmiddotmiddotmiddot-133l 91 C2~) 328 400 0247 043 1336 t C 22 32 8 400 0244 ~ tP+l l 01 o 213 3 S 40 bull0 0 22 ________ __________ bull -middot middotmiddotmiddotmiddotmiddot-middot-middot middot--middotmiddot-middotmiddotmiddot middot- -middotmiddotmiddot middotmiddot- -----middot--middot---middot1316 l C6 ozos 328 400 0238 JOcentht

C 1350 110 on0 328 400 0239 bullc 1355 115 0191 328 400 0239 gt~ middotmiddotmiddotmiddotmiddot- ___ ________ __ middotmiddot---middot- -middotmiddotmiddotmiddot-middot ___ ----- ------ middot--1400 120 o ta6 33 omiddot- middotmiddot 395 o23i o 3 76

( 1405 125 C178 32amp 39S 0236 1410 130 D I 76___ 32bull 8 39 bull 5 02~---U bullbull --bullbullbull---bull -bull-bullbullbullbullbulln___ bull -bullbullbullbullbull bullbull bull---bull---bull-bull bull-bull--bullbull -bull-i415 135 0 lb6 326 395 0231 tlllllc bullitbull 140 140 o l SI 32 8 395 0232 cu~ Ji 142 5 145 0 159 32 bull 8 395 0230 16CC- --- ---middot-middot -middotmiddot __ --1430 150 I 151 32 S 3c5 0230 0336

( 1435 155 0147 33C 39 5 C226 (laquo 1440 160 C bull142 328 395 0225 gtccent( _____ middot-bullmiddot--middot ___ middotmiddot-middot--middot-middotmiddotmiddot-middot--- middotmiddotmiddotmiddot---middot-1445 165 J 1 39 331) 395 0225 ~ ( 14Sl 171 0 134 328 3-i5 C223 1456 1 76 012 middot 32 8 3) 5 0223 ~b 1501 181 0 0 I 21 328 3lt bull) 0222 0311 1506 l 56 o 122 32a 39) 0225 ctcr 1510 l SO c122 330 390 0221 bull~ _middot middotmiddot-151~ lltS Cld 32B 390 0221 I~ 150 2 co 0115 3ZR 390 0220 tTt 1525 2 cs C I lO 328 3SO 0220 bull15~0 210 C 11] 330 390 0221 0289

( 1535 21s C l middot~) ~20 390 0216 +rrmiddot 1540 220 tt~ 12Y 390 016 XlC-$1(1

1545 zc~ (lt(I~ 328 3()0 015 Cr4Ccent

1550 23-Cmiddot bull fl 328 39C o 715 tCit q

15~5 235 330 39 0 0215 lCi9bullbull 1(cot

160() 4C ~l)l-fl 130 390 o 13 0274 161)5 2 4 ~- _ bull C1~ ~ 328 390 0211 (rj

t1ilI ~~G DA Tf Ttt Li ---- DAT A Ol~rA~fJEO 7 OU Sr Pit tll I OIITt

126

r

middot1

AGC-220-2 $02-03 PROPENE GLASS CHAMBER 1976 AUG 19

t (

CLCCK ELAPSED ozmiddot-E TSl REL rlUI S02 PPCP EtliE TIME TME I Mll l I PPI J (DEG Cl 11 I DP-1 l I PPFgtI

(

1611 251 0085 3o 3t5 o 21-4 ~~lJltf ( 1616 256 C090 328 385 0211 middotmiddotmiddot 1621 261 0085 33o 3S5 c 211 (ercent

1626 261 QCd3 330 33 5 C208 = ( 1630 270 ocn 33o 5 0209 0254 1635 275 OCdl 330 35 0208 ~ 1640 280 0078 33 O 335 D209 bull~tbullitt

( 1645 285 0011 33l 3amp 5 0205 bullcentt41A

1650 290 0076 330 3B5 0 2J5 bulltcbull 1655 2cs 0076 330 385 0206 middot~

C 1700 300 (1071 33a o5 C205 024S

NO DATA TAKEN ---- DATA DSCARDO QUEST ON ABLE CATA ( middot-- -----middot-middot-middotbull ----- bull - middot-- -

(_

C

C

(

(

(

(

r 127 I

AGC--1 502-03 GLAaS (HAliH 1976 IIUC 20

DAIK BRADY 1296 C~LIBRAT[O~ 1976 JULY 16 ril NE WAS INJECTED AT 0933

CUXK fl ~rsrn Ol(lr lS l il El HUbullI smiddot 2 l I MF TJbullE ( NI ( r1) lCEG C) ()l ( PP I

I

845 o oc 32 7 440 0379 850 5 oo 330 435 C360 855 10 oo 330 435 C377 900 15 oc 331 435 C376 905 20 oo 33o 435 c J 76 110 25 oo 33Q 43 5 C370 915 30 oo J3l 430 0370 920 35 oc 330 430 0369 925 40 oo 33l 430 03amp9 930 4) oo 330 430 036 935 5C o~gtt2 324 425 0360 940 55 0576 330 425 035$ 946 61 0572 330 42 5 03~7 951 66 o 5 7 330 425 03~S 956 71 0569 33p 425 0352

1000 75 0567 330 425 o 3$2 1005 80 o 567- 330 425 0349 1010 e5middot 0562 30 425 C349 1015 ltO Cmiddot 551 330 420 C 34 7 1020 95 0557 330 42 0 a 34 7 1025 1 co 0554 33 l 420 0344 1030 105 o 552 330 420 c 34 1035 110 0552 33Q 42C o 342 1040 115 middot 550 330 420 o 34) 1045 120 0545 330 420 0342 1050 125 o 542 33l 420 middotO 340 1055 130 o 542 33 I 415 o 30 1100 135 o 540 331 4 l 5 C340 1106 141 0537 330 41~5 0336 1111 146 0537 33I 415 0335 1116 151 0532 330 415 0333 1120 155 o 5 32 33l il 5 035 1125 160 0530 33l 415 o 333 1130 165 C530 331 410 0332 1135 170 0528 330 410 033 1140 175 0528 330 41 () 0330 1145 1eo 0523 330 410 0 bull 325II

r 1150 185 0520 330 410 o 326

1155 190 05) 330 410 0325 1200 195 0515 130 41 0 0321 120~ 200 c~1e 311 4()5 034 1210 205 o13 330 45 O 32 l

ft 1215 2 LO I) 511 330 405 0311 1220 21 s f~ ec gtlC 33 I 405 c20~

i_ 1226 221 0503 330 405 0319 1231 226 osoa 331 40~ 0 bull 319

~ 1l J ii

1236 23 05ll l30 405 0119 1240 235 OiOl 330 40S 0318 1215 240 051)1 l3 o 4GO o~1s

f Ij

1250 24 04H1 BO 400 0 314~ I

middotbullbullyen ll() r11u TKEI DATA or ~c11ourc iIJl l)NeLE DATA f

f

~-

~ 1

f -~ 1l 1

~t 1 128 l

IJ 1

~-

1 1

bull

t-~ I

lIT 1 l

middot(I

11

AGC-221~2 S02-03 GLASS CHlMSER 1976 AUG 20

t J

middot

t

rr

a ~

bullmiddot ~

(

--1255 --middot- 250middot 049smiddotmiddotmiddotmiddotmiddot- 330 40omiddot---middotomiddot~jfi middot-middotmiddot-middotmiddot--------middot----middotmiddotmiddot-middot---~middot-middot--middotmiddot- middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

i l3b0 255 0493 331 40C 0313 ~ 1 1305 26J q 493 33 o 40 O C_309_____ middotmiddotmiddotmiddot--middot-middotmiddot-middotmiddotmiddotmiddot--middotmiddotmiddotmiddot------middotmiddot--middot -middotbull-middotmiddot-middotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot middotmiddotmiddot--middot-middot-

1310 265 o411 n 39s o3oa middot C 1315 270 0491 332 395 C308

1320 275 0489 331 39S C310 - --bullmiddot-middotmiddot- middotmiddot--bull-middotmiddot middotmiddotmiddot-middot-middotmiddot- _ middot--- -middotmiddotmiddot bull-middot

a tlmiddot

)

13zs-middotmiddotmiddotmiddot2ao~middotmiddotmiddot-omiddot4a9 33middoti--middotmiddotmiddot-ji~cmiddot middotmiddot 0309 C 1330 285 04114 332 39C 0307

1335 290 0484 332 39C 0308----middot13o middotmiddot 29s middotmiddotmiddotmiddotmiddot0middot4s1middotmiddot middot ir~middotxmiddotmiddot -middot59 c 0~middot3ci4 --middot bull--middot------ - middot--middot--------middotmiddot-middotbullmiddotmiddotbullmiddotmiddot- ---middotmiddotmiddotmiddot-----middotmiddotmiddot -C 1346 301- 0481 332 385 0303

1351 306 0479 33l 39C 0~304

H c

1356 middotmiddotmiddot311 middotmiddotmiddotmiddotmiddot-0middot~middot419middotmiddot middotbull middotmiddot33~1 39 omiddot o 303 1400 315 o476 33t 390 o302 14C5 320 C476 33l 390 0299

-1410middotmiddot -- 35 middoto474 33l 390 0298 1415 330 Q474 33l 385 0298 1420 335 0471 33l 385 o296

a i425 middotbullmiddot-340- 0~469middotmiddotmiddot 33 385 0294

1430 345 0457 332 385 0296 i

f J

ffi C ~

1[ C 1middot11

lf~middot i$~ C

(

(

(

(

(

129

i I i

-

j i iI

l j

l i i 1

ampGC-222-1 SJ2-N X-SURR-U GCASS CHAll~fi 1976 AUG H

O~RK CO FACTOR lq122 eR~OV 129~ 21 ~l ~ox INJECTED AT 0920 HJURS AT T=o ~c~-METH~~E ~ bull 1740 PSC MTHAN~ bull 32CO PPB

CLJClo ELAPSED 0ONE CJ TSl ctEL HUll SmiddotZ ---middotmiddotmiddotun TlM~(M1-ifmiddotmiddot-PPM)middot--(p y ID~G Cl - u IPP~I

q4~- middot-middotmiddot-middotomiddot oo 53 n2 465 o--j~ middot-------middot--middotmiddot-middot---------950 5 oo 56j 33l 465 034~ 955 10 0 002 5 65 n l 46 5 0344

1000 15 oo 561 HO 465 0344 ~ 1005 20 oo 560 ]30 465 0340

1010 25 bullbullmiddotbull bullbullbullbullbullbull bullbull~middotbullmiddot bullbullbullmiddotmiddot middot~middot~bullmiddot------bullri1s 30 oo middot 563 33o 465 o1Ja 1020 35 oo 564 330 465 0)38 1025 40 oo 5ss 330 465 0337 middot----103) 45 o bull i 556 330 4amp5 o333 1035 so oo 5-~6 130 465 0335 1040 55 00 556 330 460 0332______ -----middot---middotmiddotmiddot- --------------middot i 1045 60 00 551 330 4bO 0332 1050 65 OJ 552 330 4bO 0333 1055 70 oo 54il 330 460 0329_---------------------1100 75 co 548 330 455 0329 1105 so oo 548 330 455 Q327 1110 85 00 547 33l 455 03_6_______ middot-----middot--middot---- ------middotmiddotmiddot-middot 1115 90 OO 550 33l 455 Ollb 1120 S5 00 548 33l 455 0325 1125 lCO OO 55 33l 455 0324~------------------------(130 ____ 105-middot-middotmiddoto002__ 542-middot 330 -- 45o 0322 1135 110 oo 540 330 450 0319 1140 115 0002 542 330 450 0320---1145 middot -middot--120 0002 5ia 33o___45o omiddot319____________ middot------bullmiddot--middot 1150 125 oo 540 330 middot 450 0318 1151 0 o 541 330 45 0 03_1_8_________________________131

1200 135 OC 532 330 45C 0314 1205 140 0010 539 330 450 0311 1210 145 oo 535 330 450 0314 1215 15bull) oo 534 328 450 0313 1220 155 00 533 330 445 0310 122s 100 oo 534 33o 445 0313 1230 165bull 00 52b 330 445- 0313 1235 170 oo 531 330 445 0310

1240 175 00 53()___ 332 44C 0 0_3C________________________middot-middotmiddot-middotmiddotmiddotmiddot--middotmiddotmiddot-middotmiddotmiddotmiddotbullmiddot-middot--middot----- -middotmiddotmiddotmiddot--1245 180 00 526 33 l 440 0303 1250 1s5 oo sza 332 44c oJn 1255 190middot oo 529 332 435 0304~--~- -----------middotmiddotmiddotmiddot-----middot-----------1300 195 oo sn n2 435 aJes 1305 200 OO 52b ]32 435 03l4 1310 205 oo 524 332 435 0304 1315 210 oc-62 s24___ -~3i -middot--middot43s o302middotmiddot--middot------ middot- middot ----------------~-- -1370 215 00 523 332 435 0300 1325 220 oo 5 lil 332 43c ono 1330 225middot middot-oo middotmiddotmiddot-middot--s -19middot --middot~j~z--middot3if-middot 0300 ----middot--middotmiddot----middotmiddotmiddotmiddotmiddot-middot middot-- -middot--middotmiddot -----middot

r BH 230 oo 519 33l 43 G 03iO 1341 236 oon 5 IIgt 33 1 -3 0 in1

1345 240 oo 5 15 H l 430 J297 1350 245 oo 5 13 3l2 43C 01~

bullbullbullbullbullbull NO nTA TAKE~ ---- 0lTA 01 SCAPgtFl

130

AGC-222 2 S02-NOlt-SbulljRR-U CLASS CHAMBER 1976 AUG __ 24

0

----------middotmiddot-----

-- 1355 ____ 250middot-middotoo s13 332 41c 02 middot -----middotmiddotmiddot-------------( 1400 255 oo 5lZ 332 43C 0294

___1405__ 260 oo 5 ll __ H2__ 3t3C 0_293________ 1410 265 oo 512 330 43= 0291

1415 270 00 50ltgt 330 430 02ll 120 215 co 501 32s 43o o2bulln ___________________ ---- -------middot -middot--1425 280 00 503 328 43C 0211

C 430 285 oo 578 328 425 0291 143 s 290 o o s 04 32 s 42 5 o z_a_________________________--_

--To---i9middots oo 504--fj-middoto- 1t25 middoto-zag C l4t5 300 CO 502 330 425 0283

1450 305 oo 5oz 33o 425 ozss___________________________ lt55 310 00 497 330 420 0283

middot 1500 315 OO 499 330 _42C 0285 1505 320 00 496 330 42C 0285----------------

--Tsio 325 o-o---soo 33o 4z-o--ozas 1515 330 00 501 330 42C 0285 1520 335 0002 493 33o 415 o2a______

----1526___341 oomiddot---4~-33l 415 0281 1530 345 oo 493 334 415 0280

__J2~1__3j____~g_ 492 332 415 Q__1_80_________________________ 1540 355 0002 491 33t 415 0273 1545 360 0002 492 330 415 0280 1550 365 G0 4 93 32 8 41 5 0276--------------------------1555 370 oo 489 328 415 0276

C 1600 375 00 489 328 415 0275 1605 380 o o 4 88 33 o 41 s o__2_1-=1--------------------------c-------H io 3a~-middot002 490--ffa 410 f21-

( 1615 390 0002 483 330 410 0212 1620 3c5 oo 487 330 410 0211_______________ 1625 400 co 481 330 410 0274

C 1630 405 0002 481 330 410 0270 1635 410 0~002 487 330 410 027-=)---------------------------1640 415 oo 480 330 405 0270

( 1645 420 0002 4i5 330 4C5 0269 1650 425 0002 481 330 405 0210 ---- -----middot-- ----middotmiddot-middotmiddotmiddot -------------------1655 430 00 463 330 405 026b 1700 435- oo 484 330 405 0265

--~70115 ______ 440 _____ oo 482____330 405 _026_6_____ 446 oo 482 331 405 0266

1715 450 oo 4 77 332 40c o2u 1720 455 oo 4 74 332 40C 02E4 1125 460middot--middotmiddotoo middot 479 n2 40c 0265

1bull 1730 465 00 479 332 40C 02(5 1735 470 00 480 33l 400 02t4_____

--f140 475 co 4 75 n2 4oc 020

middotmiddot-middotmiddotmiddotmiddotmiddot-middotmiddotmiddotmiddot-middotmiddot ----middot-------middotmiddot---middot-------------middotmiddot---------middot-middot--middot--middotmiddot---middot------ --middot----middotmiddot

----------------C

bullbullbullbullbullbull NO OITA TAKE~ _1 QU~STlnNIHL~_CATA

r

131

0 AGC-Zll-3 smiddotczNOX-SUR~u CLASS CHAISER 1976_ AUG 24 -middot-middot middotmiddotmiddot-middot -middot

_CLOCI( _ELASEC ___ OZCNE_ CO ______T_Sl REL HU _ SC2 TlHE TIMEl~INJ IPPI (PPMI (DEG Cl (II IPPMI

-- 1805 -- 500 -- oo --2--331 395 02cl ( 1s10 so oo 472 332 395 ozs6

1815 middot 510 oo 4 70 339 395 0259___________________~----1820- 515 omiddotc middot 69 34 1 39 5 0-~lsi

( 1825 520 oo 469 34l 3gt5 0256 ___1830______ 525i __oo___46S__ 34t t9_5___ o2ss _________________________

1835 530 oo 467 34l 395 0256 ( 1840 535 oo 466 342 395 0254

1845 540 oo 469 342 3S5 0254_________________________ --irngt----5s oo 461 342 iis_____o--fsi

( 1856 551 oo 466 343 395 0255 1900 555 oc 4-oo 341 395 o254~---------1905 560 oo 470 34l 395 0254 1910 565 oo 465 341 395 0252 l 915 570 0 0 4 51 34 bull 1 39bull=5__0ebullc2-5-2__________________________ 1920 575 oo 464 341 395 0249 1925 580 oo 458 34 l 390 0 249

1930 585 oo 45a 341 39o o241____~------------~-------1935 590 oo 465 341 395 0249 1940 595bull middot oo 460 339 390 0~245 1945 600 oo 4ss 339 390 o~2~45__________________________

--C95(---6C5~--o~o 458 34l 39~0middotmiddot-0247 1955 610 oo 461 338 390 0244 2000 615 oo 460 338 390 0-2~4~5_____________________-----

2005 620 00 456 339 39C 0244 ( 2010 625 oo 454 339 390 0245

201 s 630 o 002 4 59 33 9 39 c__o-_=2_4J--------------------------2020 635 00 456 339 39C C245

( 2025 640 0002 453 339 390 0241 2030 645 middot oo 455 339 39o 0241 2015______ 650 ----middoto~--middotmiddot--453 - 33 9middot-middotmiddot 39omiddot o239=------------

C 2041 656 0002 459 339 390 0239 2045 660 0002 459 336 3B5 0238

--2050 - - - 665 -0002 45z -i3~B--3as middot 0231middot-----------( 2055 670 oo 451 339 3ii5 0237

2100 675 oo 451 339 385 0237--2105 680 --oo 44smiddot-----33-9---middot3s-smiddot--o237-- -------middotmiddot-middot--------- - -----

C 2110 685 oo 453 339 365 023 2115 6~o co 44a 339 3as o23~6___ 2120 695 oo 44) 33C 365 0236 ----middot----middotmiddot----

( 2125 700 oo 455 339 335 0232 2130 7os _____oo ______449 ______33 bull ____ 3-a 5 ____ 02 J4_____________________ middot------middotmiddot-----

bullbullbullbullbullbull NO DATA TA~EN ---- DATA DISCARDED 1 0UcSTIONASLE DATA

--------middot-middotmiddot---- middot--middot--middot---------middotmiddotmiddot-middotmiddotmiddot middot-middotmiddotmiddot------ middotmiddot- _________ middot------

132

l [

f

l i

t ~ C- 2 2 -middot 2 - bullj tmiddot- $ VXA- _ Gl~SS C 1~gt ti 1976 H Z -h

lC~ 710 ~IN TO ELAPSfC TIM~

CtCCk tlh~~~e middot_lC1Ji ~l T P f ll ~ Pi l p bull n I ) ( E Cl

middot13s middotc oo middotmiddot s i9 middot 21~0 JQ bull 51 3 C 2145 Le 1c bull 1~- J_a 2 l ~C cc 4 f 21~5 oo ~ ~ ~I~

22middot)0 2 CG 3 middotn0imiddot- middot3middot1 j ~~3 -cc

35 ~c 3 ~- 9 i) C t 3 l~

bc ~ bull ll middot3 - ( 222c 5 l ( c bull 4 2230 55 bullbullbull 1 ~ ~1 2235 middotc middotc ~ QC ~ ~ 1 I 224G C 5 C itbull 3 ~ 7 2~ 5 70 oc ~ 3 I 3L 8

2~5 1smiddotmiddotmiddot oc middotbullbull-i -~ 7 215 FC oc 230C CS 33 S 205 sc 3i 5 231C ~5 CO 440 ~3~4 2315 lCQ 0c____ l)~-__ i~middotzc------imiddotsmiddot~ - u c ibull ~s 2325 l l O oc ~ 4C

2BC ~-9 _____ 41 _ 235 u 3(61

2340 liS bull C C t 34 235 19 Cc middotmiddot------~middot])2350 1 5 bull 0 C bull 3 3 1

2355 l-8bull cc i3lt 33 1 0 l~ ov 43 )31

--middot-s middot-- iSv oomiddot ~31 331 ll 15 6 Oc ~-27 3i~C

C _)-(1 20 -middot iljmiddot oc I 2 2 d 25 17C J i2 32 B 30 _J 1 5 ___9 c_ ~7 G35middot-- 24 3 8 4C 125 oc bull 2i 3225 lCbull __QC 4 2~ - bull n 50 15 middot 3l55 2c i 2 5

l co_ _2 ~ ~21 10 ~ 21c oc bull z I lt1 11 J 21 r bull 4 bull ~middot 6 u______ -middotmiddot_ac o~ _____ it bull ( 120 2~ o~ ~2

15 130 j

middot I 7 tbull 1 J t 1

- --- - 1 1 r -

~-1 1~- SC_ l P)~)

c ~ ~7middot

~3T middotis4middotmiddotmiddot

3 bull 3 ~ ~

3 ~$ )

)

J8

3 J middot

3-3shyJS~ -

3G 3BJ i $

Id i c 3 j

3 3 5

3SC 3 middot-~c bull C _ bull C 3 (~ 3j imiddotbull 3

~ r middot i c

0220 1) 2 H ) bull ( 7

c~J ~ _ 7 G -- 0 u 2 2 gt J22o J2D imiddot

G bull (2 ) 2 ~2 c21 -21 bull 2 l cn Cl2t C 22l middot~ 2 3 7 2 G L t(t ( 2 l middot1 C1219 G~O 16 ) bull 216 0 216 cdmiddot i) bull 15 ~214 ) bull2 t 7 C ll 3 ) bull 13 bull 2l 1 )2 h

( 11 G bull 2 01

133

T

AGC-2l-S SC2-1x~~ltR~-LJ GUSS CHMmiddotWE

J l176 AJG l~ l

ACU 71C MIN 10 ELArsro Il~E

CLrCK EL~PStC CZ~NE cc 1 S l f L i Lbull S1 2 THit rmiddoti ME ( lbulll jmiddotJ ( po11 middot1 ppl(J iCtf~ (~I lPr-q

1 s middot-2smiddotc- 00 middot 4-~ middot 3middot C2CJ 150 255 U C 1-t~l ~L0 155 261 cc 421 32 3 - 200 26~ 4 b 3 _ s --~ l 205CbullC

20 5 2 7 C li bull ~ 4 bull t 2 3 ~~ i C i ~J bull C ~10 ~J_ ObullQ middotmiddot-bull~ rt ) 2bull~2 Jis-middotmiddot 2euro0 0Lo 1ll ~~~bull J 2(

220 2~middot oo 119 j 02c 225 2S0 0 bull1 Ui 3 3 bull 2C 2H i9smiddot cbullmiddotmiddot 4middot11 - l c) 235 JC C~ 46 ]2~~ ~- ( bull r G ~

2o 305 cc 1 _2l 3 020 middotmiddot 2smiddot------ middot 31c oo middot4middot2t 12 bull i 2~-

250 315 CO 416 3l5 C2Qj 255 32J o 4ll ____1~ 3S 5 lbull 2fJ2 3JO 35 OC 407 I i L bull 02 3C5 330 CC 414 3l~3 3S J l bull 2Cmiddot 310 33 cc 4 1J 31i 3 I~ 5 CtCl 31s middot30 cmiddotc middot--middotmiddotmiddot13 313 3S C Si) 20 345 o~ 414 31J 3middot ~) C2C) 325 350 oc 4Js 313 3 0196

330 3jJ -middotcc 410 31i 3( 5 J 14 7 335 360 uC 410 3l2 3 s gt i 1 S6 341 366 00 4C4 312 3 s_ C l_Y 7 3~5 370 GC 4d 3l2 3 - bull s ) 19 I 350 375 oo -t)8 312 S bull 3 L 1 e 355 38C OJ 401 312 _y~ C I l~ 400 3i~ oc middot 4~2 312 3S5 C195 ADS 390 OC 4J 311 ClSi

______41 c ______ ys______ n ~----- ____4c4 _______J_1 3 middots 5 01lt7 415 -tCO CQ 117 311 35 0 i 2 420 4C5 OC 4C 311 ymiddot J] 4 2 5 __________ 4 lO 0 ~ 4 ~_ -~ l I C I~ 43C 415 0bullJ 3S9 31 l 3 bull 5 (ts) 435 420 CC 47 JiI 3 middot - bull ls l

____40 4 __c_ __________ __2___ 31bull i - bull 8~ 445 430 )C 3S3 311 3 middot v1c1middot1 450 435 O~ 3middot3 31 l 3 middotbull n 1 c)

_4_)5 _____ 44~ 0 bull ~ It~_-) bull J 3 middot ~ bull 1 d 500 445 oo 4tl 30c 3 middot C lk ~cs 45G o ~ ~o zc~ 3~ 5 u te 510 1 j j 1 8 middot 55 460 0( 3 C middot ] ) 1_ s2O 405 0c 3 middot I 30 C j gt C l 8

52igt_____~1l __ ) c__________ i bull ~J___j middotmiddot-middotmiddotmiddot- -~ Gbull d J l 7 530 475 Ot 4l 3Ci bull S

4eo J

_middot 3-bull I 3 -d jJ -~ V I H

134

I J

A~C-2l2-6 5ji-NOK~S0KR-U GLASS Cf_cofJ 1976 AUG 25

ADO 710 MIN TO ELAPSED TIME

CLCCK EL1~SED middotrbull C i TS l t rl _ ~ t D c ~ ) (fI)TlH THfPbullIH I )G Cl l-l

55 500 oo 3C 7 I) 5 ) bull ~4 600 507i 3 93 3middot) I 3 middot) ~ J bullbull middot)2

605 51() ) bull 9~ 30 610 15 3 1S 3J 7 r~ ) ~ i 615 520 00 396 30 7 n5 -) bull l 6 620 ~) 5 ~ 0 bull]7 3( 7 -) ~

625 53C t- ~ 0 5gt~2 3iJ 7 ~ gt 630 5~5 oc 69 3~5 )13030 65 5) )0 3 - 3) 7 _ i ~ bull ~l

640 middoto os2-middot - 3 Ji o 7 j ~S -Jmiddot1middot7d 5 1t5 i 645 5~0 oo 391 305 ~ J131middot 650 555 oo ~dd 3G5

655 middotmiddotillf Cmiddot o 3 9J io ~ 7JO scs co 3 sc 3C 705 570 o ---middot-middotmiddotmiddot-nrmiddot middot - -- cmiddot o middot 715 seo Ii GJ2 middot1 middot 5 J l 76

57c 0 s 720 555 C 31 5 ol v J l 73

-- -725 sso o u ~ rmiddot-middot-- 3bull) 5 ~ ( -middot----y~rrr----- middot middotmiddot 730 gtlt3 o Cl2 lt 3C 39G J-l 71

735 6C-O oJn 382 3C5 ~--J bullJ i17o 746 - -ij~ c-002 3 37 3middott1 3middotmiddot~middotT- )itb

( 745 ~10 Omiddot) ll 30~ 3 ~ J Jl3 7$0 615 CJ 3 H l 3J I ------- -75 ~ - middot-- 62 --- o Jo2 ------middot Jaf -il (

( 800 625 Ci J 3 8 l 3 l 3 3 C ]72 805 6~~ G 3 3-t Higt 3 7 C J l 72 810 i 3 5 i iJ ] 1 3middot ) middotmiddotmiddotmiddot middotmiddot1 fj-middotmiddot --

( P15 610 ~ 3) J) - bull 73 20 6t _ c2 32 J bull 1 7 ~2 s 6) 0 bullbull ) i l l 3d l 3 ~I bullO ~ J (1 i

( 830 65 oo 3 l~6 3t3 3- 5 ~j -i1 i)

835 UC vo 3 77 3) 3 i bull 1 7) middota4Cl- bl C bull ) 3 31) 32 middot1- ) s -~ 1C)

a4 s 6n 76 middot 3 i) 3middot ) )ll ao o7 (i0 j gri 32 7 34 ~ a19

middotmiddotmiddotas1 middot---middot middoti8i omiddotmiddoto j o middotmiddotmiddot32ibull ~ t-~--cmiddot middotmiddot i ~middotmiddot 900 6 0 ) 7) ~ 2 l ~ 1- 7 ltJS 6Jj C 0 3 __bull -~ 32 bull 1 ~

-910 ftJ 00 L ~-~bulli

(

f 135

I

r

j I

AGC-222-l S(12-N]~1-St 11~-U GLASS (bull-Ufis 197( Au 25

ADO 710 HIN TO ELAPSEC TIME

CLOC~ fLlr5~J oz~-J~ CJ _TSl P~l 1U-~ _5J2 TIMf TPHlNJ (iPMJ (fgtbull-1 [IJEG Cl [) crPl

915 92~middot

7~ Jmiddot iCS

0 0 OOJ2

- bull lbull) 377

32 i 32

3 C~ --loz- iimiddot1-V O c 169

_925 7 ) 0 o 3 79 37 0 l c- 93) 715 00 3 79 32 7 0 l 6 935 7~C C0 n 32 7 0 l 64 940

i45 75 )

0) 0 0

~ 7_7 3 79

32 bull 8 3 3

middot3 ~ 33

0 Jc~ C lomiddotbull

75 oo 3 7l 32 raquo 330 O l l2 955 7~middotJ GO 3 79 32 a 33 0 0 16-t

middot1000 71 omiddoto bull middot1 33~ 3L 0 o 162 lmiddotl05 7middotC- oo 3 7S 3 bull3 33D O l 62 1010 1015

75 f-Jmiddot

uo 0 o

3 7o 3 7z

3) ~ 3) J

33 c 325

0 l 61 O l cD

1020 7c5 0(1 3 73 33 ltI 325 OHl 1025

-middot-1030 --770 7i5

oomiddotcomiddot

375 3middot middot1a

~-~- i 33 e

325 v _1593_i_-middot 0 bull I Sc 1035 co CG02 3 7) 3] ~ 32 ~ bull l 5j 1041 1045

7 7 0middot~

OD ( o 37S middot3middot~ f

13~ 33 7

3l~middot-z~middot ~- middotmiddotmiddot

Vlt~l c middot 1middot~~8

1050 7lt5 0 bull) 3 71gt 33 7 325 v158 1055 Smiddotjbull oo 3 75 336 3 2 5_ gt-t~-- _

~UES1l~NA8LE DAlA

136

l

Jbull j

---ACC-2~2-emiddotmiddot~c2-NC~-sugttl-1J _______________ --- -middot GLASS CHA-l~EQ 1middot91J liJC 25

-middott tc1-1rsmiddot O- 1100 -lH1STY 1Jf middotmiddot----- bullmiddot-middot -- --middotmiddotmiddotmiddot-- middotmiddotmiddotmiddot------middot-middot-middotmiddot middot- ---- -middotmiddotmiddot -- - bull middot- middot-------middot--middot- -middot co FACTuR l91Z e~ACY 1~1 TECO 14D ~IS ON TH CHl~OE~ FRO~ 11J5 TO 1111 1200 TO l2J5 1~00 TO 1305 1400

----middotmiddotmiddotro-1405middot lgtCJ TC 15J5 11 l01610 ANl lb55 TO 11Cv middotbullbullmiddot-bullmiddotmiddotmiddot- middot------middotmiddotmiddot TECO 140 s~raquoPLlG UTE 112a ILMIN PAN NOT ~EiSURED ~02 AND N~a VALUES NDT C0ARECTEO

---ATT=l5 MP NOS--ffVIE i-C =middotmiddot1130middot PP3C middotmiddot ~=TH~~E middotmiddot-middot29oc middotpamiddotmiddot ------ middot- ---middot-middotmiddotmiddot-middotmiddotmiddotmiddot---middot---middot-middotmiddotmiddotmiddotmiddotmiddot

CLQCK EUSED OZC~ J iJ2-P~N bull1-P~r ca TSl ~El llH Sl2 -T1~-e--1Mtnbull1Nrmiddotmiddotmiddotmiddotr11-r- - HbullJfr-middot middotmiddotr~- --- nirr-TPgt)n- middottoEG middotmiddotci--- ni middotmiddot-middotmiddot middot 1gtsi-1-middot--------------- ------- middotmiddotmiddot----

--middot-ruo c---rv----~i ~if----~----~-i---1middot-n-~1 o 32 lmiddot-middot -rrs 1105 5 OC27 ebullbullbullbull bullbullbullbullbull~ bullbullbullbull~bull l74 3Ja ~iO 0154 1110 10 oc54 a~3a csoa csJc 37bull 3~1 31s o153

---n 15 15middotmiddot--r-T~--t~bullJgtT--az-m------Ti-~-- bull 32 o middotmiddotoT~---------------l 12J 20 ~095 ~bullbullbull ~bullbullbullbullbull bullbullbullbull 373 34l 325 0149 1125 25 o11~ bullbullbullbull bull-bullbullbull H-u- 373 34l 35 014S middot

---rr3middot--middot-middot-middotmiddot3u---rzz-middotnH-----ymiddoti--nmiddotmiddot~---middot-rn-----r--n-smiddot-or~-----( 113s 35 0132 bullbullbullbullbullbull bullbullbullbullbullbull bull~bullbullbullbull 37ti 34l 325 014S

1140 40 0142 bullbullbull--bullbull bullbullbullbullbullbull bullbullubull 373 34l 325 0147-middot----x-Ps- middot----middots--middot -middot middotmiddotJI-z---middot-~i- middot --middoteimiddotn -- flyen----middot- 3-middot--J z----7)___ middotefv-2 ( 11so middotsc 0164 bullbullbullbullbullbull bullbullbullbull~bull bullbullbullbullbullbull J73 343 320 0143

1155 55 0176 bullmiddot 37 334 31-5 014312CO 5u---n1-middotomiddot1gt~-n-nmiddotmiddotmiddotbull--middot_bullmiddot~amiddot-~--nmiddot~--5- --v-1~4-----1205 65 0138 0~21 44~ 0468 371 33 31S 0140 1210 70 0198 middotmiddotmiddot~middotmiddot middot~bull 373 3)5 31J 014012(5 15 20d omiddotn n ~-n- 36l 3~ I 31V--lr~~--------------1220 80 0211 middotmiddotbullbulltbull middotmiddot~middotmiddotmiddot 372 337 310 0138 1226 86 0225 bullbull~bullbullbull bullbullbullbullbull~ bullbullbullbullbullbull 371 ~3S 305 0138

---rz3middotcr----middot- u--middot-rz-zr--nmiddot~bull-bullmiddotbulln--middoti-1f 3 1r--TS-e--rcmiddot~5-middotmiddoto-r3-1235 95 C234 bullbullbullbullbullbull 373 33~ 305 0138 1240 100 0244 u- 3 74 33S 30S 013b_______________

--r-245 105 o~middotmiddotn-~n---~nbull 3lamp-33 l~o7no 12somiddot 110 o2s bullbullbull bullbull 3 10 339 3co 0131 1255 115 021gt bullbullbullbullbullbull bullbullbullbullbullbull bullbullbullbullbullbull 369 33 30C 0136

--ncHr----zu-----zb-middot--tmiddotbullmiddot~-----middotpoundn----i-nu 3 11 - 34 l 30-imiddotmiddot-r-rn~----- ---------~ ( 1305 125 0263 OQZO C370 C390 362 34l 29S 0134

1310 130 0286 366 343 -295 0133--n-rr--rn---rz-middotr~- bullbullbullu 31- 3--z 2s 0133_______________

( 1320 140 0303 bullbullbullbullbullbull 367 343 295 0131 1325 145 0313 bullbullmiddot 310 35~ 295 0132

-----nomiddot----5u----o---Jr~nmiddot-----$--bull bull bull 3cs-middotmiddot-3middot5~ro--onmiddot9~---( 133 s 155 0325 bullbullmiddot ~ 367 345 290 0129

1340 middot 160 0332 bull 370 35b 29() 0129 -------r-s---n-TlT---Thh Ohu hmiddot 3b9 356 29J---omiddot129_---------------

( 1350 170 0144 middotbull~~-middot $ 360 356 235 0129 135S 175 0352 bullbullbull~bullbull bullbull~bullbullbull 36amp 351 2a5 0129

-middot-middot1400middot--middot--1middotpound0middot-----0---i-srmiddotmiddotbull~-yen----middot-middot-r-bull ------y-fi~---7-S-t---za--s-- (fTzz----------------( 1405 185 03b2 OJZ5 C31C 0335 367 357 285 0127

1411 -Ill 0371 364 357 28l 0125--ras-15---middot 0376 ~Tlaquo middotmiddotmiddotmiddotmiddotmiddotmiddot-bull J64 middotmiddotmiddot351 2lt1s o--lZ5~-------------

( l420 zco o3a3 bullbullbullbullbull bullbullbullbullbull bullbullbullbullbullbull 36- 357 zao o1z3 1425 2C5 0-391 bullbullbull bullbullbullbullbullbull bull~ 36 358 250 0125

--middotmiddot-1130 middot-middot-middot2lo oJmiddotu--- --- bullbull middotbull~bullbullbullbull - 3sd--JJ - zaJ middotmiddotmiddot 0-125 ---------( 1435 215 04Jl bull bullbullbullbullbullbull 362 36G 28J 0122

1440 220 0410 middotbullbullabullbull bullbullbullbullbullbull 362 34~ zsJ 0122 middot 145 - 225_ o413- bullbullbullbull --- -middotbullbullbull 362-middotmiddot- ~~-c-middotzao middot 0122=-------------

-----middot-middot--------middot- middot-------------------------

--middotr-so 230 D42~ bullbullbullbullbullbull bullbullbullbullbullbull bullbullbull~bullbull 3~~ 35~ 1= o_120

middotmiddotmiddotmiddotbull middotmiddotbull~~-1455 23~ 042~ bullbullbullbullbull ~ 36t 35ry z1s C 12 I 1500 240 04Z7 bullbullbullbullbullbull bullbullbullbullbull~ bullbullbullbullbull 3bJ J~l 27) o liO

1505 middot middotmiddot-z smiddot-middotmiddotmiddotmiddotmiddotmiddot o 43-s middotmiddotmiddot middot-- middot fy-middot-il6 t -- o Ao ______ 1~ s~ middot l5 Z 7~ ~-- middot- c-11c1

OlJI~ C) ~c f l l() 41JJ Pgt~-tI-i2

OLGlE CJ G S C10 41~ 12 o middot~r1 ~~2-PA~ CC A~ ~rmiddotmiddott~21 Jbull bulli-1 middotpi-~-middotmiddotqN

137 )

_j

j

I ___~ -Irr-=rgt--~ fi -~pJ13 microc w--7 Fria---+ a-bull---middot--=-r ---rc=u- r ~~1-- r-=~l ~~ _ _ ~l~ ~~- _j =middot1 - --1 middot~----=---i ~-~

i 97 7 -- ~

~- bull -_bullbull _ -

-~ middot o- l ~ middot_ _ --c 5

-_

- ~ __ -i1---)

-bullmiddotJ _ deg _~Li--lt Cttf~middot -~J_J Tl Slr-Y~ --- cbull T[C-T~ - l c 7f t C i_ I---lt

l bull - ~ ~ --~ - - _ _-- ---

~i~ gt bull Tftf- iJbull-~_ jl ~~SiF= middot middot1F ~1 _1~-CLD_

SY~ l-~l1~ 24-5-f o --tY VJL c C ~-~PL[ PCRT

--~ __ _] 5 bull1 - ltmiddot_-_middotbull bull --~ ~---r_ r~ -t imiddot c1-~-middot rrc-i c---middot--u1 1Nr =ii - ~ L _ middot L ~ -bullbull bull bull bull l ~ middot~-l_~ st lmiddot ~ ~--t1 iC cbullmiddotbull-_fCT LEil

_-- - __middott_i middot-middot LAT r= ~ ~- T ) r middotmiddot-1 r-- ~ - _- ~ ~- ~ - bull i I 1J 1 middot- 1 ~ j_ t __~i~ r-lbull bullbullXtL-JC nt1

middot -1-bull Ci--1-r bull

_ bull ~ middoti ~ - i) rtJ rmiddot

_J 1rmiddott

1_() l t ~ ) )20

i -~ bull middotmiddotmiddot- ti0

i middot - ___ --~bullrJ

l 111 i 300_

lbull~ 36)

lbtt5 _420 _

l l bull 1t50

2J ~ ~j

63G lJ-i)

vv Cl lgt

n-9C

L~middot--~TICf~S iPPl-1

~-~~--~-~--

c bulln

i t~ -t -~

_middot bull ~

)l J) J

i 3 1 3-J

) l tJ imiddottJ

middot 7 H middot)

-pbullJO 3-JltJ)

11 ri~J )100

il 1-1 3110

ai

9= (( ~ ~ -laquoiry

)- ~ (I

-- bulllt~

yenyen~11

) bull )bull 1)

3gt0

--bull- l -gt 1

bull1 bull 7 il)

3 7 2 1 J

396 Ibullbull 3

1 2 l bull

39 bull -gt

ld d 310 fu l

3d 1t

70 ii 36ltJ nJ

-

( tic

-0~i

iu~

~-

raquoyen) ~

j_-4

i q

I- w

_ ~ I i-1

i ~ bullj J bull j

)_)

ur fj

iJ (bullmiddot1 -)

~ (~ ~ 6 _

l 2 v2 u

126 o t~

t ~ 6 ~ --)bull-1

ltbull ~ -lt

rt gtltljcent-C

~gtltO~

it-~_~ L-J bull 3 12 l

0 - ~middot- imiddot ~- ~ - _ =~ i 1t f 2 3lt -1 bull 451 ~2J 42l l 0 478 ~ ~Jf(l yengtiO ~ 3middotbull 5 t r bull~ ~ i-1 i8 bull U15 6 JJ bull l 356 o~3 fi o 9i5 (ltti v1qgti c-c lltoi1 -11 l

- l - loz-__

i bull bull 5

l ~~ bull - ~ 7

l j bull 3 3- )

lJ bull lt 1 l C

l -t 1 1t 3

14 I t2 bull

lmiddot J 41

1 frac14 3 1t3 0

14 l 423

l iS 46 amp

~ middot~ 45-S

s s

pound 1 5 9

~J ~ ~

- 7

11 flgt~bull-

1- 11

lG _ l bullJ

l l bull f ) 1t t

lbull1 q s~ 6

l J 7 5 2

l O o Jl

tG 5 Jl lt1

11 ~ q6

10 l 303

)9 296

1-)0 323

62 lB e

(I 2 loo

(1 l cl 0

~ -_ l bull) middot ~-

_ 0gt i 1

Jr

rmiddot1 ctmiddottf-

aigt_ti

lUO r - l

loll (11J

1( hlH

l57 (110

~

160l

15lt t l_t

917 )(J -

91 l _-_

d7 3 i

c ~ middotmiddot ~ bullf ~rgt_(

1 Ibullbull 1t 1

1til 103

r 1i 92 lt

- 7 l9 t

3l) H 1middot1 6

4 02 b0 1t

402 804

40 t al l

6lttgto(t

(clE

4 l u 937

4l - 85 3

n4 41gt8

LJd 41o

ijO

9

r -- -- J

i~ middot- --

j _i bull 7 a

bull middot1

r 5 _fj

0 j 2l

0 j

L bull Ob 2

)6

middotbull ) bull 5

2 bull CH J bull i

07 l il

05 t9

o bull l~

0 1 t

_ f - I

PP C tJ

bullJ ~ C j_ 6 )~ 3

L 2 bull 50 5

P2 487

124 ti 3

t 49 o

liS 5JO

12 I 50 8

t2 t9 a

I 2 8 51 4

Ui 31 t

75 ltgt9

76 30 bull

78 H l

------ - -L )-middot _HmiddotrmiddotL r-__7bull=

Vimiddot~~c i-c~

1Y1ffbull

-t 6 7 ~~ g)

4J _ iJ

ltf 3 tt l d

ttfl -2 It

1t6 2 nr

1) 1 l l

middot15 6 274

4 -3

266 tlt

276 16 1

2 7o ll6

160 2( tl

lvi f2

2i6

L-i~bull-L ~~_pound_-- -bull~

-1_ bullbull 1

-Cbullli-

3 7 i l 7

383 d j

1 7 ltl

30 I 2 7o

39 1J

3o7 77

383 72

358 7 _

362 12

35B 4 3

21 7

221 7 l

3_4

~bullyen-- ----bull middot ~-- ~--~-- ~-Ibull_-bull_middot-(~~centbull f f _bull-_-bull ~-~~ --=middot-_- -~-tI ~~--~ middota1rbullbull middot _r~ -lt~lt-bull -_~ - middotbull bulli--e- -~- _ middotmiddotlr---bull

rmiddot=1=- r-~=bull1 l--Jfil1middot--1 rur=-=i -f~w-_a1 ~ _r~- r--ra-c=~ ~ f-1-tliiilllllit ~~ ~~~j bull~~-r--

l-i77 ~~~ 21 --- J- -

) ~ ---

L~~ T9~ _~-~i-J ri~rt~

bullmiddot_

- bull~ ~ l~ 1 101s

Jj 104-=i

(J

115 lcO

l 2t5 1 ~HJ

1345 240

l bull -~ 5 300

l )It 5 360

l t4 5 lt20

17 5 45C

2Cl5 t30

lJ4S ltgtov

ell i omiddotc

middot---middotmiddot rtC _t c

) 0 J 1)

(__ _

C5 l ~j bull bull__

( - bullt-eL

__ ) ftc_

middot- -) 3 15 l

lt)_o j 3

87 o06

~-ii-lt

$igt~((

~~n ~t-gti

e diams U

Gt1

~-q ti 6 ~J3

--~ r-

p C middot_7c _3 l _

bull ~7 3 3_-J - 2f1f

3 i 6_ 753

3l 9 2j

(

laquo 30_ 4 4 1

2$ _5____ ~-~ ~middot (t~

22 3 degdnt

UC

I ~ix

~bull r12

ff4yen

2 r 9u ~middot -~-- -bull 1middot- ~ ---~i 2bullmiddotJ

bull I ~middot 21

bull 2ltZ -

29t 1bull1

_20 ~ ~ nti

268 1a1

2H Bl

298 ~ bulli J

2~3 2~1

ilC J IC

l 72 l 1

75 [

middotbull -

~

middot middot

i ~ (J

bull-~J

~-- 01

1~middot1 lle-1 10j

tlgt~~ gt 111 middot)_middot3-~~middotlc 6(J3 1t 1J 0middothmiddot~

middotLgt7~ li-J3 ltbull=-

middot7lt1o i-_middotJ ~-rt_

S04H bull - j((bull)bullt

tlt~o

-JJ6 )JQf 1cLJJ

ll703 1101

) 1164~ llbfJ

~oc - imiddottI 0~middot1

V _deg J-44 l--r-

rt1 J bull 1 2- ) 12iJJ

f-- i

0

~ -~ _- -K_---middot~-~- --(middotmiddot -middot -middot---=-middot-)~7-- l(~f-~~ _-~- ~~middotgtamp--~ ~ _-1--gt ~ ~--~~~---~bull middot--bullmiddott~~ ____ ~~ J-P~---yen-4middotbullbull--middotmiddot-middot

i UO bullt _ Od_ (middot JJ ~ c C ltgt lj (l bull- N

rmiddot -1middot - bull~ ) l

bullI

I) middotd (middotJ J -~ - ~ middot JI 4 ) 0

~ bullJ ~ Jbull ~ 1 r M

i- t---

I

1 I00 bull lt CC NN 0 -0

lt)1l

middot)

-~ - -300 NN middotbull Cmiddot ii NN S (1- O 0-- ~ r- -

I I

~- rmiddotcshy -1 NJ bull1---1-

J middotshy

ltbull 0 s- bull middotl _ _ middotc o

0 -- j r-I-j r-- _

ru middot

0

~ rmiddotmiddot - lj a)

-J O

I lJ(_ - r- -

~ middot~~- _

r

_ (bull - ~J middot-- -

~ -j

middot -

I

middotmiddotmiddotbullbull I middotbull bull bull

-shyJ middotmiddotbullbull I JI -bull r ) 1 ~- I -

C bullmiddot -bull _ 11

i ) ) )

141

- ~

_

ij (Y

1

l

j t ~

1 l

l i

r t

1 i I

i I

I

i e clf ~~j

i Ii

J --1 c--c- r-middot rJ

llJmiddot t middot C C r-bull

- )

middotmiddot

1J middot

-~ CJ-- bullS- bullbull

middotC - lt ()~--

tJ~-r ~- r bull J)

-r--middot J 1 I ~ ~ - -~ _ _

~

~ middotbull1 r~1 J

middotr

I ~-1bull11 J

)bull ~ --

142

bullbullbullbullbullbull

__

SURROGATE RUN 223-U CLASS CHAMSER 1976 OCT 5

LIGHTS ON 1215 INTENSITY IOOt OF MAXIHU~ 39 CC SAMPLES TAKEN CO FACTJR l9lOl PA~ CALIBq 9 6~ADV 1296 1215 PAN SAMPLE WAS TAKEN AT TbullO TOTAL NON-METHANE

CLOCK ELAPSED TJ~e nx2uaN)

1215 middotomiddot ( 1230 15

124s 30_~ t3bo 45

( 1315 60 1330 75 1345 90

( 1400 1~5 1415 120 143()-middotmiddot 135

C 1445 150 1500 165isismiddot-middot-middot--middotiso 1530 195

1615 1630

---i645 1700 1715

--1730 1745 1800

OZCNC ltPPmiddot~middotmiddot

omiddotmiddoto 0020 q04 0011 00~8

5139 0159 C181

AT 1221 HCbull 2346 PPSC METHANE= 2950 PPB

middotmiddotc~J3middotmiddotmiddotmiddotmiddotmiddotmiddot~J24deg 0222 0)12 0242 011

~1 t 0 M1

O 150 oJ94 005s oo3s OJ28 oJ23 oJ20 0)17 1))15

- omiddot2sgmiddotbullbullo1middot0middotmiddotmiddot 0147 o154 5~53 0022 0081 0276 OJO 0140 0145 546 bullbullbullbullbullbull

N02-PAN ~OX-PAN er PAN _ H(fO 1orM1 11gtPM1 tPPll (PPrl IPPHI

0143 cz1H 5S~ OOCl OC40 o1s1 0212 s75 bullbullbullbullbullbull bullbullbullbullbullbull c200 o2s1 s 15 __ 0000 llt~bull ozca 0237 s12 bullbullbullbullbullbull bullbullbullbullbull C2)0 0214 572 OJll 0063 o194 0214 510 bull~bullbullbullbull o1ss 020s 563 o~14 bullbullbullbullbull~ 0181 0194 561 bullbullbullbullbullbullbullbullbullbullbullbull

cgtbull11) 0195 ~5_7____ 0_1)_15 _______009~ 0157 0176 ~56 M~deg 0161 C16g 552 0021 bull~bullbullbullbull oJ53 ()160 s51

~~~-- -middot -JJtmiddot-middotmiddotmiddotmiddotmiddottfrac12H----middot1middot-middotbullgffr-bull-g ilb----middot-middotmiddot11~------~-~-middotzmiddot

iii5middotmiddotmiddot-- 360 middot middot omiddoti19 oco2middotmiddot c068 middot o069 middot53i 0039 C

-- DATA DISCARDED

OZONE CJSAGE GT OlJ 5~53 PP-IIN OZONE DJSAre GT )gt~ 6466 PPl-N

N02-PAN CJSIGE GT 025 J0 gtPbull-MN

C

(

middot1-bull

(middot middot middot

(

143

240 0337 0012 0124 0131 539 0027 0024 255 0354 OJJ7 0114 0116 543 bullbullbullbullbullbull

middotmiddot210~---middot-middot0middot37-middotmiddot -oSoimiddot--middot-middoto10s o 10g middotsmiddotimiddot - 0~03fmiddot bullbull 265 0393 OJ~5 0099 0101 536 bullbullbullbullbullbull 3JO 041() 0l05 Cl93 0095 5~z -U_9Q11

_____ 3l5 0427 0()05 oomiddotsamiddotmiddot--middotomiddot8f-middots~~-B 330 0445 oaos C081 OORl 535 bullbullbullbullbullbull 345 0462 0007 C074 0075 539 bulllaquobullbullbullbull

TSl REL HUM IOEG Cl Ill

31 610 33I 630 338 630 336 625 336 620 336 61 5 337 610 33il 60 5

_y_o _____ 59 ~ 341 590 34 o 58 5 t bull 2 58 5 343 575 345 575

3t 5_______ 57 0 34 6 56 5 347 SbO 34 s 56 0 349 555 34 9 55 5 34 8 ------- 55 bullo 34I 550

lt 550bullmiddot 54534 55 0

middott--1_r_-0- ~-ur1~_1 ~-m1=-middot cacalJ-aej qr-middot_~=~ f 1r~bull~1 ~ ii~ ~~-lt a -~ -bull-I ------ ----bull----- -- -middot-- --- ------middot-----------

middot-------- ------ - -- -- ----l lt T 1 I~ l ~

LwO(~ATE 223-U-1

USS (i-A3cK lS76 CT 5

----middotmiddotmiddot--------- ------------ ------------------fgtCCP ne1PRATuRE STA3li TY ori POROiiiK-~I-T1isrRuMENT 134~- u~ SA~rLE lJ~fC if~ POOPA~ II 4UP GEHrJF iRCPIC-LCftbullYDE ACETONE _lltJTYAlPEt-YDE ANDMl1Cf8011 C-600 _____

T LUEhE A~J ~-iYL2NE fRCM 3P

cirrr T J tltI 10 l 5 l 112 1215 1230 ll 1t5 1 middotmo 1315 1no lJ45 l 4DO lbull I~ l 3J l bullttgt LJOELLco r [ME tMl -) -12c -43 0 1~ 30 45 oomiddot 75 90 105 120 lJ5 ljj 165

-------middot-------------- ---~--------bull------------ -middot---- ---bull- -- --CONCENTRATIONS IPPB

MfTt-~ ll20 29Su_ _1QI ---- - ____ 2920 middotmiddot---1~L- t 2060 bull t bullbull $V- +- 0

-0fJlfljlP~UC lllO 29~0 )~$ yen 2920 ti -( bullbullbullbull 2B 80 lti

1Tt--f bull~ ld 4b11) bulltn)it middot(c middot~IQmiddot middotmiddot 3u I 21 5 yen_ ~yen -ilgt11$

Pb[ 2b 61 4 550 yen ~~ ~middot ~

bullE Tbulltbull~ _bull~ i middotmiddot--- ~v ~--~~-----~-~~~----___ __~--~_ _~~---~~__at bull9 ____-q~~ ______ a10 ~middot-I~ -gt-~bull $

Cr)(tl((PP8C 34 ~ yen4 17J )) 162 bullbullov lj[ middot ltCETfl~-E ( SPCJPM li 24 ~-~ ~IX $ O icbullbull 423 I)middotmiddot 38i

Pl1 BC 48 ~Ct bull(I bull bullbullbull bullbullbullbull bullierbull~ bullbullbullbull 846 112 bullbullbullbull bullbullyen t

bull QJ~~~tE _____ 4_J___________2_0 _Q~__-~___l)_6____l_o_---18_L_o__L____lt__---_-_~__iJ8 _ _bull_e____laquo_middotmiddot-middot---lo 2_________________ -middotmiddot-

I- P8C 129 bull~bullbull 600 586 567 564 bull gt4b ~

Igt)~gt)~ p~ -P~~E 07 _12 9 12q )iJ~--middot amp~1___-_J4 _____ ~s ~--~-middot~~ ___c_U_-0~ 4C O-ilt bull f igtPBC 21 38 7 387 2bt 195 120 IC fd-- middotmiddotmiddot-l _ I_SJ81JTAIE________________QL_ bullbullbullbull - __ --- middot-~-- -- bullbull ___________ _bull PPBC 04 bullbullbullbull bull bullbull~bull bull bull~~ ~ -bull~bull bullbullbull~ bull9bullbull bullbullbull

Nmiddot-Bur i1E -- 1 5____ 196 l ____ middot--middot-middotmiddot l8lt_____ _____deg _ - ______ 171 ~ 164bullshyPPBC 1 10 790 784 744 bull bullbullbullbull bull b64 bull+bullbull middotbullbull=bull o5

__A_ CETYL~iE__j QI I ____________25__4_~___425___gt1lt-bull__t25 ____bull__lt25_-13lt____i-~L__bull----___l __iof_lt____-----1~2 --- -- --middot --middotmiddot PttC 5o uco aso ~bull 85O aso bull~ bull~bullbullmiddot 02e bullbullbullbull yen~ 1a4

TP~ rs-2-aur c bullE oo C_i _____() 0 _ ____03 -middot---deg-degmiddot----middotQbullO --- _ oo bull bullbull -bulloishy va ~middot~middotshyPPtC oo 32 32 12 oo bull oo bullyenbull 00

-- i S0PENTAIJE____ ---middot-middot --- ___o_ L ____c_J ___ 0_2____gt1lt_bull__-1o_____(lt_______l_bull L__________o____ ~-bullbull___J_l____gtlltbull____U~-----1-L__ PPBC 15 35 4i bullbullbullbull 50 55- middotgtjlmiddot~ bullobull bOiS bull-ttlll

CIS-2-SUTEIE _ JJ__ _ 14 6 ___ __ 14 o ___ _-yen~~~------5 2middot-----~--~ ____l 7-----~bull-~~- bull-laquo~ ~ -- o o ---middot~U----~bullbull - v c PPac oo 592 584 bullbullbullbull 208 68 00 bull oo

_ fi-gtE~TANE ____ _________o D C L_O_bullL_~gttlt______o_l__llt~tt___Q 5---~~---middotmiddotmiddotjlt________-D5 -~----bullbullfltltgtl___lflt__ ______________ -PPBC OO lO 15 15 bullbullbullbull Z5 bull 25 bullbulloi bull bullbullbullbull

2 3-0 iMET_Hll ilU_TAIJ~ ____Q_Q ____ _0_9_____1 lQ_ bull-~-bull- 99 5-~___9JJ____~bull~-bull-middotmiddot-middotmiddot~--- ~-~ __ 84bull 6 --bull~bull----- __ Zt5 __ PPBC OO 652 658 bullbullbullbull 597 559 bullbullbullbull bullbullbullbull bullbullbull 509 gt77

__z_- ETHYI __SJ TE gt E~-- _______Q__Q____l6__2___16 bull 6_bull~---middotlldeg___-1lQ__5gtI-- -------2- ___i)C___tl deg-_JtlltbullL ___JlQ _____________

- _ -~--- bull-------__ _____ __ -----~~ - -_--~--------bull~bullr- t-=~~t~~= _~f~~~~~~~1bull~~~~~frac34lf-~~m~~bull~r~-~-fq~l~-~~~~----~-~~~~r-fltbullbullmiddot -r-middot ~ middotmiddot--bull----~-

bullbull

--

---- -_micro__middot1 _---j--- _- irr I-- ---1~ f~i=lbullaj i---r-J-p---1 --or __ ~ 0 I -lt-cc--l~~f1- ~~middot

1971 lltAR 18 i J Sl~~OGATE 223-li

GlhSS CrA-CR l-76 CCT 5

CL~CK TllE 1015 1132 l~ lL l230 _l245____ DOO____ JHgt l3JO _ lH5 l 400 _ l415 lo30 - llttlttgt l00 fLAPStD TtMEIMl~i -120 -43 0 l 5 30 45 60 75 90 105 120 135 ljO 165

PlllC ____(l(L__i lQ__l)l o____5_____ t2 bull0__~_jltjlt__i)_~~-4___ ___ OO _middot- __gt-yen ____ v C

j(ETALCEhYOE 28 ~~ qbull bullbullbullbull bullbull bull

_ PBC _5_ b___ _ 4~ middot-middot-~ -- bullbull~~ - bullc t _itoo -- ~-- middot - --- bullbullbullbull middotmiddotmiddot -~-- bull -- bullbullbullbull PllJlNALCEHYOF 02 03 bull~ $lt-))(l bulltctll yen bullbullbullbull 26 bullbullbullbull ia ~middotmiddotmiddot middot~llillP_lly

( -~-- (t~---middot Ci _9___ nill-1) -_ ~ ---middot _____ __ middotmiddotmiddot- 7B ~ bullClfc~

ACiTCI-E 07 79lit O bull~middotmiddot ~~ 366 ~ ~9 bull~~-PH 1 (tV~_ 2)bullJ --bull--bull bullmiddot-- --middot~bull---middot-bullbulllaquobull ~bullbullbull___ t(- _____l_l_O __ _--~bull~ __ bull 9 --~-- ltill diams 11 bullbullmiddotmiddotmiddotmiddot--

METHYL ETHYL KETONE 03 1a 82 yen$t9 ljllf-bulliimiddotbull~ bull~middot yenbullbull middot~ bullbullbull middot~middotmiddot ~ Ibullmiddot bullrPc_ i 2 Amiddot 7_2__ ~___ -~_ -~J__~~~ - -bull~----middotmiddot Imiddot----~ yen 32o lClO~ -0

T CltJEN 02 155 16l middotbullCt 144 135 126 bullbullbull deg PPHC l _(____ 1()8 bullyenljlCl lJ 3 ~bulletbull 101_ __--- 94bull L ___ --middot-- 111 87 J _J~~

4ET4-HLENE oo 523 53 l -4t 3fl ~ 219 4(Uit4 rcit U3 -bullljl flt PPBC 0() 418 _4_25 11_ 297 bull~ 23i t l 78 1)jff laquolI ~middotmiddot iHryRtLCEHYlc Ol Ol middot~bullmiddot bullbullbullbull bull yen0~ middot~bull 10 +9~ bullbull

-------middotmiddot-middot-middot--------middot---- PPDC 04 04 ---~- ____ ilit middotmiddot~middot _-I -- 40_ __cent~___ $~ bullbull ~iarabullbull

0 ICHLCHltO UI I-UJbullllgt01f TlbullMJpound oo 3S~ 351 347 J39 iyen0c 1jl$~middot jl7I- QI middotmiddot~ - bull q 3H

ishy _Poec O~Q 355 3_51 347 middotmiddot- ___ 339 ~ --bull~~- -- middot~bull--middot- 3 37 lit~yen j ~ 7 middot--middot -- ICr TCfAL HC PPBC

v ll7ij3 bullbullbull 56471 43268 52043 bullbullbull~ bull~bull~ bullbullbull

__TAL 101-ETHPE _t_C____ _ 583 l24l5 2345Q 00 19495 00 1068l 00 3158 QO l9872 middot 00 oo lldJZ TCfAl SU~fltJGATE 46-~5 zz37 middotomiddot 2307 i-------19-4degici---- i060~- imiddot----- -315 ~a----bullbull --- 1624amiddot ---- ---- i 21- 2

--~---middot-----middotmiddotmiddot------bull middot--middotmiddot------ middot----middotmiddot---middotmiddot-----middot--middot-middot----

bull-bull-bullbull bull-----bull---bull-bull ---r--~ --bull--bull----~bullbull-

- - - - - - - ------ -- ----------middot-bull------middot-middot------middotmiddot-- --

------------------middot-middot-middotmiddot- middot- ----

--------- --------middot-middot - middot----middot - ---- - - -- - - ---- -

-~lf4~--bull_~ ~~~~-~-~_-~~-~ -__~~bull- fF-~~~~~-g-~lT~~~~~~~pound~~etflitlilJ _~~~~flf-middot-bulltrmiddot--middot~- -middot-v--~--~-middot--~~ bull--bull~ ( s-~V __- -- bull bull bull

-~sgtlt-bull=ns-~ 1=_1i l-mc-a-1 __~bullmiddotloii1 ~bullbullcai=r J_t-~~ip7 -= __tJ~ ~ -__ __ j-Diii~I ~ ~~ ~_J IJcSi~~-~ J -=- -

1977 gt1~ ci Si~~C~~7E 223-0 ll~r (~middothPJ~ 1~76 CCT ~

(

CLCCie TJ~E l5l5 150 15 5 1600 1615 __1630 _l 6 4 5 ____ l 7 00 _ 1715 _______ --------middot middot- middot- --------[LAPSEC TMti~l~I 180 (95 2 l ) 225 240 255 270 285 300

CONCENTRATICNS_ PP6)

ME T-it rti 2900 bull bullbullbullbull bull 2Hl0 2880 pcgt~C 21 )J -------____2_810 - _ ___2_880 ________________ ---- -------------------------------

Tipound yen4l231 f~ ~ 203 ~~~ ~~~~ ~ 16 fJP~C 4 7 ir ~dbullflcent ~~$~ 40( 32 2bull~~ ~bull

E Tbullbull4E 78amp middot~lll ~ middotbull~-t 780 4el(( 749 PPH( l i r yenltI~ bull~ bull 7 9 _____ lJU_ ~-~e-~----2_~-~---middot-~tlt_~---middot ~----- -middot------------middot------- middot-- middot------- middotmiddot- -

A(middotfyi_t~~C (PfJPlbullr ) 35tJ 4 bullJ) Jqu~ J~7 ~4bull 3( iJii _ic 7 6 ) ~q (Jc 71 bull Cc~ ~-ii 7(

prmiddotPPE 184 ~ tnmiddoto 10a bullbull bullbull 116 1-~fiC ------- 552____ bull~ _ 540 ___ _itL__ -~---528

PJltbull)micro( bull-s -O l bull 7 tc l4 09 06 )pl)_l~PirC ti 5 l 42 Z l ___ l bull d lll middot~~- bull~~-

l rnu f hf -+--+=bull ittcagtICI middot ~ (I diamsdiamsbull -bullmiddot ~ POtC 4~~--- ~6 irc q ~ -~~-middot~ middot

I- N-~iiT ~E ~4tlllC l ~) 2 6-middot) 15b It 154 (lt l bull4f- lPhC diams (t4lt t~- t~gt-111 62_12_ ---~-lltmiddotbull--middot 01bulli___ yen$ia~_ lI~--- _57~ _ ______ --

deg ~ ACETYlffH ((JIJ~) 40 bull Jjl-C 395 bull 30d bull 373

PfflC ytlbull 806 790_ _l7 fJ____bullbullbullbull ------bullbullbull-bull----1t6 i TRtiS-7-BU_TUiF bullbull-amp oo oo yenbull oo middot~bull ~~middotmiddot oo pmicrolbullC yen~bull o_o ltcbull o_o _____________QJl___bull~-~--------obullo _________ --bull-----

I SOPcIITANE ~-90-~ 13 ~ l3 iU ~ ~~ l6 PP8C __ 65 ~~-~-_____ 6_5 ______~ _____a_v __ vbullbull~-- bullet __9o _____

C I-J-a1Jrrbull1- obullJ 00bull~bull middot~ oo ~middotmiddotmiddot oo middotmiddot~~ bull+bull~PPi3C ~c-~ ~o_ _______ oo ____ ----obullo - 00

N-PEl-ltTANE os o6 bullbullbullbull os bull 01 PPC t-6-bullo middotmiddot-middot 2_5___ ~-bull___ JQ___ bullbull~middot _2 2__ bullbullbull _0l __ ____]_5____ ----------

2l-0111 EThYL B1JT flff Vyen-(-9 -6 6 41(nr(c 122 bullbull(-II- 63 5 PPBC 1tOE-fl 460 Jl(I 4J3 -- ___1s -~bull- bullbullbull middot 3tll

z-~ET~YL e~Tc~E-2 oo 162 166 bull 24 oo bullbullbullbull

(9 7 bulliibull

PPBC____o_o___JU_Q__ijJ__Q______ __ _____120________)J)__ _gtlt__________

ACULCEt-tYOc bull9ic ric 9 Ii PPilC yenyenct -- ~~-middot- __~~bull_ middot-----middot-iiiyen___ ~~ ___ _______ -bull-middotmiddot--~---middot~middotmiddot PIJlICNALCEhYGE $$ bull4~ q bullbullbull 40 vbull bullbullbullbull ~bull 48

PPBC __ -- _ ---middot-bull _____l2J_Q __ L ----- __ lt~4____________ _

-_

--- ~~~~ -----_-~~-~--r----middot~--~ ----~-_____ ~0ltmiddot~bull_bull~~~cmiddotbull=-~~1~~rJ~~lt~~-~~~~yen-9 rr~~~~~~~~~~~~~~bull1~~~-Jf-it~~frac34WMP~~fUffM~~-~~~-~-middotmiddotmiddotmiddot1

bull-L)c~iJgt ~JJJI~ amp=-=-middot f-i~ aa-J-_e__jI micro-i~ismiddot --gtbull____- -=---- _ ~Jr i~~-( ____--__p_f I __rei -~~--1r---- l rbull~~h P~bullwii ~~iiI~

7 SLlt~4F 2pound3-U 177 ~~ ltgt

IJL1)~ C-oYjf-P

i-1 er 5

(LCV TJJ 1~ l~ 1~30 ___ J545 ____ l600____ 16l~ ___ H30_____ H4~---- 1700 ____171- ______ -------------ELAPSED Tl~fl~i~J liJv l95 210 225 240 255 270 285 300

_4CE rbull~ PPiC

--middot~~gt)_

icibullbull _(ot$

lI raquo-1c ----bull er lfrtJ11( yen

_360 ll4

-~-~------- ~~ bullbull deg

-bulliibullbull bullbullbull l(l

_i-HHYl ETHYL lttTC~~C pp_c

~icbull

yen(t )C --~~~ ____ii-------- _9_7_ ~-middot~ ~ 388

~--yen

middot~il$___18 --------------~ 728

--~----------- --- ------- -- - -

TtiE~IE P9rtC

109 763

yen-) ttgtlt-

(c~ laquoY bull 107

1fi - bull

(16JCtt

bullicebull iaibullmiddot bullic(t~

102 7lb

MET-4-Xllf E PPflC

__7 f l V

-middot~~- -- ~$ IF (n~v~

-----bull~~ 12-i ------------gt1lt______ 94_ --000 bullbull~bull bullbull~bull ~ 75L

L ry __ Cf 1 tYf rr~c

) ( ~yen

yen~0$

v(r

bulll- _ iV

~ --r1(

2 z 88

Jcentii

it) ~(

~ ~llf

gtii -2 6 lJ4

u-bull1Lor JffLiJ--uirt-lf PPpoundgtC

~ (I~

~ 330 330

( 1t-4

26 326

v~bull

_____ n2___ ------I) bullbull322 Hl 311

rr~t-L TCTAL

lfC -gt~ ~J~-Y

c iHl~E HC

jjJlt3 494middot3

middotbullbull13393

irbullilr

630 bull~ 34Jq _7_

l2 C5 5 tgtZil1 tilt~bull -- middotmiddot--middot-middot--- U------- __ 4713(___

11770 00 oo l5229 ___

TCTAL St~PC AT~ 49tdiamsbull 3 1330 3 830 ll lt60 455l l166 5 14128

middot---middotmiddotmiddot------

I- ~

~l~-~ ___gt-_____ bullA ___ _9~~--bull ______-~7~~~~tqt1f~~1_4_~tP-amp-i-~ffltW-iff~~~iitt~~laquoFifampoiijiM1l~trt~~ -_ Cl-iII~~~ --v-~ -middot ____ ~yen-

APPENDIX C

Plots of ln so2

vs time for

AGC Runs 216 through 222

bullf

lmiddot1

148

RGC-216-1-3 se2 DARK DECRY 2 RH PURE RIA

C) 1976 JUL 27-28 C) C)

p

I

0 C) _ - 0

ru (I) 0

C)

() ()

() Ce() () () -00197 plusmn 00003 hr

-1

() ()

() () C) ri)[J

~() I

~

C)~c CO(L Q_ CJO()

0CLc o--_(I)

_ (J

CJ I 0 0 (J)

o zo

en

_J~

0 =

I

()

f P1

0 Cl co -- 0I

4 8 TJME

12 CHA)

16 20

CJ 0 CJ

24deg

0 Cl LJ)bull

N -0

ll-

149

I

C)

0 ()

bull

AGC-217-1-2 SC2 LlGHT DECAY 151 RH PURE RIA

(r)0 1976 JUL 30-31 (I)0 (I) 0

0 I ti)

N 0

0 0 LI)

I o - C)E ~ a_ (Lo Oo_

CLo __ r- ru (J I 0

()El U1

0C) Lilzo

_J~ 0 I

D D CI

I

0 0 C) 0

~+------r---------------------------+~ltil0 50 100 150 200 250 30P

I TIME (HA)

150

RGC-218-1-3 se2 DARK DECAY 40 RH PURE AIR

0 tO

1976 RUG 4 O)

f I

c

I

C)

r C)

a N-

-1-00327 plusmn 00002 hr

(I

I

0

c co

bull

C) (Jr ~

0~ --L CL CL CLI o_g

(J

(J E

0 en en

0 co

zro CJ _J~ 0

a

~ ~ ~-i------------------------------------~-- o 2 4 s a 1o 12deg I TIME (HR)

151

RGC-218-7-9 se2 LT DECRY 401 RH PURE AIR

C) 1976 AUG 5 C)

CD

C) Cl Q-0 C)

0 (J

I

-00830 plusmn 00005 hr-l

CI (J I

~ (f1

Cl Cl CD (J

I

CJ 0 (I 0

a -(D

bull 0

oshyNE -a ca

-

(J

0 en

0 (I) 0 0

C) -

W O

-r---------------------r------------------~W 0

0 2 4 6 8 10 I TIME (HAl

152

r-

i]1

l _

middot

AGC 219-1-5 i 5~2 DARK DECAY 80 RH~1

PURE AIR 1976 AUG 16-17i 0

-middot 0

f 71 l

l ii gj

I

0- U)

CJ

I i I IC)

0

f II) i

r-- l I

~-- -~ o_ Oa_I ~ j(l g - r- I ~

- middot -00689 plusmn 00004 hr-l Ibull t 7 I (Ji ~ i

~] 0 l_ zo l~~

_J~ - iIu i _E I C

i 0 0

I I~- - I(J

I

-

() Ifr

I I

fl L

CJC)

~ 10bullq er [

C)

~------------------------------r------ N

I (j 4 8 12 16 20 24deg

TIME fHRl ~ Q

153

l

RGC-220-1-2 se2 DARK DECRY ijQ RH (jZCJNE-PRCPENE

ro0 1976 AUG 19 tO0 C) t

~~ r~I I

i (

c

-l a

0f

L 0 C

(J

-- ~I ()f c 7

~

()n

l c co

~ CI 0 C) () o

(j() () -poundo

Q_ Q_

(X)(1 I

( z (middot

(J_Jo (J0

=J ~h 0~ r (I)

()() (J -I 0ePgt~

()efJ(JJ 0 0 ~ (JLI)

- ~~()

~ () lt() lt()

0 ()yen ~ o ~ a

~-----------------r----------------~----~~-G 1 2 3 4 5 6deg

I TIME (HR)

154

AGC-22O 00-05 H~UA5 502 CPRk DECAY 401 RH C2l3r~E-PRCJPENE

0 197S AlJG 19 C)

0 bull 7

I I

l CD

I

~J r ~7 Q_

0 _

~I ru- J 81 en

z -1c

tO-c c ru

t =I

+--------------------6 00

I 0 10 020 030

TIME (H AJ

a tO (I)

bull 0

ti (I)

bull ti

--- 0

(j

0 cn

C)

Ol a CJ

0 lO

155 )

AGC-220 1 75-50 HQURSSD2 DARK DECAY 401 AH D2DNE-PR()PENE

r-0 1976 AUG 19 Lf)(P (I()

I ro 0 0 J

I

0 J N bull0 0J-J

c CL CL ~

0 tO

CJ r D ~ Cf) I Cl

0 -a z

CI-1o () CI (J[J

U) oO en-I

()()

middot~ c CD () ()1)

bull ~ ()-I 0~

(J0 CJ0

co eI -t 60 2LJO 320 400 480 560 6 4ij

I - 0TJME (HA)

156

RGC-221-1-2 5~2 DARK DECAY 40 RH ADD ~2~NE 080 HRS

co 1976 AUG 20 If)

(D r 0 0

I 0 D r 0

r CJ) Cl

I

0 D

I I

Qj I

-J 71

v 00 100 200 300 4 00 500

C)

rO

0 ~ (L

CL-

TJME fHASl

157 j

-

-003009 plusmn 000008 hr-l

~

RGC-222-1-7 rr

~ 1

l If

t f

t

l [

r l_

~ ti

1c l

L

Q

1 ~

a

[J ~ I

-

IL

S02 DARK DECRY_ 401 RH SURR(jGHTE-N(jX

00 1976 AUG 24-25 30 0 r

~1 iI

0

~1I

0 (J (tl

t 0 CI-I

-- -~ ~ o_ aa_g oO -r

(Jr - (J -I OCJ

0~ en(1

01 zc --deg-I

0 C) 0co -tO

I 0

Ul

-(

~1 -

(I 0 s 10 15 20 25 300 I TI ME (HRJ

158

PG f-2--Jc_~ __ Q _ --

se2 LIGHT OECHl 30Z AH SUAr-rCRTE-NQX

CI0 w 1976 AUG 25 r-r- -bull l

71 rol gj 0

-=f I I

()()

0

r ---= ~ oa_ a

(j

0

~ (1

1- bull middot-0

() tD

al

~~ i

~I j

1 ()

0 ZtP J~

I

I

-00574 plusmn 00007 hr-l

O ~ 0

~-t-------------------------------------~~~ ~o 1 2 3 4 s 6deg

TIME (HR)

159

I

Page 4: Report: 1977-05-00 (Part 2) Chemical Consequences of Air

791 Kinetics of OH-Hydrocarbon Reactions

TABLE I Rates of Disappearance and Rate Constants for Selected Alkanes Alkenes and Aromatic Hydrocarbons at l middotatm in Air at 305 plusmn 2 K

c Relative ~

rate of 10-9k0 g M-1s-1Compound disappearancei5 sect z 18bn-Butane 1C

110 20 plusmn 04 Isopentane~ 0 177 32 plusmn 06 2-Methylpentanez w 3-Methylpentane 240 43 plusmn09 u z 38 plusmn08n-Hexane 2090 u m-Xylene 718 129 plusmn 26 0 w 207 37 plusmn 08n-Propylbenzenegt 0 203 37 plusmn 08 lsopropylbenzenew V) a Ethylbenzene 265 48 i 10 0

o-Ethyltoluene 457 82 plusmn 16 m-XYLENE

m-Ethyltoluene 649 117 plusmn 23 20

j

100--I

9

n-PROPYLBENZENE

3

2 3 p-Ethyltoluene 433 78 plusmn 16 HOURS OF IRRADIATION Ethene 288 52 plusmn 10

970 175 plusmn 35PropeneFigure 1 Logarithm of the aromatic hydrocarbon concentration durshy 13-Butadiene 258 464 plusmn 93 ing 3-h photolysis of HC-NOc mixture In air at 305 plusmn 2 K and 1 atm 392 plusmn 80cis-2-Butene 218

a The indicated error limits are plusmn20 and are the estimated

l overall error limits b Placed on an absolute basis using the mean~3r-----r-----~--------1L i of the literature values ref 21 23 24 and 27

~ 0- ~

I ----uu~---------0------~c- middot -0 n - BUT~NE0 ~2~-----01SOPENTANE - TABLE II Rate Constants k for OH Radical Reactions with

n-Butane and Selected Alkane Alkenes and Aromatic ~ I v-------0---U__ 2-METHYLPENTANE Hydrocarbons at Room Temperature -----c_____-ltgt--_____ 3-METHYLPElHANE 1r 81 In-HEXANE o I

Environmental Compound chamber studies0 b Lit values t II I

~ 0 2 3 O HOURS OF IRRADIATION ~23degBenzene 074 plusmn 007lt

095 plusmn007dFigure 2 Loga-ithm of concentrations of alkanes during 3-h photolyshy25 plusmn 094

sis of HC-NOc mixture in air at 305 plusmn 2 K and 1 atm Toluene 347 plusmn 035C 367 plusmn 024d

o-Xylene 77 plusmn 23deg 918 plusmn 090C 11bull m-Xylene 14plusmn 1deg 142 plusmn 14c

129 plusmn 26b 11bull p-Xylene 74 plusmn 154 732 plusmn 072C 11bull 123-Trimeth- 14 plusmn 3deg 158 plusmn 16C

ylbenzene 124-Trimeth- 20plusmn 3deg 201 plusmn 2oc

ylbenzene 135-Trimeth- 31 plusmn 4deg 283 plusmn 29lt

ylbenzene lsopentane 20 plusmn 04b 27 2-Methylpent- 32 plusmn 06b 34

ane 3-Methylpent- 43 plusmn 09b 34

ane n-Hexane 29138 plusmn o8b Ethene 57 plusmn 0652 plusmn IOb

1111 30i 32 plusmn 04i 30 18 plusmn 061

10 plusmn 03m 13 plusmn 01n

Propene 175 plusmn 35b 217 plusmn 248 102 plusmn 2611i 87 plusmn 131151 plusmn 150 r 96 plusmn 03P 30 plusmn 10m

z 5 0 u lt( 4 a 0

~ 3

0

l-o

~ 2

Iz

-----o---------0_____-o

n-BUTANE

30 plusmn06n 13-BUTADIENEl) cis-2-Butene 392 plusmn 80b 367 323 plusmn 320

~ 257 plusmn 15Pu

1o------------J2L------3---- 0 Reference 42 b From Table I c Reference 40 d Reference 41 bull Reference 21 for a mixture of xylene isomers I Reference 24HOURS OF IRRADlATION

11 Reference 33 h References 30 and 21 i Reference 31 i Reference Figure 3 Logarithm of concentrations of alkenes during 3-h photolyshy 36 k Reference 29 1 Reference 28 m Reference 22 n Reference 32 sisbull or HC-NO mixture in air at 305 plusmn 2 Kand 1 atm Reference 35 P Reference 340

The Journal al Physical Chemistry Vol 80 No 8 1976

61

792

100 w_ ltl 90 i5 i z 80 w ~ u 0 INITIAL7w xa NO 389

0 N02 middot049

gt- pound6 C3H6 149 C4H10 596

a

0 ID

0

COllC (ppm)

~ ~ 5 wz

0 ~ 4 ll

0 J ~ 3~

0~ _ u -z 0

w_ Iltl

ll

0

HOURS OF IRRADIATION

OH

Figure 4 Predicted relative importance of several reactive intermeshydiates during photooxidation of propene-nbutane mixture under simulated atmospheric conditions

their reaction with ozone was necessary For example the rate constant for the reaction of ozone with toluene is about nine orders of magnitude lower than that for OH with tolushyene During the initial hours of irradiation other species such as NO355 and HO256 may contribute slightly to hydroshycarbon disappearance rates especially for alkenes but since their concentrations and in some cases rate conshystants are not known correction was not possible

Hydroxyl Radical Source in this System The major sources of OH in our experimental system are probably the reactions781315

NO + NO2 + H2O =2HONO (2)

HONO + hv (290-410 nm) - OH+ NO (3)

HO2+NO-OH+NO2 (4)

Nitrous acid has been observed in a chamber study of simshyulated atmospheres carried out in our laboratory57 when a mixture of propene and nitrogen oxides in moist air was

g photolyzed indicating that HONO can be formed in HC NO systems under conditions similar to those employed in the present study (Nash58 claims to have measured HONO in ambient air at levels up to 11 ppb) Direct evidence for formation of OH radicals in environmental chambers has been provided recently by Niki Weinstock and coworkshyers1154 Reaction 4 of major importance provides a further source of the OH radical HO2 can be formed in air56-59 by any mechanism producing H atoms or formyl radicals via the reactions

H+O2+ M-HO2+M (5)

HCO + 02 - HO2 + CO (6)

Thus any mechanism producing HO2 in our system is also a means of furnishing OH radicals via reaction 4

The concentration of OH radicals present during these experiments was calculated to be (15-20) X 106 molecules cm-3 using the observed rates of m-xylene disappearance (corrected for dilution) and the previously determined rate constant for OH + m-xylene4042 These concentrations are

The Journal of Physical Chemistry Vol 80 No 8 1976

62

Lloyd Darnall Winer and Pitts

of the same order as those observed directly in ambient air10u as discussed above

Aromatic Hydrocarbons Present results for the rate constant for the reaction of OH with m-xylene show good agreement with the previous study42 carried out in our labshyoratory (Table II) indicating good reproducibility for this technique

Rate constants for the reaction of OH with the propylshybenzenes and ethyltoluenes have not been reported preshyviously However the trend in rate constants for the reacshytion with o- mbull and p-ethyltoluene is identical with that previously determined for the xylenes40bull42 which supports the concept that OH is an electrophilic species since attack on the meta compound is favored

Davis et al41 have studied the reaction of OH with benshyzene and toluene and from the observed pressure depenshydence of the reactions conclude that addition occurs at least 50 of the time In an environmental chamber study similar to that reported here Schwartz et aI60 tentatively identified a number of aerosol products such as phenols and aromatic nitro compounds from the photooxidation of toluene in the presence of nitrogen oxides A mechanism was proposed assuming initial addition of OH to the aroshymatic ring In the case of the more highly substituted aroshymatic compounds studied here it may be possible that hyshydrogen abstraction from the side chain could possibly be as important as addition This is supported by the fact that a log plot of the OH-aromatic hydrocarbon rate constants vs the ionization potential of the hydrocarbon (which for abshystraction reactions is expected to be linear) in this case did not yield a straight line

Detailed product studies are required in order to obtain the quantitative data necessary to further elucidate the mechanism of OH attack on various aromatic hydrocarshybons

Alkanes Greiner24 has derived an empirical formula for calculating the rates of reaction of OH with alkanes based on his experimental results for the reaction of the OH radishycal with selected alkanes

k = 615 X 108N 1exp(-1635RT) + 141 X 108N 2 exp(-850RT)

+ 126 X 108N 3 exp(+190RT) M-1 s-1

where N1 N2 and N3 are the numbers of primary seconshydary and tertiary hydrogen atoms respectively in the alshykane We have used this equation to calculate the rate conshystants for isopentane 2- and 3-methylpentane and n-hexshyane The calculated values are in quite good agreement with the experimental values Although Greiners formula predicts the same rate constants for the 2- and 3-methylshypentanes our study suggests that the latter is somewhat higher Indeed this may be expected since the stability of the radical formed by the abstraction of the tertiary H atom from 3-methylpentane should be greater than that for the radical formed from similar attack in the 2-methylpenshytane case

Alkenes Unlike the alkanes and the aromatic comshypounds alkenes react with ozone at a significant rate Thus in our experimental system the small amounts of 0 3 formed during the 3-h photolyses contributed to the alkene disappearance rates From the measured concentrations of ozone and the published rate constants for the reaction of 03 with the alkenes studied49-5361 -63 a correction was made to the alkene disappearance rates for loss due to reaction with ozone This amounted to ~3 for ethene ~7 for

l

Kinetics of OH~Hydrocarbon Reactions

propene ~21 for cis-2-butene and ~2 for 13-butadishyene

Our results for the reaction of OH with propene

OH + C3Hs -- products (7)

are within experimental error of a recent absolute determishynation of k using flash photolysis-resonance fluoresshycence35 while the value of k 7 given in Table II for the reshysult of Cox33 incorporates a stoichiometry factor of 2-to 3 In parallel studies in this laboratory using flash photolysisshyresonance fluorescence35 no evidence was found within exshyperimental error of a pressure effect for k1 by varying the totai pressure from 25 to 100 Torr of argon but additional studies should be carried out especially at lower pressures where such an effect would become evident to see whether k exhibits any pressure dependence

The value of the rate constant obtained in this study for the reaction of OH with cis-2-butene though somewhat high is within experimental error of values previously reshyported from direct determinations213435 In this case a sigshynificant (21) correction for reaction with 0 3 had to be apshyplied to the data

No previous determinations of absolute rate constants have been reported for the reaction of OH with 13-butadishyene However the close agreement between our values for cis-2-butene and 13-butadiene is consistent with the workmiddot by Cvetanovic and Doyle64 who showed that these two compounds reacted at similar rates with oxygen atoms

The value obtained in this study for the rate constant of _the reaction

(8)

of 52 X 109 M-1 s-1 is about a factor of 2 higher than

II published values from low pressure ( lt300 Torr) studshymiddot 22middot 32ies21middot 28- 36 The only other study to date carried out at

atmospheric pressure is that recently reported by Cox33 in which OH was generated by photolyzing gaseous nitrous acid in nitrogenoxygen mixtures (21) at 760 Torr and the effect of added alkenes on the photolysis of nitrous acid was studied A rate constant aka = (57 plusmn 06) X 109 M-1

s-1 was obtained relative to a value of 90 X 107 M-1 s-1for the reaction of OH with CO where a is a stoichiometry facshytor Cox suggests that a is between 2 and 3 based on pubshylished values for the direct determination of k8bull Davis et al36 have shown that the significant differences between low pressure measurements of reaction 8 can be rationalshyized by the fact that the reaction exhibits a pressure depenshydence over the region studied (3 to 300 Torr of He)

This pressure dependence is probably due to the initial formation of the adduct observed by Niki and coworkshyers21middot30 Presumably this adduct becomes stabilized by colshylisional deactivation

(8a)

While it is possible that our determination of k8 is higher than previous values due to the fact that species other than Q

t OH -and 03 are depleting the ethene at least part of the discrepancy may be due to the difference in pressure reshygions studied Figure 5 shows a plot of log ks vs log P where P is the total pressure in the system for studies carshyried out using N2 02 or N2O as diluent gases Studies carshyried out using less efficient third body gases such as He are not plotted since the present study is focused on ambient atmospheric conditions and third bodies such as N2 or the

middot793

100

- u

-- 0 E

95 C

~ a

gt

0 0

900~--J----J--___________~bull------- 10 20 30

rog PCP in torr)

Figure 5 Variation with pressure of the rate constant k8 for the reshyaction of OH with C2H4 M is bath gas in reaction 8 ltbullgt Davis et al38 ( ) Smith and Zellner31 (reg) this work

equivalent Thus at 3 Torr of diluent gas the results of Davis et ai36 differ by a factor of 16 depending on whether N2or He is used as the diluent gas Although our results for ethene are subject to some uncertainty it appears possible that reaction 8 is not at the limiting high pressure kinetics region until the pressure exceeds 1 atm

Conclusions

Relative rate constants have been determined for the reshyaction of OH with 14 hydrocarbons and these rate conshystants have been placed on an absolute basis using the litshyerature values for the rate constant of OH + n-butane No previous determinations have been reported in the case of seven of these compounds

Our results indicate that the reaction of OH with ethene possibly does not obey second-order kinetics until presshysures exceed 1 atm while for propene and the higher alkshyenes the reactions are second order at atmospheric presshysure

The comparatively high rates of reaction observed for the aromatic hydrocarbons have significant implications for the control of photochemical air pollution This subject and the use of the present data in the formulation of a hyshydrocarbon reactivity scale has been treated in detail elseshywhere65

Acknowledgments The authors gratefully acknowledge the helpful comments of Dr R Atkinson Dr George Doyle and Dr Jeremy Sprung during the preparation of this paper and thank Dr William P Carter for carrying out the computer calculations used to construct Figure 4 and Ms Sharon Harris for the hydrocarbon GC analyses

This work was supported in part by the National Science Foundation-RANN (Grant No AEN73-02904 A02) and the California Air Resources Board (Contract No 5-385) The contents do not necessarily reflect the views and policies of the National Science Foundation-RANN or the California Air Resources Board nor does mention of trade names or commercial products constitute endorsement or recomshymendation for use

References and Notes

(1) R R Baker R R Baldwin and R W Walker Symp (Int) Combust [Proc] 13th 291 (1971)

(2) D D Drysdale and A C Lloyd Oxid Combust Rev 4 157 (1970) W

The Journal of Physical Chemistry Vol 80 No 8 1976

63

794

E Wilson Jr J Phys Chem Ref Data 1535 (1972) (3) H S Johnston Adv Environ Sci Technot 4263 (1974) (4) P Crutzen Can J Chem 52 1569 (1974) (5) M 8 McElroy S C Wolsy J E Penner and J C McConnell J

Atmos Sci 31 287 (1974) (6) H Levy II Adv Photochem 9369 (1974) (7) K L Demerjian J A Kerr and J G Calvert Adv Environ Sci Techshy

nol 4 1 (1974) (8) H Niki E E Daby and B Weinstock Adv Chem Ser No 113 16

(1972) (9) J N Pitts Jr and B J Finlayson Angew Chem Int Edit Engl bull 14 1

(1975) (10) C C Wang and L I Davis Jr Phys Rev Lett 32349 (1974) (11) C C Wang L I Davis Jr C H Wu S Japar H Niki and 8 Wein-

stock Science 189 797 (1975) (12) 8 Weinstock and H Niki Science 176290 (1972) (13) 8 Weinstock and T Y Chang Telus 26 108 (1974) (14) J G Calvert and R D McQuigg Proceedings of the Symposium on

Chemical Kinetics Data for the Upper and Lower Atmosphere Warrenshyton Va Sept 15-18 1974 Int J Chem Kinet Symposium No 1 113 (1975)

(15) T A Hecht J H Seinfeld and M C Dodge Environ Sci Technol 6 327 (1974)

(16) A a Eschenroeder and J R Martinez Adv Chem Ser No 113 101 (1972)

l (17) D D Davis S Fischer and R Schiff J Chem Phys 61 2213 (1974) (18) R Overend G Paraskevopoulos and R J Cvetanovlc 11th Informal

Conference on Photochemistry Vanderbilt University Tenn June 1974

I (19) J Margltan F Kaufman and J G Anderson Geophys Res Lett 1 80

(1974) (20) S Gordon and W A Mulac Proceedings of the Symposium on Chemishy

cal Kinetics Data for the Lower and Upper Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Symposium No 1 289 (1975)

(21) E D Morris Jr and H Niki J Phys Chem 75 3640 (1971) (22) J N Bradley W Hack K Hoyermann and H Gg Wagner J Chem

Soc Faraday Trans 1 69 1889 (1973) (23) R A Gorse and D H Volman J Photochem 1 1 (1972) 3 115

(1974) (24) N R Greiner J Chem Phys 53 1070 (1970)

t (25) N R Greiner J Chem Phys 46 3389 (1967) (26) J Peeters and G Mahnen Symp (Int) Combust [Proc] 14th 113

(1973) (27) F Stuhl Z Naturlorsch A 28 1383 (1973) (28) F Stuhl Ber Bunsenges Phys Chem 77 674 (1973) (29) N R Greiner J Chem Phys 53 1284 (1970) (30) E D Morris Jr D H Stedman and H Niki J Am Chem Soc 93

3570 (1971) (31) I W M Smith and R Zellner J Chem Soc Faraday Trans 2 69

1617 (1973) (32) A V Pastrana and R W Carr Jr J Phys Chem 79 765 (1975) (33) R A Cox Proceedings of the Symposium on Chemical Kinetics Data

for the Lower and Upper Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Sypposium No 1379 (1975)

(34) S Fischer R Schiff E Machado W Bollinger and D D Davis 169th National Meeting of the American Chemical Society Philadelphia Pa April 6-11 1975

(35) R Atkinson and J N Pitts Jr J Chem Phys 63 3591 (1975) (36) D D Davis S Fischer R Schiff R T Watson and W Bollinger J

Chem Phys 63 1707 (1975)

Lloyd Darnall Winer and Pitts

(37) E R Stephens Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973

(38) A P Altshuller S L Kopczynski W A Lonneman F D Sutterfield and D L Walson Environ Sci Technol 4 44 (1970)

(39) H Mayrsohn M Kuramoto J H Crabtree T D Sothern and S H Mano Atmospheric Hydrocarbon Concentrations June-Sept 1974 California Air Resources Board April 1975

(40) D A Hansen R Atkinson and J N Pitts Jr J Phys Chem 79 1763 (1975)

(41) D D Davis W Bollinger and S Fischer J Phys Chem 79 293 (1975)

(42) G J Doyle A C Lloyd K R Darnall A M Winer and J N Pitts Jr Environ Sci Technof 9 237 (1975)

(43) J N Pitts Jr P J Bekowies G J Doyle J M McAfee and A M Wirier An Environmental Chamber-Solar Simulator Facility for the Study of Atmospheric Photochemistry to be submitted for publication

(44) G J Doyle P J Bekowies A M Winer and J N Pitts Jrbull A Charshycoal-Adsorption Air Purification System for Chamber Studies Investigatshying Atmospheric Photochemistry Environ Sci Technol submitted for publication

(45) E R Stephens and F R Burleson J Air Pollut Control Assoc 17 147 (1967)

(46) Ozone measurement was based on calibration by the 2 neutral buffshyered Kl method and was subsequently corrected from spectroscopic calibration data (see J N Pitts Jr J M McAfee W Long and A M Winer Environ Sci Technol in press)

(47) J R Holmes R J OBrien J H Crabtree T A Hecht and J H Sein-feld Environ Sci Technol 1519 (1973)

(48) W P Carter A C Lloyd and J N Pitts Jr unpublished results (49) D H Stedman CH Wu and H Niki J Phys Chem 11 2511 (1973) (50) D H Stedman and H Niki Environ Lett 4303 (1973) (51) J J Bufallnl and A P Altshuller Can J Chem 45 2243 (1965) (52) P L Hans E R Stephens W E Scott and R C Doerr Atmospheric

Ozone-Olefin Reactions The Franklin Institute Philadelphia Pa 1958

(53) S M Japar CH Wu and H Niki J Phys Chem 18 2318 (1974) (54) H Niki and B Weinstock Environmental Protection Agency Seminar

Washington DC Feb 1975 (55) S M Japar and H Niki J Phys Chem 79 1629 (1975) (56) A C Lloyd Int J Chem Kinet VI 169 (1974) (57) J M McAfee J N Pitts Jr and A M Winer In-Situ Long-Path Inshy

frared Spectroscopy of Photochemical Air Pollutants In an Environmenshytal Chamber presented at the Pacific Conference on Chemistry and Spectroscopy San Francisco Calif Oct 16-18 1974

(58) T Nash Telus 26 175 (1974) (59) J G Calvert J A Kerr K L Demerjian and R D McQulgg Science

175 751 (1972) (60) W i Schwartz P W Jones C J Riggle and D F Miller Chemical

Characterization of Model Aerosols EPA-6503-74-011 Aug 1974 (61) F S Toby and S Toby Proceedings of the Symposium on Chemical Kishy

netics Data for the Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Symposium No 1 197 (1975)

(62) K H Becker U Schurath and H Seitz Int J Chem Kinet 6 725 (1974)

(63) R E Huie and J T Herron Proceedings of the Symposium on Chemishycal Kinetics Data for the Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Kinet Symposium No 1 165 (1975)

(64) R J Cvetanovic and L C Doyle Can J Chem 38 2187 (1960) middot (65) K R Darnall A C Lloyd A M Winer and J N Pitts Jr Environ Sci

Technol in press

middotThe Journal of Physical Chemistry Vol 80 No 8 1976

64

rl

i

8 ~

ct il

Introduction

During the last six years the major role of the hydroxyl radical (OH) in atmospheric chemistry and photochemical air pollution has been recognized1-7 and kinetic data for the reshyaction of OH with both organic and inorganic species have increased substantially8 However there are currently no published rate constant determinations for the reaction of OH with ketones chloroethenes or any of the naturally occurring hydrocarbons such as the nionoterpenes Such rate constant data for the reaction of OH with these three classes of com-middot pounds would be useful in part because of their increasing importance for modeling the atmospheric processes occurring both in urban and rural atmospheres Specifically ketones and chlorinated hydrocarbons are components of commercial solvents910 Both tri- and tetrachloroethene have been obshyserved in the troposphere at part per trillion (ppt) concenshytrations of lt511 and 20 ppt1112 respectively while methyl ethyl ketone has been observed at concentrations of 1-6 parts per billion (ppb)13 Monoterpene hydrocarbons have been shown to be present in the atmosphere with source strengths of millions of tons annually14 Thus Rasmussen1516 and coshyworkers have estimated that on an individual basis such naturally occurring hydrocarbons have ambient concentrashytions in the low ppb range and are largely responsible for the blue haze occurring in certain forested areas 17

This paper describes an extension of our recent experiments in which an environmental chamber has been employed to obtain relative rate constants for the gas phase reaction of the hydroxyl radical with a series of hydrocarbons1819 In this case we report data for the reaction of OH with three ketones two chloroethenes and three monoterpene hydrocarbons using isobutene as a reference compound

bullExperimental Section

The experimental methods and procedures employed have been described in detail e1Rewhere1819 and are only briefly summarized here Irradiations of the hydrocarbon-NO_-air system were carried out in a Pyrex chamber20 of approxishymately 64001 volume equipped with externally mounted

tteprmteo _rrom me urna1 I tnys1ca1 ~em1suy liU 1_01_ l l~ m1f Copyright 1976 by the American Chemical Society and reprinted by perm1ss10n of the copyright owner

Relative Rate Constants for the Reaction of the Hydroxyl Radical with

Selected Ketones Chloroethenes and Monoterpene Hydrocarbons

Arthur M Winer Alan C Lloyd Karen R Darnall and James N Pitts Jrbull

Statewide Air Pollution Research Center University of California Riverside California 92502 (Received January 30 1976)

Publication costs assisted by the University of California Riverside

The relative rates of disappearance of three monoterpmiddotene hydrocarbons two chloroethenes and three alishyphatic ketones were measured in an environmental chamber under simulated atmospheric conditions at 305 middot plusmn 2 K The observed rates of disappearance were used to derive relative rates of reaction of these organic compounds with the hydroxyl radical (OH) on the previously validated basis that OH is the species domishynantly responsible for the hydrocarbon disappearance under the experimental conditions employed Absoshylute rate constants obtained from the relative values using the published rate constant for OH + isobutene (305 X 1010 M-1s-1) are (k X 10-10 M-1s-1) o-pinene 35 plusmn 05 B-pinene 41 plusmn 06 d-limonene 90 plusmn 14 methyl ethyl ketone 020 plusmn 006 methyl isobutyl ketone 09 plusmn 03 diisobutyl ketone 15 plusmn 05 trichloshyroethene 027 plusmn 008 tetrachloroethene 013 plusmn 004 No previous determinations of these rate constants have been found in the literature Rate constants for an additional nine monoterpene hydrocarbons have been derived from data recently published by Grimsrud Westberg and Rasmussen

Sylvania 40-BL fluorescent lamps whose spectral distribution has been reported elsewhere21 (photon flux at 300 nm is apshyproximately 1 of the photon flux maximum at 360 nm) The light intensity measured as the rate of NO2 photolysis in nishytrogen22 k1 was approximately 04 min-1bull All gaseous reacshytants were injected into pure matrix air23in the chamber using 100-ml precision bore syringes Mixtures of the liquid reacshytants were injected using micropipettes During irradiation the chamber temperature was maintained at 305 plusmn 2 K

Alkene terpene and ketone concentrations were measured by gas chromatography (GC) with flame ionization detection (FID) using the columns and techniques developed by Steshyphens and Burleson2425 The chloroethenes were also monishytored with GC(FID) using a 10 ft X frac34instainless steel column packed with 10 Carbowax 600 on C22 Firebrick (100110 mesh) Ozone26 was monitored by means of ultraviolet abshysorption (Dasibi Model 1003 analyzer) carbon monoxide by gas chromatography (Beckman 6800 air quality analyzer) and NO-NOrNO by the chemiluminescent reaction of NO with ozone (TECO Model 14B)

The initial concentrations of reactants are shown in Table I In addition to these compounds ethene (20-28 ppb) ethane (48-61 ppb) acetylene (25-37 ppb) propane (13-15 ppb) and variable concentrations of formaldehyde (16-134 ppb) acshyetaldehyde (0-7 ppb) and acetone (3-19 ppb) were present Initial concentrations in these experiments were 1200-2100 ppb C of total nonmethane hydrocarbons 058 ppm of NO (with an NOvNOx ratio of005-010) 5 ppm of CO and 2900 ppb of methane together with water vapor at 50 relative humidity Replicate experiments were carried out in which this mixture was irradiated for 2-3 h with continuous analysis of inorganic species analysis of hydrocarbons every 15 min and analysis of monoterpenes chloroethenes and ketones every middot30 min

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilution rate (12 per hour) from the observed hydrocarbon disappearance rate The HCNO and NONO2 ratios were chosen to delay the forshymation of ozone and ozone was not detected during the irra-

The Journal of Physical Chemistry Vol 80 No 14 1976

65

i

1636

TABLE I Rates of Disappearance and Rate Constantsa for Selected Ketones Chloroethenes and Monoterpene Hydrocarbons at 1 atm in Air at 305 plusmn 2 K

middot Relative Initial rate of concn disap- koH0 Mmiddot

Compound ppb pearance smiddotbull X 10middot10

C

A M Winer A_ C Lloyd K R Darnall and J N Pitts

100-------~-------r-------- _eo___J-__

--~bull middot METHYL ETHYL KETONE 60

~ r-----__ g 2o+---__ ~--------t5 -- __ middot METHYL ISOBUTYL KETONE

u bull --------8 - middot---- 0 10 -- DIISOBUTYL KETONE ~ a

~ 6 ~bull ISOBUTENE

0 05 10 15 20 HOURS OF IRRADIATION

Figure 1 Concentrations of ketones (plotted on a logarithmic scale) during 2-h photolysis of HC-NO mixture in air at 305 plusmn 2 Kand 1 atm

-60

-~ ~-- I - -~ 40bull __ middot---

~ ~ __ ------~ 2 ----_ middot-middot- ~20~ _____ ISOBUTENE

~ ----- middot---0 bull bull

~ bull -~ a-PINENE

z 10 ---8 8 bull --

~6 - --

ll d-LIMONENE e-PINENE (D

0 4~----__---_________J_~_ 0 2 3

HOURS OF IRRADIATION

Figure 2 Concentrations of monoterpene hydrocarbons (plotted on a logarithmic scale) during 3-h photolysis of HC-NO mixture in air at 305 plusmn 2 K and 1 atm

X 106 radicals cm-3 using the observed rates of isobutene disappearance (corrected for dilution) and the previously determined rate constant for OH + isobutene35These con-

centrations are of the same order as those observed directly 32 36 37in ambient air31

Results and Discussion

Typical rates of disappearance observed during a 2-h irrashydiation of the three ketones and 3-h irradiations of the three monoterpene hydrocarbons and the two chloroethenes are shown in Figures 1 2 and 3 respectively Isobutene was used as the reference compound (and is included in each figure) rather than n-butane which was used in our previous studshyies1819 because its reactivity was closer to that of the terpenes and its rate of decay could be measured more accurately in our system In addition the ratio of k0Hlk0a for isobutene is greater3235 than that for any of the other olefi ns studied thus minimizing any contribution to the disappearance rate due to reaction with ozone Table I gives the disappearance rates

66

lsobuene Prop-ne cis-2-Butene Methyl ethyl

ketore Methyl isobutyl

ktgttone Diisobutyl ketone o-Pinene 3-Pinene d-Limonene frichloroethene Tetrachloroethene

17-20 5-7 7-8

50-100

20-70

20-32 10-20 10-20 10-20 41-161 14-88

10 049 122 007

03

05 114 133 295 0088 0044

305 plusmn 031 149 plusmn 022 372 plusmn 056 020 plusmn 006

09 plusmn 03

15 plusmn 05

a Placed on an absolute basis using 305 X 10 0

OH isobutene from ref 35 b The indicated error limits are plusmn 15 except in the case of the chloroethenes and ketones for which they are plusmn 30 These represent the estimated overall error limits and include both experimental errors and uncertainties which may occur in assuming that hydroshycarbon disappearance is due solely to reaction with OH

diation period except in the case of one experiment for which a small correction for the loss of hydrocarbon due to reaction with ozone was applied to the alkene disappearance rates

In order to obtain additional data (at lower OH concen- trations) to correct for the concurrent photolysis of the ketones as discussed below irradiations of a mixture of ketones and isobotene were carried out In these experiments NO CO and other hydrocarbons were not added and under these conditions relatively low concentrations of OH ( lt5 X 105 radicals cm-3) were obtained

Hydroxyl Radical Source in this System As discussed previously19 the major sources of OH and its precursors in our experimental system are probably the reactions452728

NO + N02 + H20 plusmn 2HONO (1)

H02 + N02 - HONO + 02 (2)

HONO + hv (290-410 nm) - OH + NO (3)

H02+NO--OH+N02 (4)

The first reaction is now thought to occur slowly homogeshyneously29 but its rate is probably significantly faster when the reaction is catalyzed by surfaces Thus nitrous acid has been observed in a chamber study of simulated atmospheres carried out in our laboratory30 while direct evidence for formation of OH radicals in an environmental chamber has been proshy

32vided recently by Niki Weinstock and co-workers31

Reaction 4 of major importance provides a further source 34of the OH radical H02 can be formed in air33 by any

mechanism producing H atoms or formyl radicals (eg formaldehyde photolysis) via the reactions

H + 02+ M-H02 +M (5)

HCO + 02 - H02 + CO (6)

Thus any mechanism producing H02 in our system is also a means of furnishing OH radicals via reaction 4

The concentration of OH radicals present during these irshyradiated HC-NO experiments was calculated to be (14-35)

The Journal of Physical Chemistry Vol 80 No 14 1976

348 plusmn 052 406 plusmn 061 900 plusmn 135 027 plusmn 008 013 plusmn 004

M-1 s-bull for

OH Radical Reaction with Selected Hydrocarbons

50------------~----~--

-middot---middot TRICHLOROETHENE

bull TETRACHLOROETHENE ---middot

IOloz--------l--------l2-----1-3---

HOURS OF I RRAOIATION

Fgure 3 Concentrations of chloroethenes (plotted on a logarithmic scale) during 3-h photolysis of HC-NOx mixture in air at 305 plusmn 2 Kand 1 atm

l (corrected for dilution) for these reactants relative to that for isobutene based on data for the three separate experiments for monoterpenes and four separate experiments for methyl

t isobutyl and diisobutyl ketone and chloroethenes Methyll ethyl ketone was present in all experiments

Employing the fact that a range of OH concentrations (20 X 105-35 X 106 radicals cm-3) was observed in these experishy

[ ments corrections to the measured rates of disappearance of the ketones were made for the possible small contribution

middotfrom photolysis of these compounds These corrections were made in the following manner The observed rate of disapshypearance ofa ketone is given by

d ln (ketone]dt = kK[OH] + khv (7)

where kK and khv are the rate constants for reaction with OH and photolysis respectively The isobutene disappearance rate is controlled solely by reaction with OH hence

[OH] =d In [isobutene] (8)dt ks

where kB is the rate constant for reaction of OH with isobushytene Thus substituting for [OH] in eq 7

d In [ketone] _ kK d In [isobutene] dt - kiB dt + kh (9)

Based on eq 9 the relative rates of ketone disappearance were determined from the slopes of plots of d In [ketone]dt vs d ln [isobutene]dt The intercepts of these plots gave the rate constants for photolysis For methyl ethyl methyl isobutyl and diisobutyl ketone the ratios k Kfk iB were 007 03 and 05 respectively and the photolysis rate constants khv were 0007 0014 and 025 h-1 respectively

On the basis that the OH radical is the species dominantly responsible for the hydrocarbon depletion during the 2- or 3-h irradiations (as discussed in detail in our earliermiddotpapers)1819 absolute rate constants were derived from the relative rates of disappearance using Atkinson and Pitts35 value of (305 plusmn 031) X 1010 M-1s-1for the reaction of OH with isobutene These results are shown in Table I It should be noted that the ratio of rate constants (05 and 12 respectively) obtained here for propene and cis-2-butene relative to isobutene are in exshycellent agreement with the ratios obtained by Atkinson and Pitts (05 and 11 respectively)35

1637

Ketones To our knowledge the data presented here repshyresent the first experimental determination of rate constants for the reaction of the OH radical with any ketones in the gas phase The only literature value for ketones is an estimated rate constant of 21 X 109 M-1s-1for the reaction of OH with methyl ethyl ketone which was made by Demerjian Kerr and Calvert5 on a thermochemical basis This value is in remarkshyably good agreement with the experimental value obtained here (20 X 109 M-1 s-1) middot

The rate constants for the reaction of OH with the two other ketones reported here are significantly larger than that for methyl ethyl ketone Thus the rate constant for diisobutyl ketone is about the same as that for OH+ propeneB1935 The dominant mode of reaction of OH with ketones is expected to be one of hydrogen abstraction This is consistent with the increased rate constant in going from methyl ethyl ketone to diisobutyl ketone reflecting a weaker C-H bond strength in going to more highly substituted ketone

Acetone is relatively stable under conditions employed in our photooxidation studies and consequently the rate conshystant for OH + acetone was not measured Based on the fact that the C-H bond strength in acetone (98 kcal) is 6 kcal stronger than that for methyl ethyl ketone (92 kcal) one would e~pect OH to react significantly slower with acetone than with methyl ethyl ketone

Chloroethenes Rate constants for the gas phase reactions of OH with tri- and tetrachloroethene (C2HC3 and C2CI4

respectively) have not been reported previously The rat constants found in this study are 05 and 025 respectively of the rate constant for OH + C2Hi19 This difference in reshyactivity for the chloro-substituted ethenes and ethene is consistent with the results of Sanhueza and Heicklen38-40 who reported that the rates of reaction of 0(3P) with C2HC13and C2C4 were the same and were both a factor of 10 less than that for the reaction of 0(3P) with ethene

Our results show that trichloroethene is mor~ reactive with respect to attack by OH than tetrachloroethene This is in agreement with the results ofLissi41 for CH30 reactions and Franklin et al42 for CI atom reactions with these compounds These workers found relative rates for attack on C2HC3 and C2C4 of 22 and 26 for CH30 and Cl respectively compared to 20 for OH as found in the present study Gay et aI43 reshycently reported results from a photooxidation study of chloc roethenes which while not directly comparable to the present study due to the presence of substantial concentrations of ozone showed that C2HCI3 disappeared more rapidly than C2Cl4 (near the beginning of their irradiations when ozone concentrations were relatively low the ratio of the rates of disappearance was ~2)

Since addition is likely to be the primary reaction pathway for attack by OH the relative reactivity of C2H4 C2HCia and C2Cl4 should reflect the relative magnitudes of the ionization potentials of these molecules which are 1066 948 and 934 eV respectively Our results are consistent with this trend

Monoterpene Hydrocarbons The terpenes experimentally investigated were a-pinene (I) 1-pinene (II) and d-limonene (III) The detection limit for ozone in these experiments was

XI) xD -0-lt II III

~1 ppb and since no ozone was detected during irradiations of the terpenes an upper limit to the contribution due to reshyaction with ozone to the observed rates of terpene disap-

The Journal of Physical Chemistry Vol 80 No 14 1976

67

1638

TABLE II Reactivity of Selected Monoterpenes with O(P) 0

3 and OH

Rate constant M-1 s- 1

Compound O(P)l 03 OHe

o-Pinene 160 plusmn 006 20 X 105 b 35x10 0

X 10 0 10 X 105c 88 X l0~d

J-Pinene 151 ~ 006 22 X l0bulld 41 X 10 0

X 10 0

d-Limonene 650 plusmn 052 39 x 105 d 90 X 10 0

X 10 0

a Reference 49 b Reference 48 c Reference 45 d Referbull ence 16 e This work

pearance can be calculated Thus assuming an ozone conshycentration of 10 ppb and using published rate constants for the reaction of ozone with the terpenes1643-45 an upper limit of 7 of the overall disappearance rate is obtained for the case of d-limonene (the worst case) at the lowest OH concentration present in these experiments (14 X 106radicals cm-3)

l It is interesting to note that the rate constant 37 X 1010

M- 1 s-1 obtained in this study for OH + cis-2-butene a component in the hydrocarbon mix (Table I) used in this set of experiments is in good agreement with the values of 32 X

l 1010 and 37 X 1010 M-1 s-1 obtained by Atkinson and Pitts35 and Morris and Niki46 respectively although our value is somewhat higher than the value of 26 X 1010 M-1 s-1obtained by Fischer et al47 in these three studies the rate constant was r determined from elementary reaction measurements

Table I shows the absolute rate constant values obtained for the terpenes Clearly these natural hydrocarbons react very rapidly with OH For example a-pinene reacts about 3 X 105 times faster with OH than with ozone1648 Thus for an ozone concentration of 3 X 1012 molecules cm-3 (012 ppm) and an OH concentration of 107 radicals cm-3 the rates of disappearance of a-pinene due to reaction with 0 3 and OH respectively will be essentially equal A comparison of the rates of the three terpenes with O(3P) 0 3 and OH is given in Table 1116bull4546 Within the experimental errors for the rate constants for OH + a- and 6-pinene the trend observed for reaction with OH is the same as that observed for reaction with O(3P) and 03

Grimsrud Westberg and Rasmussen (GWR)16 have reshyported the relative rates of photooxidation of a series of monoterpene hydrocarbons using mixtures of 10 ppb of the monoterpene and 7 ppb of nitric oxide which were irradiated for periods ranging between 60 and 120 min Making the rsasonable assumption that as in the case of our studies OH is the major species depleting the hydrccarbon in their exshyperiments then a series of rate constants relative to isobutene (which was included in the GWR study) can be generated in the same manner as described above The data from GWR are given in T-able III relative to isobutene = 10

Considering the- uncertainties involved in this approach (including a lack of knowledge of the exact ozone concentrashytions formed in the experiments of GWR) the agreement between our results for the reaction of OH with a- and 6-pinene and d-limonene and those shown in the fourth column of Table III is quite good and except in the case of a-pinene well within the estimated experimental uncertainty for our determinations The fact that our value of OH + d-limonene is only slightly higher than GWR suggests that little or no 03 was formed in their experiments since there was less than 1 ppb formed during our irradiations

The Journal of Physical Chemistry Vol 80 No 14 1976

A M Winer A C Lloyd K A Darnall and J N Pitts

TABLE III Relative Reaction Rates of Monoterpene Hydrocarbons and Rate Constantsl for Their Reaction with the OH Radical Based on Data from Grimsrud Westberg and Rasmussen (Ref 16)

Rel koH M-bull Hydrocarbon Structure reactivity s-bull X 10-10

p-Menthane 013 040-0-lt p-Cymene 030 092 (078 -0-lt plusmn 016)b

Isobutene )= 10 305

~Pinene 13 40 (41 gtQ) plusmn 06)C

Isoprene 155 47 (46 ~ plusmn 0 9)d

o-Pinene 15s 47 (35 plusmn 05)C~

3-Carene 17 52-cl-~Phellandrene 23 70-0-lt Carvomenthene 25 76-0-lt d-Limonene 29 88 (90-0-lt plusmn 14)C

Dihydromyrcene 36 101~ Myrcene 45 137~ cis-Ocimene 63 192~

a Placed on an absolute basis using 305 x 10 0 M- 1 s-bull for OH+ isobutene from ref 35 b For p-ethyltoluene which is structurally similar (ref 19) c Present work (see Table II) d For 13-butadiene which is structurally similar (ref 19)

A further check on the validity of using the results of Grimsrud Westberg and Rasmussen16 to obtain OH rate constant data is provided by the values derived for the reacshytion of OH with p-cymene and isoprene p-Cymene is structurally very similar to p-ethyltoluene and hence the OH rate constants for these two compounds should be comparable In fact this is the case with the value for OH+ p-cymene of 91 X 109 M-1 s-1 derived from the data of GWR being very close to that obtained for OH+ p-ethyltoluene 78 X 109 M-1

s-1 in our previous study19 Likewise isoprene is structurally similar to 13-butadiene and the rate constant derived for isoprene of 47 X 1010 M-1 s-1 is consistent with that preshyviously measured19 for OH+ 13-butadiene of 46 X 1010 M-1

s-1 On the basis of these comparisons it appears valid to use the photooxidation data of Grimsrud Westberg and Rasshymussen16 to obtain OH rate constant data for the series of monoterpenes which they investigated

Conclusion

Relative rate constants have been experimentally detershymined for the reaction of OH with eight compounds and these rate constants have been placed on an absolute basis using the literature value for the rate constant for OH + isobutene35

In the same manner rate constants for the reaction of OH with nine additional compounds (monoterpene hydrocarbons) for

68

OH Radical Reaction with Selected Hydrocarbons

which no previous rate constants are available have been deshyrived from data recently published by Grimsrud Westberg and Rasmussen16

The comparatively large rate constants obtained for the ketones and monoterpene hydrocarbons indicate that they will be quite reactive in the troposphere The implications for photochemical oxidant control strategies of the chemical reshyactivity of the ketones chloroethenes and terpenes are disshycussed in detail elsewhere5051

Acknowledgments The authors gratefully acknowledge the helpful comments of Drs R Atkinson and E R Stephens during the preparation of this manuscript G Vogelaar and F Burleson for the gas chromatographic analyses and W D Long for valuable assistance in conducting the chamber exshyperiments

This work was supported in part by the California Air Reshysources Board (Contract No 5-385) and the National Science Foundation-RANN (Grant No AEN73-02904-A02) The contents do not necessarily reflect the views and policies of the California Air Resources Board or the National Science Foundation-RANN nor does mention of trade names or commercial products constitute endorsement or recommenshydation for use

References and Notes

(1) J Heicklen K Westberg and N Cohen Publication No 114-69 Center for Air Environmental Studies Pennsylvania State University University Park Pa 1969

(2) D H Stedman E D Morris Jr E E Daby H Niki and B Weinstock presented at the 160th National Meeting of the American Chemical Society Chicago Ill Sept 14-18 1970

(3) B Weinstock E E Daby and H Niki Discussion on Paper Presented by E R Stephens in Chemical Reactions in Urban Atmospheres C S Tuesday Ed Elsevier New York NY 1971 pp 54-55

(4) H Niki E E Daby and B Weinstock Adv Chem Ser No 113 16 (1972) (5) K L Demerjian J A Kerr and J G Calvert Advances in Environmental

Science and Technology Vol 4 Wiley-lntersclence New York NY 1974 p 1

(6) H Levy 11 Advances in Photochemistry Vol 9 Wiley-ln1erscience New York NY 1974 p 1

(7) S C Wofsy and M B McElroy Can J Chembull 52 1582 (1974) (8) R F Hampson Jr and D Garvin Ed Chemical Kinetic and Photoshy

chemical Data for Modeling Atmospheric Chemistry NBS Technical Note No 866 June 1975

(9) A Levy and S E Miller Final Technical Report on the Role of Solvents in Photochemical Smog Formation National Paint Varnish and Lacquer Association Washington DC 1970

( 10) M F Brunelle JE Dickinson and W J Hamming Effectiveness of Orshyganic Solvents in Photochemical Smog Formation Solvent Project Final Report County of Los Angeles Air Pollution Control District July 1966

(11) E P Grimsrud and R A Rasmussen Atmos Environ 9 1014 (1975) (12) J E Lovelock Nature (London) 252 292 (1974) (13) E R Stephens and F A Burleson private communication of unpublished

data (14) R A Rasmussen and F W Went Proc Natl Acad Sci USA 53215

(1965) R A Rasmussen J Air Polut Control Assoc 22537 (1972) (15) R A Rasmussen and M W Holdren Analysis of Cs to C 10 Hydrocarbons

in Rural Atmospheres J Air Pollut Control Assoc Paper no 72-19 presented at 65th Annual Meeting (June 1972)

(16) E P Grimsrud H H Westberg and R A Rasmussen Atmospheric Reshyactivity of Monoterpene Hydrocarbons NOx Photooxldation and Ozonolshyysls middot Proceedings of the Symposium on Chemical Kinetics Data for the

1639

Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Kinet Symp No 1 183 (1975)

(17) F W Went Nature(London) 187641 (1960) bull (18) G J Doyle A C Lloyd K R Darnall A M Winer andJ N Pitts Jr Enshy

viron Sci Technol 9237 (1975) (19) A C Lloyd K R Darnall A M Winer and J N Pitts Jr J Phys Chem

80 789 (1976) (20) J N Pitts Jr P J Bekowies A M Winer G J Doyle JM McAfee and

K W Wilson The Design and Construction of an Environmental Chamber Facility for the Study of Photochemical Air Pollution Final Report Calishyfornia ARB Grant No 5-067-1 in preparation

(21) Sylvania Technical Bulletin No 0-306 Lighting Center Danvers Mass 01923 1967

(22) J R Holmes R J OBrien J H Crabtree T A Hecht and J H Seinfeld Environ Sci Technol 7 519 (1973)

(23) G J Doyle P J Bekowies A M Winer and J N Pitts Jr Environ Sci Technol accepted for publication

(24) E R Stephens Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973 NTIS No PB 230 993AS

(25) E R Stephens and F R Burleson J Air Pollut Control Assoc 17 147 (1967)

(26) Ozone measurement was based on calibration by the 2 neutral buffered Kl method and was subsequently corrected from spectroscopic calibration data [-see J N Pitts Jr J M McAfee W Long and A M Winer Environ Sci Technol in pressJ

(27) B Weinstock and T Y Chang Telus 26 108 (1974) (28) T A Hecht J H Seinfeld and M C Dodge Environ Sci Technol 8 327

(1974) (29) L Zafonte P L Rieger and J R Holmes Some Aspects of the Atmoshy

spheric Chemistry of Nitrous Acid presented at 1975 Pacific Conference on Chemistry and Spectroscopy Los Angeles Calif Oct 28-30 1975 W H Chan R J Nordstrum J G Calvert and J N Shaw Chem Phys Lett 37441 (1976)

(30) J M McAfee A M Winer and J N Pitts Jr unpublished results (31) C C Wang L I Davis Jr CH Wu S Japar H Niki and B Weinstock

Science 189 797 (1975) (32) H Niki and B Weinstock Environmental Protection Agency Seminar

Washington DC Feb 1975 (33) A C Lloyd Int J Chem Kinet 6 169 (1974) (34) J G Calvert J A Kerr K L Demerjian and R D McQuigg Science 175

751 (1972) (35) R Atkinson and J N Pitts Jr J Chem Phys 63 3591 (1975) (36) D Perner D H Ehhalt H W Patz U Platt E P Roth and A Volz OH

Radicals In the Lower Troposphere 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(37) D D Davis T McGee and W Heaps Direct Tropospheric OH Radical Measurements Via an Aircraft Platform Laser Induced Fluorescence 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(38) E Sanhueza and J Helcklen Can J Chem 52 3870 (1974) (39) E Sanhueza and J Helcklen Int J Chem Kinet 6 553 (1974) (40) E Sanhueza I C Hisatsune and J Heicklen Oxidation of Haloethylenes

Center for Air Environment Studies The Pennsylvania State University CAES Publication No 387-75 Jan 1975

(41) E A Lissi private communication to authors of ref 40 and quoted therein (42) J A Franklin G Huybrechts and C Cillien Trans Faraday Soc 65 2094

(1969) (43) B W Gay Jr P L Hans J J Bufalinl and R C Noonan Environ Sci

Technol 10 58 (1976) (44) R F Lake and H Thompson Proc R Soc London Ser A 315 323

(1970) (45) LA Ripperton and H E Jefferies Adv Chem Ser No 113 219 (1972) (46) E D Morris Jr and H Niki J Phys Chem 75 3640 (1971) (47) S Fischer R Schiff E Machado W Bollinger and D D Davis 169th

National Meeting of the American Chemical Society Philadelphia Pa April 6-11 1975

(48) S M Japar CH Wu and H Niki Environ Lett 7245 (1974) (49) J S Gaffney R Atkinson andJ N Pitts Jr J Am Chem Soc 97 5049

(1975) (50) K R Darnall A C Lloyd A M Winer and J N Pitts Jr Environ Sci

Technol in press (51) J N Pitts Jr A C Lloyd A M Winer K R Darnall and G J Doyle

Development and Application of a Hydrocarbon Reactivity Scale Based on Reaction with the Hydroxyl Radical to be presented at 69th Annual APCA Meeting Portland Oreg June 27-July 1 1976

The Journal of Physical Chemistry Vol 80 No 14 1978

69

l

Reactivity Scale for Atmospheric Hydrocarbons Based on Reaction with Hydroxyl Radical

Karen R Darnall Alan C Lloyd Arthur M Winer and James N Pitts Jrbull

Statewide Air Pollution Research Center University of California Riverside Calif 92502

Bv use of relative and absolute rate constants for the reshyactiltn of the hydroxyl radical (OH) with a number of alkanes alkenes aromatics and ketones a reactivity scale is formushylated based on the rate of removal of hydrocarbons and oxyshygenates by reaction with OH In this five-class scale each class spans an order of magnitude in reactivity relative to methane Thus assigned reactivities range from lt10 fo~ ~lass I (conshytaining oniv methane) togt104 for Class V cotammg te mo~t reactive compounds (eg d-limonene) This scale differs m several significant ways from those presently utilized by _air p(llution control agencies and various industrial laboratories For example in contrast to other scales based o~ s_eco~dar_y marifestations such as yields of ozone and eye 1rritat1on it focuses directlv on initial rates of photooxidation The proshyposed scale als~ provides a clearer understandin~ of the_imshyportance of alkanes in the generation of ozone durmg per10~s of prolonged irradiation The present ~cale can be readily extended to include additional orgamc compounds (eg natural and anthropogenic hydrocarbons oxygenates chloshyrinated solvents) once their rate of reaction with OH is known

It has been recognized for many years (1-21) that all hyshydrocarbons occurring in polluted atmospheres are not equally effective in producing photochemical oxidant and hence that the application of cost effective strategies for the control of hydrocarbons requires that more stringent emissions reducshytions be applied to the more reactive organic compounds (22-25) This in turn has led to a continuing requirement for a rational assessment of hydrocarbon reactivity as a basis for control decisions Such an assessment is particularly critical since attainment of the Federal air quality standard for phoshytochemical oxidant has been sought largely through the stringent control of hydrocarbon emissions (26-27)

The first effort to formulate and apply a practical hydroshycarbon reactivity scale was taken in 1966 with the impleshymentation by the Los Angeles Air Pollution Control District (LAAPCD) of a regulation known as Rule 66 to limit solvent organic emissions on the basis of their capacity for promoting photochemical smog formation (24-25) This rule an~ other conceptions of reactivity scales (28) represented a maJor adshyvance in the application of the information then available concerning the mechanisms of photochemical smog formation to the development of practical air pollutant emission control strategies

Not surprisingly however both in the past and present there have been significant differences in hydrocarbon reacshytivity scales proposed by local regional and national air pollution control agencies (23 29-31) as well as by industy (14 16) As shown in Table I this can lead to very large difshyferences in emission inventory estimates and in approaches to hydrocarbon control (29 32 33) In this case reactive hyshydrocarbon emission inventory levels calculated by Goeller et al (32) using hvdrocarbon reactivity definitions of the Envishyronmental Protection Agency (EPA) on tlie one hand and the California Air Resources Board (ARB) and LAAPCD on the other differed by factors of 3 to 4

A second problem common to virtually all previous reacbull tivity classifications has been their reliance on smog chamber data obtained for relatively short irradiation (~2-6 h) periods

Thus the recent concern over oxidant formation resulting from ionger irradiations during pollutant tr~sport ~o ~egio_ns downwind of urban sources introduces additional d1fficult1es both in defining what constitutes a reactive hydr~carbon and in categorizing degrees of reactivity For example a compound such as propane the major component in liquefied petroleum gas (LPG) and often cited as a clean fuel is now known (34-36) to contribute to the formation of photochemical oxishydants in the later stages of day-long irradiation periods However on the basis of data obtained during short-term ir- middot radiations propane has been classified as unreactive in a reactivity scale proposed (23) by B Dimitriades of the EPA (hereafter referred to as the EPA reactivity scale)

Altshuller ald Bufalini (9 17) have reviewed the various definitions of hydrocarbon reactivity ~nd summarized results of numerous studies up to 1970 The criteria used for evalushyating hydrocarbon reactivity include hydrocarbon conshysumption the conversion of nitric oxide to nitrogen dioxide ozone formation aerosol formation eye irritation and plant damage It is generally agreed that the criteria most suitable with respect to photochemical oxidant control strategies are ozone dosage or maximum ozone concentration (29) However establishing a definitive hydrocarbon reactivity scale to be applied specifically to the control of ozone formation requires an extensive and lengthy experimental program in which the ozone-forming capability of each individual hydrocarbon is determined under simulated atmospheric conditions inshycluding long-term irradiation (ie 12-14 h)

An alternative basis for assessing hydrocarbon reactivity which would appear to have considerable utility and a valid experimental foundation is the formulation of a reactivity scale based on the rate of disappearance of hydrocarbons due to reaction with the hydroxyl radical the key intermediate spcies in photochemical air pollution

Results and Discussion

It is only in the last six years that the critical role-of OH in photochemical smog formation has been generally recognized (37-40) and that appreciable rate constant data have become available for the reaction of OH with several classes of hyshydrocarbons The importance of OH as a reactive intermediate relative to species such as Oa 0(3P) and H02 has been shown previously (39-41) through computer modeling of smog chamber data For example Niki et al (39) showed that the reactivity of a number of hydrocarbons as measured by the rate of conversion of NO to N02 correlated significantly better with OH rate constants than with either 0(3P) or Oa rate constants

Table I Comparison of Reactive Hydrocarbon Inventory Levels for Fixed Sources Under Alternative Reactivity Assumptions (from Ref 32 Based on Pre-1973 Data)

Reactive hydrocarbons tonsday

Control Conslslenl ARB-

strat-iy EPA lAAPCD Rand Corp

1970 8760 2283 6363 1975 nominal 4273 1022 2399 1975 maximal 2906 577 1299

Reprinted from ENVIRONMENTAL SCIENCEamp TECHNOLOGY yo 10 Page 692 ~uly 1976 Copyright 1976 by the American Chemical Society an1 0eprinted by perm1ss1on of the copynght owner

The utility of a large environmental chamber in obtaining relative rate constants with an accuracy of plusmn20 for the reshyaction of the hydroxyl radical with a variety of hydrocarbons was demonstrated in an earlier study in this laboratory (41 ) This method has recently been extended to an investigation of more than a dozen additional hydrocarbons including seven compounds for which OH rate constants are not currently available The detailed kinetic data derived from this invesshytigation have been reported elsewhere (42) In these studies we determined the rPlative rates of disappearance of selected alkanes alkenes and aromatic hydrocarbons under simulated atmospheric conditions of temperature pressure concenshy

l

middottrations light intensity and other trace contaminants (NO CO hydrocarbons water) These relative rate constants were placed on an absolute basis using the published rate cons~ts for OH+ n-butane The assumption that OH was responsible for the hydrocarbon disappearance under the experimental conditions employed (41) was subsequently supported by the very good agreement between OH rate constants determined for the individual compounds using flash photolysis-resoshynance fluorescence techniques (43 44) and those obtained in

l the initial chamber study (41) The general validity of the chamber method for obtaining OH rate constants is illustrated in Figure 1 where the good correspondence between chamber values (41 42) and the available literature values [(45) and references in Table IV] is shown graphically

The importance of the chamber method for the purposes of formulating a reactivity scale is the simultaneous detershymination of valid rate constants for reactions of OH with a large number and wide variety of atmospherically important hydrocarbons This substantially expands the number of compounds which can be incorporated now and in the near future in the resulting reactivity scale In this regard we are currently extending (46) the chamber method to the detershymination of rate constants for reactions of OH with natural hydrocarbons such as terpenes and solvent hydrocarbons such as ketones and chloroethenes for which no data currently exist Preliminary kinetic data (46) for selected natural hyshydrocarbons and ketones are included in our proposed reacshytivity scale

Use of OH Rate Constants as a Reactivity Index From the successful correlation of OH rate constants with the rates of hydrocarbon disappearance observed in our chamber simulations we conclude that to a good approximation this

Ill 1-- 25 z

~~ a ii ~ lt 20 ux ow ~ f5 ~ ~ 15 u lt(0 c

()

~ ~ 10 14

~ tla z ILI lt(

~ 1i 5 I- w lt( Q __ Q

ILI lt(a Ill

i5 o 5 ~ ~ W ~ ~ ~ 40

PUBLISHED RATE CONSTANTS ( J mol-1sec-I x 10-9)

Figure 1 Comparison of relative rates of hydrocarbon disappearan~e determined by environmental chamber method (refs 41 a~d 42) with selected published rate constants (cited in Table IV) for reaction of those hydrocarbons with OH radicals Line shown represents one to one correspondence and has slope of ( 1 18) X 10-9 mol s 1- 1bull Compounds shown are 1 n-butane 2 isopentane 3 toluene 4 2-methylpentane 5 n-hexane 6 ethane 7 3-melhylpentane 8 p-xylene 9 erxylene 10-11 m-xylene 12 123-trimeth~lbenzene_ 13 propane 14 124--trimethylbenzene 15 135-trimethylbenzene 16 cs-2-butene

71

Table II Effect of 0 1 PPM Ozone on Calculated Lifetimes of Selected Alkenes Based on Reaction with OH Radicals (1 X 107 Radicalscm3 ) a at 300 K

OH rate constants b Hall-Ille c tor Hall-Ille d lor Alkenamp I mo1- 1 bull-1 [o3J=0 h (03) = 01 ppm h

Ethene 38 X 109 30 28

Propene 15 X 1010 076 067

cis-2- 32 X 1010 036 020 Butene

13-Buta- 46 X 1010 025 024 diene bull b bull

bull Concentration used in these calculations-see text See references on Table IV c t112 = 0693kOH[OH] under the assumption ol attack only by OH d t12 = 0693(kOH[OH] + ko(03]) ko3 taken from refs 45 and 59

correlation can be extr~polated to the atmosphere for alkenes in ambient air parcels during the early morning hours when ozone levels are generally quite low (5005 ppm) and for alshykanes and aromatics at essentially all times and locations The latter assumption namely that an OH rate constant is a good reactivity index for alkanes and aromatics throughout an irradiation day (or multiple irradiation days) rests upon the fact that the rates of reaction of these classes of hydrocarbons with species such as ozone 0(3P) atoms and hydroperoxyl radicals are several orders of magnitude slower than with OH (45 47-49) For example even at the highest ozone concenshytrations experienced in ambient atmospheres 03 will not contribute significantly to the photooxidation of alkanes and aromatics

This is in contrast to the case for alkenes which although the rate constants for reaction of Oa with alkenes are not particularly large (45) react rapidly with ozone at the average concentrations commonly encountered in polluted ambient air (---01-02 ppm) The approximate magnitude of the effect of ozone on the atmospheric lifetimes of alkenes is given in Table II From their OH rate constants (see Table IV) atshymospheric lifetimes for four alkenes were obtained by asshysuming an OH radical concentration in polluted atmospher~s of 107 radicals cm-3 which is a reasonable value on the bass of both model calculations (50) and recent atmospheric measurements (51-53) The half-life given in column 3 of Table II is defined as t 1 2 = 0693k(OH) and assumes deshypletion of the hydrocarbon solely by the hydroxyl radical When one assumes an average concentration of 010 ppm of 0 3 the more reactive alkenes show considerably shorter half-lives (column 4) For example the lifetime of cis-2-butene in the atmosphere is 036 h assuming only reaction with OH but this is reduced to 020 h when reaction with Oa at a conshycentration of 01 ppm is considered

Proposed Reactivity Scale Under the assumption that hydrocarbon depletion is due solely to attack by OH (with the qualification noted for alkenes) we propose a five-class reshyactivity scale based on hydrocarbon disappearance rates due to reaction with OH The ranges of reactivities for the five proposed classes each span an order of magnitude in reactivity relative to methane and are shown in Table III The hydroshycarbon half-lives as defined above are also shown for each reactivity range

Hydroxyl radical rate constant data for a wide ra~ge of atshymospheric hydrocarbons have been taken from the literature as well as from our own studies and are compiled and refshyerenced in Table IV The assignment of these compounds in the various classes of our proposed reactivity scale is shown in the last column of Table IV For interest carbon monoxide is included in this table since although it is not a hydrocarbon it is present in polluted urban atmospheres but is generally regarded as being unreactive in ambient air Thus carbon

Volume 10 Number 7 July 1976 693

l

monoxide appears as being somewhat reactive in Class 11 Cohen (o) and Glasson and Tuesday (8) was essentially the which also includes ethane and acetylene In our current same as that obtained from the studies of hydrocarbon conshycompilation of compounds methane is the only compound sumption carried out by Schuck and Doyle (1 ) Stephens and listed which appears in Class I and 2-methyl- and 23-dishy Scott (3) and Tuesday (5) We are currently investigating methyl-2-butene and d-limonene are the only compounds in methods of quantitatively relating hydrocarbon consumption Class V Several of the higher alkenes and 13-butadiene apshy to nitric oxide oxidation and ozone formation the parameter pear at the upper end of Class IV Data from our recent study of greatest interest in formulating control strategies for oxishyof monoterpeiie hydrocarbons ( 46) indicate that many of these dant reduction compounds will appear in Class V (54) As indicated above Rule 66 formulated by the LAAPCD

Comparison with Other Scales The ranking of reacshy in 1966 represented the first hydrocarbon control measure tivities for the aromatic hydrocarbons in our scale is essentially based on photochemical reactivity Although this regulation the same as that obtained by Altshuller et al (4) and by has been effective results from recent studies (34-36) indicate Kopczynski (7 17) Although our proposed scale is based that the 4-6 h irradiations (25) from which assignments of solely on hydrocarbon disappearance rates Altshuller and the degree of reactivity of hydrocarbons were made in forshyBufalini ( 17) have shown that this measure of reactivity is very mulating Rule 66 did not give sufficient recognition to the similar to the one based on nitric oxide oxidation rates They ozone-forming potential of slow reactors such as n-butane and showed that the ranking of reactivities of hydrocarbons from propane Consequently it is now realized that measures more the nitric oxide photooxidation studies of Altshuller and stringent than Rule 66 are necessary to achieve reductions in

ozone formation to levels approaching th(se mandated by the US Clean Air Act Amendments of 1970

Table Ill Reactivity Scale for Hydrocarbons Based on Recognition of such deficiencies in current hydrocarbon Rate of Disappearance of Hydrocarbon Due to control regulations has led to reexamination of present hyshyReaction with Hydroxyl Radicals drocarbon reactivity classifications The focus of these reshy

evaluations has been the five-class reactivity scale (see TableClasa Hall-Hiebull Reactivity rel to methane ( =1)

I gt99 days lt10 V) proposed by B Dimitriades at the EPA Solvent Reactivity II 24 h to 99 days 10-100 Conference in 1974 (23) Significant changes have been sugshy

gested for this reactivity classification by the California ARB (29 30) the LAAPCD (31) the EPA (55) and by industry

Ill 24-24 h 100-1000 IV 024-24 h 1000-10 000

However since no final conclusions have been reached by any V lt024 h gt10 000 t112 = 0693kOH[OH] of these agencies at this time we will restrict comparison of

our proposed scale to the 1974 EPA scale

r Table IV Proposed Reactivity Classification of Hydrocarbons and CO Based on Reaction with Hydroxyl Radicals

Compound koH + Cpd (I mo1- 1 s-1) X 10-9 Rat Reactivity rel to methane ProPQsad class see Table Ill

Methane 00048 (60) 1 I co 0084 (45) 18 II Acetylene 011 (45 61 66) 23 II Ethane 016 (62) 33 II Benzene 085 (43 44) 180 Ill Propane 13 (63) 270 Ill n-Butane 18 (41 42) 375 Ill lsopentane 20 (42) 420 Ill Methyl ethyl ketone 21 (46) 440 Ill 2-Methylpentane 32 (42) 670 Ill Toluene 36 (43 44) 750 Ill n-Propylbenzene 37 (42) 770 ill lsopropylbenzene 37 (42) 770 ill Ethane 38 (42 64-66) 790 Ill n-Hexane 38 (42) 790 Ill 3-Methylpentane 43 (42) 900 Ill Ethylbenzene 48 (42) 1000 Ill-IV P-Xylene 745 (41 43) 1530 IV p-Ethyltoluene 78 (42) 1625 IV o-Ethyltoluene 82 (42) 1710 IV o-Xylene 84 (41 43) 1750 IV Methyl isobutyl ketone 92 (46) 1920 IV m-Ethyltoluene 117 (42) 2420 IV m-Xylene 141 (4143) 2920 IV 123-Trimethylbenzene 149 (41 43) 3100 IV Propene 151 (67) 3150 IV 124-Trimethylbenzene 20 (41 43) 4170 IV 135-Trimethylbenzene 297 (41 43) 6190 IV cis-2-Butene 323 (67) 6730 IV 8-Pinene 42 (46) 8750 IV 13-Butadiene 464 (42) 9670 IV-V 2-Methyl-2-butene 48 (68) 10 000 V 23-Dimethyl-2-butene 67 (69) 14 000 V d-Limonene 90 (46) 18800 V

bull Where more than one reference is cited an average value is given for the rate constant

694 Environmental Science amp Technology 72

i

Table V Proposed EPA Reactivity Classification of Organics (from Ref 23 1974) Claul Class II Class Ill Class IV Class V

nonreactive reactive reactive reactlVe reactive

C-C3 paraffins Mono-tertiary- CH paraffins Primary and secondary Aliphatic olefins

Acetylene Cycloparaffins a-Methyl styrene alkyl benzeries alkyl benzenes

Cyclic ketones Dialkyl benzenes

Benzaldehyde Tertiary-alkyl n-Alkyl ketones Branched alkyl Tri- and tetra-alkyl acetates ketones

Benzene Styrene Aliphatic aldehydes

benzenes 2-Nitropropane Primary and secondary

Acetone Primary and secondary alkyl acetates Unsaturated ketones Methanol alkyl alcohols N-methyl pyrrolidone Diacetone alcohol Tertiary-alkyl Cellosolve acetate

3lcohols NN-dimethyl Ethers ace tam Ide Partially halogenated

Phenyl acetate CellosolvesolefinsPartially halogenated paraffins Methyl benzoate

Partially halogenated Ethyl amines paraffins

Dimethyl formamlde

Perhalogenated hydrocarbons

Reactivity rating 10 35 65 97 143

Briefly the EPA has proposed on the basis of previous experimental studies that methane ethane acetylene proshypane and benzene are essentially nonreactive for typical urban ambient hydrocarbon-NOx ratios (23) and these compounds are placed in Class I on their scale Three other classes have been proposed for mobile source hydrocarbon emissions (56)-Class III (C4 and higher alkanes) Class IV (aromatics less benzene) and Class V (alkenes) When stashytionary source hydrocarbons including solvents (Class II) are added to the list five classes are suggested as shown in Table V

Thmiddot reactivity classification proposed here (Tables III and IV) can be compared with that suggested by the EPA (Table V) It is evident that several significant differences emerge

bull The C1-C3 alkanes are given equal weighting in the EPA scale and all are designated unreactive whereas our scale clearly differentiates among the three compounds from methane in Class I and ethane in Class II to the more reactive propane in Class III

bull According to our proposed classification benzene and n-butane are of similar reactivity whereas the EPA scale places them in Class I and III respectively

bull All the alkenes are placed in Class V of the EPA scale whereas our proposed scale shows a differentiation in reacshytivity from ethene in Class III to 23-dimethyl-2sbutene in Class V

bull Our scale g1ves recognition to the high reactivity of natshyural hydrocarbons such as 3-pinene and d-limonene placing these in Class IV and V respectively The present published EPA scale does not give a classification for natural hydroshycarbons although they could be loosely categorized as subshystituted alkenes in Class V

In addition to noting these differences some similarities exist between the two scales For example our scale shows that 13-butadiene is highly reactive which is consistent with preshyvious studies indicating it to be a facile precursor of eye irrishytants (17) and highly effective in producing oxidant during irradiation of HC-NOx mixtures (57) Also methanol would appear in the low half of Class II in our scale based on a recent dstermination of the rate constant for OH attack on methanol (58) The value found was k(OH+CH30H)lkltOH+CO) = 063 at 298 K This reduces to 53 X 107 1 mo1-1 s-1 based on k(oH+CO) = 84 X 107 1 mo1-1s-1 (45) Hence both our scale and the EPAs show methanol to be relatively unreactive

It should be emphasized that the classification proposed in our scale is not strictly applicable to compounds which

73

undergo significant photodissociation in the atmosphere for example aliphatic aldehydes In such cases the compound will be more reactive than predicted from a scale based on hydrocarbon depletion due solely to OH attack However our proposed classification emphasizes that most compounds react in polluted atmospheres and suggests that thf Class I scale be reserved only for the few compounds which have half-lives greater than about 10 days

Conclusion

Our proposed reactivity scale based on the depletion of hydrocarbons by reaction with the OH radical has utility in assessing hydrocarbon chemical behavior in polluted ambient air Since only those organic compounds which participate in atmospheric reactions are of consequence in the chemical transformations in ambient air their relative reactivity toward OH is a useful and directly measurable index of their potential importance in the production of secondary pollutants

Ohe advantage of the proposed scale is that because it is based on the individual rate constants for hydrocarbon reacshytion with OH any degree of gradation in reactivity may be used to formulate any desired number of classes-from relashytively few to a large number of classes or even an ordered ranking of compounds A second strength of the present scale is that it can be readily extended to include additional organic compounds once their rate of reaction with OH is known Fishynally the proposed scale gives greater weight than previous reactivity scales to the alkanes and a number of aromatic hydrocarbons which require a longer period of time to react but can contribute significantly to ozone formation during longer irradiation periods eg during their transport downshywind from urban centers-a phenomenon of increasing conshycern to air pollution control agencies

Acknowledgment

We gratefully acknowledge helpful discussions with R Atkinson G J Doyle D M Grosjean and E R Stephens

Literature Cited

(1) Schuck E A Doyle G bull J Photooxidation of Hydrocarbons in Mixtures Containing Oxides of Nitrogen and Sulfur Dioxide Rept No 29 Air Pollution Foundation San Marino Calif 1959

(2) Leighton PA Photochemistry of Air Pollution Academic Press New York NY 1961

(3) Stephens E R Scott W E Proc Am Pet Inst 42 (111)665 (1962)

Volume 10 Number 7 July 1976 695

l

1 I l

(4) Altshuller A P Cohen I R Sleva S F Kopczynski S L Sciena 135442 (1962)

(5) Tuesday C S Arch Emmiddotiron Health 7 188 (1963) (6) Altshuller A P Cohen I R Int J Air Water Pollut 7 787

(19631 (7) Kopczynski S L ibid 8 107 (1964) (8) Glasson W A Tuesday C S paper presented at the 150th

National Meeting ACS Atlantic City NJ September 1965 (9) Altshuller A P Bufalini J J J Photochem Photobiol 4 97

(J96fi (10) Heuss JM Glasson W A Environ Sci Technol 2 1109

(19681 (11) Altshuller A P Kopczynski S L Wilson D Lonneman W

Sutterfield F D J Air Pollut Control Assoc 19 787 (1969) (12) Altshuller A P Kopczynski S L Wilson D Lonneman W

Sutterfield F D ibid p 791 (13) Dimitriades B Eccleston B H Hurn R W ibid 20 150

(19701 (14) Levy A Miller S E Final Technical Report on the Role of

Solvents in Photochemical Smog Formation National Paint Varnish and Lacquer Assoc Washington DC 1970

(15) Wilson K W Doyle G J Investigation of Photochemical Reactimiddotities of Organic Solvents Final Report SRI Project PSU-8029 Stanford Research Institute Irvine Calif September 1970

(16) Glasson W A Tuesday C S J Air Pollut Control Assoc 20 239 (1970)

(17) Altshuller A P Bufalini J J Environ Sci Technol 5 39 (1971)

(18) Glasson W A Tuesday C S ibid p 153 (19) Stephens E R in Chemical Reactions in Urban Atmospheres

pp 45-54 C Tuesday Ed American Elsevier New York NY 1971

(20) Stephens E R Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973

(21) Kopczynski S L Kuntz R L Bufalini J J Environ Sci Technol 9608 (1975)

(22) Control Techniques for Hydrocarbon and Organic Solvent Emissions from Stationary Sources Nat Air Pollut Control Admin Publication AP-68 March 1970

(23) Proceedings of the Solvent Reactivity Conference US Enshyvironmental Protection Agency Research Triangle Park NC EPA-6503-74-010 November 1974

(24) Hamming W J SAE Trans 76 159 (1968) (25) Brunelle M F Dickinson JE Hamming W J Effectiveness

of Orga1ic Solvents in Photochemical Smog Formation Solvent Project Final Report Los Angeles County Air Pollution Control District July 1966

(26) Emironmental Protection Agency Region IX Technical Support Document January 15 1973

(27) Feldstein J J Air Polut Control Assoc 24469 (1974) (28) Altshuller A P ibid 16257 (1966) (29) California Air Resources Board Informational Report Progress

Report on Hydrocarbon Reactivity Study June 1975 (30) Organic Compound Reactivity System for Assessing Emission

Control Strategies ARB Staff Report No 75-17-4 September 29 1975

(31) Los Angeles County APCD Proposed Reactivity Classification of Organic Compounds with Respect to Photochemical Oxidant Formation Los Angeles County Air Pollution Control Departshyment July 21 1975

(32) Goeller B F Bigelow J H DeHaven JC Mikolowsky W T Petruschell R L Woodfill B M Strategy Alternatives for Oxidant Control in the Los Angeles Region R-1368-EPA Rand Corp Santa Monica Calif December 1973

(33) Impact of Reactivity Criteria on Organic Emission Control Strategies in the Metropolitan Los Angeles AQCR TRW Interim Report March 1975

(34) Holmes J California Air Resources Board private communishycation 1975

(35) Pitts J N Jr Winer A M Darnall K R Doyle G J McAfee JM Chemical Consequences of Air Quality Standards an~ of Control Implementation Programs Roles of Hydrocarbons Oxides of Nitrogen and Aged Smog in the Production of Photoshychemical Oxidant Final Report California Air Resources Board Contract No 3-017 July 1975

(36) Altshuller A P in Proceedings of the Solvent Reactivity Conference US Environmental Protection Agency Research Triangle Park NC EPA-6503-74-010 pp 2-5 November 1974

(37) Heicklen J Westberg K Cohen N Puhl 115-69 Center for Air Environmental Studies University Park Pa 1961

(38) Weinstock R Daby E E Niki H Discussion on Paper Presented by E R Stephens in Chemical Reactions in Urban Atmospheres pp 54-55 C S Tuesday Ed Elsevier New York NY 1971

(39) Niki H Daby E E Weinstock B AdLbull Chem Ser 113 16 (197)

(40) Demerjian K L Kerr J A Calvert J G Adv Environ Sci Technol 4 1 (1974)

(41) Doyle G J Lloyd A C Darnall K R Winer A M Pitts J N Jr Environ Sci Technol 9237 (1975)

(42) Lloyd A C Darnall K R Winer A M Pitts J N Jr J Phys Chem 80 789 (1976)

(43) Hansen D A Atkinson R Pitts J N Jr ibid 79 1763 (1975) (44) Davis D D Bollinger W Fischer S ibid p 293 (45) Chemical Kinetic and Photochemical Data for Modeling Atshy

mospheric Chemistry NBS Technical Note 866 R F Hampson Jr llQJJQarvin Eds Ju_ne 1975_____~ middot middot

(46)rloyd A C~arnliltKR-XWiner A JI_) Pitts J N Jr J Phys Chem 80 lflgti (1976)

(47) Pate C T Atkmiddot ori R Pitts J N Jr J Environ Sci Health All 1 (1976)

(48) Atkinson R Pitts J N Jr J Phys Chem 78 1780 (1974) (49) Stedman D H Niki H Environ Lett 4303 (1973) (50) Calvert J McQuigg R Proceedings of the Symposium on

Chemical Kinetics Data for the Upper and Lower Atmosphere Warrenton Va September 15-18 1974 Int J Chem Kinet Symposium No 1 113 (1975)

(51) Wang C C Davis L I Jr Wu CH Japar S Niki H Weinstock B Science 189 797 (1975)

(52) Perner D Ehhalt D H Patz H W Platt U Roth E P Volz A OH Radicals in the Lower Troposphere 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(53) Davis D D McGee T Heaps W Direct Tropospheric OH Radical Measurements via an Aircraft Platform Laser Induced Fluorescence ibid

(54) Pitts J N Jr Lloyd A C Winer A M Darnall K R Doyle G J Development and Application of a Hydrocarbon Reactivity Scale Based on Reaction with the Hydroxyl Radical to be preshysented at 69th Annual APCA Meeting Portland Ore June 27-July 1 1976

(55) Informal EPA meeting Philadelphia Pa July 30-31 1975 (56) Black M High L E Sigsby JE Methodology for Assignshy

ment of a Hydrocarbon Photochemical Reactivity Index for Emissions from Mobile Sources US Environmental Protection Agency Research Triangle Park NC EPA-6502-75-025 March 1975

(57) Haagen-Smit A J Fox M M Ind Eng Chem 48 1484 (1956)

(58) Osif T L Simonaitis R Heicklen J J Photochem 4 233 (1975)

(59) Japar S M Wu CH Niki H J Phys Chem 78 2318 (1974) (60) Davis D D Fischer S Schiff R J Chem Phys 61 2213

(1974) (61) Pastrana A Carr R W Jr Int J Chem Kinet 6587 (1974) (62) Overend R Paraskevopoulos G Cvetanovic R J Hydroxyl

Radical Rate Measurement for Simple Species by Flash Photolysis Kinetic Spectroscopy Eleventh Informal Conference on Photoshychemistry Vanderbilt University Nashville Tenn June 1974

(63) Gorse R A Volman D HJ Photochem 3115 (1974) (64) Greiner N R J Chem Phys 53 1284 (1970) (65) Smith I W M Zellner R J Chem Soc Faraday Trans II

69 1617 (1973) (66) Davis D D Fischer S Schiff R Watson R T Bollinger W

J Chem Phys 63 1707 (1975) (67) Atkinson R Pitts J N Jr ibid p 3591 (68) Atkinson R Perry R A Pitts J N Jr Chem Phys Lett

38607 (1976) (69) Atkinson R Perry R A Pitts J N Jr unpublished results

1975 Received for review November 3 1975 Accepted January 30 1976 Work supported by the California Air Resources Board (Contract No 4-214) and the National Science Foundation-RANN (Grant No AEN73-02904 A02) The contents do not necessarily reflect the vieumiddots and policies of the California Air Resources Board or the National Science Foundation-RANN nor does mention of trade names or commercial products constitute endorsement or recommendation for use

696 Environmental Science amp Technology 74

Ii

rl

I r I

G

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE

BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Statewide Air Pollution Research Center University of California

Riverside CA 92521

Paper No 76-311

Presented at the 69th Annual Air Pollution Control Association Meeting

Portland Oregon

June 27 - July 1 1976

75

76-311 rII 2

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Statewide Air Pollution Research Center University of California

Riverside CA 92502

Abstract

Measurements of the relative rate constants for the reaction of the hydroxyl radical (OH) with some 35 atmospherically important hydrocarbons have been made in the SAPRC 6400 i glass irradiation chamber These rate constants were placed on an absolute basis using literature values for either n-butane or isobutene and have been augmented with OH rate data obtained by elementary reaction measurements and other appropriate data such as that from photoshy

l oxidation studies from which relative and absolute OH rate constants could be calculated

l Utilizing these data a reactivity scale for some 80 compounds including alkenes alkanes aromatics oxygenates and naturally occurring hydrocarbons has been formulated based on the removal of the hydrocarbons by reaction with OH The resulting scale is an ordering of the reactivities of the hydrocarbons relative to methane The scale can be divided into an arbitrary number of classes for purposes of application to control strategies or comparison with other reactivity scales

Some comparisons of the present scale with proposed EPA and ARB reactivity scales are made and the implications of the present scale for the role of alkanes and a number of aromatic hydrocarbons in the formation of ozone in regions downwind of urban centers is analyzed

76

r I

I D

-I

f

76-311 3

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Introduction

1A major result of the photooxidation studies of the past 20 years - 26 has been the recognition that atmospherically important hydrocarbons do not all contribute equally to the production of photochemical oxidant and hence that the application of cost effective strategies for the control of hydrocarbons requires that more stringent emissions reductions be applied to the more reactive organic compounds 10lll9 26 This in turn has led to a continuing requirement for a rational assessment of hydrocarbon reactivity as a basis for control decisions Such an assessment is particularly critical since attainshyment of the Federal air quality standard for photochemical oxidant has been sought largely through the stringent control of hydrocarbon emissions2728

The first effort to formulate and apply a practical hydrocarbon reactivity scale was taken in 1966 with the implementation by the Los Angeles Air Pollution Control Districtmiddot (LAAPCD) of a regulation known as Rule 66 to limit solvent organic emissions on the basis of their capacity for promoting photoshychemical smog formation 10ll This rule and other conceptions of reactivity scales29 represented a major advance in the application of the information then available concerning the mechanisms of photochemical smog formation to the development of practical air pollutant emission control strategies Thus the basic concept of selective control of emissions based on their reactivity is now widely established

Not surprisingly however there have been significant differences in hydrocarbon reactivity scales proposed by local regional and national air pollution control agencies2530-34 as well as by industry161823 This in turn can lead to quite large differences in emission inventory estimates and in approaches to hydrocarbon control303536

Most although not all previous reactivity classifications have relied primarily on smog chamber data obtained for relatively short irradiation (~ 6 hrs) periods Thus the recent concern over oxidant formation resulting from longer irradiations during pollutant transport to regions downwind of urban sources introduces additional difficulties both in defining what constishytutes a reactive hydrocarbon and in categorizing degrees of reactivity For example a compound such as propane the major component in liquified petroleum gas (LPG) and often cited as a clean fuel is now known37-39 to contribute to the formation of photochemical oxidants in the later stages of day-long irradiation periods However on the basis of data obtained during short-term irradiations propane has been classified as unreactive in a reactivity scale

77

76-311

[

r I l

J

I

4

proposed25 in 1974 by B Dimitriades of the EPA (hereafter referred to as the EPA reactivity scale)

A third difficulty with reactivity scales which are based on previous smog chamber data concerns their reliance on measurements of smog manifestations such as maximum ozone concentrations Observed values of such secondary properties of a photooxidation system can be significantly affected by the particular chamber materials light source purity of matrix air and other aspects of the chamber methodology employed This fact can account in large measure for the significant number of discrepancies which arise from comparison of the specific ranking of hydrocarbons in reactivity scales formulated on the basis of different sets of chamber data

Altshuller and Bufalini9 zo have reviewed the various definitions of hydroshycarbon reactivity and summarized results of numerous studies up to 1970 The criteria used for evaluating hydrocarbon reactivity include hydrocarbon conshysumption the conversion of nitric oxide to nitrogen dioxide ozone formation aerosol formation eye irritation and plant damage It is generally agreed that the criteria most suitable with respect to photochemical oxidant control strategies are ozone dosage or maximum ozone concentration30 However establishing a definitive hydrocarbon reactivity scale to be applied specifishycally to the control of ozone formation requires an extensive and lengthy experimental program in which the ozone-forming capability of each individual hydrocarbon is determined under simulated atmospheric conditions including long-term irradiation (ie 10-12 hrs)

An alternative and perhaps supplementary basis for assessing hydrocarbon reactivity which appears to have considerable utility and a valid experimental foundation is the formulation of a reactivity scale based on the rate of disshyappearance of hydrocarbons due to their reaction with the hydroxyl radical the key intermediate species in photochemical air pollution

Results and Discussion

It is only comparatively recently that the critical role of OH in photoshychemical smog formation has been generally recognized40-44 and that appreciable rate constant data have become available for the reaction of OH with several classes of hydrocarbons The importance of OH as a reactive intermediatz

46relative to species such as o3 o(3P) and H02 has been shown previously 3-through computer modeling of smog chamber data For example Niki Daby and Weinstock43 showed that the reactivity of a number of hydrocarbons as measured by the rate of conversion of NO to NOz correlated significantly betterwith OH rate constants than with either 0(3P) or 03 rate constants

The utility of a large environmental chamber in obtaining relative rate constants with an accuracy of plusmn20 for the reaction of the hydroxyl radical with a variety of hydrocarbons has been demonstrated in a number of recent studies both in this45-48 and other laboratories49 To date we have measured relative rates for the reaction of OH with some 35 organic compounds The

78

l l t

l

r L

76-31 1 5

detailed kinetic data derived from these investigations have been reported48elsewhere 45 - In these studies we determined the relative rates of disshy

appearance of selected alkanes alkenes and aromatic hydrocarbons under simushylated atmospheric conditions of temperature pressure concentrations light intensity and other trace contaminants (NOx CO hydrocarbons water) These relative rate constants were placed on an absolute basis using the published rate constants for OH+ n-butane or isobutene The assumption that OH was responsible for the hydrocarbon disappearance under the experimental conditions employed was subsequently supported by the very good agreement between OH rate constants determined for the individual compounds using flash photolysisshyresonance fluorescence techniquesS051 and those obtained in our initial chamber experiments4546

The importance of the chamber method for the purposes of formulating a reactivity scale is that it permits the simultaneous determination of valid rate constants for reactions of OH with a large number and wide variety of atmospherically important hydrocarbons This substantially expands the number of compounds which can be incorporated now and in the near future in the resulting reactivity scale

Use of OH Rate Constants as a Reactivity Index

From the successful correlation of OH rate constants with the rates of hydrocarbon disappearance observed in chamber simulations at the SAPRc45-48 and Ford49 laboratories we conclude that to a good approximation this correlation can be extrapolated to the atmosphere (a) for alkenes in ambient air parcels during the early morning hours when ozone levels are generally quite low (~005 ppm) and (b) for alkanes and aromatics at essentially all times and locations The latter assumption namely that an OH rate constant is a good reactivity index for alkanes and aromatics throughout an irradiation day (or multiple irradiation days) rests upon the fact that the rates of reaction of these classes of hydrocarbons with species such as ozone 0(3P) atoms and the hydroperoxyl radical are several orders of magnitude slower than

52- 54with OH 8 For example even at the highest ozone concentrations experienced in ambient atmospheres 03 will not contribute significantly to the photooxidation of alkanes and aromatics This is in contrast to the case for alkenes which although the rate constants for reaction of 03 with alkenes are not particularly large55-57 react rapidly with ozone at the average concenshytrations connnonly encountered in polluted ambient air (~01-02 ppm)

Proposed Reactivity Scale

Under the assumption that hydrocarbon depletion is due solely to attack by OH (with the qualification noted for alkenes) we propose a five-class reacshytivity scale based on hydrocarbon disappearance rates due to reaction with OH The ranges of reactivities for the five proposed classes each span an order of magnitude in reactivity rel~tive to methane and are shown in Table I Although a scale based on OH rate constants can be divided into an arbitrary number of classes we have found it convenient and useful (particularly for purposes of

79

l r f

1

76-311 6

comparison with other scales) to employ the order of magnitude divisions which lead to a five-class scale

The hydrocarbon half-lives (defined as t12 ~ 0693k[OH]) corresponding to each class are also shown in Table I These half-lives were calculated assuming depletion of the hydrocarbon solely due to reaction with the hydroxyl radical and assuming an OH radical concentration in polluted atmospheres of 107 radicals cm-3 a reasonable value on the basis of both model calculations58 and recent atmospheric measurements59-61

Table II shows the compounds for which OH rate constants have been found or calculated distributed among the five classes of our proposed reactivity scale in the order of increasing rates of reaction within each class Employing OH rate constants obtained from hydrocarbon disappearance rates measured in photooxidation studies62 63 as well as those from elementary rate determinations and our chamber studies has permitted tabulation of OH rate constant data for 80 hydrocarbons These 80 hydrocarbons are incorporated in Table II

For interest carbon monoxide although not a hydrocarbon is included in Table II since it is present in polluted urban atmospheres Although CO is generally regarded as being unreactive in ambient air in our scale it appears in Class II which also includes ethane and acetylene

In our current compilation of compounds methane is the only compound listed which appears in Class I although the recent work of Chameides and Stedman has shown that even methane will react given sufficient time64 Most of the straight chain alkenes appear in Class IV with the substituted alkenes occurring in the upper half of Class IV and in Class V The alcohols fall into Class III while the monoterpene hydrocarbons are highly reactive and most of them appear in Class V with a- and $-pinene occurring in the upper half of Class IV The reactivity classification shown in Table II is similar to an earlier one we have formulated65 but many more compounds have now been included

Comparison with Other Scales

The ranking of reactivities for the aromatic hydrocarbons in our scale is essentially the same as that obtained by Altshuller et al4 and by Kopczynski 7 66 Although our proposed scale is based solely on hydrocarbon disappearance rates Altshuller and Bufalini20 have shown that this measure of reactivity is very similar to the one based on nitric oxide oxidation rates They showed that the ranking of reactivities of hydrocarbons from the nitric oxide photooxidation studies of Altshuller and Cohen6 and Glasson and Tuesdays was essentially the same as that obtained from the studies of hydrocarbon conshysuinption carried out by Schuck and Doyle 2 Stephens and Scott3 and Tuesday 5

As indicated above Rule 66 formulated by the LAAPCD in 1966 represented the first hydrocarbon control measure based on photochemical reactivity Although this and similar regulations have been effective results from recent

80

T

I I t

I Ii

76-31 1 7

d 37-39 d h h ffmiddot hstu ies in icate tat t ey give insu icient recognition tote ozone-forming potential of slow reactors such as g_-butane and propane under longshyterm irradiation conditions Consequently it is now realized that measures more stringent than Rule 66 are necessary to achieve reductions in ozone formation to levels approaching those mandated by the U S Clean Air Act Amendments of 1970

Recognition of such deficiencies in current hydrocarbon control regulations has led to re-examination of present hydrocarbon reactivity classifications The focus of these re-evaluations has been the five-class reactivity scale (see Table III) proposed by B Dimitriades at the EPA Solvent Reactivity Conference in 1974 25 Significant changes have been suggested for this reactivity classishyfication by the California ARB30-33 the LAAPCn34 the EPA67 and by industry The EPA is currently examining this question and since no final conclusions have been reached at this time we will restrict comparison of our proposed sci=Lle to the scale proposed in 1974 by Dimitriades of the EPA In addition we will discuss our proposed scale in the context of the three-class system r~cently approved32 by the ARB for application to hydrocarbon pollutant invenshytories and for planning future control strategies

Briefly the EPA has proposed on the basis of previous experimental studies that methane ethane acetylene propane and benzene are essentially non-reactive for typical urban ambient hydrocarbon-NOx ratios25 and these compounds are placed in Class I on their scale Three other classes have been proposed for mobile source hydrocarbon ernissions68__Class III (C4 and higher alkanes) Class IV (aromatics less benzene) and Class V (alkenes) When stationary source hydrocarbons including solvents (Class II) are added to the list five classes are suggested as shown in Table III

The reactivity classification proposed here (Tables I II) can be compared with that suggested by the EPA (Table III) It is evident that several signifishycant differences emerge

(1) The C1-C3 alkanes are given equal weighting in the EPA scale and all are designated unreactive while our scale clearly differentiates between the three compounds methane ethane and propane in Classes I II and III respectively

(2) According to our proposed classification benzene and n-butane are of similar reactivity while the EPA scale places them in Class I and III respectively

(3) All the alkenes are placed in Class V of the EPA scale while our proposed scale shows a differentiation in reactivity from ethene in Class III to 23-dimethyl-2-butene in Class V

(4) Our scale gives recognition to the high reactivity of natural hydroshycarbons such as the pinenes_and i-limonene placing these in Class IV and V respectively The present published EPA scale does not give a classification for natural hydrocarbons although they could be loosely categorized as substituted alkenes in Class V

81

l l

i

l

76-311 8

In addition to noting these differences some similarities exist between the two scales For example our scale shows that 13-butadiene ts highly reactive which is consistent with previous studies indicating it to be a facile precursor of eye irritants20 and highly effective in producing oxidant during irradiation of HC-NOx mixtures1 Both our scale and the EPAs show methanol to be relatively unreactive with a greater reactivity exhibited by the higher alcohols although our sc-ale predicts a lower overall reactivity than that of the EPA

The three-class system recently approved by the ARB is shown in Table IV and is similar to one being considered by the EPA30 According to the ARB 32

Class I would include low reactivity organic compounds yielding little if any ozone under urban conditions Class II would consist of moderately reactive organic compounds which give an intermediate yield of ozone within the first day of solar irradiation Class III would be limited to highly reactive organic compounds which give very high yields of ozone within a few hours of irradiation

In general the three-class ARB scale is in line with the scale presented here based on OH rate constants with only minor exceptions For example the ARB scale shows the primary and secondary Cz+ alcohols to be highly reactive in Class III while our scale shows them to be of moderate reactivity

Finally we wish to note two limitations of the reactivity scale proposed here One limitation of our scale is that it is not strictly applicable to compounds which undergo significant photodissociation in the atmosphere and aldehydes have been omitted for this reason In such cases the compound will be more reactive than predicted from a scale based on hydrocarbon depletion due solely to reaction with OH A second limitation in the application of our scale concerns the inherent problem arising from uncertainties in the identity and fates of subsequent products33

Conclusion middot

Our proposed reactivity scale based on the depletion of hydrocarbons by reaction with the OH radical has utility in assessing hydrocarbon chemical behavior in polluted ambient air Since only those organic compounds which participate in atmospheric reactions are of consequence in the chemical transshyformations in ambient air their relative reactivity towards OH is a useful and directly measurable index of their potential importance in the production of secondary pollutants

One advantage of the proposed scale is that because it is based on the individual rate constants for hydrocarbon reaction with OH any degree of gradation in reactivity may be used to formulate any desired number of classes-shyfrom relatively few to a large number of classes or even an ordered ranking of compounds A second strength of the present scale is that it can be readily extended to include additional organic compounds once their rate of reaction

82

76-311 9

~

l

I

with OH is known Finally the proposed scale gives adequate weight to alkanes and a number of aromatic hydrocarbons which require a significant period of time to react but can contribute substantially to ozone formation during longer irradiation periods eg during their transport downwind from urban centers-shya phenomenon of increasing concern to air pollution control agencies

Acknowledgement

We gratefully acknowledge access to the final report of the ARB Reactivity Committee prior to official release

This work was supported by the California Air Resources Board (ARB Contract No 5-385) and the National Science Foundation-Research Applied to National Needs (NSF-RANN Grant No ENV73-02904-A03) The contents do not necessarily reflect the views and policies of the ARB or the NSF-RANN nor does mention of trade names or commercial products constitute endorsement or recomshymendation for use

References

1 A J Haagen-Smit and M M Fox Ozone formation in photochemical oxidashytion of organic substances Ind Eng Chem 48 1484 (1956)

2 E A Schuck and G J Doyle Photooxidation of hydrocarbons in mixtures containing oxides of nitrogen and sulfur dioxide Rept No 29 Air Pollution Foundation San Marino California 1959

3 E R Stephens and W E Scott Relative reactivity of various hydrocarbons in polluted atmospheres 11 Proc Amer Petrol Inst 42 (III) 665 (1962)

4 A P Altshuller I R Cohen S F Sleva and S L Kopczynski Air pollutionphotooxidation of aromatic hydrocarbons Science 138 442 (1962)

5 C S Tuesday Atmospheric photooxidation of olefins Effect of nitrogen oxides Arch Environ Health l 188 (1963)

6 A P Altshuller and I R Cohen Structural effects on the rate of nitrogen dioxide formation in the photooxidation of organic compound-nitric oxide mixtures in air Int J Air Water Pollut l 787 (1963)

7 s L Kopczynski Photooxidation of alkylbenzene-nitrogen dioxide mixtures in air Int J Air Water Pollut _ 107 (1964)

B W A Glasson and C S Tuesday paper presented at the 150th National Meeting ACS Atlantic City N J September 1965

9 A P Altshuller and J J Bufalini Photochemical aspects of air pollution a review J Photochem Photobiol _ 97 (1965)

10 M F Brunelle JE Dickinson and W J Hannning Effectiveness of organic solvents in photochemical smog formation Solvent Project Final Report Los Angeles County Air Pollution Control District July 1966

11 W J Hamming Photochemical reactivity of solvents SAE Transactions Ji 159 (1968)

83

10 76-311

12 JM Reuss and W A Glasson Hydrocarbon reactivity and eye irritation Environ Sci Technol I 1109 (1968)

13 A P Altshuller S L Kopczynski D Wilson W Lonneman and F D Sutterfield Photochemical reactivities of n-butane and other paraffinic hydrocarbons J Air Pollut Contr Assoc 19 787 (1969)

14 A P Altshuller S L Kopczynski D Wilson W Lonneman and F D Sutterfield Photochemical reactivities of paraffinic hydrocarbonshynitrogen oxides mixtures upon addition of propylene or toluene J Air Pollut Contr Assoc 19 791 (1969)

15 B Dimitriades B H Eccleston and R W Hurn An evaluation of the fuel factor through direct measurement of photochemical reactivity of

l emissions J Air Pollut Contr Assoc 20 150 (1970)

l 16 A Levy and S E Miller Final technical report on the role of solvents

in photochemical smog formation National Paint Varnish and Lacquer Association Washington DC April 1970

17 K W Wilson and G J Doyle Investigation of photochemical reactivities organic solvents Final Report SRI Project PSU-8029 Stanford Research Institute Irvine California September 1970

18 W A Glasson and C S Tuesday Hydrocarbon reactivity and the kinetics of the atmospheric photooxidation of nitric oxide J Air Pollut Contrl

t Assoc 20 239 (1970)

19 Control Techniques for hydrocarbon and organic solvent emissions from stationary sources Nat Air Pollut Contr Admin Publication IIAP-68 March 1970

20 A P Altshuller and J J Bufalini Photochemical aspects of air pollution a review Environ Sci Technol i 39 (1971)

21 W A Glasson and C S Tuesday Reactivity relationships of hydrocarbon c mixtures in atmospheric photooxidation Environ Sci Technol 5 151 I (1971) -

22 E R Stephens Hydrocarbon reactivities and nitric oxide conversion in real atmospheres in Chemical Reactions in Urban Atmospheres C S Tuesday Ed American Elsevier Inc N Y 1971 pp 45-54

23 Solvents Theory and Practice R W Tess Ed Adv Chem Series 124 (1973)

24 E R Stephens Hydrocarbons in polluted air Sunnnary Report CRC Project CAPA-5-68 June 1973 NTIS No PB 230 993AS

25 Proceedings of the solvent reactivity conference U S Environmental Protection Agency Research Triangle Park N C EPA-6503-74-010 November 1974

26 S L Kopczynski R L Kuntz and J J Bufalini Reactivities of complex hydrocarbon mbtures Environ Sci Technol 2_ 648 (1975)

ltL

27 Environmental Protection Agency Region IX Technical Support Document January 15 1973

28 M Feldstein A critical review of regulations for the control of hydroshycarbon emissions from stationary sources J Air Pollut Contr Assoc 24 469 (1974)

84

l l f [

l

middot-i~ I~ ~ 4 -

11 76-311

29 A P Altshuller An evaluation of techniques for the determination of the photochemical reactivity of organic emissions J Air Pollut Contr Assoc 16 257 (1966)

30 Progress report on hydrocarbon reactivity study California Air Resources Board Informational Report No 72-12-10 June 12 1975_

31 Organic compound reactivity system for assessing emission control strageshygies California Air Resources Board Staff Report No 75-17-4 September 29 1975

32 Board approves reactivity classification California Air Resources Board Bulletin March 1976 p 4

33 Tinalreport of the committee on photochemical reactivity to the Air Resources Board of the State of California Draft April 1976

34 Los Angeles County APCD proposed reactivity classification of organic compounds with respect to photochemical oxidant formation Los Angeles County Air Pollution Control Department July 21 1975

35 B F Goeller J H Bigelow J C DeHaven W T Mikolowsky R L Petruschell and B M Woodfill Strategy alternatives for oxidant control in the Los Angeles region The RAND Corporation Santa Monica California R-1368-EPA December 1973

36 J C Trijonis and K W Arledge Utility of reactivity criteria in organic emission control strategies for Los Angeles TRW Environmental Services Redondo Beach California December 1975

37 J Holmes California Air Resources Board private communication 1975

38 J N Pitts Jr A M Winer K R Darnall G J Doyle and JM McAfee Chemical consequences of air quality standards and of control implementation programs roles of hydrocarbons oxides of nitrogen and aged smog in the production of photochemical oxidant Final Report California Air Resources Board Contract No 3-017 July 1975

39 A P Altshuller in reference 25 pp 2-5

40 N R Greiner Hydroxyl-radical kinetics by kinetic spectroscopy II Reactions with c H6 c H8 and iso-c H at 300 K J Chern Phys 462 3 4 103389 (1967)

41 K Westberg and N Cohen The chemical kinetics of photochemical smog as analyzed by computer The Aerospace Corporation El Segundo California ATR-70(8107)-1 December 30 1969

42 B Weinstock E E Daby and H Niki Discussion on paper presented by E R Stephens in Chemical Reactions in Urban Atmospheres C S Tuesday Ed Elsevier N Y 1971 pp 54-55

43 H Niki E E Daby and B Weinstock Mechanisms of smog reactions Adv Chem Series 113 16 (1972)

44 K L Demerjian J A Kerr and J G Calvert The mechanism of photoshychemical smog formation Adv Environ Sci Technol ~ 1 (1974)

45 G J Doyle A C Lloyd K R Darnall A M Winer and J N Pitts Jr Gas phase kinetic study of relative rates of reaction of selected aromatic compounds with hydroxyl radicals in an environmental chamber Environ Sci Technol 2_ 237 (1975)

85

12 76-311

46 A C Lloyd K R Darnall A M Winer and J N Pitts Jr Relative rate constants forreaction of the hydroxyl radical with a series of alkanes alkenes and aromatic hydrocarbons J Phys Chem 80 789 (1976)

47 A M Winer A C Lloyd K R Darnall and J N Pitts Jr Relative rate constants for the reaction of the hydroxyl radical with selected ketones chloroethenes and monoterpene hydrocarbons J Phys Chem 80 1635 (1976) -

48 A C Lloyd K R Darnall A M Winer and J N Pitts Jr Relative rate constants for the reactions of OH radicals with isopropyl alcohol diethyl and di-n-propyl ether at 305 plusmn 2 K Chem Phys Lett~ 405 (1976)

49 CH Wu S M Japar and H Niki Relative reactivities of HO-hydrocarbon reactions from smog reactor studies J Environ Sci Health All 191 (1976)

i 50 D A Hansen R Atkinson and J N Pitts Jr Rate constants for the reaction of OH radicals with a series of aromatic hydrocarbons J Phys Chern JJ 1763 (1975)

51 D D Davis W Bollinger S Fischer A kinetics study of the reaction of the OH free radical with aromatic compounds I Absolute rate constants for reaction with benzene and toluene at 300degK J Phys Chem J_J_ 293 (1975)

f 52 C T Pate R Atkinson and J N Pitts Jr The gas phase reaction ofi 03 with a series of aromatic hydrocarbonsmiddot J Environ Sci Health All

1 (1976)

53 R Atkinson and J N Pitts Jr Absolute rate constants for the reaction of o(3P) atoms with selected alkanes alkenes and aromatics as determined by a modulation technique J Phys Chem 78 1780 (1974)

54 D H Stedman and H Niki Ozonolysis rates of some atmospheric gases Environ Lett_ 303 (1973)

55 Chemical kinetic and photochemical data for modeling atmospheric chemistry R F Hampson Jr and D Garvin Eds NBS Technical Note 866 June 1975

56 D H Stedman CH Wu and Hbull Niki Kinetics of gas phase reactions of ozone with some olefins J Phys Chem ]J_ 2511 (1973)

57 S M Japar CH Wu and H Niki Rate constants for the reaction of ozone with olefins in the gas phase J Phys Chem 78 2318 (1974)

58 J G Calvert and R D McQuigg The computer simulation of the rates and mechanisms of photochemical smog formation Int J Chem Kinetics Symposium No 1 113 (1975)

59 C C Wang L I Davis Jr CH Wu S Japar H Niki and B Weinstock Hydroxyl radical concentrations measured in ambient air Science 189 797 (1975)

60 D Perner D H Ehhalt H W Patz U Platt E P Roth and A Volz OH radicals in the lower troposphere 12th International Symposium on Free Radicals Laguna Beach California January 4-9 1976

61 D D Davis T McGee and W Heaps Direct tropospheric OH radical measurements via an aircraft platform laser induced fluorescence 12th International Symposium on Free Radicals Laguna Beach California January 4-9 1976

86

13 76-311

62 J L Laity I G Burstain and B R Appel Photochemical smog and the atmospheric reactions of solvents in Reference 23 p 95

63 E P Grimsrud H H Westberg and R A Rasmussen Atmospheric reactivity of monoterpene hydrocarbons NOx photooxidation and ozonolysis Int J Chem Kinetics Symposium No 1 183 (1975)

64 W L Chameides and D H Stedman Ozone formation from NOx in clean air Environ Sci Technol 10 150 (1976)

65 K R Darnall A C Lloyd A M Winer and J N Pitts Jr A reactivity scale for atmospheric hydrocarbons based on reaction with the hydroxyl radical Environ Sci Technol 10692 (1976)

66 S L Kopczynski quoted in Reference 20

67 Informal EPA meeting Philadelphia Pennsylvania July 30-31 1975 l 68 M Black L E High and JE Sigsby Methodology for assignment of al hydrocarbon photochemical reactivity index for emissions from mobile

soucres EPA-6502-75-025 U S Environmental Protection Agency Research Triangle Park North Carolina March 1975

J i

J

s

87

ii

1

14 76-311

Table I R~activity Scale fer Hydrocarbons Based on Rate of Disappearance

of the Hydrocarbon due to Reaction wih the Hydroxyl Radical

Reactivity Relative Class Half-lifea (days) to Methane(== 1)

I gt 10 ~ 10

II 1 - 10 10 - 100

III 01 - 1 100 - 1000

IV 001 - 01 1000 - 10000

V 001 ~ 10000

a 7 -3[OR] is assumed to be 10 radicals cm

88

-- _1---c=r- FFIT~ Ja--~uli -~4 P-iJJia-degR j_--CL[Jl_j i---i_ 0-1 j-____-~ ~ -Ji=-ej ~~~ ~~- I -middot~1--c--aC-

Table II Proposed Reactivity Classification of Hydrocarbons and CO Based on Reaction with the Hydroxyl Radical

CLASS I CLASS II CLASS III CLASS IV CLASS V (S48 x107a (48 X 107 - 48 X lQB)a (48 X 108- 48 X 109) 8 (48 x 109 - 48 x 10lO)a 4 8 X 1Ql0) a

Methane Methanol Neopentane n-Octane 2-Mcthyl-2-butene Carbon monoxide Cyclobutane Diethyl ether 3-Carene Acetylene 2233-Tetramethylbutane pXylene 23-Dirnethyl-2-butene Ethane Benzene p-Ethyltoluene 13-Phellandrene

Ethyl acetate o-Ethyltoluene Carvomenthene Isobutane o-Xylene d-LimoneneshyPropane p-Cymene Dihydromyrcene Diethyl ketone Methyl isobutyl ketone Myrcene Isopropyl acetate Di-n-propyl ether cis-Ocimene n_Butane m-Ethyltoluene n-Butyl acetate m-Xyle~e Ethanol 123-Trimethylbenzene Methylethyl ketone Propene Isopentane 1-Butene 1-Propanol 33-Dimethyl-1-butene 224-Trimethylbutane 1-Pentene V

23-Dimethylbutane 1-Hexene co 223-Trimethylbutane 124-Trimethylbenzene0

Tetrahydrofuran Isobutene 2-Methylpentane 135-Trimethylbenzene Toluene cis-2-Butene Cyclopentane Diisobutyl ketone n-Propylbenzene 2-Methyl-1-butene Isopropylbenzene a-Pinene Ethene Cyclohexene n-Hexane cis-2-Pentene Cyclohexane trans-2-Butene n-Pentane 13-Pinene p-Menthane 13-Butadiene 1-Butanol Isoprene Isopropyl alcohol 4-Methyl-2-pentanol 3-Methylpentane Ethylbenzene

--J 0 a -1 -1Range of values (in liter mole sec ) for the rate constant for reaction of the OH radical with the listed w

compounds

I

------t-L ~- ~ J---1 bull middotmiddott1- lTLJ_J 1--___r _ ~II ~Ai ~-_c11 )----_-J1bull~

Table III Proposed EPA Reactivity Classification of Organics (from reference 25 1974)

CLASS I CLASS II CLASS III CLASS IV CLASS V ~Nonreactive~ (Reactive) (Reactive) (Reactive) (Reactive)

c1-c paraffins3

Acetylene

Benzene

Benzaldehyde

Acetone

Methanol

Tertiary-alkyl alcohols

Phenyl acetate

Methyl benzoate

Ethyl amines

Dimethyl formamide

IO Perhalogenated 0 hydrocarbons

RFACTIVITY RATING 10

Mono-tertiary-alkyl benzenes

Cyclic ketones

Tertiary-alkyl acetates

2-nitropropane

35

c4+ paraffins

Cycloparaffins

Styrene

n-Alkyl ketones

Primary amp Secondary alkyl acetates

N-methyl pyrrolidone

NN-dimethyl acetamide

Partially halogenated paraffins

6S

Primary amp Secondary alkyl benzenes

Dialkyl benzenes

Branched alkyl ketones

Primary amp Secondary alkyl alcohols

Cellosolve acetate

Partially halogenated olefins

97

Aliphatic olefins

a-Methyl styrene

Aliphatic aldehydes

Tri- amp tetra-alkyl benzenes

Unsaturated ketones

Diacetone alcohol

Ethers

Cellosolves

deg

143

-J OI

I) I-

I

17 76-311

Table IV California Air Resources Board (ARB) Reactivity Classification of Org_a1ic Compounds 32

Class I Class II Class III (Low Reactivity (Moderate Reactivity) (High Reaccivity)

c1-c Paraffins2 Acetylene

l

l B2nz2ne

Benzaldehyde

Acetone

Methanol

Tert-alkyl alcohols

Phenyl acetate

Methyl benzoate

Ethyl Amin-lts

Dim2thyl fcr-amide

Perhalogenated Hydrocarbons

Partially halogenated paraffins

Phthalic Anhydride

Phthalic Acids

Acetonitrile

Acetic Acid

Aromatic Amines

Hydroxyl Amines

Naphthalene

Chlorobenzenas

Nitrobenzenes

Phenol 1

Hono-tert-alkyl-benzenes

Cyclic Ketones

Alkyl acetates

2-Nitropropane

c + Paraffins3

Cycloparaffins

n-alkyl Ketones

N-Methyl pynolidone

NN-dimethyl acetamide

Alkyl Phenols

Methyl phthalates

All other aromatic hydroshycarbons

All Olefinic hydrocarbons (including partially haloshygenated)

Aliphatic aldehydes

Branched alkyl Ketones

Cellosolve acetate

Unsaturated Ketones

Primary amp Secondary c + alcohols

2 Diacetone alcohol

Ethers

Cellosolves

Glycols

c + Alkyl phthalates2

Other Esters

Alcohol Amines

c + Organic acids+ di acid3

c + di acid anhydrides3

Fannin Hexa methylene-tetramine)

Terpenic hydrocarbons

Olefin oxides

Reactivity data are either non-existent or inconclusive but conclusive data from similar compounds are available therefore rating is uncertain but reasonable

Reactivity data are uncertain

91

r1_

l

Volume 42 number 2 CHEMICAL PHYSICS LETTERS 1 September 1976

RELATIVE RATE CONST ANTS FOR THE REACTIONS OF OH RADICALS

WITH ISOPROPYL ALCOHOL DIETHYL AND DI-11-PROPYL ETHER AT 305 plusmn 2 K

Alan C LLOYD Karen R DARNALL Arthur M WINER and James N PITTS Jr Statewide Air Pollution Research Center University ofCalifornia Riverside California 92502 USA middot

Received 27 April 1976

Relative rate constants have been obtained for the reaction of the hydroxyl radical (OH) with isopropyl alcohol and diethyl and di-n-propyl ether in environmental chamber photooxidation studies employing hydrocarbon-NOx mixtures in air it 1 atmosphere and 305 plusmn 2 K These results were obtained from measurements of the relative rates of disappearance of these compounds on the previously validated basis that OH radicals are dominantly responsible for their disappearance in the initial stages of reaction under the experimental conditions employed Absolute rate constants obtained by using the published rate constant for OH+ isobutcne of 305 X 1010 Q mole-1 s-1 are (k X 10-9 I mole-1 s-1) isopropyl alcohol 43 plusmn 13 diethyl ether 56 plusmn II and di-nbullpropyl ether 104 plusmn 21 No previous determinations of these rate constants have been reported

1 Introduction 2 Experimental

The hydroxyl radical plays a fundamental role in The technique used to determine relative OH rate chemical transformations in photochemical air pollushy constants in this study has been previously employed tion [ l -7] With the realization of the importance of to obtain kinetic data for reactions of OH with alkanes OH has come an extensive experimental effort to [14 15] alkenes [ l 115) ketones [ l l] aromatics determine rate constants for the reaction of OH with a [1415] and halogenated [I 116) and natural hydroshylarge number of organic compounds These studies carbons [I l] Briefly irradiations of the hydrocarbonshyhave been documented in recent reviews [7] and in a NOx-air system were carried out in a Pyrex chamber critical compilation [8] of approximately 6400-liter volume at a light intensity

To date however comparatively few data have been measured as the rate of N02 photolysis in nitrogen obtained for the gas phase reactions of OH with oxyshy (k1) of 04 min- 1 All gaseous reactants were injected genated hydrocarbons [9-1 l] In this work rate conbull into pure matrix air [ 17] in the chamber using l 00-ml stants are reported for the reaction of OH with three precision bore syringes Liquid reactants were injected ingredients of commercial solvents [1213] - isoshy with micropipettes During irradiation the chamber propyl alcohol and diethyl and di-n-propyl ether temperature was maintained at 305 plusmn 2 K Such data are of fundamental importance in assessing The alcohol and ether concentrations were monitored the role of these oxygenated hydrocarbons in atmosshy with gas chromatography (FID) using a 5-ft X I 8-in pheric chemistry particularly since as controls on stainless steel column packed with Poropak Q (80-

automobiles reduce the contribution of hydrocarbons 100 mesh) operated at 393 and 423 K respectively from mobile sources emissions of such oxygenates Ozone was monitored by means of ultraviolet absorpbull from stationary sources become increasingly of tion CO by gas chromatography and NO-NO2-NOx greater concern by the chemiluminescent reaction of NO with ozone

92

205

Volume 42 number 2 CHEMICAL PHYSICS LETTERS I September 1976

i l

l

The initial concentrations of reactant were isoproshypyl alcohol 60 ppb ( 1 ppb in air= 40 X I o- 11 mole liter - I at 305 K and I atmosphere) diethyl ether 20 ppb and di-11-propyl ether 55 ppb In addition to these compounds traces of several alkanes alkenes and oxygenates were present [I 115) Initial concenshytrations in these experiments were 800-1500 ppbC of total non-methane hydrocarbons 060 ppm of NOx (with an NO2 NOx ratio of 003-008) 6 ppm of CO and 3000 ppb of methane together with warer vapor at 50 relative humidity Replicate 3-hour irradiations vere carried out with continuous analysis of inorganic species analysis of hydrocarbons every 15 minutes and analysis of isopropyl alcohol and the ethers every 30 minutes

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilushytion rate (12-l6 per hour) from the observed hydrocarbon disappearance rate The HCNOx and NON02 ratios were chosen to delay the formation of ozone and ozone was not detected during the irrashydiation period [11 14]

As discussed in detail previously [1115] the major sources of OH in our experimental system are probably the photolysis of HONO and the reaction of H02 with NO [561819]

NO+ N02 + H20-= 2 HONO (l)

H02 + N02 HONO + P2 (2)

HONO + hv(290-410 nm) OH+ NO (3)

l-102 +NO OH+N02 (4)

The first reaction is thought to occur relatively slowly homogeneously [2021] but its rate is probably sigshynificantly faster when the reaction is catalyzed by surfaces Thus nitrous acid has been observed in a chamber study of simulated atmospheres carried out in our laboratory (22] while direct evidence for formation of OH radicals in an environmental chamber hasbeen provided recently by Niki Weinstock and co-workers [2324]

The concentration of OH radicals present during these irradiation experiments was calculated to range from 14 to 35 X 106 radicals cm-3 depending upon the conditions of the specific experiment The calculashytions employed the observed rates of isobutene dis-

206

appearance ( corrected for dilution) and the previously determined rate constant for OH+ isobutene [25] These concentrations are the same order as those calshyculated [182627] and observed directly 232428 29] by other workers

3 Results and discussion

Typical rates of disappearance observed during the irradiations of isopropyl alcohol and of the two ethers are shown in figs I and 2 respectively lsobutene wJs

used as the reference compound and is included in the figures From these pseudo-first-order rates of disshyappearance of the hydrocarbons rate constants reshylative to that of isobutene were obtained for the reshyaction of the PH radical with isopropyl alcohol and diethyl and di-n-propyl ether These were placed on an absolute basis using a value of 305 X 1010 Q

mole- 1 s-1 for the reaction of OH with isobutene [25] These results are presented in table I

There are no rate constants currently available for the reaction of OH radicals with ethers Assuming that hydrogen abstraction is the major reaction pathway one would expect these rate constants to be larger than

z 0

~ a 5 z w lt) z 0 u

0 w gta w ()

ID

ISOPROPYLALCOHOL

0

3 ______________________

omiddot 05 10 15 20 HOURS OF IRRADIATION

Fig 1 Concentrations of isopropyl alcohol and isobu tene plotted on a logarithmic scale) during photolysis of HC-NOx mixture in air at 305 plusmn 2 K and I atm

93

l

Volume 42 number 2 CHEMICAL PHYSICS LETTERS 1 September 1976

50

Fig 2 Concentrations of diethyl and di-n-propyl ether and isobutene (plotted on a logarithmic scale) during -photolysis of HC-NOx mixture in air at 305 plusmn 2 Kand 1 atm

those for the corresponding alkane since the C-H bond strengths in the ethers are at least several kiloshycalories weaker [30] Thus our rate constants ( at 305 K) for diethyl and di-n-propyl ethers of 56 and 104 X 109 Q mole-1 s-1 respectively compare with values for the corresponding alkanes n-butane and n-hexane (at 298 K) of 16 and 29 X 109 Q mole-I s- 1 respectively calculated from the formula of Greiner [31]

Two recent measurements of the rate constants for the gas phase reaction of OH radicals with alcohols

Table 1

iftltt a z w ~ 10 0 u

0 gta S 5

0 05

a DIETHYL ETHER

--0--

10 15 20 25 HOURS OF IRRADIATION

have been reported Osif et al [9) obtained a value of 53 X 107 Q mole- 1 smiddot- 1 for OH+ methanol using a value of 84 X 107

Q moiemiddotmiddot 1 s- 1 for OH reaction with CO [8] Recently Campbell et al [IO] have carried out studies of the reaction of OH With a series of alcohols-shymethanol ethanol 1-propanol and 1-butanol Our value for OH+ isopropyl alcohol of (43 plusmn 13) X 109 Q mole- 1

s-1 at 305 K is consistent with the value of (2 3 plusmn 02) X lQ9Q moie- 1 s-1reported for 1-propanol by Campbell et ai (10) at 292 K middot Although as mentioned no literature data are availshyable for the reaction of OH with ethers it is interesting to examine the data for solvent photooxidations obshytained by Laity et al [32] in chamber studies These workers irradiated separate solvent-NOx-air mixshytures in a stainless steel chamber at 305 K and reshyported t_he maximum rate of hydrocarbon disappearshyance observed in these experiments relative to toluene If this disappearance is assumed to be predominantly duemiddotto attack by OH then absolute rate constants may be derived from these data using a value of 36 X 109 Q moie- 1 s-1 for the reaction of OH+ toluene [3334] Values for OH+ isopropyl alcohol and OH+ diethyl ether are 31 X 109 and 54 X 109 Q mole-1 s-1 respectively compared to our results of 43 and 56 X 109 Q moie-1 s-1 Considering the differences in experimental methods and apparatus as well as the uncertainties involved in such an interpretation of the data of Laity et al [32] the agreement obtained for isopropyl alcohol and diethyl ether is quite satisshyfactory Similar treatment of their chamber data for other compounds for which the OH rate constants are known yields results (35] in fair agreement with literature values

Relative and absolute rate constants for the reaction of OH with selected hydrocarbons

Compound Relative rate of k(ll mole-1 s-1 X 10-9 )

disappearance this work a) literature

isobutene 1 305 isopropyl alcohol 014 43 31b) diethyl ether 0185 56 54 b) di-ndegpropyl ether 034 104

a) Using a literature value of 305 X 1010 ll mole- I s-1 for OH+ isobutene (25] b) Using the data of Laity et al [32] and attributing the HC loss solely to reaction with OH results placed on an absolute basis

using a value of 36 X 109 ll mole-1 s-1 for OH+ toluene (see text) middot

94

207

Volume 42 number 2 CHEMICAL PHYSICS LETTERS I September 1976

r

I l i l l r il

l11e atmospheric half lives tl2 = 0693kou +RH

X [01-1] for isoprupyl alcohol and diethyl and di-11-propyl ether are akubted to be 5 4 41 and 22 hours respectivdy using an ambient OH concentrashytion of 5 X 106 radicals cm-3 [18232426-29] and our rate constants Thus these compounds react with OH at rates similar to ethene c6 - c7 alkanes and mono-alkyl substituted benzenes [36] The relative importance of alcohols ethers and other oxygenated hydrocarbons in photochemical smog formation are discussed in detail elsewhere [35-37]

Acknowledgement

The authors gratefully acknowledge the assistance of FR Burleson in carrying out the gas chromatoshygraphic analyses WD Long for valuable assistance in conducting the chamber experiments and Dr R Atkinson for useful comments concerning this manushyscript This work was supported in part by the California Air Resourses Board (Contract No ARB 5-385) and the National Science Foundation-Research Applied to National Needs (NSF~RANN Grant No AEN73-02904-A02)

References

[I] NR Greiner J Chem Phys 46 (1967) 3389 [2] J 1-Ieicklen K Westberg and N Cohen Center for Air

Environmental Studies Pennsylvania State University University Park PA Pub 114-69 (1969)

[3] DH Stedman EE Morris Jr EE Daby H Niki and B Weinstock 160th Natl Meeting American Chemical Society Chicago September 14-18 1970

(4] B Weinstock EE Daby and H Niki Discussion on paper presented by ER Stepens in Chemical reactions in urban atmospheres ed CS Tuesday (Elsevier Amsterdam 1971) pp 5455

(51 H Niki EE Daby and B Weinstock in Advances in Chemistry Series No 113 (American Chemical Society Washington 1972) p 16

(6) KL Demerjian JA Kerr and JG Calvert Advances in environmental science and technology Vol 4 eds JN Pitts Jr and RL Metcalf (Wiley-lnterscience New York 1974) p 1

(7) JN Pitts Jr and BJ Finlayson Angew Chem Intern Ed 14 (1975) l BJ Finlayson and JN Pitts Jr Science 191 _(1976) 111

(8) RF Hampson Jr and D Garvin eds Chemical kinetic and

208

photochemical data for modeling atmospheric d1cmi~try NBS Tbullchnk11 Note 866 ltJune 1975)

[9] TL Osif R Sinrnnaitis and J lkicklcn J Photod1cm 4 (1975) 233

[10] JM Campbell DF McLaughlin and BJ Handy Ch~m Phys Letters 38 ( 1976) 362

[11] AM Winer AC Lloyd KR Darnall and JN Pitts Jr J Phys Chem 80 (I 976) to be published

( 12] KW Wilson and GJ Doyle Investigation of photocmiddothemishycal reactivities of organic solvents Stanford Research Inmiddot stitute Repor EPA Contract IICPA 22-9-125 (September 1970)

(13) Solvents theory and practice Advances in Chemistry Series No 124 (American Chemical Society W1hingtrn 1973)

[14] GJ Doyle AC Lloyd K Darnall AM Winer and JN Pitts Jr Environ Sci Technol 9 (1975) 237

[ 15) AC Lloyd KR Darnall AM Viner and J N Pitts Jr J Phys Chem 80 (1976) 789

(16) R Atkinson KR Darnall AM Winer and JN Pitts Jr Environ Sci Technol (1976) submitted for publication

(17) GJ Doyle PJ Bekowics AM Winer and JN Pitts Jr A charcoal-adsorption air purification system for clrnmshyber studies investigating atmospheric photochemistry Environ Sci Technol (1976) to be published

(18] B Weinstock and TY Chang Tellus 26 (1974) 108 [19] TA Hecht IH Seinfeld and MC Dodge Environ

Sci Technol 8 (1974) 327 (20] R Graham and BJ Tyler J Chem Soc Faraday Trans

I 68 (1972) 683 [21) WH Chan RJ Nordstrom JG Calvert and JN Shaw

Chem Phys Letters 37 (1976) 441 (22] JM McAfee AM Winer and JN Pitts Jr unpublished

results (1974) (23] CC Wang LI Davis Jr CH Wu S Japar H Niki and

B Weinstock Science 189 (1975) 797 (24) H Niki and B Weinstock Environmental Protection

Agency Seminar Washington (February 1975) [25] R Atkinson and JN Pitts Jr J Chem Phys 63 (1975)

3591 (26) H Levy II Advan Photochem 9 (1974) 369 [27) J G Calvert Environ Sci Technol 10 (1976) 256 (28) D Perner DH Ehhalt HW Patz U Platt EP Roth

and A Volz OH radicals in the lower troPosphere 12th International Symposium on Free Radicals Laguna Beach CA January 4-9 1976

(29) DD Davis T McGee and W Heaps Direct tropospheric OH radical measurements via an aircraft platform laser induced fluorescence 12th International Symposium on Free Radicals Laguna Beach CA January 4-9 1976

(30] JA Kerr and AF Trotman-Dickenson in Handbook of chemistry and physics 57th Ed (The Chemical Rubber Company Cleveland 197677)

[31] NR Greiner J Chem Phys 53 (1970) 1070 [32] JL Laity IG Burstein and BR Appel Solvents

theory and practice Advances in Chemistry Series No 124 (American Chemical Society Washington1973) p 95

95

Volume 42 number 2 CIIEMICAL PHYSICS LETTERS 1 September 1976

[33] DA Hansen R Atkinson and JN Pitts Jr J Phys Chem 79 ( 1975) 1763

[ 34 I DD Davis Bollinger and S Fischer J Phys Chem 79 (I 975) 293

[35 I JN Pitts Jr AC Lloyd AM Winer KR DamaII and GJ Doyle Demiddotelopment and application of a hydroshycarbon rlactivity scale based on reaction with the hydroxyl radical presented at the 69th Annual APCA Meeting Portland OR June 27-July I 1976

l

f I

If

i )

(36] KR Darnall AC Lloyd AM Winer and JN Pitts Jr Environ Sci Technol 10 (1976) to bl published

(37] JN Pitts Jr AM Winer KR Darnall AC Lloyd and GJ Doyle Smog chamber studies concerning hydrocarbon reactivity and the role of hydrocarbons oxides of nitrogen and aged smog in the production of photochemical oxidants to be presented at the In-tershynational Conference on Photochemical Oxidant Pollushytion and Its Control Research Triangle Park NC September I2-17 I 976

96

209

Volume 44 number 3 CHEMICAL PHYSICS LETTERS 15 December 1976

I

l

i

RELATIVE RATE CONST ANTS FOR THE REACTION OF OH RADICALS

WITH SELECTED C6 AND C7 ALKANES AND ALKENES AT 305 plusmn 2 K

Karen R DARNALL Arthur M WINER Alan C LLOYD and James N PITTS Jr Statewide Air Pollution Research Celter University of California Riverside California 92502 USA

Received 16 August 1976

Measurements of the rates of disappearance of three alkenes and two alkanes relative to isobutene in environmental chamber photooxidation studies employing hydrocarbon-NOx mixtures in air at 1 atmosphere have been used to obtain relative rate constants for the reaction of these compounds with the hydroxyl radical Absolute rate constants at 305

1plusmn 2 K obtained using a published rate constant for OH+ isobutene of 305 X 1010 l2 mole-1 s- are (k X 10-9 Q mole-I

s- 1) cyclohexene 47 plusmn 9 1-methylcyclohexene 58 plusmn 12 1-heptene 22 plusmn 5 23-dimethylbutane 31 plusmn 05 223-trishymethylbutane 23 plusmn 05 No previous determinations of OH rate constants have been reported for 1-heptene and 1-methylshycyclohexene For the remaining compounds these results are shown to be in good agreement with literature values reported for elementary or relative rate constant determinations

I Introduction

Recently we have reported rate constant determinashytions for the reaction of OH with alkanes [l 2] alshykenes [2 3] aromatic hydrocarbons_ [I 2) monoshyterpene hydrocarbons [3) halogenated hydrocarbons [3 4 J ketones [3] and ethers and isopropyl alcohol [5] These rate constants were obtained by measuring the relative rates of disappearance of hydrocarbons in a hydrocarbon-NOx mixture in air at 1 atmosphere and at 305 plusmn 2 K Absolute rate constants were obshytained [1--3 5] by using literature values for OH+ nshybutane andor isobutene at least one of which was employed as a reference compound in each study A similar technique has recently been employed by Niki and co-workers [6] Results obtained from these relative rate studies have uniformly been in very good agreement with literature values reported for elemenshytary rate constant determinations [7]

Here we report rate constant data at 305 plusmn 2 K for the reaction of OH with 1-heptene 1-methylcycloshyhexene cyclohexene and two substituted alkanes -2 3-dimethylbutane and 2 2 3-trimethylbutane These long-chain alkanes and cyclic alkenes have been suggested to play a major role in the formation of the organic portion of aerosols found in polluted ambient air (89)

2 Experimental

The experimental technique used to determine relashytive OH rate constants in this study has been described in detail previously [1-3) Briefly irradiations of the hydrocarbon-NOx-air system were carried out in a Pyrex chamber of approximately 6400-liter volume at a light intensity measured as the rate of NO2 photoshylysis in nitrogen (k1) of 04 min- 1bull During irradiation the chamber temperature was maintained at 305 plusmn 2 K

The alkane and alkene concentrations were monishytored with gas chromatography (FID) using a 5 X 18 SS of Poropak Q (80-100 mesh) column and a 36 X 18 SS column of 10 dimethylsulfolane on AW C-22 Firebrick (60-80 mesh) followed by 18 X 18 SS column of 10 Carbowax 600 operated at 433 and 273 K respectively Ozone was monitored by means of ultraviolet absorption CO by gas chroshymatography and NO-NO2-NOx by the chemiluminesshycent reaction of NO with ozone

The initial concentrations of reactants were 2 3-dimethylbutane 7 ppb (I ppb in air= 40 X 10-11

mole liter-I at 305 Kand 1 atmosphere) 223-trishymethylbutane 14 ppb cyclohexene 10 ppb I meshythylcyclohexene 21 ppb and 1-heptene 14 ppb In addition to these compounds traces of several alkanes alkenes and oxygenates were present [2 3] Initial

97

415

Vol um~ 44 number 3 CHEMICAL PHYSICS LETTERS 15 December 1976

i l

l

concentrations in these experiments were 700-800 ppbC of total non-methane hydrocarbons 061 ppm of NOx (with an NO2NOx ratio of 004-005) 6 ppm of CO and 2900 ppb of methane together with water vapor at 50 relative humidity Replicate three-hour irradiations were carried out with continshyuous analysis of inorganic species and analysis of hydrocarbons eve~y 30 minutes

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilushytion rate (16 per hour) from the observed hydrocarshybon disappearance rate The HCNOx and NON02 ratios were chosen to delay the formation of ozone and ozone was not detected during the irradiation peshyriod [13)

As discussed in detail previously [23) the major sources of OH in our experimental system are probably the photolysis of HONO and the reaction of HO2 with NO [10-13)

NO+ NO2 + H2O ~ 2 HONO (1)

HONO + hv (290-410 nm) OH+ NO (2)

HO2 + NO OH + NO2 (3)

The first reaction is thought to occur relatively slowly homogeneously [14-16) but its rate is probably sigshynificantly faster when the reaction is catalyzed by surshyfaces Thus nitrous acid has been observed in a chamshyber study of simulated atmospheres carried out in our laboratory [ 17] while direct evidence for formation of OH radicals in an environmental chamber has been provided recently by Niki Weinstock and co-workers [6 18 19] The reaction of HO2 with NO2 has also been proposed a~ a source

(4)

of nitrous acid [20 21] but recent results [22 23) suggest that peroxynitric acid is the major product of reaction (4)

(5)

The peroxynitric acid may decompose back to HO2 and NO2 or possibly give HONO but this is currently uncertain [22 23]

The concentration of OH radicals present during these irradiation experiments was calculated to range

416

from (25-50) X 06 radicals cm- 3 depending upon the conditions of the specific experiment The calculashytions of OH concentrations employed the o~served rates of isobutene disappearance ( corrected for dilushytion) and the previously determined rate constant for OH + isobutene [24] These concentrations are the same order as those calculated [12 25 26) and obshyserved directly [I 8 27 28) by other workers

3 Results and discussion

lsobutene was used as the reference compound in this series of experiments From the pseudo-first-order rates of disappearance of the hydrocarbons rate conshystants relative to that of isobutene were obtained for the reaction of the OH radical with 2 3-dimethylbushytane 2 2 3-trimethylbutane cyclohexene 1-methylshycyclohexene and 1-heptene These were placed on an absolute basis using a value of 305 X 1010 Q mole-ls-I for the reaction of OH with isobutene [24] These reshysults are presented in table 1 together with the availshyable literature data

Within the estimated 20 uncertainty in our rate constant values the agreement among our data and the literature values is good For example our value of (31 plusmn 06) X 109 Q mole- 1s-1 for 2 3-dimethylbutane agrees within experimental uncertainty with that of (26 plusmn 03) X 109 Qmole-1s- 1 recentlY determined in a separate study in this laboratory by Atkinson et al [4] This latter value was derived from the relative

1

rates of disappearance of 2 3-dimethylbutane and ethane during a 216-hour irradiation in the Pyrex chamber Both of these values are significantly lower than the value directly determined by Greiner [29] at 300 K of (516 plusmn 013) X 109 However it is expected [28) that the rate constant for the reaction of OH radicals with 2 3-bulldimethylbutane would be less than twice as fast as with isobutane on the basis of the numshybers of primary and tertiary hydrogen atoms in these two alkanes The absolute rate constant for the reaction of OH radicals with isobutane has been determined to be 15 X 109 Qmole-1s-1 at 304 K [29) and hence the OH rate constant for 23-dimethylbutane is exshypected to belt 3 X 109 Q mole-1 s-1 which is in agreement with both the determination of Atkinson et al [4) and with the present work

Similarly our value of (23 plusmn 05) X 109 Qmole-I

98

Volume 44 number 3 CIIEIICAL PHYSICS LETTERS 15 December 1976

Table l Pclativc and absolute rate constants for the reaction of OH anltl 0(3P) with selected hydrocarbons

---middot-middot--------

ko11 + compound at 305 K Compourd Relative rdte ko(3P) + compound

of disappearance this work a) literature at 298 K

------ -middot-middotmiddotmiddotmiddotmiddotmiddotbull-middot-middot----------------------isobutene 1 305 L2 e)

2 3-dimethylbutane 010 031 plusmn 006 045 b) 026 plusmn Oo3 c) 0012 e)

2 2 3-trimethylbutane 0074 023 plusmn 005 029 b) 1-pentene 18 plusmn 02 d) 028 e)

1-hexene 19 plusmn 02 d) 031 e) 1-heptenc 073 22 plusmn 05 cyclohexene 153 47 plusmn 09 38 plusmn 04 d) 13 e)

f 1-mcthylcyclohexene 191 58 12 49 plusmn 02 f)

a) Using a literature value of 305 X 1010 Q mole-1 s-~ for OH+ isobutene (24 ] b) Ref [29) T= 298 K c) Ref [4] T= 305 K d) Ref (16) using a literature value of 31 X 1010 Q mole-1 s-1 at 303 K for OH + cis-2-butene [24 ] e) Rcf(32] ORef(31) bull

s-1 for 22 3-trimethylbutane is in reasonable agreeshy addition reaction of 03P) atoms with cyclohexene l ment with the value of 29 plusmn 01) X 109 Q mole-1 s-1 and 1-methylcyclohexene (091 and 421 relative to obtai_ned by Greiner at 303 K (29] In addition the O (3P) + cyclopentene) (31] decrease in rate constant in going from 2 3-dimethylshy Table 1 shows a comparison of the reactivity of butane to the larger molecule 2 2 3-trimethylbutane 0(3P) atoms (31 32] as well as OH radicals towards is consistent with a decrease from two to one in the the compounds studied here and other selected comshynumber of tertiary hydrogen atoms [29] These atoms pounds Since both 0(3P) and OH are expected to are the most easily abstracted since the C-H bond primarily undergo addition to the alkenes one would strength for tertiary hydrogens is 3 kcal mole-1 and expect the same trend in going from 1-pentene to cyshy6 kcal mole- 1 weaker than that for secondary and clohexene and this is in fact observed In addition primary hydrogens respectively [30) the value of 18 X 1010 Qmole-1 s-1 obtained for

Recently Wu et al (6] us~d a technique similar 1-hexene by Wu et al [6] and our value of to the one employed here namely the photooxidation 22 X 1010 Q mole-1 s-1 for 1-heptene both obtained of hydrocarbons in the presence of NOx in air at 1 atshy by similar methods are consistent with the trend obshymosphere and 303 K middotunder the assumption that OH served by Wu et al (6] of an increase in rate constant was the principal species depleting the hydrocarbon with the larger molecular size of the alkene they obtained rate constants relative to cis-2-butene As mentioned above the higher straight chain and for several of the higher alkenes Using a value of cyclic alkenes are assumed to be important precursors 31 X 1010 Qmole-I s-1 for OH+ ds-2-butene at of the organic content of ambient aerosols found in 303 K [24] one obtains a value of 38 X 1010 mole-I polluted air [9 10] The rapid rate of reaction of OH s- 1 for cyclohexene at 303 K from the data of Wu et with these species ensures that in addition to 0 3-al [6] This value is in reasonable agreement with our alkene reactions OH attack will be an important reacshyvalue of (47 plusmn 09) X 1010 Qmole-I s-1 at 305 K tion pathway in real and simulated atmospheres posshy

Substitution of a methyl group for one of the hyshy sibly yielding multifunctional oxygenated species in drogen atoms in cyclohexene increases the rate conshy the aerosol phase (9 33] stant slightly since we obtain a value of Assuming an ambient OH concentration of 5 X 106 (58 plusmn 12) X 1010 Q mole-1 s-1 for 1-methylcycloshy radicals cm-3 (18 2728] the atmospheric halfclives hexene This is expected by analogy with the similar t112 =middot0693koH+RH [OH] based solely on reaction

middot 417

99

l

Volume 44 number 3 CHEIICAL PHYSICS LETTERS 15 December 1976

[

with OH are (in hours) 2 3-dimethylbutane 75 2 2 3-crimcthylbutanc 100 cyclohexcne 049 1-methylcyclohexcne 039 and 1-heptene 10 In the case of the alkenes the actual half-lives in the atmosshyphere are expected to be significantly less since 0 3 reacts with the alkenes at significant rates [934]

Acknowledgement

The authors gratefully acknowledge the assistance of FR Burleson in carrying out the gas chromato-

graphic analyses WD Long for valuable assistance in conducting the chamber experiments and Dr R Atkinson for helpful comments concerning this manushyscript This work was supported in part by the California Air Resources Board (ARB Contract No 5-385)

References

[ l] GJ Doyle AC Lloyd KR Darnall AM Winer and JN Pitts Jr Environ Sci Technol 9 (1975) 237

[2] AC Lloyd KR Darnall AM Winer and JN Pitts Jr J Phys Chem 80 (1976) 789

(3) AM Winer AC Lloyd KR Darnall and JN Pitts Jr J Phys Chem 80 (1976) 1635

[4 J R Atkinson KR Darnall AM Winer and JN Pitts Jr Tropospheric Reactivity of Halocarbons Final Report to EI DuPont de Nemours amp Co Inc February l 1976

[5] AC Lloyd KR Darnall AM Winer and JN Pitts Jr Chem Phys Letters 42 ( 1976) 205

[6] CH Wu SM Japar and II Niki J Environ Sci HealthshyEnviron Sci Eng A11 (1976) 19 l

(7] R Atkinson KR Darnall AC Lloyd AM Winer and JN Pitts Jr Accounts Chem Res submitted for publication (1976)

[8] D Grosjean National Academy of Sciences Report (1976)

(9] WE Schwartz PW Jones CJ Riggle and DF Miller Chemical Characterization of Model Aerosols Office of Research and Development US Environmental Proshytection Agency EPA-6503-74-011 August 1974

(10] H Niki EE Daby and B Weinstock Photochemical Smog and Ozone Reactions Advances in Chemistry Series No 113 (American Chemical Society Washington 1972) p 16

I11] KL Demerjian JA Kerr and J G Calvert in Advances in enviromi1ental science and technology Vol 4 eds JN Pitts Jr and RL Metcalr(Wiley-lnterscience New York 1974) p 1

418

[12] B Weinstock and TY Chang Tcllus 26 (1974) 108 [13) TA Hecht JH Seinfeld and MC Dodge Environ Sci

Technol 8 (1974) 327 [14] R Graham and BJ Tyler J Chem Soc Faraday Trans

I 68 (1972) 683 (15] WH Chan RJ Nordscrom JG Calvert and JN Shaw

Chem Phys Letters 37 (1976) 441 Environ Sci Techshynol 10 (1976) 674

(16) L Zafontc PL Rieger and JR Holmes Some Aspects of the Atmospheric Chemistry of Nitrous Acid presented at the 1975 Pacific Conference on Chemistry and pecshytroscopy Los Angeles CA October 28-30 1975

(17] JM McAfce AM Winer and JN Pitts Jr unpublished results (1974)

(18] CC Wang LI Davis Jr C11 Wu S Japar II Niki and B Weinstock Science 189 (1975) 797

(19) H Niki and B Weinstock Environmental Protection Agency Seminar Washington DC February 1975

[20] R Simonaitis and J Heicklen J Phys Chem 78 ( 1974) 653 80 (1976) 1

(21) RA Cox and RG Derwent J Photochem 4 (1975) 139 (22] H Niki P Meker C Savage and L Breitenbach 12th

Informal Photochemistry Conference National Bureau of Standards Gaithersburg MD June 28-July 2 1976

(23) J Heicklen 12th Informal Photochemistry Conference National Bureau of Standards Gaithersburg MD June 28-July 2 1976

[24) R Atkinson and JN Pitts Jr J Chem Phys 63 (1975) 3591

(25) H Levy 11 in Advances in photochemistry Vol 9 eds JN Pitts Jr GS Hammond and K Gollnick (VileyshyInterscience New York 1974) p 1

[26] JG Calvert Environ Sci Technol 10 (1976) 256 [27] D Perner DH Ehhalt HW Patz U Platt EP Roth

and A Volz OH Radicals in the Lower Troposphere 12th International Symposium on Free Radicals Laguna BeachCAJanuary 4-9 1976

[28] DD Davis T McGee and W Heaps Direct Tropospheric OH Radical Measurements Via an Aircraft Platform Laser Induced Fluorescence 12th International Symposhysium on Free Radicals Laguna Beach CA January 4-9 1976

(29] NR Greiner J Chem Phys 53 (1970) 1070 (30] JA Kerr and AF Trotman-Dickenson in Handbook

of Chemistry and Physics 57th Ed (The Chemical Rubber Company Cleveland 1976)

(31] JS Gaffney R Atkinson and JN Pitts Jr J Arn Chem Soc 97 (l 975) 5049

(32) JT Herron and RE Huie J Phys Chem Ref Data 2 (1973) 467

[33] WPL Carter KR Darnall AC Lloyd AM Winer and JN Pitts Jr 12th Informal Photochemistry Confershyence Gaithersburg MD June 28-July 2 1976

(34] JN Pitts Jr and BJ Finlayson Angew Chem Intern Ed14 (1975) 1 BJ Finlayson and JN Pitts Jr Science 191 (1976) 111

100

APPENDIX B

i Inorganic and Hydrocarbon Data for

AGC Runs 216 through 223

l Jl

[

l

101

AGC-216-l S02 CRY C GLASS CHA~SER

1976 JUL 27

OiRK FROM 1200 TO 1545 HIE TE~PERATURES ~ERE TAiltE~ FRC~ IHE LCG __ MOK__ FROM 16QQ__ Cgt ---middot-middotmiddotmiddotmiddotmiddot----middot- ---------middotmiddotmiddotmiddot-middotmiddotbull- TH~ TEMPERATURE~ WE~E TAK~N )R6MTHE iOMPUTER REicoui TECO ~3 SAMPLING RATE 1161 HLMlN

ClCCtlt __ ELMSpound0 ___ TSL _Rl HUI _____ SC2 ----middot--bullmiddot-middot ----middotmiddotmiddot-----middot-middotmiddotmiddotmiddotmiddot-------middot-middot-------middot-middot-middotmiddotmiddot-middot-middotmiddot-middot--middot TIME TIMEl~lNI IOEG Cl 11 (~PHI

bull1200 bullbullo 29-4bullbull bull---bullbullbull1bullo---middotbullo3bull59middot--bull bullbull-- bullbull--bullbullbull --bullbull-bull----bull-middotbull---- bullbullbullbull-bull------bullbullbullbullbullmiddot------ -bullbull bullbullbull-bull-bullbull-bullbullbullbull bull bull bull-bullbullORbullbullbullbullbull-bullbullbullbullbullbull~bullbullbull bullO O O bullbull-

1215 15 294 00 C353 _____ 1230 _______30_ ___22r__ aa ___ c~s_9 ____bull ________________________________________________________ _

124s 45 2ltJ6 Jo aJss 1300 60 296 2s c355 1315 75 29 ~--- _________2_o _C ~ 344 ---middot--- ______________________ __________ - middot-middotbull--middot ---------middot------middot--middot - --middot-middotmiddot - middot--middotmiddot 1330 JO 294 20 C357 1345 105 296 20 0344

____ 14_0_0 _____ 1o ____ J9 bull 7 __z_o ___ o_342__________________________ __________________________________________ ______ __ 1415 135 297 15 C344 1430 1sc 297 1s c34q

-- _ --~_lt45__ middot--- J6_5_ _______29_7_ --middotbull-middotmiddot2bull Q_______QU5____ middotmiddotmiddotmiddotmiddotmiddot---1500 160 297 1S C330 1515 195 299 15 C338

_______1530 ____ 210 ______3c bullo _1s____c_32g middot-----middotmiddotmiddotmiddot-1s4 22s 267 15 c331 1600 240 middotmiddotmiddotmiddotmiddot~ bullbullbullbullbullbullbullbullbullbullbullbull

l615______ 255___ _ _bullo~~__________

NO DATA TAKE~ ---- CATA OISCARCED QUESTIONABLE QATA

____________________ __ __ -middot

102

AGC-216-2 SC2 CRY GLASS CHA~eER 1976 JUL 27-2~

CLCCK El~PSfC TSl REL rUM S02 1111pound middotT111emiddot(M1~middotmiddot1oec cT (g (PPII

middoti63amiddotmiddot- -210 -middot33~middot4middot--middot--1--smiddot c3f3-middotmiddot---middot-- - middot 1646 286bull 334 15 C315

--middotmiddotmiddot- po1 middot--middot-middot301_ ____ 334 middotmiddotmiddotmiddotmiddotmiddotmiddot--middotl bull5 middot-middot (320 ___ middot----- _ middotmiddot--middot---- ----middot--bull-middotmiddot----middot-middot-middot middotmiddotbullbullmiddotmiddotmiddot-middot--middot-------middot--l7l6 316 335 15 C10 1731 331 335 l5 C315

-middotmiddot middot- _1746 346 _ 3~_5_ --middotmiddot 15C 3l4___ -------middot---middotmiddotmiddot---- _____ __ 1800 360 337 15 C321 1a1s 375 335 1s 0313

_ JSJO __ 390_335___1_5 C03______ middotmiddot-----------1845 405 335 15 C303

bull1900 420 334 20 0305 _______ middot1915___ middot-- 4 3_5bull middot-middot 3 3 2 ---middot- 2 o __ Cbull 309 -----middot----middotmiddotmiddotmiddot

193C 450bull 33 2 20 C299 1945 465 331 20 0297 2000 480 332 20 C300

- middot 2015- --middotmiddot45middotmiddotmiddotmiddot-- 334 - - 20 C 310 2030 510 335 20 0296 2045 525 337 20 C3072ico middot 540 middot3jmiddot----i~o-middotmiddotc299-middot-middot----bullmiddot-211s 555 338 20 0294

__ 21Jo ____ 5_7c_ __ 33 1 20 _o 300________

~~

il middot 2145 585 338 middot 20 0296J 1middot 2200 600 337 20 0296 2215 615 33 7 20 0296

~-middot 223c 630- middot 33 1 2 o a294 middot 1 C 2245 645 337 20 0294

2300 660 337 20 C291_____middot1 -------middot--------------middotmiddot------middot 2315 675 337 20 0237

C 2330 690 337 20 0293 2345 705 33~~middot-middot 20 0291 --------middotmiddot-middot-----------------middot-middot ---middot---- --- middot- middotmiddot o 120 334 2 a o2as

( 15 735 334 20 0268

(

103

t bull middotmiddotmiddotmiddot--

AGC-216-3 S02 CRY L GLASS CHAMlgtER

1976 JUL 2E

c1oc_~ ELAPSEC rs1 l=L HU S02 Tl~E Tl~~ibull~l IDEG Cl Ii) (PPMI

30 750 339 20 C287 45 765 346 zo 0278

- _lOQ_ middot- _]so ~sr 2 O C ~Obull middot-middot-middot-bullmiddot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot----middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middot-middotmiddot-middot-middotmiddotmiddotmiddot-middot---- middot-middot-middot- middotmiddot-middotmiddot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot------115 7~5 354 15 C276 130 810 354 l 5 C2ol

J45 sect25 35bull1_ 1 _CZJ7 middotmiddot--middotmiddotmiddot -middot--bullmiddotmiddot-middotmiddotmiddotmiddotmiddot-bullmiddotmiddot---middotmiddot-bull---middotmiddotmiddot--middot -middotmiddotmiddotmiddotmiddot --------- --bullmiddotmiddot--- middot-200 840 354 15 C277

l 215 855 356 15 C277 ___ _230 870 _356 _ l5 _C bull ZH ---middotmiddot-middotmiddotmiddotmiddotmiddot---- ----middotmiddot-------------middot--

245 8S5 354 15 C275f 300 900 356 15 C27J

_ 315 915 bullbull~5bull4 bullmiddotbull-middotmiddotmiddotmiddot-middots middotmiddotmiddot- cZ69____---middotmiddotmiddotmiddot-middot-middotmiddot -------- --middotmiddot--middotmiddot--middot----- -middotmiddotmiddot-330 93() 356 15 C271 345 945 354 zo 0271

_ 400 __96Q___ 3_j4 --middotmiddot--bulll5 C2l_________________________________ 415 975 354 20 C250 430 990 354 20 C264 445 1005 353 20 C264 500 1020-~ 354 20 C260 515 1035 353 20 C250 530 1050 353 20 0254 -----middotmiddot--------middot-middot------middot ------middot-middot-middot-545 1065 354 20 C250 6~C 1080 35l 20 0252 615 lOC5 bull350 20 C49 middotmiddot-middot-middot-- middotmiddotmiddot-middotmiddot-middotmiddotmiddotmiddot-_ 630 1110 350 20 0248

C 645 1125 350 zo 0249 ____100 1140 bull_3s o middot--middotmiddotmiddotmiddotmiddot zo__o 2t9 middot-bull-bullmiddotmiddot--middotmiddot--------middotmiddot------------middot----middot---middotmiddotmiddotmiddotmiddot ______

715 1155 350 20 0243 C 730 1170 350 20 024

745 118S 350 25 C239 800 1200 middotmiddot37 25 C233

C 815 1215 347 25 0238

830 l 23() middot- 34 5 _ 2 5 middot-middotmiddot 0 236 ----middot--middot----middot 845 124) 345 25 C241

( 930 1260 347 25 C237 9J5 1275 4 bull7 2bull ~23) 930 129J 347 25 0236

( 945 13C5 347 25 C231 middotmiddotmiddot-~middotmiddotmiddotmiddot l Obull C l 3 0 bull 3 4 7 2 5 C 23 3 middotmiddot- middotmiddot-middot- __ middot-middotmiddotmiddotmiddot-middot- middotmiddot- -middotmiddot bull middot-bullmiddot---bull middot-middot--middot middotmiddot bull _____ -middot middot-middotmiddotmiddotmiddot-- -middot _ _ -

1015 1335 34 7 25 C232 1030 us 34 1 2s c221 1045 131gt5 34 7 2bull~ C225 1100 13eo 349 2s c221 lllS 1395 349 2s c22c

--middotmiddotmiddotmiddotmiddotU30 ltLO 349 z- _C2l6 1145 1475 347 25 C215

1

104

AGC-217-1 S02 LIGHT ORY7 GLASS CtlAHBER

1976 JUL 30 CONTINUATION Of AGC-216 LIGHTLIGHTS ON JUL 29 AT COO ~TENSITY 1ooi OATA FOR 216-LIGHT USELESS DUE TO FAULTY OACS CHANNEL S02 STRIP CHiRT DATA USEO FOR THIS RUN 25 HL CF S02 INJECTED HITH 90 ML Of NZ ON JULY 30 AT 1003 OASIBI 1212 ON CHAMBER AT ABOUT 1534 TO 1537 ON JULY 30 ANO FROM 1201 TO

1230 CN JULY 31 SAMPLING RATES tHLHINI TECO 43 - 1161 DASIBI 1212 - 600

middot~ CLOCK ELAPSED OZCNE TSl REL HUH SC2 ~

ii TIME TIHEIMINI tPPH) IOEG Cl Ill (PPM)

l 1130 -15 bullbullbullbullbullbull bullbullbullbullbullbull o3ze 1145 o bullbullbullbullbullbull 346 220 0321 1200 15 351 215 0315 1215 30 354 195 C310

l 1230 45 bullbullbullbullbullbull 356 18J 0307 1245 60 bullbullbullbullbullbull 357 17Q 0305 1300 75 bullbullbullbullbullbull 360 165 0301 1315 90 bullbullbullbullbullbull 360 155 0296

l 1330 lC5 bull bullbullbullbullbullbull- 36l 145 0 292 1345 120 bullbullbullbullbullbull 364 130 C290 1400 135 bullbullbullbullbullbull 366 110 0286

1415 150 366 _ll5 0282 1430 165 bullbullbullbullbullbull 365 115 027~ 1445 180 bullbullbullbullbullbull 365 110 021 1500 195 362 11C 0273 1515 210 36l 130 0269 1530 225 0519 360 140 0265

~[ ~~ i~~-- ~~ ~ ~~ - middotmiddotmiddotmiddot-- -middotmiddotmiddotmiddot- --middot - -middot middotmiddotmiddot-middot--------middot

sect ~ 1615 270 bullbullbullbullbullbull 357 160 0255

l ____1630 _______2s5 --bullbullbull _____ 35 bull7__Jo 5middot-middot--middotmiddot-cmiddot253middotmiddotmiddotmiddotmiddotmiddotmiddot--middot

1645 300 bullbullbullbullbullbull 357 110 025C l7CO 315 357 170 025C

___ 111s___330 __ bullbullbullbullbullbull __35 bull 7 -middot--- 1a bullomiddotmiddot--middotmiddotmiddotmiddot0241 middotmiddot--middot--middotmiddotmiddot----middot---middot-middot--middotbullmiddotmiddotmiddotmiddot-middot-middot middot-------------1130 345 357 190 0245 1745 360 bullbullbullbullbullbull 356 20c 0242

___a_oo_~--middotmiddot--3_15_ __bull___S_bullt____ 21 o -bullmiddot _o 24c middot-middot--middotmiddotmiddotmiddotmiddot--------middotmiddot----------------I 1815 390 bullbullbullbullbullbull 354 225 0231 1 1830 4C5 357 21~ 0236

___J_B4~ middot- ____420-~bullbull middot---middot _3l bull l___19 0 0 235 1900 435 bullbullbullbullbullbull 364 170 0233

) 1915 450 bullbullbullbullbullbull 365 160 0230

i 1 _ ____19 3 0 __ ---middotmiddotmiddot 465 bull bull bull middotmiddotmiddotmiddot--- 3 6 bull 6 -middot--1 5 bull 5 _ C bull 2 2 7 middotmiddot-middot-middot--- --middotmiddotmiddot --middot -middot - ------

1~45 480 366 145 C225 2000 495 366 150 0222

____2015 ___middot _i 10__ bullbull_____36o6_- JS_ Q_middotmiddotmiddot 0 220 2030 525 bullbullbull$bullbull 366 155 021ar 2045 540 366 155 0216 ___2100________ssbull_____ ---middot6J__ __1 s s _o 213 2115 570 bullbullbullbullbullbull 3os 165 c211 2130 585 bullbullbullbullbullbull 365 110 c210 2145 600 bull 365 175 0208

J --middotmiddot-middot2200 middotmiddotmiddot-middot--615middot-middotmiddotmiddotbullbullbull bull--middotmiddot--middotmiddot-364----middotmiddot iso middot o206

middotI 2215 630 bullbullbullbullbullbull 364 180 0204 _ -middotmiddot----middotmiddot2230 645__bullbullmiddotmiddotbullmiddotmiddot-middot--middotmiddotmiddot 31i bull 2_ 19 0203

2245 660 bullbullbullbullbullbull 364 195 c200

i1

zjo_ci ___---1s bullbullbullbull 362---middotmiddotiomiddotmiddotomiddotmiddotmiddot omiddot196 -r l 2315 690 bullbullbullbullbullbullbull 362 205 0195middotbull 2330 705 bullbullbullbullbullbullbull 36l 215 0193g 2345middot 720 bullbullbull ~ bullbullbull 36l 225 0190l

bullbullbullbullbullbull NO DATA TAKEN ---- DATA OISCARO~D QUESTlONAuLE DATA r ~ 1~

IT Q

~

105 F

AGC-217-2 S02 LIGHT DRY GLASS CHAMBER 1976 JUL 31

CLOCK ELAPSED OlONE TSl REL HUM S02 Tl~E TIMEIMNl IPPMI IDEG Cl 11 IPPMI

1 0 735 3bO 22C 0188 15 750 3bO 220 C185

_ 30 ---middot-middotmiddot--765__ 358 -middot-middotmiddot 220 0183 45 780 358 220 o1a1[ 100 795 bullbullbullbullbullbull 358 225 0180

115 810_bull___-middotmiddotmiddot-middotmiddot-middot 35 bull8 middot-middot-middot-middot225 0177

l 130 825 bullbullbullbullbullbull 357 225 0175

( 145 840 357 225 0112 200 855 bull _357_ ___ zzs c111

215 870 356 225 0169

f

I ( 230 885 35b 230 0168

245 coobull 356 230 c166 middot300 915 356 230 0163

C 315 930 356 230 C160 330 945 35bull6 230 C160 345 960 bullbullbullbullbullbull 356 230 0158 400 975 bullbullbullbullbullbull 354 230 0156

_415 _990 ~5~6 230 0154 430 10C5 356 235 0152 445 1020 354 235 C150

L -middot----middot-middot500__1035 __ -middotmiddot 354_ _ ___ 23 5 0148 515 1050 354 235 C147

( 530 1065 bullbullbullbullbullbull 354 235 0145 545 1000 354 235 0144 600 10lt5 354 235 C142 615 1110 354 235 0140

___630 ____ 1125 bull - ___ 35bull 4_ ___ 24o013lt 645 1140 354 240 0137 100 1155 bullbullbullbullbullbull 354 24o 0135

--- _715 1170bull 35 24-0 0134 730 1185 354 240 0133

l 745 1200 354 240 0131 800 121~bull -middot-middot____35~---middotmiddotmiddotmiddot24bull C_ _O 129 815 1230 354 240 0128 830 1245 354 245 0121

-middotmiddot----845 1260~ 34 245 0-126 9CO 1275 354 245 0124

( 915 1290 354 245 0122 -middot--middot_930___1305_ -middotmiddotmiddot)54___ 245 c120

945 1320 bullbullbullbullbullbull 354 245 011a ( 1000 1335 354 245 0116

________1015_ __ _1350 354 240 0115 1030 1365 middot-middot--356 240 0113 1045 13130 354 24C 0112 1100 1395 354 240 0111 1115 1410 354 240 0109

- middotmiddot--middot-~--- middotmiddotmiddotmiddotmiddotmiddot-middot--middotmiddot-lDO 1425 354 240 0 107

l 1145 1440 356 240 0 bull 106bullbull12cc 14gt5 bull bullbullbullbullbullbull 3gt6 40 0105 1215 14 70 0504 354 240 0 103

middotmiddotmiddotmiddot-middot- middot---middot-------middot--middotmiddotmiddot --middot middotmiddot-middotmiddot middot-middotmiddotmiddot-middotmiddotmiddot

__ middotmiddot-middot---------middotmiddotmiddotmiddot_ - ___ middotmiddotmiddotmiddotmiddot

----------middot--middot--middot- middot--middotmiddotmiddot--middotmiddotmiddotmiddotmiddotmiddot-middotmiddot -middot---

middotmiddotmiddot--middot middotmiddotmiddot-middotmiddot-middot--middotmiddotmiddotmiddotmiddot-middotmiddot-----

bullbullbullbullbullbull NO OATA TAKEN ---- DATA DISCARDED QU~STIUNABLE UATA

106

AGC-218-1 S02 40t RH GL~SS CHAMBER 1976 AUG 4

DARK AT 0850 FC-12 ANO S02 WERE INJECTED INTQ THE CH4~8ER THE OASIBI 1212 WAS CN THE CHA~~ER F~OM 1651 TO l65S BRADY 1296 CALISAATION 1Q7~ JUL 16 SAMPLING RATES IMLMINI TECO 43 - 1~33 CASIS 1212 - 600

CLCC~ ELAJSEO czc~~ TSl R~L HU~ 50 Tin TIMEl~Nl (P~gtI DEG Cl a1 PPM)

1100 c bull~~ 334 4J ~-377 1105 5 ~ 334 485 l3Sl 1110 10 bullbullbullbullbullbull ~34 485 C3BJ 1115 15 middotmiddotbullcent 334 460 0379 1120 C bullbullbull 334 475 0374 1125 2~ bullbullbullbullbullbull 33S ~70 0375 1130 30 middotmiddot-~middotmiddot 332 475 0371 1135 35 334 47o o372 1140 40 bull bullbullbullbullbullbull 334 65 C370r J 1145 45 bullbullbullbullbullbull 334 4~c 0111l i 1150 50 middotbull 334 465 03t9 1155 55 334 16 5 0364 1200 60 - 334 45 5 0366 1205 65 bull 335 450 036rl ~ 1210 70 ~bull~ ~)5 ~5J_ 035~

1215 7~~ bullbullbull 335 450 C162 1220 so bullbullbullbullbullbull 334 450 o~

di 1225 85 334 440 0362

iz3d o ~~bullbull 3J4 44o o3e2 1235 95 334 445 C355 1240 100 332 45 0355 middot--middot-middot---middot--middotbull- middotmiddotmiddot-middot --middot - _____ _ f24middot5middot 10smiddot~middot Jl 332 4middot4~ 6 middoto-353-middot

~ i C 12so 110 332 4~o o353 125 5 115 i__ 4 ) _ 0 bull 352_ _--bull-middot __ ----middotmiddot-middot __ middot-- _____ - _ ___13()0 __ 120-middot-- 332 435 0354

J 1305 125 334 430 0351i I J31 o __ _ uo __ ~bull-- u-~--middot middot-middot-42 bull0 o- 1ssmiddot--middotmiddot-middot-middot- ----________----middot- ---middot __

1315 135 334 420 0348 bull ( 1320 140 334 420 0348i l32S 145 -middot_ _3 bull~--4t5 Q352

1330 150 334 41middot) 037 1335 155 335 420 0344

1340 160 335 420 0344 middot 1345 -165 uu 3ibull 4 - middot41smiddot cl44

C 1350 170 ~bull 335 415 0343 1355 175 335 420 C343 1400 180 335 415 C341 1405 185 337 405 0341 1410 190 33 bull 5 400 0343 1415 liS bullbullbullbullbullbull 335 41C 0340 1420 2cc bullbullbullbullbullbull 337 41o 0331 1425 2cs bullbullbullbullbullbull 337 405 oJe 1430 210 bullbullbullbullbullbull 334 410 o33e 1435 215 33l 42v 0336 1440 220 bullbullbullbullbullbull 317 415 C]36 1445 225 middotmiddotmiddotmiddotmiddot~ 335 45 0332

ti~tmiddot -g 1450 230 bt~ 337 41 5 c~32

1455 2 35 33 7 bullbull 0 o 13cmiddotmiddotmiddotmiddot~ ~ 1500 240 33 7 42) 0330

$C t-kOt~ ~ 1505 745 H 7 42 D 0330

bull~ 11C f ~ () D~ TJ T ~r EI ---- ChT~ orsrA~ncn 0UST l1~111c [)TA ~ 4

J 1(

i[ i l bull1

~ ~ Imiddot

middoti_ ~

107

I

il ~ ij

1 i ii l

Ir

~ 11

ij

Ibull ~

J ~ l

j (

) AtC-21S-2 502 401 RHT CLASS CHAMBER

1976 AUG 4

i i

CLOCK ~LAP$) JlC TS l EL rIJ~ S72 Tl bullE TlEPlll I I P1 l lDEG CI (1) I PP~ I

1510 250 middot~ 337 415 o 32~ 1515 255 cie-(wt 337 t~ 0 032S 1520 2t) 337 420 0PI 152 5 265 bulltI 3l 7 42 1 I~bull)~ 1530 2 7 C=it~bull 334 41 5 0327

bull 1-tit~o

middot~

1535 27 D5 420 bulll 324 1540 middot2cu 335 42 C32C 1545 285 middot=~ 334 430 C322 155C 29J t rLI 334 430 0122 1555 295 o CJ3 334 4t 5 c 320 1600 3CO bull Iii- 334 420 0322 1605 3C5 emiddotbull= 334 42o J3lfl 1610 310 wc 33 4 425 0319 1615 315 ti 332 420 0316 160 32C 334 Z5 0 bull 114 deg 1625 325 -0laquot 33 t 430 0315 1630 330 335 430 ons~ li35 335 cent 33 5 435 0310 middotmiddot-- ____ -- 1640 340 $Qt 335 44) 0313

( 1645 345 33 5 435 o 311 1650 335 440 0309--~-- ~~~~-----middot~-~~-~-~-~--- ---middotmiddotmiddotmiddotmiddotmiddot-middotmiddotbullmiddot-- middotmiddotmiddot--middotmiddotmiddotmiddot--middot-middotmiddotmiddot-middotmiddotmiddotmiddotmiddotmiddot --- middot-middot-- middotmiddotmiddotmiddot--bullmiddot--middotmiddot-middot--middot middot-bull------middotmiddotmiddotmiddotmiddot-- ---middot-middotmiddotmiddotmiddotfo55 355 bull-c-t-t-it 33 r 43 5 C313 1700 360 $0~IZ 335 45 C305 l705 365 338 4 5 0308bullbull ---- middot-- middotmiddotbull---middot-middotmiddotmiddotmiddotmiddot--middot-- l7l0 370 ~~emiddot i8 440 CJC8 1715 3 75 bull-tt~iU 337 44J C310 1720_ 380 bull ie~~bull -~3 8 35 J303 - middotmiddotmiddotmiddotmiddotmiddotmiddotbull-middot-middotmiddotmiddotmiddotmiddot middotmiddot-middot- middotbullmiddotmiddotmiddot-middotmiddotmiddotmiddotmiddotmiddot-middotmiddot1725 385 -tttr~ 33a 440 0308 1730 39J ~cent n a 440 0303 1735 395 izc 338 440 0 3)2 middot--middotmiddotmiddot middotmiddotmiddot- 1740 co VIOct- lt= 338 430 o 30 1745 40J (rfl$~bull 338 430 0302

OJei1()01750 410 33 I 430 029d middotmiddot--middotmiddot---middotmiddotmiddotmiddotmiddot--middotmiddotmiddot-middot-middot 1755 415 t 338 44) 0299

1800 420 bullti-it 333 43 5 0296 1805 425 i-t-7Icent 33 8 430 0299 middotgt l8U 4 3 I cent46 317 3 0 029 l Bl 6 436 c-oilaquo4t 337 430 0298 lil21 441 33 7 43 5 ( ~9 7

~tf(p ~

middotmiddotmiddot--middot-middotmiddotmiddot--middotmiddotmiddot--middot middotmiddot----middotmiddotmiddotmiddot----I B26 4d plusmn~ 337 430 o 2-7 1831 451 (-tilll- 337 415 0296 1836 456 tdcmiddotC n13 430 C291 --middot - -- 1341 461 t(I~ 33 7 435 0292 le46 466 bullt~tci 33e 435 o 292 1851 4 71 33_ 3 425 Oll Hi56 4 76 337 425 0291

1901 4 il I it-Otcbull 33 43C bull)2Rq1906 96 t~illtt 338 475 J217

_Clt-~4t1911 t91 l3 7 42) middot t~HJ 1916 bull c( bull ie--iJtll)ill6 4l1) 0187n ___ iil 111 [t 1 T el rbullNJ Crf fISCAP[E) QU~ 5 T t 1Jt-bl E 1)1 TA

108

AGC-218-3 SOZ 40l RH 7 GLASS CHAMSER

__1976_ AU( 4

CLOCK ElAPSED oz~~~ TSl qEL HUM S02 TIME TfME (lfrjf- I PP~I oeG c- -ii --middotmiddotcigtTmiddot----

(

1lt121 sci-middot umiddotbullmiddotmiddotmiddotmiddotmiddotmiddot-- 3fmiddots~ 425 o~io6 1926 5~6 bullbullmiddot 338 42-0 0285

______1931_____511 ~-~- 33 1_ 41 s o_2s5___ 1936 516 337 425 ozss

( 1941 521 337 415 021a 1946 526 337 415 0282 19si ~31 bullbullbullbullbullbull 33i middotmiddot425 021a 1956 536 337 420 0278 2001 541 335 420 0283 200middot6 5t6 -middotubullu-middot----33s- 12s -0211 - middot middotmiddotmiddot middot ----------

( 2011 551 bullbullbullbullbullbull 335 420 0278 2016 556 334 415 0277 2021 561 334 425 0277

( 2026 566 bullbullbullbullbullbull 334 425 0276 2031 571 bullbullbullbullbullbull 33~-- 420 0278

middot-middotmiddot- 2036 576~ UU 334 425 0275 ( 2041 581 middotmiddotmiddotmiddotmiddot~ 335 420 0274

2046 586 335 420 0275 205( 591 337 430 0211

C 2056 596 335 425 0211 2101 601 337 --~2s 0210 2106 606- -middot~bullbulli 3~s 430 0211

C 2111 611- 337 425 0269 2116 616__ = 337 425 0270rmiddotmiddot- 2121 621 ibullbullbullibull 33~7 436 0210

C 2126 626 c 337 420 0270 -l 2131 631 ~ 337 __ 430 0210

2136 636 337 425 0267 C 2141 middot 641 bull 337- 425 0266

2146 646 337 430 0265 2151 651 337 425 0265

C 2156 656 middotmiddotmiddot~middotmiddot 335 425 0269 2201 661 33J__ 431) 0266 2206 666 335 425 0263

( 2211 671 335 425 0265 2216 676 337 430 264 2221 681 335 425 C261

( 2226 686 33S 435 0263 2231 691 bull h 335 430 Q2(3 2236 696 335 425 0259

( 2241 701 335 430 0256 2246 706 335 425 0258 2251 711 335 425 0255 2256 716 335 430 0256

OU~STICNA6LE DATA

109

AGC-ZIR-~ ~02 401 RH GLASS CHA~t1Fl-1976 AllG 4-5

AOO 660 MIN TO ELAPSEO llM

CLCCK fL~PSEe TS l l~L HJ~ Si~bull- T -IF Tl~cllO ING CI (o (r~M)

22C6 6 33S 4l5 C263 22tl 11 335 425 C265 2216 16 ~37 43i) i)264 2221 21 335 12 5 Obl 2226 71 D5 435 C26~ 2211 31 ns 430 0263 2236 36 335 425 i)5G 241 41 335 430 C256 24( 46 335 2 _5 middot 253 51 51 33 5 42S C 25 256 56 -3 ~ 43(1 0256 230 t 61 335 425 C254 2306 66 35 42 C25S 2311 71 33 5 430 C 50 2316 76 337 425 CZSv 231 81 33S 43) C 5) 2326 86 33gt 43J 0252 2331 91 334 420 0249 233b 96 335 430 C z5J

middotI 2341 1C1 ~35 425 C252 2_34~ 1C6 335 420 obull45 2351 111 33 middot-middotmiddot 42 5 G248 2356 116 334 420 0248

1 l21 334 425 0247 6 126 334 42~5 C~250

11 131 334 420 0244 16 l36 334 __ 425 c 245 21 141 334 42middoto 0244

26 146 334 420 0244 31 151 332 42o 0242 36 156 334 415 0242 41 161 334 425 0241

i 46 161 132 42 o G2391i 51 171 334 430 ~ 239-~

i 5b 176 332 430 oz3gmiddot 10 l lBt i 2 425 023ltgtt 106 186 332 435 C236

I -~ -~ 111 l SI 332 431) 0238 ~ ~ 116 l c6 33l 431) IJ2 1l 201 332 435 C23gt

126 2C6 332 430 a 233 I 131 211 3 2 435 0232

f 136 216 3 3 2 430 0233 p 14 l 221 3) 425 0233 I 146 226- 312 435 C233

I 151 23i 33 l 425 c22s

C (

~ ti

) ~ I ~i 6 236 332 4)5 cna 201 bull1 3 3 I 430 C bull J )

f 20lt 246 33 l 4 s C2 n E 211 251 3 3 l 4gt0 0231)]

Iimiddot~- ~ll QtTh TAK f1 fl AT

~ -- 1 l middotmiddot1

I 1

middotmiddotmiddotmiddot--middot-middotmiddotmiddotmiddotmiddotmiddotmiddot --middot-middotmiddot--middot-middot ----

_ - middot- --middot---- middotmiddot-middot-middotbullbullmiddotmiddot-middot -middot--- ---

--middot bullbullbullbullmiddot bull-bullbullbullbullbullbullbull M bull-bull 0 middot---middot-middotmiddot middotmiddot----middotmiddot - -

- --middot---middot- -- -~middotmiddotmiddotmiddot-middot--middot-middot middotmiddot--middot

____ ___ --- middotmiddotmiddotbullbullmiddotmiddot----- __ middotmiddotmiddot-middotmiddotmiddot -~ ~-

n1 s1or~o

110

AGC-218-5 S02 4Ct RH Gl ASS CHA~lrn lH6 lllJG 5

AOO 6amp0 HIN TO ELAPSED TtME

ClCCK l~llSFt 1$1 REL HiPl SO TIME TIMEl~lNl ID~G Cl Ill IPPM1

216 256 331 430 0211 221 u1 331 4-L~ c2n 226 ~66 33o 43~ C27 231 211 JJo 44o 022s 23~ 276 3l0 44S C28 241 281 330 435 C26 246 266 330 44 5 C2Z5 251 291middot 330 43s o22~ 256 296 33o 415 c23

middot301 301 bull3middot3omiddotmiddot---middot40 022s 3C6 306 328 435 0225 311 311 328 445 C226 316 316 32 1middotmiddot middot -4middot3smiddot c222

( 321 321 32S 440 C222 326_______ 36 32_ a______ 43 bull s__ c 221 middotmiddot---middot--bullmiddot-middotmiddotmiddot ___ __________ ----------middot-middotmiddotmiddot-middot 331 331 328 430 023 336 336 32S 435 C220

34134-1 e a~middotbull~- fl 9 0 211 346 346 3Z8 440 0220 351 351 32s 435 c220

1 ~t t---ttt-middot -t~g ____ --middotmiddotmiddot -middot-middot-middot-middot middotmiddot- middotmiddotmiddotmiddotmiddotmiddotmiddot--middot middotmiddotmiddotmiddotmiddot-middot--middot---middot middot--middotmiddotmiddot-middot- ---middot-bullbull _ 406 366 327 440 0216 411 311 n1 445 o_215 __ __ --------middot- middot--middot--- 416 376 326-middotmiddotmiddotmiddotmiddotmiddot43s-middot C211

( 421 381 327 445 C215 421 3~6 _32 bull6___~i1Lcn middot- ______ middotmiddotmiddot--middot--middotmiddot middot-middot--middotmiddot 4Jl 391 326 445 C211 436 396 32s 44o 0211 4 1l 401 326 450 0210 446 ~06 324 44o u211 451 411 34 45o 0213

_456_ 416 324 445 _C210 501 middotmiddot21 323 455 c211 506 426 323 445 c210 511 431 323 55 0204 516 436 323 44S 0209 s21 441 323 455 c210 526 _446 33 445 C208 531 451 3 3 455 003 536 456 323 445 0204 541 461 322 4S5 c20~ 546 466 322 445 C215 551 471 322 450 0206 556 476 316 4o 0210 601 481 316 450 020gt

C

606 4fl6 31 6 455 C zomiddotJ 611 491 316 5 ~ c2n 616 496 316 4tC on 621 501 316 455 C2J2

bullbull bullbull NO OAH T6KFN ---- ll 11T VJ ScAmiddot~~~u

111

AGC-218-6 S02 40l RH GLASS CHAIBER 1976 AUG 5

ADO 660 HIN TO ELAPSED TIME

CLCCK ELAPSED TSl REL HUM S02 TIME TIMEIM~) IOEG ti Ill (PPII

626 5C6 middot3f~6middot 46ci 0200 ( 631 s11 316 455 c2ao

636 516 316 45s c200 641 521 31~imiddot 4ampomiddot 019

( 646 526 315 45o 0199 651 531 316 455 0199 656 536 315middotmiddotmiddot 45S 0195

C 701 541 31a 45o 0191 706 546 319 45~5 C197 711 551 319 455 C115 716 556 320 45~ 0199 721 561 322 460 C197

566 323middotmiddotmiddotmiddotmiddotmiddot 45~5 C195- -middotmiddot - --middotmiddot--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot- ---- middotmiddot-middotmiddot-middot middot-middot-middotmiddotmiddot middot--726 ( 731 571 324 460 0194

736 5 76___32 bull middot-middot --4~-~~---middotmiddotmiddotc ~q_5 ______________ middot------middot-middotmiddot-middot--middot-middot-middot-- -- middotmiddotmiddotmiddotmiddotmiddot-middotmiddot-middotmiddot~--middotmiddotmiddot-~-middot-middotmiddot----- middotmiddotmiddot--- middotmiddotmiddot-----bullbulln-bullbull-middotmiddotmiddot -------middot-middot 741 581 3t4 455 0193

746 586 326 45o 012 751 591 327 455 0194 756 middotmiddot- middotmiddot-s96~-middot -- 32-amiddot- middotmiddot4smiddots middotmiddot middotc194 801 601 330 455 C193 806 606 33l 460 C191811 ------middotmiddotmiddot-middotmiddotmiddot-middotmiddot--middot----middotmiddot------middotmiddotmiddotmiddot-middot-middotmiddot----------middot- 611 33l 45bull 0 0171 ------middot-- middotmiddotmiddot-middot----------816 616 332 460 0191 821 621 332 455 0192

826 626 33--middot 460 o 183 C 831 631 334 455 C188

836 636 334 ____4S_o___Cl36 --middotmiddotbull---------841 641 -middotmiddot-middot-middot33 5 45 o o1ss

( 846 646 335 46 C137 851 651 335 455 CS6 856 656 335 40 0184

(

l

a ~ -

112

AGC-2ld-i s02 -~ r~ iliS5 (I--A~tl[f-

196 AUC ~

libulloHTS Cl 01CC 1nSlY lmiddotJOt lJ~ OA~JJI_ 12L r c~~ itmiddotE (Hit~t t~uG~j cic6 10 tll f-RC~ 1 Mi TJ S lf ftf-lt

Tt~ ~Ol~ fbull~0~ 1C~0 T2 l~Ji ~~~J TJ 113( ~2~1-~~C~ AU~ t VlOT--0110 s~tY 12s6 CAlt1 ~i11u- 1-h vl imiddot StPLllG RATES OL11) TcCU ~ -middot 123bull C~Slfl 12l - t()(

ccci- fL 0 )~middot) i Sl i l ht ~-it t-bullc r l -pound ( l 1imiddotc Cl 1 ~ ~~(

1 tti ~ C i t ( bull t ~ 1i1t ~) ~i cu

--bull-- -~ll __11 middot-- middot ~~) 5 ) -bull ~ __ S bull lmiddot~ __ _ gt le 1~J yen ~ ~s ~ss 1~1s~ 92l 21 ~bull~ 46C c11middotgt)c~~

S2C ~tbull 1 ~ ~ ~4 bull_ bull l ))(~-~

middot93 l 31 1 ~ _j_l bull bulltC Cl-bull 936 ~l 01 L

--------~ -~ ___ ______ 4_1 -1=i 1 5 0 l i 4t 41 tit~ 4 middot1 middotmiddot3 C -_ bull 1 i~l

( 951 roc -i 5~L 3 1 42 bull G ct 51 ~( - 3 f gt 41 i 0 1(_bull(

1)0 l c 1 ~centelaquo 4middot1 5 01X lOUc cc 15 ClL~ [011 7 l ~d~bullt~(c 3lt bull 7 41 bull -J16-t lOlt 76 it20 OltG t~~01gtt j4 9

102 l 81 (-ttI centicx 3i ~gt 01~2 iOU 8t i-uc~ ~2) C l 5t1oii -middot middotsf~- middotmiddot~~-~~- -----~-~ ~

)~bull- ~ l () middoto i5t1middot i03amp ~6 ~~ 4C bull i C lJ6 041 10 1 middot~bull-p(t 1t _ ----~ bull~-----~ ~+- ~ middottC46 [Ct bulllaquo 4 7 4 bull U r bull l bullmiddot

1051 111 ~~-~~ tCi ~gt 0 l i0~6 J1~- ~ 347 41u 01~ llOl 121 -middot--bullomiddot- -middot 41 c (i1smiddot1

C 1106 126 4s ) 153 llll l31 ~middot~ 34 5 4rJC middotO 140 lll6 136 bullbull~bull~ 3lt bull j =~- --~ O l4

( ~121 l~l $enyen 34 o 3i G 14ltgt i12o 146 ~~ 34Q Jl0 011

--i131 -middot-- 1s1middotmiddot middot_ __ middotf 3 ~ ---143 middot-- C 136 1f 3C 0112

~14_1 -middotmiddot--middotmiddotmiddot16_1 -e-~ )-t _ b5 1~2 qri middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot3middot4--_middot- Ji ~ C bull 1 j S bullmiddotmiddotmiddot - middotmiddot---middotmiddot-middotmiddot -middot middot-lee

( H51 171 3-1-ti ~ 7 5 013S 11~6 I 76 )) 3 1r ~ 37 0 0 1+C 220 l -- 1cimiddot1 x middot3middot- i~ bullmiddot 3( I Olle i06 d6 J ~ C6 34h 330 01n 21 I I l 31-9 middots o 0 131

l21 t I S6 - l(~q~cent 5middot ~middot0 ~4middot-~middot--middot-- bull i l2 ( 122 l 2Jl J~1 34 1 C l J

1226 2c1 c~bull~ 34~ 34C n 12s Tiit 2ll _(Ybullbull~- bull~bull~- i j~bull ~j cbull1it1 l23l 2 ll ~~UCO ~4a ~c Oi3~ i24l 221 bull~bull~ ~~-~ 3~~ Cll~

middot 124c 22~ v~-y 34~ 34i cmiddot ld

1251 iil laquoriribullmiddot ~middotmiddott o ~) 12middotmiddot 12~0 2 j() - bullrl-1- 3 ~ ~ ( 1bull~ 3C l -~ middot ~ ) J di ~ ~ l (l

113

AGC-2lS-8 S02 40l RH GLASS CHAMBfR l976 AUG 5

CtrCK TIME

EL AP SEO TlIOIMINI

Clf~C (PPM

TS l IOEG Cl

~FL HUf n1

SJZ C PPI I

1311 251 -$ H5 33middotbull 0125 l3lb 256 (centcent 345 n 5 0 129 1321 261 ltirtQlaquo- 34bull ~ 325 0 12 3

C 1321gt t31

266 27l

(~~laquo~ q~t~laquo

~4-7 3 9

335 340

0 12 S o 122

1336 1341

276 281

__ t

347 34 7

34J 31 5

0 122 0123

( 1346 286 1(11) 347 345 c120 1351 291 t l ~4-7 360 0-1 zo

( 1356 1401

296 301

346 346

36C 35S

0118 0117

140(gt 3C6 o 254 346 355 0 118

1411 1416 1421 146 1431

311 316 321 326 3 31

~YJJ

bullbullicent lCbullmiddot (11Ctlaquo

346 350 35l 35l 35o

34J 355 360 35 5 335

0118 0 118 0117 o ll amp o 114

1436 336 $$) 354 350 0 114 141 l 31 354 35S 0111 1446 1451

346 351

t(c=~

tit 354 353

355 350

C 112 0110

1456 1501

356 361

bull~

35 l 35l

360 34 5

o 111 0110

1506 1511

366 371

0287 $

35_o 1so

345 345

o1oq 0 lOl

1516 1521 1526

3 76 3A I 386

ICi -C ~IX$

349 347 347

340 340 355

0 109 0 109

0107 1531 391 tamp 347 36C D107 1536 396 346 365 010 1

1541 4 01 Or 346 36C 0106 1546

1551 406 4 l l

Cittcent

346 34o

36 5 365

010 0104

-15~6 416 6~ 346 365 0104 1601 421 ~( 345 365 0103 1606 426 c 302 346 36 C o 103 1611 1616

4 3 l 436

lJ rit II

~ 345 3 5

365 37 5

ClOJ 0100

1621 441 ltftt11 345 37 0 0100 1626 1631

446 451

~ 1tcent bull1Cc

345 345

36 C 36 0

0098 OCll

1636 456 tC06J 345 36 5 o 098 1641 1646

461 466

(Ittbullittbull

345 3 5

-c 365

o )Ya 0094

1651 1656

4 71 4 71

11)fI)

$$(1Jfbull 345 345

310 3 7 0

0 ))4 0 Oi4

middot7 1701 1706

4 81 48b o 315

3 s 34gt

0 3t 0

oogs o 094

1711 I 716

491 49amp

bulltttoJt--r

ittt t 345 345

355 H bull5

0014 oon

bullbullbullbull ijir mJ DU4 Tf~ fl -- middotmiddotmiddot- l)f TA 01 $ChIHG I OUET rorAILE tJIH

114

AGC-218~9 S02 401 RH GLASS CHA18ER 1976 AUG 5

AT 2059 PROPE~f (64 ML) ANO FC-12 1580 MLI WERE INJECTED

f (r CLOCllt El ~PSEO QZCNt___ J51 TIME TIME(~I~) 111 (DEG Cl

(

i7ii soi ~ 34~middot5middotmiddotmiddotmiddotmiddotbull-middotmiddotj4_Q 0092 bullmiddotmiddotmiddotmiddot----middot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot--~------middot----middot-middotmiddotmiddotmiddot----------middot-middotmiddotmiddot

C 1726 50~ 345 340 OC92 ll3 l_ middot--middot51 l ~~~~---3~--~middot-middotmiddotmiddotmiddot-3t i____QJJ12

1736 516 343 350 OC89 1741 521 bull 343 335 OC89

_1746 -middotmiddot ---526 u _ )45 _J3 O_ 0 bull C$8 __ _____ 1751 531 346 310 OJS7

C 1756 536 bull 350 305 035 1801 541 351 _no__ 0 bull0es___ _____ ______middot-middot-------middotmiddot 1806 ~4i~ 0313 3D~ 330 OC84

( 1811 551 358 320 0085 1816 559 ~-~-middot--middotmiddotmiddotmiddotmiddot~-58 32middotJ OC81 _____ -middotmiddot--bullmiddotmiddotmiddotmiddot-----middot---middotmiddot ----- 1s21 561 358 320 oc33 1826 566 360 315 0083 1831 571 36J 315 0083 1S36 ___ 576- 36o 320 oca1 1841 581 ~ 380 315 0078 1846 586 middot---middotmiddot 38 bull0_ 320 0081 1851 591 379 ~jo---6019

C 1856 596 377 335 007S 1901 60Jbull UUbull 376 330 0078 1906 606 0328 375 340 Q078 1911 611 375 335 0078 1916 616 376 330 0076 1921 middot621 376 33o middotocn

C 1926 626 376 335 0077 1931 631 376 34 0 OC7t 1936 636 bull 375 345 0070

C 1941 641 372 345 0074 1946 646 372 340 0074

0

1951 651 37~ 340 0074 ( 1956 656 37l 345 0073

2001 661 370 350 0071 2006 666~ 370 350 0072

( 2011 671 369 355 ocn 2016 676 36I 35 5 0068 2021 681 36l 36 0 OC68

( 2026 686 349 365 )069 2031 691 0 349 365 J070middot 203~ 696 349 370 OC6i 2041 701 350 370 0066 2046 706 349 3~o ooes 2osi 111 o341 35o 3Bo 0001

( 2056 116 0341 35o 38s o066 2101 121 0343 337 385 0066

115

r I

I~

) I I

H l

Ji

I

~ I

l _

I1 i

~ t 1 t

I r ~ ~

f ~bull1

1

1 r i

AGC-21S-IO 502 401 RH GLASS CHA~tHR 1976 AtlG 5-6

ADD 720 MIN TO ELAPSED TIME AT 2059 PR~~ENE 164 ML) AND FC-1 (590 Mll WE~E l~JECTED AT 2217 IO ML OF S82 WAS INJECTED

CLOC~ ELiDSEJ ri~~bull TSL ~fl HJ~ 5~~ TIM~ TIMEl~INI (PPM) (nEG Cl Ill (PP~)

2106 6 0 32l 345 390 2111 11 0314 34 bull 0 Crmiddot 2110 lf 0300 34 q_ 390 OJtO 211 21 () 2lJ 3bullbull 9 390 0057 2126 26 0231 350 ~9 0 JC56 2131 31 ()282 35Q 39bull 0 OC55 213b 36 tic 350 39 () or56

2141 41 O~ 35Q ~9J 0C54 2146 46 (~-ti 35bull Q 390 )054 2151 51 iei 350 390 0051 2156 56 ~laquo 35o 390 0053 2201 bl 35o 395 0053 2206 66 0241 35o 39S o)51 2211 71 35) 390 0051 2216 U 350 39S C85l - -middot--middot---- middot---middotmiddotmiddot39middotmiddot3middot -- - o middot2 ti -middotmiddot - --middot--middotmiddot-~---middot-middot-middot --- -middot middotbull-- ___________ ~middot-middotmiddotmiddot middot2 221 81 u-- 33 8 2226 34 7 395 0222

91 c2222231 middot 349 39s 2deg236 96 laquo 34middot9middot 390 0221 224 l l 01 =bulltll~ 350 390 0217 2246 bullioi ----- 34 9 _____ 38bull 5 __bull Gbull 22Q-middot-middotmiddot--bull-----middot-middot-middot---- middot_ _ --middotmiddot-middot - _ middot---middotmiddotmiddot -middot--middot--2is1 lll 39) 0220 349 2256 116 350 390 0219 2301 12 l cent 349 3llJ 0216 2306 126 349 8 15 0214 2311 131 t 349 385 0213

- -2316 136 t J(I~ 349 39) 0211 middotmiddotmiddotmiddot----141 2321 t~ 31 7 390middot 0209

2326 146 --Ccent0= 347 39o czoc 2331 151 4te 34 7 3Bs o2J1 2336 156 l) 347 390 0206 2341 lo fc 34 7 39) 0204 2346 166 -e~ 34 7 39 bull0 02l5

~obullicent-V235[ 1 71 347 385 0204 2~56 176 ~~ 34 7 385 02)3

1 l 81 ~ 346 390 0193 6 186 =1centCt 341 3 019

11 191 ~(r 345 390 0200 16 1S6 taici 345 ~85 0 19B middotmiddot- middot- -- --~ 21 201 Cdeg trtrbull) 345 38 ) 0195 26 206 345 39 G 0195 31 211 ltclI 345 3l() ~ 1 g1 36 2i6 V4-tiq 345 39 0 0 14 41 221 iocent 343 38 5 191 46 226 $ 345 rn s Clql 51 231 (r(c 343 ll 0 O lJ2

56 236 ~bullt~ 34~ ~9 ( J137 101 2 1l ftfilt 31-t 3 3e 5 c 188

0itW~106 246 34 3 JAS 0 1~9 11 l 251 4)QJ~4 Jlt bull j 3fl 5 C bull l 4

ibull1 DATA T~K rn ---- D~U DSCA~JEC 1 QIJ[ST tSbull~flLE DAT~

116

AGC-21d-11 S01 40t RH GLASS CHAltt8ER 1976 AUG 6

AOO 720 MIN TO ELAPSED TlE

CLOCK ELjPSED ozc~~ TSl ~~L HUM scz Tl~E T[MEt~l~l (PP~) IJEG Cl Ill l lP I

i16 121 176 131 136

256 261 266 271 276

bull ~bullbull bullbull~

343 343 343 342 342

365 e5 38C ~85 385

0183 01S4 0 I S2 0lSl 01s2

14 l 291 bullbullbullbullbullbull 342 8C 0 lilbullJ

( 140 151

236 291

-bullbull

342 342

360 3tiC

0 177 o 176

(

156 201 206

296 301 306

~~~~

342 342 342

385 330 8C

o fn0 176 0 l 75

211 3ll ~~~~ 342 38C o 172 216 22 l 226 231

316 32 326 331

bullbullbullbull middotmiddot

342 342 341 3 11

385 )35

85 3d5

0 173 0 171 0 161 0169

236 middot241

- 246

33~ 341 346

$ uuu

339 3go 339 3U533~9middot-- 355

J H5 C l 70

0 1 7J 251

middotmiddotmiddotmiddotmiddotmiddot--middotmiddot256 301

351 middotmiddot~middotmiddotmiddot ~5~--middotmiddot--- 361 bull-

339 33 9 339

385 39 0 ~ss

0165 0 167 o 166--

306 366 339 335 Q 164 311 316 321 326 331 336

311 376 361

_386 391 396

bullbullbullbullbullbull bullbullmiddotmiddot

339 339 339 338 338 338

3as 385 380 38Q 385 385

0161 C161 016) 0 161 0161 C 158

341 -346 401406

middotiimiddot-

33S 338

3BO335

0 159 0156

351 411 338 385 Q156 356

4151middot 406

- 411 - 416

421 426 431 436 441

416 421 426 431436~middotmiddotmiddot 441 446 451 456 461

~bullbull~ bullbullbull=bullmiddotmiddot OU

~~bull7

338 33S 33d 336 middot3)i3

338 33S 33S 33~8 337

320 385 385 390 a) 3B5 3dO 380 3d5 335

0 156 C151 J153 0153 0 15) -o l51 0 149 middot oi5o 0145 0149

middot middot middot middot

446 466 bullbullbullbullbullbull 33~B 365 0 14 3 451 456 middotsol

471 4t6 461

=~~~ ~bull

337 338 337

90 0ia ~~- 5

0 145 0 144 0148

J

506 $11 516 521

486 4l 496 5Cl

t fr(laquo ti~ lt0lf11

middot~ tI

33 IJ 337 3 3 3 3J a

R 5 ~f

~bulls lJ 3o o

0143 C14J D 142 0 1~ 1

bullobullbullbullbull NO fMTA TA~ fj ---- iHt Dl SCA 0 i)E0 OU Sr I~-bull ~-1 ~ ()A TA

117

l

u I

AGC-llS-12 SJl 4Jt ~H CLSS Crbullt~tH-~ 197 ~JC

bullco 720 ~IN JC ELAPSED JIME

__(_l CC -~-----EL I~bull-~ ___ )Jgtl________ T_~J Bf_t t1l~ smiddotmiddot-~ ~ TlMt TiMtlil l p- ( UCG ( l ( t) I Pi l

jIL szc gtt~ ~ ))~ti ~-3J 5~middotJ c1--

5ol Sl 336 3S ClgtC

-~-4 ~- t_ bull bullbull - t1-- ---~ ) bull ~ ___ _-bullbull__G_ Y~ l_~ l --middotmiddot- middotmiddotmiddotmiddotmiddot-middotmiddot middot--middot-middot-middotmiddotmiddotmiddotmiddotmiddot middot--------middot-middot-middotmiddotmiddot ---middotmiddotmiddotmiddot _ 541 521 ~~~~ 33H 75 CJ~7

( S4~ 52t _~ 33CI 370 01tti

ss1 31 _JJ1_ nc middotJ13bull 55~ 53~ middotmiddotbull ]31 7~ ~-1bull~

( 6~1 541 bullbullbullbullbullbull 331 ~7C Oi3J CC i 5 t l ~ i i_ 3_ gt bull imiddot-middot 1lt- bull bull_ Cbull _ 1 i 1 I 5~ j bullbullbullmiddotmiddotmiddot ~-~--~middot-middot- 3 3 bull ~ jt C l t - _______

616 gt~6 )__Q1bull 337 36i i l3i t i 1 lt 1 ~- -middot bull ( 3 ~ ii c C l _l- _

middot-626 G ~iu JJd J7G Qii

i 631 571bull bullbullbullabullbull 331 37C Ol~I 636 j76 ~=~~~ 335 ~7C 0t~S 6il 5ilbull (middot~vrr s1 31L Llmiddoti

64i Scit =~~bull~ 337 370 C126 t~ gt~1 bull to~-c~t i 7 3C 017 65c 5Stmiddot middotmiddottimiddotmiddotraquo=ii~middotti 3i 2lbull C lit 7Gl 6Cl bullbullbullbullbull 337 370 0127 7C6 lJ6 bullbullbullbullbullbull 33 J70 01257 11 611 -J 343 - ) 3 7 37 C ~ ~ 12 5 middot-middot-- middot-middot---middotmiddot-middotmiddot--middot- -----middot-----middotmiddot--middot-middot--middot-middot--middot--middot - middotmiddot-middotmiddot- middotmiddotmiddotmiddot-middotmiddot--middotmiddot

7lb 616 ~middot 33l 375 CJZl 721 62Jo HmiddotgtU 3)8 37a___ pU3_ _

middot-iii l2e middot bullbull --middot- 3i~imiddot 3c c c in l ( 731 631 bullbullbullbullbullbull J37 37s c121 I middotmiddotmiddot--- ]3l ________ l t_ 1 c~~_middot=_ ___ ____ 33 7 6 gt C bull l _~middot--middotmiddot bullbull middot---- ____

7itl 041 ~yen~~ 331 3~ C12 ( 74t 646 bullbullbullbullbull 331 385 c120

751 ~51 bull 3JI 3S0 C12~ _7 smiddotmiddotmiddotmiddot-- 6 56 ~ ~n-1~ 3 j rmiddotmiddotmiddotmiddotmiddot 3 bull~ j i r~ 8Cl 661 bull~bull 33B ~a OllE 80amp 666 yen~~___ 33 ~middot-middot---middot-middotmiddot ~9 5 ~middot-middot ~f--~

middot middota11 67i- tl~~ibull( ~ middotscmiddot e1 ~16 676 ~~~~ ~3b 36C C117

__s21_______ ~ci~ ~ 1r-t 3--z _bull J111 ti26 66 1-r~~~ middot3middotmiddotimiddot-middot middotH5 cflG-

( Sil c~jl centr(tiri 3-i2 1~bull t11 1

118

i I J I I j

l I

j

I AGC-218-ll 502 40t RHmiddotmiddot1 GLASS CHA~8E~

bullS 1970 AUG 6 t J

ACO 1410 MIN TO ELAPSED TtIEmiddot~ I l

t l I

~

CLOCK ELaPsrn ClCbullE TSI R~L HUM sn Tl ME TIMEPPil ( PP11 lo~ cY 01 IPPMI

l ~I l

829 -I ~ 342 390 0114abull

( 836 ( bullbull~bull 33CJ 19 0 aus middot

841 11 bullJ$rfll(cent 339 39S 0 l l 4 -- ~ _ __ _________ Il --middotmiddotmiddotmiddot-middot--middotbull- -- 846 16 nsmiddotmiddot 40) gt bull 112 ~- ( 851 21 Cit-o 337 4CO 0 116middotf 856 26 (I 337 c 0 0112

f I

901 31 ~ 337 nmiddoto 0112 i 1

~

- 906 36 =-= 338 380 c110 911 41 tt~ 34l 370 o 109 --middotmiddot ____ -middot-- __ ~ -- middot-middot--bull-middotmiddotmiddot middot- -middot lti16 4( =~ 3 3 370 o1oi middot 921 51 -tCio 35 365 c 11)6 926 56 tOO 3+7 3o5 c1-~r I

I

i

l

l

[ I

j

middot-

1~

931 61 3-7 38 0 C-104~ lt 936 11 H5 38 5 0 l) 3 middott 941 71 3t5 Jd5 0104 946 76 343 ]8 5 0105 ( 951 Sl laquo1tbull 342 385 I 104

950 86 34l 385 0103 middotbullmiddot1001 91 middot=+ 339 38 0 0103

1006 339 37 5 o 105 1011 101 339 375 C 10 l __

I - --middotmiddotmiddotmiddotmiddot-middot 1016 106 339 380 0C99 f

1021 ltl laquoO 339 380 c 099 1026 116 C10$C 339 370 0101 1031 121 Ct 33lt~ 37 0 0096 1036 126 buller 339 370 0096 1041 131 (e 339 375 0 99 l046 136 lit 34l 37 5 o middot]98 1051 141 t 339 no CJ98 1056 146 C~bull 339 370 0G95 110 1 15 l ~IIX$centU 3- l 3 7 5 00-~1 1106 156 bull )~t-C(t 342 37 C oc9s

~Q(~cent 1111 lbl 342 37C O C9 3o C1116 166 Ccent~~ 342 0 ]96

1121 171 bull4- 3 36 C 0093 1126 176 ilc(tOC~cent 342 009436 5 l I 31 161 tiOt(i$cent 3 1 2 36 5 C0)4middot 1136 middot l e6 t-r-oebullbullgtt 3- 2 36 C 0090 1141 Illbull 3 5 0 0094lrmiddot0-J(J 31 3 1146 l lt6 -C 343 35C ono

I 1151 201 e 343 340 0 CtJG 1156 2u iC111 3 3 340 0089

( 120 l 211 middot~ 34 3 33 5 ocn nliittiraodc1206 2H 343 ~o OCl7

1211 221 -~bull-1fJlic H5 330 O CH9 1216 226 -yen 345 320 0 Cl9

1221 2 31 (1$11r 3diams 5 3middot2s or~ 1226 736 bullcqtcentbull 345 3l 5 COil 7 1231 741 bullt-laquobullbullmiddot 3 5 11n middotJ J9bull l 236 24amp 3 6 30 0 i~lbull 4

(ATA ~-~middotbullbull TAtH[

119

rmiddot 11

AGC-213-14 S02 40yen RH GLASS CHAlfER 1976 AUG 6

ADO 1410 tN TO ELAPSED TIME AT 1424 1 Ml CF S02 AND l6 Ml OF PRCPENE WERE INJCTED CLIMET AND WHTSY WERE 0~ THE CHAMBER FRON 1313 TO 1645 DASIBI 1212 WAS ON THE CHAMBER FROM 1634 TO 1638

CLOCK LiPSED Ol0N~ TS REL H~~ Sl2 TIME Tl~~(~l~Imiddot IPP~I lb~G ti (Cl (PgtI)

middotmiddot-middotn41 middot -middotzsi~-- middotmiddot$~I middotj~t q 3zo ocas 1246 256 bulltbullbullbullcent 349 32J 0 C8 1+

-middotmiddotbullmiddotmiddot -- - middot---middotmiddotmiddotmiddotmiddot bull_ 34bull ~----1251 261 0lrU 31~ 9 Q_~_7_i 256 266 347 325 on2bullIt 1301 271 =to~ 34 7 325 oJS3 130 276 346 315 0083 ---middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot- 13 I 1 28 l O-ht~(I 346 Jl5 CJ83 1316 286 O 346 31C middotOOi33 132 r 2lt1 ~tc1 346 305 o_C81_ middot-middot-middot

i326 2ltJ6 - middotmiddot34~5 31 5 008 1331 3Gl 34 5 3 l 5 0082 1336 3C6 345 31 5 0C7t 1341 311 3bullbull 6 29 5 0078 1346 316 b~ 346 ZltJ5 OJ77 1351 321 --- _3_45 30 J ---- -1356 middotbull~ 0 j73 _ middotmiddot-middot--middotmiddot-middotmiddotbullmiddot middotmiddot-------middot--middotmiddotmiddotmiddot middot-middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotbullmiddotmiddot- middotmiddot-bull 326 345 ZltJO Q)71 1401 33 l 346 290 0)73

1406 336 middotlaquo 3 6 gtltJ bull S 0073gt 1411 341 34~6 30 C 0072It~- 1416 346 347 305 0071 ~ 1421 351 34 6 310 OJ73

~~ 1426 --middot middotmiddot--jsamp~ __ 33i middot--3middot1o C 13 $ middotmiddotmiddot-- --middotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddot- ____ middot--middot-----bullmiddotmiddotmiddotmiddotmiddot-middotmiddot-middot~---~~middot-middot

1431 361 343 310 0221 1436 366 ~ 345 2 0 0232

-middot-middotmiddotmiddot--middot-middot34 6 middotmiddotmiddota 231 middot ----middot-- --middot middotmiddot- middot-middot--middot-middotmiddotmiddotmiddot-middotmiddot-middot--middot-middot- middotmiddotmiddot--middot middot middotmiddot--middot--i441 3 71 33middot 5 1446 376 o 346 335 o 22a 1451 391 34 7 34l~~= 0 226 middot-middot- -middotmiddotmiddot------middot- middotmiddotmiddotmiddotbull -- --middotmiddot---middot--middotmiddot-middotmiddotmiddot- middotmiddotmiddot-middotmiddot --middotmiddotmiddot-middot----1456 336 ~ 34 i 340 0 223 1501 3lt 1 -ti~~ 347 345 0222 1506 396 347 345 0221 1511 401 ~ 347 350 0217 1516 406 347 35) 0214 1521 411 X 347 350 0211 1526 416 )$ 349 340 0209

( 1531 421 Ji 349 335 0206 153gt 426 Clltf 349 335 0202 1541 431 ~ 3t 9 33J 0 bull fJ2 1546 436 t=Cilc 349 325 0202 1551 441 ~=gt4 350 3 lj 0198

4461556 JO ~49 32G 0 195 1601 451 Jlrltlf~Tc 350 31 $ 0192

Vcent~~raquo1606 456 350 J 1 0 0 l llt 1611 461 lttlO-t 350 3J 1 fJ ll l 1616 466 ~~ 350 29 5 0186 1621 471 350 zq s C1A4middotmiddot 1626 476 350 31 C 018 1bull

~ ~ ~ 1631 481 1119$~rc 3o 31 5 0181 ~ ~~ 1636 4a6 0)7 351 2 5 c 161)

1641 49 l llir-4-it 35Q 32 0 Ol77L - (

166 496 middotbullbulltbulltr 35 l 34 s 0 IIH

middotbullbull-tiort ~ si bullmmiddot DATA TAK[i ---- OATA 01 $~APi)euroC QIJ ST 1(lLE LmiddotbullTA

~ - l f

r

120

i

1 --~middot---- ~- Ac-middot21q~f-sri~ middots~ ~H middot ~

q l r GLASS CHA~dER 197b AUG lo

--middot0middoti11t1 middotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddot-------- middot-middotmiddotmiddotmiddot--middotmiddot middotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddot bull AT 1545 FC-12 ~~S INJSCTEO INTJ TH CH~M~~R AT 1646 S02 WAS INJtCTEC INTJ THE C~AN~E~

-middotmiddot1ECC 43 SP~NNrn ll6SfC o-middotcHA-lEft trJtCTl)~ideg-------------middot------middot-middot-TECO 43 SANPLI~~ ~ATE 1213 ~LNlN SRACV ll9b CALIS~ATU~ 1976 JUL lb

-----middot soz COiRECTIGII o11s4 PigtM middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot-middotmiddotmiddot-middot-middotmiddot middotmiddotmiddotmiddot-middotmiddot----middotmiddot- --middot--middot- --middot--middotmiddotmiddotmiddotbull--middotmiddotmiddotmiddotmiddotmiddotmiddot

---r7JI 3 bullbullbullbullbull middot bull- 1735 5 3Zb 815 0237

1740 10 326 ot5 C29-J ------------------------------------r1-- 1s --32e air-middotmiddotc2middot- 1150 20 326 815 C297

1755 25 326 815 0302 -- lBOJ middotmiddot--3r-middotmiddot 32 7--olO -middoto ~ 3-)=o-----------------

C 1805 35 32T 80 0303 l 810 40 2 7 8~0 03J7_-----------------------~-------shy

--faf5 45---rz3 s1o o--io3 C 1a20 50 321 s1o o3C~

l 825 55 32 7 81 J J bull 3C~ middot-------------middot----------------------[830 60 na-middot~os--(rr-or 1835 65 328 SJ5 0302

middot l 84l 70 32 7 805 C 302________________________________ --1a-5 5 33~aoj -029~

1asc ao ]27 eos c303 1655 85 327 SJ5 C297

--r9li0--90-fzmiddot a ss o-middot211----------------------------------1905 95 3~2 aos 0292 1910 100 3 3 bull-2_ _middotg~-J~bull5_C=2~-92--~----------middot-------------------------~--nTs 1cs----3rL t105 02n 1920 110 33t ao5 c290 1925 115 331 aos c2a1

--1~Jo---uil------rr-ar--~-2-rmiddot3-------------------------------1935 125 331 ao5 o2ss 1940 130 33l 8J5 C233

--middot1945 135 330 d05 C282 1950 140 330 SJS 0281 1955 145 330 aos c201

--2000 150~2S 8JS C232 ( 2005 1ss 33o aos c200

2010 160 330 aos c216

C

--ni5 - 165 32a aJs a21~-----( 2020 110 328 ao5 c21i

2025 175 330 sos 06~6______ zoo-- ldegamiddoto middotmiddot-32s- eos tmiddot--n2 2035 185 334 79~5 C263C 2040 190 bull 33 S 790 0 bull 2b9________- ___________________

--2045 1ss middot335 785 o2s9 ( 2oso 200 33a 110 o2sa

2055 zos 33e 110 ozampo middotmiddot-- -------middot---------middotmiddot2lo)- 21c ----middot33s -middot--16s--middot-cmiddoti4 (_ 2105 215 339 7amp5 C259

2110 220 339 7os o1s1 --2115 ---22~ --middot-middot339 765 c2sa-middot

C ------ --middot- ----- --------------- ---------middot-----------~middotmiddot-bullmiddot--middotmiddotmiddot-middotmiddot----

j1 ---------------- -----middot---- 2120 236 342 76C C253

212s 235 347 7ampo o2so 2130 240 34l 760 OZSO

middot- n ---- 2135 middot - middotmiddot-z~-middotmiddot - imiddot-1-middotmiddot-middotgomiddot middotmiddot- o i4-1

-

l

1-~iI

_middotbull

1 ~ l

i

121

~

i

I~

I l I

middot1

------ --AGC-219middot2 S02 e 1~---middotmiddot -middotmiddot- - middot- --- -------GLASS C~Amiddot~~H 1916 AUG 16-17

-i C -- - - middot-middot-- --middot---- middotmiddotmiddotmiddot-------middotmiddotmiddotmiddotmiddotmiddot--middot-----middot -- - bullbullmiddot-middotmiddotmiddot---- - - -middot --- __ -------middot bull

-il _

-l ~ I

middot l

l CLCCK ELAPSED TSl qL ~U~ 502

--Me--TTfn Iff-middotccn------n1--rp-r~ -----------middot

I -~1

~ --71rcr------2cr~-z---7smiddot--c72o-4 2145 255 339 7ampJ 0247

2150 260 338 7bO 0244--middotzr5--middotzrs---n--s--middot16-0---y-2middot~----- -------

( 2200 middot 270 339 755 02J9 2205 275 J)$ 755 0247t I

A ----zz-r~1o--------yr----73-~~-u-r-r~ti ( 2215 2~5 339 7~5 C241 J 2220 2~~ 33 8 75S 0241---izz---2s~--3T7--s--o-ZTImiddot---------middot----------middot----middot-------f ( 2230 300 33~lt 755 023-

l 2235 3C5 338 75S 0235 ---z2-0---TIU--~3 -7 middot---s-u23c---------

224 S 315 339 755 C235~ f 2250 320 337 75_~5_ __o~2~3~~__-----------------~----------~---- l ~ ~ JlS--middot 33 bull 7 75 ~ bull ~

I 2300 330 33S 755 C231 2305 335 7 75 5 Czz_a__________________________________33 4 --middot--2n-~4middot07 J3 7 7575----U--ZZ ~middot 2315 345 337 755 0 224 l 2320 3 50 33 5 75 5 C22_1~------------------ ________________2325 355 33S sgt--e~z-2330 360 337- 755 0226--~ 2335 middot 365 33 s 75s c22o--____________________________

--i140 nc---3-i~1s--o--1 2345 375 33S 755 C224

~ J C

2350 3JO 334 755 0221middotf --n-sr--middot3r~~--~r---r5-c~2-i-20------------------------------

3 t 0 390 335 75 0213 1 ~~

___rs~ 3q5 334 1ss c21~6---------------------------- _______lO 400------rrz---nQ-zi l

~

C 15 405 334 755 0213 20 410 334 755 c211

---25 4 I 5---j3-7----gmiddot5---o2l____i ( 30 420 334 755 C209~

35 425 33 2 755 C214d l j I o 43b 33l 7~s 0211 45 435 332 755 C206l C _____________j50 440 332 755 C206

-middot----s-s 44-s---33-~---1-s-middot-o-zo~s----I

( 10c 450 332 755 C204 I -r ~ 105 455 B1 75 C204 l i HO 46C_ ]Lr ts C2)J bull -------------------1 Ii ( 115 465 332 75S 0197

I ~ 120 47C 33l 75i 0191 middoti

-- 12gt 33 l- Vi5 -----------------------middot7475 C20C

t_ bull

fi I

( I

middot---middot ______J--- ----- ------------------- --------middot----- ---------------

ad ----- middotmiddotmiddotmiddotmiddot----------- ________jrl -middot- llO --- 4-middot 311 0 20273 5 ~ i n 135 4F~ 330 155 C 1bull15

140 4S~ 33 1 7gt5 CIHf -----middot l4Sdeg- --- 45------ 33 l - --- middot-middot -- -- iI

755 QlHbullJ

~ 1 j 1

1 t

ibull1 l I 122lI middot1 I

1

----------

--------------

r ------ACC-219-3 s02middot soimiddot RH --middotmiddot---middot---middot--middotmiddot----- - middot--- middotmiddotmiddot---~--------------middot------ ------------

GLASS CtiA4t3ER

l~_7t AUG __17____middotr-- middot-middotmiddotmiddotmiddotmiddot-----------------middot middot---------middot----middot---middotmiddot-middot-----------middotmiddot--middot-

---------middot------------------------------------I (

---rso -middot-soo - ~3T___ 75bull middotci_94 ( 155 505 33~1 7~s c1s2

200 510 33l 75~ C~bull~l9~l_____ ---20gt 51s fJo iss--o 1a1

210 520 330 755 C192 215 525 331 755 C184

--- 220 ___ 530 middot iza 755 cc1s~o-------------- 22s 535 33~0 75o o1a1

230 540 3l 750 0137 --Z3s___545 328 755 J182-----

( 24C 550 328 750 Old3

215 555 33 o 75 o o tn-=--------------------------------- f50 -- 51o- 32a ---iTo - 1so 255 565 328 750 C179 300 570 328 750 01B0

---3tf5___575 3 l 1 1middot5o--odeg17le-------310 5SO 32 7 7iO 0176 315 5e5 3o 75o 0115

middot--320 5co 32 1 1o o 112 325 5S5 327 75Q 0173 330 6CC 328 750 0172 middot

-----3i5 6C5 327 10 011s 340 610 327 750 0171 345 615 32s 75o 0110

~5c 62c1~middot2-t-----ro--o-r6middot~------~---------------------( 355 625 321 middot 75o 0161

400 630 n a 75o ~ 165______________________________ --middot--cs 635 321 15o o i6s

( 410 640 ~27 7a 0lol

415 645 2 d 75 a O 102~---------------------------------middot-420middot-- b50-middot327 74S Cl~J ( 425 655 327 745 C158

430 660 3l8 745 C15~ middot 435 665 327 745 C15------------

( 440 67J 32 7 745 0155 445 675 32a 75o 1ss______ ----------middot--middot 4~b 680 327 745 C153

( 455 685 327 745 C153 500 610 32 7 74 5 C t S-igt_______________________---middot----middot----

--middot-50middot~---6lti5 2 1 145-middot-TT~l SIC 700 327 745 C55

____ 515 105___ 32_1 ____ 745__ c1s______________________

bullbullbullbullbullbull NO DAT4 TAKEN --- OAT4 DISCA~DED 1 QUE~TIONl~LE D4T4 --------------middot------------

---~~-----middot-----__________ -------------middotmiddot-------_-middot ---~--middot-middotmiddot -middot-

123

cl

I I

i

AGC-219-4 soi so ~H CLASS CHA~ilER 1916 AUG 17

l ACO 710 ~IN TO ELAPSED TINE

j

r 1bull

~ i_ CLCCK ELAPSED TSL qEl HU~ 502-1 Tl~= TIMEl~l~I l0EG Cl ltl (PPMI

I j (i

l

So O 326 745 C149 525 5 326 74S Cl5J

iJ 530 ________ 10~---middot-bullmiddot32bullT_____74_5___ _ Cbull11tt_____ middot---~--- ___ --middot-middotmiddot---- middot--middot----- --------- --middot- middotmiddot---- _ - -----middot--------~--------middotmiddot middoti 535 15 36 745 C148 C 540 20 326 745 C147

545 25 _32_____ 745 0143l 1 550 30 324 745 C144

~ C 555 35bull 3Z6 74s oi4l too 40 __ ~6 l45o 147_________________________________________ ---- _______ ----middot-middot ________ -----605 45 324 745 0138r l 610 50 324 745 C133

615 55 ~27 741 0139 620 60 32-4 745 0142

C 625 65 324 745 C136 d

f fi 631J 70 3gt 745 __C134 --middot-middot----------------- middot-----------------635 75 )4 745 0133 64C 80 324 740 0136l j C

-~ 645 85 324 740 0132 650 90 324 740 0131

4 C 655 c5 324 74o 0131

l 700 ____ 1JO_ 326 740 __O l31 ____ 7C5 105 324 740 0127

C 710 110 324 740 012Bii 715 middot 115 326 740 0127 ~ --middot----120---middotmiddot120 --middotnsmiddot-----nsmiddot c126 - middot--

725 125 no no 0121~ C --- 730__ 130 bull ___ 33 2 _ 72 5 QJ28_________________________________i 1 735 135 332 720 0121

l C 740 140 334 720 C125j 745_______ 145___ 31 5_____ 71 5_ 0 bull 122 ------middot--middot-middotmiddot-- ---------------------- --------- -------middot----i 750 150- 334 715 0121

C 755 155 334 715 0122 ----middot JQ 160o _______3)bull _ 7l o5 __ 0_122 L_--------middot-middot---~----middotmiddotmiddot--middot------middot-middot---------

eOS -------i65 332 720 0121 A 810 170 33I 720 0119

~ C I 815 175 33-0 720 0119 -------------------------------------------------middot--middotmiddot --------middot ------middotmiddot---1 i 820 180 3Jdeg-middoto _iz omiddot _ omiddot122 --middot--middot-middot- -middotmiddotmiddot-I C 825 185 330 720 C~ll9 ~ __ e30 1co 30______12o_____o 11 s ____________________________________________1

8)5 195 328 720 0120 I1 C 840 200 328 720 0112

845 205 32a 120 0119 i 850 210 3za 72omiddot oui

855 215 328 120 0114bull_ Cil o 220 3~Q __72_0 0bull llO __ ---------------- ~ 905 225 32~8 720 0112 middot-~ -(

~

JI middot (_

1 9lJ 230 328 721 C1)91r ( 915 235 32S 730 010ai ltO 240 327 735 C1J l J 925 245 32 1 7l5 () 10

(-1 bullbullbullbullbullbull NO DATA TAKf~4 ---- OATamp DISCAPO~G 1 OUESTin~ABLE CATA

~ l ~

t ~

I

ii l iJ

124

AGC-219-5 S02 SOC RH GLASS CHABER 976 AUG 17

AOO 710 MIN TO ELAPSD TIMeuro

CLCCt ELIIPSED TSl Rl HU~ soz TIME TIME IHlN) (DEG Cl lampI IP~l

930 250 3~$ 740 0Cl3 ( 935 255 32 7 740 Q)4

940 260 bull 327 110 O 04 945 265 32 8 741) o leamp

( 950 270 32 7 735 C108 955 275 na -middot 730 o 105

1000 280 32 7 730 0106

~-_CAT AbullDISCAROEO -middot- _1 QUSTOIIIABLE OATA

(

(

C

(

--middot-middot----middot ----middot--middot--middot------ -------(

--~-----------middot-----------------middot-middot------------ ---middotmiddot-------middotmiddot------middotmiddot----bull-bull------ -------------_______ ________ ----

-middot-middot - ___ ______________________________---------middot---middot------------

-- -middotmiddotmiddotmiddotmiddot---middot-----------middot---middot---middot--middot--middot-middot--------middot-middot ------middot middot-middot------middot ---- --middot

125

( I

rmiddot

l i

j

j J

j )

j j AGC-2~0-1 S02-03 PROPENE middot GLASS CnA18ER

1lt176 ~UG 19

bullj OA~K

S02 AND FC-12 INJfCTEO AT 1115 OZONE ADDED AT 1149 PRCPENE AT 1155 BRADY 1296 CALIBRATIJN lS7b JULY 16

CLCCK EtiPSED ~ZCfrac34E TSl ~~L HU~ S~2 P~CPfN lF lMEl~Nl (PPlt) lEG C) 11) (PPI-IJ (igtiI)

1200 o o~4 327 41 0 0363 1014 120 5 5 06)6 328 410 0344 middot 1211 11 0557 12s 410 middot~ $f r~middot 3t1216 16 0511 328 10 0318 0 BCl 1221 21 0 4 74 32 7 4 I 0 0304 0cent3-ii

1226 21 C4-+0 32 7 410 02l7 (q~cent-0(I

12 30 30 o 40 328 4ltJ 0291 0 (83 135 35 003 32 7 410 0283 ~4 1240 40 c~11 3 8 410 0 bull 776 1)lcent1 ltlaquo 1245 45 C bull 3i2 328 41C 0211 0~9J 1250 so o 335 328 410 026( deg6 12 15 55 0 318 330 405 0206 bullii t~ 1300 oO D3J3 no 405 0260 0522

C l 3C 5 65 l2 56 32S 40S 0258 -c11ie 1310 7J 0 24 32s 405 0254 itbullit ---------------- middot-middot-middotmiddot- ------- 1315 75 C 251 na 405 czso bull1320 sc o 29 32 d 405 024S bulllilCe 132 5 65 0231 32a 405 0249 -------middotmiddotmiddotmiddot-middotmiddotmiddotmiddot-133l 91 C2~) 328 400 0247 043 1336 t C 22 32 8 400 0244 ~ tP+l l 01 o 213 3 S 40 bull0 0 22 ________ __________ bull -middot middotmiddotmiddotmiddotmiddot-middot-middot middot--middotmiddot-middotmiddotmiddot middot- -middotmiddotmiddot middotmiddot- -----middot--middot---middot1316 l C6 ozos 328 400 0238 JOcentht

C 1350 110 on0 328 400 0239 bullc 1355 115 0191 328 400 0239 gt~ middotmiddotmiddotmiddotmiddot- ___ ________ __ middotmiddot---middot- -middotmiddotmiddotmiddot-middot ___ ----- ------ middot--1400 120 o ta6 33 omiddot- middotmiddot 395 o23i o 3 76

( 1405 125 C178 32amp 39S 0236 1410 130 D I 76___ 32bull 8 39 bull 5 02~---U bullbull --bullbullbull---bull -bull-bullbullbullbullbulln___ bull -bullbullbullbullbull bullbull bull---bull---bull-bull bull-bull--bullbull -bull-i415 135 0 lb6 326 395 0231 tlllllc bullitbull 140 140 o l SI 32 8 395 0232 cu~ Ji 142 5 145 0 159 32 bull 8 395 0230 16CC- --- ---middot-middot -middotmiddot __ --1430 150 I 151 32 S 3c5 0230 0336

( 1435 155 0147 33C 39 5 C226 (laquo 1440 160 C bull142 328 395 0225 gtccent( _____ middot-bullmiddot--middot ___ middotmiddot-middot--middot-middotmiddotmiddot-middot--- middotmiddotmiddotmiddot---middot-1445 165 J 1 39 331) 395 0225 ~ ( 14Sl 171 0 134 328 3-i5 C223 1456 1 76 012 middot 32 8 3) 5 0223 ~b 1501 181 0 0 I 21 328 3lt bull) 0222 0311 1506 l 56 o 122 32a 39) 0225 ctcr 1510 l SO c122 330 390 0221 bull~ _middot middotmiddot-151~ lltS Cld 32B 390 0221 I~ 150 2 co 0115 3ZR 390 0220 tTt 1525 2 cs C I lO 328 3SO 0220 bull15~0 210 C 11] 330 390 0221 0289

( 1535 21s C l middot~) ~20 390 0216 +rrmiddot 1540 220 tt~ 12Y 390 016 XlC-$1(1

1545 zc~ (lt(I~ 328 3()0 015 Cr4Ccent

1550 23-Cmiddot bull fl 328 39C o 715 tCit q

15~5 235 330 39 0 0215 lCi9bullbull 1(cot

160() 4C ~l)l-fl 130 390 o 13 0274 161)5 2 4 ~- _ bull C1~ ~ 328 390 0211 (rj

t1ilI ~~G DA Tf Ttt Li ---- DAT A Ol~rA~fJEO 7 OU Sr Pit tll I OIITt

126

r

middot1

AGC-220-2 $02-03 PROPENE GLASS CHAMBER 1976 AUG 19

t (

CLCCK ELAPSED ozmiddot-E TSl REL rlUI S02 PPCP EtliE TIME TME I Mll l I PPI J (DEG Cl 11 I DP-1 l I PPFgtI

(

1611 251 0085 3o 3t5 o 21-4 ~~lJltf ( 1616 256 C090 328 385 0211 middotmiddotmiddot 1621 261 0085 33o 3S5 c 211 (ercent

1626 261 QCd3 330 33 5 C208 = ( 1630 270 ocn 33o 5 0209 0254 1635 275 OCdl 330 35 0208 ~ 1640 280 0078 33 O 335 D209 bull~tbullitt

( 1645 285 0011 33l 3amp 5 0205 bullcentt41A

1650 290 0076 330 3B5 0 2J5 bulltcbull 1655 2cs 0076 330 385 0206 middot~

C 1700 300 (1071 33a o5 C205 024S

NO DATA TAKEN ---- DATA DSCARDO QUEST ON ABLE CATA ( middot-- -----middot-middot-middotbull ----- bull - middot-- -

(_

C

C

(

(

(

(

r 127 I

AGC--1 502-03 GLAaS (HAliH 1976 IIUC 20

DAIK BRADY 1296 C~LIBRAT[O~ 1976 JULY 16 ril NE WAS INJECTED AT 0933

CUXK fl ~rsrn Ol(lr lS l il El HUbullI smiddot 2 l I MF TJbullE ( NI ( r1) lCEG C) ()l ( PP I

I

845 o oc 32 7 440 0379 850 5 oo 330 435 C360 855 10 oo 330 435 C377 900 15 oc 331 435 C376 905 20 oo 33o 435 c J 76 110 25 oo 33Q 43 5 C370 915 30 oo J3l 430 0370 920 35 oc 330 430 0369 925 40 oo 33l 430 03amp9 930 4) oo 330 430 036 935 5C o~gtt2 324 425 0360 940 55 0576 330 425 035$ 946 61 0572 330 42 5 03~7 951 66 o 5 7 330 425 03~S 956 71 0569 33p 425 0352

1000 75 0567 330 425 o 3$2 1005 80 o 567- 330 425 0349 1010 e5middot 0562 30 425 C349 1015 ltO Cmiddot 551 330 420 C 34 7 1020 95 0557 330 42 0 a 34 7 1025 1 co 0554 33 l 420 0344 1030 105 o 552 330 420 c 34 1035 110 0552 33Q 42C o 342 1040 115 middot 550 330 420 o 34) 1045 120 0545 330 420 0342 1050 125 o 542 33l 420 middotO 340 1055 130 o 542 33 I 415 o 30 1100 135 o 540 331 4 l 5 C340 1106 141 0537 330 41~5 0336 1111 146 0537 33I 415 0335 1116 151 0532 330 415 0333 1120 155 o 5 32 33l il 5 035 1125 160 0530 33l 415 o 333 1130 165 C530 331 410 0332 1135 170 0528 330 410 033 1140 175 0528 330 41 () 0330 1145 1eo 0523 330 410 0 bull 325II

r 1150 185 0520 330 410 o 326

1155 190 05) 330 410 0325 1200 195 0515 130 41 0 0321 120~ 200 c~1e 311 4()5 034 1210 205 o13 330 45 O 32 l

ft 1215 2 LO I) 511 330 405 0311 1220 21 s f~ ec gtlC 33 I 405 c20~

i_ 1226 221 0503 330 405 0319 1231 226 osoa 331 40~ 0 bull 319

~ 1l J ii

1236 23 05ll l30 405 0119 1240 235 OiOl 330 40S 0318 1215 240 051)1 l3 o 4GO o~1s

f Ij

1250 24 04H1 BO 400 0 314~ I

middotbullbullyen ll() r11u TKEI DATA or ~c11ourc iIJl l)NeLE DATA f

f

~-

~ 1

f -~ 1l 1

~t 1 128 l

IJ 1

~-

1 1

bull

t-~ I

lIT 1 l

middot(I

11

AGC-221~2 S02-03 GLASS CHlMSER 1976 AUG 20

t J

middot

t

rr

a ~

bullmiddot ~

(

--1255 --middot- 250middot 049smiddotmiddotmiddotmiddotmiddot- 330 40omiddot---middotomiddot~jfi middot-middotmiddot-middotmiddot--------middot----middotmiddotmiddot-middot---~middot-middot--middotmiddot- middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

i l3b0 255 0493 331 40C 0313 ~ 1 1305 26J q 493 33 o 40 O C_309_____ middotmiddotmiddotmiddot--middot-middotmiddot-middotmiddotmiddotmiddot--middotmiddotmiddotmiddot------middotmiddot--middot -middotbull-middotmiddot-middotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot middotmiddotmiddot--middot-middot-

1310 265 o411 n 39s o3oa middot C 1315 270 0491 332 395 C308

1320 275 0489 331 39S C310 - --bullmiddot-middotmiddot- middotmiddot--bull-middotmiddot middotmiddotmiddot-middot-middotmiddot- _ middot--- -middotmiddotmiddot bull-middot

a tlmiddot

)

13zs-middotmiddotmiddotmiddot2ao~middotmiddotmiddot-omiddot4a9 33middoti--middotmiddotmiddot-ji~cmiddot middotmiddot 0309 C 1330 285 04114 332 39C 0307

1335 290 0484 332 39C 0308----middot13o middotmiddot 29s middotmiddotmiddotmiddotmiddot0middot4s1middotmiddot middot ir~middotxmiddotmiddot -middot59 c 0~middot3ci4 --middot bull--middot------ - middot--middot--------middotmiddot-middotbullmiddotmiddotbullmiddotmiddot- ---middotmiddotmiddotmiddot-----middotmiddotmiddot -C 1346 301- 0481 332 385 0303

1351 306 0479 33l 39C 0~304

H c

1356 middotmiddotmiddot311 middotmiddotmiddotmiddotmiddot-0middot~middot419middotmiddot middotbull middotmiddot33~1 39 omiddot o 303 1400 315 o476 33t 390 o302 14C5 320 C476 33l 390 0299

-1410middotmiddot -- 35 middoto474 33l 390 0298 1415 330 Q474 33l 385 0298 1420 335 0471 33l 385 o296

a i425 middotbullmiddot-340- 0~469middotmiddotmiddot 33 385 0294

1430 345 0457 332 385 0296 i

f J

ffi C ~

1[ C 1middot11

lf~middot i$~ C

(

(

(

(

(

129

i I i

-

j i iI

l j

l i i 1

ampGC-222-1 SJ2-N X-SURR-U GCASS CHAll~fi 1976 AUG H

O~RK CO FACTOR lq122 eR~OV 129~ 21 ~l ~ox INJECTED AT 0920 HJURS AT T=o ~c~-METH~~E ~ bull 1740 PSC MTHAN~ bull 32CO PPB

CLJClo ELAPSED 0ONE CJ TSl ctEL HUll SmiddotZ ---middotmiddotmiddotun TlM~(M1-ifmiddotmiddot-PPM)middot--(p y ID~G Cl - u IPP~I

q4~- middot-middotmiddot-middotomiddot oo 53 n2 465 o--j~ middot-------middot--middotmiddot-middot---------950 5 oo 56j 33l 465 034~ 955 10 0 002 5 65 n l 46 5 0344

1000 15 oo 561 HO 465 0344 ~ 1005 20 oo 560 ]30 465 0340

1010 25 bullbullmiddotbull bullbullbullbullbullbull bullbull~middotbullmiddot bullbullbullmiddotmiddot middot~middot~bullmiddot------bullri1s 30 oo middot 563 33o 465 o1Ja 1020 35 oo 564 330 465 0)38 1025 40 oo 5ss 330 465 0337 middot----103) 45 o bull i 556 330 4amp5 o333 1035 so oo 5-~6 130 465 0335 1040 55 00 556 330 460 0332______ -----middot---middotmiddotmiddot- --------------middot i 1045 60 00 551 330 4bO 0332 1050 65 OJ 552 330 4bO 0333 1055 70 oo 54il 330 460 0329_---------------------1100 75 co 548 330 455 0329 1105 so oo 548 330 455 Q327 1110 85 00 547 33l 455 03_6_______ middot-----middot--middot---- ------middotmiddotmiddot-middot 1115 90 OO 550 33l 455 Ollb 1120 S5 00 548 33l 455 0325 1125 lCO OO 55 33l 455 0324~------------------------(130 ____ 105-middot-middotmiddoto002__ 542-middot 330 -- 45o 0322 1135 110 oo 540 330 450 0319 1140 115 0002 542 330 450 0320---1145 middot -middot--120 0002 5ia 33o___45o omiddot319____________ middot------bullmiddot--middot 1150 125 oo 540 330 middot 450 0318 1151 0 o 541 330 45 0 03_1_8_________________________131

1200 135 OC 532 330 45C 0314 1205 140 0010 539 330 450 0311 1210 145 oo 535 330 450 0314 1215 15bull) oo 534 328 450 0313 1220 155 00 533 330 445 0310 122s 100 oo 534 33o 445 0313 1230 165bull 00 52b 330 445- 0313 1235 170 oo 531 330 445 0310

1240 175 00 53()___ 332 44C 0 0_3C________________________middot-middotmiddot-middotmiddotmiddotmiddot--middotmiddotmiddot-middotmiddotmiddotmiddotbullmiddot-middot--middot----- -middotmiddotmiddotmiddot--1245 180 00 526 33 l 440 0303 1250 1s5 oo sza 332 44c oJn 1255 190middot oo 529 332 435 0304~--~- -----------middotmiddotmiddotmiddot-----middot-----------1300 195 oo sn n2 435 aJes 1305 200 OO 52b ]32 435 03l4 1310 205 oo 524 332 435 0304 1315 210 oc-62 s24___ -~3i -middot--middot43s o302middotmiddot--middot------ middot- middot ----------------~-- -1370 215 00 523 332 435 0300 1325 220 oo 5 lil 332 43c ono 1330 225middot middot-oo middotmiddotmiddot-middot--s -19middot --middot~j~z--middot3if-middot 0300 ----middot--middotmiddot----middotmiddotmiddotmiddotmiddot-middot middot-- -middot--middotmiddot -----middot

r BH 230 oo 519 33l 43 G 03iO 1341 236 oon 5 IIgt 33 1 -3 0 in1

1345 240 oo 5 15 H l 430 J297 1350 245 oo 5 13 3l2 43C 01~

bullbullbullbullbullbull NO nTA TAKE~ ---- 0lTA 01 SCAPgtFl

130

AGC-222 2 S02-NOlt-SbulljRR-U CLASS CHAMBER 1976 AUG __ 24

0

----------middotmiddot-----

-- 1355 ____ 250middot-middotoo s13 332 41c 02 middot -----middotmiddotmiddot-------------( 1400 255 oo 5lZ 332 43C 0294

___1405__ 260 oo 5 ll __ H2__ 3t3C 0_293________ 1410 265 oo 512 330 43= 0291

1415 270 00 50ltgt 330 430 02ll 120 215 co 501 32s 43o o2bulln ___________________ ---- -------middot -middot--1425 280 00 503 328 43C 0211

C 430 285 oo 578 328 425 0291 143 s 290 o o s 04 32 s 42 5 o z_a_________________________--_

--To---i9middots oo 504--fj-middoto- 1t25 middoto-zag C l4t5 300 CO 502 330 425 0283

1450 305 oo 5oz 33o 425 ozss___________________________ lt55 310 00 497 330 420 0283

middot 1500 315 OO 499 330 _42C 0285 1505 320 00 496 330 42C 0285----------------

--Tsio 325 o-o---soo 33o 4z-o--ozas 1515 330 00 501 330 42C 0285 1520 335 0002 493 33o 415 o2a______

----1526___341 oomiddot---4~-33l 415 0281 1530 345 oo 493 334 415 0280

__J2~1__3j____~g_ 492 332 415 Q__1_80_________________________ 1540 355 0002 491 33t 415 0273 1545 360 0002 492 330 415 0280 1550 365 G0 4 93 32 8 41 5 0276--------------------------1555 370 oo 489 328 415 0276

C 1600 375 00 489 328 415 0275 1605 380 o o 4 88 33 o 41 s o__2_1-=1--------------------------c-------H io 3a~-middot002 490--ffa 410 f21-

( 1615 390 0002 483 330 410 0212 1620 3c5 oo 487 330 410 0211_______________ 1625 400 co 481 330 410 0274

C 1630 405 0002 481 330 410 0270 1635 410 0~002 487 330 410 027-=)---------------------------1640 415 oo 480 330 405 0270

( 1645 420 0002 4i5 330 4C5 0269 1650 425 0002 481 330 405 0210 ---- -----middot-- ----middotmiddot-middotmiddotmiddot -------------------1655 430 00 463 330 405 026b 1700 435- oo 484 330 405 0265

--~70115 ______ 440 _____ oo 482____330 405 _026_6_____ 446 oo 482 331 405 0266

1715 450 oo 4 77 332 40c o2u 1720 455 oo 4 74 332 40C 02E4 1125 460middot--middotmiddotoo middot 479 n2 40c 0265

1bull 1730 465 00 479 332 40C 02(5 1735 470 00 480 33l 400 02t4_____

--f140 475 co 4 75 n2 4oc 020

middotmiddot-middotmiddotmiddotmiddotmiddot-middotmiddotmiddotmiddot-middotmiddot ----middot-------middotmiddot---middot-------------middotmiddot---------middot-middot--middot--middotmiddot---middot------ --middot----middotmiddot

----------------C

bullbullbullbullbullbull NO OITA TAKE~ _1 QU~STlnNIHL~_CATA

r

131

0 AGC-Zll-3 smiddotczNOX-SUR~u CLASS CHAISER 1976_ AUG 24 -middot-middot middotmiddotmiddot-middot -middot

_CLOCI( _ELASEC ___ OZCNE_ CO ______T_Sl REL HU _ SC2 TlHE TIMEl~INJ IPPI (PPMI (DEG Cl (II IPPMI

-- 1805 -- 500 -- oo --2--331 395 02cl ( 1s10 so oo 472 332 395 ozs6

1815 middot 510 oo 4 70 339 395 0259___________________~----1820- 515 omiddotc middot 69 34 1 39 5 0-~lsi

( 1825 520 oo 469 34l 3gt5 0256 ___1830______ 525i __oo___46S__ 34t t9_5___ o2ss _________________________

1835 530 oo 467 34l 395 0256 ( 1840 535 oo 466 342 395 0254

1845 540 oo 469 342 3S5 0254_________________________ --irngt----5s oo 461 342 iis_____o--fsi

( 1856 551 oo 466 343 395 0255 1900 555 oc 4-oo 341 395 o254~---------1905 560 oo 470 34l 395 0254 1910 565 oo 465 341 395 0252 l 915 570 0 0 4 51 34 bull 1 39bull=5__0ebullc2-5-2__________________________ 1920 575 oo 464 341 395 0249 1925 580 oo 458 34 l 390 0 249

1930 585 oo 45a 341 39o o241____~------------~-------1935 590 oo 465 341 395 0249 1940 595bull middot oo 460 339 390 0~245 1945 600 oo 4ss 339 390 o~2~45__________________________

--C95(---6C5~--o~o 458 34l 39~0middotmiddot-0247 1955 610 oo 461 338 390 0244 2000 615 oo 460 338 390 0-2~4~5_____________________-----

2005 620 00 456 339 39C 0244 ( 2010 625 oo 454 339 390 0245

201 s 630 o 002 4 59 33 9 39 c__o-_=2_4J--------------------------2020 635 00 456 339 39C C245

( 2025 640 0002 453 339 390 0241 2030 645 middot oo 455 339 39o 0241 2015______ 650 ----middoto~--middotmiddot--453 - 33 9middot-middotmiddot 39omiddot o239=------------

C 2041 656 0002 459 339 390 0239 2045 660 0002 459 336 3B5 0238

--2050 - - - 665 -0002 45z -i3~B--3as middot 0231middot-----------( 2055 670 oo 451 339 3ii5 0237

2100 675 oo 451 339 385 0237--2105 680 --oo 44smiddot-----33-9---middot3s-smiddot--o237-- -------middotmiddot-middot--------- - -----

C 2110 685 oo 453 339 365 023 2115 6~o co 44a 339 3as o23~6___ 2120 695 oo 44) 33C 365 0236 ----middot----middotmiddot----

( 2125 700 oo 455 339 335 0232 2130 7os _____oo ______449 ______33 bull ____ 3-a 5 ____ 02 J4_____________________ middot------middotmiddot-----

bullbullbullbullbullbull NO DATA TA~EN ---- DATA DISCARDED 1 0UcSTIONASLE DATA

--------middot-middotmiddot---- middot--middot--middot---------middotmiddotmiddot-middotmiddotmiddot middot-middotmiddotmiddot------ middotmiddot- _________ middot------

132

l [

f

l i

t ~ C- 2 2 -middot 2 - bullj tmiddot- $ VXA- _ Gl~SS C 1~gt ti 1976 H Z -h

lC~ 710 ~IN TO ELAPSfC TIM~

CtCCk tlh~~~e middot_lC1Ji ~l T P f ll ~ Pi l p bull n I ) ( E Cl

middot13s middotc oo middotmiddot s i9 middot 21~0 JQ bull 51 3 C 2145 Le 1c bull 1~- J_a 2 l ~C cc 4 f 21~5 oo ~ ~ ~I~

22middot)0 2 CG 3 middotn0imiddot- middot3middot1 j ~~3 -cc

35 ~c 3 ~- 9 i) C t 3 l~

bc ~ bull ll middot3 - ( 222c 5 l ( c bull 4 2230 55 bullbullbull 1 ~ ~1 2235 middotc middotc ~ QC ~ ~ 1 I 224G C 5 C itbull 3 ~ 7 2~ 5 70 oc ~ 3 I 3L 8

2~5 1smiddotmiddotmiddot oc middotbullbull-i -~ 7 215 FC oc 230C CS 33 S 205 sc 3i 5 231C ~5 CO 440 ~3~4 2315 lCQ 0c____ l)~-__ i~middotzc------imiddotsmiddot~ - u c ibull ~s 2325 l l O oc ~ 4C

2BC ~-9 _____ 41 _ 235 u 3(61

2340 liS bull C C t 34 235 19 Cc middotmiddot------~middot])2350 1 5 bull 0 C bull 3 3 1

2355 l-8bull cc i3lt 33 1 0 l~ ov 43 )31

--middot-s middot-- iSv oomiddot ~31 331 ll 15 6 Oc ~-27 3i~C

C _)-(1 20 -middot iljmiddot oc I 2 2 d 25 17C J i2 32 B 30 _J 1 5 ___9 c_ ~7 G35middot-- 24 3 8 4C 125 oc bull 2i 3225 lCbull __QC 4 2~ - bull n 50 15 middot 3l55 2c i 2 5

l co_ _2 ~ ~21 10 ~ 21c oc bull z I lt1 11 J 21 r bull 4 bull ~middot 6 u______ -middotmiddot_ac o~ _____ it bull ( 120 2~ o~ ~2

15 130 j

middot I 7 tbull 1 J t 1

- --- - 1 1 r -

~-1 1~- SC_ l P)~)

c ~ ~7middot

~3T middotis4middotmiddotmiddot

3 bull 3 ~ ~

3 ~$ )

)

J8

3 J middot

3-3shyJS~ -

3G 3BJ i $

Id i c 3 j

3 3 5

3SC 3 middot-~c bull C _ bull C 3 (~ 3j imiddotbull 3

~ r middot i c

0220 1) 2 H ) bull ( 7

c~J ~ _ 7 G -- 0 u 2 2 gt J22o J2D imiddot

G bull (2 ) 2 ~2 c21 -21 bull 2 l cn Cl2t C 22l middot~ 2 3 7 2 G L t(t ( 2 l middot1 C1219 G~O 16 ) bull 216 0 216 cdmiddot i) bull 15 ~214 ) bull2 t 7 C ll 3 ) bull 13 bull 2l 1 )2 h

( 11 G bull 2 01

133

T

AGC-2l-S SC2-1x~~ltR~-LJ GUSS CHMmiddotWE

J l176 AJG l~ l

ACU 71C MIN 10 ELArsro Il~E

CLrCK EL~PStC CZ~NE cc 1 S l f L i Lbull S1 2 THit rmiddoti ME ( lbulll jmiddotJ ( po11 middot1 ppl(J iCtf~ (~I lPr-q

1 s middot-2smiddotc- 00 middot 4-~ middot 3middot C2CJ 150 255 U C 1-t~l ~L0 155 261 cc 421 32 3 - 200 26~ 4 b 3 _ s --~ l 205CbullC

20 5 2 7 C li bull ~ 4 bull t 2 3 ~~ i C i ~J bull C ~10 ~J_ ObullQ middotmiddot-bull~ rt ) 2bull~2 Jis-middotmiddot 2euro0 0Lo 1ll ~~~bull J 2(

220 2~middot oo 119 j 02c 225 2S0 0 bull1 Ui 3 3 bull 2C 2H i9smiddot cbullmiddotmiddot 4middot11 - l c) 235 JC C~ 46 ]2~~ ~- ( bull r G ~

2o 305 cc 1 _2l 3 020 middotmiddot 2smiddot------ middot 31c oo middot4middot2t 12 bull i 2~-

250 315 CO 416 3l5 C2Qj 255 32J o 4ll ____1~ 3S 5 lbull 2fJ2 3JO 35 OC 407 I i L bull 02 3C5 330 CC 414 3l~3 3S J l bull 2Cmiddot 310 33 cc 4 1J 31i 3 I~ 5 CtCl 31s middot30 cmiddotc middot--middotmiddotmiddot13 313 3S C Si) 20 345 o~ 414 31J 3middot ~) C2C) 325 350 oc 4Js 313 3 0196

330 3jJ -middotcc 410 31i 3( 5 J 14 7 335 360 uC 410 3l2 3 s gt i 1 S6 341 366 00 4C4 312 3 s_ C l_Y 7 3~5 370 GC 4d 3l2 3 - bull s ) 19 I 350 375 oo -t)8 312 S bull 3 L 1 e 355 38C OJ 401 312 _y~ C I l~ 400 3i~ oc middot 4~2 312 3S5 C195 ADS 390 OC 4J 311 ClSi

______41 c ______ ys______ n ~----- ____4c4 _______J_1 3 middots 5 01lt7 415 -tCO CQ 117 311 35 0 i 2 420 4C5 OC 4C 311 ymiddot J] 4 2 5 __________ 4 lO 0 ~ 4 ~_ -~ l I C I~ 43C 415 0bullJ 3S9 31 l 3 bull 5 (ts) 435 420 CC 47 JiI 3 middot - bull ls l

____40 4 __c_ __________ __2___ 31bull i - bull 8~ 445 430 )C 3S3 311 3 middot v1c1middot1 450 435 O~ 3middot3 31 l 3 middotbull n 1 c)

_4_)5 _____ 44~ 0 bull ~ It~_-) bull J 3 middot ~ bull 1 d 500 445 oo 4tl 30c 3 middot C lk ~cs 45G o ~ ~o zc~ 3~ 5 u te 510 1 j j 1 8 middot 55 460 0( 3 C middot ] ) 1_ s2O 405 0c 3 middot I 30 C j gt C l 8

52igt_____~1l __ ) c__________ i bull ~J___j middotmiddot-middotmiddotmiddot- -~ Gbull d J l 7 530 475 Ot 4l 3Ci bull S

4eo J

_middot 3-bull I 3 -d jJ -~ V I H

134

I J

A~C-2l2-6 5ji-NOK~S0KR-U GLASS Cf_cofJ 1976 AUG 25

ADO 710 MIN TO ELAPSED TIME

CLCCK EL1~SED middotrbull C i TS l t rl _ ~ t D c ~ ) (fI)TlH THfPbullIH I )G Cl l-l

55 500 oo 3C 7 I) 5 ) bull ~4 600 507i 3 93 3middot) I 3 middot) ~ J bullbull middot)2

605 51() ) bull 9~ 30 610 15 3 1S 3J 7 r~ ) ~ i 615 520 00 396 30 7 n5 -) bull l 6 620 ~) 5 ~ 0 bull]7 3( 7 -) ~

625 53C t- ~ 0 5gt~2 3iJ 7 ~ gt 630 5~5 oc 69 3~5 )13030 65 5) )0 3 - 3) 7 _ i ~ bull ~l

640 middoto os2-middot - 3 Ji o 7 j ~S -Jmiddot1middot7d 5 1t5 i 645 5~0 oo 391 305 ~ J131middot 650 555 oo ~dd 3G5

655 middotmiddotillf Cmiddot o 3 9J io ~ 7JO scs co 3 sc 3C 705 570 o ---middot-middotmiddotmiddot-nrmiddot middot - -- cmiddot o middot 715 seo Ii GJ2 middot1 middot 5 J l 76

57c 0 s 720 555 C 31 5 ol v J l 73

-- -725 sso o u ~ rmiddot-middot-- 3bull) 5 ~ ( -middot----y~rrr----- middot middotmiddot 730 gtlt3 o Cl2 lt 3C 39G J-l 71

735 6C-O oJn 382 3C5 ~--J bullJ i17o 746 - -ij~ c-002 3 37 3middott1 3middotmiddot~middotT- )itb

( 745 ~10 Omiddot) ll 30~ 3 ~ J Jl3 7$0 615 CJ 3 H l 3J I ------- -75 ~ - middot-- 62 --- o Jo2 ------middot Jaf -il (

( 800 625 Ci J 3 8 l 3 l 3 3 C ]72 805 6~~ G 3 3-t Higt 3 7 C J l 72 810 i 3 5 i iJ ] 1 3middot ) middotmiddotmiddotmiddot middotmiddot1 fj-middotmiddot --

( P15 610 ~ 3) J) - bull 73 20 6t _ c2 32 J bull 1 7 ~2 s 6) 0 bullbull ) i l l 3d l 3 ~I bullO ~ J (1 i

( 830 65 oo 3 l~6 3t3 3- 5 ~j -i1 i)

835 UC vo 3 77 3) 3 i bull 1 7) middota4Cl- bl C bull ) 3 31) 32 middot1- ) s -~ 1C)

a4 s 6n 76 middot 3 i) 3middot ) )ll ao o7 (i0 j gri 32 7 34 ~ a19

middotmiddotmiddotas1 middot---middot middoti8i omiddotmiddoto j o middotmiddotmiddot32ibull ~ t-~--cmiddot middotmiddot i ~middotmiddot 900 6 0 ) 7) ~ 2 l ~ 1- 7 ltJS 6Jj C 0 3 __bull -~ 32 bull 1 ~

-910 ftJ 00 L ~-~bulli

(

f 135

I

r

j I

AGC-222-l S(12-N]~1-St 11~-U GLASS (bull-Ufis 197( Au 25

ADO 710 HIN TO ELAPSEC TIME

CLOC~ fLlr5~J oz~-J~ CJ _TSl P~l 1U-~ _5J2 TIMf TPHlNJ (iPMJ (fgtbull-1 [IJEG Cl [) crPl

915 92~middot

7~ Jmiddot iCS

0 0 OOJ2

- bull lbull) 377

32 i 32

3 C~ --loz- iimiddot1-V O c 169

_925 7 ) 0 o 3 79 37 0 l c- 93) 715 00 3 79 32 7 0 l 6 935 7~C C0 n 32 7 0 l 64 940

i45 75 )

0) 0 0

~ 7_7 3 79

32 bull 8 3 3

middot3 ~ 33

0 Jc~ C lomiddotbull

75 oo 3 7l 32 raquo 330 O l l2 955 7~middotJ GO 3 79 32 a 33 0 0 16-t

middot1000 71 omiddoto bull middot1 33~ 3L 0 o 162 lmiddotl05 7middotC- oo 3 7S 3 bull3 33D O l 62 1010 1015

75 f-Jmiddot

uo 0 o

3 7o 3 7z

3) ~ 3) J

33 c 325

0 l 61 O l cD

1020 7c5 0(1 3 73 33 ltI 325 OHl 1025

-middot-1030 --770 7i5

oomiddotcomiddot

375 3middot middot1a

~-~- i 33 e

325 v _1593_i_-middot 0 bull I Sc 1035 co CG02 3 7) 3] ~ 32 ~ bull l 5j 1041 1045

7 7 0middot~

OD ( o 37S middot3middot~ f

13~ 33 7

3l~middot-z~middot ~- middotmiddotmiddot

Vlt~l c middot 1middot~~8

1050 7lt5 0 bull) 3 71gt 33 7 325 v158 1055 Smiddotjbull oo 3 75 336 3 2 5_ gt-t~-- _

~UES1l~NA8LE DAlA

136

l

Jbull j

---ACC-2~2-emiddotmiddot~c2-NC~-sugttl-1J _______________ --- -middot GLASS CHA-l~EQ 1middot91J liJC 25

-middott tc1-1rsmiddot O- 1100 -lH1STY 1Jf middotmiddot----- bullmiddot-middot -- --middotmiddotmiddotmiddot-- middotmiddotmiddotmiddot------middot-middot-middotmiddot middot- ---- -middotmiddotmiddot -- - bull middot- middot-------middot--middot- -middot co FACTuR l91Z e~ACY 1~1 TECO 14D ~IS ON TH CHl~OE~ FRO~ 11J5 TO 1111 1200 TO l2J5 1~00 TO 1305 1400

----middotmiddotmiddotro-1405middot lgtCJ TC 15J5 11 l01610 ANl lb55 TO 11Cv middotbullbullmiddot-bullmiddotmiddotmiddot- middot------middotmiddotmiddot TECO 140 s~raquoPLlG UTE 112a ILMIN PAN NOT ~EiSURED ~02 AND N~a VALUES NDT C0ARECTEO

---ATT=l5 MP NOS--ffVIE i-C =middotmiddot1130middot PP3C middotmiddot ~=TH~~E middotmiddot-middot29oc middotpamiddotmiddot ------ middot- ---middot-middotmiddotmiddot-middotmiddotmiddotmiddot---middot---middot-middotmiddotmiddotmiddotmiddotmiddot

CLQCK EUSED OZC~ J iJ2-P~N bull1-P~r ca TSl ~El llH Sl2 -T1~-e--1Mtnbull1Nrmiddotmiddotmiddotmiddotr11-r- - HbullJfr-middot middotmiddotr~- --- nirr-TPgt)n- middottoEG middotmiddotci--- ni middotmiddot-middotmiddot middot 1gtsi-1-middot--------------- ------- middotmiddotmiddot----

--middot-ruo c---rv----~i ~if----~----~-i---1middot-n-~1 o 32 lmiddot-middot -rrs 1105 5 OC27 ebullbullbullbull bullbullbullbullbull~ bullbullbullbull~bull l74 3Ja ~iO 0154 1110 10 oc54 a~3a csoa csJc 37bull 3~1 31s o153

---n 15 15middotmiddot--r-T~--t~bullJgtT--az-m------Ti-~-- bull 32 o middotmiddotoT~---------------l 12J 20 ~095 ~bullbullbull ~bullbullbullbullbull bullbullbullbull 373 34l 325 0149 1125 25 o11~ bullbullbullbull bull-bullbullbull H-u- 373 34l 35 014S middot

---rr3middot--middot-middot-middotmiddot3u---rzz-middotnH-----ymiddoti--nmiddotmiddot~---middot-rn-----r--n-smiddot-or~-----( 113s 35 0132 bullbullbullbullbullbull bullbullbullbullbullbull bull~bullbullbullbull 37ti 34l 325 014S

1140 40 0142 bullbullbull--bullbull bullbullbullbullbullbull bullbullubull 373 34l 325 0147-middot----x-Ps- middot----middots--middot -middot middotmiddotJI-z---middot-~i- middot --middoteimiddotn -- flyen----middot- 3-middot--J z----7)___ middotefv-2 ( 11so middotsc 0164 bullbullbullbullbullbull bullbullbullbull~bull bullbullbullbullbullbull J73 343 320 0143

1155 55 0176 bullmiddot 37 334 31-5 014312CO 5u---n1-middotomiddot1gt~-n-nmiddotmiddotmiddotbull--middot_bullmiddot~amiddot-~--nmiddot~--5- --v-1~4-----1205 65 0138 0~21 44~ 0468 371 33 31S 0140 1210 70 0198 middotmiddotmiddot~middotmiddot middot~bull 373 3)5 31J 014012(5 15 20d omiddotn n ~-n- 36l 3~ I 31V--lr~~--------------1220 80 0211 middotmiddotbullbulltbull middotmiddot~middotmiddotmiddot 372 337 310 0138 1226 86 0225 bullbull~bullbullbull bullbullbullbullbull~ bullbullbullbullbullbull 371 ~3S 305 0138

---rz3middotcr----middot- u--middot-rz-zr--nmiddot~bull-bullmiddotbulln--middoti-1f 3 1r--TS-e--rcmiddot~5-middotmiddoto-r3-1235 95 C234 bullbullbullbullbullbull 373 33~ 305 0138 1240 100 0244 u- 3 74 33S 30S 013b_______________

--r-245 105 o~middotmiddotn-~n---~nbull 3lamp-33 l~o7no 12somiddot 110 o2s bullbullbull bullbull 3 10 339 3co 0131 1255 115 021gt bullbullbullbullbullbull bullbullbullbullbullbull bullbullbullbullbullbull 369 33 30C 0136

--ncHr----zu-----zb-middot--tmiddotbullmiddot~-----middotpoundn----i-nu 3 11 - 34 l 30-imiddotmiddot-r-rn~----- ---------~ ( 1305 125 0263 OQZO C370 C390 362 34l 29S 0134

1310 130 0286 366 343 -295 0133--n-rr--rn---rz-middotr~- bullbullbullu 31- 3--z 2s 0133_______________

( 1320 140 0303 bullbullbullbullbullbull 367 343 295 0131 1325 145 0313 bullbullmiddot 310 35~ 295 0132

-----nomiddot----5u----o---Jr~nmiddot-----$--bull bull bull 3cs-middotmiddot-3middot5~ro--onmiddot9~---( 133 s 155 0325 bullbullmiddot ~ 367 345 290 0129

1340 middot 160 0332 bull 370 35b 29() 0129 -------r-s---n-TlT---Thh Ohu hmiddot 3b9 356 29J---omiddot129_---------------

( 1350 170 0144 middotbull~~-middot $ 360 356 235 0129 135S 175 0352 bullbullbull~bullbull bullbull~bullbullbull 36amp 351 2a5 0129

-middot-middot1400middot--middot--1middotpound0middot-----0---i-srmiddotmiddotbull~-yen----middot-middot-r-bull ------y-fi~---7-S-t---za--s-- (fTzz----------------( 1405 185 03b2 OJZ5 C31C 0335 367 357 285 0127

1411 -Ill 0371 364 357 28l 0125--ras-15---middot 0376 ~Tlaquo middotmiddotmiddotmiddotmiddotmiddotmiddot-bull J64 middotmiddotmiddot351 2lt1s o--lZ5~-------------

( l420 zco o3a3 bullbullbullbullbull bullbullbullbullbull bullbullbullbullbullbull 36- 357 zao o1z3 1425 2C5 0-391 bullbullbull bullbullbullbullbullbull bull~ 36 358 250 0125

--middotmiddot-1130 middot-middot-middot2lo oJmiddotu--- --- bullbull middotbull~bullbullbullbull - 3sd--JJ - zaJ middotmiddotmiddot 0-125 ---------( 1435 215 04Jl bull bullbullbullbullbullbull 362 36G 28J 0122

1440 220 0410 middotbullbullabullbull bullbullbullbullbullbull 362 34~ zsJ 0122 middot 145 - 225_ o413- bullbullbullbull --- -middotbullbullbull 362-middotmiddot- ~~-c-middotzao middot 0122=-------------

-----middot-middot--------middot- middot-------------------------

--middotr-so 230 D42~ bullbullbullbullbullbull bullbullbullbullbullbull bullbullbull~bullbull 3~~ 35~ 1= o_120

middotmiddotmiddotmiddotbull middotmiddotbull~~-1455 23~ 042~ bullbullbullbullbull ~ 36t 35ry z1s C 12 I 1500 240 04Z7 bullbullbullbullbullbull bullbullbullbullbull~ bullbullbullbullbull 3bJ J~l 27) o liO

1505 middot middotmiddot-z smiddot-middotmiddotmiddotmiddotmiddotmiddot o 43-s middotmiddotmiddot middot-- middot fy-middot-il6 t -- o Ao ______ 1~ s~ middot l5 Z 7~ ~-- middot- c-11c1

OlJI~ C) ~c f l l() 41JJ Pgt~-tI-i2

OLGlE CJ G S C10 41~ 12 o middot~r1 ~~2-PA~ CC A~ ~rmiddotmiddott~21 Jbull bulli-1 middotpi-~-middotmiddotqN

137 )

_j

j

I ___~ -Irr-=rgt--~ fi -~pJ13 microc w--7 Fria---+ a-bull---middot--=-r ---rc=u- r ~~1-- r-=~l ~~ _ _ ~l~ ~~- _j =middot1 - --1 middot~----=---i ~-~

i 97 7 -- ~

~- bull -_bullbull _ -

-~ middot o- l ~ middot_ _ --c 5

-_

- ~ __ -i1---)

-bullmiddotJ _ deg _~Li--lt Cttf~middot -~J_J Tl Slr-Y~ --- cbull T[C-T~ - l c 7f t C i_ I---lt

l bull - ~ ~ --~ - - _ _-- ---

~i~ gt bull Tftf- iJbull-~_ jl ~~SiF= middot middot1F ~1 _1~-CLD_

SY~ l-~l1~ 24-5-f o --tY VJL c C ~-~PL[ PCRT

--~ __ _] 5 bull1 - ltmiddot_-_middotbull bull --~ ~---r_ r~ -t imiddot c1-~-middot rrc-i c---middot--u1 1Nr =ii - ~ L _ middot L ~ -bullbull bull bull bull l ~ middot~-l_~ st lmiddot ~ ~--t1 iC cbullmiddotbull-_fCT LEil

_-- - __middott_i middot-middot LAT r= ~ ~- T ) r middotmiddot-1 r-- ~ - _- ~ ~- ~ - bull i I 1J 1 middot- 1 ~ j_ t __~i~ r-lbull bullbullXtL-JC nt1

middot -1-bull Ci--1-r bull

_ bull ~ middoti ~ - i) rtJ rmiddot

_J 1rmiddott

1_() l t ~ ) )20

i -~ bull middotmiddotmiddot- ti0

i middot - ___ --~bullrJ

l 111 i 300_

lbull~ 36)

lbtt5 _420 _

l l bull 1t50

2J ~ ~j

63G lJ-i)

vv Cl lgt

n-9C

L~middot--~TICf~S iPPl-1

~-~~--~-~--

c bulln

i t~ -t -~

_middot bull ~

)l J) J

i 3 1 3-J

) l tJ imiddottJ

middot 7 H middot)

-pbullJO 3-JltJ)

11 ri~J )100

il 1-1 3110

ai

9= (( ~ ~ -laquoiry

)- ~ (I

-- bulllt~

yenyen~11

) bull )bull 1)

3gt0

--bull- l -gt 1

bull1 bull 7 il)

3 7 2 1 J

396 Ibullbull 3

1 2 l bull

39 bull -gt

ld d 310 fu l

3d 1t

70 ii 36ltJ nJ

-

( tic

-0~i

iu~

~-

raquoyen) ~

j_-4

i q

I- w

_ ~ I i-1

i ~ bullj J bull j

)_)

ur fj

iJ (bullmiddot1 -)

~ (~ ~ 6 _

l 2 v2 u

126 o t~

t ~ 6 ~ --)bull-1

ltbull ~ -lt

rt gtltljcent-C

~gtltO~

it-~_~ L-J bull 3 12 l

0 - ~middot- imiddot ~- ~ - _ =~ i 1t f 2 3lt -1 bull 451 ~2J 42l l 0 478 ~ ~Jf(l yengtiO ~ 3middotbull 5 t r bull~ ~ i-1 i8 bull U15 6 JJ bull l 356 o~3 fi o 9i5 (ltti v1qgti c-c lltoi1 -11 l

- l - loz-__

i bull bull 5

l ~~ bull - ~ 7

l j bull 3 3- )

lJ bull lt 1 l C

l -t 1 1t 3

14 I t2 bull

lmiddot J 41

1 frac14 3 1t3 0

14 l 423

l iS 46 amp

~ middot~ 45-S

s s

pound 1 5 9

~J ~ ~

- 7

11 flgt~bull-

1- 11

lG _ l bullJ

l l bull f ) 1t t

lbull1 q s~ 6

l J 7 5 2

l O o Jl

tG 5 Jl lt1

11 ~ q6

10 l 303

)9 296

1-)0 323

62 lB e

(I 2 loo

(1 l cl 0

~ -_ l bull) middot ~-

_ 0gt i 1

Jr

rmiddot1 ctmiddottf-

aigt_ti

lUO r - l

loll (11J

1( hlH

l57 (110

~

160l

15lt t l_t

917 )(J -

91 l _-_

d7 3 i

c ~ middotmiddot ~ bullf ~rgt_(

1 Ibullbull 1t 1

1til 103

r 1i 92 lt

- 7 l9 t

3l) H 1middot1 6

4 02 b0 1t

402 804

40 t al l

6lttgto(t

(clE

4 l u 937

4l - 85 3

n4 41gt8

LJd 41o

ijO

9

r -- -- J

i~ middot- --

j _i bull 7 a

bull middot1

r 5 _fj

0 j 2l

0 j

L bull Ob 2

)6

middotbull ) bull 5

2 bull CH J bull i

07 l il

05 t9

o bull l~

0 1 t

_ f - I

PP C tJ

bullJ ~ C j_ 6 )~ 3

L 2 bull 50 5

P2 487

124 ti 3

t 49 o

liS 5JO

12 I 50 8

t2 t9 a

I 2 8 51 4

Ui 31 t

75 ltgt9

76 30 bull

78 H l

------ - -L )-middot _HmiddotrmiddotL r-__7bull=

Vimiddot~~c i-c~

1Y1ffbull

-t 6 7 ~~ g)

4J _ iJ

ltf 3 tt l d

ttfl -2 It

1t6 2 nr

1) 1 l l

middot15 6 274

4 -3

266 tlt

276 16 1

2 7o ll6

160 2( tl

lvi f2

2i6

L-i~bull-L ~~_pound_-- -bull~

-1_ bullbull 1

-Cbullli-

3 7 i l 7

383 d j

1 7 ltl

30 I 2 7o

39 1J

3o7 77

383 72

358 7 _

362 12

35B 4 3

21 7

221 7 l

3_4

~bullyen-- ----bull middot ~-- ~--~-- ~-Ibull_-bull_middot-(~~centbull f f _bull-_-bull ~-~~ --=middot-_- -~-tI ~~--~ middota1rbullbull middot _r~ -lt~lt-bull -_~ - middotbull bulli--e- -~- _ middotmiddotlr---bull

rmiddot=1=- r-~=bull1 l--Jfil1middot--1 rur=-=i -f~w-_a1 ~ _r~- r--ra-c=~ ~ f-1-tliiilllllit ~~ ~~~j bull~~-r--

l-i77 ~~~ 21 --- J- -

) ~ ---

L~~ T9~ _~-~i-J ri~rt~

bullmiddot_

- bull~ ~ l~ 1 101s

Jj 104-=i

(J

115 lcO

l 2t5 1 ~HJ

1345 240

l bull -~ 5 300

l )It 5 360

l t4 5 lt20

17 5 45C

2Cl5 t30

lJ4S ltgtov

ell i omiddotc

middot---middotmiddot rtC _t c

) 0 J 1)

(__ _

C5 l ~j bull bull__

( - bullt-eL

__ ) ftc_

middot- -) 3 15 l

lt)_o j 3

87 o06

~-ii-lt

$igt~((

~~n ~t-gti

e diams U

Gt1

~-q ti 6 ~J3

--~ r-

p C middot_7c _3 l _

bull ~7 3 3_-J - 2f1f

3 i 6_ 753

3l 9 2j

(

laquo 30_ 4 4 1

2$ _5____ ~-~ ~middot (t~

22 3 degdnt

UC

I ~ix

~bull r12

ff4yen

2 r 9u ~middot -~-- -bull 1middot- ~ ---~i 2bullmiddotJ

bull I ~middot 21

bull 2ltZ -

29t 1bull1

_20 ~ ~ nti

268 1a1

2H Bl

298 ~ bulli J

2~3 2~1

ilC J IC

l 72 l 1

75 [

middotbull -

~

middot middot

i ~ (J

bull-~J

~-- 01

1~middot1 lle-1 10j

tlgt~~ gt 111 middot)_middot3-~~middotlc 6(J3 1t 1J 0middothmiddot~

middotLgt7~ li-J3 ltbull=-

middot7lt1o i-_middotJ ~-rt_

S04H bull - j((bull)bullt

tlt~o

-JJ6 )JQf 1cLJJ

ll703 1101

) 1164~ llbfJ

~oc - imiddottI 0~middot1

V _deg J-44 l--r-

rt1 J bull 1 2- ) 12iJJ

f-- i

0

~ -~ _- -K_---middot~-~- --(middotmiddot -middot -middot---=-middot-)~7-- l(~f-~~ _-~- ~~middotgtamp--~ ~ _-1--gt ~ ~--~~~---~bull middot--bullmiddott~~ ____ ~~ J-P~---yen-4middotbullbull--middotmiddot-middot

i UO bullt _ Od_ (middot JJ ~ c C ltgt lj (l bull- N

rmiddot -1middot - bull~ ) l

bullI

I) middotd (middotJ J -~ - ~ middot JI 4 ) 0

~ bullJ ~ Jbull ~ 1 r M

i- t---

I

1 I00 bull lt CC NN 0 -0

lt)1l

middot)

-~ - -300 NN middotbull Cmiddot ii NN S (1- O 0-- ~ r- -

I I

~- rmiddotcshy -1 NJ bull1---1-

J middotshy

ltbull 0 s- bull middotl _ _ middotc o

0 -- j r-I-j r-- _

ru middot

0

~ rmiddotmiddot - lj a)

-J O

I lJ(_ - r- -

~ middot~~- _

r

_ (bull - ~J middot-- -

~ -j

middot -

I

middotmiddotmiddotbullbull I middotbull bull bull

-shyJ middotmiddotbullbull I JI -bull r ) 1 ~- I -

C bullmiddot -bull _ 11

i ) ) )

141

- ~

_

ij (Y

1

l

j t ~

1 l

l i

r t

1 i I

i I

I

i e clf ~~j

i Ii

J --1 c--c- r-middot rJ

llJmiddot t middot C C r-bull

- )

middotmiddot

1J middot

-~ CJ-- bullS- bullbull

middotC - lt ()~--

tJ~-r ~- r bull J)

-r--middot J 1 I ~ ~ - -~ _ _

~

~ middotbull1 r~1 J

middotr

I ~-1bull11 J

)bull ~ --

142

bullbullbullbullbullbull

__

SURROGATE RUN 223-U CLASS CHAMSER 1976 OCT 5

LIGHTS ON 1215 INTENSITY IOOt OF MAXIHU~ 39 CC SAMPLES TAKEN CO FACTJR l9lOl PA~ CALIBq 9 6~ADV 1296 1215 PAN SAMPLE WAS TAKEN AT TbullO TOTAL NON-METHANE

CLOCK ELAPSED TJ~e nx2uaN)

1215 middotomiddot ( 1230 15

124s 30_~ t3bo 45

( 1315 60 1330 75 1345 90

( 1400 1~5 1415 120 143()-middotmiddot 135

C 1445 150 1500 165isismiddot-middot-middot--middotiso 1530 195

1615 1630

---i645 1700 1715

--1730 1745 1800

OZCNC ltPPmiddot~middotmiddot

omiddotmiddoto 0020 q04 0011 00~8

5139 0159 C181

AT 1221 HCbull 2346 PPSC METHANE= 2950 PPB

middotmiddotc~J3middotmiddotmiddotmiddotmiddotmiddotmiddot~J24deg 0222 0)12 0242 011

~1 t 0 M1

O 150 oJ94 005s oo3s OJ28 oJ23 oJ20 0)17 1))15

- omiddot2sgmiddotbullbullo1middot0middotmiddotmiddot 0147 o154 5~53 0022 0081 0276 OJO 0140 0145 546 bullbullbullbullbullbull

N02-PAN ~OX-PAN er PAN _ H(fO 1orM1 11gtPM1 tPPll (PPrl IPPHI

0143 cz1H 5S~ OOCl OC40 o1s1 0212 s75 bullbullbullbullbullbull bullbullbullbullbullbull c200 o2s1 s 15 __ 0000 llt~bull ozca 0237 s12 bullbullbullbullbullbull bullbullbullbullbull C2)0 0214 572 OJll 0063 o194 0214 510 bull~bullbullbullbull o1ss 020s 563 o~14 bullbullbullbullbull~ 0181 0194 561 bullbullbullbullbullbullbullbullbullbullbullbull

cgtbull11) 0195 ~5_7____ 0_1)_15 _______009~ 0157 0176 ~56 M~deg 0161 C16g 552 0021 bull~bullbullbullbull oJ53 ()160 s51

~~~-- -middot -JJtmiddot-middotmiddotmiddotmiddotmiddottfrac12H----middot1middot-middotbullgffr-bull-g ilb----middot-middotmiddot11~------~-~-middotzmiddot

iii5middotmiddotmiddot-- 360 middot middot omiddoti19 oco2middotmiddot c068 middot o069 middot53i 0039 C

-- DATA DISCARDED

OZONE CJSAGE GT OlJ 5~53 PP-IIN OZONE DJSAre GT )gt~ 6466 PPl-N

N02-PAN CJSIGE GT 025 J0 gtPbull-MN

C

(

middot1-bull

(middot middot middot

(

143

240 0337 0012 0124 0131 539 0027 0024 255 0354 OJJ7 0114 0116 543 bullbullbullbullbullbull

middotmiddot210~---middot-middot0middot37-middotmiddot -oSoimiddot--middot-middoto10s o 10g middotsmiddotimiddot - 0~03fmiddot bullbull 265 0393 OJ~5 0099 0101 536 bullbullbullbullbullbull 3JO 041() 0l05 Cl93 0095 5~z -U_9Q11

_____ 3l5 0427 0()05 oomiddotsamiddotmiddot--middotomiddot8f-middots~~-B 330 0445 oaos C081 OORl 535 bullbullbullbullbullbull 345 0462 0007 C074 0075 539 bulllaquobullbullbullbull

TSl REL HUM IOEG Cl Ill

31 610 33I 630 338 630 336 625 336 620 336 61 5 337 610 33il 60 5

_y_o _____ 59 ~ 341 590 34 o 58 5 t bull 2 58 5 343 575 345 575

3t 5_______ 57 0 34 6 56 5 347 SbO 34 s 56 0 349 555 34 9 55 5 34 8 ------- 55 bullo 34I 550

lt 550bullmiddot 54534 55 0

middott--1_r_-0- ~-ur1~_1 ~-m1=-middot cacalJ-aej qr-middot_~=~ f 1r~bull~1 ~ ii~ ~~-lt a -~ -bull-I ------ ----bull----- -- -middot-- --- ------middot-----------

middot-------- ------ - -- -- ----l lt T 1 I~ l ~

LwO(~ATE 223-U-1

USS (i-A3cK lS76 CT 5

----middotmiddotmiddot--------- ------------ ------------------fgtCCP ne1PRATuRE STA3li TY ori POROiiiK-~I-T1isrRuMENT 134~- u~ SA~rLE lJ~fC if~ POOPA~ II 4UP GEHrJF iRCPIC-LCftbullYDE ACETONE _lltJTYAlPEt-YDE ANDMl1Cf8011 C-600 _____

T LUEhE A~J ~-iYL2NE fRCM 3P

cirrr T J tltI 10 l 5 l 112 1215 1230 ll 1t5 1 middotmo 1315 1no lJ45 l 4DO lbull I~ l 3J l bullttgt LJOELLco r [ME tMl -) -12c -43 0 1~ 30 45 oomiddot 75 90 105 120 lJ5 ljj 165

-------middot-------------- ---~--------bull------------ -middot---- ---bull- -- --CONCENTRATIONS IPPB

MfTt-~ ll20 29Su_ _1QI ---- - ____ 2920 middotmiddot---1~L- t 2060 bull t bullbull $V- +- 0

-0fJlfljlP~UC lllO 29~0 )~$ yen 2920 ti -( bullbullbullbull 2B 80 lti

1Tt--f bull~ ld 4b11) bulltn)it middot(c middot~IQmiddot middotmiddot 3u I 21 5 yen_ ~yen -ilgt11$

Pb[ 2b 61 4 550 yen ~~ ~middot ~

bullE Tbulltbull~ _bull~ i middotmiddot--- ~v ~--~~-----~-~~~----___ __~--~_ _~~---~~__at bull9 ____-q~~ ______ a10 ~middot-I~ -gt-~bull $

Cr)(tl((PP8C 34 ~ yen4 17J )) 162 bullbullov lj[ middot ltCETfl~-E ( SPCJPM li 24 ~-~ ~IX $ O icbullbull 423 I)middotmiddot 38i

Pl1 BC 48 ~Ct bull(I bull bullbullbull bullbullbullbull bullierbull~ bullbullbullbull 846 112 bullbullbullbull bullbullyen t

bull QJ~~~tE _____ 4_J___________2_0 _Q~__-~___l)_6____l_o_---18_L_o__L____lt__---_-_~__iJ8 _ _bull_e____laquo_middotmiddot-middot---lo 2_________________ -middotmiddot-

I- P8C 129 bull~bullbull 600 586 567 564 bull gt4b ~

Igt)~gt)~ p~ -P~~E 07 _12 9 12q )iJ~--middot amp~1___-_J4 _____ ~s ~--~-middot~~ ___c_U_-0~ 4C O-ilt bull f igtPBC 21 38 7 387 2bt 195 120 IC fd-- middotmiddotmiddot-l _ I_SJ81JTAIE________________QL_ bullbullbullbull - __ --- middot-~-- -- bullbull ___________ _bull PPBC 04 bullbullbullbull bull bullbull~bull bull bull~~ ~ -bull~bull bullbullbull~ bull9bullbull bullbullbull

Nmiddot-Bur i1E -- 1 5____ 196 l ____ middot--middot-middotmiddot l8lt_____ _____deg _ - ______ 171 ~ 164bullshyPPBC 1 10 790 784 744 bull bullbullbullbull bull b64 bull+bullbull middotbullbull=bull o5

__A_ CETYL~iE__j QI I ____________25__4_~___425___gt1lt-bull__t25 ____bull__lt25_-13lt____i-~L__bull----___l __iof_lt____-----1~2 --- -- --middot --middotmiddot PttC 5o uco aso ~bull 85O aso bull~ bull~bullbullmiddot 02e bullbullbullbull yen~ 1a4

TP~ rs-2-aur c bullE oo C_i _____() 0 _ ____03 -middot---deg-degmiddot----middotQbullO --- _ oo bull bullbull -bulloishy va ~middot~middotshyPPtC oo 32 32 12 oo bull oo bullyenbull 00

-- i S0PENTAIJE____ ---middot-middot --- ___o_ L ____c_J ___ 0_2____gt1lt_bull__-1o_____(lt_______l_bull L__________o____ ~-bullbull___J_l____gtlltbull____U~-----1-L__ PPBC 15 35 4i bullbullbullbull 50 55- middotgtjlmiddot~ bullobull bOiS bull-ttlll

CIS-2-SUTEIE _ JJ__ _ 14 6 ___ __ 14 o ___ _-yen~~~------5 2middot-----~--~ ____l 7-----~bull-~~- bull-laquo~ ~ -- o o ---middot~U----~bullbull - v c PPac oo 592 584 bullbullbullbull 208 68 00 bull oo

_ fi-gtE~TANE ____ _________o D C L_O_bullL_~gttlt______o_l__llt~tt___Q 5---~~---middotmiddotmiddotjlt________-D5 -~----bullbullfltltgtl___lflt__ ______________ -PPBC OO lO 15 15 bullbullbullbull Z5 bull 25 bullbulloi bull bullbullbullbull

2 3-0 iMET_Hll ilU_TAIJ~ ____Q_Q ____ _0_9_____1 lQ_ bull-~-bull- 99 5-~___9JJ____~bull~-bull-middotmiddot-middotmiddot~--- ~-~ __ 84bull 6 --bull~bull----- __ Zt5 __ PPBC OO 652 658 bullbullbullbull 597 559 bullbullbullbull bullbullbullbull bullbullbull 509 gt77

__z_- ETHYI __SJ TE gt E~-- _______Q__Q____l6__2___16 bull 6_bull~---middotlldeg___-1lQ__5gtI-- -------2- ___i)C___tl deg-_JtlltbullL ___JlQ _____________

- _ -~--- bull-------__ _____ __ -----~~ - -_--~--------bull~bullr- t-=~~t~~= _~f~~~~~~~1bull~~~~~frac34lf-~~m~~bull~r~-~-fq~l~-~~~~----~-~~~~r-fltbullbullmiddot -r-middot ~ middotmiddot--bull----~-

bullbull

--

---- -_micro__middot1 _---j--- _- irr I-- ---1~ f~i=lbullaj i---r-J-p---1 --or __ ~ 0 I -lt-cc--l~~f1- ~~middot

1971 lltAR 18 i J Sl~~OGATE 223-li

GlhSS CrA-CR l-76 CCT 5

CL~CK TllE 1015 1132 l~ lL l230 _l245____ DOO____ JHgt l3JO _ lH5 l 400 _ l415 lo30 - llttlttgt l00 fLAPStD TtMEIMl~i -120 -43 0 l 5 30 45 60 75 90 105 120 135 ljO 165

PlllC ____(l(L__i lQ__l)l o____5_____ t2 bull0__~_jltjlt__i)_~~-4___ ___ OO _middot- __gt-yen ____ v C

j(ETALCEhYOE 28 ~~ qbull bullbullbullbull bullbull bull

_ PBC _5_ b___ _ 4~ middot-middot-~ -- bullbull~~ - bullc t _itoo -- ~-- middot - --- bullbullbullbull middotmiddotmiddot -~-- bull -- bullbullbullbull PllJlNALCEHYOF 02 03 bull~ $lt-))(l bulltctll yen bullbullbullbull 26 bullbullbullbull ia ~middotmiddotmiddot middot~llillP_lly

( -~-- (t~---middot Ci _9___ nill-1) -_ ~ ---middot _____ __ middotmiddotmiddot- 7B ~ bullClfc~

ACiTCI-E 07 79lit O bull~middotmiddot ~~ 366 ~ ~9 bull~~-PH 1 (tV~_ 2)bullJ --bull--bull bullmiddot-- --middot~bull---middot-bullbulllaquobull ~bullbullbull___ t(- _____l_l_O __ _--~bull~ __ bull 9 --~-- ltill diams 11 bullbullmiddotmiddotmiddotmiddot--

METHYL ETHYL KETONE 03 1a 82 yen$t9 ljllf-bulliimiddotbull~ bull~middot yenbullbull middot~ bullbullbull middot~middotmiddot ~ Ibullmiddot bullrPc_ i 2 Amiddot 7_2__ ~___ -~_ -~J__~~~ - -bull~----middotmiddot Imiddot----~ yen 32o lClO~ -0

T CltJEN 02 155 16l middotbullCt 144 135 126 bullbullbull deg PPHC l _(____ 1()8 bullyenljlCl lJ 3 ~bulletbull 101_ __--- 94bull L ___ --middot-- 111 87 J _J~~

4ET4-HLENE oo 523 53 l -4t 3fl ~ 219 4(Uit4 rcit U3 -bullljl flt PPBC 0() 418 _4_25 11_ 297 bull~ 23i t l 78 1)jff laquolI ~middotmiddot iHryRtLCEHYlc Ol Ol middot~bullmiddot bullbullbullbull bull yen0~ middot~bull 10 +9~ bullbull

-------middotmiddot-middot-middot--------middot---- PPDC 04 04 ---~- ____ ilit middotmiddot~middot _-I -- 40_ __cent~___ $~ bullbull ~iarabullbull

0 ICHLCHltO UI I-UJbullllgt01f TlbullMJpound oo 3S~ 351 347 J39 iyen0c 1jl$~middot jl7I- QI middotmiddot~ - bull q 3H

ishy _Poec O~Q 355 3_51 347 middotmiddot- ___ 339 ~ --bull~~- -- middot~bull--middot- 3 37 lit~yen j ~ 7 middot--middot -- ICr TCfAL HC PPBC

v ll7ij3 bullbullbull 56471 43268 52043 bullbullbull~ bull~bull~ bullbullbull

__TAL 101-ETHPE _t_C____ _ 583 l24l5 2345Q 00 19495 00 1068l 00 3158 QO l9872 middot 00 oo lldJZ TCfAl SU~fltJGATE 46-~5 zz37 middotomiddot 2307 i-------19-4degici---- i060~- imiddot----- -315 ~a----bullbull --- 1624amiddot ---- ---- i 21- 2

--~---middot-----middotmiddotmiddot------bull middot--middotmiddot------ middot----middotmiddot---middotmiddot-----middot--middot-middot----

bull-bull-bullbull bull-----bull---bull-bull ---r--~ --bull--bull----~bullbull-

- - - - - - - ------ -- ----------middot-bull------middot-middot------middotmiddot-- --

------------------middot-middot-middotmiddot- middot- ----

--------- --------middot-middot - middot----middot - ---- - - -- - - ---- -

-~lf4~--bull_~ ~~~~-~-~_-~~-~ -__~~bull- fF-~~~~~-g-~lT~~~~~~~pound~~etflitlilJ _~~~~flf-middot-bulltrmiddot--middot~- -middot-v--~--~-middot--~~ bull--bull~ ( s-~V __- -- bull bull bull

-~sgtlt-bull=ns-~ 1=_1i l-mc-a-1 __~bullmiddotloii1 ~bullbullcai=r J_t-~~ip7 -= __tJ~ ~ -__ __ j-Diii~I ~ ~~ ~_J IJcSi~~-~ J -=- -

1977 gt1~ ci Si~~C~~7E 223-0 ll~r (~middothPJ~ 1~76 CCT ~

(

CLCCie TJ~E l5l5 150 15 5 1600 1615 __1630 _l 6 4 5 ____ l 7 00 _ 1715 _______ --------middot middot- middot- --------[LAPSEC TMti~l~I 180 (95 2 l ) 225 240 255 270 285 300

CONCENTRATICNS_ PP6)

ME T-it rti 2900 bull bullbullbullbull bull 2Hl0 2880 pcgt~C 21 )J -------____2_810 - _ ___2_880 ________________ ---- -------------------------------

Tipound yen4l231 f~ ~ 203 ~~~ ~~~~ ~ 16 fJP~C 4 7 ir ~dbullflcent ~~$~ 40( 32 2bull~~ ~bull

E Tbullbull4E 78amp middot~lll ~ middotbull~-t 780 4el(( 749 PPH( l i r yenltI~ bull~ bull 7 9 _____ lJU_ ~-~e-~----2_~-~---middot-~tlt_~---middot ~----- -middot------------middot------- middot-- middot------- middotmiddot- -

A(middotfyi_t~~C (PfJPlbullr ) 35tJ 4 bullJ) Jqu~ J~7 ~4bull 3( iJii _ic 7 6 ) ~q (Jc 71 bull Cc~ ~-ii 7(

prmiddotPPE 184 ~ tnmiddoto 10a bullbull bullbull 116 1-~fiC ------- 552____ bull~ _ 540 ___ _itL__ -~---528

PJltbull)micro( bull-s -O l bull 7 tc l4 09 06 )pl)_l~PirC ti 5 l 42 Z l ___ l bull d lll middot~~- bull~~-

l rnu f hf -+--+=bull ittcagtICI middot ~ (I diamsdiamsbull -bullmiddot ~ POtC 4~~--- ~6 irc q ~ -~~-middot~ middot

I- N-~iiT ~E ~4tlllC l ~) 2 6-middot) 15b It 154 (lt l bull4f- lPhC diams (t4lt t~- t~gt-111 62_12_ ---~-lltmiddotbull--middot 01bulli___ yen$ia~_ lI~--- _57~ _ ______ --

deg ~ ACETYlffH ((JIJ~) 40 bull Jjl-C 395 bull 30d bull 373

PfflC ytlbull 806 790_ _l7 fJ____bullbullbullbull ------bullbullbull-bull----1t6 i TRtiS-7-BU_TUiF bullbull-amp oo oo yenbull oo middot~bull ~~middotmiddot oo pmicrolbullC yen~bull o_o ltcbull o_o _____________QJl___bull~-~--------obullo _________ --bull-----

I SOPcIITANE ~-90-~ 13 ~ l3 iU ~ ~~ l6 PP8C __ 65 ~~-~-_____ 6_5 ______~ _____a_v __ vbullbull~-- bullet __9o _____

C I-J-a1Jrrbull1- obullJ 00bull~bull middot~ oo ~middotmiddotmiddot oo middotmiddot~~ bull+bull~PPi3C ~c-~ ~o_ _______ oo ____ ----obullo - 00

N-PEl-ltTANE os o6 bullbullbullbull os bull 01 PPC t-6-bullo middotmiddot-middot 2_5___ ~-bull___ JQ___ bullbull~middot _2 2__ bullbullbull _0l __ ____]_5____ ----------

2l-0111 EThYL B1JT flff Vyen-(-9 -6 6 41(nr(c 122 bullbull(-II- 63 5 PPBC 1tOE-fl 460 Jl(I 4J3 -- ___1s -~bull- bullbullbull middot 3tll

z-~ET~YL e~Tc~E-2 oo 162 166 bull 24 oo bullbullbullbull

(9 7 bulliibull

PPBC____o_o___JU_Q__ijJ__Q______ __ _____120________)J)__ _gtlt__________

ACULCEt-tYOc bull9ic ric 9 Ii PPilC yenyenct -- ~~-middot- __~~bull_ middot-----middot-iiiyen___ ~~ ___ _______ -bull-middotmiddot--~---middot~middotmiddot PIJlICNALCEhYGE $$ bull4~ q bullbullbull 40 vbull bullbullbullbull ~bull 48

PPBC __ -- _ ---middot-bull _____l2J_Q __ L ----- __ lt~4____________ _

-_

--- ~~~~ -----_-~~-~--r----middot~--~ ----~-_____ ~0ltmiddot~bull_bull~~~cmiddotbull=-~~1~~rJ~~lt~~-~~~~yen-9 rr~~~~~~~~~~~~~~bull1~~~-Jf-it~~frac34WMP~~fUffM~~-~~~-~-middotmiddotmiddotmiddot1

bull-L)c~iJgt ~JJJI~ amp=-=-middot f-i~ aa-J-_e__jI micro-i~ismiddot --gtbull____- -=---- _ ~Jr i~~-( ____--__p_f I __rei -~~--1r---- l rbull~~h P~bullwii ~~iiI~

7 SLlt~4F 2pound3-U 177 ~~ ltgt

IJL1)~ C-oYjf-P

i-1 er 5

(LCV TJJ 1~ l~ 1~30 ___ J545 ____ l600____ 16l~ ___ H30_____ H4~---- 1700 ____171- ______ -------------ELAPSED Tl~fl~i~J liJv l95 210 225 240 255 270 285 300

_4CE rbull~ PPiC

--middot~~gt)_

icibullbull _(ot$

lI raquo-1c ----bull er lfrtJ11( yen

_360 ll4

-~-~------- ~~ bullbull deg

-bulliibullbull bullbullbull l(l

_i-HHYl ETHYL lttTC~~C pp_c

~icbull

yen(t )C --~~~ ____ii-------- _9_7_ ~-middot~ ~ 388

~--yen

middot~il$___18 --------------~ 728

--~----------- --- ------- -- - -

TtiE~IE P9rtC

109 763

yen-) ttgtlt-

(c~ laquoY bull 107

1fi - bull

(16JCtt

bullicebull iaibullmiddot bullic(t~

102 7lb

MET-4-Xllf E PPflC

__7 f l V

-middot~~- -- ~$ IF (n~v~

-----bull~~ 12-i ------------gt1lt______ 94_ --000 bullbull~bull bullbull~bull ~ 75L

L ry __ Cf 1 tYf rr~c

) ( ~yen

yen~0$

v(r

bulll- _ iV

~ --r1(

2 z 88

Jcentii

it) ~(

~ ~llf

gtii -2 6 lJ4

u-bull1Lor JffLiJ--uirt-lf PPpoundgtC

~ (I~

~ 330 330

( 1t-4

26 326

v~bull

_____ n2___ ------I) bullbull322 Hl 311

rr~t-L TCTAL

lfC -gt~ ~J~-Y

c iHl~E HC

jjJlt3 494middot3

middotbullbull13393

irbullilr

630 bull~ 34Jq _7_

l2 C5 5 tgtZil1 tilt~bull -- middotmiddot--middot-middot--- U------- __ 4713(___

11770 00 oo l5229 ___

TCTAL St~PC AT~ 49tdiamsbull 3 1330 3 830 ll lt60 455l l166 5 14128

middot---middotmiddotmiddot------

I- ~

~l~-~ ___gt-_____ bullA ___ _9~~--bull ______-~7~~~~tqt1f~~1_4_~tP-amp-i-~ffltW-iff~~~iitt~~laquoFifampoiijiM1l~trt~~ -_ Cl-iII~~~ --v-~ -middot ____ ~yen-

APPENDIX C

Plots of ln so2

vs time for

AGC Runs 216 through 222

bullf

lmiddot1

148

RGC-216-1-3 se2 DARK DECRY 2 RH PURE RIA

C) 1976 JUL 27-28 C) C)

p

I

0 C) _ - 0

ru (I) 0

C)

() ()

() Ce() () () -00197 plusmn 00003 hr

-1

() ()

() () C) ri)[J

~() I

~

C)~c CO(L Q_ CJO()

0CLc o--_(I)

_ (J

CJ I 0 0 (J)

o zo

en

_J~

0 =

I

()

f P1

0 Cl co -- 0I

4 8 TJME

12 CHA)

16 20

CJ 0 CJ

24deg

0 Cl LJ)bull

N -0

ll-

149

I

C)

0 ()

bull

AGC-217-1-2 SC2 LlGHT DECAY 151 RH PURE RIA

(r)0 1976 JUL 30-31 (I)0 (I) 0

0 I ti)

N 0

0 0 LI)

I o - C)E ~ a_ (Lo Oo_

CLo __ r- ru (J I 0

()El U1

0C) Lilzo

_J~ 0 I

D D CI

I

0 0 C) 0

~+------r---------------------------+~ltil0 50 100 150 200 250 30P

I TIME (HA)

150

RGC-218-1-3 se2 DARK DECAY 40 RH PURE AIR

0 tO

1976 RUG 4 O)

f I

c

I

C)

r C)

a N-

-1-00327 plusmn 00002 hr

(I

I

0

c co

bull

C) (Jr ~

0~ --L CL CL CLI o_g

(J

(J E

0 en en

0 co

zro CJ _J~ 0

a

~ ~ ~-i------------------------------------~-- o 2 4 s a 1o 12deg I TIME (HR)

151

RGC-218-7-9 se2 LT DECRY 401 RH PURE AIR

C) 1976 AUG 5 C)

CD

C) Cl Q-0 C)

0 (J

I

-00830 plusmn 00005 hr-l

CI (J I

~ (f1

Cl Cl CD (J

I

CJ 0 (I 0

a -(D

bull 0

oshyNE -a ca

-

(J

0 en

0 (I) 0 0

C) -

W O

-r---------------------r------------------~W 0

0 2 4 6 8 10 I TIME (HAl

152

r-

i]1

l _

middot

AGC 219-1-5 i 5~2 DARK DECAY 80 RH~1

PURE AIR 1976 AUG 16-17i 0

-middot 0

f 71 l

l ii gj

I

0- U)

CJ

I i I IC)

0

f II) i

r-- l I

~-- -~ o_ Oa_I ~ j(l g - r- I ~

- middot -00689 plusmn 00004 hr-l Ibull t 7 I (Ji ~ i

~] 0 l_ zo l~~

_J~ - iIu i _E I C

i 0 0

I I~- - I(J

I

-

() Ifr

I I

fl L

CJC)

~ 10bullq er [

C)

~------------------------------r------ N

I (j 4 8 12 16 20 24deg

TIME fHRl ~ Q

153

l

RGC-220-1-2 se2 DARK DECRY ijQ RH (jZCJNE-PRCPENE

ro0 1976 AUG 19 tO0 C) t

~~ r~I I

i (

c

-l a

0f

L 0 C

(J

-- ~I ()f c 7

~

()n

l c co

~ CI 0 C) () o

(j() () -poundo

Q_ Q_

(X)(1 I

( z (middot

(J_Jo (J0

=J ~h 0~ r (I)

()() (J -I 0ePgt~

()efJ(JJ 0 0 ~ (JLI)

- ~~()

~ () lt() lt()

0 ()yen ~ o ~ a

~-----------------r----------------~----~~-G 1 2 3 4 5 6deg

I TIME (HR)

154

AGC-22O 00-05 H~UA5 502 CPRk DECAY 401 RH C2l3r~E-PRCJPENE

0 197S AlJG 19 C)

0 bull 7

I I

l CD

I

~J r ~7 Q_

0 _

~I ru- J 81 en

z -1c

tO-c c ru

t =I

+--------------------6 00

I 0 10 020 030

TIME (H AJ

a tO (I)

bull 0

ti (I)

bull ti

--- 0

(j

0 cn

C)

Ol a CJ

0 lO

155 )

AGC-220 1 75-50 HQURSSD2 DARK DECAY 401 AH D2DNE-PR()PENE

r-0 1976 AUG 19 Lf)(P (I()

I ro 0 0 J

I

0 J N bull0 0J-J

c CL CL ~

0 tO

CJ r D ~ Cf) I Cl

0 -a z

CI-1o () CI (J[J

U) oO en-I

()()

middot~ c CD () ()1)

bull ~ ()-I 0~

(J0 CJ0

co eI -t 60 2LJO 320 400 480 560 6 4ij

I - 0TJME (HA)

156

RGC-221-1-2 5~2 DARK DECAY 40 RH ADD ~2~NE 080 HRS

co 1976 AUG 20 If)

(D r 0 0

I 0 D r 0

r CJ) Cl

I

0 D

I I

Qj I

-J 71

v 00 100 200 300 4 00 500

C)

rO

0 ~ (L

CL-

TJME fHASl

157 j

-

-003009 plusmn 000008 hr-l

~

RGC-222-1-7 rr

~ 1

l If

t f

t

l [

r l_

~ ti

1c l

L

Q

1 ~

a

[J ~ I

-

IL

S02 DARK DECRY_ 401 RH SURR(jGHTE-N(jX

00 1976 AUG 24-25 30 0 r

~1 iI

0

~1I

0 (J (tl

t 0 CI-I

-- -~ ~ o_ aa_g oO -r

(Jr - (J -I OCJ

0~ en(1

01 zc --deg-I

0 C) 0co -tO

I 0

Ul

-(

~1 -

(I 0 s 10 15 20 25 300 I TI ME (HRJ

158

PG f-2--Jc_~ __ Q _ --

se2 LIGHT OECHl 30Z AH SUAr-rCRTE-NQX

CI0 w 1976 AUG 25 r-r- -bull l

71 rol gj 0

-=f I I

()()

0

r ---= ~ oa_ a

(j

0

~ (1

1- bull middot-0

() tD

al

~~ i

~I j

1 ()

0 ZtP J~

I

I

-00574 plusmn 00007 hr-l

O ~ 0

~-t-------------------------------------~~~ ~o 1 2 3 4 s 6deg

TIME (HR)

159

I

Page 5: Report: 1977-05-00 (Part 2) Chemical Consequences of Air

792

100 w_ ltl 90 i5 i z 80 w ~ u 0 INITIAL7w xa NO 389

0 N02 middot049

gt- pound6 C3H6 149 C4H10 596

a

0 ID

0

COllC (ppm)

~ ~ 5 wz

0 ~ 4 ll

0 J ~ 3~

0~ _ u -z 0

w_ Iltl

ll

0

HOURS OF IRRADIATION

OH

Figure 4 Predicted relative importance of several reactive intermeshydiates during photooxidation of propene-nbutane mixture under simulated atmospheric conditions

their reaction with ozone was necessary For example the rate constant for the reaction of ozone with toluene is about nine orders of magnitude lower than that for OH with tolushyene During the initial hours of irradiation other species such as NO355 and HO256 may contribute slightly to hydroshycarbon disappearance rates especially for alkenes but since their concentrations and in some cases rate conshystants are not known correction was not possible

Hydroxyl Radical Source in this System The major sources of OH in our experimental system are probably the reactions781315

NO + NO2 + H2O =2HONO (2)

HONO + hv (290-410 nm) - OH+ NO (3)

HO2+NO-OH+NO2 (4)

Nitrous acid has been observed in a chamber study of simshyulated atmospheres carried out in our laboratory57 when a mixture of propene and nitrogen oxides in moist air was

g photolyzed indicating that HONO can be formed in HC NO systems under conditions similar to those employed in the present study (Nash58 claims to have measured HONO in ambient air at levels up to 11 ppb) Direct evidence for formation of OH radicals in environmental chambers has been provided recently by Niki Weinstock and coworkshyers1154 Reaction 4 of major importance provides a further source of the OH radical HO2 can be formed in air56-59 by any mechanism producing H atoms or formyl radicals via the reactions

H+O2+ M-HO2+M (5)

HCO + 02 - HO2 + CO (6)

Thus any mechanism producing HO2 in our system is also a means of furnishing OH radicals via reaction 4

The concentration of OH radicals present during these experiments was calculated to be (15-20) X 106 molecules cm-3 using the observed rates of m-xylene disappearance (corrected for dilution) and the previously determined rate constant for OH + m-xylene4042 These concentrations are

The Journal of Physical Chemistry Vol 80 No 8 1976

62

Lloyd Darnall Winer and Pitts

of the same order as those observed directly in ambient air10u as discussed above

Aromatic Hydrocarbons Present results for the rate constant for the reaction of OH with m-xylene show good agreement with the previous study42 carried out in our labshyoratory (Table II) indicating good reproducibility for this technique

Rate constants for the reaction of OH with the propylshybenzenes and ethyltoluenes have not been reported preshyviously However the trend in rate constants for the reacshytion with o- mbull and p-ethyltoluene is identical with that previously determined for the xylenes40bull42 which supports the concept that OH is an electrophilic species since attack on the meta compound is favored

Davis et al41 have studied the reaction of OH with benshyzene and toluene and from the observed pressure depenshydence of the reactions conclude that addition occurs at least 50 of the time In an environmental chamber study similar to that reported here Schwartz et aI60 tentatively identified a number of aerosol products such as phenols and aromatic nitro compounds from the photooxidation of toluene in the presence of nitrogen oxides A mechanism was proposed assuming initial addition of OH to the aroshymatic ring In the case of the more highly substituted aroshymatic compounds studied here it may be possible that hyshydrogen abstraction from the side chain could possibly be as important as addition This is supported by the fact that a log plot of the OH-aromatic hydrocarbon rate constants vs the ionization potential of the hydrocarbon (which for abshystraction reactions is expected to be linear) in this case did not yield a straight line

Detailed product studies are required in order to obtain the quantitative data necessary to further elucidate the mechanism of OH attack on various aromatic hydrocarshybons

Alkanes Greiner24 has derived an empirical formula for calculating the rates of reaction of OH with alkanes based on his experimental results for the reaction of the OH radishycal with selected alkanes

k = 615 X 108N 1exp(-1635RT) + 141 X 108N 2 exp(-850RT)

+ 126 X 108N 3 exp(+190RT) M-1 s-1

where N1 N2 and N3 are the numbers of primary seconshydary and tertiary hydrogen atoms respectively in the alshykane We have used this equation to calculate the rate conshystants for isopentane 2- and 3-methylpentane and n-hexshyane The calculated values are in quite good agreement with the experimental values Although Greiners formula predicts the same rate constants for the 2- and 3-methylshypentanes our study suggests that the latter is somewhat higher Indeed this may be expected since the stability of the radical formed by the abstraction of the tertiary H atom from 3-methylpentane should be greater than that for the radical formed from similar attack in the 2-methylpenshytane case

Alkenes Unlike the alkanes and the aromatic comshypounds alkenes react with ozone at a significant rate Thus in our experimental system the small amounts of 0 3 formed during the 3-h photolyses contributed to the alkene disappearance rates From the measured concentrations of ozone and the published rate constants for the reaction of 03 with the alkenes studied49-5361 -63 a correction was made to the alkene disappearance rates for loss due to reaction with ozone This amounted to ~3 for ethene ~7 for

l

Kinetics of OH~Hydrocarbon Reactions

propene ~21 for cis-2-butene and ~2 for 13-butadishyene

Our results for the reaction of OH with propene

OH + C3Hs -- products (7)

are within experimental error of a recent absolute determishynation of k using flash photolysis-resonance fluoresshycence35 while the value of k 7 given in Table II for the reshysult of Cox33 incorporates a stoichiometry factor of 2-to 3 In parallel studies in this laboratory using flash photolysisshyresonance fluorescence35 no evidence was found within exshyperimental error of a pressure effect for k1 by varying the totai pressure from 25 to 100 Torr of argon but additional studies should be carried out especially at lower pressures where such an effect would become evident to see whether k exhibits any pressure dependence

The value of the rate constant obtained in this study for the reaction of OH with cis-2-butene though somewhat high is within experimental error of values previously reshyported from direct determinations213435 In this case a sigshynificant (21) correction for reaction with 0 3 had to be apshyplied to the data

No previous determinations of absolute rate constants have been reported for the reaction of OH with 13-butadishyene However the close agreement between our values for cis-2-butene and 13-butadiene is consistent with the workmiddot by Cvetanovic and Doyle64 who showed that these two compounds reacted at similar rates with oxygen atoms

The value obtained in this study for the rate constant of _the reaction

(8)

of 52 X 109 M-1 s-1 is about a factor of 2 higher than

II published values from low pressure ( lt300 Torr) studshymiddot 22middot 32ies21middot 28- 36 The only other study to date carried out at

atmospheric pressure is that recently reported by Cox33 in which OH was generated by photolyzing gaseous nitrous acid in nitrogenoxygen mixtures (21) at 760 Torr and the effect of added alkenes on the photolysis of nitrous acid was studied A rate constant aka = (57 plusmn 06) X 109 M-1

s-1 was obtained relative to a value of 90 X 107 M-1 s-1for the reaction of OH with CO where a is a stoichiometry facshytor Cox suggests that a is between 2 and 3 based on pubshylished values for the direct determination of k8bull Davis et al36 have shown that the significant differences between low pressure measurements of reaction 8 can be rationalshyized by the fact that the reaction exhibits a pressure depenshydence over the region studied (3 to 300 Torr of He)

This pressure dependence is probably due to the initial formation of the adduct observed by Niki and coworkshyers21middot30 Presumably this adduct becomes stabilized by colshylisional deactivation

(8a)

While it is possible that our determination of k8 is higher than previous values due to the fact that species other than Q

t OH -and 03 are depleting the ethene at least part of the discrepancy may be due to the difference in pressure reshygions studied Figure 5 shows a plot of log ks vs log P where P is the total pressure in the system for studies carshyried out using N2 02 or N2O as diluent gases Studies carshyried out using less efficient third body gases such as He are not plotted since the present study is focused on ambient atmospheric conditions and third bodies such as N2 or the

middot793

100

- u

-- 0 E

95 C

~ a

gt

0 0

900~--J----J--___________~bull------- 10 20 30

rog PCP in torr)

Figure 5 Variation with pressure of the rate constant k8 for the reshyaction of OH with C2H4 M is bath gas in reaction 8 ltbullgt Davis et al38 ( ) Smith and Zellner31 (reg) this work

equivalent Thus at 3 Torr of diluent gas the results of Davis et ai36 differ by a factor of 16 depending on whether N2or He is used as the diluent gas Although our results for ethene are subject to some uncertainty it appears possible that reaction 8 is not at the limiting high pressure kinetics region until the pressure exceeds 1 atm

Conclusions

Relative rate constants have been determined for the reshyaction of OH with 14 hydrocarbons and these rate conshystants have been placed on an absolute basis using the litshyerature values for the rate constant of OH + n-butane No previous determinations have been reported in the case of seven of these compounds

Our results indicate that the reaction of OH with ethene possibly does not obey second-order kinetics until presshysures exceed 1 atm while for propene and the higher alkshyenes the reactions are second order at atmospheric presshysure

The comparatively high rates of reaction observed for the aromatic hydrocarbons have significant implications for the control of photochemical air pollution This subject and the use of the present data in the formulation of a hyshydrocarbon reactivity scale has been treated in detail elseshywhere65

Acknowledgments The authors gratefully acknowledge the helpful comments of Dr R Atkinson Dr George Doyle and Dr Jeremy Sprung during the preparation of this paper and thank Dr William P Carter for carrying out the computer calculations used to construct Figure 4 and Ms Sharon Harris for the hydrocarbon GC analyses

This work was supported in part by the National Science Foundation-RANN (Grant No AEN73-02904 A02) and the California Air Resources Board (Contract No 5-385) The contents do not necessarily reflect the views and policies of the National Science Foundation-RANN or the California Air Resources Board nor does mention of trade names or commercial products constitute endorsement or recomshymendation for use

References and Notes

(1) R R Baker R R Baldwin and R W Walker Symp (Int) Combust [Proc] 13th 291 (1971)

(2) D D Drysdale and A C Lloyd Oxid Combust Rev 4 157 (1970) W

The Journal of Physical Chemistry Vol 80 No 8 1976

63

794

E Wilson Jr J Phys Chem Ref Data 1535 (1972) (3) H S Johnston Adv Environ Sci Technot 4263 (1974) (4) P Crutzen Can J Chem 52 1569 (1974) (5) M 8 McElroy S C Wolsy J E Penner and J C McConnell J

Atmos Sci 31 287 (1974) (6) H Levy II Adv Photochem 9369 (1974) (7) K L Demerjian J A Kerr and J G Calvert Adv Environ Sci Techshy

nol 4 1 (1974) (8) H Niki E E Daby and B Weinstock Adv Chem Ser No 113 16

(1972) (9) J N Pitts Jr and B J Finlayson Angew Chem Int Edit Engl bull 14 1

(1975) (10) C C Wang and L I Davis Jr Phys Rev Lett 32349 (1974) (11) C C Wang L I Davis Jr C H Wu S Japar H Niki and 8 Wein-

stock Science 189 797 (1975) (12) 8 Weinstock and H Niki Science 176290 (1972) (13) 8 Weinstock and T Y Chang Telus 26 108 (1974) (14) J G Calvert and R D McQuigg Proceedings of the Symposium on

Chemical Kinetics Data for the Upper and Lower Atmosphere Warrenshyton Va Sept 15-18 1974 Int J Chem Kinet Symposium No 1 113 (1975)

(15) T A Hecht J H Seinfeld and M C Dodge Environ Sci Technol 6 327 (1974)

(16) A a Eschenroeder and J R Martinez Adv Chem Ser No 113 101 (1972)

l (17) D D Davis S Fischer and R Schiff J Chem Phys 61 2213 (1974) (18) R Overend G Paraskevopoulos and R J Cvetanovlc 11th Informal

Conference on Photochemistry Vanderbilt University Tenn June 1974

I (19) J Margltan F Kaufman and J G Anderson Geophys Res Lett 1 80

(1974) (20) S Gordon and W A Mulac Proceedings of the Symposium on Chemishy

cal Kinetics Data for the Lower and Upper Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Symposium No 1 289 (1975)

(21) E D Morris Jr and H Niki J Phys Chem 75 3640 (1971) (22) J N Bradley W Hack K Hoyermann and H Gg Wagner J Chem

Soc Faraday Trans 1 69 1889 (1973) (23) R A Gorse and D H Volman J Photochem 1 1 (1972) 3 115

(1974) (24) N R Greiner J Chem Phys 53 1070 (1970)

t (25) N R Greiner J Chem Phys 46 3389 (1967) (26) J Peeters and G Mahnen Symp (Int) Combust [Proc] 14th 113

(1973) (27) F Stuhl Z Naturlorsch A 28 1383 (1973) (28) F Stuhl Ber Bunsenges Phys Chem 77 674 (1973) (29) N R Greiner J Chem Phys 53 1284 (1970) (30) E D Morris Jr D H Stedman and H Niki J Am Chem Soc 93

3570 (1971) (31) I W M Smith and R Zellner J Chem Soc Faraday Trans 2 69

1617 (1973) (32) A V Pastrana and R W Carr Jr J Phys Chem 79 765 (1975) (33) R A Cox Proceedings of the Symposium on Chemical Kinetics Data

for the Lower and Upper Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Sypposium No 1379 (1975)

(34) S Fischer R Schiff E Machado W Bollinger and D D Davis 169th National Meeting of the American Chemical Society Philadelphia Pa April 6-11 1975

(35) R Atkinson and J N Pitts Jr J Chem Phys 63 3591 (1975) (36) D D Davis S Fischer R Schiff R T Watson and W Bollinger J

Chem Phys 63 1707 (1975)

Lloyd Darnall Winer and Pitts

(37) E R Stephens Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973

(38) A P Altshuller S L Kopczynski W A Lonneman F D Sutterfield and D L Walson Environ Sci Technol 4 44 (1970)

(39) H Mayrsohn M Kuramoto J H Crabtree T D Sothern and S H Mano Atmospheric Hydrocarbon Concentrations June-Sept 1974 California Air Resources Board April 1975

(40) D A Hansen R Atkinson and J N Pitts Jr J Phys Chem 79 1763 (1975)

(41) D D Davis W Bollinger and S Fischer J Phys Chem 79 293 (1975)

(42) G J Doyle A C Lloyd K R Darnall A M Winer and J N Pitts Jr Environ Sci Technof 9 237 (1975)

(43) J N Pitts Jr P J Bekowies G J Doyle J M McAfee and A M Wirier An Environmental Chamber-Solar Simulator Facility for the Study of Atmospheric Photochemistry to be submitted for publication

(44) G J Doyle P J Bekowies A M Winer and J N Pitts Jrbull A Charshycoal-Adsorption Air Purification System for Chamber Studies Investigatshying Atmospheric Photochemistry Environ Sci Technol submitted for publication

(45) E R Stephens and F R Burleson J Air Pollut Control Assoc 17 147 (1967)

(46) Ozone measurement was based on calibration by the 2 neutral buffshyered Kl method and was subsequently corrected from spectroscopic calibration data (see J N Pitts Jr J M McAfee W Long and A M Winer Environ Sci Technol in press)

(47) J R Holmes R J OBrien J H Crabtree T A Hecht and J H Sein-feld Environ Sci Technol 1519 (1973)

(48) W P Carter A C Lloyd and J N Pitts Jr unpublished results (49) D H Stedman CH Wu and H Niki J Phys Chem 11 2511 (1973) (50) D H Stedman and H Niki Environ Lett 4303 (1973) (51) J J Bufallnl and A P Altshuller Can J Chem 45 2243 (1965) (52) P L Hans E R Stephens W E Scott and R C Doerr Atmospheric

Ozone-Olefin Reactions The Franklin Institute Philadelphia Pa 1958

(53) S M Japar CH Wu and H Niki J Phys Chem 18 2318 (1974) (54) H Niki and B Weinstock Environmental Protection Agency Seminar

Washington DC Feb 1975 (55) S M Japar and H Niki J Phys Chem 79 1629 (1975) (56) A C Lloyd Int J Chem Kinet VI 169 (1974) (57) J M McAfee J N Pitts Jr and A M Winer In-Situ Long-Path Inshy

frared Spectroscopy of Photochemical Air Pollutants In an Environmenshytal Chamber presented at the Pacific Conference on Chemistry and Spectroscopy San Francisco Calif Oct 16-18 1974

(58) T Nash Telus 26 175 (1974) (59) J G Calvert J A Kerr K L Demerjian and R D McQulgg Science

175 751 (1972) (60) W i Schwartz P W Jones C J Riggle and D F Miller Chemical

Characterization of Model Aerosols EPA-6503-74-011 Aug 1974 (61) F S Toby and S Toby Proceedings of the Symposium on Chemical Kishy

netics Data for the Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Symposium No 1 197 (1975)

(62) K H Becker U Schurath and H Seitz Int J Chem Kinet 6 725 (1974)

(63) R E Huie and J T Herron Proceedings of the Symposium on Chemishycal Kinetics Data for the Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Kinet Symposium No 1 165 (1975)

(64) R J Cvetanovic and L C Doyle Can J Chem 38 2187 (1960) middot (65) K R Darnall A C Lloyd A M Winer and J N Pitts Jr Environ Sci

Technol in press

middotThe Journal of Physical Chemistry Vol 80 No 8 1976

64

rl

i

8 ~

ct il

Introduction

During the last six years the major role of the hydroxyl radical (OH) in atmospheric chemistry and photochemical air pollution has been recognized1-7 and kinetic data for the reshyaction of OH with both organic and inorganic species have increased substantially8 However there are currently no published rate constant determinations for the reaction of OH with ketones chloroethenes or any of the naturally occurring hydrocarbons such as the nionoterpenes Such rate constant data for the reaction of OH with these three classes of com-middot pounds would be useful in part because of their increasing importance for modeling the atmospheric processes occurring both in urban and rural atmospheres Specifically ketones and chlorinated hydrocarbons are components of commercial solvents910 Both tri- and tetrachloroethene have been obshyserved in the troposphere at part per trillion (ppt) concenshytrations of lt511 and 20 ppt1112 respectively while methyl ethyl ketone has been observed at concentrations of 1-6 parts per billion (ppb)13 Monoterpene hydrocarbons have been shown to be present in the atmosphere with source strengths of millions of tons annually14 Thus Rasmussen1516 and coshyworkers have estimated that on an individual basis such naturally occurring hydrocarbons have ambient concentrashytions in the low ppb range and are largely responsible for the blue haze occurring in certain forested areas 17

This paper describes an extension of our recent experiments in which an environmental chamber has been employed to obtain relative rate constants for the gas phase reaction of the hydroxyl radical with a series of hydrocarbons1819 In this case we report data for the reaction of OH with three ketones two chloroethenes and three monoterpene hydrocarbons using isobutene as a reference compound

bullExperimental Section

The experimental methods and procedures employed have been described in detail e1Rewhere1819 and are only briefly summarized here Irradiations of the hydrocarbon-NO_-air system were carried out in a Pyrex chamber20 of approxishymately 64001 volume equipped with externally mounted

tteprmteo _rrom me urna1 I tnys1ca1 ~em1suy liU 1_01_ l l~ m1f Copyright 1976 by the American Chemical Society and reprinted by perm1ss10n of the copyright owner

Relative Rate Constants for the Reaction of the Hydroxyl Radical with

Selected Ketones Chloroethenes and Monoterpene Hydrocarbons

Arthur M Winer Alan C Lloyd Karen R Darnall and James N Pitts Jrbull

Statewide Air Pollution Research Center University of California Riverside California 92502 (Received January 30 1976)

Publication costs assisted by the University of California Riverside

The relative rates of disappearance of three monoterpmiddotene hydrocarbons two chloroethenes and three alishyphatic ketones were measured in an environmental chamber under simulated atmospheric conditions at 305 middot plusmn 2 K The observed rates of disappearance were used to derive relative rates of reaction of these organic compounds with the hydroxyl radical (OH) on the previously validated basis that OH is the species domishynantly responsible for the hydrocarbon disappearance under the experimental conditions employed Absoshylute rate constants obtained from the relative values using the published rate constant for OH + isobutene (305 X 1010 M-1s-1) are (k X 10-10 M-1s-1) o-pinene 35 plusmn 05 B-pinene 41 plusmn 06 d-limonene 90 plusmn 14 methyl ethyl ketone 020 plusmn 006 methyl isobutyl ketone 09 plusmn 03 diisobutyl ketone 15 plusmn 05 trichloshyroethene 027 plusmn 008 tetrachloroethene 013 plusmn 004 No previous determinations of these rate constants have been found in the literature Rate constants for an additional nine monoterpene hydrocarbons have been derived from data recently published by Grimsrud Westberg and Rasmussen

Sylvania 40-BL fluorescent lamps whose spectral distribution has been reported elsewhere21 (photon flux at 300 nm is apshyproximately 1 of the photon flux maximum at 360 nm) The light intensity measured as the rate of NO2 photolysis in nishytrogen22 k1 was approximately 04 min-1bull All gaseous reacshytants were injected into pure matrix air23in the chamber using 100-ml precision bore syringes Mixtures of the liquid reacshytants were injected using micropipettes During irradiation the chamber temperature was maintained at 305 plusmn 2 K

Alkene terpene and ketone concentrations were measured by gas chromatography (GC) with flame ionization detection (FID) using the columns and techniques developed by Steshyphens and Burleson2425 The chloroethenes were also monishytored with GC(FID) using a 10 ft X frac34instainless steel column packed with 10 Carbowax 600 on C22 Firebrick (100110 mesh) Ozone26 was monitored by means of ultraviolet abshysorption (Dasibi Model 1003 analyzer) carbon monoxide by gas chromatography (Beckman 6800 air quality analyzer) and NO-NOrNO by the chemiluminescent reaction of NO with ozone (TECO Model 14B)

The initial concentrations of reactants are shown in Table I In addition to these compounds ethene (20-28 ppb) ethane (48-61 ppb) acetylene (25-37 ppb) propane (13-15 ppb) and variable concentrations of formaldehyde (16-134 ppb) acshyetaldehyde (0-7 ppb) and acetone (3-19 ppb) were present Initial concentrations in these experiments were 1200-2100 ppb C of total nonmethane hydrocarbons 058 ppm of NO (with an NOvNOx ratio of005-010) 5 ppm of CO and 2900 ppb of methane together with water vapor at 50 relative humidity Replicate experiments were carried out in which this mixture was irradiated for 2-3 h with continuous analysis of inorganic species analysis of hydrocarbons every 15 min and analysis of monoterpenes chloroethenes and ketones every middot30 min

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilution rate (12 per hour) from the observed hydrocarbon disappearance rate The HCNO and NONO2 ratios were chosen to delay the forshymation of ozone and ozone was not detected during the irra-

The Journal of Physical Chemistry Vol 80 No 14 1976

65

i

1636

TABLE I Rates of Disappearance and Rate Constantsa for Selected Ketones Chloroethenes and Monoterpene Hydrocarbons at 1 atm in Air at 305 plusmn 2 K

middot Relative Initial rate of concn disap- koH0 Mmiddot

Compound ppb pearance smiddotbull X 10middot10

C

A M Winer A_ C Lloyd K R Darnall and J N Pitts

100-------~-------r-------- _eo___J-__

--~bull middot METHYL ETHYL KETONE 60

~ r-----__ g 2o+---__ ~--------t5 -- __ middot METHYL ISOBUTYL KETONE

u bull --------8 - middot---- 0 10 -- DIISOBUTYL KETONE ~ a

~ 6 ~bull ISOBUTENE

0 05 10 15 20 HOURS OF IRRADIATION

Figure 1 Concentrations of ketones (plotted on a logarithmic scale) during 2-h photolysis of HC-NO mixture in air at 305 plusmn 2 Kand 1 atm

-60

-~ ~-- I - -~ 40bull __ middot---

~ ~ __ ------~ 2 ----_ middot-middot- ~20~ _____ ISOBUTENE

~ ----- middot---0 bull bull

~ bull -~ a-PINENE

z 10 ---8 8 bull --

~6 - --

ll d-LIMONENE e-PINENE (D

0 4~----__---_________J_~_ 0 2 3

HOURS OF IRRADIATION

Figure 2 Concentrations of monoterpene hydrocarbons (plotted on a logarithmic scale) during 3-h photolysis of HC-NO mixture in air at 305 plusmn 2 K and 1 atm

X 106 radicals cm-3 using the observed rates of isobutene disappearance (corrected for dilution) and the previously determined rate constant for OH + isobutene35These con-

centrations are of the same order as those observed directly 32 36 37in ambient air31

Results and Discussion

Typical rates of disappearance observed during a 2-h irrashydiation of the three ketones and 3-h irradiations of the three monoterpene hydrocarbons and the two chloroethenes are shown in Figures 1 2 and 3 respectively Isobutene was used as the reference compound (and is included in each figure) rather than n-butane which was used in our previous studshyies1819 because its reactivity was closer to that of the terpenes and its rate of decay could be measured more accurately in our system In addition the ratio of k0Hlk0a for isobutene is greater3235 than that for any of the other olefi ns studied thus minimizing any contribution to the disappearance rate due to reaction with ozone Table I gives the disappearance rates

66

lsobuene Prop-ne cis-2-Butene Methyl ethyl

ketore Methyl isobutyl

ktgttone Diisobutyl ketone o-Pinene 3-Pinene d-Limonene frichloroethene Tetrachloroethene

17-20 5-7 7-8

50-100

20-70

20-32 10-20 10-20 10-20 41-161 14-88

10 049 122 007

03

05 114 133 295 0088 0044

305 plusmn 031 149 plusmn 022 372 plusmn 056 020 plusmn 006

09 plusmn 03

15 plusmn 05

a Placed on an absolute basis using 305 X 10 0

OH isobutene from ref 35 b The indicated error limits are plusmn 15 except in the case of the chloroethenes and ketones for which they are plusmn 30 These represent the estimated overall error limits and include both experimental errors and uncertainties which may occur in assuming that hydroshycarbon disappearance is due solely to reaction with OH

diation period except in the case of one experiment for which a small correction for the loss of hydrocarbon due to reaction with ozone was applied to the alkene disappearance rates

In order to obtain additional data (at lower OH concen- trations) to correct for the concurrent photolysis of the ketones as discussed below irradiations of a mixture of ketones and isobotene were carried out In these experiments NO CO and other hydrocarbons were not added and under these conditions relatively low concentrations of OH ( lt5 X 105 radicals cm-3) were obtained

Hydroxyl Radical Source in this System As discussed previously19 the major sources of OH and its precursors in our experimental system are probably the reactions452728

NO + N02 + H20 plusmn 2HONO (1)

H02 + N02 - HONO + 02 (2)

HONO + hv (290-410 nm) - OH + NO (3)

H02+NO--OH+N02 (4)

The first reaction is now thought to occur slowly homogeshyneously29 but its rate is probably significantly faster when the reaction is catalyzed by surfaces Thus nitrous acid has been observed in a chamber study of simulated atmospheres carried out in our laboratory30 while direct evidence for formation of OH radicals in an environmental chamber has been proshy

32vided recently by Niki Weinstock and co-workers31

Reaction 4 of major importance provides a further source 34of the OH radical H02 can be formed in air33 by any

mechanism producing H atoms or formyl radicals (eg formaldehyde photolysis) via the reactions

H + 02+ M-H02 +M (5)

HCO + 02 - H02 + CO (6)

Thus any mechanism producing H02 in our system is also a means of furnishing OH radicals via reaction 4

The concentration of OH radicals present during these irshyradiated HC-NO experiments was calculated to be (14-35)

The Journal of Physical Chemistry Vol 80 No 14 1976

348 plusmn 052 406 plusmn 061 900 plusmn 135 027 plusmn 008 013 plusmn 004

M-1 s-bull for

OH Radical Reaction with Selected Hydrocarbons

50------------~----~--

-middot---middot TRICHLOROETHENE

bull TETRACHLOROETHENE ---middot

IOloz--------l--------l2-----1-3---

HOURS OF I RRAOIATION

Fgure 3 Concentrations of chloroethenes (plotted on a logarithmic scale) during 3-h photolysis of HC-NOx mixture in air at 305 plusmn 2 Kand 1 atm

l (corrected for dilution) for these reactants relative to that for isobutene based on data for the three separate experiments for monoterpenes and four separate experiments for methyl

t isobutyl and diisobutyl ketone and chloroethenes Methyll ethyl ketone was present in all experiments

Employing the fact that a range of OH concentrations (20 X 105-35 X 106 radicals cm-3) was observed in these experishy

[ ments corrections to the measured rates of disappearance of the ketones were made for the possible small contribution

middotfrom photolysis of these compounds These corrections were made in the following manner The observed rate of disapshypearance ofa ketone is given by

d ln (ketone]dt = kK[OH] + khv (7)

where kK and khv are the rate constants for reaction with OH and photolysis respectively The isobutene disappearance rate is controlled solely by reaction with OH hence

[OH] =d In [isobutene] (8)dt ks

where kB is the rate constant for reaction of OH with isobushytene Thus substituting for [OH] in eq 7

d In [ketone] _ kK d In [isobutene] dt - kiB dt + kh (9)

Based on eq 9 the relative rates of ketone disappearance were determined from the slopes of plots of d In [ketone]dt vs d ln [isobutene]dt The intercepts of these plots gave the rate constants for photolysis For methyl ethyl methyl isobutyl and diisobutyl ketone the ratios k Kfk iB were 007 03 and 05 respectively and the photolysis rate constants khv were 0007 0014 and 025 h-1 respectively

On the basis that the OH radical is the species dominantly responsible for the hydrocarbon depletion during the 2- or 3-h irradiations (as discussed in detail in our earliermiddotpapers)1819 absolute rate constants were derived from the relative rates of disappearance using Atkinson and Pitts35 value of (305 plusmn 031) X 1010 M-1s-1for the reaction of OH with isobutene These results are shown in Table I It should be noted that the ratio of rate constants (05 and 12 respectively) obtained here for propene and cis-2-butene relative to isobutene are in exshycellent agreement with the ratios obtained by Atkinson and Pitts (05 and 11 respectively)35

1637

Ketones To our knowledge the data presented here repshyresent the first experimental determination of rate constants for the reaction of the OH radical with any ketones in the gas phase The only literature value for ketones is an estimated rate constant of 21 X 109 M-1s-1for the reaction of OH with methyl ethyl ketone which was made by Demerjian Kerr and Calvert5 on a thermochemical basis This value is in remarkshyably good agreement with the experimental value obtained here (20 X 109 M-1 s-1) middot

The rate constants for the reaction of OH with the two other ketones reported here are significantly larger than that for methyl ethyl ketone Thus the rate constant for diisobutyl ketone is about the same as that for OH+ propeneB1935 The dominant mode of reaction of OH with ketones is expected to be one of hydrogen abstraction This is consistent with the increased rate constant in going from methyl ethyl ketone to diisobutyl ketone reflecting a weaker C-H bond strength in going to more highly substituted ketone

Acetone is relatively stable under conditions employed in our photooxidation studies and consequently the rate conshystant for OH + acetone was not measured Based on the fact that the C-H bond strength in acetone (98 kcal) is 6 kcal stronger than that for methyl ethyl ketone (92 kcal) one would e~pect OH to react significantly slower with acetone than with methyl ethyl ketone

Chloroethenes Rate constants for the gas phase reactions of OH with tri- and tetrachloroethene (C2HC3 and C2CI4

respectively) have not been reported previously The rat constants found in this study are 05 and 025 respectively of the rate constant for OH + C2Hi19 This difference in reshyactivity for the chloro-substituted ethenes and ethene is consistent with the results of Sanhueza and Heicklen38-40 who reported that the rates of reaction of 0(3P) with C2HC13and C2C4 were the same and were both a factor of 10 less than that for the reaction of 0(3P) with ethene

Our results show that trichloroethene is mor~ reactive with respect to attack by OH than tetrachloroethene This is in agreement with the results ofLissi41 for CH30 reactions and Franklin et al42 for CI atom reactions with these compounds These workers found relative rates for attack on C2HC3 and C2C4 of 22 and 26 for CH30 and Cl respectively compared to 20 for OH as found in the present study Gay et aI43 reshycently reported results from a photooxidation study of chloc roethenes which while not directly comparable to the present study due to the presence of substantial concentrations of ozone showed that C2HCI3 disappeared more rapidly than C2Cl4 (near the beginning of their irradiations when ozone concentrations were relatively low the ratio of the rates of disappearance was ~2)

Since addition is likely to be the primary reaction pathway for attack by OH the relative reactivity of C2H4 C2HCia and C2Cl4 should reflect the relative magnitudes of the ionization potentials of these molecules which are 1066 948 and 934 eV respectively Our results are consistent with this trend

Monoterpene Hydrocarbons The terpenes experimentally investigated were a-pinene (I) 1-pinene (II) and d-limonene (III) The detection limit for ozone in these experiments was

XI) xD -0-lt II III

~1 ppb and since no ozone was detected during irradiations of the terpenes an upper limit to the contribution due to reshyaction with ozone to the observed rates of terpene disap-

The Journal of Physical Chemistry Vol 80 No 14 1976

67

1638

TABLE II Reactivity of Selected Monoterpenes with O(P) 0

3 and OH

Rate constant M-1 s- 1

Compound O(P)l 03 OHe

o-Pinene 160 plusmn 006 20 X 105 b 35x10 0

X 10 0 10 X 105c 88 X l0~d

J-Pinene 151 ~ 006 22 X l0bulld 41 X 10 0

X 10 0

d-Limonene 650 plusmn 052 39 x 105 d 90 X 10 0

X 10 0

a Reference 49 b Reference 48 c Reference 45 d Referbull ence 16 e This work

pearance can be calculated Thus assuming an ozone conshycentration of 10 ppb and using published rate constants for the reaction of ozone with the terpenes1643-45 an upper limit of 7 of the overall disappearance rate is obtained for the case of d-limonene (the worst case) at the lowest OH concentration present in these experiments (14 X 106radicals cm-3)

l It is interesting to note that the rate constant 37 X 1010

M- 1 s-1 obtained in this study for OH + cis-2-butene a component in the hydrocarbon mix (Table I) used in this set of experiments is in good agreement with the values of 32 X

l 1010 and 37 X 1010 M-1 s-1 obtained by Atkinson and Pitts35 and Morris and Niki46 respectively although our value is somewhat higher than the value of 26 X 1010 M-1 s-1obtained by Fischer et al47 in these three studies the rate constant was r determined from elementary reaction measurements

Table I shows the absolute rate constant values obtained for the terpenes Clearly these natural hydrocarbons react very rapidly with OH For example a-pinene reacts about 3 X 105 times faster with OH than with ozone1648 Thus for an ozone concentration of 3 X 1012 molecules cm-3 (012 ppm) and an OH concentration of 107 radicals cm-3 the rates of disappearance of a-pinene due to reaction with 0 3 and OH respectively will be essentially equal A comparison of the rates of the three terpenes with O(3P) 0 3 and OH is given in Table 1116bull4546 Within the experimental errors for the rate constants for OH + a- and 6-pinene the trend observed for reaction with OH is the same as that observed for reaction with O(3P) and 03

Grimsrud Westberg and Rasmussen (GWR)16 have reshyported the relative rates of photooxidation of a series of monoterpene hydrocarbons using mixtures of 10 ppb of the monoterpene and 7 ppb of nitric oxide which were irradiated for periods ranging between 60 and 120 min Making the rsasonable assumption that as in the case of our studies OH is the major species depleting the hydrccarbon in their exshyperiments then a series of rate constants relative to isobutene (which was included in the GWR study) can be generated in the same manner as described above The data from GWR are given in T-able III relative to isobutene = 10

Considering the- uncertainties involved in this approach (including a lack of knowledge of the exact ozone concentrashytions formed in the experiments of GWR) the agreement between our results for the reaction of OH with a- and 6-pinene and d-limonene and those shown in the fourth column of Table III is quite good and except in the case of a-pinene well within the estimated experimental uncertainty for our determinations The fact that our value of OH + d-limonene is only slightly higher than GWR suggests that little or no 03 was formed in their experiments since there was less than 1 ppb formed during our irradiations

The Journal of Physical Chemistry Vol 80 No 14 1976

A M Winer A C Lloyd K A Darnall and J N Pitts

TABLE III Relative Reaction Rates of Monoterpene Hydrocarbons and Rate Constantsl for Their Reaction with the OH Radical Based on Data from Grimsrud Westberg and Rasmussen (Ref 16)

Rel koH M-bull Hydrocarbon Structure reactivity s-bull X 10-10

p-Menthane 013 040-0-lt p-Cymene 030 092 (078 -0-lt plusmn 016)b

Isobutene )= 10 305

~Pinene 13 40 (41 gtQ) plusmn 06)C

Isoprene 155 47 (46 ~ plusmn 0 9)d

o-Pinene 15s 47 (35 plusmn 05)C~

3-Carene 17 52-cl-~Phellandrene 23 70-0-lt Carvomenthene 25 76-0-lt d-Limonene 29 88 (90-0-lt plusmn 14)C

Dihydromyrcene 36 101~ Myrcene 45 137~ cis-Ocimene 63 192~

a Placed on an absolute basis using 305 x 10 0 M- 1 s-bull for OH+ isobutene from ref 35 b For p-ethyltoluene which is structurally similar (ref 19) c Present work (see Table II) d For 13-butadiene which is structurally similar (ref 19)

A further check on the validity of using the results of Grimsrud Westberg and Rasmussen16 to obtain OH rate constant data is provided by the values derived for the reacshytion of OH with p-cymene and isoprene p-Cymene is structurally very similar to p-ethyltoluene and hence the OH rate constants for these two compounds should be comparable In fact this is the case with the value for OH+ p-cymene of 91 X 109 M-1 s-1 derived from the data of GWR being very close to that obtained for OH+ p-ethyltoluene 78 X 109 M-1

s-1 in our previous study19 Likewise isoprene is structurally similar to 13-butadiene and the rate constant derived for isoprene of 47 X 1010 M-1 s-1 is consistent with that preshyviously measured19 for OH+ 13-butadiene of 46 X 1010 M-1

s-1 On the basis of these comparisons it appears valid to use the photooxidation data of Grimsrud Westberg and Rasshymussen16 to obtain OH rate constant data for the series of monoterpenes which they investigated

Conclusion

Relative rate constants have been experimentally detershymined for the reaction of OH with eight compounds and these rate constants have been placed on an absolute basis using the literature value for the rate constant for OH + isobutene35

In the same manner rate constants for the reaction of OH with nine additional compounds (monoterpene hydrocarbons) for

68

OH Radical Reaction with Selected Hydrocarbons

which no previous rate constants are available have been deshyrived from data recently published by Grimsrud Westberg and Rasmussen16

The comparatively large rate constants obtained for the ketones and monoterpene hydrocarbons indicate that they will be quite reactive in the troposphere The implications for photochemical oxidant control strategies of the chemical reshyactivity of the ketones chloroethenes and terpenes are disshycussed in detail elsewhere5051

Acknowledgments The authors gratefully acknowledge the helpful comments of Drs R Atkinson and E R Stephens during the preparation of this manuscript G Vogelaar and F Burleson for the gas chromatographic analyses and W D Long for valuable assistance in conducting the chamber exshyperiments

This work was supported in part by the California Air Reshysources Board (Contract No 5-385) and the National Science Foundation-RANN (Grant No AEN73-02904-A02) The contents do not necessarily reflect the views and policies of the California Air Resources Board or the National Science Foundation-RANN nor does mention of trade names or commercial products constitute endorsement or recommenshydation for use

References and Notes

(1) J Heicklen K Westberg and N Cohen Publication No 114-69 Center for Air Environmental Studies Pennsylvania State University University Park Pa 1969

(2) D H Stedman E D Morris Jr E E Daby H Niki and B Weinstock presented at the 160th National Meeting of the American Chemical Society Chicago Ill Sept 14-18 1970

(3) B Weinstock E E Daby and H Niki Discussion on Paper Presented by E R Stephens in Chemical Reactions in Urban Atmospheres C S Tuesday Ed Elsevier New York NY 1971 pp 54-55

(4) H Niki E E Daby and B Weinstock Adv Chem Ser No 113 16 (1972) (5) K L Demerjian J A Kerr and J G Calvert Advances in Environmental

Science and Technology Vol 4 Wiley-lntersclence New York NY 1974 p 1

(6) H Levy 11 Advances in Photochemistry Vol 9 Wiley-ln1erscience New York NY 1974 p 1

(7) S C Wofsy and M B McElroy Can J Chembull 52 1582 (1974) (8) R F Hampson Jr and D Garvin Ed Chemical Kinetic and Photoshy

chemical Data for Modeling Atmospheric Chemistry NBS Technical Note No 866 June 1975

(9) A Levy and S E Miller Final Technical Report on the Role of Solvents in Photochemical Smog Formation National Paint Varnish and Lacquer Association Washington DC 1970

( 10) M F Brunelle JE Dickinson and W J Hamming Effectiveness of Orshyganic Solvents in Photochemical Smog Formation Solvent Project Final Report County of Los Angeles Air Pollution Control District July 1966

(11) E P Grimsrud and R A Rasmussen Atmos Environ 9 1014 (1975) (12) J E Lovelock Nature (London) 252 292 (1974) (13) E R Stephens and F A Burleson private communication of unpublished

data (14) R A Rasmussen and F W Went Proc Natl Acad Sci USA 53215

(1965) R A Rasmussen J Air Polut Control Assoc 22537 (1972) (15) R A Rasmussen and M W Holdren Analysis of Cs to C 10 Hydrocarbons

in Rural Atmospheres J Air Pollut Control Assoc Paper no 72-19 presented at 65th Annual Meeting (June 1972)

(16) E P Grimsrud H H Westberg and R A Rasmussen Atmospheric Reshyactivity of Monoterpene Hydrocarbons NOx Photooxldation and Ozonolshyysls middot Proceedings of the Symposium on Chemical Kinetics Data for the

1639

Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Kinet Symp No 1 183 (1975)

(17) F W Went Nature(London) 187641 (1960) bull (18) G J Doyle A C Lloyd K R Darnall A M Winer andJ N Pitts Jr Enshy

viron Sci Technol 9237 (1975) (19) A C Lloyd K R Darnall A M Winer and J N Pitts Jr J Phys Chem

80 789 (1976) (20) J N Pitts Jr P J Bekowies A M Winer G J Doyle JM McAfee and

K W Wilson The Design and Construction of an Environmental Chamber Facility for the Study of Photochemical Air Pollution Final Report Calishyfornia ARB Grant No 5-067-1 in preparation

(21) Sylvania Technical Bulletin No 0-306 Lighting Center Danvers Mass 01923 1967

(22) J R Holmes R J OBrien J H Crabtree T A Hecht and J H Seinfeld Environ Sci Technol 7 519 (1973)

(23) G J Doyle P J Bekowies A M Winer and J N Pitts Jr Environ Sci Technol accepted for publication

(24) E R Stephens Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973 NTIS No PB 230 993AS

(25) E R Stephens and F R Burleson J Air Pollut Control Assoc 17 147 (1967)

(26) Ozone measurement was based on calibration by the 2 neutral buffered Kl method and was subsequently corrected from spectroscopic calibration data [-see J N Pitts Jr J M McAfee W Long and A M Winer Environ Sci Technol in pressJ

(27) B Weinstock and T Y Chang Telus 26 108 (1974) (28) T A Hecht J H Seinfeld and M C Dodge Environ Sci Technol 8 327

(1974) (29) L Zafonte P L Rieger and J R Holmes Some Aspects of the Atmoshy

spheric Chemistry of Nitrous Acid presented at 1975 Pacific Conference on Chemistry and Spectroscopy Los Angeles Calif Oct 28-30 1975 W H Chan R J Nordstrum J G Calvert and J N Shaw Chem Phys Lett 37441 (1976)

(30) J M McAfee A M Winer and J N Pitts Jr unpublished results (31) C C Wang L I Davis Jr CH Wu S Japar H Niki and B Weinstock

Science 189 797 (1975) (32) H Niki and B Weinstock Environmental Protection Agency Seminar

Washington DC Feb 1975 (33) A C Lloyd Int J Chem Kinet 6 169 (1974) (34) J G Calvert J A Kerr K L Demerjian and R D McQuigg Science 175

751 (1972) (35) R Atkinson and J N Pitts Jr J Chem Phys 63 3591 (1975) (36) D Perner D H Ehhalt H W Patz U Platt E P Roth and A Volz OH

Radicals In the Lower Troposphere 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(37) D D Davis T McGee and W Heaps Direct Tropospheric OH Radical Measurements Via an Aircraft Platform Laser Induced Fluorescence 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(38) E Sanhueza and J Helcklen Can J Chem 52 3870 (1974) (39) E Sanhueza and J Helcklen Int J Chem Kinet 6 553 (1974) (40) E Sanhueza I C Hisatsune and J Heicklen Oxidation of Haloethylenes

Center for Air Environment Studies The Pennsylvania State University CAES Publication No 387-75 Jan 1975

(41) E A Lissi private communication to authors of ref 40 and quoted therein (42) J A Franklin G Huybrechts and C Cillien Trans Faraday Soc 65 2094

(1969) (43) B W Gay Jr P L Hans J J Bufalinl and R C Noonan Environ Sci

Technol 10 58 (1976) (44) R F Lake and H Thompson Proc R Soc London Ser A 315 323

(1970) (45) LA Ripperton and H E Jefferies Adv Chem Ser No 113 219 (1972) (46) E D Morris Jr and H Niki J Phys Chem 75 3640 (1971) (47) S Fischer R Schiff E Machado W Bollinger and D D Davis 169th

National Meeting of the American Chemical Society Philadelphia Pa April 6-11 1975

(48) S M Japar CH Wu and H Niki Environ Lett 7245 (1974) (49) J S Gaffney R Atkinson andJ N Pitts Jr J Am Chem Soc 97 5049

(1975) (50) K R Darnall A C Lloyd A M Winer and J N Pitts Jr Environ Sci

Technol in press (51) J N Pitts Jr A C Lloyd A M Winer K R Darnall and G J Doyle

Development and Application of a Hydrocarbon Reactivity Scale Based on Reaction with the Hydroxyl Radical to be presented at 69th Annual APCA Meeting Portland Oreg June 27-July 1 1976

The Journal of Physical Chemistry Vol 80 No 14 1978

69

l

Reactivity Scale for Atmospheric Hydrocarbons Based on Reaction with Hydroxyl Radical

Karen R Darnall Alan C Lloyd Arthur M Winer and James N Pitts Jrbull

Statewide Air Pollution Research Center University of California Riverside Calif 92502

Bv use of relative and absolute rate constants for the reshyactiltn of the hydroxyl radical (OH) with a number of alkanes alkenes aromatics and ketones a reactivity scale is formushylated based on the rate of removal of hydrocarbons and oxyshygenates by reaction with OH In this five-class scale each class spans an order of magnitude in reactivity relative to methane Thus assigned reactivities range from lt10 fo~ ~lass I (conshytaining oniv methane) togt104 for Class V cotammg te mo~t reactive compounds (eg d-limonene) This scale differs m several significant ways from those presently utilized by _air p(llution control agencies and various industrial laboratories For example in contrast to other scales based o~ s_eco~dar_y marifestations such as yields of ozone and eye 1rritat1on it focuses directlv on initial rates of photooxidation The proshyposed scale als~ provides a clearer understandin~ of the_imshyportance of alkanes in the generation of ozone durmg per10~s of prolonged irradiation The present ~cale can be readily extended to include additional orgamc compounds (eg natural and anthropogenic hydrocarbons oxygenates chloshyrinated solvents) once their rate of reaction with OH is known

It has been recognized for many years (1-21) that all hyshydrocarbons occurring in polluted atmospheres are not equally effective in producing photochemical oxidant and hence that the application of cost effective strategies for the control of hydrocarbons requires that more stringent emissions reducshytions be applied to the more reactive organic compounds (22-25) This in turn has led to a continuing requirement for a rational assessment of hydrocarbon reactivity as a basis for control decisions Such an assessment is particularly critical since attainment of the Federal air quality standard for phoshytochemical oxidant has been sought largely through the stringent control of hydrocarbon emissions (26-27)

The first effort to formulate and apply a practical hydroshycarbon reactivity scale was taken in 1966 with the impleshymentation by the Los Angeles Air Pollution Control District (LAAPCD) of a regulation known as Rule 66 to limit solvent organic emissions on the basis of their capacity for promoting photochemical smog formation (24-25) This rule an~ other conceptions of reactivity scales (28) represented a maJor adshyvance in the application of the information then available concerning the mechanisms of photochemical smog formation to the development of practical air pollutant emission control strategies

Not surprisingly however both in the past and present there have been significant differences in hydrocarbon reacshytivity scales proposed by local regional and national air pollution control agencies (23 29-31) as well as by industy (14 16) As shown in Table I this can lead to very large difshyferences in emission inventory estimates and in approaches to hydrocarbon control (29 32 33) In this case reactive hyshydrocarbon emission inventory levels calculated by Goeller et al (32) using hvdrocarbon reactivity definitions of the Envishyronmental Protection Agency (EPA) on tlie one hand and the California Air Resources Board (ARB) and LAAPCD on the other differed by factors of 3 to 4

A second problem common to virtually all previous reacbull tivity classifications has been their reliance on smog chamber data obtained for relatively short irradiation (~2-6 h) periods

Thus the recent concern over oxidant formation resulting from ionger irradiations during pollutant tr~sport ~o ~egio_ns downwind of urban sources introduces additional d1fficult1es both in defining what constitutes a reactive hydr~carbon and in categorizing degrees of reactivity For example a compound such as propane the major component in liquefied petroleum gas (LPG) and often cited as a clean fuel is now known (34-36) to contribute to the formation of photochemical oxishydants in the later stages of day-long irradiation periods However on the basis of data obtained during short-term ir- middot radiations propane has been classified as unreactive in a reactivity scale proposed (23) by B Dimitriades of the EPA (hereafter referred to as the EPA reactivity scale)

Altshuller ald Bufalini (9 17) have reviewed the various definitions of hydrocarbon reactivity ~nd summarized results of numerous studies up to 1970 The criteria used for evalushyating hydrocarbon reactivity include hydrocarbon conshysumption the conversion of nitric oxide to nitrogen dioxide ozone formation aerosol formation eye irritation and plant damage It is generally agreed that the criteria most suitable with respect to photochemical oxidant control strategies are ozone dosage or maximum ozone concentration (29) However establishing a definitive hydrocarbon reactivity scale to be applied specifically to the control of ozone formation requires an extensive and lengthy experimental program in which the ozone-forming capability of each individual hydrocarbon is determined under simulated atmospheric conditions inshycluding long-term irradiation (ie 12-14 h)

An alternative basis for assessing hydrocarbon reactivity which would appear to have considerable utility and a valid experimental foundation is the formulation of a reactivity scale based on the rate of disappearance of hydrocarbons due to reaction with the hydroxyl radical the key intermediate spcies in photochemical air pollution

Results and Discussion

It is only in the last six years that the critical role-of OH in photochemical smog formation has been generally recognized (37-40) and that appreciable rate constant data have become available for the reaction of OH with several classes of hyshydrocarbons The importance of OH as a reactive intermediate relative to species such as Oa 0(3P) and H02 has been shown previously (39-41) through computer modeling of smog chamber data For example Niki et al (39) showed that the reactivity of a number of hydrocarbons as measured by the rate of conversion of NO to N02 correlated significantly better with OH rate constants than with either 0(3P) or Oa rate constants

Table I Comparison of Reactive Hydrocarbon Inventory Levels for Fixed Sources Under Alternative Reactivity Assumptions (from Ref 32 Based on Pre-1973 Data)

Reactive hydrocarbons tonsday

Control Conslslenl ARB-

strat-iy EPA lAAPCD Rand Corp

1970 8760 2283 6363 1975 nominal 4273 1022 2399 1975 maximal 2906 577 1299

Reprinted from ENVIRONMENTAL SCIENCEamp TECHNOLOGY yo 10 Page 692 ~uly 1976 Copyright 1976 by the American Chemical Society an1 0eprinted by perm1ss1on of the copynght owner

The utility of a large environmental chamber in obtaining relative rate constants with an accuracy of plusmn20 for the reshyaction of the hydroxyl radical with a variety of hydrocarbons was demonstrated in an earlier study in this laboratory (41 ) This method has recently been extended to an investigation of more than a dozen additional hydrocarbons including seven compounds for which OH rate constants are not currently available The detailed kinetic data derived from this invesshytigation have been reported elsewhere (42) In these studies we determined the rPlative rates of disappearance of selected alkanes alkenes and aromatic hydrocarbons under simulated atmospheric conditions of temperature pressure concenshy

l

middottrations light intensity and other trace contaminants (NO CO hydrocarbons water) These relative rate constants were placed on an absolute basis using the published rate cons~ts for OH+ n-butane The assumption that OH was responsible for the hydrocarbon disappearance under the experimental conditions employed (41) was subsequently supported by the very good agreement between OH rate constants determined for the individual compounds using flash photolysis-resoshynance fluorescence techniques (43 44) and those obtained in

l the initial chamber study (41) The general validity of the chamber method for obtaining OH rate constants is illustrated in Figure 1 where the good correspondence between chamber values (41 42) and the available literature values [(45) and references in Table IV] is shown graphically

The importance of the chamber method for the purposes of formulating a reactivity scale is the simultaneous detershymination of valid rate constants for reactions of OH with a large number and wide variety of atmospherically important hydrocarbons This substantially expands the number of compounds which can be incorporated now and in the near future in the resulting reactivity scale In this regard we are currently extending (46) the chamber method to the detershymination of rate constants for reactions of OH with natural hydrocarbons such as terpenes and solvent hydrocarbons such as ketones and chloroethenes for which no data currently exist Preliminary kinetic data (46) for selected natural hyshydrocarbons and ketones are included in our proposed reacshytivity scale

Use of OH Rate Constants as a Reactivity Index From the successful correlation of OH rate constants with the rates of hydrocarbon disappearance observed in our chamber simulations we conclude that to a good approximation this

Ill 1-- 25 z

~~ a ii ~ lt 20 ux ow ~ f5 ~ ~ 15 u lt(0 c

()

~ ~ 10 14

~ tla z ILI lt(

~ 1i 5 I- w lt( Q __ Q

ILI lt(a Ill

i5 o 5 ~ ~ W ~ ~ ~ 40

PUBLISHED RATE CONSTANTS ( J mol-1sec-I x 10-9)

Figure 1 Comparison of relative rates of hydrocarbon disappearan~e determined by environmental chamber method (refs 41 a~d 42) with selected published rate constants (cited in Table IV) for reaction of those hydrocarbons with OH radicals Line shown represents one to one correspondence and has slope of ( 1 18) X 10-9 mol s 1- 1bull Compounds shown are 1 n-butane 2 isopentane 3 toluene 4 2-methylpentane 5 n-hexane 6 ethane 7 3-melhylpentane 8 p-xylene 9 erxylene 10-11 m-xylene 12 123-trimeth~lbenzene_ 13 propane 14 124--trimethylbenzene 15 135-trimethylbenzene 16 cs-2-butene

71

Table II Effect of 0 1 PPM Ozone on Calculated Lifetimes of Selected Alkenes Based on Reaction with OH Radicals (1 X 107 Radicalscm3 ) a at 300 K

OH rate constants b Hall-Ille c tor Hall-Ille d lor Alkenamp I mo1- 1 bull-1 [o3J=0 h (03) = 01 ppm h

Ethene 38 X 109 30 28

Propene 15 X 1010 076 067

cis-2- 32 X 1010 036 020 Butene

13-Buta- 46 X 1010 025 024 diene bull b bull

bull Concentration used in these calculations-see text See references on Table IV c t112 = 0693kOH[OH] under the assumption ol attack only by OH d t12 = 0693(kOH[OH] + ko(03]) ko3 taken from refs 45 and 59

correlation can be extr~polated to the atmosphere for alkenes in ambient air parcels during the early morning hours when ozone levels are generally quite low (5005 ppm) and for alshykanes and aromatics at essentially all times and locations The latter assumption namely that an OH rate constant is a good reactivity index for alkanes and aromatics throughout an irradiation day (or multiple irradiation days) rests upon the fact that the rates of reaction of these classes of hydrocarbons with species such as ozone 0(3P) atoms and hydroperoxyl radicals are several orders of magnitude slower than with OH (45 47-49) For example even at the highest ozone concenshytrations experienced in ambient atmospheres 03 will not contribute significantly to the photooxidation of alkanes and aromatics

This is in contrast to the case for alkenes which although the rate constants for reaction of Oa with alkenes are not particularly large (45) react rapidly with ozone at the average concentrations commonly encountered in polluted ambient air (---01-02 ppm) The approximate magnitude of the effect of ozone on the atmospheric lifetimes of alkenes is given in Table II From their OH rate constants (see Table IV) atshymospheric lifetimes for four alkenes were obtained by asshysuming an OH radical concentration in polluted atmospher~s of 107 radicals cm-3 which is a reasonable value on the bass of both model calculations (50) and recent atmospheric measurements (51-53) The half-life given in column 3 of Table II is defined as t 1 2 = 0693k(OH) and assumes deshypletion of the hydrocarbon solely by the hydroxyl radical When one assumes an average concentration of 010 ppm of 0 3 the more reactive alkenes show considerably shorter half-lives (column 4) For example the lifetime of cis-2-butene in the atmosphere is 036 h assuming only reaction with OH but this is reduced to 020 h when reaction with Oa at a conshycentration of 01 ppm is considered

Proposed Reactivity Scale Under the assumption that hydrocarbon depletion is due solely to attack by OH (with the qualification noted for alkenes) we propose a five-class reshyactivity scale based on hydrocarbon disappearance rates due to reaction with OH The ranges of reactivities for the five proposed classes each span an order of magnitude in reactivity relative to methane and are shown in Table III The hydroshycarbon half-lives as defined above are also shown for each reactivity range

Hydroxyl radical rate constant data for a wide ra~ge of atshymospheric hydrocarbons have been taken from the literature as well as from our own studies and are compiled and refshyerenced in Table IV The assignment of these compounds in the various classes of our proposed reactivity scale is shown in the last column of Table IV For interest carbon monoxide is included in this table since although it is not a hydrocarbon it is present in polluted urban atmospheres but is generally regarded as being unreactive in ambient air Thus carbon

Volume 10 Number 7 July 1976 693

l

monoxide appears as being somewhat reactive in Class 11 Cohen (o) and Glasson and Tuesday (8) was essentially the which also includes ethane and acetylene In our current same as that obtained from the studies of hydrocarbon conshycompilation of compounds methane is the only compound sumption carried out by Schuck and Doyle (1 ) Stephens and listed which appears in Class I and 2-methyl- and 23-dishy Scott (3) and Tuesday (5) We are currently investigating methyl-2-butene and d-limonene are the only compounds in methods of quantitatively relating hydrocarbon consumption Class V Several of the higher alkenes and 13-butadiene apshy to nitric oxide oxidation and ozone formation the parameter pear at the upper end of Class IV Data from our recent study of greatest interest in formulating control strategies for oxishyof monoterpeiie hydrocarbons ( 46) indicate that many of these dant reduction compounds will appear in Class V (54) As indicated above Rule 66 formulated by the LAAPCD

Comparison with Other Scales The ranking of reacshy in 1966 represented the first hydrocarbon control measure tivities for the aromatic hydrocarbons in our scale is essentially based on photochemical reactivity Although this regulation the same as that obtained by Altshuller et al (4) and by has been effective results from recent studies (34-36) indicate Kopczynski (7 17) Although our proposed scale is based that the 4-6 h irradiations (25) from which assignments of solely on hydrocarbon disappearance rates Altshuller and the degree of reactivity of hydrocarbons were made in forshyBufalini ( 17) have shown that this measure of reactivity is very mulating Rule 66 did not give sufficient recognition to the similar to the one based on nitric oxide oxidation rates They ozone-forming potential of slow reactors such as n-butane and showed that the ranking of reactivities of hydrocarbons from propane Consequently it is now realized that measures more the nitric oxide photooxidation studies of Altshuller and stringent than Rule 66 are necessary to achieve reductions in

ozone formation to levels approaching th(se mandated by the US Clean Air Act Amendments of 1970

Table Ill Reactivity Scale for Hydrocarbons Based on Recognition of such deficiencies in current hydrocarbon Rate of Disappearance of Hydrocarbon Due to control regulations has led to reexamination of present hyshyReaction with Hydroxyl Radicals drocarbon reactivity classifications The focus of these reshy

evaluations has been the five-class reactivity scale (see TableClasa Hall-Hiebull Reactivity rel to methane ( =1)

I gt99 days lt10 V) proposed by B Dimitriades at the EPA Solvent Reactivity II 24 h to 99 days 10-100 Conference in 1974 (23) Significant changes have been sugshy

gested for this reactivity classification by the California ARB (29 30) the LAAPCD (31) the EPA (55) and by industry

Ill 24-24 h 100-1000 IV 024-24 h 1000-10 000

However since no final conclusions have been reached by any V lt024 h gt10 000 t112 = 0693kOH[OH] of these agencies at this time we will restrict comparison of

our proposed scale to the 1974 EPA scale

r Table IV Proposed Reactivity Classification of Hydrocarbons and CO Based on Reaction with Hydroxyl Radicals

Compound koH + Cpd (I mo1- 1 s-1) X 10-9 Rat Reactivity rel to methane ProPQsad class see Table Ill

Methane 00048 (60) 1 I co 0084 (45) 18 II Acetylene 011 (45 61 66) 23 II Ethane 016 (62) 33 II Benzene 085 (43 44) 180 Ill Propane 13 (63) 270 Ill n-Butane 18 (41 42) 375 Ill lsopentane 20 (42) 420 Ill Methyl ethyl ketone 21 (46) 440 Ill 2-Methylpentane 32 (42) 670 Ill Toluene 36 (43 44) 750 Ill n-Propylbenzene 37 (42) 770 ill lsopropylbenzene 37 (42) 770 ill Ethane 38 (42 64-66) 790 Ill n-Hexane 38 (42) 790 Ill 3-Methylpentane 43 (42) 900 Ill Ethylbenzene 48 (42) 1000 Ill-IV P-Xylene 745 (41 43) 1530 IV p-Ethyltoluene 78 (42) 1625 IV o-Ethyltoluene 82 (42) 1710 IV o-Xylene 84 (41 43) 1750 IV Methyl isobutyl ketone 92 (46) 1920 IV m-Ethyltoluene 117 (42) 2420 IV m-Xylene 141 (4143) 2920 IV 123-Trimethylbenzene 149 (41 43) 3100 IV Propene 151 (67) 3150 IV 124-Trimethylbenzene 20 (41 43) 4170 IV 135-Trimethylbenzene 297 (41 43) 6190 IV cis-2-Butene 323 (67) 6730 IV 8-Pinene 42 (46) 8750 IV 13-Butadiene 464 (42) 9670 IV-V 2-Methyl-2-butene 48 (68) 10 000 V 23-Dimethyl-2-butene 67 (69) 14 000 V d-Limonene 90 (46) 18800 V

bull Where more than one reference is cited an average value is given for the rate constant

694 Environmental Science amp Technology 72

i

Table V Proposed EPA Reactivity Classification of Organics (from Ref 23 1974) Claul Class II Class Ill Class IV Class V

nonreactive reactive reactive reactlVe reactive

C-C3 paraffins Mono-tertiary- CH paraffins Primary and secondary Aliphatic olefins

Acetylene Cycloparaffins a-Methyl styrene alkyl benzeries alkyl benzenes

Cyclic ketones Dialkyl benzenes

Benzaldehyde Tertiary-alkyl n-Alkyl ketones Branched alkyl Tri- and tetra-alkyl acetates ketones

Benzene Styrene Aliphatic aldehydes

benzenes 2-Nitropropane Primary and secondary

Acetone Primary and secondary alkyl acetates Unsaturated ketones Methanol alkyl alcohols N-methyl pyrrolidone Diacetone alcohol Tertiary-alkyl Cellosolve acetate

3lcohols NN-dimethyl Ethers ace tam Ide Partially halogenated

Phenyl acetate CellosolvesolefinsPartially halogenated paraffins Methyl benzoate

Partially halogenated Ethyl amines paraffins

Dimethyl formamlde

Perhalogenated hydrocarbons

Reactivity rating 10 35 65 97 143

Briefly the EPA has proposed on the basis of previous experimental studies that methane ethane acetylene proshypane and benzene are essentially nonreactive for typical urban ambient hydrocarbon-NOx ratios (23) and these compounds are placed in Class I on their scale Three other classes have been proposed for mobile source hydrocarbon emissions (56)-Class III (C4 and higher alkanes) Class IV (aromatics less benzene) and Class V (alkenes) When stashytionary source hydrocarbons including solvents (Class II) are added to the list five classes are suggested as shown in Table V

Thmiddot reactivity classification proposed here (Tables III and IV) can be compared with that suggested by the EPA (Table V) It is evident that several significant differences emerge

bull The C1-C3 alkanes are given equal weighting in the EPA scale and all are designated unreactive whereas our scale clearly differentiates among the three compounds from methane in Class I and ethane in Class II to the more reactive propane in Class III

bull According to our proposed classification benzene and n-butane are of similar reactivity whereas the EPA scale places them in Class I and III respectively

bull All the alkenes are placed in Class V of the EPA scale whereas our proposed scale shows a differentiation in reacshytivity from ethene in Class III to 23-dimethyl-2sbutene in Class V

bull Our scale g1ves recognition to the high reactivity of natshyural hydrocarbons such as 3-pinene and d-limonene placing these in Class IV and V respectively The present published EPA scale does not give a classification for natural hydroshycarbons although they could be loosely categorized as subshystituted alkenes in Class V

In addition to noting these differences some similarities exist between the two scales For example our scale shows that 13-butadiene is highly reactive which is consistent with preshyvious studies indicating it to be a facile precursor of eye irrishytants (17) and highly effective in producing oxidant during irradiation of HC-NOx mixtures (57) Also methanol would appear in the low half of Class II in our scale based on a recent dstermination of the rate constant for OH attack on methanol (58) The value found was k(OH+CH30H)lkltOH+CO) = 063 at 298 K This reduces to 53 X 107 1 mo1-1 s-1 based on k(oH+CO) = 84 X 107 1 mo1-1s-1 (45) Hence both our scale and the EPAs show methanol to be relatively unreactive

It should be emphasized that the classification proposed in our scale is not strictly applicable to compounds which

73

undergo significant photodissociation in the atmosphere for example aliphatic aldehydes In such cases the compound will be more reactive than predicted from a scale based on hydrocarbon depletion due solely to OH attack However our proposed classification emphasizes that most compounds react in polluted atmospheres and suggests that thf Class I scale be reserved only for the few compounds which have half-lives greater than about 10 days

Conclusion

Our proposed reactivity scale based on the depletion of hydrocarbons by reaction with the OH radical has utility in assessing hydrocarbon chemical behavior in polluted ambient air Since only those organic compounds which participate in atmospheric reactions are of consequence in the chemical transformations in ambient air their relative reactivity toward OH is a useful and directly measurable index of their potential importance in the production of secondary pollutants

Ohe advantage of the proposed scale is that because it is based on the individual rate constants for hydrocarbon reacshytion with OH any degree of gradation in reactivity may be used to formulate any desired number of classes-from relashytively few to a large number of classes or even an ordered ranking of compounds A second strength of the present scale is that it can be readily extended to include additional organic compounds once their rate of reaction with OH is known Fishynally the proposed scale gives greater weight than previous reactivity scales to the alkanes and a number of aromatic hydrocarbons which require a longer period of time to react but can contribute significantly to ozone formation during longer irradiation periods eg during their transport downshywind from urban centers-a phenomenon of increasing conshycern to air pollution control agencies

Acknowledgment

We gratefully acknowledge helpful discussions with R Atkinson G J Doyle D M Grosjean and E R Stephens

Literature Cited

(1) Schuck E A Doyle G bull J Photooxidation of Hydrocarbons in Mixtures Containing Oxides of Nitrogen and Sulfur Dioxide Rept No 29 Air Pollution Foundation San Marino Calif 1959

(2) Leighton PA Photochemistry of Air Pollution Academic Press New York NY 1961

(3) Stephens E R Scott W E Proc Am Pet Inst 42 (111)665 (1962)

Volume 10 Number 7 July 1976 695

l

1 I l

(4) Altshuller A P Cohen I R Sleva S F Kopczynski S L Sciena 135442 (1962)

(5) Tuesday C S Arch Emmiddotiron Health 7 188 (1963) (6) Altshuller A P Cohen I R Int J Air Water Pollut 7 787

(19631 (7) Kopczynski S L ibid 8 107 (1964) (8) Glasson W A Tuesday C S paper presented at the 150th

National Meeting ACS Atlantic City NJ September 1965 (9) Altshuller A P Bufalini J J J Photochem Photobiol 4 97

(J96fi (10) Heuss JM Glasson W A Environ Sci Technol 2 1109

(19681 (11) Altshuller A P Kopczynski S L Wilson D Lonneman W

Sutterfield F D J Air Pollut Control Assoc 19 787 (1969) (12) Altshuller A P Kopczynski S L Wilson D Lonneman W

Sutterfield F D ibid p 791 (13) Dimitriades B Eccleston B H Hurn R W ibid 20 150

(19701 (14) Levy A Miller S E Final Technical Report on the Role of

Solvents in Photochemical Smog Formation National Paint Varnish and Lacquer Assoc Washington DC 1970

(15) Wilson K W Doyle G J Investigation of Photochemical Reactimiddotities of Organic Solvents Final Report SRI Project PSU-8029 Stanford Research Institute Irvine Calif September 1970

(16) Glasson W A Tuesday C S J Air Pollut Control Assoc 20 239 (1970)

(17) Altshuller A P Bufalini J J Environ Sci Technol 5 39 (1971)

(18) Glasson W A Tuesday C S ibid p 153 (19) Stephens E R in Chemical Reactions in Urban Atmospheres

pp 45-54 C Tuesday Ed American Elsevier New York NY 1971

(20) Stephens E R Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973

(21) Kopczynski S L Kuntz R L Bufalini J J Environ Sci Technol 9608 (1975)

(22) Control Techniques for Hydrocarbon and Organic Solvent Emissions from Stationary Sources Nat Air Pollut Control Admin Publication AP-68 March 1970

(23) Proceedings of the Solvent Reactivity Conference US Enshyvironmental Protection Agency Research Triangle Park NC EPA-6503-74-010 November 1974

(24) Hamming W J SAE Trans 76 159 (1968) (25) Brunelle M F Dickinson JE Hamming W J Effectiveness

of Orga1ic Solvents in Photochemical Smog Formation Solvent Project Final Report Los Angeles County Air Pollution Control District July 1966

(26) Emironmental Protection Agency Region IX Technical Support Document January 15 1973

(27) Feldstein J J Air Polut Control Assoc 24469 (1974) (28) Altshuller A P ibid 16257 (1966) (29) California Air Resources Board Informational Report Progress

Report on Hydrocarbon Reactivity Study June 1975 (30) Organic Compound Reactivity System for Assessing Emission

Control Strategies ARB Staff Report No 75-17-4 September 29 1975

(31) Los Angeles County APCD Proposed Reactivity Classification of Organic Compounds with Respect to Photochemical Oxidant Formation Los Angeles County Air Pollution Control Departshyment July 21 1975

(32) Goeller B F Bigelow J H DeHaven JC Mikolowsky W T Petruschell R L Woodfill B M Strategy Alternatives for Oxidant Control in the Los Angeles Region R-1368-EPA Rand Corp Santa Monica Calif December 1973

(33) Impact of Reactivity Criteria on Organic Emission Control Strategies in the Metropolitan Los Angeles AQCR TRW Interim Report March 1975

(34) Holmes J California Air Resources Board private communishycation 1975

(35) Pitts J N Jr Winer A M Darnall K R Doyle G J McAfee JM Chemical Consequences of Air Quality Standards an~ of Control Implementation Programs Roles of Hydrocarbons Oxides of Nitrogen and Aged Smog in the Production of Photoshychemical Oxidant Final Report California Air Resources Board Contract No 3-017 July 1975

(36) Altshuller A P in Proceedings of the Solvent Reactivity Conference US Environmental Protection Agency Research Triangle Park NC EPA-6503-74-010 pp 2-5 November 1974

(37) Heicklen J Westberg K Cohen N Puhl 115-69 Center for Air Environmental Studies University Park Pa 1961

(38) Weinstock R Daby E E Niki H Discussion on Paper Presented by E R Stephens in Chemical Reactions in Urban Atmospheres pp 54-55 C S Tuesday Ed Elsevier New York NY 1971

(39) Niki H Daby E E Weinstock B AdLbull Chem Ser 113 16 (197)

(40) Demerjian K L Kerr J A Calvert J G Adv Environ Sci Technol 4 1 (1974)

(41) Doyle G J Lloyd A C Darnall K R Winer A M Pitts J N Jr Environ Sci Technol 9237 (1975)

(42) Lloyd A C Darnall K R Winer A M Pitts J N Jr J Phys Chem 80 789 (1976)

(43) Hansen D A Atkinson R Pitts J N Jr ibid 79 1763 (1975) (44) Davis D D Bollinger W Fischer S ibid p 293 (45) Chemical Kinetic and Photochemical Data for Modeling Atshy

mospheric Chemistry NBS Technical Note 866 R F Hampson Jr llQJJQarvin Eds Ju_ne 1975_____~ middot middot

(46)rloyd A C~arnliltKR-XWiner A JI_) Pitts J N Jr J Phys Chem 80 lflgti (1976)

(47) Pate C T Atkmiddot ori R Pitts J N Jr J Environ Sci Health All 1 (1976)

(48) Atkinson R Pitts J N Jr J Phys Chem 78 1780 (1974) (49) Stedman D H Niki H Environ Lett 4303 (1973) (50) Calvert J McQuigg R Proceedings of the Symposium on

Chemical Kinetics Data for the Upper and Lower Atmosphere Warrenton Va September 15-18 1974 Int J Chem Kinet Symposium No 1 113 (1975)

(51) Wang C C Davis L I Jr Wu CH Japar S Niki H Weinstock B Science 189 797 (1975)

(52) Perner D Ehhalt D H Patz H W Platt U Roth E P Volz A OH Radicals in the Lower Troposphere 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(53) Davis D D McGee T Heaps W Direct Tropospheric OH Radical Measurements via an Aircraft Platform Laser Induced Fluorescence ibid

(54) Pitts J N Jr Lloyd A C Winer A M Darnall K R Doyle G J Development and Application of a Hydrocarbon Reactivity Scale Based on Reaction with the Hydroxyl Radical to be preshysented at 69th Annual APCA Meeting Portland Ore June 27-July 1 1976

(55) Informal EPA meeting Philadelphia Pa July 30-31 1975 (56) Black M High L E Sigsby JE Methodology for Assignshy

ment of a Hydrocarbon Photochemical Reactivity Index for Emissions from Mobile Sources US Environmental Protection Agency Research Triangle Park NC EPA-6502-75-025 March 1975

(57) Haagen-Smit A J Fox M M Ind Eng Chem 48 1484 (1956)

(58) Osif T L Simonaitis R Heicklen J J Photochem 4 233 (1975)

(59) Japar S M Wu CH Niki H J Phys Chem 78 2318 (1974) (60) Davis D D Fischer S Schiff R J Chem Phys 61 2213

(1974) (61) Pastrana A Carr R W Jr Int J Chem Kinet 6587 (1974) (62) Overend R Paraskevopoulos G Cvetanovic R J Hydroxyl

Radical Rate Measurement for Simple Species by Flash Photolysis Kinetic Spectroscopy Eleventh Informal Conference on Photoshychemistry Vanderbilt University Nashville Tenn June 1974

(63) Gorse R A Volman D HJ Photochem 3115 (1974) (64) Greiner N R J Chem Phys 53 1284 (1970) (65) Smith I W M Zellner R J Chem Soc Faraday Trans II

69 1617 (1973) (66) Davis D D Fischer S Schiff R Watson R T Bollinger W

J Chem Phys 63 1707 (1975) (67) Atkinson R Pitts J N Jr ibid p 3591 (68) Atkinson R Perry R A Pitts J N Jr Chem Phys Lett

38607 (1976) (69) Atkinson R Perry R A Pitts J N Jr unpublished results

1975 Received for review November 3 1975 Accepted January 30 1976 Work supported by the California Air Resources Board (Contract No 4-214) and the National Science Foundation-RANN (Grant No AEN73-02904 A02) The contents do not necessarily reflect the vieumiddots and policies of the California Air Resources Board or the National Science Foundation-RANN nor does mention of trade names or commercial products constitute endorsement or recommendation for use

696 Environmental Science amp Technology 74

Ii

rl

I r I

G

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE

BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Statewide Air Pollution Research Center University of California

Riverside CA 92521

Paper No 76-311

Presented at the 69th Annual Air Pollution Control Association Meeting

Portland Oregon

June 27 - July 1 1976

75

76-311 rII 2

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Statewide Air Pollution Research Center University of California

Riverside CA 92502

Abstract

Measurements of the relative rate constants for the reaction of the hydroxyl radical (OH) with some 35 atmospherically important hydrocarbons have been made in the SAPRC 6400 i glass irradiation chamber These rate constants were placed on an absolute basis using literature values for either n-butane or isobutene and have been augmented with OH rate data obtained by elementary reaction measurements and other appropriate data such as that from photoshy

l oxidation studies from which relative and absolute OH rate constants could be calculated

l Utilizing these data a reactivity scale for some 80 compounds including alkenes alkanes aromatics oxygenates and naturally occurring hydrocarbons has been formulated based on the removal of the hydrocarbons by reaction with OH The resulting scale is an ordering of the reactivities of the hydrocarbons relative to methane The scale can be divided into an arbitrary number of classes for purposes of application to control strategies or comparison with other reactivity scales

Some comparisons of the present scale with proposed EPA and ARB reactivity scales are made and the implications of the present scale for the role of alkanes and a number of aromatic hydrocarbons in the formation of ozone in regions downwind of urban centers is analyzed

76

r I

I D

-I

f

76-311 3

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Introduction

1A major result of the photooxidation studies of the past 20 years - 26 has been the recognition that atmospherically important hydrocarbons do not all contribute equally to the production of photochemical oxidant and hence that the application of cost effective strategies for the control of hydrocarbons requires that more stringent emissions reductions be applied to the more reactive organic compounds 10lll9 26 This in turn has led to a continuing requirement for a rational assessment of hydrocarbon reactivity as a basis for control decisions Such an assessment is particularly critical since attainshyment of the Federal air quality standard for photochemical oxidant has been sought largely through the stringent control of hydrocarbon emissions2728

The first effort to formulate and apply a practical hydrocarbon reactivity scale was taken in 1966 with the implementation by the Los Angeles Air Pollution Control Districtmiddot (LAAPCD) of a regulation known as Rule 66 to limit solvent organic emissions on the basis of their capacity for promoting photoshychemical smog formation 10ll This rule and other conceptions of reactivity scales29 represented a major advance in the application of the information then available concerning the mechanisms of photochemical smog formation to the development of practical air pollutant emission control strategies Thus the basic concept of selective control of emissions based on their reactivity is now widely established

Not surprisingly however there have been significant differences in hydrocarbon reactivity scales proposed by local regional and national air pollution control agencies2530-34 as well as by industry161823 This in turn can lead to quite large differences in emission inventory estimates and in approaches to hydrocarbon control303536

Most although not all previous reactivity classifications have relied primarily on smog chamber data obtained for relatively short irradiation (~ 6 hrs) periods Thus the recent concern over oxidant formation resulting from longer irradiations during pollutant transport to regions downwind of urban sources introduces additional difficulties both in defining what constishytutes a reactive hydrocarbon and in categorizing degrees of reactivity For example a compound such as propane the major component in liquified petroleum gas (LPG) and often cited as a clean fuel is now known37-39 to contribute to the formation of photochemical oxidants in the later stages of day-long irradiation periods However on the basis of data obtained during short-term irradiations propane has been classified as unreactive in a reactivity scale

77

76-311

[

r I l

J

I

4

proposed25 in 1974 by B Dimitriades of the EPA (hereafter referred to as the EPA reactivity scale)

A third difficulty with reactivity scales which are based on previous smog chamber data concerns their reliance on measurements of smog manifestations such as maximum ozone concentrations Observed values of such secondary properties of a photooxidation system can be significantly affected by the particular chamber materials light source purity of matrix air and other aspects of the chamber methodology employed This fact can account in large measure for the significant number of discrepancies which arise from comparison of the specific ranking of hydrocarbons in reactivity scales formulated on the basis of different sets of chamber data

Altshuller and Bufalini9 zo have reviewed the various definitions of hydroshycarbon reactivity and summarized results of numerous studies up to 1970 The criteria used for evaluating hydrocarbon reactivity include hydrocarbon conshysumption the conversion of nitric oxide to nitrogen dioxide ozone formation aerosol formation eye irritation and plant damage It is generally agreed that the criteria most suitable with respect to photochemical oxidant control strategies are ozone dosage or maximum ozone concentration30 However establishing a definitive hydrocarbon reactivity scale to be applied specifishycally to the control of ozone formation requires an extensive and lengthy experimental program in which the ozone-forming capability of each individual hydrocarbon is determined under simulated atmospheric conditions including long-term irradiation (ie 10-12 hrs)

An alternative and perhaps supplementary basis for assessing hydrocarbon reactivity which appears to have considerable utility and a valid experimental foundation is the formulation of a reactivity scale based on the rate of disshyappearance of hydrocarbons due to their reaction with the hydroxyl radical the key intermediate species in photochemical air pollution

Results and Discussion

It is only comparatively recently that the critical role of OH in photoshychemical smog formation has been generally recognized40-44 and that appreciable rate constant data have become available for the reaction of OH with several classes of hydrocarbons The importance of OH as a reactive intermediatz

46relative to species such as o3 o(3P) and H02 has been shown previously 3-through computer modeling of smog chamber data For example Niki Daby and Weinstock43 showed that the reactivity of a number of hydrocarbons as measured by the rate of conversion of NO to NOz correlated significantly betterwith OH rate constants than with either 0(3P) or 03 rate constants

The utility of a large environmental chamber in obtaining relative rate constants with an accuracy of plusmn20 for the reaction of the hydroxyl radical with a variety of hydrocarbons has been demonstrated in a number of recent studies both in this45-48 and other laboratories49 To date we have measured relative rates for the reaction of OH with some 35 organic compounds The

78

l l t

l

r L

76-31 1 5

detailed kinetic data derived from these investigations have been reported48elsewhere 45 - In these studies we determined the relative rates of disshy

appearance of selected alkanes alkenes and aromatic hydrocarbons under simushylated atmospheric conditions of temperature pressure concentrations light intensity and other trace contaminants (NOx CO hydrocarbons water) These relative rate constants were placed on an absolute basis using the published rate constants for OH+ n-butane or isobutene The assumption that OH was responsible for the hydrocarbon disappearance under the experimental conditions employed was subsequently supported by the very good agreement between OH rate constants determined for the individual compounds using flash photolysisshyresonance fluorescence techniquesS051 and those obtained in our initial chamber experiments4546

The importance of the chamber method for the purposes of formulating a reactivity scale is that it permits the simultaneous determination of valid rate constants for reactions of OH with a large number and wide variety of atmospherically important hydrocarbons This substantially expands the number of compounds which can be incorporated now and in the near future in the resulting reactivity scale

Use of OH Rate Constants as a Reactivity Index

From the successful correlation of OH rate constants with the rates of hydrocarbon disappearance observed in chamber simulations at the SAPRc45-48 and Ford49 laboratories we conclude that to a good approximation this correlation can be extrapolated to the atmosphere (a) for alkenes in ambient air parcels during the early morning hours when ozone levels are generally quite low (~005 ppm) and (b) for alkanes and aromatics at essentially all times and locations The latter assumption namely that an OH rate constant is a good reactivity index for alkanes and aromatics throughout an irradiation day (or multiple irradiation days) rests upon the fact that the rates of reaction of these classes of hydrocarbons with species such as ozone 0(3P) atoms and the hydroperoxyl radical are several orders of magnitude slower than

52- 54with OH 8 For example even at the highest ozone concentrations experienced in ambient atmospheres 03 will not contribute significantly to the photooxidation of alkanes and aromatics This is in contrast to the case for alkenes which although the rate constants for reaction of 03 with alkenes are not particularly large55-57 react rapidly with ozone at the average concenshytrations connnonly encountered in polluted ambient air (~01-02 ppm)

Proposed Reactivity Scale

Under the assumption that hydrocarbon depletion is due solely to attack by OH (with the qualification noted for alkenes) we propose a five-class reacshytivity scale based on hydrocarbon disappearance rates due to reaction with OH The ranges of reactivities for the five proposed classes each span an order of magnitude in reactivity rel~tive to methane and are shown in Table I Although a scale based on OH rate constants can be divided into an arbitrary number of classes we have found it convenient and useful (particularly for purposes of

79

l r f

1

76-311 6

comparison with other scales) to employ the order of magnitude divisions which lead to a five-class scale

The hydrocarbon half-lives (defined as t12 ~ 0693k[OH]) corresponding to each class are also shown in Table I These half-lives were calculated assuming depletion of the hydrocarbon solely due to reaction with the hydroxyl radical and assuming an OH radical concentration in polluted atmospheres of 107 radicals cm-3 a reasonable value on the basis of both model calculations58 and recent atmospheric measurements59-61

Table II shows the compounds for which OH rate constants have been found or calculated distributed among the five classes of our proposed reactivity scale in the order of increasing rates of reaction within each class Employing OH rate constants obtained from hydrocarbon disappearance rates measured in photooxidation studies62 63 as well as those from elementary rate determinations and our chamber studies has permitted tabulation of OH rate constant data for 80 hydrocarbons These 80 hydrocarbons are incorporated in Table II

For interest carbon monoxide although not a hydrocarbon is included in Table II since it is present in polluted urban atmospheres Although CO is generally regarded as being unreactive in ambient air in our scale it appears in Class II which also includes ethane and acetylene

In our current compilation of compounds methane is the only compound listed which appears in Class I although the recent work of Chameides and Stedman has shown that even methane will react given sufficient time64 Most of the straight chain alkenes appear in Class IV with the substituted alkenes occurring in the upper half of Class IV and in Class V The alcohols fall into Class III while the monoterpene hydrocarbons are highly reactive and most of them appear in Class V with a- and $-pinene occurring in the upper half of Class IV The reactivity classification shown in Table II is similar to an earlier one we have formulated65 but many more compounds have now been included

Comparison with Other Scales

The ranking of reactivities for the aromatic hydrocarbons in our scale is essentially the same as that obtained by Altshuller et al4 and by Kopczynski 7 66 Although our proposed scale is based solely on hydrocarbon disappearance rates Altshuller and Bufalini20 have shown that this measure of reactivity is very similar to the one based on nitric oxide oxidation rates They showed that the ranking of reactivities of hydrocarbons from the nitric oxide photooxidation studies of Altshuller and Cohen6 and Glasson and Tuesdays was essentially the same as that obtained from the studies of hydrocarbon conshysuinption carried out by Schuck and Doyle 2 Stephens and Scott3 and Tuesday 5

As indicated above Rule 66 formulated by the LAAPCD in 1966 represented the first hydrocarbon control measure based on photochemical reactivity Although this and similar regulations have been effective results from recent

80

T

I I t

I Ii

76-31 1 7

d 37-39 d h h ffmiddot hstu ies in icate tat t ey give insu icient recognition tote ozone-forming potential of slow reactors such as g_-butane and propane under longshyterm irradiation conditions Consequently it is now realized that measures more stringent than Rule 66 are necessary to achieve reductions in ozone formation to levels approaching those mandated by the U S Clean Air Act Amendments of 1970

Recognition of such deficiencies in current hydrocarbon control regulations has led to re-examination of present hydrocarbon reactivity classifications The focus of these re-evaluations has been the five-class reactivity scale (see Table III) proposed by B Dimitriades at the EPA Solvent Reactivity Conference in 1974 25 Significant changes have been suggested for this reactivity classishyfication by the California ARB30-33 the LAAPCn34 the EPA67 and by industry The EPA is currently examining this question and since no final conclusions have been reached at this time we will restrict comparison of our proposed sci=Lle to the scale proposed in 1974 by Dimitriades of the EPA In addition we will discuss our proposed scale in the context of the three-class system r~cently approved32 by the ARB for application to hydrocarbon pollutant invenshytories and for planning future control strategies

Briefly the EPA has proposed on the basis of previous experimental studies that methane ethane acetylene propane and benzene are essentially non-reactive for typical urban ambient hydrocarbon-NOx ratios25 and these compounds are placed in Class I on their scale Three other classes have been proposed for mobile source hydrocarbon ernissions68__Class III (C4 and higher alkanes) Class IV (aromatics less benzene) and Class V (alkenes) When stationary source hydrocarbons including solvents (Class II) are added to the list five classes are suggested as shown in Table III

The reactivity classification proposed here (Tables I II) can be compared with that suggested by the EPA (Table III) It is evident that several signifishycant differences emerge

(1) The C1-C3 alkanes are given equal weighting in the EPA scale and all are designated unreactive while our scale clearly differentiates between the three compounds methane ethane and propane in Classes I II and III respectively

(2) According to our proposed classification benzene and n-butane are of similar reactivity while the EPA scale places them in Class I and III respectively

(3) All the alkenes are placed in Class V of the EPA scale while our proposed scale shows a differentiation in reactivity from ethene in Class III to 23-dimethyl-2-butene in Class V

(4) Our scale gives recognition to the high reactivity of natural hydroshycarbons such as the pinenes_and i-limonene placing these in Class IV and V respectively The present published EPA scale does not give a classification for natural hydrocarbons although they could be loosely categorized as substituted alkenes in Class V

81

l l

i

l

76-311 8

In addition to noting these differences some similarities exist between the two scales For example our scale shows that 13-butadiene ts highly reactive which is consistent with previous studies indicating it to be a facile precursor of eye irritants20 and highly effective in producing oxidant during irradiation of HC-NOx mixtures1 Both our scale and the EPAs show methanol to be relatively unreactive with a greater reactivity exhibited by the higher alcohols although our sc-ale predicts a lower overall reactivity than that of the EPA

The three-class system recently approved by the ARB is shown in Table IV and is similar to one being considered by the EPA30 According to the ARB 32

Class I would include low reactivity organic compounds yielding little if any ozone under urban conditions Class II would consist of moderately reactive organic compounds which give an intermediate yield of ozone within the first day of solar irradiation Class III would be limited to highly reactive organic compounds which give very high yields of ozone within a few hours of irradiation

In general the three-class ARB scale is in line with the scale presented here based on OH rate constants with only minor exceptions For example the ARB scale shows the primary and secondary Cz+ alcohols to be highly reactive in Class III while our scale shows them to be of moderate reactivity

Finally we wish to note two limitations of the reactivity scale proposed here One limitation of our scale is that it is not strictly applicable to compounds which undergo significant photodissociation in the atmosphere and aldehydes have been omitted for this reason In such cases the compound will be more reactive than predicted from a scale based on hydrocarbon depletion due solely to reaction with OH A second limitation in the application of our scale concerns the inherent problem arising from uncertainties in the identity and fates of subsequent products33

Conclusion middot

Our proposed reactivity scale based on the depletion of hydrocarbons by reaction with the OH radical has utility in assessing hydrocarbon chemical behavior in polluted ambient air Since only those organic compounds which participate in atmospheric reactions are of consequence in the chemical transshyformations in ambient air their relative reactivity towards OH is a useful and directly measurable index of their potential importance in the production of secondary pollutants

One advantage of the proposed scale is that because it is based on the individual rate constants for hydrocarbon reaction with OH any degree of gradation in reactivity may be used to formulate any desired number of classes-shyfrom relatively few to a large number of classes or even an ordered ranking of compounds A second strength of the present scale is that it can be readily extended to include additional organic compounds once their rate of reaction

82

76-311 9

~

l

I

with OH is known Finally the proposed scale gives adequate weight to alkanes and a number of aromatic hydrocarbons which require a significant period of time to react but can contribute substantially to ozone formation during longer irradiation periods eg during their transport downwind from urban centers-shya phenomenon of increasing concern to air pollution control agencies

Acknowledgement

We gratefully acknowledge access to the final report of the ARB Reactivity Committee prior to official release

This work was supported by the California Air Resources Board (ARB Contract No 5-385) and the National Science Foundation-Research Applied to National Needs (NSF-RANN Grant No ENV73-02904-A03) The contents do not necessarily reflect the views and policies of the ARB or the NSF-RANN nor does mention of trade names or commercial products constitute endorsement or recomshymendation for use

References

1 A J Haagen-Smit and M M Fox Ozone formation in photochemical oxidashytion of organic substances Ind Eng Chem 48 1484 (1956)

2 E A Schuck and G J Doyle Photooxidation of hydrocarbons in mixtures containing oxides of nitrogen and sulfur dioxide Rept No 29 Air Pollution Foundation San Marino California 1959

3 E R Stephens and W E Scott Relative reactivity of various hydrocarbons in polluted atmospheres 11 Proc Amer Petrol Inst 42 (III) 665 (1962)

4 A P Altshuller I R Cohen S F Sleva and S L Kopczynski Air pollutionphotooxidation of aromatic hydrocarbons Science 138 442 (1962)

5 C S Tuesday Atmospheric photooxidation of olefins Effect of nitrogen oxides Arch Environ Health l 188 (1963)

6 A P Altshuller and I R Cohen Structural effects on the rate of nitrogen dioxide formation in the photooxidation of organic compound-nitric oxide mixtures in air Int J Air Water Pollut l 787 (1963)

7 s L Kopczynski Photooxidation of alkylbenzene-nitrogen dioxide mixtures in air Int J Air Water Pollut _ 107 (1964)

B W A Glasson and C S Tuesday paper presented at the 150th National Meeting ACS Atlantic City N J September 1965

9 A P Altshuller and J J Bufalini Photochemical aspects of air pollution a review J Photochem Photobiol _ 97 (1965)

10 M F Brunelle JE Dickinson and W J Hannning Effectiveness of organic solvents in photochemical smog formation Solvent Project Final Report Los Angeles County Air Pollution Control District July 1966

11 W J Hamming Photochemical reactivity of solvents SAE Transactions Ji 159 (1968)

83

10 76-311

12 JM Reuss and W A Glasson Hydrocarbon reactivity and eye irritation Environ Sci Technol I 1109 (1968)

13 A P Altshuller S L Kopczynski D Wilson W Lonneman and F D Sutterfield Photochemical reactivities of n-butane and other paraffinic hydrocarbons J Air Pollut Contr Assoc 19 787 (1969)

14 A P Altshuller S L Kopczynski D Wilson W Lonneman and F D Sutterfield Photochemical reactivities of paraffinic hydrocarbonshynitrogen oxides mixtures upon addition of propylene or toluene J Air Pollut Contr Assoc 19 791 (1969)

15 B Dimitriades B H Eccleston and R W Hurn An evaluation of the fuel factor through direct measurement of photochemical reactivity of

l emissions J Air Pollut Contr Assoc 20 150 (1970)

l 16 A Levy and S E Miller Final technical report on the role of solvents

in photochemical smog formation National Paint Varnish and Lacquer Association Washington DC April 1970

17 K W Wilson and G J Doyle Investigation of photochemical reactivities organic solvents Final Report SRI Project PSU-8029 Stanford Research Institute Irvine California September 1970

18 W A Glasson and C S Tuesday Hydrocarbon reactivity and the kinetics of the atmospheric photooxidation of nitric oxide J Air Pollut Contrl

t Assoc 20 239 (1970)

19 Control Techniques for hydrocarbon and organic solvent emissions from stationary sources Nat Air Pollut Contr Admin Publication IIAP-68 March 1970

20 A P Altshuller and J J Bufalini Photochemical aspects of air pollution a review Environ Sci Technol i 39 (1971)

21 W A Glasson and C S Tuesday Reactivity relationships of hydrocarbon c mixtures in atmospheric photooxidation Environ Sci Technol 5 151 I (1971) -

22 E R Stephens Hydrocarbon reactivities and nitric oxide conversion in real atmospheres in Chemical Reactions in Urban Atmospheres C S Tuesday Ed American Elsevier Inc N Y 1971 pp 45-54

23 Solvents Theory and Practice R W Tess Ed Adv Chem Series 124 (1973)

24 E R Stephens Hydrocarbons in polluted air Sunnnary Report CRC Project CAPA-5-68 June 1973 NTIS No PB 230 993AS

25 Proceedings of the solvent reactivity conference U S Environmental Protection Agency Research Triangle Park N C EPA-6503-74-010 November 1974

26 S L Kopczynski R L Kuntz and J J Bufalini Reactivities of complex hydrocarbon mbtures Environ Sci Technol 2_ 648 (1975)

ltL

27 Environmental Protection Agency Region IX Technical Support Document January 15 1973

28 M Feldstein A critical review of regulations for the control of hydroshycarbon emissions from stationary sources J Air Pollut Contr Assoc 24 469 (1974)

84

l l f [

l

middot-i~ I~ ~ 4 -

11 76-311

29 A P Altshuller An evaluation of techniques for the determination of the photochemical reactivity of organic emissions J Air Pollut Contr Assoc 16 257 (1966)

30 Progress report on hydrocarbon reactivity study California Air Resources Board Informational Report No 72-12-10 June 12 1975_

31 Organic compound reactivity system for assessing emission control strageshygies California Air Resources Board Staff Report No 75-17-4 September 29 1975

32 Board approves reactivity classification California Air Resources Board Bulletin March 1976 p 4

33 Tinalreport of the committee on photochemical reactivity to the Air Resources Board of the State of California Draft April 1976

34 Los Angeles County APCD proposed reactivity classification of organic compounds with respect to photochemical oxidant formation Los Angeles County Air Pollution Control Department July 21 1975

35 B F Goeller J H Bigelow J C DeHaven W T Mikolowsky R L Petruschell and B M Woodfill Strategy alternatives for oxidant control in the Los Angeles region The RAND Corporation Santa Monica California R-1368-EPA December 1973

36 J C Trijonis and K W Arledge Utility of reactivity criteria in organic emission control strategies for Los Angeles TRW Environmental Services Redondo Beach California December 1975

37 J Holmes California Air Resources Board private communication 1975

38 J N Pitts Jr A M Winer K R Darnall G J Doyle and JM McAfee Chemical consequences of air quality standards and of control implementation programs roles of hydrocarbons oxides of nitrogen and aged smog in the production of photochemical oxidant Final Report California Air Resources Board Contract No 3-017 July 1975

39 A P Altshuller in reference 25 pp 2-5

40 N R Greiner Hydroxyl-radical kinetics by kinetic spectroscopy II Reactions with c H6 c H8 and iso-c H at 300 K J Chern Phys 462 3 4 103389 (1967)

41 K Westberg and N Cohen The chemical kinetics of photochemical smog as analyzed by computer The Aerospace Corporation El Segundo California ATR-70(8107)-1 December 30 1969

42 B Weinstock E E Daby and H Niki Discussion on paper presented by E R Stephens in Chemical Reactions in Urban Atmospheres C S Tuesday Ed Elsevier N Y 1971 pp 54-55

43 H Niki E E Daby and B Weinstock Mechanisms of smog reactions Adv Chem Series 113 16 (1972)

44 K L Demerjian J A Kerr and J G Calvert The mechanism of photoshychemical smog formation Adv Environ Sci Technol ~ 1 (1974)

45 G J Doyle A C Lloyd K R Darnall A M Winer and J N Pitts Jr Gas phase kinetic study of relative rates of reaction of selected aromatic compounds with hydroxyl radicals in an environmental chamber Environ Sci Technol 2_ 237 (1975)

85

12 76-311

46 A C Lloyd K R Darnall A M Winer and J N Pitts Jr Relative rate constants forreaction of the hydroxyl radical with a series of alkanes alkenes and aromatic hydrocarbons J Phys Chem 80 789 (1976)

47 A M Winer A C Lloyd K R Darnall and J N Pitts Jr Relative rate constants for the reaction of the hydroxyl radical with selected ketones chloroethenes and monoterpene hydrocarbons J Phys Chem 80 1635 (1976) -

48 A C Lloyd K R Darnall A M Winer and J N Pitts Jr Relative rate constants for the reactions of OH radicals with isopropyl alcohol diethyl and di-n-propyl ether at 305 plusmn 2 K Chem Phys Lett~ 405 (1976)

49 CH Wu S M Japar and H Niki Relative reactivities of HO-hydrocarbon reactions from smog reactor studies J Environ Sci Health All 191 (1976)

i 50 D A Hansen R Atkinson and J N Pitts Jr Rate constants for the reaction of OH radicals with a series of aromatic hydrocarbons J Phys Chern JJ 1763 (1975)

51 D D Davis W Bollinger S Fischer A kinetics study of the reaction of the OH free radical with aromatic compounds I Absolute rate constants for reaction with benzene and toluene at 300degK J Phys Chem J_J_ 293 (1975)

f 52 C T Pate R Atkinson and J N Pitts Jr The gas phase reaction ofi 03 with a series of aromatic hydrocarbonsmiddot J Environ Sci Health All

1 (1976)

53 R Atkinson and J N Pitts Jr Absolute rate constants for the reaction of o(3P) atoms with selected alkanes alkenes and aromatics as determined by a modulation technique J Phys Chem 78 1780 (1974)

54 D H Stedman and H Niki Ozonolysis rates of some atmospheric gases Environ Lett_ 303 (1973)

55 Chemical kinetic and photochemical data for modeling atmospheric chemistry R F Hampson Jr and D Garvin Eds NBS Technical Note 866 June 1975

56 D H Stedman CH Wu and Hbull Niki Kinetics of gas phase reactions of ozone with some olefins J Phys Chem ]J_ 2511 (1973)

57 S M Japar CH Wu and H Niki Rate constants for the reaction of ozone with olefins in the gas phase J Phys Chem 78 2318 (1974)

58 J G Calvert and R D McQuigg The computer simulation of the rates and mechanisms of photochemical smog formation Int J Chem Kinetics Symposium No 1 113 (1975)

59 C C Wang L I Davis Jr CH Wu S Japar H Niki and B Weinstock Hydroxyl radical concentrations measured in ambient air Science 189 797 (1975)

60 D Perner D H Ehhalt H W Patz U Platt E P Roth and A Volz OH radicals in the lower troposphere 12th International Symposium on Free Radicals Laguna Beach California January 4-9 1976

61 D D Davis T McGee and W Heaps Direct tropospheric OH radical measurements via an aircraft platform laser induced fluorescence 12th International Symposium on Free Radicals Laguna Beach California January 4-9 1976

86

13 76-311

62 J L Laity I G Burstain and B R Appel Photochemical smog and the atmospheric reactions of solvents in Reference 23 p 95

63 E P Grimsrud H H Westberg and R A Rasmussen Atmospheric reactivity of monoterpene hydrocarbons NOx photooxidation and ozonolysis Int J Chem Kinetics Symposium No 1 183 (1975)

64 W L Chameides and D H Stedman Ozone formation from NOx in clean air Environ Sci Technol 10 150 (1976)

65 K R Darnall A C Lloyd A M Winer and J N Pitts Jr A reactivity scale for atmospheric hydrocarbons based on reaction with the hydroxyl radical Environ Sci Technol 10692 (1976)

66 S L Kopczynski quoted in Reference 20

67 Informal EPA meeting Philadelphia Pennsylvania July 30-31 1975 l 68 M Black L E High and JE Sigsby Methodology for assignment of al hydrocarbon photochemical reactivity index for emissions from mobile

soucres EPA-6502-75-025 U S Environmental Protection Agency Research Triangle Park North Carolina March 1975

J i

J

s

87

ii

1

14 76-311

Table I R~activity Scale fer Hydrocarbons Based on Rate of Disappearance

of the Hydrocarbon due to Reaction wih the Hydroxyl Radical

Reactivity Relative Class Half-lifea (days) to Methane(== 1)

I gt 10 ~ 10

II 1 - 10 10 - 100

III 01 - 1 100 - 1000

IV 001 - 01 1000 - 10000

V 001 ~ 10000

a 7 -3[OR] is assumed to be 10 radicals cm

88

-- _1---c=r- FFIT~ Ja--~uli -~4 P-iJJia-degR j_--CL[Jl_j i---i_ 0-1 j-____-~ ~ -Ji=-ej ~~~ ~~- I -middot~1--c--aC-

Table II Proposed Reactivity Classification of Hydrocarbons and CO Based on Reaction with the Hydroxyl Radical

CLASS I CLASS II CLASS III CLASS IV CLASS V (S48 x107a (48 X 107 - 48 X lQB)a (48 X 108- 48 X 109) 8 (48 x 109 - 48 x 10lO)a 4 8 X 1Ql0) a

Methane Methanol Neopentane n-Octane 2-Mcthyl-2-butene Carbon monoxide Cyclobutane Diethyl ether 3-Carene Acetylene 2233-Tetramethylbutane pXylene 23-Dirnethyl-2-butene Ethane Benzene p-Ethyltoluene 13-Phellandrene

Ethyl acetate o-Ethyltoluene Carvomenthene Isobutane o-Xylene d-LimoneneshyPropane p-Cymene Dihydromyrcene Diethyl ketone Methyl isobutyl ketone Myrcene Isopropyl acetate Di-n-propyl ether cis-Ocimene n_Butane m-Ethyltoluene n-Butyl acetate m-Xyle~e Ethanol 123-Trimethylbenzene Methylethyl ketone Propene Isopentane 1-Butene 1-Propanol 33-Dimethyl-1-butene 224-Trimethylbutane 1-Pentene V

23-Dimethylbutane 1-Hexene co 223-Trimethylbutane 124-Trimethylbenzene0

Tetrahydrofuran Isobutene 2-Methylpentane 135-Trimethylbenzene Toluene cis-2-Butene Cyclopentane Diisobutyl ketone n-Propylbenzene 2-Methyl-1-butene Isopropylbenzene a-Pinene Ethene Cyclohexene n-Hexane cis-2-Pentene Cyclohexane trans-2-Butene n-Pentane 13-Pinene p-Menthane 13-Butadiene 1-Butanol Isoprene Isopropyl alcohol 4-Methyl-2-pentanol 3-Methylpentane Ethylbenzene

--J 0 a -1 -1Range of values (in liter mole sec ) for the rate constant for reaction of the OH radical with the listed w

compounds

I

------t-L ~- ~ J---1 bull middotmiddott1- lTLJ_J 1--___r _ ~II ~Ai ~-_c11 )----_-J1bull~

Table III Proposed EPA Reactivity Classification of Organics (from reference 25 1974)

CLASS I CLASS II CLASS III CLASS IV CLASS V ~Nonreactive~ (Reactive) (Reactive) (Reactive) (Reactive)

c1-c paraffins3

Acetylene

Benzene

Benzaldehyde

Acetone

Methanol

Tertiary-alkyl alcohols

Phenyl acetate

Methyl benzoate

Ethyl amines

Dimethyl formamide

IO Perhalogenated 0 hydrocarbons

RFACTIVITY RATING 10

Mono-tertiary-alkyl benzenes

Cyclic ketones

Tertiary-alkyl acetates

2-nitropropane

35

c4+ paraffins

Cycloparaffins

Styrene

n-Alkyl ketones

Primary amp Secondary alkyl acetates

N-methyl pyrrolidone

NN-dimethyl acetamide

Partially halogenated paraffins

6S

Primary amp Secondary alkyl benzenes

Dialkyl benzenes

Branched alkyl ketones

Primary amp Secondary alkyl alcohols

Cellosolve acetate

Partially halogenated olefins

97

Aliphatic olefins

a-Methyl styrene

Aliphatic aldehydes

Tri- amp tetra-alkyl benzenes

Unsaturated ketones

Diacetone alcohol

Ethers

Cellosolves

deg

143

-J OI

I) I-

I

17 76-311

Table IV California Air Resources Board (ARB) Reactivity Classification of Org_a1ic Compounds 32

Class I Class II Class III (Low Reactivity (Moderate Reactivity) (High Reaccivity)

c1-c Paraffins2 Acetylene

l

l B2nz2ne

Benzaldehyde

Acetone

Methanol

Tert-alkyl alcohols

Phenyl acetate

Methyl benzoate

Ethyl Amin-lts

Dim2thyl fcr-amide

Perhalogenated Hydrocarbons

Partially halogenated paraffins

Phthalic Anhydride

Phthalic Acids

Acetonitrile

Acetic Acid

Aromatic Amines

Hydroxyl Amines

Naphthalene

Chlorobenzenas

Nitrobenzenes

Phenol 1

Hono-tert-alkyl-benzenes

Cyclic Ketones

Alkyl acetates

2-Nitropropane

c + Paraffins3

Cycloparaffins

n-alkyl Ketones

N-Methyl pynolidone

NN-dimethyl acetamide

Alkyl Phenols

Methyl phthalates

All other aromatic hydroshycarbons

All Olefinic hydrocarbons (including partially haloshygenated)

Aliphatic aldehydes

Branched alkyl Ketones

Cellosolve acetate

Unsaturated Ketones

Primary amp Secondary c + alcohols

2 Diacetone alcohol

Ethers

Cellosolves

Glycols

c + Alkyl phthalates2

Other Esters

Alcohol Amines

c + Organic acids+ di acid3

c + di acid anhydrides3

Fannin Hexa methylene-tetramine)

Terpenic hydrocarbons

Olefin oxides

Reactivity data are either non-existent or inconclusive but conclusive data from similar compounds are available therefore rating is uncertain but reasonable

Reactivity data are uncertain

91

r1_

l

Volume 42 number 2 CHEMICAL PHYSICS LETTERS 1 September 1976

RELATIVE RATE CONST ANTS FOR THE REACTIONS OF OH RADICALS

WITH ISOPROPYL ALCOHOL DIETHYL AND DI-11-PROPYL ETHER AT 305 plusmn 2 K

Alan C LLOYD Karen R DARNALL Arthur M WINER and James N PITTS Jr Statewide Air Pollution Research Center University ofCalifornia Riverside California 92502 USA middot

Received 27 April 1976

Relative rate constants have been obtained for the reaction of the hydroxyl radical (OH) with isopropyl alcohol and diethyl and di-n-propyl ether in environmental chamber photooxidation studies employing hydrocarbon-NOx mixtures in air it 1 atmosphere and 305 plusmn 2 K These results were obtained from measurements of the relative rates of disappearance of these compounds on the previously validated basis that OH radicals are dominantly responsible for their disappearance in the initial stages of reaction under the experimental conditions employed Absolute rate constants obtained by using the published rate constant for OH+ isobutcne of 305 X 1010 Q mole-1 s-1 are (k X 10-9 I mole-1 s-1) isopropyl alcohol 43 plusmn 13 diethyl ether 56 plusmn II and di-nbullpropyl ether 104 plusmn 21 No previous determinations of these rate constants have been reported

1 Introduction 2 Experimental

The hydroxyl radical plays a fundamental role in The technique used to determine relative OH rate chemical transformations in photochemical air pollushy constants in this study has been previously employed tion [ l -7] With the realization of the importance of to obtain kinetic data for reactions of OH with alkanes OH has come an extensive experimental effort to [14 15] alkenes [ l 115) ketones [ l l] aromatics determine rate constants for the reaction of OH with a [1415] and halogenated [I 116) and natural hydroshylarge number of organic compounds These studies carbons [I l] Briefly irradiations of the hydrocarbonshyhave been documented in recent reviews [7] and in a NOx-air system were carried out in a Pyrex chamber critical compilation [8] of approximately 6400-liter volume at a light intensity

To date however comparatively few data have been measured as the rate of N02 photolysis in nitrogen obtained for the gas phase reactions of OH with oxyshy (k1) of 04 min- 1 All gaseous reactants were injected genated hydrocarbons [9-1 l] In this work rate conbull into pure matrix air [ 17] in the chamber using l 00-ml stants are reported for the reaction of OH with three precision bore syringes Liquid reactants were injected ingredients of commercial solvents [1213] - isoshy with micropipettes During irradiation the chamber propyl alcohol and diethyl and di-n-propyl ether temperature was maintained at 305 plusmn 2 K Such data are of fundamental importance in assessing The alcohol and ether concentrations were monitored the role of these oxygenated hydrocarbons in atmosshy with gas chromatography (FID) using a 5-ft X I 8-in pheric chemistry particularly since as controls on stainless steel column packed with Poropak Q (80-

automobiles reduce the contribution of hydrocarbons 100 mesh) operated at 393 and 423 K respectively from mobile sources emissions of such oxygenates Ozone was monitored by means of ultraviolet absorpbull from stationary sources become increasingly of tion CO by gas chromatography and NO-NO2-NOx greater concern by the chemiluminescent reaction of NO with ozone

92

205

Volume 42 number 2 CHEMICAL PHYSICS LETTERS I September 1976

i l

l

The initial concentrations of reactant were isoproshypyl alcohol 60 ppb ( 1 ppb in air= 40 X I o- 11 mole liter - I at 305 K and I atmosphere) diethyl ether 20 ppb and di-11-propyl ether 55 ppb In addition to these compounds traces of several alkanes alkenes and oxygenates were present [I 115) Initial concenshytrations in these experiments were 800-1500 ppbC of total non-methane hydrocarbons 060 ppm of NOx (with an NO2 NOx ratio of 003-008) 6 ppm of CO and 3000 ppb of methane together with warer vapor at 50 relative humidity Replicate 3-hour irradiations vere carried out with continuous analysis of inorganic species analysis of hydrocarbons every 15 minutes and analysis of isopropyl alcohol and the ethers every 30 minutes

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilushytion rate (12-l6 per hour) from the observed hydrocarbon disappearance rate The HCNOx and NON02 ratios were chosen to delay the formation of ozone and ozone was not detected during the irrashydiation period [11 14]

As discussed in detail previously [1115] the major sources of OH in our experimental system are probably the photolysis of HONO and the reaction of H02 with NO [561819]

NO+ N02 + H20-= 2 HONO (l)

H02 + N02 HONO + P2 (2)

HONO + hv(290-410 nm) OH+ NO (3)

l-102 +NO OH+N02 (4)

The first reaction is thought to occur relatively slowly homogeneously [2021] but its rate is probably sigshynificantly faster when the reaction is catalyzed by surfaces Thus nitrous acid has been observed in a chamber study of simulated atmospheres carried out in our laboratory (22] while direct evidence for formation of OH radicals in an environmental chamber hasbeen provided recently by Niki Weinstock and co-workers [2324]

The concentration of OH radicals present during these irradiation experiments was calculated to range from 14 to 35 X 106 radicals cm-3 depending upon the conditions of the specific experiment The calculashytions employed the observed rates of isobutene dis-

206

appearance ( corrected for dilution) and the previously determined rate constant for OH+ isobutene [25] These concentrations are the same order as those calshyculated [182627] and observed directly 232428 29] by other workers

3 Results and discussion

Typical rates of disappearance observed during the irradiations of isopropyl alcohol and of the two ethers are shown in figs I and 2 respectively lsobutene wJs

used as the reference compound and is included in the figures From these pseudo-first-order rates of disshyappearance of the hydrocarbons rate constants reshylative to that of isobutene were obtained for the reshyaction of the PH radical with isopropyl alcohol and diethyl and di-n-propyl ether These were placed on an absolute basis using a value of 305 X 1010 Q

mole- 1 s-1 for the reaction of OH with isobutene [25] These results are presented in table I

There are no rate constants currently available for the reaction of OH radicals with ethers Assuming that hydrogen abstraction is the major reaction pathway one would expect these rate constants to be larger than

z 0

~ a 5 z w lt) z 0 u

0 w gta w ()

ID

ISOPROPYLALCOHOL

0

3 ______________________

omiddot 05 10 15 20 HOURS OF IRRADIATION

Fig 1 Concentrations of isopropyl alcohol and isobu tene plotted on a logarithmic scale) during photolysis of HC-NOx mixture in air at 305 plusmn 2 K and I atm

93

l

Volume 42 number 2 CHEMICAL PHYSICS LETTERS 1 September 1976

50

Fig 2 Concentrations of diethyl and di-n-propyl ether and isobutene (plotted on a logarithmic scale) during -photolysis of HC-NOx mixture in air at 305 plusmn 2 Kand 1 atm

those for the corresponding alkane since the C-H bond strengths in the ethers are at least several kiloshycalories weaker [30] Thus our rate constants ( at 305 K) for diethyl and di-n-propyl ethers of 56 and 104 X 109 Q mole-1 s-1 respectively compare with values for the corresponding alkanes n-butane and n-hexane (at 298 K) of 16 and 29 X 109 Q mole-I s- 1 respectively calculated from the formula of Greiner [31]

Two recent measurements of the rate constants for the gas phase reaction of OH radicals with alcohols

Table 1

iftltt a z w ~ 10 0 u

0 gta S 5

0 05

a DIETHYL ETHER

--0--

10 15 20 25 HOURS OF IRRADIATION

have been reported Osif et al [9) obtained a value of 53 X 107 Q mole- 1 smiddot- 1 for OH+ methanol using a value of 84 X 107

Q moiemiddotmiddot 1 s- 1 for OH reaction with CO [8] Recently Campbell et al [IO] have carried out studies of the reaction of OH With a series of alcohols-shymethanol ethanol 1-propanol and 1-butanol Our value for OH+ isopropyl alcohol of (43 plusmn 13) X 109 Q mole- 1

s-1 at 305 K is consistent with the value of (2 3 plusmn 02) X lQ9Q moie- 1 s-1reported for 1-propanol by Campbell et ai (10) at 292 K middot Although as mentioned no literature data are availshyable for the reaction of OH with ethers it is interesting to examine the data for solvent photooxidations obshytained by Laity et al [32] in chamber studies These workers irradiated separate solvent-NOx-air mixshytures in a stainless steel chamber at 305 K and reshyported t_he maximum rate of hydrocarbon disappearshyance observed in these experiments relative to toluene If this disappearance is assumed to be predominantly duemiddotto attack by OH then absolute rate constants may be derived from these data using a value of 36 X 109 Q moie- 1 s-1 for the reaction of OH+ toluene [3334] Values for OH+ isopropyl alcohol and OH+ diethyl ether are 31 X 109 and 54 X 109 Q mole-1 s-1 respectively compared to our results of 43 and 56 X 109 Q moie-1 s-1 Considering the differences in experimental methods and apparatus as well as the uncertainties involved in such an interpretation of the data of Laity et al [32] the agreement obtained for isopropyl alcohol and diethyl ether is quite satisshyfactory Similar treatment of their chamber data for other compounds for which the OH rate constants are known yields results (35] in fair agreement with literature values

Relative and absolute rate constants for the reaction of OH with selected hydrocarbons

Compound Relative rate of k(ll mole-1 s-1 X 10-9 )

disappearance this work a) literature

isobutene 1 305 isopropyl alcohol 014 43 31b) diethyl ether 0185 56 54 b) di-ndegpropyl ether 034 104

a) Using a literature value of 305 X 1010 ll mole- I s-1 for OH+ isobutene (25] b) Using the data of Laity et al [32] and attributing the HC loss solely to reaction with OH results placed on an absolute basis

using a value of 36 X 109 ll mole-1 s-1 for OH+ toluene (see text) middot

94

207

Volume 42 number 2 CHEMICAL PHYSICS LETTERS I September 1976

r

I l i l l r il

l11e atmospheric half lives tl2 = 0693kou +RH

X [01-1] for isoprupyl alcohol and diethyl and di-11-propyl ether are akubted to be 5 4 41 and 22 hours respectivdy using an ambient OH concentrashytion of 5 X 106 radicals cm-3 [18232426-29] and our rate constants Thus these compounds react with OH at rates similar to ethene c6 - c7 alkanes and mono-alkyl substituted benzenes [36] The relative importance of alcohols ethers and other oxygenated hydrocarbons in photochemical smog formation are discussed in detail elsewhere [35-37]

Acknowledgement

The authors gratefully acknowledge the assistance of FR Burleson in carrying out the gas chromatoshygraphic analyses WD Long for valuable assistance in conducting the chamber experiments and Dr R Atkinson for useful comments concerning this manushyscript This work was supported in part by the California Air Resourses Board (Contract No ARB 5-385) and the National Science Foundation-Research Applied to National Needs (NSF~RANN Grant No AEN73-02904-A02)

References

[I] NR Greiner J Chem Phys 46 (1967) 3389 [2] J 1-Ieicklen K Westberg and N Cohen Center for Air

Environmental Studies Pennsylvania State University University Park PA Pub 114-69 (1969)

[3] DH Stedman EE Morris Jr EE Daby H Niki and B Weinstock 160th Natl Meeting American Chemical Society Chicago September 14-18 1970

(4] B Weinstock EE Daby and H Niki Discussion on paper presented by ER Stepens in Chemical reactions in urban atmospheres ed CS Tuesday (Elsevier Amsterdam 1971) pp 5455

(51 H Niki EE Daby and B Weinstock in Advances in Chemistry Series No 113 (American Chemical Society Washington 1972) p 16

(6) KL Demerjian JA Kerr and JG Calvert Advances in environmental science and technology Vol 4 eds JN Pitts Jr and RL Metcalf (Wiley-lnterscience New York 1974) p 1

(7) JN Pitts Jr and BJ Finlayson Angew Chem Intern Ed 14 (1975) l BJ Finlayson and JN Pitts Jr Science 191 _(1976) 111

(8) RF Hampson Jr and D Garvin eds Chemical kinetic and

208

photochemical data for modeling atmospheric d1cmi~try NBS Tbullchnk11 Note 866 ltJune 1975)

[9] TL Osif R Sinrnnaitis and J lkicklcn J Photod1cm 4 (1975) 233

[10] JM Campbell DF McLaughlin and BJ Handy Ch~m Phys Letters 38 ( 1976) 362

[11] AM Winer AC Lloyd KR Darnall and JN Pitts Jr J Phys Chem 80 (I 976) to be published

( 12] KW Wilson and GJ Doyle Investigation of photocmiddothemishycal reactivities of organic solvents Stanford Research Inmiddot stitute Repor EPA Contract IICPA 22-9-125 (September 1970)

(13) Solvents theory and practice Advances in Chemistry Series No 124 (American Chemical Society W1hingtrn 1973)

[14] GJ Doyle AC Lloyd K Darnall AM Winer and JN Pitts Jr Environ Sci Technol 9 (1975) 237

[ 15) AC Lloyd KR Darnall AM Viner and J N Pitts Jr J Phys Chem 80 (1976) 789

(16) R Atkinson KR Darnall AM Winer and JN Pitts Jr Environ Sci Technol (1976) submitted for publication

(17) GJ Doyle PJ Bekowics AM Winer and JN Pitts Jr A charcoal-adsorption air purification system for clrnmshyber studies investigating atmospheric photochemistry Environ Sci Technol (1976) to be published

(18] B Weinstock and TY Chang Tellus 26 (1974) 108 [19] TA Hecht IH Seinfeld and MC Dodge Environ

Sci Technol 8 (1974) 327 (20] R Graham and BJ Tyler J Chem Soc Faraday Trans

I 68 (1972) 683 [21) WH Chan RJ Nordstrom JG Calvert and JN Shaw

Chem Phys Letters 37 (1976) 441 (22] JM McAfee AM Winer and JN Pitts Jr unpublished

results (1974) (23] CC Wang LI Davis Jr CH Wu S Japar H Niki and

B Weinstock Science 189 (1975) 797 (24) H Niki and B Weinstock Environmental Protection

Agency Seminar Washington (February 1975) [25] R Atkinson and JN Pitts Jr J Chem Phys 63 (1975)

3591 (26) H Levy II Advan Photochem 9 (1974) 369 [27) J G Calvert Environ Sci Technol 10 (1976) 256 (28) D Perner DH Ehhalt HW Patz U Platt EP Roth

and A Volz OH radicals in the lower troPosphere 12th International Symposium on Free Radicals Laguna Beach CA January 4-9 1976

(29) DD Davis T McGee and W Heaps Direct tropospheric OH radical measurements via an aircraft platform laser induced fluorescence 12th International Symposium on Free Radicals Laguna Beach CA January 4-9 1976

(30] JA Kerr and AF Trotman-Dickenson in Handbook of chemistry and physics 57th Ed (The Chemical Rubber Company Cleveland 197677)

[31] NR Greiner J Chem Phys 53 (1970) 1070 [32] JL Laity IG Burstein and BR Appel Solvents

theory and practice Advances in Chemistry Series No 124 (American Chemical Society Washington1973) p 95

95

Volume 42 number 2 CIIEMICAL PHYSICS LETTERS 1 September 1976

[33] DA Hansen R Atkinson and JN Pitts Jr J Phys Chem 79 ( 1975) 1763

[ 34 I DD Davis Bollinger and S Fischer J Phys Chem 79 (I 975) 293

[35 I JN Pitts Jr AC Lloyd AM Winer KR DamaII and GJ Doyle Demiddotelopment and application of a hydroshycarbon rlactivity scale based on reaction with the hydroxyl radical presented at the 69th Annual APCA Meeting Portland OR June 27-July I 1976

l

f I

If

i )

(36] KR Darnall AC Lloyd AM Winer and JN Pitts Jr Environ Sci Technol 10 (1976) to bl published

(37] JN Pitts Jr AM Winer KR Darnall AC Lloyd and GJ Doyle Smog chamber studies concerning hydrocarbon reactivity and the role of hydrocarbons oxides of nitrogen and aged smog in the production of photochemical oxidants to be presented at the In-tershynational Conference on Photochemical Oxidant Pollushytion and Its Control Research Triangle Park NC September I2-17 I 976

96

209

Volume 44 number 3 CHEMICAL PHYSICS LETTERS 15 December 1976

I

l

i

RELATIVE RATE CONST ANTS FOR THE REACTION OF OH RADICALS

WITH SELECTED C6 AND C7 ALKANES AND ALKENES AT 305 plusmn 2 K

Karen R DARNALL Arthur M WINER Alan C LLOYD and James N PITTS Jr Statewide Air Pollution Research Celter University of California Riverside California 92502 USA

Received 16 August 1976

Measurements of the rates of disappearance of three alkenes and two alkanes relative to isobutene in environmental chamber photooxidation studies employing hydrocarbon-NOx mixtures in air at 1 atmosphere have been used to obtain relative rate constants for the reaction of these compounds with the hydroxyl radical Absolute rate constants at 305

1plusmn 2 K obtained using a published rate constant for OH+ isobutene of 305 X 1010 l2 mole-1 s- are (k X 10-9 Q mole-I

s- 1) cyclohexene 47 plusmn 9 1-methylcyclohexene 58 plusmn 12 1-heptene 22 plusmn 5 23-dimethylbutane 31 plusmn 05 223-trishymethylbutane 23 plusmn 05 No previous determinations of OH rate constants have been reported for 1-heptene and 1-methylshycyclohexene For the remaining compounds these results are shown to be in good agreement with literature values reported for elementary or relative rate constant determinations

I Introduction

Recently we have reported rate constant determinashytions for the reaction of OH with alkanes [l 2] alshykenes [2 3] aromatic hydrocarbons_ [I 2) monoshyterpene hydrocarbons [3) halogenated hydrocarbons [3 4 J ketones [3] and ethers and isopropyl alcohol [5] These rate constants were obtained by measuring the relative rates of disappearance of hydrocarbons in a hydrocarbon-NOx mixture in air at 1 atmosphere and at 305 plusmn 2 K Absolute rate constants were obshytained [1--3 5] by using literature values for OH+ nshybutane andor isobutene at least one of which was employed as a reference compound in each study A similar technique has recently been employed by Niki and co-workers [6] Results obtained from these relative rate studies have uniformly been in very good agreement with literature values reported for elemenshytary rate constant determinations [7]

Here we report rate constant data at 305 plusmn 2 K for the reaction of OH with 1-heptene 1-methylcycloshyhexene cyclohexene and two substituted alkanes -2 3-dimethylbutane and 2 2 3-trimethylbutane These long-chain alkanes and cyclic alkenes have been suggested to play a major role in the formation of the organic portion of aerosols found in polluted ambient air (89)

2 Experimental

The experimental technique used to determine relashytive OH rate constants in this study has been described in detail previously [1-3) Briefly irradiations of the hydrocarbon-NOx-air system were carried out in a Pyrex chamber of approximately 6400-liter volume at a light intensity measured as the rate of NO2 photoshylysis in nitrogen (k1) of 04 min- 1bull During irradiation the chamber temperature was maintained at 305 plusmn 2 K

The alkane and alkene concentrations were monishytored with gas chromatography (FID) using a 5 X 18 SS of Poropak Q (80-100 mesh) column and a 36 X 18 SS column of 10 dimethylsulfolane on AW C-22 Firebrick (60-80 mesh) followed by 18 X 18 SS column of 10 Carbowax 600 operated at 433 and 273 K respectively Ozone was monitored by means of ultraviolet absorption CO by gas chroshymatography and NO-NO2-NOx by the chemiluminesshycent reaction of NO with ozone

The initial concentrations of reactants were 2 3-dimethylbutane 7 ppb (I ppb in air= 40 X 10-11

mole liter-I at 305 Kand 1 atmosphere) 223-trishymethylbutane 14 ppb cyclohexene 10 ppb I meshythylcyclohexene 21 ppb and 1-heptene 14 ppb In addition to these compounds traces of several alkanes alkenes and oxygenates were present [2 3] Initial

97

415

Vol um~ 44 number 3 CHEMICAL PHYSICS LETTERS 15 December 1976

i l

l

concentrations in these experiments were 700-800 ppbC of total non-methane hydrocarbons 061 ppm of NOx (with an NO2NOx ratio of 004-005) 6 ppm of CO and 2900 ppb of methane together with water vapor at 50 relative humidity Replicate three-hour irradiations were carried out with continshyuous analysis of inorganic species and analysis of hydrocarbons eve~y 30 minutes

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilushytion rate (16 per hour) from the observed hydrocarshybon disappearance rate The HCNOx and NON02 ratios were chosen to delay the formation of ozone and ozone was not detected during the irradiation peshyriod [13)

As discussed in detail previously [23) the major sources of OH in our experimental system are probably the photolysis of HONO and the reaction of HO2 with NO [10-13)

NO+ NO2 + H2O ~ 2 HONO (1)

HONO + hv (290-410 nm) OH+ NO (2)

HO2 + NO OH + NO2 (3)

The first reaction is thought to occur relatively slowly homogeneously [14-16) but its rate is probably sigshynificantly faster when the reaction is catalyzed by surshyfaces Thus nitrous acid has been observed in a chamshyber study of simulated atmospheres carried out in our laboratory [ 17] while direct evidence for formation of OH radicals in an environmental chamber has been provided recently by Niki Weinstock and co-workers [6 18 19] The reaction of HO2 with NO2 has also been proposed a~ a source

(4)

of nitrous acid [20 21] but recent results [22 23) suggest that peroxynitric acid is the major product of reaction (4)

(5)

The peroxynitric acid may decompose back to HO2 and NO2 or possibly give HONO but this is currently uncertain [22 23]

The concentration of OH radicals present during these irradiation experiments was calculated to range

416

from (25-50) X 06 radicals cm- 3 depending upon the conditions of the specific experiment The calculashytions of OH concentrations employed the o~served rates of isobutene disappearance ( corrected for dilushytion) and the previously determined rate constant for OH + isobutene [24] These concentrations are the same order as those calculated [12 25 26) and obshyserved directly [I 8 27 28) by other workers

3 Results and discussion

lsobutene was used as the reference compound in this series of experiments From the pseudo-first-order rates of disappearance of the hydrocarbons rate conshystants relative to that of isobutene were obtained for the reaction of the OH radical with 2 3-dimethylbushytane 2 2 3-trimethylbutane cyclohexene 1-methylshycyclohexene and 1-heptene These were placed on an absolute basis using a value of 305 X 1010 Q mole-ls-I for the reaction of OH with isobutene [24] These reshysults are presented in table 1 together with the availshyable literature data

Within the estimated 20 uncertainty in our rate constant values the agreement among our data and the literature values is good For example our value of (31 plusmn 06) X 109 Q mole- 1s-1 for 2 3-dimethylbutane agrees within experimental uncertainty with that of (26 plusmn 03) X 109 Qmole-1s- 1 recentlY determined in a separate study in this laboratory by Atkinson et al [4] This latter value was derived from the relative

1

rates of disappearance of 2 3-dimethylbutane and ethane during a 216-hour irradiation in the Pyrex chamber Both of these values are significantly lower than the value directly determined by Greiner [29] at 300 K of (516 plusmn 013) X 109 However it is expected [28) that the rate constant for the reaction of OH radicals with 2 3-bulldimethylbutane would be less than twice as fast as with isobutane on the basis of the numshybers of primary and tertiary hydrogen atoms in these two alkanes The absolute rate constant for the reaction of OH radicals with isobutane has been determined to be 15 X 109 Qmole-1s-1 at 304 K [29) and hence the OH rate constant for 23-dimethylbutane is exshypected to belt 3 X 109 Q mole-1 s-1 which is in agreement with both the determination of Atkinson et al [4) and with the present work

Similarly our value of (23 plusmn 05) X 109 Qmole-I

98

Volume 44 number 3 CIIEIICAL PHYSICS LETTERS 15 December 1976

Table l Pclativc and absolute rate constants for the reaction of OH anltl 0(3P) with selected hydrocarbons

---middot-middot--------

ko11 + compound at 305 K Compourd Relative rdte ko(3P) + compound

of disappearance this work a) literature at 298 K

------ -middot-middotmiddotmiddotmiddotmiddotmiddotbull-middot-middot----------------------isobutene 1 305 L2 e)

2 3-dimethylbutane 010 031 plusmn 006 045 b) 026 plusmn Oo3 c) 0012 e)

2 2 3-trimethylbutane 0074 023 plusmn 005 029 b) 1-pentene 18 plusmn 02 d) 028 e)

1-hexene 19 plusmn 02 d) 031 e) 1-heptenc 073 22 plusmn 05 cyclohexene 153 47 plusmn 09 38 plusmn 04 d) 13 e)

f 1-mcthylcyclohexene 191 58 12 49 plusmn 02 f)

a) Using a literature value of 305 X 1010 Q mole-1 s-~ for OH+ isobutene (24 ] b) Ref [29) T= 298 K c) Ref [4] T= 305 K d) Ref (16) using a literature value of 31 X 1010 Q mole-1 s-1 at 303 K for OH + cis-2-butene [24 ] e) Rcf(32] ORef(31) bull

s-1 for 22 3-trimethylbutane is in reasonable agreeshy addition reaction of 03P) atoms with cyclohexene l ment with the value of 29 plusmn 01) X 109 Q mole-1 s-1 and 1-methylcyclohexene (091 and 421 relative to obtai_ned by Greiner at 303 K (29] In addition the O (3P) + cyclopentene) (31] decrease in rate constant in going from 2 3-dimethylshy Table 1 shows a comparison of the reactivity of butane to the larger molecule 2 2 3-trimethylbutane 0(3P) atoms (31 32] as well as OH radicals towards is consistent with a decrease from two to one in the the compounds studied here and other selected comshynumber of tertiary hydrogen atoms [29] These atoms pounds Since both 0(3P) and OH are expected to are the most easily abstracted since the C-H bond primarily undergo addition to the alkenes one would strength for tertiary hydrogens is 3 kcal mole-1 and expect the same trend in going from 1-pentene to cyshy6 kcal mole- 1 weaker than that for secondary and clohexene and this is in fact observed In addition primary hydrogens respectively [30) the value of 18 X 1010 Qmole-1 s-1 obtained for

Recently Wu et al (6] us~d a technique similar 1-hexene by Wu et al [6] and our value of to the one employed here namely the photooxidation 22 X 1010 Q mole-1 s-1 for 1-heptene both obtained of hydrocarbons in the presence of NOx in air at 1 atshy by similar methods are consistent with the trend obshymosphere and 303 K middotunder the assumption that OH served by Wu et al (6] of an increase in rate constant was the principal species depleting the hydrocarbon with the larger molecular size of the alkene they obtained rate constants relative to cis-2-butene As mentioned above the higher straight chain and for several of the higher alkenes Using a value of cyclic alkenes are assumed to be important precursors 31 X 1010 Qmole-I s-1 for OH+ ds-2-butene at of the organic content of ambient aerosols found in 303 K [24] one obtains a value of 38 X 1010 mole-I polluted air [9 10] The rapid rate of reaction of OH s- 1 for cyclohexene at 303 K from the data of Wu et with these species ensures that in addition to 0 3-al [6] This value is in reasonable agreement with our alkene reactions OH attack will be an important reacshyvalue of (47 plusmn 09) X 1010 Qmole-I s-1 at 305 K tion pathway in real and simulated atmospheres posshy

Substitution of a methyl group for one of the hyshy sibly yielding multifunctional oxygenated species in drogen atoms in cyclohexene increases the rate conshy the aerosol phase (9 33] stant slightly since we obtain a value of Assuming an ambient OH concentration of 5 X 106 (58 plusmn 12) X 1010 Q mole-1 s-1 for 1-methylcycloshy radicals cm-3 (18 2728] the atmospheric halfclives hexene This is expected by analogy with the similar t112 =middot0693koH+RH [OH] based solely on reaction

middot 417

99

l

Volume 44 number 3 CHEIICAL PHYSICS LETTERS 15 December 1976

[

with OH are (in hours) 2 3-dimethylbutane 75 2 2 3-crimcthylbutanc 100 cyclohexcne 049 1-methylcyclohexcne 039 and 1-heptene 10 In the case of the alkenes the actual half-lives in the atmosshyphere are expected to be significantly less since 0 3 reacts with the alkenes at significant rates [934]

Acknowledgement

The authors gratefully acknowledge the assistance of FR Burleson in carrying out the gas chromato-

graphic analyses WD Long for valuable assistance in conducting the chamber experiments and Dr R Atkinson for helpful comments concerning this manushyscript This work was supported in part by the California Air Resources Board (ARB Contract No 5-385)

References

[ l] GJ Doyle AC Lloyd KR Darnall AM Winer and JN Pitts Jr Environ Sci Technol 9 (1975) 237

[2] AC Lloyd KR Darnall AM Winer and JN Pitts Jr J Phys Chem 80 (1976) 789

(3) AM Winer AC Lloyd KR Darnall and JN Pitts Jr J Phys Chem 80 (1976) 1635

[4 J R Atkinson KR Darnall AM Winer and JN Pitts Jr Tropospheric Reactivity of Halocarbons Final Report to EI DuPont de Nemours amp Co Inc February l 1976

[5] AC Lloyd KR Darnall AM Winer and JN Pitts Jr Chem Phys Letters 42 ( 1976) 205

[6] CH Wu SM Japar and II Niki J Environ Sci HealthshyEnviron Sci Eng A11 (1976) 19 l

(7] R Atkinson KR Darnall AC Lloyd AM Winer and JN Pitts Jr Accounts Chem Res submitted for publication (1976)

[8] D Grosjean National Academy of Sciences Report (1976)

(9] WE Schwartz PW Jones CJ Riggle and DF Miller Chemical Characterization of Model Aerosols Office of Research and Development US Environmental Proshytection Agency EPA-6503-74-011 August 1974

(10] H Niki EE Daby and B Weinstock Photochemical Smog and Ozone Reactions Advances in Chemistry Series No 113 (American Chemical Society Washington 1972) p 16

I11] KL Demerjian JA Kerr and J G Calvert in Advances in enviromi1ental science and technology Vol 4 eds JN Pitts Jr and RL Metcalr(Wiley-lnterscience New York 1974) p 1

418

[12] B Weinstock and TY Chang Tcllus 26 (1974) 108 [13) TA Hecht JH Seinfeld and MC Dodge Environ Sci

Technol 8 (1974) 327 [14] R Graham and BJ Tyler J Chem Soc Faraday Trans

I 68 (1972) 683 (15] WH Chan RJ Nordscrom JG Calvert and JN Shaw

Chem Phys Letters 37 (1976) 441 Environ Sci Techshynol 10 (1976) 674

(16) L Zafontc PL Rieger and JR Holmes Some Aspects of the Atmospheric Chemistry of Nitrous Acid presented at the 1975 Pacific Conference on Chemistry and pecshytroscopy Los Angeles CA October 28-30 1975

(17] JM McAfce AM Winer and JN Pitts Jr unpublished results (1974)

(18] CC Wang LI Davis Jr C11 Wu S Japar II Niki and B Weinstock Science 189 (1975) 797

(19) H Niki and B Weinstock Environmental Protection Agency Seminar Washington DC February 1975

[20] R Simonaitis and J Heicklen J Phys Chem 78 ( 1974) 653 80 (1976) 1

(21) RA Cox and RG Derwent J Photochem 4 (1975) 139 (22] H Niki P Meker C Savage and L Breitenbach 12th

Informal Photochemistry Conference National Bureau of Standards Gaithersburg MD June 28-July 2 1976

(23) J Heicklen 12th Informal Photochemistry Conference National Bureau of Standards Gaithersburg MD June 28-July 2 1976

[24) R Atkinson and JN Pitts Jr J Chem Phys 63 (1975) 3591

(25) H Levy 11 in Advances in photochemistry Vol 9 eds JN Pitts Jr GS Hammond and K Gollnick (VileyshyInterscience New York 1974) p 1

[26] JG Calvert Environ Sci Technol 10 (1976) 256 [27] D Perner DH Ehhalt HW Patz U Platt EP Roth

and A Volz OH Radicals in the Lower Troposphere 12th International Symposium on Free Radicals Laguna BeachCAJanuary 4-9 1976

[28] DD Davis T McGee and W Heaps Direct Tropospheric OH Radical Measurements Via an Aircraft Platform Laser Induced Fluorescence 12th International Symposhysium on Free Radicals Laguna Beach CA January 4-9 1976

(29] NR Greiner J Chem Phys 53 (1970) 1070 (30] JA Kerr and AF Trotman-Dickenson in Handbook

of Chemistry and Physics 57th Ed (The Chemical Rubber Company Cleveland 1976)

(31] JS Gaffney R Atkinson and JN Pitts Jr J Arn Chem Soc 97 (l 975) 5049

(32) JT Herron and RE Huie J Phys Chem Ref Data 2 (1973) 467

[33] WPL Carter KR Darnall AC Lloyd AM Winer and JN Pitts Jr 12th Informal Photochemistry Confershyence Gaithersburg MD June 28-July 2 1976

(34] JN Pitts Jr and BJ Finlayson Angew Chem Intern Ed14 (1975) 1 BJ Finlayson and JN Pitts Jr Science 191 (1976) 111

100

APPENDIX B

i Inorganic and Hydrocarbon Data for

AGC Runs 216 through 223

l Jl

[

l

101

AGC-216-l S02 CRY C GLASS CHA~SER

1976 JUL 27

OiRK FROM 1200 TO 1545 HIE TE~PERATURES ~ERE TAiltE~ FRC~ IHE LCG __ MOK__ FROM 16QQ__ Cgt ---middot-middotmiddotmiddotmiddotmiddot----middot- ---------middotmiddotmiddotmiddot-middotmiddotbull- TH~ TEMPERATURE~ WE~E TAK~N )R6MTHE iOMPUTER REicoui TECO ~3 SAMPLING RATE 1161 HLMlN

ClCCtlt __ ELMSpound0 ___ TSL _Rl HUI _____ SC2 ----middot--bullmiddot-middot ----middotmiddotmiddot-----middot-middotmiddotmiddotmiddotmiddot-------middot-middot-------middot-middot-middotmiddotmiddot-middot-middotmiddot-middot--middot TIME TIMEl~lNI IOEG Cl 11 (~PHI

bull1200 bullbullo 29-4bullbull bull---bullbullbull1bullo---middotbullo3bull59middot--bull bullbull-- bullbull--bullbullbull --bullbull-bull----bull-middotbull---- bullbullbullbull-bull------bullbullbullbullbullmiddot------ -bullbull bullbullbull-bull-bullbull-bullbullbullbull bull bull bull-bullbullORbullbullbullbullbull-bullbullbullbullbullbull~bullbullbull bullO O O bullbull-

1215 15 294 00 C353 _____ 1230 _______30_ ___22r__ aa ___ c~s_9 ____bull ________________________________________________________ _

124s 45 2ltJ6 Jo aJss 1300 60 296 2s c355 1315 75 29 ~--- _________2_o _C ~ 344 ---middot--- ______________________ __________ - middot-middotbull--middot ---------middot------middot--middot - --middot-middotmiddot - middot--middotmiddot 1330 JO 294 20 C357 1345 105 296 20 0344

____ 14_0_0 _____ 1o ____ J9 bull 7 __z_o ___ o_342__________________________ __________________________________________ ______ __ 1415 135 297 15 C344 1430 1sc 297 1s c34q

-- _ --~_lt45__ middot--- J6_5_ _______29_7_ --middotbull-middotmiddot2bull Q_______QU5____ middotmiddotmiddotmiddotmiddotmiddot---1500 160 297 1S C330 1515 195 299 15 C338

_______1530 ____ 210 ______3c bullo _1s____c_32g middot-----middotmiddotmiddotmiddot-1s4 22s 267 15 c331 1600 240 middotmiddotmiddotmiddotmiddot~ bullbullbullbullbullbullbullbullbullbullbullbull

l615______ 255___ _ _bullo~~__________

NO DATA TAKE~ ---- CATA OISCARCED QUESTIONABLE QATA

____________________ __ __ -middot

102

AGC-216-2 SC2 CRY GLASS CHA~eER 1976 JUL 27-2~

CLCCK El~PSfC TSl REL rUM S02 1111pound middotT111emiddot(M1~middotmiddot1oec cT (g (PPII

middoti63amiddotmiddot- -210 -middot33~middot4middot--middot--1--smiddot c3f3-middotmiddot---middot-- - middot 1646 286bull 334 15 C315

--middotmiddotmiddot- po1 middot--middot-middot301_ ____ 334 middotmiddotmiddotmiddotmiddotmiddotmiddot--middotl bull5 middot-middot (320 ___ middot----- _ middotmiddot--middot---- ----middot--bull-middotmiddot----middot-middot-middot middotmiddotbullbullmiddotmiddotmiddot-middot--middot-------middot--l7l6 316 335 15 C10 1731 331 335 l5 C315

-middotmiddot middot- _1746 346 _ 3~_5_ --middotmiddot 15C 3l4___ -------middot---middotmiddotmiddot---- _____ __ 1800 360 337 15 C321 1a1s 375 335 1s 0313

_ JSJO __ 390_335___1_5 C03______ middotmiddot-----------1845 405 335 15 C303

bull1900 420 334 20 0305 _______ middot1915___ middot-- 4 3_5bull middot-middot 3 3 2 ---middot- 2 o __ Cbull 309 -----middot----middotmiddotmiddotmiddot

193C 450bull 33 2 20 C299 1945 465 331 20 0297 2000 480 332 20 C300

- middot 2015- --middotmiddot45middotmiddotmiddotmiddot-- 334 - - 20 C 310 2030 510 335 20 0296 2045 525 337 20 C3072ico middot 540 middot3jmiddot----i~o-middotmiddotc299-middot-middot----bullmiddot-211s 555 338 20 0294

__ 21Jo ____ 5_7c_ __ 33 1 20 _o 300________

~~

il middot 2145 585 338 middot 20 0296J 1middot 2200 600 337 20 0296 2215 615 33 7 20 0296

~-middot 223c 630- middot 33 1 2 o a294 middot 1 C 2245 645 337 20 0294

2300 660 337 20 C291_____middot1 -------middot--------------middotmiddot------middot 2315 675 337 20 0237

C 2330 690 337 20 0293 2345 705 33~~middot-middot 20 0291 --------middotmiddot-middot-----------------middot-middot ---middot---- --- middot- middotmiddot o 120 334 2 a o2as

( 15 735 334 20 0268

(

103

t bull middotmiddotmiddotmiddot--

AGC-216-3 S02 CRY L GLASS CHAMlgtER

1976 JUL 2E

c1oc_~ ELAPSEC rs1 l=L HU S02 Tl~E Tl~~ibull~l IDEG Cl Ii) (PPMI

30 750 339 20 C287 45 765 346 zo 0278

- _lOQ_ middot- _]so ~sr 2 O C ~Obull middot-middot-middot-bullmiddot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot----middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middot-middotmiddot-middot-middotmiddotmiddotmiddot-middot---- middot-middot-middot- middotmiddot-middotmiddot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot------115 7~5 354 15 C276 130 810 354 l 5 C2ol

J45 sect25 35bull1_ 1 _CZJ7 middotmiddot--middotmiddotmiddot -middot--bullmiddotmiddot-middotmiddotmiddotmiddotmiddot-bullmiddotmiddot---middotmiddot-bull---middotmiddotmiddot--middot -middotmiddotmiddotmiddotmiddot --------- --bullmiddotmiddot--- middot-200 840 354 15 C277

l 215 855 356 15 C277 ___ _230 870 _356 _ l5 _C bull ZH ---middotmiddot-middotmiddotmiddotmiddotmiddot---- ----middotmiddot-------------middot--

245 8S5 354 15 C275f 300 900 356 15 C27J

_ 315 915 bullbull~5bull4 bullmiddotbull-middotmiddotmiddotmiddot-middots middotmiddotmiddot- cZ69____---middotmiddotmiddotmiddot-middot-middotmiddot -------- --middotmiddot--middotmiddot--middot----- -middotmiddotmiddot-330 93() 356 15 C271 345 945 354 zo 0271

_ 400 __96Q___ 3_j4 --middotmiddot--bulll5 C2l_________________________________ 415 975 354 20 C250 430 990 354 20 C264 445 1005 353 20 C264 500 1020-~ 354 20 C260 515 1035 353 20 C250 530 1050 353 20 0254 -----middotmiddot--------middot-middot------middot ------middot-middot-middot-545 1065 354 20 C250 6~C 1080 35l 20 0252 615 lOC5 bull350 20 C49 middotmiddot-middot-middot-- middotmiddotmiddot-middotmiddot-middotmiddotmiddotmiddot-_ 630 1110 350 20 0248

C 645 1125 350 zo 0249 ____100 1140 bull_3s o middot--middotmiddotmiddotmiddotmiddot zo__o 2t9 middot-bull-bullmiddotmiddot--middotmiddot--------middotmiddot------------middot----middot---middotmiddotmiddotmiddotmiddot ______

715 1155 350 20 0243 C 730 1170 350 20 024

745 118S 350 25 C239 800 1200 middotmiddot37 25 C233

C 815 1215 347 25 0238

830 l 23() middot- 34 5 _ 2 5 middot-middotmiddot 0 236 ----middot--middot----middot 845 124) 345 25 C241

( 930 1260 347 25 C237 9J5 1275 4 bull7 2bull ~23) 930 129J 347 25 0236

( 945 13C5 347 25 C231 middotmiddotmiddot-~middotmiddotmiddotmiddot l Obull C l 3 0 bull 3 4 7 2 5 C 23 3 middotmiddot- middotmiddot-middot- __ middot-middotmiddotmiddotmiddot-middot- middotmiddot- -middotmiddot bull middot-bullmiddot---bull middot-middot--middot middotmiddot bull _____ -middot middot-middotmiddotmiddotmiddot-- -middot _ _ -

1015 1335 34 7 25 C232 1030 us 34 1 2s c221 1045 131gt5 34 7 2bull~ C225 1100 13eo 349 2s c221 lllS 1395 349 2s c22c

--middotmiddotmiddotmiddotmiddotU30 ltLO 349 z- _C2l6 1145 1475 347 25 C215

1

104

AGC-217-1 S02 LIGHT ORY7 GLASS CtlAHBER

1976 JUL 30 CONTINUATION Of AGC-216 LIGHTLIGHTS ON JUL 29 AT COO ~TENSITY 1ooi OATA FOR 216-LIGHT USELESS DUE TO FAULTY OACS CHANNEL S02 STRIP CHiRT DATA USEO FOR THIS RUN 25 HL CF S02 INJECTED HITH 90 ML Of NZ ON JULY 30 AT 1003 OASIBI 1212 ON CHAMBER AT ABOUT 1534 TO 1537 ON JULY 30 ANO FROM 1201 TO

1230 CN JULY 31 SAMPLING RATES tHLHINI TECO 43 - 1161 DASIBI 1212 - 600

middot~ CLOCK ELAPSED OZCNE TSl REL HUH SC2 ~

ii TIME TIHEIMINI tPPH) IOEG Cl Ill (PPM)

l 1130 -15 bullbullbullbullbullbull bullbullbullbullbullbull o3ze 1145 o bullbullbullbullbullbull 346 220 0321 1200 15 351 215 0315 1215 30 354 195 C310

l 1230 45 bullbullbullbullbullbull 356 18J 0307 1245 60 bullbullbullbullbullbull 357 17Q 0305 1300 75 bullbullbullbullbullbull 360 165 0301 1315 90 bullbullbullbullbullbull 360 155 0296

l 1330 lC5 bull bullbullbullbullbullbull- 36l 145 0 292 1345 120 bullbullbullbullbullbull 364 130 C290 1400 135 bullbullbullbullbullbull 366 110 0286

1415 150 366 _ll5 0282 1430 165 bullbullbullbullbullbull 365 115 027~ 1445 180 bullbullbullbullbullbull 365 110 021 1500 195 362 11C 0273 1515 210 36l 130 0269 1530 225 0519 360 140 0265

~[ ~~ i~~-- ~~ ~ ~~ - middotmiddotmiddotmiddot-- -middotmiddotmiddotmiddot- --middot - -middot middotmiddotmiddot-middot--------middot

sect ~ 1615 270 bullbullbullbullbullbull 357 160 0255

l ____1630 _______2s5 --bullbullbull _____ 35 bull7__Jo 5middot-middot--middotmiddot-cmiddot253middotmiddotmiddotmiddotmiddotmiddotmiddot--middot

1645 300 bullbullbullbullbullbull 357 110 025C l7CO 315 357 170 025C

___ 111s___330 __ bullbullbullbullbullbull __35 bull 7 -middot--- 1a bullomiddotmiddot--middotmiddotmiddotmiddot0241 middotmiddot--middot--middotmiddotmiddot----middot---middot-middot--middotbullmiddotmiddotmiddotmiddot-middot-middot middot-------------1130 345 357 190 0245 1745 360 bullbullbullbullbullbull 356 20c 0242

___a_oo_~--middotmiddot--3_15_ __bull___S_bullt____ 21 o -bullmiddot _o 24c middot-middot--middotmiddotmiddotmiddotmiddot--------middotmiddot----------------I 1815 390 bullbullbullbullbullbull 354 225 0231 1 1830 4C5 357 21~ 0236

___J_B4~ middot- ____420-~bullbull middot---middot _3l bull l___19 0 0 235 1900 435 bullbullbullbullbullbull 364 170 0233

) 1915 450 bullbullbullbullbullbull 365 160 0230

i 1 _ ____19 3 0 __ ---middotmiddotmiddot 465 bull bull bull middotmiddotmiddotmiddot--- 3 6 bull 6 -middot--1 5 bull 5 _ C bull 2 2 7 middotmiddot-middot-middot--- --middotmiddotmiddot --middot -middot - ------

1~45 480 366 145 C225 2000 495 366 150 0222

____2015 ___middot _i 10__ bullbull_____36o6_- JS_ Q_middotmiddotmiddot 0 220 2030 525 bullbullbull$bullbull 366 155 021ar 2045 540 366 155 0216 ___2100________ssbull_____ ---middot6J__ __1 s s _o 213 2115 570 bullbullbullbullbullbull 3os 165 c211 2130 585 bullbullbullbullbullbull 365 110 c210 2145 600 bull 365 175 0208

J --middotmiddot-middot2200 middotmiddotmiddot-middot--615middot-middotmiddotmiddotbullbullbull bull--middotmiddot--middotmiddot-364----middotmiddot iso middot o206

middotI 2215 630 bullbullbullbullbullbull 364 180 0204 _ -middotmiddot----middotmiddot2230 645__bullbullmiddotmiddotbullmiddotmiddot-middot--middotmiddotmiddot 31i bull 2_ 19 0203

2245 660 bullbullbullbullbullbull 364 195 c200

i1

zjo_ci ___---1s bullbullbullbull 362---middotmiddotiomiddotmiddotomiddotmiddotmiddot omiddot196 -r l 2315 690 bullbullbullbullbullbullbull 362 205 0195middotbull 2330 705 bullbullbullbullbullbullbull 36l 215 0193g 2345middot 720 bullbullbull ~ bullbullbull 36l 225 0190l

bullbullbullbullbullbull NO DATA TAKEN ---- DATA OISCARO~D QUESTlONAuLE DATA r ~ 1~

IT Q

~

105 F

AGC-217-2 S02 LIGHT DRY GLASS CHAMBER 1976 JUL 31

CLOCK ELAPSED OlONE TSl REL HUM S02 Tl~E TIMEIMNl IPPMI IDEG Cl 11 IPPMI

1 0 735 3bO 22C 0188 15 750 3bO 220 C185

_ 30 ---middot-middotmiddot--765__ 358 -middot-middotmiddot 220 0183 45 780 358 220 o1a1[ 100 795 bullbullbullbullbullbull 358 225 0180

115 810_bull___-middotmiddotmiddot-middotmiddot-middot 35 bull8 middot-middot-middot-middot225 0177

l 130 825 bullbullbullbullbullbull 357 225 0175

( 145 840 357 225 0112 200 855 bull _357_ ___ zzs c111

215 870 356 225 0169

f

I ( 230 885 35b 230 0168

245 coobull 356 230 c166 middot300 915 356 230 0163

C 315 930 356 230 C160 330 945 35bull6 230 C160 345 960 bullbullbullbullbullbull 356 230 0158 400 975 bullbullbullbullbullbull 354 230 0156

_415 _990 ~5~6 230 0154 430 10C5 356 235 0152 445 1020 354 235 C150

L -middot----middot-middot500__1035 __ -middotmiddot 354_ _ ___ 23 5 0148 515 1050 354 235 C147

( 530 1065 bullbullbullbullbullbull 354 235 0145 545 1000 354 235 0144 600 10lt5 354 235 C142 615 1110 354 235 0140

___630 ____ 1125 bull - ___ 35bull 4_ ___ 24o013lt 645 1140 354 240 0137 100 1155 bullbullbullbullbullbull 354 24o 0135

--- _715 1170bull 35 24-0 0134 730 1185 354 240 0133

l 745 1200 354 240 0131 800 121~bull -middot-middot____35~---middotmiddotmiddotmiddot24bull C_ _O 129 815 1230 354 240 0128 830 1245 354 245 0121

-middotmiddot----845 1260~ 34 245 0-126 9CO 1275 354 245 0124

( 915 1290 354 245 0122 -middot--middot_930___1305_ -middotmiddotmiddot)54___ 245 c120

945 1320 bullbullbullbullbullbull 354 245 011a ( 1000 1335 354 245 0116

________1015_ __ _1350 354 240 0115 1030 1365 middot-middot--356 240 0113 1045 13130 354 24C 0112 1100 1395 354 240 0111 1115 1410 354 240 0109

- middotmiddot--middot-~--- middotmiddotmiddotmiddotmiddotmiddot-middot--middotmiddot-lDO 1425 354 240 0 107

l 1145 1440 356 240 0 bull 106bullbull12cc 14gt5 bull bullbullbullbullbullbull 3gt6 40 0105 1215 14 70 0504 354 240 0 103

middotmiddotmiddotmiddot-middot- middot---middot-------middot--middotmiddotmiddot --middot middotmiddot-middotmiddot middot-middotmiddotmiddot-middotmiddotmiddot

__ middotmiddot-middot---------middotmiddotmiddotmiddot_ - ___ middotmiddotmiddotmiddotmiddot

----------middot--middot--middot- middot--middotmiddotmiddot--middotmiddotmiddotmiddotmiddotmiddot-middotmiddot -middot---

middotmiddotmiddot--middot middotmiddotmiddot-middotmiddot-middot--middotmiddotmiddotmiddotmiddot-middotmiddot-----

bullbullbullbullbullbull NO OATA TAKEN ---- DATA DISCARDED QU~STIUNABLE UATA

106

AGC-218-1 S02 40t RH GL~SS CHAMBER 1976 AUG 4

DARK AT 0850 FC-12 ANO S02 WERE INJECTED INTQ THE CH4~8ER THE OASIBI 1212 WAS CN THE CHA~~ER F~OM 1651 TO l65S BRADY 1296 CALISAATION 1Q7~ JUL 16 SAMPLING RATES IMLMINI TECO 43 - 1~33 CASIS 1212 - 600

CLCC~ ELAJSEO czc~~ TSl R~L HU~ 50 Tin TIMEl~Nl (P~gtI DEG Cl a1 PPM)

1100 c bull~~ 334 4J ~-377 1105 5 ~ 334 485 l3Sl 1110 10 bullbullbullbullbullbull ~34 485 C3BJ 1115 15 middotmiddotbullcent 334 460 0379 1120 C bullbullbull 334 475 0374 1125 2~ bullbullbullbullbullbull 33S ~70 0375 1130 30 middotmiddot-~middotmiddot 332 475 0371 1135 35 334 47o o372 1140 40 bull bullbullbullbullbullbull 334 65 C370r J 1145 45 bullbullbullbullbullbull 334 4~c 0111l i 1150 50 middotbull 334 465 03t9 1155 55 334 16 5 0364 1200 60 - 334 45 5 0366 1205 65 bull 335 450 036rl ~ 1210 70 ~bull~ ~)5 ~5J_ 035~

1215 7~~ bullbullbull 335 450 C162 1220 so bullbullbullbullbullbull 334 450 o~

di 1225 85 334 440 0362

iz3d o ~~bullbull 3J4 44o o3e2 1235 95 334 445 C355 1240 100 332 45 0355 middot--middot-middot---middot--middotbull- middotmiddotmiddot-middot --middot - _____ _ f24middot5middot 10smiddot~middot Jl 332 4middot4~ 6 middoto-353-middot

~ i C 12so 110 332 4~o o353 125 5 115 i__ 4 ) _ 0 bull 352_ _--bull-middot __ ----middotmiddot-middot __ middot-- _____ - _ ___13()0 __ 120-middot-- 332 435 0354

J 1305 125 334 430 0351i I J31 o __ _ uo __ ~bull-- u-~--middot middot-middot-42 bull0 o- 1ssmiddot--middotmiddot-middot-middot- ----________----middot- ---middot __

1315 135 334 420 0348 bull ( 1320 140 334 420 0348i l32S 145 -middot_ _3 bull~--4t5 Q352

1330 150 334 41middot) 037 1335 155 335 420 0344

1340 160 335 420 0344 middot 1345 -165 uu 3ibull 4 - middot41smiddot cl44

C 1350 170 ~bull 335 415 0343 1355 175 335 420 C343 1400 180 335 415 C341 1405 185 337 405 0341 1410 190 33 bull 5 400 0343 1415 liS bullbullbullbullbullbull 335 41C 0340 1420 2cc bullbullbullbullbullbull 337 41o 0331 1425 2cs bullbullbullbullbullbull 337 405 oJe 1430 210 bullbullbullbullbullbull 334 410 o33e 1435 215 33l 42v 0336 1440 220 bullbullbullbullbullbull 317 415 C]36 1445 225 middotmiddotmiddotmiddotmiddot~ 335 45 0332

ti~tmiddot -g 1450 230 bt~ 337 41 5 c~32

1455 2 35 33 7 bullbull 0 o 13cmiddotmiddotmiddotmiddot~ ~ 1500 240 33 7 42) 0330

$C t-kOt~ ~ 1505 745 H 7 42 D 0330

bull~ 11C f ~ () D~ TJ T ~r EI ---- ChT~ orsrA~ncn 0UST l1~111c [)TA ~ 4

J 1(

i[ i l bull1

~ ~ Imiddot

middoti_ ~

107

I

il ~ ij

1 i ii l

Ir

~ 11

ij

Ibull ~

J ~ l

j (

) AtC-21S-2 502 401 RHT CLASS CHAMBER

1976 AUG 4

i i

CLOCK ~LAP$) JlC TS l EL rIJ~ S72 Tl bullE TlEPlll I I P1 l lDEG CI (1) I PP~ I

1510 250 middot~ 337 415 o 32~ 1515 255 cie-(wt 337 t~ 0 032S 1520 2t) 337 420 0PI 152 5 265 bulltI 3l 7 42 1 I~bull)~ 1530 2 7 C=it~bull 334 41 5 0327

bull 1-tit~o

middot~

1535 27 D5 420 bulll 324 1540 middot2cu 335 42 C32C 1545 285 middot=~ 334 430 C322 155C 29J t rLI 334 430 0122 1555 295 o CJ3 334 4t 5 c 320 1600 3CO bull Iii- 334 420 0322 1605 3C5 emiddotbull= 334 42o J3lfl 1610 310 wc 33 4 425 0319 1615 315 ti 332 420 0316 160 32C 334 Z5 0 bull 114 deg 1625 325 -0laquot 33 t 430 0315 1630 330 335 430 ons~ li35 335 cent 33 5 435 0310 middotmiddot-- ____ -- 1640 340 $Qt 335 44) 0313

( 1645 345 33 5 435 o 311 1650 335 440 0309--~-- ~~~~-----middot~-~~-~-~-~--- ---middotmiddotmiddotmiddotmiddotmiddot-middotmiddotbullmiddot-- middotmiddotmiddot--middotmiddotmiddotmiddot--middot-middotmiddotmiddot-middotmiddotmiddotmiddotmiddotmiddot --- middot-middot-- middotmiddotmiddotmiddot--bullmiddot--middotmiddot-middot--middot middot-bull------middotmiddotmiddotmiddotmiddot-- ---middot-middotmiddotmiddotmiddotfo55 355 bull-c-t-t-it 33 r 43 5 C313 1700 360 $0~IZ 335 45 C305 l705 365 338 4 5 0308bullbull ---- middot-- middotmiddotbull---middot-middotmiddotmiddotmiddotmiddot--middot-- l7l0 370 ~~emiddot i8 440 CJC8 1715 3 75 bull-tt~iU 337 44J C310 1720_ 380 bull ie~~bull -~3 8 35 J303 - middotmiddotmiddotmiddotmiddotmiddotmiddotbull-middot-middotmiddotmiddotmiddotmiddot middotmiddot-middot- middotbullmiddotmiddotmiddot-middotmiddotmiddotmiddotmiddotmiddot-middotmiddot1725 385 -tttr~ 33a 440 0308 1730 39J ~cent n a 440 0303 1735 395 izc 338 440 0 3)2 middot--middotmiddotmiddot middotmiddotmiddot- 1740 co VIOct- lt= 338 430 o 30 1745 40J (rfl$~bull 338 430 0302

OJei1()01750 410 33 I 430 029d middotmiddot--middotmiddot---middotmiddotmiddotmiddotmiddot--middotmiddotmiddot-middot-middot 1755 415 t 338 44) 0299

1800 420 bullti-it 333 43 5 0296 1805 425 i-t-7Icent 33 8 430 0299 middotgt l8U 4 3 I cent46 317 3 0 029 l Bl 6 436 c-oilaquo4t 337 430 0298 lil21 441 33 7 43 5 ( ~9 7

~tf(p ~

middotmiddotmiddot--middot-middotmiddotmiddot--middotmiddotmiddot--middot middotmiddot----middotmiddotmiddotmiddot----I B26 4d plusmn~ 337 430 o 2-7 1831 451 (-tilll- 337 415 0296 1836 456 tdcmiddotC n13 430 C291 --middot - -- 1341 461 t(I~ 33 7 435 0292 le46 466 bullt~tci 33e 435 o 292 1851 4 71 33_ 3 425 Oll Hi56 4 76 337 425 0291

1901 4 il I it-Otcbull 33 43C bull)2Rq1906 96 t~illtt 338 475 J217

_Clt-~4t1911 t91 l3 7 42) middot t~HJ 1916 bull c( bull ie--iJtll)ill6 4l1) 0187n ___ iil 111 [t 1 T el rbullNJ Crf fISCAP[E) QU~ 5 T t 1Jt-bl E 1)1 TA

108

AGC-218-3 SOZ 40l RH 7 GLASS CHAMSER

__1976_ AU( 4

CLOCK ElAPSED oz~~~ TSl qEL HUM S02 TIME TfME (lfrjf- I PP~I oeG c- -ii --middotmiddotcigtTmiddot----

(

1lt121 sci-middot umiddotbullmiddotmiddotmiddotmiddotmiddotmiddot-- 3fmiddots~ 425 o~io6 1926 5~6 bullbullmiddot 338 42-0 0285

______1931_____511 ~-~- 33 1_ 41 s o_2s5___ 1936 516 337 425 ozss

( 1941 521 337 415 021a 1946 526 337 415 0282 19si ~31 bullbullbullbullbullbull 33i middotmiddot425 021a 1956 536 337 420 0278 2001 541 335 420 0283 200middot6 5t6 -middotubullu-middot----33s- 12s -0211 - middot middotmiddotmiddot middot ----------

( 2011 551 bullbullbullbullbullbull 335 420 0278 2016 556 334 415 0277 2021 561 334 425 0277

( 2026 566 bullbullbullbullbullbull 334 425 0276 2031 571 bullbullbullbullbullbull 33~-- 420 0278

middot-middotmiddot- 2036 576~ UU 334 425 0275 ( 2041 581 middotmiddotmiddotmiddotmiddot~ 335 420 0274

2046 586 335 420 0275 205( 591 337 430 0211

C 2056 596 335 425 0211 2101 601 337 --~2s 0210 2106 606- -middot~bullbulli 3~s 430 0211

C 2111 611- 337 425 0269 2116 616__ = 337 425 0270rmiddotmiddot- 2121 621 ibullbullbullibull 33~7 436 0210

C 2126 626 c 337 420 0270 -l 2131 631 ~ 337 __ 430 0210

2136 636 337 425 0267 C 2141 middot 641 bull 337- 425 0266

2146 646 337 430 0265 2151 651 337 425 0265

C 2156 656 middotmiddotmiddot~middotmiddot 335 425 0269 2201 661 33J__ 431) 0266 2206 666 335 425 0263

( 2211 671 335 425 0265 2216 676 337 430 264 2221 681 335 425 C261

( 2226 686 33S 435 0263 2231 691 bull h 335 430 Q2(3 2236 696 335 425 0259

( 2241 701 335 430 0256 2246 706 335 425 0258 2251 711 335 425 0255 2256 716 335 430 0256

OU~STICNA6LE DATA

109

AGC-ZIR-~ ~02 401 RH GLASS CHA~t1Fl-1976 AllG 4-5

AOO 660 MIN TO ELAPSEO llM

CLCCK fL~PSEe TS l l~L HJ~ Si~bull- T -IF Tl~cllO ING CI (o (r~M)

22C6 6 33S 4l5 C263 22tl 11 335 425 C265 2216 16 ~37 43i) i)264 2221 21 335 12 5 Obl 2226 71 D5 435 C26~ 2211 31 ns 430 0263 2236 36 335 425 i)5G 241 41 335 430 C256 24( 46 335 2 _5 middot 253 51 51 33 5 42S C 25 256 56 -3 ~ 43(1 0256 230 t 61 335 425 C254 2306 66 35 42 C25S 2311 71 33 5 430 C 50 2316 76 337 425 CZSv 231 81 33S 43) C 5) 2326 86 33gt 43J 0252 2331 91 334 420 0249 233b 96 335 430 C z5J

middotI 2341 1C1 ~35 425 C252 2_34~ 1C6 335 420 obull45 2351 111 33 middot-middotmiddot 42 5 G248 2356 116 334 420 0248

1 l21 334 425 0247 6 126 334 42~5 C~250

11 131 334 420 0244 16 l36 334 __ 425 c 245 21 141 334 42middoto 0244

26 146 334 420 0244 31 151 332 42o 0242 36 156 334 415 0242 41 161 334 425 0241

i 46 161 132 42 o G2391i 51 171 334 430 ~ 239-~

i 5b 176 332 430 oz3gmiddot 10 l lBt i 2 425 023ltgtt 106 186 332 435 C236

I -~ -~ 111 l SI 332 431) 0238 ~ ~ 116 l c6 33l 431) IJ2 1l 201 332 435 C23gt

126 2C6 332 430 a 233 I 131 211 3 2 435 0232

f 136 216 3 3 2 430 0233 p 14 l 221 3) 425 0233 I 146 226- 312 435 C233

I 151 23i 33 l 425 c22s

C (

~ ti

) ~ I ~i 6 236 332 4)5 cna 201 bull1 3 3 I 430 C bull J )

f 20lt 246 33 l 4 s C2 n E 211 251 3 3 l 4gt0 0231)]

Iimiddot~- ~ll QtTh TAK f1 fl AT

~ -- 1 l middotmiddot1

I 1

middotmiddotmiddotmiddot--middot-middotmiddotmiddotmiddotmiddotmiddotmiddot --middot-middotmiddot--middot-middot ----

_ - middot- --middot---- middotmiddot-middot-middotbullbullmiddotmiddot-middot -middot--- ---

--middot bullbullbullbullmiddot bull-bullbullbullbullbullbullbull M bull-bull 0 middot---middot-middotmiddot middotmiddot----middotmiddot - -

- --middot---middot- -- -~middotmiddotmiddotmiddot-middot--middot-middot middotmiddot--middot

____ ___ --- middotmiddotmiddotbullbullmiddotmiddot----- __ middotmiddotmiddot-middotmiddotmiddot -~ ~-

n1 s1or~o

110

AGC-218-5 S02 4Ct RH Gl ASS CHA~lrn lH6 lllJG 5

AOO 6amp0 HIN TO ELAPSED TtME

ClCCK l~llSFt 1$1 REL HiPl SO TIME TIMEl~lNl ID~G Cl Ill IPPM1

216 256 331 430 0211 221 u1 331 4-L~ c2n 226 ~66 33o 43~ C27 231 211 JJo 44o 022s 23~ 276 3l0 44S C28 241 281 330 435 C26 246 266 330 44 5 C2Z5 251 291middot 330 43s o22~ 256 296 33o 415 c23

middot301 301 bull3middot3omiddotmiddot---middot40 022s 3C6 306 328 435 0225 311 311 328 445 C226 316 316 32 1middotmiddot middot -4middot3smiddot c222

( 321 321 32S 440 C222 326_______ 36 32_ a______ 43 bull s__ c 221 middotmiddot---middot--bullmiddot-middotmiddotmiddot ___ __________ ----------middot-middotmiddotmiddot-middot 331 331 328 430 023 336 336 32S 435 C220

34134-1 e a~middotbull~- fl 9 0 211 346 346 3Z8 440 0220 351 351 32s 435 c220

1 ~t t---ttt-middot -t~g ____ --middotmiddotmiddot -middot-middot-middot-middot middotmiddot- middotmiddotmiddotmiddotmiddotmiddotmiddot--middot middotmiddotmiddotmiddotmiddot-middot--middot---middot middot--middotmiddotmiddot-middot- ---middot-bullbull _ 406 366 327 440 0216 411 311 n1 445 o_215 __ __ --------middot- middot--middot--- 416 376 326-middotmiddotmiddotmiddotmiddotmiddot43s-middot C211

( 421 381 327 445 C215 421 3~6 _32 bull6___~i1Lcn middot- ______ middotmiddotmiddot--middot--middotmiddot middot-middot--middotmiddot 4Jl 391 326 445 C211 436 396 32s 44o 0211 4 1l 401 326 450 0210 446 ~06 324 44o u211 451 411 34 45o 0213

_456_ 416 324 445 _C210 501 middotmiddot21 323 455 c211 506 426 323 445 c210 511 431 323 55 0204 516 436 323 44S 0209 s21 441 323 455 c210 526 _446 33 445 C208 531 451 3 3 455 003 536 456 323 445 0204 541 461 322 4S5 c20~ 546 466 322 445 C215 551 471 322 450 0206 556 476 316 4o 0210 601 481 316 450 020gt

C

606 4fl6 31 6 455 C zomiddotJ 611 491 316 5 ~ c2n 616 496 316 4tC on 621 501 316 455 C2J2

bullbull bullbull NO OAH T6KFN ---- ll 11T VJ ScAmiddot~~~u

111

AGC-218-6 S02 40l RH GLASS CHAIBER 1976 AUG 5

ADO 660 HIN TO ELAPSED TIME

CLCCK ELAPSED TSl REL HUM S02 TIME TIMEIM~) IOEG ti Ill (PPII

626 5C6 middot3f~6middot 46ci 0200 ( 631 s11 316 455 c2ao

636 516 316 45s c200 641 521 31~imiddot 4ampomiddot 019

( 646 526 315 45o 0199 651 531 316 455 0199 656 536 315middotmiddotmiddot 45S 0195

C 701 541 31a 45o 0191 706 546 319 45~5 C197 711 551 319 455 C115 716 556 320 45~ 0199 721 561 322 460 C197

566 323middotmiddotmiddotmiddotmiddotmiddot 45~5 C195- -middotmiddot - --middotmiddot--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot- ---- middotmiddot-middotmiddot-middot middot-middot-middotmiddotmiddot middot--726 ( 731 571 324 460 0194

736 5 76___32 bull middot-middot --4~-~~---middotmiddotmiddotc ~q_5 ______________ middot------middot-middotmiddot-middot--middot-middot-middot-- -- middotmiddotmiddotmiddotmiddotmiddot-middotmiddot-middotmiddot~--middotmiddotmiddot-~-middot-middotmiddot----- middotmiddotmiddot--- middotmiddotmiddot-----bullbulln-bullbull-middotmiddotmiddot -------middot-middot 741 581 3t4 455 0193

746 586 326 45o 012 751 591 327 455 0194 756 middotmiddot- middotmiddot-s96~-middot -- 32-amiddot- middotmiddot4smiddots middotmiddot middotc194 801 601 330 455 C193 806 606 33l 460 C191811 ------middotmiddotmiddot-middotmiddotmiddot-middotmiddot--middot----middotmiddot------middotmiddotmiddotmiddot-middot-middotmiddot----------middot- 611 33l 45bull 0 0171 ------middot-- middotmiddotmiddot-middot----------816 616 332 460 0191 821 621 332 455 0192

826 626 33--middot 460 o 183 C 831 631 334 455 C188

836 636 334 ____4S_o___Cl36 --middotmiddotbull---------841 641 -middotmiddot-middot-middot33 5 45 o o1ss

( 846 646 335 46 C137 851 651 335 455 CS6 856 656 335 40 0184

(

l

a ~ -

112

AGC-2ld-i s02 -~ r~ iliS5 (I--A~tl[f-

196 AUC ~

libulloHTS Cl 01CC 1nSlY lmiddotJOt lJ~ OA~JJI_ 12L r c~~ itmiddotE (Hit~t t~uG~j cic6 10 tll f-RC~ 1 Mi TJ S lf ftf-lt

Tt~ ~Ol~ fbull~0~ 1C~0 T2 l~Ji ~~~J TJ 113( ~2~1-~~C~ AU~ t VlOT--0110 s~tY 12s6 CAlt1 ~i11u- 1-h vl imiddot StPLllG RATES OL11) TcCU ~ -middot 123bull C~Slfl 12l - t()(

ccci- fL 0 )~middot) i Sl i l ht ~-it t-bullc r l -pound ( l 1imiddotc Cl 1 ~ ~~(

1 tti ~ C i t ( bull t ~ 1i1t ~) ~i cu

--bull-- -~ll __11 middot-- middot ~~) 5 ) -bull ~ __ S bull lmiddot~ __ _ gt le 1~J yen ~ ~s ~ss 1~1s~ 92l 21 ~bull~ 46C c11middotgt)c~~

S2C ~tbull 1 ~ ~ ~4 bull_ bull l ))(~-~

middot93 l 31 1 ~ _j_l bull bulltC Cl-bull 936 ~l 01 L

--------~ -~ ___ ______ 4_1 -1=i 1 5 0 l i 4t 41 tit~ 4 middot1 middotmiddot3 C -_ bull 1 i~l

( 951 roc -i 5~L 3 1 42 bull G ct 51 ~( - 3 f gt 41 i 0 1(_bull(

1)0 l c 1 ~centelaquo 4middot1 5 01X lOUc cc 15 ClL~ [011 7 l ~d~bullt~(c 3lt bull 7 41 bull -J16-t lOlt 76 it20 OltG t~~01gtt j4 9

102 l 81 (-ttI centicx 3i ~gt 01~2 iOU 8t i-uc~ ~2) C l 5t1oii -middot middotsf~- middotmiddot~~-~~- -----~-~ ~

)~bull- ~ l () middoto i5t1middot i03amp ~6 ~~ 4C bull i C lJ6 041 10 1 middot~bull-p(t 1t _ ----~ bull~-----~ ~+- ~ middottC46 [Ct bulllaquo 4 7 4 bull U r bull l bullmiddot

1051 111 ~~-~~ tCi ~gt 0 l i0~6 J1~- ~ 347 41u 01~ llOl 121 -middot--bullomiddot- -middot 41 c (i1smiddot1

C 1106 126 4s ) 153 llll l31 ~middot~ 34 5 4rJC middotO 140 lll6 136 bullbull~bull~ 3lt bull j =~- --~ O l4

( ~121 l~l $enyen 34 o 3i G 14ltgt i12o 146 ~~ 34Q Jl0 011

--i131 -middot-- 1s1middotmiddot middot_ __ middotf 3 ~ ---143 middot-- C 136 1f 3C 0112

~14_1 -middotmiddot--middotmiddotmiddot16_1 -e-~ )-t _ b5 1~2 qri middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot3middot4--_middot- Ji ~ C bull 1 j S bullmiddotmiddotmiddot - middotmiddot---middotmiddot-middotmiddot -middot middot-lee

( H51 171 3-1-ti ~ 7 5 013S 11~6 I 76 )) 3 1r ~ 37 0 0 1+C 220 l -- 1cimiddot1 x middot3middot- i~ bullmiddot 3( I Olle i06 d6 J ~ C6 34h 330 01n 21 I I l 31-9 middots o 0 131

l21 t I S6 - l(~q~cent 5middot ~middot0 ~4middot-~middot--middot-- bull i l2 ( 122 l 2Jl J~1 34 1 C l J

1226 2c1 c~bull~ 34~ 34C n 12s Tiit 2ll _(Ybullbull~- bull~bull~- i j~bull ~j cbull1it1 l23l 2 ll ~~UCO ~4a ~c Oi3~ i24l 221 bull~bull~ ~~-~ 3~~ Cll~

middot 124c 22~ v~-y 34~ 34i cmiddot ld

1251 iil laquoriribullmiddot ~middotmiddott o ~) 12middotmiddot 12~0 2 j() - bullrl-1- 3 ~ ~ ( 1bull~ 3C l -~ middot ~ ) J di ~ ~ l (l

113

AGC-2lS-8 S02 40l RH GLASS CHAMBfR l976 AUG 5

CtrCK TIME

EL AP SEO TlIOIMINI

Clf~C (PPM

TS l IOEG Cl

~FL HUf n1

SJZ C PPI I

1311 251 -$ H5 33middotbull 0125 l3lb 256 (centcent 345 n 5 0 129 1321 261 ltirtQlaquo- 34bull ~ 325 0 12 3

C 1321gt t31

266 27l

(~~laquo~ q~t~laquo

~4-7 3 9

335 340

0 12 S o 122

1336 1341

276 281

__ t

347 34 7

34J 31 5

0 122 0123

( 1346 286 1(11) 347 345 c120 1351 291 t l ~4-7 360 0-1 zo

( 1356 1401

296 301

346 346

36C 35S

0118 0117

140(gt 3C6 o 254 346 355 0 118

1411 1416 1421 146 1431

311 316 321 326 3 31

~YJJ

bullbullicent lCbullmiddot (11Ctlaquo

346 350 35l 35l 35o

34J 355 360 35 5 335

0118 0 118 0117 o ll amp o 114

1436 336 $$) 354 350 0 114 141 l 31 354 35S 0111 1446 1451

346 351

t(c=~

tit 354 353

355 350

C 112 0110

1456 1501

356 361

bull~

35 l 35l

360 34 5

o 111 0110

1506 1511

366 371

0287 $

35_o 1so

345 345

o1oq 0 lOl

1516 1521 1526

3 76 3A I 386

ICi -C ~IX$

349 347 347

340 340 355

0 109 0 109

0107 1531 391 tamp 347 36C D107 1536 396 346 365 010 1

1541 4 01 Or 346 36C 0106 1546

1551 406 4 l l

Cittcent

346 34o

36 5 365

010 0104

-15~6 416 6~ 346 365 0104 1601 421 ~( 345 365 0103 1606 426 c 302 346 36 C o 103 1611 1616

4 3 l 436

lJ rit II

~ 345 3 5

365 37 5

ClOJ 0100

1621 441 ltftt11 345 37 0 0100 1626 1631

446 451

~ 1tcent bull1Cc

345 345

36 C 36 0

0098 OCll

1636 456 tC06J 345 36 5 o 098 1641 1646

461 466

(Ittbullittbull

345 3 5

-c 365

o )Ya 0094

1651 1656

4 71 4 71

11)fI)

$$(1Jfbull 345 345

310 3 7 0

0 ))4 0 Oi4

middot7 1701 1706

4 81 48b o 315

3 s 34gt

0 3t 0

oogs o 094

1711 I 716

491 49amp

bulltttoJt--r

ittt t 345 345

355 H bull5

0014 oon

bullbullbullbull ijir mJ DU4 Tf~ fl -- middotmiddotmiddot- l)f TA 01 $ChIHG I OUET rorAILE tJIH

114

AGC-218~9 S02 401 RH GLASS CHA18ER 1976 AUG 5

AT 2059 PROPE~f (64 ML) ANO FC-12 1580 MLI WERE INJECTED

f (r CLOCllt El ~PSEO QZCNt___ J51 TIME TIME(~I~) 111 (DEG Cl

(

i7ii soi ~ 34~middot5middotmiddotmiddotmiddotmiddotbull-middotmiddotj4_Q 0092 bullmiddotmiddotmiddotmiddot----middot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot--~------middot----middot-middotmiddotmiddotmiddot----------middot-middotmiddotmiddot

C 1726 50~ 345 340 OC92 ll3 l_ middot--middot51 l ~~~~---3~--~middot-middotmiddotmiddotmiddot-3t i____QJJ12

1736 516 343 350 OC89 1741 521 bull 343 335 OC89

_1746 -middotmiddot ---526 u _ )45 _J3 O_ 0 bull C$8 __ _____ 1751 531 346 310 OJS7

C 1756 536 bull 350 305 035 1801 541 351 _no__ 0 bull0es___ _____ ______middot-middot-------middotmiddot 1806 ~4i~ 0313 3D~ 330 OC84

( 1811 551 358 320 0085 1816 559 ~-~-middot--middotmiddotmiddotmiddotmiddot~-58 32middotJ OC81 _____ -middotmiddot--bullmiddotmiddotmiddotmiddot-----middot---middotmiddot ----- 1s21 561 358 320 oc33 1826 566 360 315 0083 1831 571 36J 315 0083 1S36 ___ 576- 36o 320 oca1 1841 581 ~ 380 315 0078 1846 586 middot---middotmiddot 38 bull0_ 320 0081 1851 591 379 ~jo---6019

C 1856 596 377 335 007S 1901 60Jbull UUbull 376 330 0078 1906 606 0328 375 340 Q078 1911 611 375 335 0078 1916 616 376 330 0076 1921 middot621 376 33o middotocn

C 1926 626 376 335 0077 1931 631 376 34 0 OC7t 1936 636 bull 375 345 0070

C 1941 641 372 345 0074 1946 646 372 340 0074

0

1951 651 37~ 340 0074 ( 1956 656 37l 345 0073

2001 661 370 350 0071 2006 666~ 370 350 0072

( 2011 671 369 355 ocn 2016 676 36I 35 5 0068 2021 681 36l 36 0 OC68

( 2026 686 349 365 )069 2031 691 0 349 365 J070middot 203~ 696 349 370 OC6i 2041 701 350 370 0066 2046 706 349 3~o ooes 2osi 111 o341 35o 3Bo 0001

( 2056 116 0341 35o 38s o066 2101 121 0343 337 385 0066

115

r I

I~

) I I

H l

Ji

I

~ I

l _

I1 i

~ t 1 t

I r ~ ~

f ~bull1

1

1 r i

AGC-21S-IO 502 401 RH GLASS CHA~tHR 1976 AtlG 5-6

ADD 720 MIN TO ELAPSED TIME AT 2059 PR~~ENE 164 ML) AND FC-1 (590 Mll WE~E l~JECTED AT 2217 IO ML OF S82 WAS INJECTED

CLOC~ ELiDSEJ ri~~bull TSL ~fl HJ~ 5~~ TIM~ TIMEl~INI (PPM) (nEG Cl Ill (PP~)

2106 6 0 32l 345 390 2111 11 0314 34 bull 0 Crmiddot 2110 lf 0300 34 q_ 390 OJtO 211 21 () 2lJ 3bullbull 9 390 0057 2126 26 0231 350 ~9 0 JC56 2131 31 ()282 35Q 39bull 0 OC55 213b 36 tic 350 39 () or56

2141 41 O~ 35Q ~9J 0C54 2146 46 (~-ti 35bull Q 390 )054 2151 51 iei 350 390 0051 2156 56 ~laquo 35o 390 0053 2201 bl 35o 395 0053 2206 66 0241 35o 39S o)51 2211 71 35) 390 0051 2216 U 350 39S C85l - -middot--middot---- middot---middotmiddotmiddot39middotmiddot3middot -- - o middot2 ti -middotmiddot - --middot--middotmiddot-~---middot-middot-middot --- -middot middotbull-- ___________ ~middot-middotmiddotmiddot middot2 221 81 u-- 33 8 2226 34 7 395 0222

91 c2222231 middot 349 39s 2deg236 96 laquo 34middot9middot 390 0221 224 l l 01 =bulltll~ 350 390 0217 2246 bullioi ----- 34 9 _____ 38bull 5 __bull Gbull 22Q-middot-middotmiddot--bull-----middot-middot-middot---- middot_ _ --middotmiddot-middot - _ middot---middotmiddotmiddot -middot--middot--2is1 lll 39) 0220 349 2256 116 350 390 0219 2301 12 l cent 349 3llJ 0216 2306 126 349 8 15 0214 2311 131 t 349 385 0213

- -2316 136 t J(I~ 349 39) 0211 middotmiddotmiddotmiddot----141 2321 t~ 31 7 390middot 0209

2326 146 --Ccent0= 347 39o czoc 2331 151 4te 34 7 3Bs o2J1 2336 156 l) 347 390 0206 2341 lo fc 34 7 39) 0204 2346 166 -e~ 34 7 39 bull0 02l5

~obullicent-V235[ 1 71 347 385 0204 2~56 176 ~~ 34 7 385 02)3

1 l 81 ~ 346 390 0193 6 186 =1centCt 341 3 019

11 191 ~(r 345 390 0200 16 1S6 taici 345 ~85 0 19B middotmiddot- middot- -- --~ 21 201 Cdeg trtrbull) 345 38 ) 0195 26 206 345 39 G 0195 31 211 ltclI 345 3l() ~ 1 g1 36 2i6 V4-tiq 345 39 0 0 14 41 221 iocent 343 38 5 191 46 226 $ 345 rn s Clql 51 231 (r(c 343 ll 0 O lJ2

56 236 ~bullt~ 34~ ~9 ( J137 101 2 1l ftfilt 31-t 3 3e 5 c 188

0itW~106 246 34 3 JAS 0 1~9 11 l 251 4)QJ~4 Jlt bull j 3fl 5 C bull l 4

ibull1 DATA T~K rn ---- D~U DSCA~JEC 1 QIJ[ST tSbull~flLE DAT~

116

AGC-21d-11 S01 40t RH GLASS CHAltt8ER 1976 AUG 6

AOO 720 MIN TO ELAPSED TlE

CLOCK ELjPSED ozc~~ TSl ~~L HUM scz Tl~E T[MEt~l~l (PP~) IJEG Cl Ill l lP I

i16 121 176 131 136

256 261 266 271 276

bull ~bullbull bullbull~

343 343 343 342 342

365 e5 38C ~85 385

0183 01S4 0 I S2 0lSl 01s2

14 l 291 bullbullbullbullbullbull 342 8C 0 lilbullJ

( 140 151

236 291

-bullbull

342 342

360 3tiC

0 177 o 176

(

156 201 206

296 301 306

~~~~

342 342 342

385 330 8C

o fn0 176 0 l 75

211 3ll ~~~~ 342 38C o 172 216 22 l 226 231

316 32 326 331

bullbullbullbull middotmiddot

342 342 341 3 11

385 )35

85 3d5

0 173 0 171 0 161 0169

236 middot241

- 246

33~ 341 346

$ uuu

339 3go 339 3U533~9middot-- 355

J H5 C l 70

0 1 7J 251

middotmiddotmiddotmiddotmiddotmiddot--middotmiddot256 301

351 middotmiddot~middotmiddotmiddot ~5~--middotmiddot--- 361 bull-

339 33 9 339

385 39 0 ~ss

0165 0 167 o 166--

306 366 339 335 Q 164 311 316 321 326 331 336

311 376 361

_386 391 396

bullbullbullbullbullbull bullbullmiddotmiddot

339 339 339 338 338 338

3as 385 380 38Q 385 385

0161 C161 016) 0 161 0161 C 158

341 -346 401406

middotiimiddot-

33S 338

3BO335

0 159 0156

351 411 338 385 Q156 356

4151middot 406

- 411 - 416

421 426 431 436 441

416 421 426 431436~middotmiddotmiddot 441 446 451 456 461

~bullbull~ bullbullbull=bullmiddotmiddot OU

~~bull7

338 33S 33d 336 middot3)i3

338 33S 33S 33~8 337

320 385 385 390 a) 3B5 3dO 380 3d5 335

0 156 C151 J153 0153 0 15) -o l51 0 149 middot oi5o 0145 0149

middot middot middot middot

446 466 bullbullbullbullbullbull 33~B 365 0 14 3 451 456 middotsol

471 4t6 461

=~~~ ~bull

337 338 337

90 0ia ~~- 5

0 145 0 144 0148

J

506 $11 516 521

486 4l 496 5Cl

t fr(laquo ti~ lt0lf11

middot~ tI

33 IJ 337 3 3 3 3J a

R 5 ~f

~bulls lJ 3o o

0143 C14J D 142 0 1~ 1

bullobullbullbullbull NO fMTA TA~ fj ---- iHt Dl SCA 0 i)E0 OU Sr I~-bull ~-1 ~ ()A TA

117

l

u I

AGC-llS-12 SJl 4Jt ~H CLSS Crbullt~tH-~ 197 ~JC

bullco 720 ~IN JC ELAPSED JIME

__(_l CC -~-----EL I~bull-~ ___ )Jgtl________ T_~J Bf_t t1l~ smiddotmiddot-~ ~ TlMt TiMtlil l p- ( UCG ( l ( t) I Pi l

jIL szc gtt~ ~ ))~ti ~-3J 5~middotJ c1--

5ol Sl 336 3S ClgtC

-~-4 ~- t_ bull bullbull - t1-- ---~ ) bull ~ ___ _-bullbull__G_ Y~ l_~ l --middotmiddot- middotmiddotmiddotmiddotmiddot-middotmiddot middot--middot-middot-middotmiddotmiddotmiddotmiddotmiddot middot--------middot-middot-middotmiddotmiddot ---middotmiddotmiddotmiddot _ 541 521 ~~~~ 33H 75 CJ~7

( S4~ 52t _~ 33CI 370 01tti

ss1 31 _JJ1_ nc middotJ13bull 55~ 53~ middotmiddotbull ]31 7~ ~-1bull~

( 6~1 541 bullbullbullbullbullbull 331 ~7C Oi3J CC i 5 t l ~ i i_ 3_ gt bull imiddot-middot 1lt- bull bull_ Cbull _ 1 i 1 I 5~ j bullbullbullmiddotmiddotmiddot ~-~--~middot-middot- 3 3 bull ~ jt C l t - _______

616 gt~6 )__Q1bull 337 36i i l3i t i 1 lt 1 ~- -middot bull ( 3 ~ ii c C l _l- _

middot-626 G ~iu JJd J7G Qii

i 631 571bull bullbullbullabullbull 331 37C Ol~I 636 j76 ~=~~~ 335 ~7C 0t~S 6il 5ilbull (middot~vrr s1 31L Llmiddoti

64i Scit =~~bull~ 337 370 C126 t~ gt~1 bull to~-c~t i 7 3C 017 65c 5Stmiddot middotmiddottimiddotmiddotraquo=ii~middotti 3i 2lbull C lit 7Gl 6Cl bullbullbullbullbull 337 370 0127 7C6 lJ6 bullbullbullbullbullbull 33 J70 01257 11 611 -J 343 - ) 3 7 37 C ~ ~ 12 5 middot-middot-- middot-middot---middotmiddot-middotmiddot--middot- -----middot-----middotmiddot--middot-middot--middot-middot--middot--middot - middotmiddot-middotmiddot- middotmiddotmiddotmiddot-middotmiddot--middotmiddot

7lb 616 ~middot 33l 375 CJZl 721 62Jo HmiddotgtU 3)8 37a___ pU3_ _

middot-iii l2e middot bullbull --middot- 3i~imiddot 3c c c in l ( 731 631 bullbullbullbullbullbull J37 37s c121 I middotmiddotmiddot--- ]3l ________ l t_ 1 c~~_middot=_ ___ ____ 33 7 6 gt C bull l _~middot--middotmiddot bullbull middot---- ____

7itl 041 ~yen~~ 331 3~ C12 ( 74t 646 bullbullbullbullbull 331 385 c120

751 ~51 bull 3JI 3S0 C12~ _7 smiddotmiddotmiddotmiddot-- 6 56 ~ ~n-1~ 3 j rmiddotmiddotmiddotmiddotmiddot 3 bull~ j i r~ 8Cl 661 bull~bull 33B ~a OllE 80amp 666 yen~~___ 33 ~middot-middot---middot-middotmiddot ~9 5 ~middot-middot ~f--~

middot middota11 67i- tl~~ibull( ~ middotscmiddot e1 ~16 676 ~~~~ ~3b 36C C117

__s21_______ ~ci~ ~ 1r-t 3--z _bull J111 ti26 66 1-r~~~ middot3middotmiddotimiddot-middot middotH5 cflG-

( Sil c~jl centr(tiri 3-i2 1~bull t11 1

118

i I J I I j

l I

j

I AGC-218-ll 502 40t RHmiddotmiddot1 GLASS CHA~8E~

bullS 1970 AUG 6 t J

ACO 1410 MIN TO ELAPSED TtIEmiddot~ I l

t l I

~

CLOCK ELaPsrn ClCbullE TSI R~L HUM sn Tl ME TIMEPPil ( PP11 lo~ cY 01 IPPMI

l ~I l

829 -I ~ 342 390 0114abull

( 836 ( bullbull~bull 33CJ 19 0 aus middot

841 11 bullJ$rfll(cent 339 39S 0 l l 4 -- ~ _ __ _________ Il --middotmiddotmiddotmiddot-middot--middotbull- -- 846 16 nsmiddotmiddot 40) gt bull 112 ~- ( 851 21 Cit-o 337 4CO 0 116middotf 856 26 (I 337 c 0 0112

f I

901 31 ~ 337 nmiddoto 0112 i 1

~

- 906 36 =-= 338 380 c110 911 41 tt~ 34l 370 o 109 --middotmiddot ____ -middot-- __ ~ -- middot-middot--bull-middotmiddotmiddot middot- -middot lti16 4( =~ 3 3 370 o1oi middot 921 51 -tCio 35 365 c 11)6 926 56 tOO 3+7 3o5 c1-~r I

I

i

l

l

[ I

j

middot-

1~

931 61 3-7 38 0 C-104~ lt 936 11 H5 38 5 0 l) 3 middott 941 71 3t5 Jd5 0104 946 76 343 ]8 5 0105 ( 951 Sl laquo1tbull 342 385 I 104

950 86 34l 385 0103 middotbullmiddot1001 91 middot=+ 339 38 0 0103

1006 339 37 5 o 105 1011 101 339 375 C 10 l __

I - --middotmiddotmiddotmiddotmiddot-middot 1016 106 339 380 0C99 f

1021 ltl laquoO 339 380 c 099 1026 116 C10$C 339 370 0101 1031 121 Ct 33lt~ 37 0 0096 1036 126 buller 339 370 0096 1041 131 (e 339 375 0 99 l046 136 lit 34l 37 5 o middot]98 1051 141 t 339 no CJ98 1056 146 C~bull 339 370 0G95 110 1 15 l ~IIX$centU 3- l 3 7 5 00-~1 1106 156 bull )~t-C(t 342 37 C oc9s

~Q(~cent 1111 lbl 342 37C O C9 3o C1116 166 Ccent~~ 342 0 ]96

1121 171 bull4- 3 36 C 0093 1126 176 ilc(tOC~cent 342 009436 5 l I 31 161 tiOt(i$cent 3 1 2 36 5 C0)4middot 1136 middot l e6 t-r-oebullbullgtt 3- 2 36 C 0090 1141 Illbull 3 5 0 0094lrmiddot0-J(J 31 3 1146 l lt6 -C 343 35C ono

I 1151 201 e 343 340 0 CtJG 1156 2u iC111 3 3 340 0089

( 120 l 211 middot~ 34 3 33 5 ocn nliittiraodc1206 2H 343 ~o OCl7

1211 221 -~bull-1fJlic H5 330 O CH9 1216 226 -yen 345 320 0 Cl9

1221 2 31 (1$11r 3diams 5 3middot2s or~ 1226 736 bullcqtcentbull 345 3l 5 COil 7 1231 741 bullt-laquobullbullmiddot 3 5 11n middotJ J9bull l 236 24amp 3 6 30 0 i~lbull 4

(ATA ~-~middotbullbull TAtH[

119

rmiddot 11

AGC-213-14 S02 40yen RH GLASS CHAlfER 1976 AUG 6

ADO 1410 tN TO ELAPSED TIME AT 1424 1 Ml CF S02 AND l6 Ml OF PRCPENE WERE INJCTED CLIMET AND WHTSY WERE 0~ THE CHAMBER FRON 1313 TO 1645 DASIBI 1212 WAS ON THE CHAMBER FROM 1634 TO 1638

CLOCK LiPSED Ol0N~ TS REL H~~ Sl2 TIME Tl~~(~l~Imiddot IPP~I lb~G ti (Cl (PgtI)

middotmiddot-middotn41 middot -middotzsi~-- middotmiddot$~I middotj~t q 3zo ocas 1246 256 bulltbullbullbullcent 349 32J 0 C8 1+

-middotmiddotbullmiddotmiddot -- - middot---middotmiddotmiddotmiddotmiddot bull_ 34bull ~----1251 261 0lrU 31~ 9 Q_~_7_i 256 266 347 325 on2bullIt 1301 271 =to~ 34 7 325 oJS3 130 276 346 315 0083 ---middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot- 13 I 1 28 l O-ht~(I 346 Jl5 CJ83 1316 286 O 346 31C middotOOi33 132 r 2lt1 ~tc1 346 305 o_C81_ middot-middot-middot

i326 2ltJ6 - middotmiddot34~5 31 5 008 1331 3Gl 34 5 3 l 5 0082 1336 3C6 345 31 5 0C7t 1341 311 3bullbull 6 29 5 0078 1346 316 b~ 346 ZltJ5 OJ77 1351 321 --- _3_45 30 J ---- -1356 middotbull~ 0 j73 _ middotmiddot-middot--middotmiddot-middotmiddotbullmiddot middotmiddot-------middot--middotmiddotmiddotmiddot middot-middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotbullmiddotmiddot- middotmiddot-bull 326 345 ZltJO Q)71 1401 33 l 346 290 0)73

1406 336 middotlaquo 3 6 gtltJ bull S 0073gt 1411 341 34~6 30 C 0072It~- 1416 346 347 305 0071 ~ 1421 351 34 6 310 OJ73

~~ 1426 --middot middotmiddot--jsamp~ __ 33i middot--3middot1o C 13 $ middotmiddotmiddot-- --middotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddot- ____ middot--middot-----bullmiddotmiddotmiddotmiddotmiddot-middotmiddot-middot~---~~middot-middot

1431 361 343 310 0221 1436 366 ~ 345 2 0 0232

-middot-middotmiddotmiddot--middot-middot34 6 middotmiddotmiddota 231 middot ----middot-- --middot middotmiddot- middot-middot--middot-middotmiddotmiddotmiddot-middotmiddot-middot--middot-middot- middotmiddotmiddot--middot middot middotmiddot--middot--i441 3 71 33middot 5 1446 376 o 346 335 o 22a 1451 391 34 7 34l~~= 0 226 middot-middot- -middotmiddotmiddot------middot- middotmiddotmiddotmiddotbull -- --middotmiddot---middot--middotmiddot-middotmiddotmiddot- middotmiddotmiddot-middotmiddot --middotmiddotmiddot-middot----1456 336 ~ 34 i 340 0 223 1501 3lt 1 -ti~~ 347 345 0222 1506 396 347 345 0221 1511 401 ~ 347 350 0217 1516 406 347 35) 0214 1521 411 X 347 350 0211 1526 416 )$ 349 340 0209

( 1531 421 Ji 349 335 0206 153gt 426 Clltf 349 335 0202 1541 431 ~ 3t 9 33J 0 bull fJ2 1546 436 t=Cilc 349 325 0202 1551 441 ~=gt4 350 3 lj 0198

4461556 JO ~49 32G 0 195 1601 451 Jlrltlf~Tc 350 31 $ 0192

Vcent~~raquo1606 456 350 J 1 0 0 l llt 1611 461 lttlO-t 350 3J 1 fJ ll l 1616 466 ~~ 350 29 5 0186 1621 471 350 zq s C1A4middotmiddot 1626 476 350 31 C 018 1bull

~ ~ ~ 1631 481 1119$~rc 3o 31 5 0181 ~ ~~ 1636 4a6 0)7 351 2 5 c 161)

1641 49 l llir-4-it 35Q 32 0 Ol77L - (

166 496 middotbullbulltbulltr 35 l 34 s 0 IIH

middotbullbull-tiort ~ si bullmmiddot DATA TAK[i ---- OATA 01 $~APi)euroC QIJ ST 1(lLE LmiddotbullTA

~ - l f

r

120

i

1 --~middot---- ~- Ac-middot21q~f-sri~ middots~ ~H middot ~

q l r GLASS CHA~dER 197b AUG lo

--middot0middoti11t1 middotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddot-------- middot-middotmiddotmiddotmiddot--middotmiddot middotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddot bull AT 1545 FC-12 ~~S INJSCTEO INTJ TH CH~M~~R AT 1646 S02 WAS INJtCTEC INTJ THE C~AN~E~

-middotmiddot1ECC 43 SP~NNrn ll6SfC o-middotcHA-lEft trJtCTl)~ideg-------------middot------middot-middot-TECO 43 SANPLI~~ ~ATE 1213 ~LNlN SRACV ll9b CALIS~ATU~ 1976 JUL lb

-----middot soz COiRECTIGII o11s4 PigtM middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot-middotmiddotmiddot-middot-middotmiddot middotmiddotmiddotmiddot-middotmiddot----middotmiddot- --middot--middot- --middot--middotmiddotmiddotmiddotbull--middotmiddotmiddotmiddotmiddotmiddotmiddot

---r7JI 3 bullbullbullbullbull middot bull- 1735 5 3Zb 815 0237

1740 10 326 ot5 C29-J ------------------------------------r1-- 1s --32e air-middotmiddotc2middot- 1150 20 326 815 C297

1755 25 326 815 0302 -- lBOJ middotmiddot--3r-middotmiddot 32 7--olO -middoto ~ 3-)=o-----------------

C 1805 35 32T 80 0303 l 810 40 2 7 8~0 03J7_-----------------------~-------shy

--faf5 45---rz3 s1o o--io3 C 1a20 50 321 s1o o3C~

l 825 55 32 7 81 J J bull 3C~ middot-------------middot----------------------[830 60 na-middot~os--(rr-or 1835 65 328 SJ5 0302

middot l 84l 70 32 7 805 C 302________________________________ --1a-5 5 33~aoj -029~

1asc ao ]27 eos c303 1655 85 327 SJ5 C297

--r9li0--90-fzmiddot a ss o-middot211----------------------------------1905 95 3~2 aos 0292 1910 100 3 3 bull-2_ _middotg~-J~bull5_C=2~-92--~----------middot-------------------------~--nTs 1cs----3rL t105 02n 1920 110 33t ao5 c290 1925 115 331 aos c2a1

--1~Jo---uil------rr-ar--~-2-rmiddot3-------------------------------1935 125 331 ao5 o2ss 1940 130 33l 8J5 C233

--middot1945 135 330 d05 C282 1950 140 330 SJS 0281 1955 145 330 aos c201

--2000 150~2S 8JS C232 ( 2005 1ss 33o aos c200

2010 160 330 aos c216

C

--ni5 - 165 32a aJs a21~-----( 2020 110 328 ao5 c21i

2025 175 330 sos 06~6______ zoo-- ldegamiddoto middotmiddot-32s- eos tmiddot--n2 2035 185 334 79~5 C263C 2040 190 bull 33 S 790 0 bull 2b9________- ___________________

--2045 1ss middot335 785 o2s9 ( 2oso 200 33a 110 o2sa

2055 zos 33e 110 ozampo middotmiddot-- -------middot---------middotmiddot2lo)- 21c ----middot33s -middot--16s--middot-cmiddoti4 (_ 2105 215 339 7amp5 C259

2110 220 339 7os o1s1 --2115 ---22~ --middot-middot339 765 c2sa-middot

C ------ --middot- ----- --------------- ---------middot-----------~middotmiddot-bullmiddot--middotmiddotmiddot-middotmiddot----

j1 ---------------- -----middot---- 2120 236 342 76C C253

212s 235 347 7ampo o2so 2130 240 34l 760 OZSO

middot- n ---- 2135 middot - middotmiddot-z~-middotmiddot - imiddot-1-middotmiddot-middotgomiddot middotmiddot- o i4-1

-

l

1-~iI

_middotbull

1 ~ l

i

121

~

i

I~

I l I

middot1

------ --AGC-219middot2 S02 e 1~---middotmiddot -middotmiddot- - middot- --- -------GLASS C~Amiddot~~H 1916 AUG 16-17

-i C -- - - middot-middot-- --middot---- middotmiddotmiddotmiddot-------middotmiddotmiddotmiddotmiddotmiddot--middot-----middot -- - bullbullmiddot-middotmiddotmiddot---- - - -middot --- __ -------middot bull

-il _

-l ~ I

middot l

l CLCCK ELAPSED TSl qL ~U~ 502

--Me--TTfn Iff-middotccn------n1--rp-r~ -----------middot

I -~1

~ --71rcr------2cr~-z---7smiddot--c72o-4 2145 255 339 7ampJ 0247

2150 260 338 7bO 0244--middotzr5--middotzrs---n--s--middot16-0---y-2middot~----- -------

( 2200 middot 270 339 755 02J9 2205 275 J)$ 755 0247t I

A ----zz-r~1o--------yr----73-~~-u-r-r~ti ( 2215 2~5 339 7~5 C241 J 2220 2~~ 33 8 75S 0241---izz---2s~--3T7--s--o-ZTImiddot---------middot----------middot----middot-------f ( 2230 300 33~lt 755 023-

l 2235 3C5 338 75S 0235 ---z2-0---TIU--~3 -7 middot---s-u23c---------

224 S 315 339 755 C235~ f 2250 320 337 75_~5_ __o~2~3~~__-----------------~----------~---- l ~ ~ JlS--middot 33 bull 7 75 ~ bull ~

I 2300 330 33S 755 C231 2305 335 7 75 5 Czz_a__________________________________33 4 --middot--2n-~4middot07 J3 7 7575----U--ZZ ~middot 2315 345 337 755 0 224 l 2320 3 50 33 5 75 5 C22_1~------------------ ________________2325 355 33S sgt--e~z-2330 360 337- 755 0226--~ 2335 middot 365 33 s 75s c22o--____________________________

--i140 nc---3-i~1s--o--1 2345 375 33S 755 C224

~ J C

2350 3JO 334 755 0221middotf --n-sr--middot3r~~--~r---r5-c~2-i-20------------------------------

3 t 0 390 335 75 0213 1 ~~

___rs~ 3q5 334 1ss c21~6---------------------------- _______lO 400------rrz---nQ-zi l

~

C 15 405 334 755 0213 20 410 334 755 c211

---25 4 I 5---j3-7----gmiddot5---o2l____i ( 30 420 334 755 C209~

35 425 33 2 755 C214d l j I o 43b 33l 7~s 0211 45 435 332 755 C206l C _____________j50 440 332 755 C206

-middot----s-s 44-s---33-~---1-s-middot-o-zo~s----I

( 10c 450 332 755 C204 I -r ~ 105 455 B1 75 C204 l i HO 46C_ ]Lr ts C2)J bull -------------------1 Ii ( 115 465 332 75S 0197

I ~ 120 47C 33l 75i 0191 middoti

-- 12gt 33 l- Vi5 -----------------------middot7475 C20C

t_ bull

fi I

( I

middot---middot ______J--- ----- ------------------- --------middot----- ---------------

ad ----- middotmiddotmiddotmiddotmiddot----------- ________jrl -middot- llO --- 4-middot 311 0 20273 5 ~ i n 135 4F~ 330 155 C 1bull15

140 4S~ 33 1 7gt5 CIHf -----middot l4Sdeg- --- 45------ 33 l - --- middot-middot -- -- iI

755 QlHbullJ

~ 1 j 1

1 t

ibull1 l I 122lI middot1 I

1

----------

--------------

r ------ACC-219-3 s02middot soimiddot RH --middotmiddot---middot---middot--middotmiddot----- - middot--- middotmiddotmiddot---~--------------middot------ ------------

GLASS CtiA4t3ER

l~_7t AUG __17____middotr-- middot-middotmiddotmiddotmiddotmiddot-----------------middot middot---------middot----middot---middotmiddot-middot-----------middotmiddot--middot-

---------middot------------------------------------I (

---rso -middot-soo - ~3T___ 75bull middotci_94 ( 155 505 33~1 7~s c1s2

200 510 33l 75~ C~bull~l9~l_____ ---20gt 51s fJo iss--o 1a1

210 520 330 755 C192 215 525 331 755 C184

--- 220 ___ 530 middot iza 755 cc1s~o-------------- 22s 535 33~0 75o o1a1

230 540 3l 750 0137 --Z3s___545 328 755 J182-----

( 24C 550 328 750 Old3

215 555 33 o 75 o o tn-=--------------------------------- f50 -- 51o- 32a ---iTo - 1so 255 565 328 750 C179 300 570 328 750 01B0

---3tf5___575 3 l 1 1middot5o--odeg17le-------310 5SO 32 7 7iO 0176 315 5e5 3o 75o 0115

middot--320 5co 32 1 1o o 112 325 5S5 327 75Q 0173 330 6CC 328 750 0172 middot

-----3i5 6C5 327 10 011s 340 610 327 750 0171 345 615 32s 75o 0110

~5c 62c1~middot2-t-----ro--o-r6middot~------~---------------------( 355 625 321 middot 75o 0161

400 630 n a 75o ~ 165______________________________ --middot--cs 635 321 15o o i6s

( 410 640 ~27 7a 0lol

415 645 2 d 75 a O 102~---------------------------------middot-420middot-- b50-middot327 74S Cl~J ( 425 655 327 745 C158

430 660 3l8 745 C15~ middot 435 665 327 745 C15------------

( 440 67J 32 7 745 0155 445 675 32a 75o 1ss______ ----------middot--middot 4~b 680 327 745 C153

( 455 685 327 745 C153 500 610 32 7 74 5 C t S-igt_______________________---middot----middot----

--middot-50middot~---6lti5 2 1 145-middot-TT~l SIC 700 327 745 C55

____ 515 105___ 32_1 ____ 745__ c1s______________________

bullbullbullbullbullbull NO DAT4 TAKEN --- OAT4 DISCA~DED 1 QUE~TIONl~LE D4T4 --------------middot------------

---~~-----middot-----__________ -------------middotmiddot-------_-middot ---~--middot-middotmiddot -middot-

123

cl

I I

i

AGC-219-4 soi so ~H CLASS CHA~ilER 1916 AUG 17

l ACO 710 ~IN TO ELAPSED TINE

j

r 1bull

~ i_ CLCCK ELAPSED TSL qEl HU~ 502-1 Tl~= TIMEl~l~I l0EG Cl ltl (PPMI

I j (i

l

So O 326 745 C149 525 5 326 74S Cl5J

iJ 530 ________ 10~---middot-bullmiddot32bullT_____74_5___ _ Cbull11tt_____ middot---~--- ___ --middot-middotmiddot---- middot--middot----- --------- --middot- middotmiddot---- _ - -----middot--------~--------middotmiddot middoti 535 15 36 745 C148 C 540 20 326 745 C147

545 25 _32_____ 745 0143l 1 550 30 324 745 C144

~ C 555 35bull 3Z6 74s oi4l too 40 __ ~6 l45o 147_________________________________________ ---- _______ ----middot-middot ________ -----605 45 324 745 0138r l 610 50 324 745 C133

615 55 ~27 741 0139 620 60 32-4 745 0142

C 625 65 324 745 C136 d

f fi 631J 70 3gt 745 __C134 --middot-middot----------------- middot-----------------635 75 )4 745 0133 64C 80 324 740 0136l j C

-~ 645 85 324 740 0132 650 90 324 740 0131

4 C 655 c5 324 74o 0131

l 700 ____ 1JO_ 326 740 __O l31 ____ 7C5 105 324 740 0127

C 710 110 324 740 012Bii 715 middot 115 326 740 0127 ~ --middot----120---middotmiddot120 --middotnsmiddot-----nsmiddot c126 - middot--

725 125 no no 0121~ C --- 730__ 130 bull ___ 33 2 _ 72 5 QJ28_________________________________i 1 735 135 332 720 0121

l C 740 140 334 720 C125j 745_______ 145___ 31 5_____ 71 5_ 0 bull 122 ------middot--middot-middotmiddot-- ---------------------- --------- -------middot----i 750 150- 334 715 0121

C 755 155 334 715 0122 ----middot JQ 160o _______3)bull _ 7l o5 __ 0_122 L_--------middot-middot---~----middotmiddotmiddot--middot------middot-middot---------

eOS -------i65 332 720 0121 A 810 170 33I 720 0119

~ C I 815 175 33-0 720 0119 -------------------------------------------------middot--middotmiddot --------middot ------middotmiddot---1 i 820 180 3Jdeg-middoto _iz omiddot _ omiddot122 --middot--middot-middot- -middotmiddotmiddot-I C 825 185 330 720 C~ll9 ~ __ e30 1co 30______12o_____o 11 s ____________________________________________1

8)5 195 328 720 0120 I1 C 840 200 328 720 0112

845 205 32a 120 0119 i 850 210 3za 72omiddot oui

855 215 328 120 0114bull_ Cil o 220 3~Q __72_0 0bull llO __ ---------------- ~ 905 225 32~8 720 0112 middot-~ -(

~

JI middot (_

1 9lJ 230 328 721 C1)91r ( 915 235 32S 730 010ai ltO 240 327 735 C1J l J 925 245 32 1 7l5 () 10

(-1 bullbullbullbullbullbull NO DATA TAKf~4 ---- OATamp DISCAPO~G 1 OUESTin~ABLE CATA

~ l ~

t ~

I

ii l iJ

124

AGC-219-5 S02 SOC RH GLASS CHABER 976 AUG 17

AOO 710 MIN TO ELAPSD TIMeuro

CLCCt ELIIPSED TSl Rl HU~ soz TIME TIME IHlN) (DEG Cl lampI IP~l

930 250 3~$ 740 0Cl3 ( 935 255 32 7 740 Q)4

940 260 bull 327 110 O 04 945 265 32 8 741) o leamp

( 950 270 32 7 735 C108 955 275 na -middot 730 o 105

1000 280 32 7 730 0106

~-_CAT AbullDISCAROEO -middot- _1 QUSTOIIIABLE OATA

(

(

C

(

--middot-middot----middot ----middot--middot--middot------ -------(

--~-----------middot-----------------middot-middot------------ ---middotmiddot-------middotmiddot------middotmiddot----bull-bull------ -------------_______ ________ ----

-middot-middot - ___ ______________________________---------middot---middot------------

-- -middotmiddotmiddotmiddotmiddot---middot-----------middot---middot---middot--middot--middot-middot--------middot-middot ------middot middot-middot------middot ---- --middot

125

( I

rmiddot

l i

j

j J

j )

j j AGC-2~0-1 S02-03 PROPENE middot GLASS CnA18ER

1lt176 ~UG 19

bullj OA~K

S02 AND FC-12 INJfCTEO AT 1115 OZONE ADDED AT 1149 PRCPENE AT 1155 BRADY 1296 CALIBRATIJN lS7b JULY 16

CLCCK EtiPSED ~ZCfrac34E TSl ~~L HU~ S~2 P~CPfN lF lMEl~Nl (PPlt) lEG C) 11) (PPI-IJ (igtiI)

1200 o o~4 327 41 0 0363 1014 120 5 5 06)6 328 410 0344 middot 1211 11 0557 12s 410 middot~ $f r~middot 3t1216 16 0511 328 10 0318 0 BCl 1221 21 0 4 74 32 7 4 I 0 0304 0cent3-ii

1226 21 C4-+0 32 7 410 02l7 (q~cent-0(I

12 30 30 o 40 328 4ltJ 0291 0 (83 135 35 003 32 7 410 0283 ~4 1240 40 c~11 3 8 410 0 bull 776 1)lcent1 ltlaquo 1245 45 C bull 3i2 328 41C 0211 0~9J 1250 so o 335 328 410 026( deg6 12 15 55 0 318 330 405 0206 bullii t~ 1300 oO D3J3 no 405 0260 0522

C l 3C 5 65 l2 56 32S 40S 0258 -c11ie 1310 7J 0 24 32s 405 0254 itbullit ---------------- middot-middot-middotmiddot- ------- 1315 75 C 251 na 405 czso bull1320 sc o 29 32 d 405 024S bulllilCe 132 5 65 0231 32a 405 0249 -------middotmiddotmiddotmiddot-middotmiddotmiddotmiddot-133l 91 C2~) 328 400 0247 043 1336 t C 22 32 8 400 0244 ~ tP+l l 01 o 213 3 S 40 bull0 0 22 ________ __________ bull -middot middotmiddotmiddotmiddotmiddot-middot-middot middot--middotmiddot-middotmiddotmiddot middot- -middotmiddotmiddot middotmiddot- -----middot--middot---middot1316 l C6 ozos 328 400 0238 JOcentht

C 1350 110 on0 328 400 0239 bullc 1355 115 0191 328 400 0239 gt~ middotmiddotmiddotmiddotmiddot- ___ ________ __ middotmiddot---middot- -middotmiddotmiddotmiddot-middot ___ ----- ------ middot--1400 120 o ta6 33 omiddot- middotmiddot 395 o23i o 3 76

( 1405 125 C178 32amp 39S 0236 1410 130 D I 76___ 32bull 8 39 bull 5 02~---U bullbull --bullbullbull---bull -bull-bullbullbullbullbulln___ bull -bullbullbullbullbull bullbull bull---bull---bull-bull bull-bull--bullbull -bull-i415 135 0 lb6 326 395 0231 tlllllc bullitbull 140 140 o l SI 32 8 395 0232 cu~ Ji 142 5 145 0 159 32 bull 8 395 0230 16CC- --- ---middot-middot -middotmiddot __ --1430 150 I 151 32 S 3c5 0230 0336

( 1435 155 0147 33C 39 5 C226 (laquo 1440 160 C bull142 328 395 0225 gtccent( _____ middot-bullmiddot--middot ___ middotmiddot-middot--middot-middotmiddotmiddot-middot--- middotmiddotmiddotmiddot---middot-1445 165 J 1 39 331) 395 0225 ~ ( 14Sl 171 0 134 328 3-i5 C223 1456 1 76 012 middot 32 8 3) 5 0223 ~b 1501 181 0 0 I 21 328 3lt bull) 0222 0311 1506 l 56 o 122 32a 39) 0225 ctcr 1510 l SO c122 330 390 0221 bull~ _middot middotmiddot-151~ lltS Cld 32B 390 0221 I~ 150 2 co 0115 3ZR 390 0220 tTt 1525 2 cs C I lO 328 3SO 0220 bull15~0 210 C 11] 330 390 0221 0289

( 1535 21s C l middot~) ~20 390 0216 +rrmiddot 1540 220 tt~ 12Y 390 016 XlC-$1(1

1545 zc~ (lt(I~ 328 3()0 015 Cr4Ccent

1550 23-Cmiddot bull fl 328 39C o 715 tCit q

15~5 235 330 39 0 0215 lCi9bullbull 1(cot

160() 4C ~l)l-fl 130 390 o 13 0274 161)5 2 4 ~- _ bull C1~ ~ 328 390 0211 (rj

t1ilI ~~G DA Tf Ttt Li ---- DAT A Ol~rA~fJEO 7 OU Sr Pit tll I OIITt

126

r

middot1

AGC-220-2 $02-03 PROPENE GLASS CHAMBER 1976 AUG 19

t (

CLCCK ELAPSED ozmiddot-E TSl REL rlUI S02 PPCP EtliE TIME TME I Mll l I PPI J (DEG Cl 11 I DP-1 l I PPFgtI

(

1611 251 0085 3o 3t5 o 21-4 ~~lJltf ( 1616 256 C090 328 385 0211 middotmiddotmiddot 1621 261 0085 33o 3S5 c 211 (ercent

1626 261 QCd3 330 33 5 C208 = ( 1630 270 ocn 33o 5 0209 0254 1635 275 OCdl 330 35 0208 ~ 1640 280 0078 33 O 335 D209 bull~tbullitt

( 1645 285 0011 33l 3amp 5 0205 bullcentt41A

1650 290 0076 330 3B5 0 2J5 bulltcbull 1655 2cs 0076 330 385 0206 middot~

C 1700 300 (1071 33a o5 C205 024S

NO DATA TAKEN ---- DATA DSCARDO QUEST ON ABLE CATA ( middot-- -----middot-middot-middotbull ----- bull - middot-- -

(_

C

C

(

(

(

(

r 127 I

AGC--1 502-03 GLAaS (HAliH 1976 IIUC 20

DAIK BRADY 1296 C~LIBRAT[O~ 1976 JULY 16 ril NE WAS INJECTED AT 0933

CUXK fl ~rsrn Ol(lr lS l il El HUbullI smiddot 2 l I MF TJbullE ( NI ( r1) lCEG C) ()l ( PP I

I

845 o oc 32 7 440 0379 850 5 oo 330 435 C360 855 10 oo 330 435 C377 900 15 oc 331 435 C376 905 20 oo 33o 435 c J 76 110 25 oo 33Q 43 5 C370 915 30 oo J3l 430 0370 920 35 oc 330 430 0369 925 40 oo 33l 430 03amp9 930 4) oo 330 430 036 935 5C o~gtt2 324 425 0360 940 55 0576 330 425 035$ 946 61 0572 330 42 5 03~7 951 66 o 5 7 330 425 03~S 956 71 0569 33p 425 0352

1000 75 0567 330 425 o 3$2 1005 80 o 567- 330 425 0349 1010 e5middot 0562 30 425 C349 1015 ltO Cmiddot 551 330 420 C 34 7 1020 95 0557 330 42 0 a 34 7 1025 1 co 0554 33 l 420 0344 1030 105 o 552 330 420 c 34 1035 110 0552 33Q 42C o 342 1040 115 middot 550 330 420 o 34) 1045 120 0545 330 420 0342 1050 125 o 542 33l 420 middotO 340 1055 130 o 542 33 I 415 o 30 1100 135 o 540 331 4 l 5 C340 1106 141 0537 330 41~5 0336 1111 146 0537 33I 415 0335 1116 151 0532 330 415 0333 1120 155 o 5 32 33l il 5 035 1125 160 0530 33l 415 o 333 1130 165 C530 331 410 0332 1135 170 0528 330 410 033 1140 175 0528 330 41 () 0330 1145 1eo 0523 330 410 0 bull 325II

r 1150 185 0520 330 410 o 326

1155 190 05) 330 410 0325 1200 195 0515 130 41 0 0321 120~ 200 c~1e 311 4()5 034 1210 205 o13 330 45 O 32 l

ft 1215 2 LO I) 511 330 405 0311 1220 21 s f~ ec gtlC 33 I 405 c20~

i_ 1226 221 0503 330 405 0319 1231 226 osoa 331 40~ 0 bull 319

~ 1l J ii

1236 23 05ll l30 405 0119 1240 235 OiOl 330 40S 0318 1215 240 051)1 l3 o 4GO o~1s

f Ij

1250 24 04H1 BO 400 0 314~ I

middotbullbullyen ll() r11u TKEI DATA or ~c11ourc iIJl l)NeLE DATA f

f

~-

~ 1

f -~ 1l 1

~t 1 128 l

IJ 1

~-

1 1

bull

t-~ I

lIT 1 l

middot(I

11

AGC-221~2 S02-03 GLASS CHlMSER 1976 AUG 20

t J

middot

t

rr

a ~

bullmiddot ~

(

--1255 --middot- 250middot 049smiddotmiddotmiddotmiddotmiddot- 330 40omiddot---middotomiddot~jfi middot-middotmiddot-middotmiddot--------middot----middotmiddotmiddot-middot---~middot-middot--middotmiddot- middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

i l3b0 255 0493 331 40C 0313 ~ 1 1305 26J q 493 33 o 40 O C_309_____ middotmiddotmiddotmiddot--middot-middotmiddot-middotmiddotmiddotmiddot--middotmiddotmiddotmiddot------middotmiddot--middot -middotbull-middotmiddot-middotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot middotmiddotmiddot--middot-middot-

1310 265 o411 n 39s o3oa middot C 1315 270 0491 332 395 C308

1320 275 0489 331 39S C310 - --bullmiddot-middotmiddot- middotmiddot--bull-middotmiddot middotmiddotmiddot-middot-middotmiddot- _ middot--- -middotmiddotmiddot bull-middot

a tlmiddot

)

13zs-middotmiddotmiddotmiddot2ao~middotmiddotmiddot-omiddot4a9 33middoti--middotmiddotmiddot-ji~cmiddot middotmiddot 0309 C 1330 285 04114 332 39C 0307

1335 290 0484 332 39C 0308----middot13o middotmiddot 29s middotmiddotmiddotmiddotmiddot0middot4s1middotmiddot middot ir~middotxmiddotmiddot -middot59 c 0~middot3ci4 --middot bull--middot------ - middot--middot--------middotmiddot-middotbullmiddotmiddotbullmiddotmiddot- ---middotmiddotmiddotmiddot-----middotmiddotmiddot -C 1346 301- 0481 332 385 0303

1351 306 0479 33l 39C 0~304

H c

1356 middotmiddotmiddot311 middotmiddotmiddotmiddotmiddot-0middot~middot419middotmiddot middotbull middotmiddot33~1 39 omiddot o 303 1400 315 o476 33t 390 o302 14C5 320 C476 33l 390 0299

-1410middotmiddot -- 35 middoto474 33l 390 0298 1415 330 Q474 33l 385 0298 1420 335 0471 33l 385 o296

a i425 middotbullmiddot-340- 0~469middotmiddotmiddot 33 385 0294

1430 345 0457 332 385 0296 i

f J

ffi C ~

1[ C 1middot11

lf~middot i$~ C

(

(

(

(

(

129

i I i

-

j i iI

l j

l i i 1

ampGC-222-1 SJ2-N X-SURR-U GCASS CHAll~fi 1976 AUG H

O~RK CO FACTOR lq122 eR~OV 129~ 21 ~l ~ox INJECTED AT 0920 HJURS AT T=o ~c~-METH~~E ~ bull 1740 PSC MTHAN~ bull 32CO PPB

CLJClo ELAPSED 0ONE CJ TSl ctEL HUll SmiddotZ ---middotmiddotmiddotun TlM~(M1-ifmiddotmiddot-PPM)middot--(p y ID~G Cl - u IPP~I

q4~- middot-middotmiddot-middotomiddot oo 53 n2 465 o--j~ middot-------middot--middotmiddot-middot---------950 5 oo 56j 33l 465 034~ 955 10 0 002 5 65 n l 46 5 0344

1000 15 oo 561 HO 465 0344 ~ 1005 20 oo 560 ]30 465 0340

1010 25 bullbullmiddotbull bullbullbullbullbullbull bullbull~middotbullmiddot bullbullbullmiddotmiddot middot~middot~bullmiddot------bullri1s 30 oo middot 563 33o 465 o1Ja 1020 35 oo 564 330 465 0)38 1025 40 oo 5ss 330 465 0337 middot----103) 45 o bull i 556 330 4amp5 o333 1035 so oo 5-~6 130 465 0335 1040 55 00 556 330 460 0332______ -----middot---middotmiddotmiddot- --------------middot i 1045 60 00 551 330 4bO 0332 1050 65 OJ 552 330 4bO 0333 1055 70 oo 54il 330 460 0329_---------------------1100 75 co 548 330 455 0329 1105 so oo 548 330 455 Q327 1110 85 00 547 33l 455 03_6_______ middot-----middot--middot---- ------middotmiddotmiddot-middot 1115 90 OO 550 33l 455 Ollb 1120 S5 00 548 33l 455 0325 1125 lCO OO 55 33l 455 0324~------------------------(130 ____ 105-middot-middotmiddoto002__ 542-middot 330 -- 45o 0322 1135 110 oo 540 330 450 0319 1140 115 0002 542 330 450 0320---1145 middot -middot--120 0002 5ia 33o___45o omiddot319____________ middot------bullmiddot--middot 1150 125 oo 540 330 middot 450 0318 1151 0 o 541 330 45 0 03_1_8_________________________131

1200 135 OC 532 330 45C 0314 1205 140 0010 539 330 450 0311 1210 145 oo 535 330 450 0314 1215 15bull) oo 534 328 450 0313 1220 155 00 533 330 445 0310 122s 100 oo 534 33o 445 0313 1230 165bull 00 52b 330 445- 0313 1235 170 oo 531 330 445 0310

1240 175 00 53()___ 332 44C 0 0_3C________________________middot-middotmiddot-middotmiddotmiddotmiddot--middotmiddotmiddot-middotmiddotmiddotmiddotbullmiddot-middot--middot----- -middotmiddotmiddotmiddot--1245 180 00 526 33 l 440 0303 1250 1s5 oo sza 332 44c oJn 1255 190middot oo 529 332 435 0304~--~- -----------middotmiddotmiddotmiddot-----middot-----------1300 195 oo sn n2 435 aJes 1305 200 OO 52b ]32 435 03l4 1310 205 oo 524 332 435 0304 1315 210 oc-62 s24___ -~3i -middot--middot43s o302middotmiddot--middot------ middot- middot ----------------~-- -1370 215 00 523 332 435 0300 1325 220 oo 5 lil 332 43c ono 1330 225middot middot-oo middotmiddotmiddot-middot--s -19middot --middot~j~z--middot3if-middot 0300 ----middot--middotmiddot----middotmiddotmiddotmiddotmiddot-middot middot-- -middot--middotmiddot -----middot

r BH 230 oo 519 33l 43 G 03iO 1341 236 oon 5 IIgt 33 1 -3 0 in1

1345 240 oo 5 15 H l 430 J297 1350 245 oo 5 13 3l2 43C 01~

bullbullbullbullbullbull NO nTA TAKE~ ---- 0lTA 01 SCAPgtFl

130

AGC-222 2 S02-NOlt-SbulljRR-U CLASS CHAMBER 1976 AUG __ 24

0

----------middotmiddot-----

-- 1355 ____ 250middot-middotoo s13 332 41c 02 middot -----middotmiddotmiddot-------------( 1400 255 oo 5lZ 332 43C 0294

___1405__ 260 oo 5 ll __ H2__ 3t3C 0_293________ 1410 265 oo 512 330 43= 0291

1415 270 00 50ltgt 330 430 02ll 120 215 co 501 32s 43o o2bulln ___________________ ---- -------middot -middot--1425 280 00 503 328 43C 0211

C 430 285 oo 578 328 425 0291 143 s 290 o o s 04 32 s 42 5 o z_a_________________________--_

--To---i9middots oo 504--fj-middoto- 1t25 middoto-zag C l4t5 300 CO 502 330 425 0283

1450 305 oo 5oz 33o 425 ozss___________________________ lt55 310 00 497 330 420 0283

middot 1500 315 OO 499 330 _42C 0285 1505 320 00 496 330 42C 0285----------------

--Tsio 325 o-o---soo 33o 4z-o--ozas 1515 330 00 501 330 42C 0285 1520 335 0002 493 33o 415 o2a______

----1526___341 oomiddot---4~-33l 415 0281 1530 345 oo 493 334 415 0280

__J2~1__3j____~g_ 492 332 415 Q__1_80_________________________ 1540 355 0002 491 33t 415 0273 1545 360 0002 492 330 415 0280 1550 365 G0 4 93 32 8 41 5 0276--------------------------1555 370 oo 489 328 415 0276

C 1600 375 00 489 328 415 0275 1605 380 o o 4 88 33 o 41 s o__2_1-=1--------------------------c-------H io 3a~-middot002 490--ffa 410 f21-

( 1615 390 0002 483 330 410 0212 1620 3c5 oo 487 330 410 0211_______________ 1625 400 co 481 330 410 0274

C 1630 405 0002 481 330 410 0270 1635 410 0~002 487 330 410 027-=)---------------------------1640 415 oo 480 330 405 0270

( 1645 420 0002 4i5 330 4C5 0269 1650 425 0002 481 330 405 0210 ---- -----middot-- ----middotmiddot-middotmiddotmiddot -------------------1655 430 00 463 330 405 026b 1700 435- oo 484 330 405 0265

--~70115 ______ 440 _____ oo 482____330 405 _026_6_____ 446 oo 482 331 405 0266

1715 450 oo 4 77 332 40c o2u 1720 455 oo 4 74 332 40C 02E4 1125 460middot--middotmiddotoo middot 479 n2 40c 0265

1bull 1730 465 00 479 332 40C 02(5 1735 470 00 480 33l 400 02t4_____

--f140 475 co 4 75 n2 4oc 020

middotmiddot-middotmiddotmiddotmiddotmiddot-middotmiddotmiddotmiddot-middotmiddot ----middot-------middotmiddot---middot-------------middotmiddot---------middot-middot--middot--middotmiddot---middot------ --middot----middotmiddot

----------------C

bullbullbullbullbullbull NO OITA TAKE~ _1 QU~STlnNIHL~_CATA

r

131

0 AGC-Zll-3 smiddotczNOX-SUR~u CLASS CHAISER 1976_ AUG 24 -middot-middot middotmiddotmiddot-middot -middot

_CLOCI( _ELASEC ___ OZCNE_ CO ______T_Sl REL HU _ SC2 TlHE TIMEl~INJ IPPI (PPMI (DEG Cl (II IPPMI

-- 1805 -- 500 -- oo --2--331 395 02cl ( 1s10 so oo 472 332 395 ozs6

1815 middot 510 oo 4 70 339 395 0259___________________~----1820- 515 omiddotc middot 69 34 1 39 5 0-~lsi

( 1825 520 oo 469 34l 3gt5 0256 ___1830______ 525i __oo___46S__ 34t t9_5___ o2ss _________________________

1835 530 oo 467 34l 395 0256 ( 1840 535 oo 466 342 395 0254

1845 540 oo 469 342 3S5 0254_________________________ --irngt----5s oo 461 342 iis_____o--fsi

( 1856 551 oo 466 343 395 0255 1900 555 oc 4-oo 341 395 o254~---------1905 560 oo 470 34l 395 0254 1910 565 oo 465 341 395 0252 l 915 570 0 0 4 51 34 bull 1 39bull=5__0ebullc2-5-2__________________________ 1920 575 oo 464 341 395 0249 1925 580 oo 458 34 l 390 0 249

1930 585 oo 45a 341 39o o241____~------------~-------1935 590 oo 465 341 395 0249 1940 595bull middot oo 460 339 390 0~245 1945 600 oo 4ss 339 390 o~2~45__________________________

--C95(---6C5~--o~o 458 34l 39~0middotmiddot-0247 1955 610 oo 461 338 390 0244 2000 615 oo 460 338 390 0-2~4~5_____________________-----

2005 620 00 456 339 39C 0244 ( 2010 625 oo 454 339 390 0245

201 s 630 o 002 4 59 33 9 39 c__o-_=2_4J--------------------------2020 635 00 456 339 39C C245

( 2025 640 0002 453 339 390 0241 2030 645 middot oo 455 339 39o 0241 2015______ 650 ----middoto~--middotmiddot--453 - 33 9middot-middotmiddot 39omiddot o239=------------

C 2041 656 0002 459 339 390 0239 2045 660 0002 459 336 3B5 0238

--2050 - - - 665 -0002 45z -i3~B--3as middot 0231middot-----------( 2055 670 oo 451 339 3ii5 0237

2100 675 oo 451 339 385 0237--2105 680 --oo 44smiddot-----33-9---middot3s-smiddot--o237-- -------middotmiddot-middot--------- - -----

C 2110 685 oo 453 339 365 023 2115 6~o co 44a 339 3as o23~6___ 2120 695 oo 44) 33C 365 0236 ----middot----middotmiddot----

( 2125 700 oo 455 339 335 0232 2130 7os _____oo ______449 ______33 bull ____ 3-a 5 ____ 02 J4_____________________ middot------middotmiddot-----

bullbullbullbullbullbull NO DATA TA~EN ---- DATA DISCARDED 1 0UcSTIONASLE DATA

--------middot-middotmiddot---- middot--middot--middot---------middotmiddotmiddot-middotmiddotmiddot middot-middotmiddotmiddot------ middotmiddot- _________ middot------

132

l [

f

l i

t ~ C- 2 2 -middot 2 - bullj tmiddot- $ VXA- _ Gl~SS C 1~gt ti 1976 H Z -h

lC~ 710 ~IN TO ELAPSfC TIM~

CtCCk tlh~~~e middot_lC1Ji ~l T P f ll ~ Pi l p bull n I ) ( E Cl

middot13s middotc oo middotmiddot s i9 middot 21~0 JQ bull 51 3 C 2145 Le 1c bull 1~- J_a 2 l ~C cc 4 f 21~5 oo ~ ~ ~I~

22middot)0 2 CG 3 middotn0imiddot- middot3middot1 j ~~3 -cc

35 ~c 3 ~- 9 i) C t 3 l~

bc ~ bull ll middot3 - ( 222c 5 l ( c bull 4 2230 55 bullbullbull 1 ~ ~1 2235 middotc middotc ~ QC ~ ~ 1 I 224G C 5 C itbull 3 ~ 7 2~ 5 70 oc ~ 3 I 3L 8

2~5 1smiddotmiddotmiddot oc middotbullbull-i -~ 7 215 FC oc 230C CS 33 S 205 sc 3i 5 231C ~5 CO 440 ~3~4 2315 lCQ 0c____ l)~-__ i~middotzc------imiddotsmiddot~ - u c ibull ~s 2325 l l O oc ~ 4C

2BC ~-9 _____ 41 _ 235 u 3(61

2340 liS bull C C t 34 235 19 Cc middotmiddot------~middot])2350 1 5 bull 0 C bull 3 3 1

2355 l-8bull cc i3lt 33 1 0 l~ ov 43 )31

--middot-s middot-- iSv oomiddot ~31 331 ll 15 6 Oc ~-27 3i~C

C _)-(1 20 -middot iljmiddot oc I 2 2 d 25 17C J i2 32 B 30 _J 1 5 ___9 c_ ~7 G35middot-- 24 3 8 4C 125 oc bull 2i 3225 lCbull __QC 4 2~ - bull n 50 15 middot 3l55 2c i 2 5

l co_ _2 ~ ~21 10 ~ 21c oc bull z I lt1 11 J 21 r bull 4 bull ~middot 6 u______ -middotmiddot_ac o~ _____ it bull ( 120 2~ o~ ~2

15 130 j

middot I 7 tbull 1 J t 1

- --- - 1 1 r -

~-1 1~- SC_ l P)~)

c ~ ~7middot

~3T middotis4middotmiddotmiddot

3 bull 3 ~ ~

3 ~$ )

)

J8

3 J middot

3-3shyJS~ -

3G 3BJ i $

Id i c 3 j

3 3 5

3SC 3 middot-~c bull C _ bull C 3 (~ 3j imiddotbull 3

~ r middot i c

0220 1) 2 H ) bull ( 7

c~J ~ _ 7 G -- 0 u 2 2 gt J22o J2D imiddot

G bull (2 ) 2 ~2 c21 -21 bull 2 l cn Cl2t C 22l middot~ 2 3 7 2 G L t(t ( 2 l middot1 C1219 G~O 16 ) bull 216 0 216 cdmiddot i) bull 15 ~214 ) bull2 t 7 C ll 3 ) bull 13 bull 2l 1 )2 h

( 11 G bull 2 01

133

T

AGC-2l-S SC2-1x~~ltR~-LJ GUSS CHMmiddotWE

J l176 AJG l~ l

ACU 71C MIN 10 ELArsro Il~E

CLrCK EL~PStC CZ~NE cc 1 S l f L i Lbull S1 2 THit rmiddoti ME ( lbulll jmiddotJ ( po11 middot1 ppl(J iCtf~ (~I lPr-q

1 s middot-2smiddotc- 00 middot 4-~ middot 3middot C2CJ 150 255 U C 1-t~l ~L0 155 261 cc 421 32 3 - 200 26~ 4 b 3 _ s --~ l 205CbullC

20 5 2 7 C li bull ~ 4 bull t 2 3 ~~ i C i ~J bull C ~10 ~J_ ObullQ middotmiddot-bull~ rt ) 2bull~2 Jis-middotmiddot 2euro0 0Lo 1ll ~~~bull J 2(

220 2~middot oo 119 j 02c 225 2S0 0 bull1 Ui 3 3 bull 2C 2H i9smiddot cbullmiddotmiddot 4middot11 - l c) 235 JC C~ 46 ]2~~ ~- ( bull r G ~

2o 305 cc 1 _2l 3 020 middotmiddot 2smiddot------ middot 31c oo middot4middot2t 12 bull i 2~-

250 315 CO 416 3l5 C2Qj 255 32J o 4ll ____1~ 3S 5 lbull 2fJ2 3JO 35 OC 407 I i L bull 02 3C5 330 CC 414 3l~3 3S J l bull 2Cmiddot 310 33 cc 4 1J 31i 3 I~ 5 CtCl 31s middot30 cmiddotc middot--middotmiddotmiddot13 313 3S C Si) 20 345 o~ 414 31J 3middot ~) C2C) 325 350 oc 4Js 313 3 0196

330 3jJ -middotcc 410 31i 3( 5 J 14 7 335 360 uC 410 3l2 3 s gt i 1 S6 341 366 00 4C4 312 3 s_ C l_Y 7 3~5 370 GC 4d 3l2 3 - bull s ) 19 I 350 375 oo -t)8 312 S bull 3 L 1 e 355 38C OJ 401 312 _y~ C I l~ 400 3i~ oc middot 4~2 312 3S5 C195 ADS 390 OC 4J 311 ClSi

______41 c ______ ys______ n ~----- ____4c4 _______J_1 3 middots 5 01lt7 415 -tCO CQ 117 311 35 0 i 2 420 4C5 OC 4C 311 ymiddot J] 4 2 5 __________ 4 lO 0 ~ 4 ~_ -~ l I C I~ 43C 415 0bullJ 3S9 31 l 3 bull 5 (ts) 435 420 CC 47 JiI 3 middot - bull ls l

____40 4 __c_ __________ __2___ 31bull i - bull 8~ 445 430 )C 3S3 311 3 middot v1c1middot1 450 435 O~ 3middot3 31 l 3 middotbull n 1 c)

_4_)5 _____ 44~ 0 bull ~ It~_-) bull J 3 middot ~ bull 1 d 500 445 oo 4tl 30c 3 middot C lk ~cs 45G o ~ ~o zc~ 3~ 5 u te 510 1 j j 1 8 middot 55 460 0( 3 C middot ] ) 1_ s2O 405 0c 3 middot I 30 C j gt C l 8

52igt_____~1l __ ) c__________ i bull ~J___j middotmiddot-middotmiddotmiddot- -~ Gbull d J l 7 530 475 Ot 4l 3Ci bull S

4eo J

_middot 3-bull I 3 -d jJ -~ V I H

134

I J

A~C-2l2-6 5ji-NOK~S0KR-U GLASS Cf_cofJ 1976 AUG 25

ADO 710 MIN TO ELAPSED TIME

CLCCK EL1~SED middotrbull C i TS l t rl _ ~ t D c ~ ) (fI)TlH THfPbullIH I )G Cl l-l

55 500 oo 3C 7 I) 5 ) bull ~4 600 507i 3 93 3middot) I 3 middot) ~ J bullbull middot)2

605 51() ) bull 9~ 30 610 15 3 1S 3J 7 r~ ) ~ i 615 520 00 396 30 7 n5 -) bull l 6 620 ~) 5 ~ 0 bull]7 3( 7 -) ~

625 53C t- ~ 0 5gt~2 3iJ 7 ~ gt 630 5~5 oc 69 3~5 )13030 65 5) )0 3 - 3) 7 _ i ~ bull ~l

640 middoto os2-middot - 3 Ji o 7 j ~S -Jmiddot1middot7d 5 1t5 i 645 5~0 oo 391 305 ~ J131middot 650 555 oo ~dd 3G5

655 middotmiddotillf Cmiddot o 3 9J io ~ 7JO scs co 3 sc 3C 705 570 o ---middot-middotmiddotmiddot-nrmiddot middot - -- cmiddot o middot 715 seo Ii GJ2 middot1 middot 5 J l 76

57c 0 s 720 555 C 31 5 ol v J l 73

-- -725 sso o u ~ rmiddot-middot-- 3bull) 5 ~ ( -middot----y~rrr----- middot middotmiddot 730 gtlt3 o Cl2 lt 3C 39G J-l 71

735 6C-O oJn 382 3C5 ~--J bullJ i17o 746 - -ij~ c-002 3 37 3middott1 3middotmiddot~middotT- )itb

( 745 ~10 Omiddot) ll 30~ 3 ~ J Jl3 7$0 615 CJ 3 H l 3J I ------- -75 ~ - middot-- 62 --- o Jo2 ------middot Jaf -il (

( 800 625 Ci J 3 8 l 3 l 3 3 C ]72 805 6~~ G 3 3-t Higt 3 7 C J l 72 810 i 3 5 i iJ ] 1 3middot ) middotmiddotmiddotmiddot middotmiddot1 fj-middotmiddot --

( P15 610 ~ 3) J) - bull 73 20 6t _ c2 32 J bull 1 7 ~2 s 6) 0 bullbull ) i l l 3d l 3 ~I bullO ~ J (1 i

( 830 65 oo 3 l~6 3t3 3- 5 ~j -i1 i)

835 UC vo 3 77 3) 3 i bull 1 7) middota4Cl- bl C bull ) 3 31) 32 middot1- ) s -~ 1C)

a4 s 6n 76 middot 3 i) 3middot ) )ll ao o7 (i0 j gri 32 7 34 ~ a19

middotmiddotmiddotas1 middot---middot middoti8i omiddotmiddoto j o middotmiddotmiddot32ibull ~ t-~--cmiddot middotmiddot i ~middotmiddot 900 6 0 ) 7) ~ 2 l ~ 1- 7 ltJS 6Jj C 0 3 __bull -~ 32 bull 1 ~

-910 ftJ 00 L ~-~bulli

(

f 135

I

r

j I

AGC-222-l S(12-N]~1-St 11~-U GLASS (bull-Ufis 197( Au 25

ADO 710 HIN TO ELAPSEC TIME

CLOC~ fLlr5~J oz~-J~ CJ _TSl P~l 1U-~ _5J2 TIMf TPHlNJ (iPMJ (fgtbull-1 [IJEG Cl [) crPl

915 92~middot

7~ Jmiddot iCS

0 0 OOJ2

- bull lbull) 377

32 i 32

3 C~ --loz- iimiddot1-V O c 169

_925 7 ) 0 o 3 79 37 0 l c- 93) 715 00 3 79 32 7 0 l 6 935 7~C C0 n 32 7 0 l 64 940

i45 75 )

0) 0 0

~ 7_7 3 79

32 bull 8 3 3

middot3 ~ 33

0 Jc~ C lomiddotbull

75 oo 3 7l 32 raquo 330 O l l2 955 7~middotJ GO 3 79 32 a 33 0 0 16-t

middot1000 71 omiddoto bull middot1 33~ 3L 0 o 162 lmiddotl05 7middotC- oo 3 7S 3 bull3 33D O l 62 1010 1015

75 f-Jmiddot

uo 0 o

3 7o 3 7z

3) ~ 3) J

33 c 325

0 l 61 O l cD

1020 7c5 0(1 3 73 33 ltI 325 OHl 1025

-middot-1030 --770 7i5

oomiddotcomiddot

375 3middot middot1a

~-~- i 33 e

325 v _1593_i_-middot 0 bull I Sc 1035 co CG02 3 7) 3] ~ 32 ~ bull l 5j 1041 1045

7 7 0middot~

OD ( o 37S middot3middot~ f

13~ 33 7

3l~middot-z~middot ~- middotmiddotmiddot

Vlt~l c middot 1middot~~8

1050 7lt5 0 bull) 3 71gt 33 7 325 v158 1055 Smiddotjbull oo 3 75 336 3 2 5_ gt-t~-- _

~UES1l~NA8LE DAlA

136

l

Jbull j

---ACC-2~2-emiddotmiddot~c2-NC~-sugttl-1J _______________ --- -middot GLASS CHA-l~EQ 1middot91J liJC 25

-middott tc1-1rsmiddot O- 1100 -lH1STY 1Jf middotmiddot----- bullmiddot-middot -- --middotmiddotmiddotmiddot-- middotmiddotmiddotmiddot------middot-middot-middotmiddot middot- ---- -middotmiddotmiddot -- - bull middot- middot-------middot--middot- -middot co FACTuR l91Z e~ACY 1~1 TECO 14D ~IS ON TH CHl~OE~ FRO~ 11J5 TO 1111 1200 TO l2J5 1~00 TO 1305 1400

----middotmiddotmiddotro-1405middot lgtCJ TC 15J5 11 l01610 ANl lb55 TO 11Cv middotbullbullmiddot-bullmiddotmiddotmiddot- middot------middotmiddotmiddot TECO 140 s~raquoPLlG UTE 112a ILMIN PAN NOT ~EiSURED ~02 AND N~a VALUES NDT C0ARECTEO

---ATT=l5 MP NOS--ffVIE i-C =middotmiddot1130middot PP3C middotmiddot ~=TH~~E middotmiddot-middot29oc middotpamiddotmiddot ------ middot- ---middot-middotmiddotmiddot-middotmiddotmiddotmiddot---middot---middot-middotmiddotmiddotmiddotmiddotmiddot

CLQCK EUSED OZC~ J iJ2-P~N bull1-P~r ca TSl ~El llH Sl2 -T1~-e--1Mtnbull1Nrmiddotmiddotmiddotmiddotr11-r- - HbullJfr-middot middotmiddotr~- --- nirr-TPgt)n- middottoEG middotmiddotci--- ni middotmiddot-middotmiddot middot 1gtsi-1-middot--------------- ------- middotmiddotmiddot----

--middot-ruo c---rv----~i ~if----~----~-i---1middot-n-~1 o 32 lmiddot-middot -rrs 1105 5 OC27 ebullbullbullbull bullbullbullbullbull~ bullbullbullbull~bull l74 3Ja ~iO 0154 1110 10 oc54 a~3a csoa csJc 37bull 3~1 31s o153

---n 15 15middotmiddot--r-T~--t~bullJgtT--az-m------Ti-~-- bull 32 o middotmiddotoT~---------------l 12J 20 ~095 ~bullbullbull ~bullbullbullbullbull bullbullbullbull 373 34l 325 0149 1125 25 o11~ bullbullbullbull bull-bullbullbull H-u- 373 34l 35 014S middot

---rr3middot--middot-middot-middotmiddot3u---rzz-middotnH-----ymiddoti--nmiddotmiddot~---middot-rn-----r--n-smiddot-or~-----( 113s 35 0132 bullbullbullbullbullbull bullbullbullbullbullbull bull~bullbullbullbull 37ti 34l 325 014S

1140 40 0142 bullbullbull--bullbull bullbullbullbullbullbull bullbullubull 373 34l 325 0147-middot----x-Ps- middot----middots--middot -middot middotmiddotJI-z---middot-~i- middot --middoteimiddotn -- flyen----middot- 3-middot--J z----7)___ middotefv-2 ( 11so middotsc 0164 bullbullbullbullbullbull bullbullbullbull~bull bullbullbullbullbullbull J73 343 320 0143

1155 55 0176 bullmiddot 37 334 31-5 014312CO 5u---n1-middotomiddot1gt~-n-nmiddotmiddotmiddotbull--middot_bullmiddot~amiddot-~--nmiddot~--5- --v-1~4-----1205 65 0138 0~21 44~ 0468 371 33 31S 0140 1210 70 0198 middotmiddotmiddot~middotmiddot middot~bull 373 3)5 31J 014012(5 15 20d omiddotn n ~-n- 36l 3~ I 31V--lr~~--------------1220 80 0211 middotmiddotbullbulltbull middotmiddot~middotmiddotmiddot 372 337 310 0138 1226 86 0225 bullbull~bullbullbull bullbullbullbullbull~ bullbullbullbullbullbull 371 ~3S 305 0138

---rz3middotcr----middot- u--middot-rz-zr--nmiddot~bull-bullmiddotbulln--middoti-1f 3 1r--TS-e--rcmiddot~5-middotmiddoto-r3-1235 95 C234 bullbullbullbullbullbull 373 33~ 305 0138 1240 100 0244 u- 3 74 33S 30S 013b_______________

--r-245 105 o~middotmiddotn-~n---~nbull 3lamp-33 l~o7no 12somiddot 110 o2s bullbullbull bullbull 3 10 339 3co 0131 1255 115 021gt bullbullbullbullbullbull bullbullbullbullbullbull bullbullbullbullbullbull 369 33 30C 0136

--ncHr----zu-----zb-middot--tmiddotbullmiddot~-----middotpoundn----i-nu 3 11 - 34 l 30-imiddotmiddot-r-rn~----- ---------~ ( 1305 125 0263 OQZO C370 C390 362 34l 29S 0134

1310 130 0286 366 343 -295 0133--n-rr--rn---rz-middotr~- bullbullbullu 31- 3--z 2s 0133_______________

( 1320 140 0303 bullbullbullbullbullbull 367 343 295 0131 1325 145 0313 bullbullmiddot 310 35~ 295 0132

-----nomiddot----5u----o---Jr~nmiddot-----$--bull bull bull 3cs-middotmiddot-3middot5~ro--onmiddot9~---( 133 s 155 0325 bullbullmiddot ~ 367 345 290 0129

1340 middot 160 0332 bull 370 35b 29() 0129 -------r-s---n-TlT---Thh Ohu hmiddot 3b9 356 29J---omiddot129_---------------

( 1350 170 0144 middotbull~~-middot $ 360 356 235 0129 135S 175 0352 bullbullbull~bullbull bullbull~bullbullbull 36amp 351 2a5 0129

-middot-middot1400middot--middot--1middotpound0middot-----0---i-srmiddotmiddotbull~-yen----middot-middot-r-bull ------y-fi~---7-S-t---za--s-- (fTzz----------------( 1405 185 03b2 OJZ5 C31C 0335 367 357 285 0127

1411 -Ill 0371 364 357 28l 0125--ras-15---middot 0376 ~Tlaquo middotmiddotmiddotmiddotmiddotmiddotmiddot-bull J64 middotmiddotmiddot351 2lt1s o--lZ5~-------------

( l420 zco o3a3 bullbullbullbullbull bullbullbullbullbull bullbullbullbullbullbull 36- 357 zao o1z3 1425 2C5 0-391 bullbullbull bullbullbullbullbullbull bull~ 36 358 250 0125

--middotmiddot-1130 middot-middot-middot2lo oJmiddotu--- --- bullbull middotbull~bullbullbullbull - 3sd--JJ - zaJ middotmiddotmiddot 0-125 ---------( 1435 215 04Jl bull bullbullbullbullbullbull 362 36G 28J 0122

1440 220 0410 middotbullbullabullbull bullbullbullbullbullbull 362 34~ zsJ 0122 middot 145 - 225_ o413- bullbullbullbull --- -middotbullbullbull 362-middotmiddot- ~~-c-middotzao middot 0122=-------------

-----middot-middot--------middot- middot-------------------------

--middotr-so 230 D42~ bullbullbullbullbullbull bullbullbullbullbullbull bullbullbull~bullbull 3~~ 35~ 1= o_120

middotmiddotmiddotmiddotbull middotmiddotbull~~-1455 23~ 042~ bullbullbullbullbull ~ 36t 35ry z1s C 12 I 1500 240 04Z7 bullbullbullbullbullbull bullbullbullbullbull~ bullbullbullbullbull 3bJ J~l 27) o liO

1505 middot middotmiddot-z smiddot-middotmiddotmiddotmiddotmiddotmiddot o 43-s middotmiddotmiddot middot-- middot fy-middot-il6 t -- o Ao ______ 1~ s~ middot l5 Z 7~ ~-- middot- c-11c1

OlJI~ C) ~c f l l() 41JJ Pgt~-tI-i2

OLGlE CJ G S C10 41~ 12 o middot~r1 ~~2-PA~ CC A~ ~rmiddotmiddott~21 Jbull bulli-1 middotpi-~-middotmiddotqN

137 )

_j

j

I ___~ -Irr-=rgt--~ fi -~pJ13 microc w--7 Fria---+ a-bull---middot--=-r ---rc=u- r ~~1-- r-=~l ~~ _ _ ~l~ ~~- _j =middot1 - --1 middot~----=---i ~-~

i 97 7 -- ~

~- bull -_bullbull _ -

-~ middot o- l ~ middot_ _ --c 5

-_

- ~ __ -i1---)

-bullmiddotJ _ deg _~Li--lt Cttf~middot -~J_J Tl Slr-Y~ --- cbull T[C-T~ - l c 7f t C i_ I---lt

l bull - ~ ~ --~ - - _ _-- ---

~i~ gt bull Tftf- iJbull-~_ jl ~~SiF= middot middot1F ~1 _1~-CLD_

SY~ l-~l1~ 24-5-f o --tY VJL c C ~-~PL[ PCRT

--~ __ _] 5 bull1 - ltmiddot_-_middotbull bull --~ ~---r_ r~ -t imiddot c1-~-middot rrc-i c---middot--u1 1Nr =ii - ~ L _ middot L ~ -bullbull bull bull bull l ~ middot~-l_~ st lmiddot ~ ~--t1 iC cbullmiddotbull-_fCT LEil

_-- - __middott_i middot-middot LAT r= ~ ~- T ) r middotmiddot-1 r-- ~ - _- ~ ~- ~ - bull i I 1J 1 middot- 1 ~ j_ t __~i~ r-lbull bullbullXtL-JC nt1

middot -1-bull Ci--1-r bull

_ bull ~ middoti ~ - i) rtJ rmiddot

_J 1rmiddott

1_() l t ~ ) )20

i -~ bull middotmiddotmiddot- ti0

i middot - ___ --~bullrJ

l 111 i 300_

lbull~ 36)

lbtt5 _420 _

l l bull 1t50

2J ~ ~j

63G lJ-i)

vv Cl lgt

n-9C

L~middot--~TICf~S iPPl-1

~-~~--~-~--

c bulln

i t~ -t -~

_middot bull ~

)l J) J

i 3 1 3-J

) l tJ imiddottJ

middot 7 H middot)

-pbullJO 3-JltJ)

11 ri~J )100

il 1-1 3110

ai

9= (( ~ ~ -laquoiry

)- ~ (I

-- bulllt~

yenyen~11

) bull )bull 1)

3gt0

--bull- l -gt 1

bull1 bull 7 il)

3 7 2 1 J

396 Ibullbull 3

1 2 l bull

39 bull -gt

ld d 310 fu l

3d 1t

70 ii 36ltJ nJ

-

( tic

-0~i

iu~

~-

raquoyen) ~

j_-4

i q

I- w

_ ~ I i-1

i ~ bullj J bull j

)_)

ur fj

iJ (bullmiddot1 -)

~ (~ ~ 6 _

l 2 v2 u

126 o t~

t ~ 6 ~ --)bull-1

ltbull ~ -lt

rt gtltljcent-C

~gtltO~

it-~_~ L-J bull 3 12 l

0 - ~middot- imiddot ~- ~ - _ =~ i 1t f 2 3lt -1 bull 451 ~2J 42l l 0 478 ~ ~Jf(l yengtiO ~ 3middotbull 5 t r bull~ ~ i-1 i8 bull U15 6 JJ bull l 356 o~3 fi o 9i5 (ltti v1qgti c-c lltoi1 -11 l

- l - loz-__

i bull bull 5

l ~~ bull - ~ 7

l j bull 3 3- )

lJ bull lt 1 l C

l -t 1 1t 3

14 I t2 bull

lmiddot J 41

1 frac14 3 1t3 0

14 l 423

l iS 46 amp

~ middot~ 45-S

s s

pound 1 5 9

~J ~ ~

- 7

11 flgt~bull-

1- 11

lG _ l bullJ

l l bull f ) 1t t

lbull1 q s~ 6

l J 7 5 2

l O o Jl

tG 5 Jl lt1

11 ~ q6

10 l 303

)9 296

1-)0 323

62 lB e

(I 2 loo

(1 l cl 0

~ -_ l bull) middot ~-

_ 0gt i 1

Jr

rmiddot1 ctmiddottf-

aigt_ti

lUO r - l

loll (11J

1( hlH

l57 (110

~

160l

15lt t l_t

917 )(J -

91 l _-_

d7 3 i

c ~ middotmiddot ~ bullf ~rgt_(

1 Ibullbull 1t 1

1til 103

r 1i 92 lt

- 7 l9 t

3l) H 1middot1 6

4 02 b0 1t

402 804

40 t al l

6lttgto(t

(clE

4 l u 937

4l - 85 3

n4 41gt8

LJd 41o

ijO

9

r -- -- J

i~ middot- --

j _i bull 7 a

bull middot1

r 5 _fj

0 j 2l

0 j

L bull Ob 2

)6

middotbull ) bull 5

2 bull CH J bull i

07 l il

05 t9

o bull l~

0 1 t

_ f - I

PP C tJ

bullJ ~ C j_ 6 )~ 3

L 2 bull 50 5

P2 487

124 ti 3

t 49 o

liS 5JO

12 I 50 8

t2 t9 a

I 2 8 51 4

Ui 31 t

75 ltgt9

76 30 bull

78 H l

------ - -L )-middot _HmiddotrmiddotL r-__7bull=

Vimiddot~~c i-c~

1Y1ffbull

-t 6 7 ~~ g)

4J _ iJ

ltf 3 tt l d

ttfl -2 It

1t6 2 nr

1) 1 l l

middot15 6 274

4 -3

266 tlt

276 16 1

2 7o ll6

160 2( tl

lvi f2

2i6

L-i~bull-L ~~_pound_-- -bull~

-1_ bullbull 1

-Cbullli-

3 7 i l 7

383 d j

1 7 ltl

30 I 2 7o

39 1J

3o7 77

383 72

358 7 _

362 12

35B 4 3

21 7

221 7 l

3_4

~bullyen-- ----bull middot ~-- ~--~-- ~-Ibull_-bull_middot-(~~centbull f f _bull-_-bull ~-~~ --=middot-_- -~-tI ~~--~ middota1rbullbull middot _r~ -lt~lt-bull -_~ - middotbull bulli--e- -~- _ middotmiddotlr---bull

rmiddot=1=- r-~=bull1 l--Jfil1middot--1 rur=-=i -f~w-_a1 ~ _r~- r--ra-c=~ ~ f-1-tliiilllllit ~~ ~~~j bull~~-r--

l-i77 ~~~ 21 --- J- -

) ~ ---

L~~ T9~ _~-~i-J ri~rt~

bullmiddot_

- bull~ ~ l~ 1 101s

Jj 104-=i

(J

115 lcO

l 2t5 1 ~HJ

1345 240

l bull -~ 5 300

l )It 5 360

l t4 5 lt20

17 5 45C

2Cl5 t30

lJ4S ltgtov

ell i omiddotc

middot---middotmiddot rtC _t c

) 0 J 1)

(__ _

C5 l ~j bull bull__

( - bullt-eL

__ ) ftc_

middot- -) 3 15 l

lt)_o j 3

87 o06

~-ii-lt

$igt~((

~~n ~t-gti

e diams U

Gt1

~-q ti 6 ~J3

--~ r-

p C middot_7c _3 l _

bull ~7 3 3_-J - 2f1f

3 i 6_ 753

3l 9 2j

(

laquo 30_ 4 4 1

2$ _5____ ~-~ ~middot (t~

22 3 degdnt

UC

I ~ix

~bull r12

ff4yen

2 r 9u ~middot -~-- -bull 1middot- ~ ---~i 2bullmiddotJ

bull I ~middot 21

bull 2ltZ -

29t 1bull1

_20 ~ ~ nti

268 1a1

2H Bl

298 ~ bulli J

2~3 2~1

ilC J IC

l 72 l 1

75 [

middotbull -

~

middot middot

i ~ (J

bull-~J

~-- 01

1~middot1 lle-1 10j

tlgt~~ gt 111 middot)_middot3-~~middotlc 6(J3 1t 1J 0middothmiddot~

middotLgt7~ li-J3 ltbull=-

middot7lt1o i-_middotJ ~-rt_

S04H bull - j((bull)bullt

tlt~o

-JJ6 )JQf 1cLJJ

ll703 1101

) 1164~ llbfJ

~oc - imiddottI 0~middot1

V _deg J-44 l--r-

rt1 J bull 1 2- ) 12iJJ

f-- i

0

~ -~ _- -K_---middot~-~- --(middotmiddot -middot -middot---=-middot-)~7-- l(~f-~~ _-~- ~~middotgtamp--~ ~ _-1--gt ~ ~--~~~---~bull middot--bullmiddott~~ ____ ~~ J-P~---yen-4middotbullbull--middotmiddot-middot

i UO bullt _ Od_ (middot JJ ~ c C ltgt lj (l bull- N

rmiddot -1middot - bull~ ) l

bullI

I) middotd (middotJ J -~ - ~ middot JI 4 ) 0

~ bullJ ~ Jbull ~ 1 r M

i- t---

I

1 I00 bull lt CC NN 0 -0

lt)1l

middot)

-~ - -300 NN middotbull Cmiddot ii NN S (1- O 0-- ~ r- -

I I

~- rmiddotcshy -1 NJ bull1---1-

J middotshy

ltbull 0 s- bull middotl _ _ middotc o

0 -- j r-I-j r-- _

ru middot

0

~ rmiddotmiddot - lj a)

-J O

I lJ(_ - r- -

~ middot~~- _

r

_ (bull - ~J middot-- -

~ -j

middot -

I

middotmiddotmiddotbullbull I middotbull bull bull

-shyJ middotmiddotbullbull I JI -bull r ) 1 ~- I -

C bullmiddot -bull _ 11

i ) ) )

141

- ~

_

ij (Y

1

l

j t ~

1 l

l i

r t

1 i I

i I

I

i e clf ~~j

i Ii

J --1 c--c- r-middot rJ

llJmiddot t middot C C r-bull

- )

middotmiddot

1J middot

-~ CJ-- bullS- bullbull

middotC - lt ()~--

tJ~-r ~- r bull J)

-r--middot J 1 I ~ ~ - -~ _ _

~

~ middotbull1 r~1 J

middotr

I ~-1bull11 J

)bull ~ --

142

bullbullbullbullbullbull

__

SURROGATE RUN 223-U CLASS CHAMSER 1976 OCT 5

LIGHTS ON 1215 INTENSITY IOOt OF MAXIHU~ 39 CC SAMPLES TAKEN CO FACTJR l9lOl PA~ CALIBq 9 6~ADV 1296 1215 PAN SAMPLE WAS TAKEN AT TbullO TOTAL NON-METHANE

CLOCK ELAPSED TJ~e nx2uaN)

1215 middotomiddot ( 1230 15

124s 30_~ t3bo 45

( 1315 60 1330 75 1345 90

( 1400 1~5 1415 120 143()-middotmiddot 135

C 1445 150 1500 165isismiddot-middot-middot--middotiso 1530 195

1615 1630

---i645 1700 1715

--1730 1745 1800

OZCNC ltPPmiddot~middotmiddot

omiddotmiddoto 0020 q04 0011 00~8

5139 0159 C181

AT 1221 HCbull 2346 PPSC METHANE= 2950 PPB

middotmiddotc~J3middotmiddotmiddotmiddotmiddotmiddotmiddot~J24deg 0222 0)12 0242 011

~1 t 0 M1

O 150 oJ94 005s oo3s OJ28 oJ23 oJ20 0)17 1))15

- omiddot2sgmiddotbullbullo1middot0middotmiddotmiddot 0147 o154 5~53 0022 0081 0276 OJO 0140 0145 546 bullbullbullbullbullbull

N02-PAN ~OX-PAN er PAN _ H(fO 1orM1 11gtPM1 tPPll (PPrl IPPHI

0143 cz1H 5S~ OOCl OC40 o1s1 0212 s75 bullbullbullbullbullbull bullbullbullbullbullbull c200 o2s1 s 15 __ 0000 llt~bull ozca 0237 s12 bullbullbullbullbullbull bullbullbullbullbull C2)0 0214 572 OJll 0063 o194 0214 510 bull~bullbullbullbull o1ss 020s 563 o~14 bullbullbullbullbull~ 0181 0194 561 bullbullbullbullbullbullbullbullbullbullbullbull

cgtbull11) 0195 ~5_7____ 0_1)_15 _______009~ 0157 0176 ~56 M~deg 0161 C16g 552 0021 bull~bullbullbullbull oJ53 ()160 s51

~~~-- -middot -JJtmiddot-middotmiddotmiddotmiddotmiddottfrac12H----middot1middot-middotbullgffr-bull-g ilb----middot-middotmiddot11~------~-~-middotzmiddot

iii5middotmiddotmiddot-- 360 middot middot omiddoti19 oco2middotmiddot c068 middot o069 middot53i 0039 C

-- DATA DISCARDED

OZONE CJSAGE GT OlJ 5~53 PP-IIN OZONE DJSAre GT )gt~ 6466 PPl-N

N02-PAN CJSIGE GT 025 J0 gtPbull-MN

C

(

middot1-bull

(middot middot middot

(

143

240 0337 0012 0124 0131 539 0027 0024 255 0354 OJJ7 0114 0116 543 bullbullbullbullbullbull

middotmiddot210~---middot-middot0middot37-middotmiddot -oSoimiddot--middot-middoto10s o 10g middotsmiddotimiddot - 0~03fmiddot bullbull 265 0393 OJ~5 0099 0101 536 bullbullbullbullbullbull 3JO 041() 0l05 Cl93 0095 5~z -U_9Q11

_____ 3l5 0427 0()05 oomiddotsamiddotmiddot--middotomiddot8f-middots~~-B 330 0445 oaos C081 OORl 535 bullbullbullbullbullbull 345 0462 0007 C074 0075 539 bulllaquobullbullbullbull

TSl REL HUM IOEG Cl Ill

31 610 33I 630 338 630 336 625 336 620 336 61 5 337 610 33il 60 5

_y_o _____ 59 ~ 341 590 34 o 58 5 t bull 2 58 5 343 575 345 575

3t 5_______ 57 0 34 6 56 5 347 SbO 34 s 56 0 349 555 34 9 55 5 34 8 ------- 55 bullo 34I 550

lt 550bullmiddot 54534 55 0

middott--1_r_-0- ~-ur1~_1 ~-m1=-middot cacalJ-aej qr-middot_~=~ f 1r~bull~1 ~ ii~ ~~-lt a -~ -bull-I ------ ----bull----- -- -middot-- --- ------middot-----------

middot-------- ------ - -- -- ----l lt T 1 I~ l ~

LwO(~ATE 223-U-1

USS (i-A3cK lS76 CT 5

----middotmiddotmiddot--------- ------------ ------------------fgtCCP ne1PRATuRE STA3li TY ori POROiiiK-~I-T1isrRuMENT 134~- u~ SA~rLE lJ~fC if~ POOPA~ II 4UP GEHrJF iRCPIC-LCftbullYDE ACETONE _lltJTYAlPEt-YDE ANDMl1Cf8011 C-600 _____

T LUEhE A~J ~-iYL2NE fRCM 3P

cirrr T J tltI 10 l 5 l 112 1215 1230 ll 1t5 1 middotmo 1315 1no lJ45 l 4DO lbull I~ l 3J l bullttgt LJOELLco r [ME tMl -) -12c -43 0 1~ 30 45 oomiddot 75 90 105 120 lJ5 ljj 165

-------middot-------------- ---~--------bull------------ -middot---- ---bull- -- --CONCENTRATIONS IPPB

MfTt-~ ll20 29Su_ _1QI ---- - ____ 2920 middotmiddot---1~L- t 2060 bull t bullbull $V- +- 0

-0fJlfljlP~UC lllO 29~0 )~$ yen 2920 ti -( bullbullbullbull 2B 80 lti

1Tt--f bull~ ld 4b11) bulltn)it middot(c middot~IQmiddot middotmiddot 3u I 21 5 yen_ ~yen -ilgt11$

Pb[ 2b 61 4 550 yen ~~ ~middot ~

bullE Tbulltbull~ _bull~ i middotmiddot--- ~v ~--~~-----~-~~~----___ __~--~_ _~~---~~__at bull9 ____-q~~ ______ a10 ~middot-I~ -gt-~bull $

Cr)(tl((PP8C 34 ~ yen4 17J )) 162 bullbullov lj[ middot ltCETfl~-E ( SPCJPM li 24 ~-~ ~IX $ O icbullbull 423 I)middotmiddot 38i

Pl1 BC 48 ~Ct bull(I bull bullbullbull bullbullbullbull bullierbull~ bullbullbullbull 846 112 bullbullbullbull bullbullyen t

bull QJ~~~tE _____ 4_J___________2_0 _Q~__-~___l)_6____l_o_---18_L_o__L____lt__---_-_~__iJ8 _ _bull_e____laquo_middotmiddot-middot---lo 2_________________ -middotmiddot-

I- P8C 129 bull~bullbull 600 586 567 564 bull gt4b ~

Igt)~gt)~ p~ -P~~E 07 _12 9 12q )iJ~--middot amp~1___-_J4 _____ ~s ~--~-middot~~ ___c_U_-0~ 4C O-ilt bull f igtPBC 21 38 7 387 2bt 195 120 IC fd-- middotmiddotmiddot-l _ I_SJ81JTAIE________________QL_ bullbullbullbull - __ --- middot-~-- -- bullbull ___________ _bull PPBC 04 bullbullbullbull bull bullbull~bull bull bull~~ ~ -bull~bull bullbullbull~ bull9bullbull bullbullbull

Nmiddot-Bur i1E -- 1 5____ 196 l ____ middot--middot-middotmiddot l8lt_____ _____deg _ - ______ 171 ~ 164bullshyPPBC 1 10 790 784 744 bull bullbullbullbull bull b64 bull+bullbull middotbullbull=bull o5

__A_ CETYL~iE__j QI I ____________25__4_~___425___gt1lt-bull__t25 ____bull__lt25_-13lt____i-~L__bull----___l __iof_lt____-----1~2 --- -- --middot --middotmiddot PttC 5o uco aso ~bull 85O aso bull~ bull~bullbullmiddot 02e bullbullbullbull yen~ 1a4

TP~ rs-2-aur c bullE oo C_i _____() 0 _ ____03 -middot---deg-degmiddot----middotQbullO --- _ oo bull bullbull -bulloishy va ~middot~middotshyPPtC oo 32 32 12 oo bull oo bullyenbull 00

-- i S0PENTAIJE____ ---middot-middot --- ___o_ L ____c_J ___ 0_2____gt1lt_bull__-1o_____(lt_______l_bull L__________o____ ~-bullbull___J_l____gtlltbull____U~-----1-L__ PPBC 15 35 4i bullbullbullbull 50 55- middotgtjlmiddot~ bullobull bOiS bull-ttlll

CIS-2-SUTEIE _ JJ__ _ 14 6 ___ __ 14 o ___ _-yen~~~------5 2middot-----~--~ ____l 7-----~bull-~~- bull-laquo~ ~ -- o o ---middot~U----~bullbull - v c PPac oo 592 584 bullbullbullbull 208 68 00 bull oo

_ fi-gtE~TANE ____ _________o D C L_O_bullL_~gttlt______o_l__llt~tt___Q 5---~~---middotmiddotmiddotjlt________-D5 -~----bullbullfltltgtl___lflt__ ______________ -PPBC OO lO 15 15 bullbullbullbull Z5 bull 25 bullbulloi bull bullbullbullbull

2 3-0 iMET_Hll ilU_TAIJ~ ____Q_Q ____ _0_9_____1 lQ_ bull-~-bull- 99 5-~___9JJ____~bull~-bull-middotmiddot-middotmiddot~--- ~-~ __ 84bull 6 --bull~bull----- __ Zt5 __ PPBC OO 652 658 bullbullbullbull 597 559 bullbullbullbull bullbullbullbull bullbullbull 509 gt77

__z_- ETHYI __SJ TE gt E~-- _______Q__Q____l6__2___16 bull 6_bull~---middotlldeg___-1lQ__5gtI-- -------2- ___i)C___tl deg-_JtlltbullL ___JlQ _____________

- _ -~--- bull-------__ _____ __ -----~~ - -_--~--------bull~bullr- t-=~~t~~= _~f~~~~~~~1bull~~~~~frac34lf-~~m~~bull~r~-~-fq~l~-~~~~----~-~~~~r-fltbullbullmiddot -r-middot ~ middotmiddot--bull----~-

bullbull

--

---- -_micro__middot1 _---j--- _- irr I-- ---1~ f~i=lbullaj i---r-J-p---1 --or __ ~ 0 I -lt-cc--l~~f1- ~~middot

1971 lltAR 18 i J Sl~~OGATE 223-li

GlhSS CrA-CR l-76 CCT 5

CL~CK TllE 1015 1132 l~ lL l230 _l245____ DOO____ JHgt l3JO _ lH5 l 400 _ l415 lo30 - llttlttgt l00 fLAPStD TtMEIMl~i -120 -43 0 l 5 30 45 60 75 90 105 120 135 ljO 165

PlllC ____(l(L__i lQ__l)l o____5_____ t2 bull0__~_jltjlt__i)_~~-4___ ___ OO _middot- __gt-yen ____ v C

j(ETALCEhYOE 28 ~~ qbull bullbullbullbull bullbull bull

_ PBC _5_ b___ _ 4~ middot-middot-~ -- bullbull~~ - bullc t _itoo -- ~-- middot - --- bullbullbullbull middotmiddotmiddot -~-- bull -- bullbullbullbull PllJlNALCEHYOF 02 03 bull~ $lt-))(l bulltctll yen bullbullbullbull 26 bullbullbullbull ia ~middotmiddotmiddot middot~llillP_lly

( -~-- (t~---middot Ci _9___ nill-1) -_ ~ ---middot _____ __ middotmiddotmiddot- 7B ~ bullClfc~

ACiTCI-E 07 79lit O bull~middotmiddot ~~ 366 ~ ~9 bull~~-PH 1 (tV~_ 2)bullJ --bull--bull bullmiddot-- --middot~bull---middot-bullbulllaquobull ~bullbullbull___ t(- _____l_l_O __ _--~bull~ __ bull 9 --~-- ltill diams 11 bullbullmiddotmiddotmiddotmiddot--

METHYL ETHYL KETONE 03 1a 82 yen$t9 ljllf-bulliimiddotbull~ bull~middot yenbullbull middot~ bullbullbull middot~middotmiddot ~ Ibullmiddot bullrPc_ i 2 Amiddot 7_2__ ~___ -~_ -~J__~~~ - -bull~----middotmiddot Imiddot----~ yen 32o lClO~ -0

T CltJEN 02 155 16l middotbullCt 144 135 126 bullbullbull deg PPHC l _(____ 1()8 bullyenljlCl lJ 3 ~bulletbull 101_ __--- 94bull L ___ --middot-- 111 87 J _J~~

4ET4-HLENE oo 523 53 l -4t 3fl ~ 219 4(Uit4 rcit U3 -bullljl flt PPBC 0() 418 _4_25 11_ 297 bull~ 23i t l 78 1)jff laquolI ~middotmiddot iHryRtLCEHYlc Ol Ol middot~bullmiddot bullbullbullbull bull yen0~ middot~bull 10 +9~ bullbull

-------middotmiddot-middot-middot--------middot---- PPDC 04 04 ---~- ____ ilit middotmiddot~middot _-I -- 40_ __cent~___ $~ bullbull ~iarabullbull

0 ICHLCHltO UI I-UJbullllgt01f TlbullMJpound oo 3S~ 351 347 J39 iyen0c 1jl$~middot jl7I- QI middotmiddot~ - bull q 3H

ishy _Poec O~Q 355 3_51 347 middotmiddot- ___ 339 ~ --bull~~- -- middot~bull--middot- 3 37 lit~yen j ~ 7 middot--middot -- ICr TCfAL HC PPBC

v ll7ij3 bullbullbull 56471 43268 52043 bullbullbull~ bull~bull~ bullbullbull

__TAL 101-ETHPE _t_C____ _ 583 l24l5 2345Q 00 19495 00 1068l 00 3158 QO l9872 middot 00 oo lldJZ TCfAl SU~fltJGATE 46-~5 zz37 middotomiddot 2307 i-------19-4degici---- i060~- imiddot----- -315 ~a----bullbull --- 1624amiddot ---- ---- i 21- 2

--~---middot-----middotmiddotmiddot------bull middot--middotmiddot------ middot----middotmiddot---middotmiddot-----middot--middot-middot----

bull-bull-bullbull bull-----bull---bull-bull ---r--~ --bull--bull----~bullbull-

- - - - - - - ------ -- ----------middot-bull------middot-middot------middotmiddot-- --

------------------middot-middot-middotmiddot- middot- ----

--------- --------middot-middot - middot----middot - ---- - - -- - - ---- -

-~lf4~--bull_~ ~~~~-~-~_-~~-~ -__~~bull- fF-~~~~~-g-~lT~~~~~~~pound~~etflitlilJ _~~~~flf-middot-bulltrmiddot--middot~- -middot-v--~--~-middot--~~ bull--bull~ ( s-~V __- -- bull bull bull

-~sgtlt-bull=ns-~ 1=_1i l-mc-a-1 __~bullmiddotloii1 ~bullbullcai=r J_t-~~ip7 -= __tJ~ ~ -__ __ j-Diii~I ~ ~~ ~_J IJcSi~~-~ J -=- -

1977 gt1~ ci Si~~C~~7E 223-0 ll~r (~middothPJ~ 1~76 CCT ~

(

CLCCie TJ~E l5l5 150 15 5 1600 1615 __1630 _l 6 4 5 ____ l 7 00 _ 1715 _______ --------middot middot- middot- --------[LAPSEC TMti~l~I 180 (95 2 l ) 225 240 255 270 285 300

CONCENTRATICNS_ PP6)

ME T-it rti 2900 bull bullbullbullbull bull 2Hl0 2880 pcgt~C 21 )J -------____2_810 - _ ___2_880 ________________ ---- -------------------------------

Tipound yen4l231 f~ ~ 203 ~~~ ~~~~ ~ 16 fJP~C 4 7 ir ~dbullflcent ~~$~ 40( 32 2bull~~ ~bull

E Tbullbull4E 78amp middot~lll ~ middotbull~-t 780 4el(( 749 PPH( l i r yenltI~ bull~ bull 7 9 _____ lJU_ ~-~e-~----2_~-~---middot-~tlt_~---middot ~----- -middot------------middot------- middot-- middot------- middotmiddot- -

A(middotfyi_t~~C (PfJPlbullr ) 35tJ 4 bullJ) Jqu~ J~7 ~4bull 3( iJii _ic 7 6 ) ~q (Jc 71 bull Cc~ ~-ii 7(

prmiddotPPE 184 ~ tnmiddoto 10a bullbull bullbull 116 1-~fiC ------- 552____ bull~ _ 540 ___ _itL__ -~---528

PJltbull)micro( bull-s -O l bull 7 tc l4 09 06 )pl)_l~PirC ti 5 l 42 Z l ___ l bull d lll middot~~- bull~~-

l rnu f hf -+--+=bull ittcagtICI middot ~ (I diamsdiamsbull -bullmiddot ~ POtC 4~~--- ~6 irc q ~ -~~-middot~ middot

I- N-~iiT ~E ~4tlllC l ~) 2 6-middot) 15b It 154 (lt l bull4f- lPhC diams (t4lt t~- t~gt-111 62_12_ ---~-lltmiddotbull--middot 01bulli___ yen$ia~_ lI~--- _57~ _ ______ --

deg ~ ACETYlffH ((JIJ~) 40 bull Jjl-C 395 bull 30d bull 373

PfflC ytlbull 806 790_ _l7 fJ____bullbullbullbull ------bullbullbull-bull----1t6 i TRtiS-7-BU_TUiF bullbull-amp oo oo yenbull oo middot~bull ~~middotmiddot oo pmicrolbullC yen~bull o_o ltcbull o_o _____________QJl___bull~-~--------obullo _________ --bull-----

I SOPcIITANE ~-90-~ 13 ~ l3 iU ~ ~~ l6 PP8C __ 65 ~~-~-_____ 6_5 ______~ _____a_v __ vbullbull~-- bullet __9o _____

C I-J-a1Jrrbull1- obullJ 00bull~bull middot~ oo ~middotmiddotmiddot oo middotmiddot~~ bull+bull~PPi3C ~c-~ ~o_ _______ oo ____ ----obullo - 00

N-PEl-ltTANE os o6 bullbullbullbull os bull 01 PPC t-6-bullo middotmiddot-middot 2_5___ ~-bull___ JQ___ bullbull~middot _2 2__ bullbullbull _0l __ ____]_5____ ----------

2l-0111 EThYL B1JT flff Vyen-(-9 -6 6 41(nr(c 122 bullbull(-II- 63 5 PPBC 1tOE-fl 460 Jl(I 4J3 -- ___1s -~bull- bullbullbull middot 3tll

z-~ET~YL e~Tc~E-2 oo 162 166 bull 24 oo bullbullbullbull

(9 7 bulliibull

PPBC____o_o___JU_Q__ijJ__Q______ __ _____120________)J)__ _gtlt__________

ACULCEt-tYOc bull9ic ric 9 Ii PPilC yenyenct -- ~~-middot- __~~bull_ middot-----middot-iiiyen___ ~~ ___ _______ -bull-middotmiddot--~---middot~middotmiddot PIJlICNALCEhYGE $$ bull4~ q bullbullbull 40 vbull bullbullbullbull ~bull 48

PPBC __ -- _ ---middot-bull _____l2J_Q __ L ----- __ lt~4____________ _

-_

--- ~~~~ -----_-~~-~--r----middot~--~ ----~-_____ ~0ltmiddot~bull_bull~~~cmiddotbull=-~~1~~rJ~~lt~~-~~~~yen-9 rr~~~~~~~~~~~~~~bull1~~~-Jf-it~~frac34WMP~~fUffM~~-~~~-~-middotmiddotmiddotmiddot1

bull-L)c~iJgt ~JJJI~ amp=-=-middot f-i~ aa-J-_e__jI micro-i~ismiddot --gtbull____- -=---- _ ~Jr i~~-( ____--__p_f I __rei -~~--1r---- l rbull~~h P~bullwii ~~iiI~

7 SLlt~4F 2pound3-U 177 ~~ ltgt

IJL1)~ C-oYjf-P

i-1 er 5

(LCV TJJ 1~ l~ 1~30 ___ J545 ____ l600____ 16l~ ___ H30_____ H4~---- 1700 ____171- ______ -------------ELAPSED Tl~fl~i~J liJv l95 210 225 240 255 270 285 300

_4CE rbull~ PPiC

--middot~~gt)_

icibullbull _(ot$

lI raquo-1c ----bull er lfrtJ11( yen

_360 ll4

-~-~------- ~~ bullbull deg

-bulliibullbull bullbullbull l(l

_i-HHYl ETHYL lttTC~~C pp_c

~icbull

yen(t )C --~~~ ____ii-------- _9_7_ ~-middot~ ~ 388

~--yen

middot~il$___18 --------------~ 728

--~----------- --- ------- -- - -

TtiE~IE P9rtC

109 763

yen-) ttgtlt-

(c~ laquoY bull 107

1fi - bull

(16JCtt

bullicebull iaibullmiddot bullic(t~

102 7lb

MET-4-Xllf E PPflC

__7 f l V

-middot~~- -- ~$ IF (n~v~

-----bull~~ 12-i ------------gt1lt______ 94_ --000 bullbull~bull bullbull~bull ~ 75L

L ry __ Cf 1 tYf rr~c

) ( ~yen

yen~0$

v(r

bulll- _ iV

~ --r1(

2 z 88

Jcentii

it) ~(

~ ~llf

gtii -2 6 lJ4

u-bull1Lor JffLiJ--uirt-lf PPpoundgtC

~ (I~

~ 330 330

( 1t-4

26 326

v~bull

_____ n2___ ------I) bullbull322 Hl 311

rr~t-L TCTAL

lfC -gt~ ~J~-Y

c iHl~E HC

jjJlt3 494middot3

middotbullbull13393

irbullilr

630 bull~ 34Jq _7_

l2 C5 5 tgtZil1 tilt~bull -- middotmiddot--middot-middot--- U------- __ 4713(___

11770 00 oo l5229 ___

TCTAL St~PC AT~ 49tdiamsbull 3 1330 3 830 ll lt60 455l l166 5 14128

middot---middotmiddotmiddot------

I- ~

~l~-~ ___gt-_____ bullA ___ _9~~--bull ______-~7~~~~tqt1f~~1_4_~tP-amp-i-~ffltW-iff~~~iitt~~laquoFifampoiijiM1l~trt~~ -_ Cl-iII~~~ --v-~ -middot ____ ~yen-

APPENDIX C

Plots of ln so2

vs time for

AGC Runs 216 through 222

bullf

lmiddot1

148

RGC-216-1-3 se2 DARK DECRY 2 RH PURE RIA

C) 1976 JUL 27-28 C) C)

p

I

0 C) _ - 0

ru (I) 0

C)

() ()

() Ce() () () -00197 plusmn 00003 hr

-1

() ()

() () C) ri)[J

~() I

~

C)~c CO(L Q_ CJO()

0CLc o--_(I)

_ (J

CJ I 0 0 (J)

o zo

en

_J~

0 =

I

()

f P1

0 Cl co -- 0I

4 8 TJME

12 CHA)

16 20

CJ 0 CJ

24deg

0 Cl LJ)bull

N -0

ll-

149

I

C)

0 ()

bull

AGC-217-1-2 SC2 LlGHT DECAY 151 RH PURE RIA

(r)0 1976 JUL 30-31 (I)0 (I) 0

0 I ti)

N 0

0 0 LI)

I o - C)E ~ a_ (Lo Oo_

CLo __ r- ru (J I 0

()El U1

0C) Lilzo

_J~ 0 I

D D CI

I

0 0 C) 0

~+------r---------------------------+~ltil0 50 100 150 200 250 30P

I TIME (HA)

150

RGC-218-1-3 se2 DARK DECAY 40 RH PURE AIR

0 tO

1976 RUG 4 O)

f I

c

I

C)

r C)

a N-

-1-00327 plusmn 00002 hr

(I

I

0

c co

bull

C) (Jr ~

0~ --L CL CL CLI o_g

(J

(J E

0 en en

0 co

zro CJ _J~ 0

a

~ ~ ~-i------------------------------------~-- o 2 4 s a 1o 12deg I TIME (HR)

151

RGC-218-7-9 se2 LT DECRY 401 RH PURE AIR

C) 1976 AUG 5 C)

CD

C) Cl Q-0 C)

0 (J

I

-00830 plusmn 00005 hr-l

CI (J I

~ (f1

Cl Cl CD (J

I

CJ 0 (I 0

a -(D

bull 0

oshyNE -a ca

-

(J

0 en

0 (I) 0 0

C) -

W O

-r---------------------r------------------~W 0

0 2 4 6 8 10 I TIME (HAl

152

r-

i]1

l _

middot

AGC 219-1-5 i 5~2 DARK DECAY 80 RH~1

PURE AIR 1976 AUG 16-17i 0

-middot 0

f 71 l

l ii gj

I

0- U)

CJ

I i I IC)

0

f II) i

r-- l I

~-- -~ o_ Oa_I ~ j(l g - r- I ~

- middot -00689 plusmn 00004 hr-l Ibull t 7 I (Ji ~ i

~] 0 l_ zo l~~

_J~ - iIu i _E I C

i 0 0

I I~- - I(J

I

-

() Ifr

I I

fl L

CJC)

~ 10bullq er [

C)

~------------------------------r------ N

I (j 4 8 12 16 20 24deg

TIME fHRl ~ Q

153

l

RGC-220-1-2 se2 DARK DECRY ijQ RH (jZCJNE-PRCPENE

ro0 1976 AUG 19 tO0 C) t

~~ r~I I

i (

c

-l a

0f

L 0 C

(J

-- ~I ()f c 7

~

()n

l c co

~ CI 0 C) () o

(j() () -poundo

Q_ Q_

(X)(1 I

( z (middot

(J_Jo (J0

=J ~h 0~ r (I)

()() (J -I 0ePgt~

()efJ(JJ 0 0 ~ (JLI)

- ~~()

~ () lt() lt()

0 ()yen ~ o ~ a

~-----------------r----------------~----~~-G 1 2 3 4 5 6deg

I TIME (HR)

154

AGC-22O 00-05 H~UA5 502 CPRk DECAY 401 RH C2l3r~E-PRCJPENE

0 197S AlJG 19 C)

0 bull 7

I I

l CD

I

~J r ~7 Q_

0 _

~I ru- J 81 en

z -1c

tO-c c ru

t =I

+--------------------6 00

I 0 10 020 030

TIME (H AJ

a tO (I)

bull 0

ti (I)

bull ti

--- 0

(j

0 cn

C)

Ol a CJ

0 lO

155 )

AGC-220 1 75-50 HQURSSD2 DARK DECAY 401 AH D2DNE-PR()PENE

r-0 1976 AUG 19 Lf)(P (I()

I ro 0 0 J

I

0 J N bull0 0J-J

c CL CL ~

0 tO

CJ r D ~ Cf) I Cl

0 -a z

CI-1o () CI (J[J

U) oO en-I

()()

middot~ c CD () ()1)

bull ~ ()-I 0~

(J0 CJ0

co eI -t 60 2LJO 320 400 480 560 6 4ij

I - 0TJME (HA)

156

RGC-221-1-2 5~2 DARK DECAY 40 RH ADD ~2~NE 080 HRS

co 1976 AUG 20 If)

(D r 0 0

I 0 D r 0

r CJ) Cl

I

0 D

I I

Qj I

-J 71

v 00 100 200 300 4 00 500

C)

rO

0 ~ (L

CL-

TJME fHASl

157 j

-

-003009 plusmn 000008 hr-l

~

RGC-222-1-7 rr

~ 1

l If

t f

t

l [

r l_

~ ti

1c l

L

Q

1 ~

a

[J ~ I

-

IL

S02 DARK DECRY_ 401 RH SURR(jGHTE-N(jX

00 1976 AUG 24-25 30 0 r

~1 iI

0

~1I

0 (J (tl

t 0 CI-I

-- -~ ~ o_ aa_g oO -r

(Jr - (J -I OCJ

0~ en(1

01 zc --deg-I

0 C) 0co -tO

I 0

Ul

-(

~1 -

(I 0 s 10 15 20 25 300 I TI ME (HRJ

158

PG f-2--Jc_~ __ Q _ --

se2 LIGHT OECHl 30Z AH SUAr-rCRTE-NQX

CI0 w 1976 AUG 25 r-r- -bull l

71 rol gj 0

-=f I I

()()

0

r ---= ~ oa_ a

(j

0

~ (1

1- bull middot-0

() tD

al

~~ i

~I j

1 ()

0 ZtP J~

I

I

-00574 plusmn 00007 hr-l

O ~ 0

~-t-------------------------------------~~~ ~o 1 2 3 4 s 6deg

TIME (HR)

159

I

Page 6: Report: 1977-05-00 (Part 2) Chemical Consequences of Air

l

Kinetics of OH~Hydrocarbon Reactions

propene ~21 for cis-2-butene and ~2 for 13-butadishyene

Our results for the reaction of OH with propene

OH + C3Hs -- products (7)

are within experimental error of a recent absolute determishynation of k using flash photolysis-resonance fluoresshycence35 while the value of k 7 given in Table II for the reshysult of Cox33 incorporates a stoichiometry factor of 2-to 3 In parallel studies in this laboratory using flash photolysisshyresonance fluorescence35 no evidence was found within exshyperimental error of a pressure effect for k1 by varying the totai pressure from 25 to 100 Torr of argon but additional studies should be carried out especially at lower pressures where such an effect would become evident to see whether k exhibits any pressure dependence

The value of the rate constant obtained in this study for the reaction of OH with cis-2-butene though somewhat high is within experimental error of values previously reshyported from direct determinations213435 In this case a sigshynificant (21) correction for reaction with 0 3 had to be apshyplied to the data

No previous determinations of absolute rate constants have been reported for the reaction of OH with 13-butadishyene However the close agreement between our values for cis-2-butene and 13-butadiene is consistent with the workmiddot by Cvetanovic and Doyle64 who showed that these two compounds reacted at similar rates with oxygen atoms

The value obtained in this study for the rate constant of _the reaction

(8)

of 52 X 109 M-1 s-1 is about a factor of 2 higher than

II published values from low pressure ( lt300 Torr) studshymiddot 22middot 32ies21middot 28- 36 The only other study to date carried out at

atmospheric pressure is that recently reported by Cox33 in which OH was generated by photolyzing gaseous nitrous acid in nitrogenoxygen mixtures (21) at 760 Torr and the effect of added alkenes on the photolysis of nitrous acid was studied A rate constant aka = (57 plusmn 06) X 109 M-1

s-1 was obtained relative to a value of 90 X 107 M-1 s-1for the reaction of OH with CO where a is a stoichiometry facshytor Cox suggests that a is between 2 and 3 based on pubshylished values for the direct determination of k8bull Davis et al36 have shown that the significant differences between low pressure measurements of reaction 8 can be rationalshyized by the fact that the reaction exhibits a pressure depenshydence over the region studied (3 to 300 Torr of He)

This pressure dependence is probably due to the initial formation of the adduct observed by Niki and coworkshyers21middot30 Presumably this adduct becomes stabilized by colshylisional deactivation

(8a)

While it is possible that our determination of k8 is higher than previous values due to the fact that species other than Q

t OH -and 03 are depleting the ethene at least part of the discrepancy may be due to the difference in pressure reshygions studied Figure 5 shows a plot of log ks vs log P where P is the total pressure in the system for studies carshyried out using N2 02 or N2O as diluent gases Studies carshyried out using less efficient third body gases such as He are not plotted since the present study is focused on ambient atmospheric conditions and third bodies such as N2 or the

middot793

100

- u

-- 0 E

95 C

~ a

gt

0 0

900~--J----J--___________~bull------- 10 20 30

rog PCP in torr)

Figure 5 Variation with pressure of the rate constant k8 for the reshyaction of OH with C2H4 M is bath gas in reaction 8 ltbullgt Davis et al38 ( ) Smith and Zellner31 (reg) this work

equivalent Thus at 3 Torr of diluent gas the results of Davis et ai36 differ by a factor of 16 depending on whether N2or He is used as the diluent gas Although our results for ethene are subject to some uncertainty it appears possible that reaction 8 is not at the limiting high pressure kinetics region until the pressure exceeds 1 atm

Conclusions

Relative rate constants have been determined for the reshyaction of OH with 14 hydrocarbons and these rate conshystants have been placed on an absolute basis using the litshyerature values for the rate constant of OH + n-butane No previous determinations have been reported in the case of seven of these compounds

Our results indicate that the reaction of OH with ethene possibly does not obey second-order kinetics until presshysures exceed 1 atm while for propene and the higher alkshyenes the reactions are second order at atmospheric presshysure

The comparatively high rates of reaction observed for the aromatic hydrocarbons have significant implications for the control of photochemical air pollution This subject and the use of the present data in the formulation of a hyshydrocarbon reactivity scale has been treated in detail elseshywhere65

Acknowledgments The authors gratefully acknowledge the helpful comments of Dr R Atkinson Dr George Doyle and Dr Jeremy Sprung during the preparation of this paper and thank Dr William P Carter for carrying out the computer calculations used to construct Figure 4 and Ms Sharon Harris for the hydrocarbon GC analyses

This work was supported in part by the National Science Foundation-RANN (Grant No AEN73-02904 A02) and the California Air Resources Board (Contract No 5-385) The contents do not necessarily reflect the views and policies of the National Science Foundation-RANN or the California Air Resources Board nor does mention of trade names or commercial products constitute endorsement or recomshymendation for use

References and Notes

(1) R R Baker R R Baldwin and R W Walker Symp (Int) Combust [Proc] 13th 291 (1971)

(2) D D Drysdale and A C Lloyd Oxid Combust Rev 4 157 (1970) W

The Journal of Physical Chemistry Vol 80 No 8 1976

63

794

E Wilson Jr J Phys Chem Ref Data 1535 (1972) (3) H S Johnston Adv Environ Sci Technot 4263 (1974) (4) P Crutzen Can J Chem 52 1569 (1974) (5) M 8 McElroy S C Wolsy J E Penner and J C McConnell J

Atmos Sci 31 287 (1974) (6) H Levy II Adv Photochem 9369 (1974) (7) K L Demerjian J A Kerr and J G Calvert Adv Environ Sci Techshy

nol 4 1 (1974) (8) H Niki E E Daby and B Weinstock Adv Chem Ser No 113 16

(1972) (9) J N Pitts Jr and B J Finlayson Angew Chem Int Edit Engl bull 14 1

(1975) (10) C C Wang and L I Davis Jr Phys Rev Lett 32349 (1974) (11) C C Wang L I Davis Jr C H Wu S Japar H Niki and 8 Wein-

stock Science 189 797 (1975) (12) 8 Weinstock and H Niki Science 176290 (1972) (13) 8 Weinstock and T Y Chang Telus 26 108 (1974) (14) J G Calvert and R D McQuigg Proceedings of the Symposium on

Chemical Kinetics Data for the Upper and Lower Atmosphere Warrenshyton Va Sept 15-18 1974 Int J Chem Kinet Symposium No 1 113 (1975)

(15) T A Hecht J H Seinfeld and M C Dodge Environ Sci Technol 6 327 (1974)

(16) A a Eschenroeder and J R Martinez Adv Chem Ser No 113 101 (1972)

l (17) D D Davis S Fischer and R Schiff J Chem Phys 61 2213 (1974) (18) R Overend G Paraskevopoulos and R J Cvetanovlc 11th Informal

Conference on Photochemistry Vanderbilt University Tenn June 1974

I (19) J Margltan F Kaufman and J G Anderson Geophys Res Lett 1 80

(1974) (20) S Gordon and W A Mulac Proceedings of the Symposium on Chemishy

cal Kinetics Data for the Lower and Upper Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Symposium No 1 289 (1975)

(21) E D Morris Jr and H Niki J Phys Chem 75 3640 (1971) (22) J N Bradley W Hack K Hoyermann and H Gg Wagner J Chem

Soc Faraday Trans 1 69 1889 (1973) (23) R A Gorse and D H Volman J Photochem 1 1 (1972) 3 115

(1974) (24) N R Greiner J Chem Phys 53 1070 (1970)

t (25) N R Greiner J Chem Phys 46 3389 (1967) (26) J Peeters and G Mahnen Symp (Int) Combust [Proc] 14th 113

(1973) (27) F Stuhl Z Naturlorsch A 28 1383 (1973) (28) F Stuhl Ber Bunsenges Phys Chem 77 674 (1973) (29) N R Greiner J Chem Phys 53 1284 (1970) (30) E D Morris Jr D H Stedman and H Niki J Am Chem Soc 93

3570 (1971) (31) I W M Smith and R Zellner J Chem Soc Faraday Trans 2 69

1617 (1973) (32) A V Pastrana and R W Carr Jr J Phys Chem 79 765 (1975) (33) R A Cox Proceedings of the Symposium on Chemical Kinetics Data

for the Lower and Upper Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Sypposium No 1379 (1975)

(34) S Fischer R Schiff E Machado W Bollinger and D D Davis 169th National Meeting of the American Chemical Society Philadelphia Pa April 6-11 1975

(35) R Atkinson and J N Pitts Jr J Chem Phys 63 3591 (1975) (36) D D Davis S Fischer R Schiff R T Watson and W Bollinger J

Chem Phys 63 1707 (1975)

Lloyd Darnall Winer and Pitts

(37) E R Stephens Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973

(38) A P Altshuller S L Kopczynski W A Lonneman F D Sutterfield and D L Walson Environ Sci Technol 4 44 (1970)

(39) H Mayrsohn M Kuramoto J H Crabtree T D Sothern and S H Mano Atmospheric Hydrocarbon Concentrations June-Sept 1974 California Air Resources Board April 1975

(40) D A Hansen R Atkinson and J N Pitts Jr J Phys Chem 79 1763 (1975)

(41) D D Davis W Bollinger and S Fischer J Phys Chem 79 293 (1975)

(42) G J Doyle A C Lloyd K R Darnall A M Winer and J N Pitts Jr Environ Sci Technof 9 237 (1975)

(43) J N Pitts Jr P J Bekowies G J Doyle J M McAfee and A M Wirier An Environmental Chamber-Solar Simulator Facility for the Study of Atmospheric Photochemistry to be submitted for publication

(44) G J Doyle P J Bekowies A M Winer and J N Pitts Jrbull A Charshycoal-Adsorption Air Purification System for Chamber Studies Investigatshying Atmospheric Photochemistry Environ Sci Technol submitted for publication

(45) E R Stephens and F R Burleson J Air Pollut Control Assoc 17 147 (1967)

(46) Ozone measurement was based on calibration by the 2 neutral buffshyered Kl method and was subsequently corrected from spectroscopic calibration data (see J N Pitts Jr J M McAfee W Long and A M Winer Environ Sci Technol in press)

(47) J R Holmes R J OBrien J H Crabtree T A Hecht and J H Sein-feld Environ Sci Technol 1519 (1973)

(48) W P Carter A C Lloyd and J N Pitts Jr unpublished results (49) D H Stedman CH Wu and H Niki J Phys Chem 11 2511 (1973) (50) D H Stedman and H Niki Environ Lett 4303 (1973) (51) J J Bufallnl and A P Altshuller Can J Chem 45 2243 (1965) (52) P L Hans E R Stephens W E Scott and R C Doerr Atmospheric

Ozone-Olefin Reactions The Franklin Institute Philadelphia Pa 1958

(53) S M Japar CH Wu and H Niki J Phys Chem 18 2318 (1974) (54) H Niki and B Weinstock Environmental Protection Agency Seminar

Washington DC Feb 1975 (55) S M Japar and H Niki J Phys Chem 79 1629 (1975) (56) A C Lloyd Int J Chem Kinet VI 169 (1974) (57) J M McAfee J N Pitts Jr and A M Winer In-Situ Long-Path Inshy

frared Spectroscopy of Photochemical Air Pollutants In an Environmenshytal Chamber presented at the Pacific Conference on Chemistry and Spectroscopy San Francisco Calif Oct 16-18 1974

(58) T Nash Telus 26 175 (1974) (59) J G Calvert J A Kerr K L Demerjian and R D McQulgg Science

175 751 (1972) (60) W i Schwartz P W Jones C J Riggle and D F Miller Chemical

Characterization of Model Aerosols EPA-6503-74-011 Aug 1974 (61) F S Toby and S Toby Proceedings of the Symposium on Chemical Kishy

netics Data for the Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Symposium No 1 197 (1975)

(62) K H Becker U Schurath and H Seitz Int J Chem Kinet 6 725 (1974)

(63) R E Huie and J T Herron Proceedings of the Symposium on Chemishycal Kinetics Data for the Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Kinet Symposium No 1 165 (1975)

(64) R J Cvetanovic and L C Doyle Can J Chem 38 2187 (1960) middot (65) K R Darnall A C Lloyd A M Winer and J N Pitts Jr Environ Sci

Technol in press

middotThe Journal of Physical Chemistry Vol 80 No 8 1976

64

rl

i

8 ~

ct il

Introduction

During the last six years the major role of the hydroxyl radical (OH) in atmospheric chemistry and photochemical air pollution has been recognized1-7 and kinetic data for the reshyaction of OH with both organic and inorganic species have increased substantially8 However there are currently no published rate constant determinations for the reaction of OH with ketones chloroethenes or any of the naturally occurring hydrocarbons such as the nionoterpenes Such rate constant data for the reaction of OH with these three classes of com-middot pounds would be useful in part because of their increasing importance for modeling the atmospheric processes occurring both in urban and rural atmospheres Specifically ketones and chlorinated hydrocarbons are components of commercial solvents910 Both tri- and tetrachloroethene have been obshyserved in the troposphere at part per trillion (ppt) concenshytrations of lt511 and 20 ppt1112 respectively while methyl ethyl ketone has been observed at concentrations of 1-6 parts per billion (ppb)13 Monoterpene hydrocarbons have been shown to be present in the atmosphere with source strengths of millions of tons annually14 Thus Rasmussen1516 and coshyworkers have estimated that on an individual basis such naturally occurring hydrocarbons have ambient concentrashytions in the low ppb range and are largely responsible for the blue haze occurring in certain forested areas 17

This paper describes an extension of our recent experiments in which an environmental chamber has been employed to obtain relative rate constants for the gas phase reaction of the hydroxyl radical with a series of hydrocarbons1819 In this case we report data for the reaction of OH with three ketones two chloroethenes and three monoterpene hydrocarbons using isobutene as a reference compound

bullExperimental Section

The experimental methods and procedures employed have been described in detail e1Rewhere1819 and are only briefly summarized here Irradiations of the hydrocarbon-NO_-air system were carried out in a Pyrex chamber20 of approxishymately 64001 volume equipped with externally mounted

tteprmteo _rrom me urna1 I tnys1ca1 ~em1suy liU 1_01_ l l~ m1f Copyright 1976 by the American Chemical Society and reprinted by perm1ss10n of the copyright owner

Relative Rate Constants for the Reaction of the Hydroxyl Radical with

Selected Ketones Chloroethenes and Monoterpene Hydrocarbons

Arthur M Winer Alan C Lloyd Karen R Darnall and James N Pitts Jrbull

Statewide Air Pollution Research Center University of California Riverside California 92502 (Received January 30 1976)

Publication costs assisted by the University of California Riverside

The relative rates of disappearance of three monoterpmiddotene hydrocarbons two chloroethenes and three alishyphatic ketones were measured in an environmental chamber under simulated atmospheric conditions at 305 middot plusmn 2 K The observed rates of disappearance were used to derive relative rates of reaction of these organic compounds with the hydroxyl radical (OH) on the previously validated basis that OH is the species domishynantly responsible for the hydrocarbon disappearance under the experimental conditions employed Absoshylute rate constants obtained from the relative values using the published rate constant for OH + isobutene (305 X 1010 M-1s-1) are (k X 10-10 M-1s-1) o-pinene 35 plusmn 05 B-pinene 41 plusmn 06 d-limonene 90 plusmn 14 methyl ethyl ketone 020 plusmn 006 methyl isobutyl ketone 09 plusmn 03 diisobutyl ketone 15 plusmn 05 trichloshyroethene 027 plusmn 008 tetrachloroethene 013 plusmn 004 No previous determinations of these rate constants have been found in the literature Rate constants for an additional nine monoterpene hydrocarbons have been derived from data recently published by Grimsrud Westberg and Rasmussen

Sylvania 40-BL fluorescent lamps whose spectral distribution has been reported elsewhere21 (photon flux at 300 nm is apshyproximately 1 of the photon flux maximum at 360 nm) The light intensity measured as the rate of NO2 photolysis in nishytrogen22 k1 was approximately 04 min-1bull All gaseous reacshytants were injected into pure matrix air23in the chamber using 100-ml precision bore syringes Mixtures of the liquid reacshytants were injected using micropipettes During irradiation the chamber temperature was maintained at 305 plusmn 2 K

Alkene terpene and ketone concentrations were measured by gas chromatography (GC) with flame ionization detection (FID) using the columns and techniques developed by Steshyphens and Burleson2425 The chloroethenes were also monishytored with GC(FID) using a 10 ft X frac34instainless steel column packed with 10 Carbowax 600 on C22 Firebrick (100110 mesh) Ozone26 was monitored by means of ultraviolet abshysorption (Dasibi Model 1003 analyzer) carbon monoxide by gas chromatography (Beckman 6800 air quality analyzer) and NO-NOrNO by the chemiluminescent reaction of NO with ozone (TECO Model 14B)

The initial concentrations of reactants are shown in Table I In addition to these compounds ethene (20-28 ppb) ethane (48-61 ppb) acetylene (25-37 ppb) propane (13-15 ppb) and variable concentrations of formaldehyde (16-134 ppb) acshyetaldehyde (0-7 ppb) and acetone (3-19 ppb) were present Initial concentrations in these experiments were 1200-2100 ppb C of total nonmethane hydrocarbons 058 ppm of NO (with an NOvNOx ratio of005-010) 5 ppm of CO and 2900 ppb of methane together with water vapor at 50 relative humidity Replicate experiments were carried out in which this mixture was irradiated for 2-3 h with continuous analysis of inorganic species analysis of hydrocarbons every 15 min and analysis of monoterpenes chloroethenes and ketones every middot30 min

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilution rate (12 per hour) from the observed hydrocarbon disappearance rate The HCNO and NONO2 ratios were chosen to delay the forshymation of ozone and ozone was not detected during the irra-

The Journal of Physical Chemistry Vol 80 No 14 1976

65

i

1636

TABLE I Rates of Disappearance and Rate Constantsa for Selected Ketones Chloroethenes and Monoterpene Hydrocarbons at 1 atm in Air at 305 plusmn 2 K

middot Relative Initial rate of concn disap- koH0 Mmiddot

Compound ppb pearance smiddotbull X 10middot10

C

A M Winer A_ C Lloyd K R Darnall and J N Pitts

100-------~-------r-------- _eo___J-__

--~bull middot METHYL ETHYL KETONE 60

~ r-----__ g 2o+---__ ~--------t5 -- __ middot METHYL ISOBUTYL KETONE

u bull --------8 - middot---- 0 10 -- DIISOBUTYL KETONE ~ a

~ 6 ~bull ISOBUTENE

0 05 10 15 20 HOURS OF IRRADIATION

Figure 1 Concentrations of ketones (plotted on a logarithmic scale) during 2-h photolysis of HC-NO mixture in air at 305 plusmn 2 Kand 1 atm

-60

-~ ~-- I - -~ 40bull __ middot---

~ ~ __ ------~ 2 ----_ middot-middot- ~20~ _____ ISOBUTENE

~ ----- middot---0 bull bull

~ bull -~ a-PINENE

z 10 ---8 8 bull --

~6 - --

ll d-LIMONENE e-PINENE (D

0 4~----__---_________J_~_ 0 2 3

HOURS OF IRRADIATION

Figure 2 Concentrations of monoterpene hydrocarbons (plotted on a logarithmic scale) during 3-h photolysis of HC-NO mixture in air at 305 plusmn 2 K and 1 atm

X 106 radicals cm-3 using the observed rates of isobutene disappearance (corrected for dilution) and the previously determined rate constant for OH + isobutene35These con-

centrations are of the same order as those observed directly 32 36 37in ambient air31

Results and Discussion

Typical rates of disappearance observed during a 2-h irrashydiation of the three ketones and 3-h irradiations of the three monoterpene hydrocarbons and the two chloroethenes are shown in Figures 1 2 and 3 respectively Isobutene was used as the reference compound (and is included in each figure) rather than n-butane which was used in our previous studshyies1819 because its reactivity was closer to that of the terpenes and its rate of decay could be measured more accurately in our system In addition the ratio of k0Hlk0a for isobutene is greater3235 than that for any of the other olefi ns studied thus minimizing any contribution to the disappearance rate due to reaction with ozone Table I gives the disappearance rates

66

lsobuene Prop-ne cis-2-Butene Methyl ethyl

ketore Methyl isobutyl

ktgttone Diisobutyl ketone o-Pinene 3-Pinene d-Limonene frichloroethene Tetrachloroethene

17-20 5-7 7-8

50-100

20-70

20-32 10-20 10-20 10-20 41-161 14-88

10 049 122 007

03

05 114 133 295 0088 0044

305 plusmn 031 149 plusmn 022 372 plusmn 056 020 plusmn 006

09 plusmn 03

15 plusmn 05

a Placed on an absolute basis using 305 X 10 0

OH isobutene from ref 35 b The indicated error limits are plusmn 15 except in the case of the chloroethenes and ketones for which they are plusmn 30 These represent the estimated overall error limits and include both experimental errors and uncertainties which may occur in assuming that hydroshycarbon disappearance is due solely to reaction with OH

diation period except in the case of one experiment for which a small correction for the loss of hydrocarbon due to reaction with ozone was applied to the alkene disappearance rates

In order to obtain additional data (at lower OH concen- trations) to correct for the concurrent photolysis of the ketones as discussed below irradiations of a mixture of ketones and isobotene were carried out In these experiments NO CO and other hydrocarbons were not added and under these conditions relatively low concentrations of OH ( lt5 X 105 radicals cm-3) were obtained

Hydroxyl Radical Source in this System As discussed previously19 the major sources of OH and its precursors in our experimental system are probably the reactions452728

NO + N02 + H20 plusmn 2HONO (1)

H02 + N02 - HONO + 02 (2)

HONO + hv (290-410 nm) - OH + NO (3)

H02+NO--OH+N02 (4)

The first reaction is now thought to occur slowly homogeshyneously29 but its rate is probably significantly faster when the reaction is catalyzed by surfaces Thus nitrous acid has been observed in a chamber study of simulated atmospheres carried out in our laboratory30 while direct evidence for formation of OH radicals in an environmental chamber has been proshy

32vided recently by Niki Weinstock and co-workers31

Reaction 4 of major importance provides a further source 34of the OH radical H02 can be formed in air33 by any

mechanism producing H atoms or formyl radicals (eg formaldehyde photolysis) via the reactions

H + 02+ M-H02 +M (5)

HCO + 02 - H02 + CO (6)

Thus any mechanism producing H02 in our system is also a means of furnishing OH radicals via reaction 4

The concentration of OH radicals present during these irshyradiated HC-NO experiments was calculated to be (14-35)

The Journal of Physical Chemistry Vol 80 No 14 1976

348 plusmn 052 406 plusmn 061 900 plusmn 135 027 plusmn 008 013 plusmn 004

M-1 s-bull for

OH Radical Reaction with Selected Hydrocarbons

50------------~----~--

-middot---middot TRICHLOROETHENE

bull TETRACHLOROETHENE ---middot

IOloz--------l--------l2-----1-3---

HOURS OF I RRAOIATION

Fgure 3 Concentrations of chloroethenes (plotted on a logarithmic scale) during 3-h photolysis of HC-NOx mixture in air at 305 plusmn 2 Kand 1 atm

l (corrected for dilution) for these reactants relative to that for isobutene based on data for the three separate experiments for monoterpenes and four separate experiments for methyl

t isobutyl and diisobutyl ketone and chloroethenes Methyll ethyl ketone was present in all experiments

Employing the fact that a range of OH concentrations (20 X 105-35 X 106 radicals cm-3) was observed in these experishy

[ ments corrections to the measured rates of disappearance of the ketones were made for the possible small contribution

middotfrom photolysis of these compounds These corrections were made in the following manner The observed rate of disapshypearance ofa ketone is given by

d ln (ketone]dt = kK[OH] + khv (7)

where kK and khv are the rate constants for reaction with OH and photolysis respectively The isobutene disappearance rate is controlled solely by reaction with OH hence

[OH] =d In [isobutene] (8)dt ks

where kB is the rate constant for reaction of OH with isobushytene Thus substituting for [OH] in eq 7

d In [ketone] _ kK d In [isobutene] dt - kiB dt + kh (9)

Based on eq 9 the relative rates of ketone disappearance were determined from the slopes of plots of d In [ketone]dt vs d ln [isobutene]dt The intercepts of these plots gave the rate constants for photolysis For methyl ethyl methyl isobutyl and diisobutyl ketone the ratios k Kfk iB were 007 03 and 05 respectively and the photolysis rate constants khv were 0007 0014 and 025 h-1 respectively

On the basis that the OH radical is the species dominantly responsible for the hydrocarbon depletion during the 2- or 3-h irradiations (as discussed in detail in our earliermiddotpapers)1819 absolute rate constants were derived from the relative rates of disappearance using Atkinson and Pitts35 value of (305 plusmn 031) X 1010 M-1s-1for the reaction of OH with isobutene These results are shown in Table I It should be noted that the ratio of rate constants (05 and 12 respectively) obtained here for propene and cis-2-butene relative to isobutene are in exshycellent agreement with the ratios obtained by Atkinson and Pitts (05 and 11 respectively)35

1637

Ketones To our knowledge the data presented here repshyresent the first experimental determination of rate constants for the reaction of the OH radical with any ketones in the gas phase The only literature value for ketones is an estimated rate constant of 21 X 109 M-1s-1for the reaction of OH with methyl ethyl ketone which was made by Demerjian Kerr and Calvert5 on a thermochemical basis This value is in remarkshyably good agreement with the experimental value obtained here (20 X 109 M-1 s-1) middot

The rate constants for the reaction of OH with the two other ketones reported here are significantly larger than that for methyl ethyl ketone Thus the rate constant for diisobutyl ketone is about the same as that for OH+ propeneB1935 The dominant mode of reaction of OH with ketones is expected to be one of hydrogen abstraction This is consistent with the increased rate constant in going from methyl ethyl ketone to diisobutyl ketone reflecting a weaker C-H bond strength in going to more highly substituted ketone

Acetone is relatively stable under conditions employed in our photooxidation studies and consequently the rate conshystant for OH + acetone was not measured Based on the fact that the C-H bond strength in acetone (98 kcal) is 6 kcal stronger than that for methyl ethyl ketone (92 kcal) one would e~pect OH to react significantly slower with acetone than with methyl ethyl ketone

Chloroethenes Rate constants for the gas phase reactions of OH with tri- and tetrachloroethene (C2HC3 and C2CI4

respectively) have not been reported previously The rat constants found in this study are 05 and 025 respectively of the rate constant for OH + C2Hi19 This difference in reshyactivity for the chloro-substituted ethenes and ethene is consistent with the results of Sanhueza and Heicklen38-40 who reported that the rates of reaction of 0(3P) with C2HC13and C2C4 were the same and were both a factor of 10 less than that for the reaction of 0(3P) with ethene

Our results show that trichloroethene is mor~ reactive with respect to attack by OH than tetrachloroethene This is in agreement with the results ofLissi41 for CH30 reactions and Franklin et al42 for CI atom reactions with these compounds These workers found relative rates for attack on C2HC3 and C2C4 of 22 and 26 for CH30 and Cl respectively compared to 20 for OH as found in the present study Gay et aI43 reshycently reported results from a photooxidation study of chloc roethenes which while not directly comparable to the present study due to the presence of substantial concentrations of ozone showed that C2HCI3 disappeared more rapidly than C2Cl4 (near the beginning of their irradiations when ozone concentrations were relatively low the ratio of the rates of disappearance was ~2)

Since addition is likely to be the primary reaction pathway for attack by OH the relative reactivity of C2H4 C2HCia and C2Cl4 should reflect the relative magnitudes of the ionization potentials of these molecules which are 1066 948 and 934 eV respectively Our results are consistent with this trend

Monoterpene Hydrocarbons The terpenes experimentally investigated were a-pinene (I) 1-pinene (II) and d-limonene (III) The detection limit for ozone in these experiments was

XI) xD -0-lt II III

~1 ppb and since no ozone was detected during irradiations of the terpenes an upper limit to the contribution due to reshyaction with ozone to the observed rates of terpene disap-

The Journal of Physical Chemistry Vol 80 No 14 1976

67

1638

TABLE II Reactivity of Selected Monoterpenes with O(P) 0

3 and OH

Rate constant M-1 s- 1

Compound O(P)l 03 OHe

o-Pinene 160 plusmn 006 20 X 105 b 35x10 0

X 10 0 10 X 105c 88 X l0~d

J-Pinene 151 ~ 006 22 X l0bulld 41 X 10 0

X 10 0

d-Limonene 650 plusmn 052 39 x 105 d 90 X 10 0

X 10 0

a Reference 49 b Reference 48 c Reference 45 d Referbull ence 16 e This work

pearance can be calculated Thus assuming an ozone conshycentration of 10 ppb and using published rate constants for the reaction of ozone with the terpenes1643-45 an upper limit of 7 of the overall disappearance rate is obtained for the case of d-limonene (the worst case) at the lowest OH concentration present in these experiments (14 X 106radicals cm-3)

l It is interesting to note that the rate constant 37 X 1010

M- 1 s-1 obtained in this study for OH + cis-2-butene a component in the hydrocarbon mix (Table I) used in this set of experiments is in good agreement with the values of 32 X

l 1010 and 37 X 1010 M-1 s-1 obtained by Atkinson and Pitts35 and Morris and Niki46 respectively although our value is somewhat higher than the value of 26 X 1010 M-1 s-1obtained by Fischer et al47 in these three studies the rate constant was r determined from elementary reaction measurements

Table I shows the absolute rate constant values obtained for the terpenes Clearly these natural hydrocarbons react very rapidly with OH For example a-pinene reacts about 3 X 105 times faster with OH than with ozone1648 Thus for an ozone concentration of 3 X 1012 molecules cm-3 (012 ppm) and an OH concentration of 107 radicals cm-3 the rates of disappearance of a-pinene due to reaction with 0 3 and OH respectively will be essentially equal A comparison of the rates of the three terpenes with O(3P) 0 3 and OH is given in Table 1116bull4546 Within the experimental errors for the rate constants for OH + a- and 6-pinene the trend observed for reaction with OH is the same as that observed for reaction with O(3P) and 03

Grimsrud Westberg and Rasmussen (GWR)16 have reshyported the relative rates of photooxidation of a series of monoterpene hydrocarbons using mixtures of 10 ppb of the monoterpene and 7 ppb of nitric oxide which were irradiated for periods ranging between 60 and 120 min Making the rsasonable assumption that as in the case of our studies OH is the major species depleting the hydrccarbon in their exshyperiments then a series of rate constants relative to isobutene (which was included in the GWR study) can be generated in the same manner as described above The data from GWR are given in T-able III relative to isobutene = 10

Considering the- uncertainties involved in this approach (including a lack of knowledge of the exact ozone concentrashytions formed in the experiments of GWR) the agreement between our results for the reaction of OH with a- and 6-pinene and d-limonene and those shown in the fourth column of Table III is quite good and except in the case of a-pinene well within the estimated experimental uncertainty for our determinations The fact that our value of OH + d-limonene is only slightly higher than GWR suggests that little or no 03 was formed in their experiments since there was less than 1 ppb formed during our irradiations

The Journal of Physical Chemistry Vol 80 No 14 1976

A M Winer A C Lloyd K A Darnall and J N Pitts

TABLE III Relative Reaction Rates of Monoterpene Hydrocarbons and Rate Constantsl for Their Reaction with the OH Radical Based on Data from Grimsrud Westberg and Rasmussen (Ref 16)

Rel koH M-bull Hydrocarbon Structure reactivity s-bull X 10-10

p-Menthane 013 040-0-lt p-Cymene 030 092 (078 -0-lt plusmn 016)b

Isobutene )= 10 305

~Pinene 13 40 (41 gtQ) plusmn 06)C

Isoprene 155 47 (46 ~ plusmn 0 9)d

o-Pinene 15s 47 (35 plusmn 05)C~

3-Carene 17 52-cl-~Phellandrene 23 70-0-lt Carvomenthene 25 76-0-lt d-Limonene 29 88 (90-0-lt plusmn 14)C

Dihydromyrcene 36 101~ Myrcene 45 137~ cis-Ocimene 63 192~

a Placed on an absolute basis using 305 x 10 0 M- 1 s-bull for OH+ isobutene from ref 35 b For p-ethyltoluene which is structurally similar (ref 19) c Present work (see Table II) d For 13-butadiene which is structurally similar (ref 19)

A further check on the validity of using the results of Grimsrud Westberg and Rasmussen16 to obtain OH rate constant data is provided by the values derived for the reacshytion of OH with p-cymene and isoprene p-Cymene is structurally very similar to p-ethyltoluene and hence the OH rate constants for these two compounds should be comparable In fact this is the case with the value for OH+ p-cymene of 91 X 109 M-1 s-1 derived from the data of GWR being very close to that obtained for OH+ p-ethyltoluene 78 X 109 M-1

s-1 in our previous study19 Likewise isoprene is structurally similar to 13-butadiene and the rate constant derived for isoprene of 47 X 1010 M-1 s-1 is consistent with that preshyviously measured19 for OH+ 13-butadiene of 46 X 1010 M-1

s-1 On the basis of these comparisons it appears valid to use the photooxidation data of Grimsrud Westberg and Rasshymussen16 to obtain OH rate constant data for the series of monoterpenes which they investigated

Conclusion

Relative rate constants have been experimentally detershymined for the reaction of OH with eight compounds and these rate constants have been placed on an absolute basis using the literature value for the rate constant for OH + isobutene35

In the same manner rate constants for the reaction of OH with nine additional compounds (monoterpene hydrocarbons) for

68

OH Radical Reaction with Selected Hydrocarbons

which no previous rate constants are available have been deshyrived from data recently published by Grimsrud Westberg and Rasmussen16

The comparatively large rate constants obtained for the ketones and monoterpene hydrocarbons indicate that they will be quite reactive in the troposphere The implications for photochemical oxidant control strategies of the chemical reshyactivity of the ketones chloroethenes and terpenes are disshycussed in detail elsewhere5051

Acknowledgments The authors gratefully acknowledge the helpful comments of Drs R Atkinson and E R Stephens during the preparation of this manuscript G Vogelaar and F Burleson for the gas chromatographic analyses and W D Long for valuable assistance in conducting the chamber exshyperiments

This work was supported in part by the California Air Reshysources Board (Contract No 5-385) and the National Science Foundation-RANN (Grant No AEN73-02904-A02) The contents do not necessarily reflect the views and policies of the California Air Resources Board or the National Science Foundation-RANN nor does mention of trade names or commercial products constitute endorsement or recommenshydation for use

References and Notes

(1) J Heicklen K Westberg and N Cohen Publication No 114-69 Center for Air Environmental Studies Pennsylvania State University University Park Pa 1969

(2) D H Stedman E D Morris Jr E E Daby H Niki and B Weinstock presented at the 160th National Meeting of the American Chemical Society Chicago Ill Sept 14-18 1970

(3) B Weinstock E E Daby and H Niki Discussion on Paper Presented by E R Stephens in Chemical Reactions in Urban Atmospheres C S Tuesday Ed Elsevier New York NY 1971 pp 54-55

(4) H Niki E E Daby and B Weinstock Adv Chem Ser No 113 16 (1972) (5) K L Demerjian J A Kerr and J G Calvert Advances in Environmental

Science and Technology Vol 4 Wiley-lntersclence New York NY 1974 p 1

(6) H Levy 11 Advances in Photochemistry Vol 9 Wiley-ln1erscience New York NY 1974 p 1

(7) S C Wofsy and M B McElroy Can J Chembull 52 1582 (1974) (8) R F Hampson Jr and D Garvin Ed Chemical Kinetic and Photoshy

chemical Data for Modeling Atmospheric Chemistry NBS Technical Note No 866 June 1975

(9) A Levy and S E Miller Final Technical Report on the Role of Solvents in Photochemical Smog Formation National Paint Varnish and Lacquer Association Washington DC 1970

( 10) M F Brunelle JE Dickinson and W J Hamming Effectiveness of Orshyganic Solvents in Photochemical Smog Formation Solvent Project Final Report County of Los Angeles Air Pollution Control District July 1966

(11) E P Grimsrud and R A Rasmussen Atmos Environ 9 1014 (1975) (12) J E Lovelock Nature (London) 252 292 (1974) (13) E R Stephens and F A Burleson private communication of unpublished

data (14) R A Rasmussen and F W Went Proc Natl Acad Sci USA 53215

(1965) R A Rasmussen J Air Polut Control Assoc 22537 (1972) (15) R A Rasmussen and M W Holdren Analysis of Cs to C 10 Hydrocarbons

in Rural Atmospheres J Air Pollut Control Assoc Paper no 72-19 presented at 65th Annual Meeting (June 1972)

(16) E P Grimsrud H H Westberg and R A Rasmussen Atmospheric Reshyactivity of Monoterpene Hydrocarbons NOx Photooxldation and Ozonolshyysls middot Proceedings of the Symposium on Chemical Kinetics Data for the

1639

Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Kinet Symp No 1 183 (1975)

(17) F W Went Nature(London) 187641 (1960) bull (18) G J Doyle A C Lloyd K R Darnall A M Winer andJ N Pitts Jr Enshy

viron Sci Technol 9237 (1975) (19) A C Lloyd K R Darnall A M Winer and J N Pitts Jr J Phys Chem

80 789 (1976) (20) J N Pitts Jr P J Bekowies A M Winer G J Doyle JM McAfee and

K W Wilson The Design and Construction of an Environmental Chamber Facility for the Study of Photochemical Air Pollution Final Report Calishyfornia ARB Grant No 5-067-1 in preparation

(21) Sylvania Technical Bulletin No 0-306 Lighting Center Danvers Mass 01923 1967

(22) J R Holmes R J OBrien J H Crabtree T A Hecht and J H Seinfeld Environ Sci Technol 7 519 (1973)

(23) G J Doyle P J Bekowies A M Winer and J N Pitts Jr Environ Sci Technol accepted for publication

(24) E R Stephens Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973 NTIS No PB 230 993AS

(25) E R Stephens and F R Burleson J Air Pollut Control Assoc 17 147 (1967)

(26) Ozone measurement was based on calibration by the 2 neutral buffered Kl method and was subsequently corrected from spectroscopic calibration data [-see J N Pitts Jr J M McAfee W Long and A M Winer Environ Sci Technol in pressJ

(27) B Weinstock and T Y Chang Telus 26 108 (1974) (28) T A Hecht J H Seinfeld and M C Dodge Environ Sci Technol 8 327

(1974) (29) L Zafonte P L Rieger and J R Holmes Some Aspects of the Atmoshy

spheric Chemistry of Nitrous Acid presented at 1975 Pacific Conference on Chemistry and Spectroscopy Los Angeles Calif Oct 28-30 1975 W H Chan R J Nordstrum J G Calvert and J N Shaw Chem Phys Lett 37441 (1976)

(30) J M McAfee A M Winer and J N Pitts Jr unpublished results (31) C C Wang L I Davis Jr CH Wu S Japar H Niki and B Weinstock

Science 189 797 (1975) (32) H Niki and B Weinstock Environmental Protection Agency Seminar

Washington DC Feb 1975 (33) A C Lloyd Int J Chem Kinet 6 169 (1974) (34) J G Calvert J A Kerr K L Demerjian and R D McQuigg Science 175

751 (1972) (35) R Atkinson and J N Pitts Jr J Chem Phys 63 3591 (1975) (36) D Perner D H Ehhalt H W Patz U Platt E P Roth and A Volz OH

Radicals In the Lower Troposphere 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(37) D D Davis T McGee and W Heaps Direct Tropospheric OH Radical Measurements Via an Aircraft Platform Laser Induced Fluorescence 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(38) E Sanhueza and J Helcklen Can J Chem 52 3870 (1974) (39) E Sanhueza and J Helcklen Int J Chem Kinet 6 553 (1974) (40) E Sanhueza I C Hisatsune and J Heicklen Oxidation of Haloethylenes

Center for Air Environment Studies The Pennsylvania State University CAES Publication No 387-75 Jan 1975

(41) E A Lissi private communication to authors of ref 40 and quoted therein (42) J A Franklin G Huybrechts and C Cillien Trans Faraday Soc 65 2094

(1969) (43) B W Gay Jr P L Hans J J Bufalinl and R C Noonan Environ Sci

Technol 10 58 (1976) (44) R F Lake and H Thompson Proc R Soc London Ser A 315 323

(1970) (45) LA Ripperton and H E Jefferies Adv Chem Ser No 113 219 (1972) (46) E D Morris Jr and H Niki J Phys Chem 75 3640 (1971) (47) S Fischer R Schiff E Machado W Bollinger and D D Davis 169th

National Meeting of the American Chemical Society Philadelphia Pa April 6-11 1975

(48) S M Japar CH Wu and H Niki Environ Lett 7245 (1974) (49) J S Gaffney R Atkinson andJ N Pitts Jr J Am Chem Soc 97 5049

(1975) (50) K R Darnall A C Lloyd A M Winer and J N Pitts Jr Environ Sci

Technol in press (51) J N Pitts Jr A C Lloyd A M Winer K R Darnall and G J Doyle

Development and Application of a Hydrocarbon Reactivity Scale Based on Reaction with the Hydroxyl Radical to be presented at 69th Annual APCA Meeting Portland Oreg June 27-July 1 1976

The Journal of Physical Chemistry Vol 80 No 14 1978

69

l

Reactivity Scale for Atmospheric Hydrocarbons Based on Reaction with Hydroxyl Radical

Karen R Darnall Alan C Lloyd Arthur M Winer and James N Pitts Jrbull

Statewide Air Pollution Research Center University of California Riverside Calif 92502

Bv use of relative and absolute rate constants for the reshyactiltn of the hydroxyl radical (OH) with a number of alkanes alkenes aromatics and ketones a reactivity scale is formushylated based on the rate of removal of hydrocarbons and oxyshygenates by reaction with OH In this five-class scale each class spans an order of magnitude in reactivity relative to methane Thus assigned reactivities range from lt10 fo~ ~lass I (conshytaining oniv methane) togt104 for Class V cotammg te mo~t reactive compounds (eg d-limonene) This scale differs m several significant ways from those presently utilized by _air p(llution control agencies and various industrial laboratories For example in contrast to other scales based o~ s_eco~dar_y marifestations such as yields of ozone and eye 1rritat1on it focuses directlv on initial rates of photooxidation The proshyposed scale als~ provides a clearer understandin~ of the_imshyportance of alkanes in the generation of ozone durmg per10~s of prolonged irradiation The present ~cale can be readily extended to include additional orgamc compounds (eg natural and anthropogenic hydrocarbons oxygenates chloshyrinated solvents) once their rate of reaction with OH is known

It has been recognized for many years (1-21) that all hyshydrocarbons occurring in polluted atmospheres are not equally effective in producing photochemical oxidant and hence that the application of cost effective strategies for the control of hydrocarbons requires that more stringent emissions reducshytions be applied to the more reactive organic compounds (22-25) This in turn has led to a continuing requirement for a rational assessment of hydrocarbon reactivity as a basis for control decisions Such an assessment is particularly critical since attainment of the Federal air quality standard for phoshytochemical oxidant has been sought largely through the stringent control of hydrocarbon emissions (26-27)

The first effort to formulate and apply a practical hydroshycarbon reactivity scale was taken in 1966 with the impleshymentation by the Los Angeles Air Pollution Control District (LAAPCD) of a regulation known as Rule 66 to limit solvent organic emissions on the basis of their capacity for promoting photochemical smog formation (24-25) This rule an~ other conceptions of reactivity scales (28) represented a maJor adshyvance in the application of the information then available concerning the mechanisms of photochemical smog formation to the development of practical air pollutant emission control strategies

Not surprisingly however both in the past and present there have been significant differences in hydrocarbon reacshytivity scales proposed by local regional and national air pollution control agencies (23 29-31) as well as by industy (14 16) As shown in Table I this can lead to very large difshyferences in emission inventory estimates and in approaches to hydrocarbon control (29 32 33) In this case reactive hyshydrocarbon emission inventory levels calculated by Goeller et al (32) using hvdrocarbon reactivity definitions of the Envishyronmental Protection Agency (EPA) on tlie one hand and the California Air Resources Board (ARB) and LAAPCD on the other differed by factors of 3 to 4

A second problem common to virtually all previous reacbull tivity classifications has been their reliance on smog chamber data obtained for relatively short irradiation (~2-6 h) periods

Thus the recent concern over oxidant formation resulting from ionger irradiations during pollutant tr~sport ~o ~egio_ns downwind of urban sources introduces additional d1fficult1es both in defining what constitutes a reactive hydr~carbon and in categorizing degrees of reactivity For example a compound such as propane the major component in liquefied petroleum gas (LPG) and often cited as a clean fuel is now known (34-36) to contribute to the formation of photochemical oxishydants in the later stages of day-long irradiation periods However on the basis of data obtained during short-term ir- middot radiations propane has been classified as unreactive in a reactivity scale proposed (23) by B Dimitriades of the EPA (hereafter referred to as the EPA reactivity scale)

Altshuller ald Bufalini (9 17) have reviewed the various definitions of hydrocarbon reactivity ~nd summarized results of numerous studies up to 1970 The criteria used for evalushyating hydrocarbon reactivity include hydrocarbon conshysumption the conversion of nitric oxide to nitrogen dioxide ozone formation aerosol formation eye irritation and plant damage It is generally agreed that the criteria most suitable with respect to photochemical oxidant control strategies are ozone dosage or maximum ozone concentration (29) However establishing a definitive hydrocarbon reactivity scale to be applied specifically to the control of ozone formation requires an extensive and lengthy experimental program in which the ozone-forming capability of each individual hydrocarbon is determined under simulated atmospheric conditions inshycluding long-term irradiation (ie 12-14 h)

An alternative basis for assessing hydrocarbon reactivity which would appear to have considerable utility and a valid experimental foundation is the formulation of a reactivity scale based on the rate of disappearance of hydrocarbons due to reaction with the hydroxyl radical the key intermediate spcies in photochemical air pollution

Results and Discussion

It is only in the last six years that the critical role-of OH in photochemical smog formation has been generally recognized (37-40) and that appreciable rate constant data have become available for the reaction of OH with several classes of hyshydrocarbons The importance of OH as a reactive intermediate relative to species such as Oa 0(3P) and H02 has been shown previously (39-41) through computer modeling of smog chamber data For example Niki et al (39) showed that the reactivity of a number of hydrocarbons as measured by the rate of conversion of NO to N02 correlated significantly better with OH rate constants than with either 0(3P) or Oa rate constants

Table I Comparison of Reactive Hydrocarbon Inventory Levels for Fixed Sources Under Alternative Reactivity Assumptions (from Ref 32 Based on Pre-1973 Data)

Reactive hydrocarbons tonsday

Control Conslslenl ARB-

strat-iy EPA lAAPCD Rand Corp

1970 8760 2283 6363 1975 nominal 4273 1022 2399 1975 maximal 2906 577 1299

Reprinted from ENVIRONMENTAL SCIENCEamp TECHNOLOGY yo 10 Page 692 ~uly 1976 Copyright 1976 by the American Chemical Society an1 0eprinted by perm1ss1on of the copynght owner

The utility of a large environmental chamber in obtaining relative rate constants with an accuracy of plusmn20 for the reshyaction of the hydroxyl radical with a variety of hydrocarbons was demonstrated in an earlier study in this laboratory (41 ) This method has recently been extended to an investigation of more than a dozen additional hydrocarbons including seven compounds for which OH rate constants are not currently available The detailed kinetic data derived from this invesshytigation have been reported elsewhere (42) In these studies we determined the rPlative rates of disappearance of selected alkanes alkenes and aromatic hydrocarbons under simulated atmospheric conditions of temperature pressure concenshy

l

middottrations light intensity and other trace contaminants (NO CO hydrocarbons water) These relative rate constants were placed on an absolute basis using the published rate cons~ts for OH+ n-butane The assumption that OH was responsible for the hydrocarbon disappearance under the experimental conditions employed (41) was subsequently supported by the very good agreement between OH rate constants determined for the individual compounds using flash photolysis-resoshynance fluorescence techniques (43 44) and those obtained in

l the initial chamber study (41) The general validity of the chamber method for obtaining OH rate constants is illustrated in Figure 1 where the good correspondence between chamber values (41 42) and the available literature values [(45) and references in Table IV] is shown graphically

The importance of the chamber method for the purposes of formulating a reactivity scale is the simultaneous detershymination of valid rate constants for reactions of OH with a large number and wide variety of atmospherically important hydrocarbons This substantially expands the number of compounds which can be incorporated now and in the near future in the resulting reactivity scale In this regard we are currently extending (46) the chamber method to the detershymination of rate constants for reactions of OH with natural hydrocarbons such as terpenes and solvent hydrocarbons such as ketones and chloroethenes for which no data currently exist Preliminary kinetic data (46) for selected natural hyshydrocarbons and ketones are included in our proposed reacshytivity scale

Use of OH Rate Constants as a Reactivity Index From the successful correlation of OH rate constants with the rates of hydrocarbon disappearance observed in our chamber simulations we conclude that to a good approximation this

Ill 1-- 25 z

~~ a ii ~ lt 20 ux ow ~ f5 ~ ~ 15 u lt(0 c

()

~ ~ 10 14

~ tla z ILI lt(

~ 1i 5 I- w lt( Q __ Q

ILI lt(a Ill

i5 o 5 ~ ~ W ~ ~ ~ 40

PUBLISHED RATE CONSTANTS ( J mol-1sec-I x 10-9)

Figure 1 Comparison of relative rates of hydrocarbon disappearan~e determined by environmental chamber method (refs 41 a~d 42) with selected published rate constants (cited in Table IV) for reaction of those hydrocarbons with OH radicals Line shown represents one to one correspondence and has slope of ( 1 18) X 10-9 mol s 1- 1bull Compounds shown are 1 n-butane 2 isopentane 3 toluene 4 2-methylpentane 5 n-hexane 6 ethane 7 3-melhylpentane 8 p-xylene 9 erxylene 10-11 m-xylene 12 123-trimeth~lbenzene_ 13 propane 14 124--trimethylbenzene 15 135-trimethylbenzene 16 cs-2-butene

71

Table II Effect of 0 1 PPM Ozone on Calculated Lifetimes of Selected Alkenes Based on Reaction with OH Radicals (1 X 107 Radicalscm3 ) a at 300 K

OH rate constants b Hall-Ille c tor Hall-Ille d lor Alkenamp I mo1- 1 bull-1 [o3J=0 h (03) = 01 ppm h

Ethene 38 X 109 30 28

Propene 15 X 1010 076 067

cis-2- 32 X 1010 036 020 Butene

13-Buta- 46 X 1010 025 024 diene bull b bull

bull Concentration used in these calculations-see text See references on Table IV c t112 = 0693kOH[OH] under the assumption ol attack only by OH d t12 = 0693(kOH[OH] + ko(03]) ko3 taken from refs 45 and 59

correlation can be extr~polated to the atmosphere for alkenes in ambient air parcels during the early morning hours when ozone levels are generally quite low (5005 ppm) and for alshykanes and aromatics at essentially all times and locations The latter assumption namely that an OH rate constant is a good reactivity index for alkanes and aromatics throughout an irradiation day (or multiple irradiation days) rests upon the fact that the rates of reaction of these classes of hydrocarbons with species such as ozone 0(3P) atoms and hydroperoxyl radicals are several orders of magnitude slower than with OH (45 47-49) For example even at the highest ozone concenshytrations experienced in ambient atmospheres 03 will not contribute significantly to the photooxidation of alkanes and aromatics

This is in contrast to the case for alkenes which although the rate constants for reaction of Oa with alkenes are not particularly large (45) react rapidly with ozone at the average concentrations commonly encountered in polluted ambient air (---01-02 ppm) The approximate magnitude of the effect of ozone on the atmospheric lifetimes of alkenes is given in Table II From their OH rate constants (see Table IV) atshymospheric lifetimes for four alkenes were obtained by asshysuming an OH radical concentration in polluted atmospher~s of 107 radicals cm-3 which is a reasonable value on the bass of both model calculations (50) and recent atmospheric measurements (51-53) The half-life given in column 3 of Table II is defined as t 1 2 = 0693k(OH) and assumes deshypletion of the hydrocarbon solely by the hydroxyl radical When one assumes an average concentration of 010 ppm of 0 3 the more reactive alkenes show considerably shorter half-lives (column 4) For example the lifetime of cis-2-butene in the atmosphere is 036 h assuming only reaction with OH but this is reduced to 020 h when reaction with Oa at a conshycentration of 01 ppm is considered

Proposed Reactivity Scale Under the assumption that hydrocarbon depletion is due solely to attack by OH (with the qualification noted for alkenes) we propose a five-class reshyactivity scale based on hydrocarbon disappearance rates due to reaction with OH The ranges of reactivities for the five proposed classes each span an order of magnitude in reactivity relative to methane and are shown in Table III The hydroshycarbon half-lives as defined above are also shown for each reactivity range

Hydroxyl radical rate constant data for a wide ra~ge of atshymospheric hydrocarbons have been taken from the literature as well as from our own studies and are compiled and refshyerenced in Table IV The assignment of these compounds in the various classes of our proposed reactivity scale is shown in the last column of Table IV For interest carbon monoxide is included in this table since although it is not a hydrocarbon it is present in polluted urban atmospheres but is generally regarded as being unreactive in ambient air Thus carbon

Volume 10 Number 7 July 1976 693

l

monoxide appears as being somewhat reactive in Class 11 Cohen (o) and Glasson and Tuesday (8) was essentially the which also includes ethane and acetylene In our current same as that obtained from the studies of hydrocarbon conshycompilation of compounds methane is the only compound sumption carried out by Schuck and Doyle (1 ) Stephens and listed which appears in Class I and 2-methyl- and 23-dishy Scott (3) and Tuesday (5) We are currently investigating methyl-2-butene and d-limonene are the only compounds in methods of quantitatively relating hydrocarbon consumption Class V Several of the higher alkenes and 13-butadiene apshy to nitric oxide oxidation and ozone formation the parameter pear at the upper end of Class IV Data from our recent study of greatest interest in formulating control strategies for oxishyof monoterpeiie hydrocarbons ( 46) indicate that many of these dant reduction compounds will appear in Class V (54) As indicated above Rule 66 formulated by the LAAPCD

Comparison with Other Scales The ranking of reacshy in 1966 represented the first hydrocarbon control measure tivities for the aromatic hydrocarbons in our scale is essentially based on photochemical reactivity Although this regulation the same as that obtained by Altshuller et al (4) and by has been effective results from recent studies (34-36) indicate Kopczynski (7 17) Although our proposed scale is based that the 4-6 h irradiations (25) from which assignments of solely on hydrocarbon disappearance rates Altshuller and the degree of reactivity of hydrocarbons were made in forshyBufalini ( 17) have shown that this measure of reactivity is very mulating Rule 66 did not give sufficient recognition to the similar to the one based on nitric oxide oxidation rates They ozone-forming potential of slow reactors such as n-butane and showed that the ranking of reactivities of hydrocarbons from propane Consequently it is now realized that measures more the nitric oxide photooxidation studies of Altshuller and stringent than Rule 66 are necessary to achieve reductions in

ozone formation to levels approaching th(se mandated by the US Clean Air Act Amendments of 1970

Table Ill Reactivity Scale for Hydrocarbons Based on Recognition of such deficiencies in current hydrocarbon Rate of Disappearance of Hydrocarbon Due to control regulations has led to reexamination of present hyshyReaction with Hydroxyl Radicals drocarbon reactivity classifications The focus of these reshy

evaluations has been the five-class reactivity scale (see TableClasa Hall-Hiebull Reactivity rel to methane ( =1)

I gt99 days lt10 V) proposed by B Dimitriades at the EPA Solvent Reactivity II 24 h to 99 days 10-100 Conference in 1974 (23) Significant changes have been sugshy

gested for this reactivity classification by the California ARB (29 30) the LAAPCD (31) the EPA (55) and by industry

Ill 24-24 h 100-1000 IV 024-24 h 1000-10 000

However since no final conclusions have been reached by any V lt024 h gt10 000 t112 = 0693kOH[OH] of these agencies at this time we will restrict comparison of

our proposed scale to the 1974 EPA scale

r Table IV Proposed Reactivity Classification of Hydrocarbons and CO Based on Reaction with Hydroxyl Radicals

Compound koH + Cpd (I mo1- 1 s-1) X 10-9 Rat Reactivity rel to methane ProPQsad class see Table Ill

Methane 00048 (60) 1 I co 0084 (45) 18 II Acetylene 011 (45 61 66) 23 II Ethane 016 (62) 33 II Benzene 085 (43 44) 180 Ill Propane 13 (63) 270 Ill n-Butane 18 (41 42) 375 Ill lsopentane 20 (42) 420 Ill Methyl ethyl ketone 21 (46) 440 Ill 2-Methylpentane 32 (42) 670 Ill Toluene 36 (43 44) 750 Ill n-Propylbenzene 37 (42) 770 ill lsopropylbenzene 37 (42) 770 ill Ethane 38 (42 64-66) 790 Ill n-Hexane 38 (42) 790 Ill 3-Methylpentane 43 (42) 900 Ill Ethylbenzene 48 (42) 1000 Ill-IV P-Xylene 745 (41 43) 1530 IV p-Ethyltoluene 78 (42) 1625 IV o-Ethyltoluene 82 (42) 1710 IV o-Xylene 84 (41 43) 1750 IV Methyl isobutyl ketone 92 (46) 1920 IV m-Ethyltoluene 117 (42) 2420 IV m-Xylene 141 (4143) 2920 IV 123-Trimethylbenzene 149 (41 43) 3100 IV Propene 151 (67) 3150 IV 124-Trimethylbenzene 20 (41 43) 4170 IV 135-Trimethylbenzene 297 (41 43) 6190 IV cis-2-Butene 323 (67) 6730 IV 8-Pinene 42 (46) 8750 IV 13-Butadiene 464 (42) 9670 IV-V 2-Methyl-2-butene 48 (68) 10 000 V 23-Dimethyl-2-butene 67 (69) 14 000 V d-Limonene 90 (46) 18800 V

bull Where more than one reference is cited an average value is given for the rate constant

694 Environmental Science amp Technology 72

i

Table V Proposed EPA Reactivity Classification of Organics (from Ref 23 1974) Claul Class II Class Ill Class IV Class V

nonreactive reactive reactive reactlVe reactive

C-C3 paraffins Mono-tertiary- CH paraffins Primary and secondary Aliphatic olefins

Acetylene Cycloparaffins a-Methyl styrene alkyl benzeries alkyl benzenes

Cyclic ketones Dialkyl benzenes

Benzaldehyde Tertiary-alkyl n-Alkyl ketones Branched alkyl Tri- and tetra-alkyl acetates ketones

Benzene Styrene Aliphatic aldehydes

benzenes 2-Nitropropane Primary and secondary

Acetone Primary and secondary alkyl acetates Unsaturated ketones Methanol alkyl alcohols N-methyl pyrrolidone Diacetone alcohol Tertiary-alkyl Cellosolve acetate

3lcohols NN-dimethyl Ethers ace tam Ide Partially halogenated

Phenyl acetate CellosolvesolefinsPartially halogenated paraffins Methyl benzoate

Partially halogenated Ethyl amines paraffins

Dimethyl formamlde

Perhalogenated hydrocarbons

Reactivity rating 10 35 65 97 143

Briefly the EPA has proposed on the basis of previous experimental studies that methane ethane acetylene proshypane and benzene are essentially nonreactive for typical urban ambient hydrocarbon-NOx ratios (23) and these compounds are placed in Class I on their scale Three other classes have been proposed for mobile source hydrocarbon emissions (56)-Class III (C4 and higher alkanes) Class IV (aromatics less benzene) and Class V (alkenes) When stashytionary source hydrocarbons including solvents (Class II) are added to the list five classes are suggested as shown in Table V

Thmiddot reactivity classification proposed here (Tables III and IV) can be compared with that suggested by the EPA (Table V) It is evident that several significant differences emerge

bull The C1-C3 alkanes are given equal weighting in the EPA scale and all are designated unreactive whereas our scale clearly differentiates among the three compounds from methane in Class I and ethane in Class II to the more reactive propane in Class III

bull According to our proposed classification benzene and n-butane are of similar reactivity whereas the EPA scale places them in Class I and III respectively

bull All the alkenes are placed in Class V of the EPA scale whereas our proposed scale shows a differentiation in reacshytivity from ethene in Class III to 23-dimethyl-2sbutene in Class V

bull Our scale g1ves recognition to the high reactivity of natshyural hydrocarbons such as 3-pinene and d-limonene placing these in Class IV and V respectively The present published EPA scale does not give a classification for natural hydroshycarbons although they could be loosely categorized as subshystituted alkenes in Class V

In addition to noting these differences some similarities exist between the two scales For example our scale shows that 13-butadiene is highly reactive which is consistent with preshyvious studies indicating it to be a facile precursor of eye irrishytants (17) and highly effective in producing oxidant during irradiation of HC-NOx mixtures (57) Also methanol would appear in the low half of Class II in our scale based on a recent dstermination of the rate constant for OH attack on methanol (58) The value found was k(OH+CH30H)lkltOH+CO) = 063 at 298 K This reduces to 53 X 107 1 mo1-1 s-1 based on k(oH+CO) = 84 X 107 1 mo1-1s-1 (45) Hence both our scale and the EPAs show methanol to be relatively unreactive

It should be emphasized that the classification proposed in our scale is not strictly applicable to compounds which

73

undergo significant photodissociation in the atmosphere for example aliphatic aldehydes In such cases the compound will be more reactive than predicted from a scale based on hydrocarbon depletion due solely to OH attack However our proposed classification emphasizes that most compounds react in polluted atmospheres and suggests that thf Class I scale be reserved only for the few compounds which have half-lives greater than about 10 days

Conclusion

Our proposed reactivity scale based on the depletion of hydrocarbons by reaction with the OH radical has utility in assessing hydrocarbon chemical behavior in polluted ambient air Since only those organic compounds which participate in atmospheric reactions are of consequence in the chemical transformations in ambient air their relative reactivity toward OH is a useful and directly measurable index of their potential importance in the production of secondary pollutants

Ohe advantage of the proposed scale is that because it is based on the individual rate constants for hydrocarbon reacshytion with OH any degree of gradation in reactivity may be used to formulate any desired number of classes-from relashytively few to a large number of classes or even an ordered ranking of compounds A second strength of the present scale is that it can be readily extended to include additional organic compounds once their rate of reaction with OH is known Fishynally the proposed scale gives greater weight than previous reactivity scales to the alkanes and a number of aromatic hydrocarbons which require a longer period of time to react but can contribute significantly to ozone formation during longer irradiation periods eg during their transport downshywind from urban centers-a phenomenon of increasing conshycern to air pollution control agencies

Acknowledgment

We gratefully acknowledge helpful discussions with R Atkinson G J Doyle D M Grosjean and E R Stephens

Literature Cited

(1) Schuck E A Doyle G bull J Photooxidation of Hydrocarbons in Mixtures Containing Oxides of Nitrogen and Sulfur Dioxide Rept No 29 Air Pollution Foundation San Marino Calif 1959

(2) Leighton PA Photochemistry of Air Pollution Academic Press New York NY 1961

(3) Stephens E R Scott W E Proc Am Pet Inst 42 (111)665 (1962)

Volume 10 Number 7 July 1976 695

l

1 I l

(4) Altshuller A P Cohen I R Sleva S F Kopczynski S L Sciena 135442 (1962)

(5) Tuesday C S Arch Emmiddotiron Health 7 188 (1963) (6) Altshuller A P Cohen I R Int J Air Water Pollut 7 787

(19631 (7) Kopczynski S L ibid 8 107 (1964) (8) Glasson W A Tuesday C S paper presented at the 150th

National Meeting ACS Atlantic City NJ September 1965 (9) Altshuller A P Bufalini J J J Photochem Photobiol 4 97

(J96fi (10) Heuss JM Glasson W A Environ Sci Technol 2 1109

(19681 (11) Altshuller A P Kopczynski S L Wilson D Lonneman W

Sutterfield F D J Air Pollut Control Assoc 19 787 (1969) (12) Altshuller A P Kopczynski S L Wilson D Lonneman W

Sutterfield F D ibid p 791 (13) Dimitriades B Eccleston B H Hurn R W ibid 20 150

(19701 (14) Levy A Miller S E Final Technical Report on the Role of

Solvents in Photochemical Smog Formation National Paint Varnish and Lacquer Assoc Washington DC 1970

(15) Wilson K W Doyle G J Investigation of Photochemical Reactimiddotities of Organic Solvents Final Report SRI Project PSU-8029 Stanford Research Institute Irvine Calif September 1970

(16) Glasson W A Tuesday C S J Air Pollut Control Assoc 20 239 (1970)

(17) Altshuller A P Bufalini J J Environ Sci Technol 5 39 (1971)

(18) Glasson W A Tuesday C S ibid p 153 (19) Stephens E R in Chemical Reactions in Urban Atmospheres

pp 45-54 C Tuesday Ed American Elsevier New York NY 1971

(20) Stephens E R Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973

(21) Kopczynski S L Kuntz R L Bufalini J J Environ Sci Technol 9608 (1975)

(22) Control Techniques for Hydrocarbon and Organic Solvent Emissions from Stationary Sources Nat Air Pollut Control Admin Publication AP-68 March 1970

(23) Proceedings of the Solvent Reactivity Conference US Enshyvironmental Protection Agency Research Triangle Park NC EPA-6503-74-010 November 1974

(24) Hamming W J SAE Trans 76 159 (1968) (25) Brunelle M F Dickinson JE Hamming W J Effectiveness

of Orga1ic Solvents in Photochemical Smog Formation Solvent Project Final Report Los Angeles County Air Pollution Control District July 1966

(26) Emironmental Protection Agency Region IX Technical Support Document January 15 1973

(27) Feldstein J J Air Polut Control Assoc 24469 (1974) (28) Altshuller A P ibid 16257 (1966) (29) California Air Resources Board Informational Report Progress

Report on Hydrocarbon Reactivity Study June 1975 (30) Organic Compound Reactivity System for Assessing Emission

Control Strategies ARB Staff Report No 75-17-4 September 29 1975

(31) Los Angeles County APCD Proposed Reactivity Classification of Organic Compounds with Respect to Photochemical Oxidant Formation Los Angeles County Air Pollution Control Departshyment July 21 1975

(32) Goeller B F Bigelow J H DeHaven JC Mikolowsky W T Petruschell R L Woodfill B M Strategy Alternatives for Oxidant Control in the Los Angeles Region R-1368-EPA Rand Corp Santa Monica Calif December 1973

(33) Impact of Reactivity Criteria on Organic Emission Control Strategies in the Metropolitan Los Angeles AQCR TRW Interim Report March 1975

(34) Holmes J California Air Resources Board private communishycation 1975

(35) Pitts J N Jr Winer A M Darnall K R Doyle G J McAfee JM Chemical Consequences of Air Quality Standards an~ of Control Implementation Programs Roles of Hydrocarbons Oxides of Nitrogen and Aged Smog in the Production of Photoshychemical Oxidant Final Report California Air Resources Board Contract No 3-017 July 1975

(36) Altshuller A P in Proceedings of the Solvent Reactivity Conference US Environmental Protection Agency Research Triangle Park NC EPA-6503-74-010 pp 2-5 November 1974

(37) Heicklen J Westberg K Cohen N Puhl 115-69 Center for Air Environmental Studies University Park Pa 1961

(38) Weinstock R Daby E E Niki H Discussion on Paper Presented by E R Stephens in Chemical Reactions in Urban Atmospheres pp 54-55 C S Tuesday Ed Elsevier New York NY 1971

(39) Niki H Daby E E Weinstock B AdLbull Chem Ser 113 16 (197)

(40) Demerjian K L Kerr J A Calvert J G Adv Environ Sci Technol 4 1 (1974)

(41) Doyle G J Lloyd A C Darnall K R Winer A M Pitts J N Jr Environ Sci Technol 9237 (1975)

(42) Lloyd A C Darnall K R Winer A M Pitts J N Jr J Phys Chem 80 789 (1976)

(43) Hansen D A Atkinson R Pitts J N Jr ibid 79 1763 (1975) (44) Davis D D Bollinger W Fischer S ibid p 293 (45) Chemical Kinetic and Photochemical Data for Modeling Atshy

mospheric Chemistry NBS Technical Note 866 R F Hampson Jr llQJJQarvin Eds Ju_ne 1975_____~ middot middot

(46)rloyd A C~arnliltKR-XWiner A JI_) Pitts J N Jr J Phys Chem 80 lflgti (1976)

(47) Pate C T Atkmiddot ori R Pitts J N Jr J Environ Sci Health All 1 (1976)

(48) Atkinson R Pitts J N Jr J Phys Chem 78 1780 (1974) (49) Stedman D H Niki H Environ Lett 4303 (1973) (50) Calvert J McQuigg R Proceedings of the Symposium on

Chemical Kinetics Data for the Upper and Lower Atmosphere Warrenton Va September 15-18 1974 Int J Chem Kinet Symposium No 1 113 (1975)

(51) Wang C C Davis L I Jr Wu CH Japar S Niki H Weinstock B Science 189 797 (1975)

(52) Perner D Ehhalt D H Patz H W Platt U Roth E P Volz A OH Radicals in the Lower Troposphere 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(53) Davis D D McGee T Heaps W Direct Tropospheric OH Radical Measurements via an Aircraft Platform Laser Induced Fluorescence ibid

(54) Pitts J N Jr Lloyd A C Winer A M Darnall K R Doyle G J Development and Application of a Hydrocarbon Reactivity Scale Based on Reaction with the Hydroxyl Radical to be preshysented at 69th Annual APCA Meeting Portland Ore June 27-July 1 1976

(55) Informal EPA meeting Philadelphia Pa July 30-31 1975 (56) Black M High L E Sigsby JE Methodology for Assignshy

ment of a Hydrocarbon Photochemical Reactivity Index for Emissions from Mobile Sources US Environmental Protection Agency Research Triangle Park NC EPA-6502-75-025 March 1975

(57) Haagen-Smit A J Fox M M Ind Eng Chem 48 1484 (1956)

(58) Osif T L Simonaitis R Heicklen J J Photochem 4 233 (1975)

(59) Japar S M Wu CH Niki H J Phys Chem 78 2318 (1974) (60) Davis D D Fischer S Schiff R J Chem Phys 61 2213

(1974) (61) Pastrana A Carr R W Jr Int J Chem Kinet 6587 (1974) (62) Overend R Paraskevopoulos G Cvetanovic R J Hydroxyl

Radical Rate Measurement for Simple Species by Flash Photolysis Kinetic Spectroscopy Eleventh Informal Conference on Photoshychemistry Vanderbilt University Nashville Tenn June 1974

(63) Gorse R A Volman D HJ Photochem 3115 (1974) (64) Greiner N R J Chem Phys 53 1284 (1970) (65) Smith I W M Zellner R J Chem Soc Faraday Trans II

69 1617 (1973) (66) Davis D D Fischer S Schiff R Watson R T Bollinger W

J Chem Phys 63 1707 (1975) (67) Atkinson R Pitts J N Jr ibid p 3591 (68) Atkinson R Perry R A Pitts J N Jr Chem Phys Lett

38607 (1976) (69) Atkinson R Perry R A Pitts J N Jr unpublished results

1975 Received for review November 3 1975 Accepted January 30 1976 Work supported by the California Air Resources Board (Contract No 4-214) and the National Science Foundation-RANN (Grant No AEN73-02904 A02) The contents do not necessarily reflect the vieumiddots and policies of the California Air Resources Board or the National Science Foundation-RANN nor does mention of trade names or commercial products constitute endorsement or recommendation for use

696 Environmental Science amp Technology 74

Ii

rl

I r I

G

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE

BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Statewide Air Pollution Research Center University of California

Riverside CA 92521

Paper No 76-311

Presented at the 69th Annual Air Pollution Control Association Meeting

Portland Oregon

June 27 - July 1 1976

75

76-311 rII 2

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Statewide Air Pollution Research Center University of California

Riverside CA 92502

Abstract

Measurements of the relative rate constants for the reaction of the hydroxyl radical (OH) with some 35 atmospherically important hydrocarbons have been made in the SAPRC 6400 i glass irradiation chamber These rate constants were placed on an absolute basis using literature values for either n-butane or isobutene and have been augmented with OH rate data obtained by elementary reaction measurements and other appropriate data such as that from photoshy

l oxidation studies from which relative and absolute OH rate constants could be calculated

l Utilizing these data a reactivity scale for some 80 compounds including alkenes alkanes aromatics oxygenates and naturally occurring hydrocarbons has been formulated based on the removal of the hydrocarbons by reaction with OH The resulting scale is an ordering of the reactivities of the hydrocarbons relative to methane The scale can be divided into an arbitrary number of classes for purposes of application to control strategies or comparison with other reactivity scales

Some comparisons of the present scale with proposed EPA and ARB reactivity scales are made and the implications of the present scale for the role of alkanes and a number of aromatic hydrocarbons in the formation of ozone in regions downwind of urban centers is analyzed

76

r I

I D

-I

f

76-311 3

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Introduction

1A major result of the photooxidation studies of the past 20 years - 26 has been the recognition that atmospherically important hydrocarbons do not all contribute equally to the production of photochemical oxidant and hence that the application of cost effective strategies for the control of hydrocarbons requires that more stringent emissions reductions be applied to the more reactive organic compounds 10lll9 26 This in turn has led to a continuing requirement for a rational assessment of hydrocarbon reactivity as a basis for control decisions Such an assessment is particularly critical since attainshyment of the Federal air quality standard for photochemical oxidant has been sought largely through the stringent control of hydrocarbon emissions2728

The first effort to formulate and apply a practical hydrocarbon reactivity scale was taken in 1966 with the implementation by the Los Angeles Air Pollution Control Districtmiddot (LAAPCD) of a regulation known as Rule 66 to limit solvent organic emissions on the basis of their capacity for promoting photoshychemical smog formation 10ll This rule and other conceptions of reactivity scales29 represented a major advance in the application of the information then available concerning the mechanisms of photochemical smog formation to the development of practical air pollutant emission control strategies Thus the basic concept of selective control of emissions based on their reactivity is now widely established

Not surprisingly however there have been significant differences in hydrocarbon reactivity scales proposed by local regional and national air pollution control agencies2530-34 as well as by industry161823 This in turn can lead to quite large differences in emission inventory estimates and in approaches to hydrocarbon control303536

Most although not all previous reactivity classifications have relied primarily on smog chamber data obtained for relatively short irradiation (~ 6 hrs) periods Thus the recent concern over oxidant formation resulting from longer irradiations during pollutant transport to regions downwind of urban sources introduces additional difficulties both in defining what constishytutes a reactive hydrocarbon and in categorizing degrees of reactivity For example a compound such as propane the major component in liquified petroleum gas (LPG) and often cited as a clean fuel is now known37-39 to contribute to the formation of photochemical oxidants in the later stages of day-long irradiation periods However on the basis of data obtained during short-term irradiations propane has been classified as unreactive in a reactivity scale

77

76-311

[

r I l

J

I

4

proposed25 in 1974 by B Dimitriades of the EPA (hereafter referred to as the EPA reactivity scale)

A third difficulty with reactivity scales which are based on previous smog chamber data concerns their reliance on measurements of smog manifestations such as maximum ozone concentrations Observed values of such secondary properties of a photooxidation system can be significantly affected by the particular chamber materials light source purity of matrix air and other aspects of the chamber methodology employed This fact can account in large measure for the significant number of discrepancies which arise from comparison of the specific ranking of hydrocarbons in reactivity scales formulated on the basis of different sets of chamber data

Altshuller and Bufalini9 zo have reviewed the various definitions of hydroshycarbon reactivity and summarized results of numerous studies up to 1970 The criteria used for evaluating hydrocarbon reactivity include hydrocarbon conshysumption the conversion of nitric oxide to nitrogen dioxide ozone formation aerosol formation eye irritation and plant damage It is generally agreed that the criteria most suitable with respect to photochemical oxidant control strategies are ozone dosage or maximum ozone concentration30 However establishing a definitive hydrocarbon reactivity scale to be applied specifishycally to the control of ozone formation requires an extensive and lengthy experimental program in which the ozone-forming capability of each individual hydrocarbon is determined under simulated atmospheric conditions including long-term irradiation (ie 10-12 hrs)

An alternative and perhaps supplementary basis for assessing hydrocarbon reactivity which appears to have considerable utility and a valid experimental foundation is the formulation of a reactivity scale based on the rate of disshyappearance of hydrocarbons due to their reaction with the hydroxyl radical the key intermediate species in photochemical air pollution

Results and Discussion

It is only comparatively recently that the critical role of OH in photoshychemical smog formation has been generally recognized40-44 and that appreciable rate constant data have become available for the reaction of OH with several classes of hydrocarbons The importance of OH as a reactive intermediatz

46relative to species such as o3 o(3P) and H02 has been shown previously 3-through computer modeling of smog chamber data For example Niki Daby and Weinstock43 showed that the reactivity of a number of hydrocarbons as measured by the rate of conversion of NO to NOz correlated significantly betterwith OH rate constants than with either 0(3P) or 03 rate constants

The utility of a large environmental chamber in obtaining relative rate constants with an accuracy of plusmn20 for the reaction of the hydroxyl radical with a variety of hydrocarbons has been demonstrated in a number of recent studies both in this45-48 and other laboratories49 To date we have measured relative rates for the reaction of OH with some 35 organic compounds The

78

l l t

l

r L

76-31 1 5

detailed kinetic data derived from these investigations have been reported48elsewhere 45 - In these studies we determined the relative rates of disshy

appearance of selected alkanes alkenes and aromatic hydrocarbons under simushylated atmospheric conditions of temperature pressure concentrations light intensity and other trace contaminants (NOx CO hydrocarbons water) These relative rate constants were placed on an absolute basis using the published rate constants for OH+ n-butane or isobutene The assumption that OH was responsible for the hydrocarbon disappearance under the experimental conditions employed was subsequently supported by the very good agreement between OH rate constants determined for the individual compounds using flash photolysisshyresonance fluorescence techniquesS051 and those obtained in our initial chamber experiments4546

The importance of the chamber method for the purposes of formulating a reactivity scale is that it permits the simultaneous determination of valid rate constants for reactions of OH with a large number and wide variety of atmospherically important hydrocarbons This substantially expands the number of compounds which can be incorporated now and in the near future in the resulting reactivity scale

Use of OH Rate Constants as a Reactivity Index

From the successful correlation of OH rate constants with the rates of hydrocarbon disappearance observed in chamber simulations at the SAPRc45-48 and Ford49 laboratories we conclude that to a good approximation this correlation can be extrapolated to the atmosphere (a) for alkenes in ambient air parcels during the early morning hours when ozone levels are generally quite low (~005 ppm) and (b) for alkanes and aromatics at essentially all times and locations The latter assumption namely that an OH rate constant is a good reactivity index for alkanes and aromatics throughout an irradiation day (or multiple irradiation days) rests upon the fact that the rates of reaction of these classes of hydrocarbons with species such as ozone 0(3P) atoms and the hydroperoxyl radical are several orders of magnitude slower than

52- 54with OH 8 For example even at the highest ozone concentrations experienced in ambient atmospheres 03 will not contribute significantly to the photooxidation of alkanes and aromatics This is in contrast to the case for alkenes which although the rate constants for reaction of 03 with alkenes are not particularly large55-57 react rapidly with ozone at the average concenshytrations connnonly encountered in polluted ambient air (~01-02 ppm)

Proposed Reactivity Scale

Under the assumption that hydrocarbon depletion is due solely to attack by OH (with the qualification noted for alkenes) we propose a five-class reacshytivity scale based on hydrocarbon disappearance rates due to reaction with OH The ranges of reactivities for the five proposed classes each span an order of magnitude in reactivity rel~tive to methane and are shown in Table I Although a scale based on OH rate constants can be divided into an arbitrary number of classes we have found it convenient and useful (particularly for purposes of

79

l r f

1

76-311 6

comparison with other scales) to employ the order of magnitude divisions which lead to a five-class scale

The hydrocarbon half-lives (defined as t12 ~ 0693k[OH]) corresponding to each class are also shown in Table I These half-lives were calculated assuming depletion of the hydrocarbon solely due to reaction with the hydroxyl radical and assuming an OH radical concentration in polluted atmospheres of 107 radicals cm-3 a reasonable value on the basis of both model calculations58 and recent atmospheric measurements59-61

Table II shows the compounds for which OH rate constants have been found or calculated distributed among the five classes of our proposed reactivity scale in the order of increasing rates of reaction within each class Employing OH rate constants obtained from hydrocarbon disappearance rates measured in photooxidation studies62 63 as well as those from elementary rate determinations and our chamber studies has permitted tabulation of OH rate constant data for 80 hydrocarbons These 80 hydrocarbons are incorporated in Table II

For interest carbon monoxide although not a hydrocarbon is included in Table II since it is present in polluted urban atmospheres Although CO is generally regarded as being unreactive in ambient air in our scale it appears in Class II which also includes ethane and acetylene

In our current compilation of compounds methane is the only compound listed which appears in Class I although the recent work of Chameides and Stedman has shown that even methane will react given sufficient time64 Most of the straight chain alkenes appear in Class IV with the substituted alkenes occurring in the upper half of Class IV and in Class V The alcohols fall into Class III while the monoterpene hydrocarbons are highly reactive and most of them appear in Class V with a- and $-pinene occurring in the upper half of Class IV The reactivity classification shown in Table II is similar to an earlier one we have formulated65 but many more compounds have now been included

Comparison with Other Scales

The ranking of reactivities for the aromatic hydrocarbons in our scale is essentially the same as that obtained by Altshuller et al4 and by Kopczynski 7 66 Although our proposed scale is based solely on hydrocarbon disappearance rates Altshuller and Bufalini20 have shown that this measure of reactivity is very similar to the one based on nitric oxide oxidation rates They showed that the ranking of reactivities of hydrocarbons from the nitric oxide photooxidation studies of Altshuller and Cohen6 and Glasson and Tuesdays was essentially the same as that obtained from the studies of hydrocarbon conshysuinption carried out by Schuck and Doyle 2 Stephens and Scott3 and Tuesday 5

As indicated above Rule 66 formulated by the LAAPCD in 1966 represented the first hydrocarbon control measure based on photochemical reactivity Although this and similar regulations have been effective results from recent

80

T

I I t

I Ii

76-31 1 7

d 37-39 d h h ffmiddot hstu ies in icate tat t ey give insu icient recognition tote ozone-forming potential of slow reactors such as g_-butane and propane under longshyterm irradiation conditions Consequently it is now realized that measures more stringent than Rule 66 are necessary to achieve reductions in ozone formation to levels approaching those mandated by the U S Clean Air Act Amendments of 1970

Recognition of such deficiencies in current hydrocarbon control regulations has led to re-examination of present hydrocarbon reactivity classifications The focus of these re-evaluations has been the five-class reactivity scale (see Table III) proposed by B Dimitriades at the EPA Solvent Reactivity Conference in 1974 25 Significant changes have been suggested for this reactivity classishyfication by the California ARB30-33 the LAAPCn34 the EPA67 and by industry The EPA is currently examining this question and since no final conclusions have been reached at this time we will restrict comparison of our proposed sci=Lle to the scale proposed in 1974 by Dimitriades of the EPA In addition we will discuss our proposed scale in the context of the three-class system r~cently approved32 by the ARB for application to hydrocarbon pollutant invenshytories and for planning future control strategies

Briefly the EPA has proposed on the basis of previous experimental studies that methane ethane acetylene propane and benzene are essentially non-reactive for typical urban ambient hydrocarbon-NOx ratios25 and these compounds are placed in Class I on their scale Three other classes have been proposed for mobile source hydrocarbon ernissions68__Class III (C4 and higher alkanes) Class IV (aromatics less benzene) and Class V (alkenes) When stationary source hydrocarbons including solvents (Class II) are added to the list five classes are suggested as shown in Table III

The reactivity classification proposed here (Tables I II) can be compared with that suggested by the EPA (Table III) It is evident that several signifishycant differences emerge

(1) The C1-C3 alkanes are given equal weighting in the EPA scale and all are designated unreactive while our scale clearly differentiates between the three compounds methane ethane and propane in Classes I II and III respectively

(2) According to our proposed classification benzene and n-butane are of similar reactivity while the EPA scale places them in Class I and III respectively

(3) All the alkenes are placed in Class V of the EPA scale while our proposed scale shows a differentiation in reactivity from ethene in Class III to 23-dimethyl-2-butene in Class V

(4) Our scale gives recognition to the high reactivity of natural hydroshycarbons such as the pinenes_and i-limonene placing these in Class IV and V respectively The present published EPA scale does not give a classification for natural hydrocarbons although they could be loosely categorized as substituted alkenes in Class V

81

l l

i

l

76-311 8

In addition to noting these differences some similarities exist between the two scales For example our scale shows that 13-butadiene ts highly reactive which is consistent with previous studies indicating it to be a facile precursor of eye irritants20 and highly effective in producing oxidant during irradiation of HC-NOx mixtures1 Both our scale and the EPAs show methanol to be relatively unreactive with a greater reactivity exhibited by the higher alcohols although our sc-ale predicts a lower overall reactivity than that of the EPA

The three-class system recently approved by the ARB is shown in Table IV and is similar to one being considered by the EPA30 According to the ARB 32

Class I would include low reactivity organic compounds yielding little if any ozone under urban conditions Class II would consist of moderately reactive organic compounds which give an intermediate yield of ozone within the first day of solar irradiation Class III would be limited to highly reactive organic compounds which give very high yields of ozone within a few hours of irradiation

In general the three-class ARB scale is in line with the scale presented here based on OH rate constants with only minor exceptions For example the ARB scale shows the primary and secondary Cz+ alcohols to be highly reactive in Class III while our scale shows them to be of moderate reactivity

Finally we wish to note two limitations of the reactivity scale proposed here One limitation of our scale is that it is not strictly applicable to compounds which undergo significant photodissociation in the atmosphere and aldehydes have been omitted for this reason In such cases the compound will be more reactive than predicted from a scale based on hydrocarbon depletion due solely to reaction with OH A second limitation in the application of our scale concerns the inherent problem arising from uncertainties in the identity and fates of subsequent products33

Conclusion middot

Our proposed reactivity scale based on the depletion of hydrocarbons by reaction with the OH radical has utility in assessing hydrocarbon chemical behavior in polluted ambient air Since only those organic compounds which participate in atmospheric reactions are of consequence in the chemical transshyformations in ambient air their relative reactivity towards OH is a useful and directly measurable index of their potential importance in the production of secondary pollutants

One advantage of the proposed scale is that because it is based on the individual rate constants for hydrocarbon reaction with OH any degree of gradation in reactivity may be used to formulate any desired number of classes-shyfrom relatively few to a large number of classes or even an ordered ranking of compounds A second strength of the present scale is that it can be readily extended to include additional organic compounds once their rate of reaction

82

76-311 9

~

l

I

with OH is known Finally the proposed scale gives adequate weight to alkanes and a number of aromatic hydrocarbons which require a significant period of time to react but can contribute substantially to ozone formation during longer irradiation periods eg during their transport downwind from urban centers-shya phenomenon of increasing concern to air pollution control agencies

Acknowledgement

We gratefully acknowledge access to the final report of the ARB Reactivity Committee prior to official release

This work was supported by the California Air Resources Board (ARB Contract No 5-385) and the National Science Foundation-Research Applied to National Needs (NSF-RANN Grant No ENV73-02904-A03) The contents do not necessarily reflect the views and policies of the ARB or the NSF-RANN nor does mention of trade names or commercial products constitute endorsement or recomshymendation for use

References

1 A J Haagen-Smit and M M Fox Ozone formation in photochemical oxidashytion of organic substances Ind Eng Chem 48 1484 (1956)

2 E A Schuck and G J Doyle Photooxidation of hydrocarbons in mixtures containing oxides of nitrogen and sulfur dioxide Rept No 29 Air Pollution Foundation San Marino California 1959

3 E R Stephens and W E Scott Relative reactivity of various hydrocarbons in polluted atmospheres 11 Proc Amer Petrol Inst 42 (III) 665 (1962)

4 A P Altshuller I R Cohen S F Sleva and S L Kopczynski Air pollutionphotooxidation of aromatic hydrocarbons Science 138 442 (1962)

5 C S Tuesday Atmospheric photooxidation of olefins Effect of nitrogen oxides Arch Environ Health l 188 (1963)

6 A P Altshuller and I R Cohen Structural effects on the rate of nitrogen dioxide formation in the photooxidation of organic compound-nitric oxide mixtures in air Int J Air Water Pollut l 787 (1963)

7 s L Kopczynski Photooxidation of alkylbenzene-nitrogen dioxide mixtures in air Int J Air Water Pollut _ 107 (1964)

B W A Glasson and C S Tuesday paper presented at the 150th National Meeting ACS Atlantic City N J September 1965

9 A P Altshuller and J J Bufalini Photochemical aspects of air pollution a review J Photochem Photobiol _ 97 (1965)

10 M F Brunelle JE Dickinson and W J Hannning Effectiveness of organic solvents in photochemical smog formation Solvent Project Final Report Los Angeles County Air Pollution Control District July 1966

11 W J Hamming Photochemical reactivity of solvents SAE Transactions Ji 159 (1968)

83

10 76-311

12 JM Reuss and W A Glasson Hydrocarbon reactivity and eye irritation Environ Sci Technol I 1109 (1968)

13 A P Altshuller S L Kopczynski D Wilson W Lonneman and F D Sutterfield Photochemical reactivities of n-butane and other paraffinic hydrocarbons J Air Pollut Contr Assoc 19 787 (1969)

14 A P Altshuller S L Kopczynski D Wilson W Lonneman and F D Sutterfield Photochemical reactivities of paraffinic hydrocarbonshynitrogen oxides mixtures upon addition of propylene or toluene J Air Pollut Contr Assoc 19 791 (1969)

15 B Dimitriades B H Eccleston and R W Hurn An evaluation of the fuel factor through direct measurement of photochemical reactivity of

l emissions J Air Pollut Contr Assoc 20 150 (1970)

l 16 A Levy and S E Miller Final technical report on the role of solvents

in photochemical smog formation National Paint Varnish and Lacquer Association Washington DC April 1970

17 K W Wilson and G J Doyle Investigation of photochemical reactivities organic solvents Final Report SRI Project PSU-8029 Stanford Research Institute Irvine California September 1970

18 W A Glasson and C S Tuesday Hydrocarbon reactivity and the kinetics of the atmospheric photooxidation of nitric oxide J Air Pollut Contrl

t Assoc 20 239 (1970)

19 Control Techniques for hydrocarbon and organic solvent emissions from stationary sources Nat Air Pollut Contr Admin Publication IIAP-68 March 1970

20 A P Altshuller and J J Bufalini Photochemical aspects of air pollution a review Environ Sci Technol i 39 (1971)

21 W A Glasson and C S Tuesday Reactivity relationships of hydrocarbon c mixtures in atmospheric photooxidation Environ Sci Technol 5 151 I (1971) -

22 E R Stephens Hydrocarbon reactivities and nitric oxide conversion in real atmospheres in Chemical Reactions in Urban Atmospheres C S Tuesday Ed American Elsevier Inc N Y 1971 pp 45-54

23 Solvents Theory and Practice R W Tess Ed Adv Chem Series 124 (1973)

24 E R Stephens Hydrocarbons in polluted air Sunnnary Report CRC Project CAPA-5-68 June 1973 NTIS No PB 230 993AS

25 Proceedings of the solvent reactivity conference U S Environmental Protection Agency Research Triangle Park N C EPA-6503-74-010 November 1974

26 S L Kopczynski R L Kuntz and J J Bufalini Reactivities of complex hydrocarbon mbtures Environ Sci Technol 2_ 648 (1975)

ltL

27 Environmental Protection Agency Region IX Technical Support Document January 15 1973

28 M Feldstein A critical review of regulations for the control of hydroshycarbon emissions from stationary sources J Air Pollut Contr Assoc 24 469 (1974)

84

l l f [

l

middot-i~ I~ ~ 4 -

11 76-311

29 A P Altshuller An evaluation of techniques for the determination of the photochemical reactivity of organic emissions J Air Pollut Contr Assoc 16 257 (1966)

30 Progress report on hydrocarbon reactivity study California Air Resources Board Informational Report No 72-12-10 June 12 1975_

31 Organic compound reactivity system for assessing emission control strageshygies California Air Resources Board Staff Report No 75-17-4 September 29 1975

32 Board approves reactivity classification California Air Resources Board Bulletin March 1976 p 4

33 Tinalreport of the committee on photochemical reactivity to the Air Resources Board of the State of California Draft April 1976

34 Los Angeles County APCD proposed reactivity classification of organic compounds with respect to photochemical oxidant formation Los Angeles County Air Pollution Control Department July 21 1975

35 B F Goeller J H Bigelow J C DeHaven W T Mikolowsky R L Petruschell and B M Woodfill Strategy alternatives for oxidant control in the Los Angeles region The RAND Corporation Santa Monica California R-1368-EPA December 1973

36 J C Trijonis and K W Arledge Utility of reactivity criteria in organic emission control strategies for Los Angeles TRW Environmental Services Redondo Beach California December 1975

37 J Holmes California Air Resources Board private communication 1975

38 J N Pitts Jr A M Winer K R Darnall G J Doyle and JM McAfee Chemical consequences of air quality standards and of control implementation programs roles of hydrocarbons oxides of nitrogen and aged smog in the production of photochemical oxidant Final Report California Air Resources Board Contract No 3-017 July 1975

39 A P Altshuller in reference 25 pp 2-5

40 N R Greiner Hydroxyl-radical kinetics by kinetic spectroscopy II Reactions with c H6 c H8 and iso-c H at 300 K J Chern Phys 462 3 4 103389 (1967)

41 K Westberg and N Cohen The chemical kinetics of photochemical smog as analyzed by computer The Aerospace Corporation El Segundo California ATR-70(8107)-1 December 30 1969

42 B Weinstock E E Daby and H Niki Discussion on paper presented by E R Stephens in Chemical Reactions in Urban Atmospheres C S Tuesday Ed Elsevier N Y 1971 pp 54-55

43 H Niki E E Daby and B Weinstock Mechanisms of smog reactions Adv Chem Series 113 16 (1972)

44 K L Demerjian J A Kerr and J G Calvert The mechanism of photoshychemical smog formation Adv Environ Sci Technol ~ 1 (1974)

45 G J Doyle A C Lloyd K R Darnall A M Winer and J N Pitts Jr Gas phase kinetic study of relative rates of reaction of selected aromatic compounds with hydroxyl radicals in an environmental chamber Environ Sci Technol 2_ 237 (1975)

85

12 76-311

46 A C Lloyd K R Darnall A M Winer and J N Pitts Jr Relative rate constants forreaction of the hydroxyl radical with a series of alkanes alkenes and aromatic hydrocarbons J Phys Chem 80 789 (1976)

47 A M Winer A C Lloyd K R Darnall and J N Pitts Jr Relative rate constants for the reaction of the hydroxyl radical with selected ketones chloroethenes and monoterpene hydrocarbons J Phys Chem 80 1635 (1976) -

48 A C Lloyd K R Darnall A M Winer and J N Pitts Jr Relative rate constants for the reactions of OH radicals with isopropyl alcohol diethyl and di-n-propyl ether at 305 plusmn 2 K Chem Phys Lett~ 405 (1976)

49 CH Wu S M Japar and H Niki Relative reactivities of HO-hydrocarbon reactions from smog reactor studies J Environ Sci Health All 191 (1976)

i 50 D A Hansen R Atkinson and J N Pitts Jr Rate constants for the reaction of OH radicals with a series of aromatic hydrocarbons J Phys Chern JJ 1763 (1975)

51 D D Davis W Bollinger S Fischer A kinetics study of the reaction of the OH free radical with aromatic compounds I Absolute rate constants for reaction with benzene and toluene at 300degK J Phys Chem J_J_ 293 (1975)

f 52 C T Pate R Atkinson and J N Pitts Jr The gas phase reaction ofi 03 with a series of aromatic hydrocarbonsmiddot J Environ Sci Health All

1 (1976)

53 R Atkinson and J N Pitts Jr Absolute rate constants for the reaction of o(3P) atoms with selected alkanes alkenes and aromatics as determined by a modulation technique J Phys Chem 78 1780 (1974)

54 D H Stedman and H Niki Ozonolysis rates of some atmospheric gases Environ Lett_ 303 (1973)

55 Chemical kinetic and photochemical data for modeling atmospheric chemistry R F Hampson Jr and D Garvin Eds NBS Technical Note 866 June 1975

56 D H Stedman CH Wu and Hbull Niki Kinetics of gas phase reactions of ozone with some olefins J Phys Chem ]J_ 2511 (1973)

57 S M Japar CH Wu and H Niki Rate constants for the reaction of ozone with olefins in the gas phase J Phys Chem 78 2318 (1974)

58 J G Calvert and R D McQuigg The computer simulation of the rates and mechanisms of photochemical smog formation Int J Chem Kinetics Symposium No 1 113 (1975)

59 C C Wang L I Davis Jr CH Wu S Japar H Niki and B Weinstock Hydroxyl radical concentrations measured in ambient air Science 189 797 (1975)

60 D Perner D H Ehhalt H W Patz U Platt E P Roth and A Volz OH radicals in the lower troposphere 12th International Symposium on Free Radicals Laguna Beach California January 4-9 1976

61 D D Davis T McGee and W Heaps Direct tropospheric OH radical measurements via an aircraft platform laser induced fluorescence 12th International Symposium on Free Radicals Laguna Beach California January 4-9 1976

86

13 76-311

62 J L Laity I G Burstain and B R Appel Photochemical smog and the atmospheric reactions of solvents in Reference 23 p 95

63 E P Grimsrud H H Westberg and R A Rasmussen Atmospheric reactivity of monoterpene hydrocarbons NOx photooxidation and ozonolysis Int J Chem Kinetics Symposium No 1 183 (1975)

64 W L Chameides and D H Stedman Ozone formation from NOx in clean air Environ Sci Technol 10 150 (1976)

65 K R Darnall A C Lloyd A M Winer and J N Pitts Jr A reactivity scale for atmospheric hydrocarbons based on reaction with the hydroxyl radical Environ Sci Technol 10692 (1976)

66 S L Kopczynski quoted in Reference 20

67 Informal EPA meeting Philadelphia Pennsylvania July 30-31 1975 l 68 M Black L E High and JE Sigsby Methodology for assignment of al hydrocarbon photochemical reactivity index for emissions from mobile

soucres EPA-6502-75-025 U S Environmental Protection Agency Research Triangle Park North Carolina March 1975

J i

J

s

87

ii

1

14 76-311

Table I R~activity Scale fer Hydrocarbons Based on Rate of Disappearance

of the Hydrocarbon due to Reaction wih the Hydroxyl Radical

Reactivity Relative Class Half-lifea (days) to Methane(== 1)

I gt 10 ~ 10

II 1 - 10 10 - 100

III 01 - 1 100 - 1000

IV 001 - 01 1000 - 10000

V 001 ~ 10000

a 7 -3[OR] is assumed to be 10 radicals cm

88

-- _1---c=r- FFIT~ Ja--~uli -~4 P-iJJia-degR j_--CL[Jl_j i---i_ 0-1 j-____-~ ~ -Ji=-ej ~~~ ~~- I -middot~1--c--aC-

Table II Proposed Reactivity Classification of Hydrocarbons and CO Based on Reaction with the Hydroxyl Radical

CLASS I CLASS II CLASS III CLASS IV CLASS V (S48 x107a (48 X 107 - 48 X lQB)a (48 X 108- 48 X 109) 8 (48 x 109 - 48 x 10lO)a 4 8 X 1Ql0) a

Methane Methanol Neopentane n-Octane 2-Mcthyl-2-butene Carbon monoxide Cyclobutane Diethyl ether 3-Carene Acetylene 2233-Tetramethylbutane pXylene 23-Dirnethyl-2-butene Ethane Benzene p-Ethyltoluene 13-Phellandrene

Ethyl acetate o-Ethyltoluene Carvomenthene Isobutane o-Xylene d-LimoneneshyPropane p-Cymene Dihydromyrcene Diethyl ketone Methyl isobutyl ketone Myrcene Isopropyl acetate Di-n-propyl ether cis-Ocimene n_Butane m-Ethyltoluene n-Butyl acetate m-Xyle~e Ethanol 123-Trimethylbenzene Methylethyl ketone Propene Isopentane 1-Butene 1-Propanol 33-Dimethyl-1-butene 224-Trimethylbutane 1-Pentene V

23-Dimethylbutane 1-Hexene co 223-Trimethylbutane 124-Trimethylbenzene0

Tetrahydrofuran Isobutene 2-Methylpentane 135-Trimethylbenzene Toluene cis-2-Butene Cyclopentane Diisobutyl ketone n-Propylbenzene 2-Methyl-1-butene Isopropylbenzene a-Pinene Ethene Cyclohexene n-Hexane cis-2-Pentene Cyclohexane trans-2-Butene n-Pentane 13-Pinene p-Menthane 13-Butadiene 1-Butanol Isoprene Isopropyl alcohol 4-Methyl-2-pentanol 3-Methylpentane Ethylbenzene

--J 0 a -1 -1Range of values (in liter mole sec ) for the rate constant for reaction of the OH radical with the listed w

compounds

I

------t-L ~- ~ J---1 bull middotmiddott1- lTLJ_J 1--___r _ ~II ~Ai ~-_c11 )----_-J1bull~

Table III Proposed EPA Reactivity Classification of Organics (from reference 25 1974)

CLASS I CLASS II CLASS III CLASS IV CLASS V ~Nonreactive~ (Reactive) (Reactive) (Reactive) (Reactive)

c1-c paraffins3

Acetylene

Benzene

Benzaldehyde

Acetone

Methanol

Tertiary-alkyl alcohols

Phenyl acetate

Methyl benzoate

Ethyl amines

Dimethyl formamide

IO Perhalogenated 0 hydrocarbons

RFACTIVITY RATING 10

Mono-tertiary-alkyl benzenes

Cyclic ketones

Tertiary-alkyl acetates

2-nitropropane

35

c4+ paraffins

Cycloparaffins

Styrene

n-Alkyl ketones

Primary amp Secondary alkyl acetates

N-methyl pyrrolidone

NN-dimethyl acetamide

Partially halogenated paraffins

6S

Primary amp Secondary alkyl benzenes

Dialkyl benzenes

Branched alkyl ketones

Primary amp Secondary alkyl alcohols

Cellosolve acetate

Partially halogenated olefins

97

Aliphatic olefins

a-Methyl styrene

Aliphatic aldehydes

Tri- amp tetra-alkyl benzenes

Unsaturated ketones

Diacetone alcohol

Ethers

Cellosolves

deg

143

-J OI

I) I-

I

17 76-311

Table IV California Air Resources Board (ARB) Reactivity Classification of Org_a1ic Compounds 32

Class I Class II Class III (Low Reactivity (Moderate Reactivity) (High Reaccivity)

c1-c Paraffins2 Acetylene

l

l B2nz2ne

Benzaldehyde

Acetone

Methanol

Tert-alkyl alcohols

Phenyl acetate

Methyl benzoate

Ethyl Amin-lts

Dim2thyl fcr-amide

Perhalogenated Hydrocarbons

Partially halogenated paraffins

Phthalic Anhydride

Phthalic Acids

Acetonitrile

Acetic Acid

Aromatic Amines

Hydroxyl Amines

Naphthalene

Chlorobenzenas

Nitrobenzenes

Phenol 1

Hono-tert-alkyl-benzenes

Cyclic Ketones

Alkyl acetates

2-Nitropropane

c + Paraffins3

Cycloparaffins

n-alkyl Ketones

N-Methyl pynolidone

NN-dimethyl acetamide

Alkyl Phenols

Methyl phthalates

All other aromatic hydroshycarbons

All Olefinic hydrocarbons (including partially haloshygenated)

Aliphatic aldehydes

Branched alkyl Ketones

Cellosolve acetate

Unsaturated Ketones

Primary amp Secondary c + alcohols

2 Diacetone alcohol

Ethers

Cellosolves

Glycols

c + Alkyl phthalates2

Other Esters

Alcohol Amines

c + Organic acids+ di acid3

c + di acid anhydrides3

Fannin Hexa methylene-tetramine)

Terpenic hydrocarbons

Olefin oxides

Reactivity data are either non-existent or inconclusive but conclusive data from similar compounds are available therefore rating is uncertain but reasonable

Reactivity data are uncertain

91

r1_

l

Volume 42 number 2 CHEMICAL PHYSICS LETTERS 1 September 1976

RELATIVE RATE CONST ANTS FOR THE REACTIONS OF OH RADICALS

WITH ISOPROPYL ALCOHOL DIETHYL AND DI-11-PROPYL ETHER AT 305 plusmn 2 K

Alan C LLOYD Karen R DARNALL Arthur M WINER and James N PITTS Jr Statewide Air Pollution Research Center University ofCalifornia Riverside California 92502 USA middot

Received 27 April 1976

Relative rate constants have been obtained for the reaction of the hydroxyl radical (OH) with isopropyl alcohol and diethyl and di-n-propyl ether in environmental chamber photooxidation studies employing hydrocarbon-NOx mixtures in air it 1 atmosphere and 305 plusmn 2 K These results were obtained from measurements of the relative rates of disappearance of these compounds on the previously validated basis that OH radicals are dominantly responsible for their disappearance in the initial stages of reaction under the experimental conditions employed Absolute rate constants obtained by using the published rate constant for OH+ isobutcne of 305 X 1010 Q mole-1 s-1 are (k X 10-9 I mole-1 s-1) isopropyl alcohol 43 plusmn 13 diethyl ether 56 plusmn II and di-nbullpropyl ether 104 plusmn 21 No previous determinations of these rate constants have been reported

1 Introduction 2 Experimental

The hydroxyl radical plays a fundamental role in The technique used to determine relative OH rate chemical transformations in photochemical air pollushy constants in this study has been previously employed tion [ l -7] With the realization of the importance of to obtain kinetic data for reactions of OH with alkanes OH has come an extensive experimental effort to [14 15] alkenes [ l 115) ketones [ l l] aromatics determine rate constants for the reaction of OH with a [1415] and halogenated [I 116) and natural hydroshylarge number of organic compounds These studies carbons [I l] Briefly irradiations of the hydrocarbonshyhave been documented in recent reviews [7] and in a NOx-air system were carried out in a Pyrex chamber critical compilation [8] of approximately 6400-liter volume at a light intensity

To date however comparatively few data have been measured as the rate of N02 photolysis in nitrogen obtained for the gas phase reactions of OH with oxyshy (k1) of 04 min- 1 All gaseous reactants were injected genated hydrocarbons [9-1 l] In this work rate conbull into pure matrix air [ 17] in the chamber using l 00-ml stants are reported for the reaction of OH with three precision bore syringes Liquid reactants were injected ingredients of commercial solvents [1213] - isoshy with micropipettes During irradiation the chamber propyl alcohol and diethyl and di-n-propyl ether temperature was maintained at 305 plusmn 2 K Such data are of fundamental importance in assessing The alcohol and ether concentrations were monitored the role of these oxygenated hydrocarbons in atmosshy with gas chromatography (FID) using a 5-ft X I 8-in pheric chemistry particularly since as controls on stainless steel column packed with Poropak Q (80-

automobiles reduce the contribution of hydrocarbons 100 mesh) operated at 393 and 423 K respectively from mobile sources emissions of such oxygenates Ozone was monitored by means of ultraviolet absorpbull from stationary sources become increasingly of tion CO by gas chromatography and NO-NO2-NOx greater concern by the chemiluminescent reaction of NO with ozone

92

205

Volume 42 number 2 CHEMICAL PHYSICS LETTERS I September 1976

i l

l

The initial concentrations of reactant were isoproshypyl alcohol 60 ppb ( 1 ppb in air= 40 X I o- 11 mole liter - I at 305 K and I atmosphere) diethyl ether 20 ppb and di-11-propyl ether 55 ppb In addition to these compounds traces of several alkanes alkenes and oxygenates were present [I 115) Initial concenshytrations in these experiments were 800-1500 ppbC of total non-methane hydrocarbons 060 ppm of NOx (with an NO2 NOx ratio of 003-008) 6 ppm of CO and 3000 ppb of methane together with warer vapor at 50 relative humidity Replicate 3-hour irradiations vere carried out with continuous analysis of inorganic species analysis of hydrocarbons every 15 minutes and analysis of isopropyl alcohol and the ethers every 30 minutes

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilushytion rate (12-l6 per hour) from the observed hydrocarbon disappearance rate The HCNOx and NON02 ratios were chosen to delay the formation of ozone and ozone was not detected during the irrashydiation period [11 14]

As discussed in detail previously [1115] the major sources of OH in our experimental system are probably the photolysis of HONO and the reaction of H02 with NO [561819]

NO+ N02 + H20-= 2 HONO (l)

H02 + N02 HONO + P2 (2)

HONO + hv(290-410 nm) OH+ NO (3)

l-102 +NO OH+N02 (4)

The first reaction is thought to occur relatively slowly homogeneously [2021] but its rate is probably sigshynificantly faster when the reaction is catalyzed by surfaces Thus nitrous acid has been observed in a chamber study of simulated atmospheres carried out in our laboratory (22] while direct evidence for formation of OH radicals in an environmental chamber hasbeen provided recently by Niki Weinstock and co-workers [2324]

The concentration of OH radicals present during these irradiation experiments was calculated to range from 14 to 35 X 106 radicals cm-3 depending upon the conditions of the specific experiment The calculashytions employed the observed rates of isobutene dis-

206

appearance ( corrected for dilution) and the previously determined rate constant for OH+ isobutene [25] These concentrations are the same order as those calshyculated [182627] and observed directly 232428 29] by other workers

3 Results and discussion

Typical rates of disappearance observed during the irradiations of isopropyl alcohol and of the two ethers are shown in figs I and 2 respectively lsobutene wJs

used as the reference compound and is included in the figures From these pseudo-first-order rates of disshyappearance of the hydrocarbons rate constants reshylative to that of isobutene were obtained for the reshyaction of the PH radical with isopropyl alcohol and diethyl and di-n-propyl ether These were placed on an absolute basis using a value of 305 X 1010 Q

mole- 1 s-1 for the reaction of OH with isobutene [25] These results are presented in table I

There are no rate constants currently available for the reaction of OH radicals with ethers Assuming that hydrogen abstraction is the major reaction pathway one would expect these rate constants to be larger than

z 0

~ a 5 z w lt) z 0 u

0 w gta w ()

ID

ISOPROPYLALCOHOL

0

3 ______________________

omiddot 05 10 15 20 HOURS OF IRRADIATION

Fig 1 Concentrations of isopropyl alcohol and isobu tene plotted on a logarithmic scale) during photolysis of HC-NOx mixture in air at 305 plusmn 2 K and I atm

93

l

Volume 42 number 2 CHEMICAL PHYSICS LETTERS 1 September 1976

50

Fig 2 Concentrations of diethyl and di-n-propyl ether and isobutene (plotted on a logarithmic scale) during -photolysis of HC-NOx mixture in air at 305 plusmn 2 Kand 1 atm

those for the corresponding alkane since the C-H bond strengths in the ethers are at least several kiloshycalories weaker [30] Thus our rate constants ( at 305 K) for diethyl and di-n-propyl ethers of 56 and 104 X 109 Q mole-1 s-1 respectively compare with values for the corresponding alkanes n-butane and n-hexane (at 298 K) of 16 and 29 X 109 Q mole-I s- 1 respectively calculated from the formula of Greiner [31]

Two recent measurements of the rate constants for the gas phase reaction of OH radicals with alcohols

Table 1

iftltt a z w ~ 10 0 u

0 gta S 5

0 05

a DIETHYL ETHER

--0--

10 15 20 25 HOURS OF IRRADIATION

have been reported Osif et al [9) obtained a value of 53 X 107 Q mole- 1 smiddot- 1 for OH+ methanol using a value of 84 X 107

Q moiemiddotmiddot 1 s- 1 for OH reaction with CO [8] Recently Campbell et al [IO] have carried out studies of the reaction of OH With a series of alcohols-shymethanol ethanol 1-propanol and 1-butanol Our value for OH+ isopropyl alcohol of (43 plusmn 13) X 109 Q mole- 1

s-1 at 305 K is consistent with the value of (2 3 plusmn 02) X lQ9Q moie- 1 s-1reported for 1-propanol by Campbell et ai (10) at 292 K middot Although as mentioned no literature data are availshyable for the reaction of OH with ethers it is interesting to examine the data for solvent photooxidations obshytained by Laity et al [32] in chamber studies These workers irradiated separate solvent-NOx-air mixshytures in a stainless steel chamber at 305 K and reshyported t_he maximum rate of hydrocarbon disappearshyance observed in these experiments relative to toluene If this disappearance is assumed to be predominantly duemiddotto attack by OH then absolute rate constants may be derived from these data using a value of 36 X 109 Q moie- 1 s-1 for the reaction of OH+ toluene [3334] Values for OH+ isopropyl alcohol and OH+ diethyl ether are 31 X 109 and 54 X 109 Q mole-1 s-1 respectively compared to our results of 43 and 56 X 109 Q moie-1 s-1 Considering the differences in experimental methods and apparatus as well as the uncertainties involved in such an interpretation of the data of Laity et al [32] the agreement obtained for isopropyl alcohol and diethyl ether is quite satisshyfactory Similar treatment of their chamber data for other compounds for which the OH rate constants are known yields results (35] in fair agreement with literature values

Relative and absolute rate constants for the reaction of OH with selected hydrocarbons

Compound Relative rate of k(ll mole-1 s-1 X 10-9 )

disappearance this work a) literature

isobutene 1 305 isopropyl alcohol 014 43 31b) diethyl ether 0185 56 54 b) di-ndegpropyl ether 034 104

a) Using a literature value of 305 X 1010 ll mole- I s-1 for OH+ isobutene (25] b) Using the data of Laity et al [32] and attributing the HC loss solely to reaction with OH results placed on an absolute basis

using a value of 36 X 109 ll mole-1 s-1 for OH+ toluene (see text) middot

94

207

Volume 42 number 2 CHEMICAL PHYSICS LETTERS I September 1976

r

I l i l l r il

l11e atmospheric half lives tl2 = 0693kou +RH

X [01-1] for isoprupyl alcohol and diethyl and di-11-propyl ether are akubted to be 5 4 41 and 22 hours respectivdy using an ambient OH concentrashytion of 5 X 106 radicals cm-3 [18232426-29] and our rate constants Thus these compounds react with OH at rates similar to ethene c6 - c7 alkanes and mono-alkyl substituted benzenes [36] The relative importance of alcohols ethers and other oxygenated hydrocarbons in photochemical smog formation are discussed in detail elsewhere [35-37]

Acknowledgement

The authors gratefully acknowledge the assistance of FR Burleson in carrying out the gas chromatoshygraphic analyses WD Long for valuable assistance in conducting the chamber experiments and Dr R Atkinson for useful comments concerning this manushyscript This work was supported in part by the California Air Resourses Board (Contract No ARB 5-385) and the National Science Foundation-Research Applied to National Needs (NSF~RANN Grant No AEN73-02904-A02)

References

[I] NR Greiner J Chem Phys 46 (1967) 3389 [2] J 1-Ieicklen K Westberg and N Cohen Center for Air

Environmental Studies Pennsylvania State University University Park PA Pub 114-69 (1969)

[3] DH Stedman EE Morris Jr EE Daby H Niki and B Weinstock 160th Natl Meeting American Chemical Society Chicago September 14-18 1970

(4] B Weinstock EE Daby and H Niki Discussion on paper presented by ER Stepens in Chemical reactions in urban atmospheres ed CS Tuesday (Elsevier Amsterdam 1971) pp 5455

(51 H Niki EE Daby and B Weinstock in Advances in Chemistry Series No 113 (American Chemical Society Washington 1972) p 16

(6) KL Demerjian JA Kerr and JG Calvert Advances in environmental science and technology Vol 4 eds JN Pitts Jr and RL Metcalf (Wiley-lnterscience New York 1974) p 1

(7) JN Pitts Jr and BJ Finlayson Angew Chem Intern Ed 14 (1975) l BJ Finlayson and JN Pitts Jr Science 191 _(1976) 111

(8) RF Hampson Jr and D Garvin eds Chemical kinetic and

208

photochemical data for modeling atmospheric d1cmi~try NBS Tbullchnk11 Note 866 ltJune 1975)

[9] TL Osif R Sinrnnaitis and J lkicklcn J Photod1cm 4 (1975) 233

[10] JM Campbell DF McLaughlin and BJ Handy Ch~m Phys Letters 38 ( 1976) 362

[11] AM Winer AC Lloyd KR Darnall and JN Pitts Jr J Phys Chem 80 (I 976) to be published

( 12] KW Wilson and GJ Doyle Investigation of photocmiddothemishycal reactivities of organic solvents Stanford Research Inmiddot stitute Repor EPA Contract IICPA 22-9-125 (September 1970)

(13) Solvents theory and practice Advances in Chemistry Series No 124 (American Chemical Society W1hingtrn 1973)

[14] GJ Doyle AC Lloyd K Darnall AM Winer and JN Pitts Jr Environ Sci Technol 9 (1975) 237

[ 15) AC Lloyd KR Darnall AM Viner and J N Pitts Jr J Phys Chem 80 (1976) 789

(16) R Atkinson KR Darnall AM Winer and JN Pitts Jr Environ Sci Technol (1976) submitted for publication

(17) GJ Doyle PJ Bekowics AM Winer and JN Pitts Jr A charcoal-adsorption air purification system for clrnmshyber studies investigating atmospheric photochemistry Environ Sci Technol (1976) to be published

(18] B Weinstock and TY Chang Tellus 26 (1974) 108 [19] TA Hecht IH Seinfeld and MC Dodge Environ

Sci Technol 8 (1974) 327 (20] R Graham and BJ Tyler J Chem Soc Faraday Trans

I 68 (1972) 683 [21) WH Chan RJ Nordstrom JG Calvert and JN Shaw

Chem Phys Letters 37 (1976) 441 (22] JM McAfee AM Winer and JN Pitts Jr unpublished

results (1974) (23] CC Wang LI Davis Jr CH Wu S Japar H Niki and

B Weinstock Science 189 (1975) 797 (24) H Niki and B Weinstock Environmental Protection

Agency Seminar Washington (February 1975) [25] R Atkinson and JN Pitts Jr J Chem Phys 63 (1975)

3591 (26) H Levy II Advan Photochem 9 (1974) 369 [27) J G Calvert Environ Sci Technol 10 (1976) 256 (28) D Perner DH Ehhalt HW Patz U Platt EP Roth

and A Volz OH radicals in the lower troPosphere 12th International Symposium on Free Radicals Laguna Beach CA January 4-9 1976

(29) DD Davis T McGee and W Heaps Direct tropospheric OH radical measurements via an aircraft platform laser induced fluorescence 12th International Symposium on Free Radicals Laguna Beach CA January 4-9 1976

(30] JA Kerr and AF Trotman-Dickenson in Handbook of chemistry and physics 57th Ed (The Chemical Rubber Company Cleveland 197677)

[31] NR Greiner J Chem Phys 53 (1970) 1070 [32] JL Laity IG Burstein and BR Appel Solvents

theory and practice Advances in Chemistry Series No 124 (American Chemical Society Washington1973) p 95

95

Volume 42 number 2 CIIEMICAL PHYSICS LETTERS 1 September 1976

[33] DA Hansen R Atkinson and JN Pitts Jr J Phys Chem 79 ( 1975) 1763

[ 34 I DD Davis Bollinger and S Fischer J Phys Chem 79 (I 975) 293

[35 I JN Pitts Jr AC Lloyd AM Winer KR DamaII and GJ Doyle Demiddotelopment and application of a hydroshycarbon rlactivity scale based on reaction with the hydroxyl radical presented at the 69th Annual APCA Meeting Portland OR June 27-July I 1976

l

f I

If

i )

(36] KR Darnall AC Lloyd AM Winer and JN Pitts Jr Environ Sci Technol 10 (1976) to bl published

(37] JN Pitts Jr AM Winer KR Darnall AC Lloyd and GJ Doyle Smog chamber studies concerning hydrocarbon reactivity and the role of hydrocarbons oxides of nitrogen and aged smog in the production of photochemical oxidants to be presented at the In-tershynational Conference on Photochemical Oxidant Pollushytion and Its Control Research Triangle Park NC September I2-17 I 976

96

209

Volume 44 number 3 CHEMICAL PHYSICS LETTERS 15 December 1976

I

l

i

RELATIVE RATE CONST ANTS FOR THE REACTION OF OH RADICALS

WITH SELECTED C6 AND C7 ALKANES AND ALKENES AT 305 plusmn 2 K

Karen R DARNALL Arthur M WINER Alan C LLOYD and James N PITTS Jr Statewide Air Pollution Research Celter University of California Riverside California 92502 USA

Received 16 August 1976

Measurements of the rates of disappearance of three alkenes and two alkanes relative to isobutene in environmental chamber photooxidation studies employing hydrocarbon-NOx mixtures in air at 1 atmosphere have been used to obtain relative rate constants for the reaction of these compounds with the hydroxyl radical Absolute rate constants at 305

1plusmn 2 K obtained using a published rate constant for OH+ isobutene of 305 X 1010 l2 mole-1 s- are (k X 10-9 Q mole-I

s- 1) cyclohexene 47 plusmn 9 1-methylcyclohexene 58 plusmn 12 1-heptene 22 plusmn 5 23-dimethylbutane 31 plusmn 05 223-trishymethylbutane 23 plusmn 05 No previous determinations of OH rate constants have been reported for 1-heptene and 1-methylshycyclohexene For the remaining compounds these results are shown to be in good agreement with literature values reported for elementary or relative rate constant determinations

I Introduction

Recently we have reported rate constant determinashytions for the reaction of OH with alkanes [l 2] alshykenes [2 3] aromatic hydrocarbons_ [I 2) monoshyterpene hydrocarbons [3) halogenated hydrocarbons [3 4 J ketones [3] and ethers and isopropyl alcohol [5] These rate constants were obtained by measuring the relative rates of disappearance of hydrocarbons in a hydrocarbon-NOx mixture in air at 1 atmosphere and at 305 plusmn 2 K Absolute rate constants were obshytained [1--3 5] by using literature values for OH+ nshybutane andor isobutene at least one of which was employed as a reference compound in each study A similar technique has recently been employed by Niki and co-workers [6] Results obtained from these relative rate studies have uniformly been in very good agreement with literature values reported for elemenshytary rate constant determinations [7]

Here we report rate constant data at 305 plusmn 2 K for the reaction of OH with 1-heptene 1-methylcycloshyhexene cyclohexene and two substituted alkanes -2 3-dimethylbutane and 2 2 3-trimethylbutane These long-chain alkanes and cyclic alkenes have been suggested to play a major role in the formation of the organic portion of aerosols found in polluted ambient air (89)

2 Experimental

The experimental technique used to determine relashytive OH rate constants in this study has been described in detail previously [1-3) Briefly irradiations of the hydrocarbon-NOx-air system were carried out in a Pyrex chamber of approximately 6400-liter volume at a light intensity measured as the rate of NO2 photoshylysis in nitrogen (k1) of 04 min- 1bull During irradiation the chamber temperature was maintained at 305 plusmn 2 K

The alkane and alkene concentrations were monishytored with gas chromatography (FID) using a 5 X 18 SS of Poropak Q (80-100 mesh) column and a 36 X 18 SS column of 10 dimethylsulfolane on AW C-22 Firebrick (60-80 mesh) followed by 18 X 18 SS column of 10 Carbowax 600 operated at 433 and 273 K respectively Ozone was monitored by means of ultraviolet absorption CO by gas chroshymatography and NO-NO2-NOx by the chemiluminesshycent reaction of NO with ozone

The initial concentrations of reactants were 2 3-dimethylbutane 7 ppb (I ppb in air= 40 X 10-11

mole liter-I at 305 Kand 1 atmosphere) 223-trishymethylbutane 14 ppb cyclohexene 10 ppb I meshythylcyclohexene 21 ppb and 1-heptene 14 ppb In addition to these compounds traces of several alkanes alkenes and oxygenates were present [2 3] Initial

97

415

Vol um~ 44 number 3 CHEMICAL PHYSICS LETTERS 15 December 1976

i l

l

concentrations in these experiments were 700-800 ppbC of total non-methane hydrocarbons 061 ppm of NOx (with an NO2NOx ratio of 004-005) 6 ppm of CO and 2900 ppb of methane together with water vapor at 50 relative humidity Replicate three-hour irradiations were carried out with continshyuous analysis of inorganic species and analysis of hydrocarbons eve~y 30 minutes

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilushytion rate (16 per hour) from the observed hydrocarshybon disappearance rate The HCNOx and NON02 ratios were chosen to delay the formation of ozone and ozone was not detected during the irradiation peshyriod [13)

As discussed in detail previously [23) the major sources of OH in our experimental system are probably the photolysis of HONO and the reaction of HO2 with NO [10-13)

NO+ NO2 + H2O ~ 2 HONO (1)

HONO + hv (290-410 nm) OH+ NO (2)

HO2 + NO OH + NO2 (3)

The first reaction is thought to occur relatively slowly homogeneously [14-16) but its rate is probably sigshynificantly faster when the reaction is catalyzed by surshyfaces Thus nitrous acid has been observed in a chamshyber study of simulated atmospheres carried out in our laboratory [ 17] while direct evidence for formation of OH radicals in an environmental chamber has been provided recently by Niki Weinstock and co-workers [6 18 19] The reaction of HO2 with NO2 has also been proposed a~ a source

(4)

of nitrous acid [20 21] but recent results [22 23) suggest that peroxynitric acid is the major product of reaction (4)

(5)

The peroxynitric acid may decompose back to HO2 and NO2 or possibly give HONO but this is currently uncertain [22 23]

The concentration of OH radicals present during these irradiation experiments was calculated to range

416

from (25-50) X 06 radicals cm- 3 depending upon the conditions of the specific experiment The calculashytions of OH concentrations employed the o~served rates of isobutene disappearance ( corrected for dilushytion) and the previously determined rate constant for OH + isobutene [24] These concentrations are the same order as those calculated [12 25 26) and obshyserved directly [I 8 27 28) by other workers

3 Results and discussion

lsobutene was used as the reference compound in this series of experiments From the pseudo-first-order rates of disappearance of the hydrocarbons rate conshystants relative to that of isobutene were obtained for the reaction of the OH radical with 2 3-dimethylbushytane 2 2 3-trimethylbutane cyclohexene 1-methylshycyclohexene and 1-heptene These were placed on an absolute basis using a value of 305 X 1010 Q mole-ls-I for the reaction of OH with isobutene [24] These reshysults are presented in table 1 together with the availshyable literature data

Within the estimated 20 uncertainty in our rate constant values the agreement among our data and the literature values is good For example our value of (31 plusmn 06) X 109 Q mole- 1s-1 for 2 3-dimethylbutane agrees within experimental uncertainty with that of (26 plusmn 03) X 109 Qmole-1s- 1 recentlY determined in a separate study in this laboratory by Atkinson et al [4] This latter value was derived from the relative

1

rates of disappearance of 2 3-dimethylbutane and ethane during a 216-hour irradiation in the Pyrex chamber Both of these values are significantly lower than the value directly determined by Greiner [29] at 300 K of (516 plusmn 013) X 109 However it is expected [28) that the rate constant for the reaction of OH radicals with 2 3-bulldimethylbutane would be less than twice as fast as with isobutane on the basis of the numshybers of primary and tertiary hydrogen atoms in these two alkanes The absolute rate constant for the reaction of OH radicals with isobutane has been determined to be 15 X 109 Qmole-1s-1 at 304 K [29) and hence the OH rate constant for 23-dimethylbutane is exshypected to belt 3 X 109 Q mole-1 s-1 which is in agreement with both the determination of Atkinson et al [4) and with the present work

Similarly our value of (23 plusmn 05) X 109 Qmole-I

98

Volume 44 number 3 CIIEIICAL PHYSICS LETTERS 15 December 1976

Table l Pclativc and absolute rate constants for the reaction of OH anltl 0(3P) with selected hydrocarbons

---middot-middot--------

ko11 + compound at 305 K Compourd Relative rdte ko(3P) + compound

of disappearance this work a) literature at 298 K

------ -middot-middotmiddotmiddotmiddotmiddotmiddotbull-middot-middot----------------------isobutene 1 305 L2 e)

2 3-dimethylbutane 010 031 plusmn 006 045 b) 026 plusmn Oo3 c) 0012 e)

2 2 3-trimethylbutane 0074 023 plusmn 005 029 b) 1-pentene 18 plusmn 02 d) 028 e)

1-hexene 19 plusmn 02 d) 031 e) 1-heptenc 073 22 plusmn 05 cyclohexene 153 47 plusmn 09 38 plusmn 04 d) 13 e)

f 1-mcthylcyclohexene 191 58 12 49 plusmn 02 f)

a) Using a literature value of 305 X 1010 Q mole-1 s-~ for OH+ isobutene (24 ] b) Ref [29) T= 298 K c) Ref [4] T= 305 K d) Ref (16) using a literature value of 31 X 1010 Q mole-1 s-1 at 303 K for OH + cis-2-butene [24 ] e) Rcf(32] ORef(31) bull

s-1 for 22 3-trimethylbutane is in reasonable agreeshy addition reaction of 03P) atoms with cyclohexene l ment with the value of 29 plusmn 01) X 109 Q mole-1 s-1 and 1-methylcyclohexene (091 and 421 relative to obtai_ned by Greiner at 303 K (29] In addition the O (3P) + cyclopentene) (31] decrease in rate constant in going from 2 3-dimethylshy Table 1 shows a comparison of the reactivity of butane to the larger molecule 2 2 3-trimethylbutane 0(3P) atoms (31 32] as well as OH radicals towards is consistent with a decrease from two to one in the the compounds studied here and other selected comshynumber of tertiary hydrogen atoms [29] These atoms pounds Since both 0(3P) and OH are expected to are the most easily abstracted since the C-H bond primarily undergo addition to the alkenes one would strength for tertiary hydrogens is 3 kcal mole-1 and expect the same trend in going from 1-pentene to cyshy6 kcal mole- 1 weaker than that for secondary and clohexene and this is in fact observed In addition primary hydrogens respectively [30) the value of 18 X 1010 Qmole-1 s-1 obtained for

Recently Wu et al (6] us~d a technique similar 1-hexene by Wu et al [6] and our value of to the one employed here namely the photooxidation 22 X 1010 Q mole-1 s-1 for 1-heptene both obtained of hydrocarbons in the presence of NOx in air at 1 atshy by similar methods are consistent with the trend obshymosphere and 303 K middotunder the assumption that OH served by Wu et al (6] of an increase in rate constant was the principal species depleting the hydrocarbon with the larger molecular size of the alkene they obtained rate constants relative to cis-2-butene As mentioned above the higher straight chain and for several of the higher alkenes Using a value of cyclic alkenes are assumed to be important precursors 31 X 1010 Qmole-I s-1 for OH+ ds-2-butene at of the organic content of ambient aerosols found in 303 K [24] one obtains a value of 38 X 1010 mole-I polluted air [9 10] The rapid rate of reaction of OH s- 1 for cyclohexene at 303 K from the data of Wu et with these species ensures that in addition to 0 3-al [6] This value is in reasonable agreement with our alkene reactions OH attack will be an important reacshyvalue of (47 plusmn 09) X 1010 Qmole-I s-1 at 305 K tion pathway in real and simulated atmospheres posshy

Substitution of a methyl group for one of the hyshy sibly yielding multifunctional oxygenated species in drogen atoms in cyclohexene increases the rate conshy the aerosol phase (9 33] stant slightly since we obtain a value of Assuming an ambient OH concentration of 5 X 106 (58 plusmn 12) X 1010 Q mole-1 s-1 for 1-methylcycloshy radicals cm-3 (18 2728] the atmospheric halfclives hexene This is expected by analogy with the similar t112 =middot0693koH+RH [OH] based solely on reaction

middot 417

99

l

Volume 44 number 3 CHEIICAL PHYSICS LETTERS 15 December 1976

[

with OH are (in hours) 2 3-dimethylbutane 75 2 2 3-crimcthylbutanc 100 cyclohexcne 049 1-methylcyclohexcne 039 and 1-heptene 10 In the case of the alkenes the actual half-lives in the atmosshyphere are expected to be significantly less since 0 3 reacts with the alkenes at significant rates [934]

Acknowledgement

The authors gratefully acknowledge the assistance of FR Burleson in carrying out the gas chromato-

graphic analyses WD Long for valuable assistance in conducting the chamber experiments and Dr R Atkinson for helpful comments concerning this manushyscript This work was supported in part by the California Air Resources Board (ARB Contract No 5-385)

References

[ l] GJ Doyle AC Lloyd KR Darnall AM Winer and JN Pitts Jr Environ Sci Technol 9 (1975) 237

[2] AC Lloyd KR Darnall AM Winer and JN Pitts Jr J Phys Chem 80 (1976) 789

(3) AM Winer AC Lloyd KR Darnall and JN Pitts Jr J Phys Chem 80 (1976) 1635

[4 J R Atkinson KR Darnall AM Winer and JN Pitts Jr Tropospheric Reactivity of Halocarbons Final Report to EI DuPont de Nemours amp Co Inc February l 1976

[5] AC Lloyd KR Darnall AM Winer and JN Pitts Jr Chem Phys Letters 42 ( 1976) 205

[6] CH Wu SM Japar and II Niki J Environ Sci HealthshyEnviron Sci Eng A11 (1976) 19 l

(7] R Atkinson KR Darnall AC Lloyd AM Winer and JN Pitts Jr Accounts Chem Res submitted for publication (1976)

[8] D Grosjean National Academy of Sciences Report (1976)

(9] WE Schwartz PW Jones CJ Riggle and DF Miller Chemical Characterization of Model Aerosols Office of Research and Development US Environmental Proshytection Agency EPA-6503-74-011 August 1974

(10] H Niki EE Daby and B Weinstock Photochemical Smog and Ozone Reactions Advances in Chemistry Series No 113 (American Chemical Society Washington 1972) p 16

I11] KL Demerjian JA Kerr and J G Calvert in Advances in enviromi1ental science and technology Vol 4 eds JN Pitts Jr and RL Metcalr(Wiley-lnterscience New York 1974) p 1

418

[12] B Weinstock and TY Chang Tcllus 26 (1974) 108 [13) TA Hecht JH Seinfeld and MC Dodge Environ Sci

Technol 8 (1974) 327 [14] R Graham and BJ Tyler J Chem Soc Faraday Trans

I 68 (1972) 683 (15] WH Chan RJ Nordscrom JG Calvert and JN Shaw

Chem Phys Letters 37 (1976) 441 Environ Sci Techshynol 10 (1976) 674

(16) L Zafontc PL Rieger and JR Holmes Some Aspects of the Atmospheric Chemistry of Nitrous Acid presented at the 1975 Pacific Conference on Chemistry and pecshytroscopy Los Angeles CA October 28-30 1975

(17] JM McAfce AM Winer and JN Pitts Jr unpublished results (1974)

(18] CC Wang LI Davis Jr C11 Wu S Japar II Niki and B Weinstock Science 189 (1975) 797

(19) H Niki and B Weinstock Environmental Protection Agency Seminar Washington DC February 1975

[20] R Simonaitis and J Heicklen J Phys Chem 78 ( 1974) 653 80 (1976) 1

(21) RA Cox and RG Derwent J Photochem 4 (1975) 139 (22] H Niki P Meker C Savage and L Breitenbach 12th

Informal Photochemistry Conference National Bureau of Standards Gaithersburg MD June 28-July 2 1976

(23) J Heicklen 12th Informal Photochemistry Conference National Bureau of Standards Gaithersburg MD June 28-July 2 1976

[24) R Atkinson and JN Pitts Jr J Chem Phys 63 (1975) 3591

(25) H Levy 11 in Advances in photochemistry Vol 9 eds JN Pitts Jr GS Hammond and K Gollnick (VileyshyInterscience New York 1974) p 1

[26] JG Calvert Environ Sci Technol 10 (1976) 256 [27] D Perner DH Ehhalt HW Patz U Platt EP Roth

and A Volz OH Radicals in the Lower Troposphere 12th International Symposium on Free Radicals Laguna BeachCAJanuary 4-9 1976

[28] DD Davis T McGee and W Heaps Direct Tropospheric OH Radical Measurements Via an Aircraft Platform Laser Induced Fluorescence 12th International Symposhysium on Free Radicals Laguna Beach CA January 4-9 1976

(29] NR Greiner J Chem Phys 53 (1970) 1070 (30] JA Kerr and AF Trotman-Dickenson in Handbook

of Chemistry and Physics 57th Ed (The Chemical Rubber Company Cleveland 1976)

(31] JS Gaffney R Atkinson and JN Pitts Jr J Arn Chem Soc 97 (l 975) 5049

(32) JT Herron and RE Huie J Phys Chem Ref Data 2 (1973) 467

[33] WPL Carter KR Darnall AC Lloyd AM Winer and JN Pitts Jr 12th Informal Photochemistry Confershyence Gaithersburg MD June 28-July 2 1976

(34] JN Pitts Jr and BJ Finlayson Angew Chem Intern Ed14 (1975) 1 BJ Finlayson and JN Pitts Jr Science 191 (1976) 111

100

APPENDIX B

i Inorganic and Hydrocarbon Data for

AGC Runs 216 through 223

l Jl

[

l

101

AGC-216-l S02 CRY C GLASS CHA~SER

1976 JUL 27

OiRK FROM 1200 TO 1545 HIE TE~PERATURES ~ERE TAiltE~ FRC~ IHE LCG __ MOK__ FROM 16QQ__ Cgt ---middot-middotmiddotmiddotmiddotmiddot----middot- ---------middotmiddotmiddotmiddot-middotmiddotbull- TH~ TEMPERATURE~ WE~E TAK~N )R6MTHE iOMPUTER REicoui TECO ~3 SAMPLING RATE 1161 HLMlN

ClCCtlt __ ELMSpound0 ___ TSL _Rl HUI _____ SC2 ----middot--bullmiddot-middot ----middotmiddotmiddot-----middot-middotmiddotmiddotmiddotmiddot-------middot-middot-------middot-middot-middotmiddotmiddot-middot-middotmiddot-middot--middot TIME TIMEl~lNI IOEG Cl 11 (~PHI

bull1200 bullbullo 29-4bullbull bull---bullbullbull1bullo---middotbullo3bull59middot--bull bullbull-- bullbull--bullbullbull --bullbull-bull----bull-middotbull---- bullbullbullbull-bull------bullbullbullbullbullmiddot------ -bullbull bullbullbull-bull-bullbull-bullbullbullbull bull bull bull-bullbullORbullbullbullbullbull-bullbullbullbullbullbull~bullbullbull bullO O O bullbull-

1215 15 294 00 C353 _____ 1230 _______30_ ___22r__ aa ___ c~s_9 ____bull ________________________________________________________ _

124s 45 2ltJ6 Jo aJss 1300 60 296 2s c355 1315 75 29 ~--- _________2_o _C ~ 344 ---middot--- ______________________ __________ - middot-middotbull--middot ---------middot------middot--middot - --middot-middotmiddot - middot--middotmiddot 1330 JO 294 20 C357 1345 105 296 20 0344

____ 14_0_0 _____ 1o ____ J9 bull 7 __z_o ___ o_342__________________________ __________________________________________ ______ __ 1415 135 297 15 C344 1430 1sc 297 1s c34q

-- _ --~_lt45__ middot--- J6_5_ _______29_7_ --middotbull-middotmiddot2bull Q_______QU5____ middotmiddotmiddotmiddotmiddotmiddot---1500 160 297 1S C330 1515 195 299 15 C338

_______1530 ____ 210 ______3c bullo _1s____c_32g middot-----middotmiddotmiddotmiddot-1s4 22s 267 15 c331 1600 240 middotmiddotmiddotmiddotmiddot~ bullbullbullbullbullbullbullbullbullbullbullbull

l615______ 255___ _ _bullo~~__________

NO DATA TAKE~ ---- CATA OISCARCED QUESTIONABLE QATA

____________________ __ __ -middot

102

AGC-216-2 SC2 CRY GLASS CHA~eER 1976 JUL 27-2~

CLCCK El~PSfC TSl REL rUM S02 1111pound middotT111emiddot(M1~middotmiddot1oec cT (g (PPII

middoti63amiddotmiddot- -210 -middot33~middot4middot--middot--1--smiddot c3f3-middotmiddot---middot-- - middot 1646 286bull 334 15 C315

--middotmiddotmiddot- po1 middot--middot-middot301_ ____ 334 middotmiddotmiddotmiddotmiddotmiddotmiddot--middotl bull5 middot-middot (320 ___ middot----- _ middotmiddot--middot---- ----middot--bull-middotmiddot----middot-middot-middot middotmiddotbullbullmiddotmiddotmiddot-middot--middot-------middot--l7l6 316 335 15 C10 1731 331 335 l5 C315

-middotmiddot middot- _1746 346 _ 3~_5_ --middotmiddot 15C 3l4___ -------middot---middotmiddotmiddot---- _____ __ 1800 360 337 15 C321 1a1s 375 335 1s 0313

_ JSJO __ 390_335___1_5 C03______ middotmiddot-----------1845 405 335 15 C303

bull1900 420 334 20 0305 _______ middot1915___ middot-- 4 3_5bull middot-middot 3 3 2 ---middot- 2 o __ Cbull 309 -----middot----middotmiddotmiddotmiddot

193C 450bull 33 2 20 C299 1945 465 331 20 0297 2000 480 332 20 C300

- middot 2015- --middotmiddot45middotmiddotmiddotmiddot-- 334 - - 20 C 310 2030 510 335 20 0296 2045 525 337 20 C3072ico middot 540 middot3jmiddot----i~o-middotmiddotc299-middot-middot----bullmiddot-211s 555 338 20 0294

__ 21Jo ____ 5_7c_ __ 33 1 20 _o 300________

~~

il middot 2145 585 338 middot 20 0296J 1middot 2200 600 337 20 0296 2215 615 33 7 20 0296

~-middot 223c 630- middot 33 1 2 o a294 middot 1 C 2245 645 337 20 0294

2300 660 337 20 C291_____middot1 -------middot--------------middotmiddot------middot 2315 675 337 20 0237

C 2330 690 337 20 0293 2345 705 33~~middot-middot 20 0291 --------middotmiddot-middot-----------------middot-middot ---middot---- --- middot- middotmiddot o 120 334 2 a o2as

( 15 735 334 20 0268

(

103

t bull middotmiddotmiddotmiddot--

AGC-216-3 S02 CRY L GLASS CHAMlgtER

1976 JUL 2E

c1oc_~ ELAPSEC rs1 l=L HU S02 Tl~E Tl~~ibull~l IDEG Cl Ii) (PPMI

30 750 339 20 C287 45 765 346 zo 0278

- _lOQ_ middot- _]so ~sr 2 O C ~Obull middot-middot-middot-bullmiddot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot----middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middot-middotmiddot-middot-middotmiddotmiddotmiddot-middot---- middot-middot-middot- middotmiddot-middotmiddot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot------115 7~5 354 15 C276 130 810 354 l 5 C2ol

J45 sect25 35bull1_ 1 _CZJ7 middotmiddot--middotmiddotmiddot -middot--bullmiddotmiddot-middotmiddotmiddotmiddotmiddot-bullmiddotmiddot---middotmiddot-bull---middotmiddotmiddot--middot -middotmiddotmiddotmiddotmiddot --------- --bullmiddotmiddot--- middot-200 840 354 15 C277

l 215 855 356 15 C277 ___ _230 870 _356 _ l5 _C bull ZH ---middotmiddot-middotmiddotmiddotmiddotmiddot---- ----middotmiddot-------------middot--

245 8S5 354 15 C275f 300 900 356 15 C27J

_ 315 915 bullbull~5bull4 bullmiddotbull-middotmiddotmiddotmiddot-middots middotmiddotmiddot- cZ69____---middotmiddotmiddotmiddot-middot-middotmiddot -------- --middotmiddot--middotmiddot--middot----- -middotmiddotmiddot-330 93() 356 15 C271 345 945 354 zo 0271

_ 400 __96Q___ 3_j4 --middotmiddot--bulll5 C2l_________________________________ 415 975 354 20 C250 430 990 354 20 C264 445 1005 353 20 C264 500 1020-~ 354 20 C260 515 1035 353 20 C250 530 1050 353 20 0254 -----middotmiddot--------middot-middot------middot ------middot-middot-middot-545 1065 354 20 C250 6~C 1080 35l 20 0252 615 lOC5 bull350 20 C49 middotmiddot-middot-middot-- middotmiddotmiddot-middotmiddot-middotmiddotmiddotmiddot-_ 630 1110 350 20 0248

C 645 1125 350 zo 0249 ____100 1140 bull_3s o middot--middotmiddotmiddotmiddotmiddot zo__o 2t9 middot-bull-bullmiddotmiddot--middotmiddot--------middotmiddot------------middot----middot---middotmiddotmiddotmiddotmiddot ______

715 1155 350 20 0243 C 730 1170 350 20 024

745 118S 350 25 C239 800 1200 middotmiddot37 25 C233

C 815 1215 347 25 0238

830 l 23() middot- 34 5 _ 2 5 middot-middotmiddot 0 236 ----middot--middot----middot 845 124) 345 25 C241

( 930 1260 347 25 C237 9J5 1275 4 bull7 2bull ~23) 930 129J 347 25 0236

( 945 13C5 347 25 C231 middotmiddotmiddot-~middotmiddotmiddotmiddot l Obull C l 3 0 bull 3 4 7 2 5 C 23 3 middotmiddot- middotmiddot-middot- __ middot-middotmiddotmiddotmiddot-middot- middotmiddot- -middotmiddot bull middot-bullmiddot---bull middot-middot--middot middotmiddot bull _____ -middot middot-middotmiddotmiddotmiddot-- -middot _ _ -

1015 1335 34 7 25 C232 1030 us 34 1 2s c221 1045 131gt5 34 7 2bull~ C225 1100 13eo 349 2s c221 lllS 1395 349 2s c22c

--middotmiddotmiddotmiddotmiddotU30 ltLO 349 z- _C2l6 1145 1475 347 25 C215

1

104

AGC-217-1 S02 LIGHT ORY7 GLASS CtlAHBER

1976 JUL 30 CONTINUATION Of AGC-216 LIGHTLIGHTS ON JUL 29 AT COO ~TENSITY 1ooi OATA FOR 216-LIGHT USELESS DUE TO FAULTY OACS CHANNEL S02 STRIP CHiRT DATA USEO FOR THIS RUN 25 HL CF S02 INJECTED HITH 90 ML Of NZ ON JULY 30 AT 1003 OASIBI 1212 ON CHAMBER AT ABOUT 1534 TO 1537 ON JULY 30 ANO FROM 1201 TO

1230 CN JULY 31 SAMPLING RATES tHLHINI TECO 43 - 1161 DASIBI 1212 - 600

middot~ CLOCK ELAPSED OZCNE TSl REL HUH SC2 ~

ii TIME TIHEIMINI tPPH) IOEG Cl Ill (PPM)

l 1130 -15 bullbullbullbullbullbull bullbullbullbullbullbull o3ze 1145 o bullbullbullbullbullbull 346 220 0321 1200 15 351 215 0315 1215 30 354 195 C310

l 1230 45 bullbullbullbullbullbull 356 18J 0307 1245 60 bullbullbullbullbullbull 357 17Q 0305 1300 75 bullbullbullbullbullbull 360 165 0301 1315 90 bullbullbullbullbullbull 360 155 0296

l 1330 lC5 bull bullbullbullbullbullbull- 36l 145 0 292 1345 120 bullbullbullbullbullbull 364 130 C290 1400 135 bullbullbullbullbullbull 366 110 0286

1415 150 366 _ll5 0282 1430 165 bullbullbullbullbullbull 365 115 027~ 1445 180 bullbullbullbullbullbull 365 110 021 1500 195 362 11C 0273 1515 210 36l 130 0269 1530 225 0519 360 140 0265

~[ ~~ i~~-- ~~ ~ ~~ - middotmiddotmiddotmiddot-- -middotmiddotmiddotmiddot- --middot - -middot middotmiddotmiddot-middot--------middot

sect ~ 1615 270 bullbullbullbullbullbull 357 160 0255

l ____1630 _______2s5 --bullbullbull _____ 35 bull7__Jo 5middot-middot--middotmiddot-cmiddot253middotmiddotmiddotmiddotmiddotmiddotmiddot--middot

1645 300 bullbullbullbullbullbull 357 110 025C l7CO 315 357 170 025C

___ 111s___330 __ bullbullbullbullbullbull __35 bull 7 -middot--- 1a bullomiddotmiddot--middotmiddotmiddotmiddot0241 middotmiddot--middot--middotmiddotmiddot----middot---middot-middot--middotbullmiddotmiddotmiddotmiddot-middot-middot middot-------------1130 345 357 190 0245 1745 360 bullbullbullbullbullbull 356 20c 0242

___a_oo_~--middotmiddot--3_15_ __bull___S_bullt____ 21 o -bullmiddot _o 24c middot-middot--middotmiddotmiddotmiddotmiddot--------middotmiddot----------------I 1815 390 bullbullbullbullbullbull 354 225 0231 1 1830 4C5 357 21~ 0236

___J_B4~ middot- ____420-~bullbull middot---middot _3l bull l___19 0 0 235 1900 435 bullbullbullbullbullbull 364 170 0233

) 1915 450 bullbullbullbullbullbull 365 160 0230

i 1 _ ____19 3 0 __ ---middotmiddotmiddot 465 bull bull bull middotmiddotmiddotmiddot--- 3 6 bull 6 -middot--1 5 bull 5 _ C bull 2 2 7 middotmiddot-middot-middot--- --middotmiddotmiddot --middot -middot - ------

1~45 480 366 145 C225 2000 495 366 150 0222

____2015 ___middot _i 10__ bullbull_____36o6_- JS_ Q_middotmiddotmiddot 0 220 2030 525 bullbullbull$bullbull 366 155 021ar 2045 540 366 155 0216 ___2100________ssbull_____ ---middot6J__ __1 s s _o 213 2115 570 bullbullbullbullbullbull 3os 165 c211 2130 585 bullbullbullbullbullbull 365 110 c210 2145 600 bull 365 175 0208

J --middotmiddot-middot2200 middotmiddotmiddot-middot--615middot-middotmiddotmiddotbullbullbull bull--middotmiddot--middotmiddot-364----middotmiddot iso middot o206

middotI 2215 630 bullbullbullbullbullbull 364 180 0204 _ -middotmiddot----middotmiddot2230 645__bullbullmiddotmiddotbullmiddotmiddot-middot--middotmiddotmiddot 31i bull 2_ 19 0203

2245 660 bullbullbullbullbullbull 364 195 c200

i1

zjo_ci ___---1s bullbullbullbull 362---middotmiddotiomiddotmiddotomiddotmiddotmiddot omiddot196 -r l 2315 690 bullbullbullbullbullbullbull 362 205 0195middotbull 2330 705 bullbullbullbullbullbullbull 36l 215 0193g 2345middot 720 bullbullbull ~ bullbullbull 36l 225 0190l

bullbullbullbullbullbull NO DATA TAKEN ---- DATA OISCARO~D QUESTlONAuLE DATA r ~ 1~

IT Q

~

105 F

AGC-217-2 S02 LIGHT DRY GLASS CHAMBER 1976 JUL 31

CLOCK ELAPSED OlONE TSl REL HUM S02 Tl~E TIMEIMNl IPPMI IDEG Cl 11 IPPMI

1 0 735 3bO 22C 0188 15 750 3bO 220 C185

_ 30 ---middot-middotmiddot--765__ 358 -middot-middotmiddot 220 0183 45 780 358 220 o1a1[ 100 795 bullbullbullbullbullbull 358 225 0180

115 810_bull___-middotmiddotmiddot-middotmiddot-middot 35 bull8 middot-middot-middot-middot225 0177

l 130 825 bullbullbullbullbullbull 357 225 0175

( 145 840 357 225 0112 200 855 bull _357_ ___ zzs c111

215 870 356 225 0169

f

I ( 230 885 35b 230 0168

245 coobull 356 230 c166 middot300 915 356 230 0163

C 315 930 356 230 C160 330 945 35bull6 230 C160 345 960 bullbullbullbullbullbull 356 230 0158 400 975 bullbullbullbullbullbull 354 230 0156

_415 _990 ~5~6 230 0154 430 10C5 356 235 0152 445 1020 354 235 C150

L -middot----middot-middot500__1035 __ -middotmiddot 354_ _ ___ 23 5 0148 515 1050 354 235 C147

( 530 1065 bullbullbullbullbullbull 354 235 0145 545 1000 354 235 0144 600 10lt5 354 235 C142 615 1110 354 235 0140

___630 ____ 1125 bull - ___ 35bull 4_ ___ 24o013lt 645 1140 354 240 0137 100 1155 bullbullbullbullbullbull 354 24o 0135

--- _715 1170bull 35 24-0 0134 730 1185 354 240 0133

l 745 1200 354 240 0131 800 121~bull -middot-middot____35~---middotmiddotmiddotmiddot24bull C_ _O 129 815 1230 354 240 0128 830 1245 354 245 0121

-middotmiddot----845 1260~ 34 245 0-126 9CO 1275 354 245 0124

( 915 1290 354 245 0122 -middot--middot_930___1305_ -middotmiddotmiddot)54___ 245 c120

945 1320 bullbullbullbullbullbull 354 245 011a ( 1000 1335 354 245 0116

________1015_ __ _1350 354 240 0115 1030 1365 middot-middot--356 240 0113 1045 13130 354 24C 0112 1100 1395 354 240 0111 1115 1410 354 240 0109

- middotmiddot--middot-~--- middotmiddotmiddotmiddotmiddotmiddot-middot--middotmiddot-lDO 1425 354 240 0 107

l 1145 1440 356 240 0 bull 106bullbull12cc 14gt5 bull bullbullbullbullbullbull 3gt6 40 0105 1215 14 70 0504 354 240 0 103

middotmiddotmiddotmiddot-middot- middot---middot-------middot--middotmiddotmiddot --middot middotmiddot-middotmiddot middot-middotmiddotmiddot-middotmiddotmiddot

__ middotmiddot-middot---------middotmiddotmiddotmiddot_ - ___ middotmiddotmiddotmiddotmiddot

----------middot--middot--middot- middot--middotmiddotmiddot--middotmiddotmiddotmiddotmiddotmiddot-middotmiddot -middot---

middotmiddotmiddot--middot middotmiddotmiddot-middotmiddot-middot--middotmiddotmiddotmiddotmiddot-middotmiddot-----

bullbullbullbullbullbull NO OATA TAKEN ---- DATA DISCARDED QU~STIUNABLE UATA

106

AGC-218-1 S02 40t RH GL~SS CHAMBER 1976 AUG 4

DARK AT 0850 FC-12 ANO S02 WERE INJECTED INTQ THE CH4~8ER THE OASIBI 1212 WAS CN THE CHA~~ER F~OM 1651 TO l65S BRADY 1296 CALISAATION 1Q7~ JUL 16 SAMPLING RATES IMLMINI TECO 43 - 1~33 CASIS 1212 - 600

CLCC~ ELAJSEO czc~~ TSl R~L HU~ 50 Tin TIMEl~Nl (P~gtI DEG Cl a1 PPM)

1100 c bull~~ 334 4J ~-377 1105 5 ~ 334 485 l3Sl 1110 10 bullbullbullbullbullbull ~34 485 C3BJ 1115 15 middotmiddotbullcent 334 460 0379 1120 C bullbullbull 334 475 0374 1125 2~ bullbullbullbullbullbull 33S ~70 0375 1130 30 middotmiddot-~middotmiddot 332 475 0371 1135 35 334 47o o372 1140 40 bull bullbullbullbullbullbull 334 65 C370r J 1145 45 bullbullbullbullbullbull 334 4~c 0111l i 1150 50 middotbull 334 465 03t9 1155 55 334 16 5 0364 1200 60 - 334 45 5 0366 1205 65 bull 335 450 036rl ~ 1210 70 ~bull~ ~)5 ~5J_ 035~

1215 7~~ bullbullbull 335 450 C162 1220 so bullbullbullbullbullbull 334 450 o~

di 1225 85 334 440 0362

iz3d o ~~bullbull 3J4 44o o3e2 1235 95 334 445 C355 1240 100 332 45 0355 middot--middot-middot---middot--middotbull- middotmiddotmiddot-middot --middot - _____ _ f24middot5middot 10smiddot~middot Jl 332 4middot4~ 6 middoto-353-middot

~ i C 12so 110 332 4~o o353 125 5 115 i__ 4 ) _ 0 bull 352_ _--bull-middot __ ----middotmiddot-middot __ middot-- _____ - _ ___13()0 __ 120-middot-- 332 435 0354

J 1305 125 334 430 0351i I J31 o __ _ uo __ ~bull-- u-~--middot middot-middot-42 bull0 o- 1ssmiddot--middotmiddot-middot-middot- ----________----middot- ---middot __

1315 135 334 420 0348 bull ( 1320 140 334 420 0348i l32S 145 -middot_ _3 bull~--4t5 Q352

1330 150 334 41middot) 037 1335 155 335 420 0344

1340 160 335 420 0344 middot 1345 -165 uu 3ibull 4 - middot41smiddot cl44

C 1350 170 ~bull 335 415 0343 1355 175 335 420 C343 1400 180 335 415 C341 1405 185 337 405 0341 1410 190 33 bull 5 400 0343 1415 liS bullbullbullbullbullbull 335 41C 0340 1420 2cc bullbullbullbullbullbull 337 41o 0331 1425 2cs bullbullbullbullbullbull 337 405 oJe 1430 210 bullbullbullbullbullbull 334 410 o33e 1435 215 33l 42v 0336 1440 220 bullbullbullbullbullbull 317 415 C]36 1445 225 middotmiddotmiddotmiddotmiddot~ 335 45 0332

ti~tmiddot -g 1450 230 bt~ 337 41 5 c~32

1455 2 35 33 7 bullbull 0 o 13cmiddotmiddotmiddotmiddot~ ~ 1500 240 33 7 42) 0330

$C t-kOt~ ~ 1505 745 H 7 42 D 0330

bull~ 11C f ~ () D~ TJ T ~r EI ---- ChT~ orsrA~ncn 0UST l1~111c [)TA ~ 4

J 1(

i[ i l bull1

~ ~ Imiddot

middoti_ ~

107

I

il ~ ij

1 i ii l

Ir

~ 11

ij

Ibull ~

J ~ l

j (

) AtC-21S-2 502 401 RHT CLASS CHAMBER

1976 AUG 4

i i

CLOCK ~LAP$) JlC TS l EL rIJ~ S72 Tl bullE TlEPlll I I P1 l lDEG CI (1) I PP~ I

1510 250 middot~ 337 415 o 32~ 1515 255 cie-(wt 337 t~ 0 032S 1520 2t) 337 420 0PI 152 5 265 bulltI 3l 7 42 1 I~bull)~ 1530 2 7 C=it~bull 334 41 5 0327

bull 1-tit~o

middot~

1535 27 D5 420 bulll 324 1540 middot2cu 335 42 C32C 1545 285 middot=~ 334 430 C322 155C 29J t rLI 334 430 0122 1555 295 o CJ3 334 4t 5 c 320 1600 3CO bull Iii- 334 420 0322 1605 3C5 emiddotbull= 334 42o J3lfl 1610 310 wc 33 4 425 0319 1615 315 ti 332 420 0316 160 32C 334 Z5 0 bull 114 deg 1625 325 -0laquot 33 t 430 0315 1630 330 335 430 ons~ li35 335 cent 33 5 435 0310 middotmiddot-- ____ -- 1640 340 $Qt 335 44) 0313

( 1645 345 33 5 435 o 311 1650 335 440 0309--~-- ~~~~-----middot~-~~-~-~-~--- ---middotmiddotmiddotmiddotmiddotmiddot-middotmiddotbullmiddot-- middotmiddotmiddot--middotmiddotmiddotmiddot--middot-middotmiddotmiddot-middotmiddotmiddotmiddotmiddotmiddot --- middot-middot-- middotmiddotmiddotmiddot--bullmiddot--middotmiddot-middot--middot middot-bull------middotmiddotmiddotmiddotmiddot-- ---middot-middotmiddotmiddotmiddotfo55 355 bull-c-t-t-it 33 r 43 5 C313 1700 360 $0~IZ 335 45 C305 l705 365 338 4 5 0308bullbull ---- middot-- middotmiddotbull---middot-middotmiddotmiddotmiddotmiddot--middot-- l7l0 370 ~~emiddot i8 440 CJC8 1715 3 75 bull-tt~iU 337 44J C310 1720_ 380 bull ie~~bull -~3 8 35 J303 - middotmiddotmiddotmiddotmiddotmiddotmiddotbull-middot-middotmiddotmiddotmiddotmiddot middotmiddot-middot- middotbullmiddotmiddotmiddot-middotmiddotmiddotmiddotmiddotmiddot-middotmiddot1725 385 -tttr~ 33a 440 0308 1730 39J ~cent n a 440 0303 1735 395 izc 338 440 0 3)2 middot--middotmiddotmiddot middotmiddotmiddot- 1740 co VIOct- lt= 338 430 o 30 1745 40J (rfl$~bull 338 430 0302

OJei1()01750 410 33 I 430 029d middotmiddot--middotmiddot---middotmiddotmiddotmiddotmiddot--middotmiddotmiddot-middot-middot 1755 415 t 338 44) 0299

1800 420 bullti-it 333 43 5 0296 1805 425 i-t-7Icent 33 8 430 0299 middotgt l8U 4 3 I cent46 317 3 0 029 l Bl 6 436 c-oilaquo4t 337 430 0298 lil21 441 33 7 43 5 ( ~9 7

~tf(p ~

middotmiddotmiddot--middot-middotmiddotmiddot--middotmiddotmiddot--middot middotmiddot----middotmiddotmiddotmiddot----I B26 4d plusmn~ 337 430 o 2-7 1831 451 (-tilll- 337 415 0296 1836 456 tdcmiddotC n13 430 C291 --middot - -- 1341 461 t(I~ 33 7 435 0292 le46 466 bullt~tci 33e 435 o 292 1851 4 71 33_ 3 425 Oll Hi56 4 76 337 425 0291

1901 4 il I it-Otcbull 33 43C bull)2Rq1906 96 t~illtt 338 475 J217

_Clt-~4t1911 t91 l3 7 42) middot t~HJ 1916 bull c( bull ie--iJtll)ill6 4l1) 0187n ___ iil 111 [t 1 T el rbullNJ Crf fISCAP[E) QU~ 5 T t 1Jt-bl E 1)1 TA

108

AGC-218-3 SOZ 40l RH 7 GLASS CHAMSER

__1976_ AU( 4

CLOCK ElAPSED oz~~~ TSl qEL HUM S02 TIME TfME (lfrjf- I PP~I oeG c- -ii --middotmiddotcigtTmiddot----

(

1lt121 sci-middot umiddotbullmiddotmiddotmiddotmiddotmiddotmiddot-- 3fmiddots~ 425 o~io6 1926 5~6 bullbullmiddot 338 42-0 0285

______1931_____511 ~-~- 33 1_ 41 s o_2s5___ 1936 516 337 425 ozss

( 1941 521 337 415 021a 1946 526 337 415 0282 19si ~31 bullbullbullbullbullbull 33i middotmiddot425 021a 1956 536 337 420 0278 2001 541 335 420 0283 200middot6 5t6 -middotubullu-middot----33s- 12s -0211 - middot middotmiddotmiddot middot ----------

( 2011 551 bullbullbullbullbullbull 335 420 0278 2016 556 334 415 0277 2021 561 334 425 0277

( 2026 566 bullbullbullbullbullbull 334 425 0276 2031 571 bullbullbullbullbullbull 33~-- 420 0278

middot-middotmiddot- 2036 576~ UU 334 425 0275 ( 2041 581 middotmiddotmiddotmiddotmiddot~ 335 420 0274

2046 586 335 420 0275 205( 591 337 430 0211

C 2056 596 335 425 0211 2101 601 337 --~2s 0210 2106 606- -middot~bullbulli 3~s 430 0211

C 2111 611- 337 425 0269 2116 616__ = 337 425 0270rmiddotmiddot- 2121 621 ibullbullbullibull 33~7 436 0210

C 2126 626 c 337 420 0270 -l 2131 631 ~ 337 __ 430 0210

2136 636 337 425 0267 C 2141 middot 641 bull 337- 425 0266

2146 646 337 430 0265 2151 651 337 425 0265

C 2156 656 middotmiddotmiddot~middotmiddot 335 425 0269 2201 661 33J__ 431) 0266 2206 666 335 425 0263

( 2211 671 335 425 0265 2216 676 337 430 264 2221 681 335 425 C261

( 2226 686 33S 435 0263 2231 691 bull h 335 430 Q2(3 2236 696 335 425 0259

( 2241 701 335 430 0256 2246 706 335 425 0258 2251 711 335 425 0255 2256 716 335 430 0256

OU~STICNA6LE DATA

109

AGC-ZIR-~ ~02 401 RH GLASS CHA~t1Fl-1976 AllG 4-5

AOO 660 MIN TO ELAPSEO llM

CLCCK fL~PSEe TS l l~L HJ~ Si~bull- T -IF Tl~cllO ING CI (o (r~M)

22C6 6 33S 4l5 C263 22tl 11 335 425 C265 2216 16 ~37 43i) i)264 2221 21 335 12 5 Obl 2226 71 D5 435 C26~ 2211 31 ns 430 0263 2236 36 335 425 i)5G 241 41 335 430 C256 24( 46 335 2 _5 middot 253 51 51 33 5 42S C 25 256 56 -3 ~ 43(1 0256 230 t 61 335 425 C254 2306 66 35 42 C25S 2311 71 33 5 430 C 50 2316 76 337 425 CZSv 231 81 33S 43) C 5) 2326 86 33gt 43J 0252 2331 91 334 420 0249 233b 96 335 430 C z5J

middotI 2341 1C1 ~35 425 C252 2_34~ 1C6 335 420 obull45 2351 111 33 middot-middotmiddot 42 5 G248 2356 116 334 420 0248

1 l21 334 425 0247 6 126 334 42~5 C~250

11 131 334 420 0244 16 l36 334 __ 425 c 245 21 141 334 42middoto 0244

26 146 334 420 0244 31 151 332 42o 0242 36 156 334 415 0242 41 161 334 425 0241

i 46 161 132 42 o G2391i 51 171 334 430 ~ 239-~

i 5b 176 332 430 oz3gmiddot 10 l lBt i 2 425 023ltgtt 106 186 332 435 C236

I -~ -~ 111 l SI 332 431) 0238 ~ ~ 116 l c6 33l 431) IJ2 1l 201 332 435 C23gt

126 2C6 332 430 a 233 I 131 211 3 2 435 0232

f 136 216 3 3 2 430 0233 p 14 l 221 3) 425 0233 I 146 226- 312 435 C233

I 151 23i 33 l 425 c22s

C (

~ ti

) ~ I ~i 6 236 332 4)5 cna 201 bull1 3 3 I 430 C bull J )

f 20lt 246 33 l 4 s C2 n E 211 251 3 3 l 4gt0 0231)]

Iimiddot~- ~ll QtTh TAK f1 fl AT

~ -- 1 l middotmiddot1

I 1

middotmiddotmiddotmiddot--middot-middotmiddotmiddotmiddotmiddotmiddotmiddot --middot-middotmiddot--middot-middot ----

_ - middot- --middot---- middotmiddot-middot-middotbullbullmiddotmiddot-middot -middot--- ---

--middot bullbullbullbullmiddot bull-bullbullbullbullbullbullbull M bull-bull 0 middot---middot-middotmiddot middotmiddot----middotmiddot - -

- --middot---middot- -- -~middotmiddotmiddotmiddot-middot--middot-middot middotmiddot--middot

____ ___ --- middotmiddotmiddotbullbullmiddotmiddot----- __ middotmiddotmiddot-middotmiddotmiddot -~ ~-

n1 s1or~o

110

AGC-218-5 S02 4Ct RH Gl ASS CHA~lrn lH6 lllJG 5

AOO 6amp0 HIN TO ELAPSED TtME

ClCCK l~llSFt 1$1 REL HiPl SO TIME TIMEl~lNl ID~G Cl Ill IPPM1

216 256 331 430 0211 221 u1 331 4-L~ c2n 226 ~66 33o 43~ C27 231 211 JJo 44o 022s 23~ 276 3l0 44S C28 241 281 330 435 C26 246 266 330 44 5 C2Z5 251 291middot 330 43s o22~ 256 296 33o 415 c23

middot301 301 bull3middot3omiddotmiddot---middot40 022s 3C6 306 328 435 0225 311 311 328 445 C226 316 316 32 1middotmiddot middot -4middot3smiddot c222

( 321 321 32S 440 C222 326_______ 36 32_ a______ 43 bull s__ c 221 middotmiddot---middot--bullmiddot-middotmiddotmiddot ___ __________ ----------middot-middotmiddotmiddot-middot 331 331 328 430 023 336 336 32S 435 C220

34134-1 e a~middotbull~- fl 9 0 211 346 346 3Z8 440 0220 351 351 32s 435 c220

1 ~t t---ttt-middot -t~g ____ --middotmiddotmiddot -middot-middot-middot-middot middotmiddot- middotmiddotmiddotmiddotmiddotmiddotmiddot--middot middotmiddotmiddotmiddotmiddot-middot--middot---middot middot--middotmiddotmiddot-middot- ---middot-bullbull _ 406 366 327 440 0216 411 311 n1 445 o_215 __ __ --------middot- middot--middot--- 416 376 326-middotmiddotmiddotmiddotmiddotmiddot43s-middot C211

( 421 381 327 445 C215 421 3~6 _32 bull6___~i1Lcn middot- ______ middotmiddotmiddot--middot--middotmiddot middot-middot--middotmiddot 4Jl 391 326 445 C211 436 396 32s 44o 0211 4 1l 401 326 450 0210 446 ~06 324 44o u211 451 411 34 45o 0213

_456_ 416 324 445 _C210 501 middotmiddot21 323 455 c211 506 426 323 445 c210 511 431 323 55 0204 516 436 323 44S 0209 s21 441 323 455 c210 526 _446 33 445 C208 531 451 3 3 455 003 536 456 323 445 0204 541 461 322 4S5 c20~ 546 466 322 445 C215 551 471 322 450 0206 556 476 316 4o 0210 601 481 316 450 020gt

C

606 4fl6 31 6 455 C zomiddotJ 611 491 316 5 ~ c2n 616 496 316 4tC on 621 501 316 455 C2J2

bullbull bullbull NO OAH T6KFN ---- ll 11T VJ ScAmiddot~~~u

111

AGC-218-6 S02 40l RH GLASS CHAIBER 1976 AUG 5

ADO 660 HIN TO ELAPSED TIME

CLCCK ELAPSED TSl REL HUM S02 TIME TIMEIM~) IOEG ti Ill (PPII

626 5C6 middot3f~6middot 46ci 0200 ( 631 s11 316 455 c2ao

636 516 316 45s c200 641 521 31~imiddot 4ampomiddot 019

( 646 526 315 45o 0199 651 531 316 455 0199 656 536 315middotmiddotmiddot 45S 0195

C 701 541 31a 45o 0191 706 546 319 45~5 C197 711 551 319 455 C115 716 556 320 45~ 0199 721 561 322 460 C197

566 323middotmiddotmiddotmiddotmiddotmiddot 45~5 C195- -middotmiddot - --middotmiddot--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot- ---- middotmiddot-middotmiddot-middot middot-middot-middotmiddotmiddot middot--726 ( 731 571 324 460 0194

736 5 76___32 bull middot-middot --4~-~~---middotmiddotmiddotc ~q_5 ______________ middot------middot-middotmiddot-middot--middot-middot-middot-- -- middotmiddotmiddotmiddotmiddotmiddot-middotmiddot-middotmiddot~--middotmiddotmiddot-~-middot-middotmiddot----- middotmiddotmiddot--- middotmiddotmiddot-----bullbulln-bullbull-middotmiddotmiddot -------middot-middot 741 581 3t4 455 0193

746 586 326 45o 012 751 591 327 455 0194 756 middotmiddot- middotmiddot-s96~-middot -- 32-amiddot- middotmiddot4smiddots middotmiddot middotc194 801 601 330 455 C193 806 606 33l 460 C191811 ------middotmiddotmiddot-middotmiddotmiddot-middotmiddot--middot----middotmiddot------middotmiddotmiddotmiddot-middot-middotmiddot----------middot- 611 33l 45bull 0 0171 ------middot-- middotmiddotmiddot-middot----------816 616 332 460 0191 821 621 332 455 0192

826 626 33--middot 460 o 183 C 831 631 334 455 C188

836 636 334 ____4S_o___Cl36 --middotmiddotbull---------841 641 -middotmiddot-middot-middot33 5 45 o o1ss

( 846 646 335 46 C137 851 651 335 455 CS6 856 656 335 40 0184

(

l

a ~ -

112

AGC-2ld-i s02 -~ r~ iliS5 (I--A~tl[f-

196 AUC ~

libulloHTS Cl 01CC 1nSlY lmiddotJOt lJ~ OA~JJI_ 12L r c~~ itmiddotE (Hit~t t~uG~j cic6 10 tll f-RC~ 1 Mi TJ S lf ftf-lt

Tt~ ~Ol~ fbull~0~ 1C~0 T2 l~Ji ~~~J TJ 113( ~2~1-~~C~ AU~ t VlOT--0110 s~tY 12s6 CAlt1 ~i11u- 1-h vl imiddot StPLllG RATES OL11) TcCU ~ -middot 123bull C~Slfl 12l - t()(

ccci- fL 0 )~middot) i Sl i l ht ~-it t-bullc r l -pound ( l 1imiddotc Cl 1 ~ ~~(

1 tti ~ C i t ( bull t ~ 1i1t ~) ~i cu

--bull-- -~ll __11 middot-- middot ~~) 5 ) -bull ~ __ S bull lmiddot~ __ _ gt le 1~J yen ~ ~s ~ss 1~1s~ 92l 21 ~bull~ 46C c11middotgt)c~~

S2C ~tbull 1 ~ ~ ~4 bull_ bull l ))(~-~

middot93 l 31 1 ~ _j_l bull bulltC Cl-bull 936 ~l 01 L

--------~ -~ ___ ______ 4_1 -1=i 1 5 0 l i 4t 41 tit~ 4 middot1 middotmiddot3 C -_ bull 1 i~l

( 951 roc -i 5~L 3 1 42 bull G ct 51 ~( - 3 f gt 41 i 0 1(_bull(

1)0 l c 1 ~centelaquo 4middot1 5 01X lOUc cc 15 ClL~ [011 7 l ~d~bullt~(c 3lt bull 7 41 bull -J16-t lOlt 76 it20 OltG t~~01gtt j4 9

102 l 81 (-ttI centicx 3i ~gt 01~2 iOU 8t i-uc~ ~2) C l 5t1oii -middot middotsf~- middotmiddot~~-~~- -----~-~ ~

)~bull- ~ l () middoto i5t1middot i03amp ~6 ~~ 4C bull i C lJ6 041 10 1 middot~bull-p(t 1t _ ----~ bull~-----~ ~+- ~ middottC46 [Ct bulllaquo 4 7 4 bull U r bull l bullmiddot

1051 111 ~~-~~ tCi ~gt 0 l i0~6 J1~- ~ 347 41u 01~ llOl 121 -middot--bullomiddot- -middot 41 c (i1smiddot1

C 1106 126 4s ) 153 llll l31 ~middot~ 34 5 4rJC middotO 140 lll6 136 bullbull~bull~ 3lt bull j =~- --~ O l4

( ~121 l~l $enyen 34 o 3i G 14ltgt i12o 146 ~~ 34Q Jl0 011

--i131 -middot-- 1s1middotmiddot middot_ __ middotf 3 ~ ---143 middot-- C 136 1f 3C 0112

~14_1 -middotmiddot--middotmiddotmiddot16_1 -e-~ )-t _ b5 1~2 qri middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot3middot4--_middot- Ji ~ C bull 1 j S bullmiddotmiddotmiddot - middotmiddot---middotmiddot-middotmiddot -middot middot-lee

( H51 171 3-1-ti ~ 7 5 013S 11~6 I 76 )) 3 1r ~ 37 0 0 1+C 220 l -- 1cimiddot1 x middot3middot- i~ bullmiddot 3( I Olle i06 d6 J ~ C6 34h 330 01n 21 I I l 31-9 middots o 0 131

l21 t I S6 - l(~q~cent 5middot ~middot0 ~4middot-~middot--middot-- bull i l2 ( 122 l 2Jl J~1 34 1 C l J

1226 2c1 c~bull~ 34~ 34C n 12s Tiit 2ll _(Ybullbull~- bull~bull~- i j~bull ~j cbull1it1 l23l 2 ll ~~UCO ~4a ~c Oi3~ i24l 221 bull~bull~ ~~-~ 3~~ Cll~

middot 124c 22~ v~-y 34~ 34i cmiddot ld

1251 iil laquoriribullmiddot ~middotmiddott o ~) 12middotmiddot 12~0 2 j() - bullrl-1- 3 ~ ~ ( 1bull~ 3C l -~ middot ~ ) J di ~ ~ l (l

113

AGC-2lS-8 S02 40l RH GLASS CHAMBfR l976 AUG 5

CtrCK TIME

EL AP SEO TlIOIMINI

Clf~C (PPM

TS l IOEG Cl

~FL HUf n1

SJZ C PPI I

1311 251 -$ H5 33middotbull 0125 l3lb 256 (centcent 345 n 5 0 129 1321 261 ltirtQlaquo- 34bull ~ 325 0 12 3

C 1321gt t31

266 27l

(~~laquo~ q~t~laquo

~4-7 3 9

335 340

0 12 S o 122

1336 1341

276 281

__ t

347 34 7

34J 31 5

0 122 0123

( 1346 286 1(11) 347 345 c120 1351 291 t l ~4-7 360 0-1 zo

( 1356 1401

296 301

346 346

36C 35S

0118 0117

140(gt 3C6 o 254 346 355 0 118

1411 1416 1421 146 1431

311 316 321 326 3 31

~YJJ

bullbullicent lCbullmiddot (11Ctlaquo

346 350 35l 35l 35o

34J 355 360 35 5 335

0118 0 118 0117 o ll amp o 114

1436 336 $$) 354 350 0 114 141 l 31 354 35S 0111 1446 1451

346 351

t(c=~

tit 354 353

355 350

C 112 0110

1456 1501

356 361

bull~

35 l 35l

360 34 5

o 111 0110

1506 1511

366 371

0287 $

35_o 1so

345 345

o1oq 0 lOl

1516 1521 1526

3 76 3A I 386

ICi -C ~IX$

349 347 347

340 340 355

0 109 0 109

0107 1531 391 tamp 347 36C D107 1536 396 346 365 010 1

1541 4 01 Or 346 36C 0106 1546

1551 406 4 l l

Cittcent

346 34o

36 5 365

010 0104

-15~6 416 6~ 346 365 0104 1601 421 ~( 345 365 0103 1606 426 c 302 346 36 C o 103 1611 1616

4 3 l 436

lJ rit II

~ 345 3 5

365 37 5

ClOJ 0100

1621 441 ltftt11 345 37 0 0100 1626 1631

446 451

~ 1tcent bull1Cc

345 345

36 C 36 0

0098 OCll

1636 456 tC06J 345 36 5 o 098 1641 1646

461 466

(Ittbullittbull

345 3 5

-c 365

o )Ya 0094

1651 1656

4 71 4 71

11)fI)

$$(1Jfbull 345 345

310 3 7 0

0 ))4 0 Oi4

middot7 1701 1706

4 81 48b o 315

3 s 34gt

0 3t 0

oogs o 094

1711 I 716

491 49amp

bulltttoJt--r

ittt t 345 345

355 H bull5

0014 oon

bullbullbullbull ijir mJ DU4 Tf~ fl -- middotmiddotmiddot- l)f TA 01 $ChIHG I OUET rorAILE tJIH

114

AGC-218~9 S02 401 RH GLASS CHA18ER 1976 AUG 5

AT 2059 PROPE~f (64 ML) ANO FC-12 1580 MLI WERE INJECTED

f (r CLOCllt El ~PSEO QZCNt___ J51 TIME TIME(~I~) 111 (DEG Cl

(

i7ii soi ~ 34~middot5middotmiddotmiddotmiddotmiddotbull-middotmiddotj4_Q 0092 bullmiddotmiddotmiddotmiddot----middot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot--~------middot----middot-middotmiddotmiddotmiddot----------middot-middotmiddotmiddot

C 1726 50~ 345 340 OC92 ll3 l_ middot--middot51 l ~~~~---3~--~middot-middotmiddotmiddotmiddot-3t i____QJJ12

1736 516 343 350 OC89 1741 521 bull 343 335 OC89

_1746 -middotmiddot ---526 u _ )45 _J3 O_ 0 bull C$8 __ _____ 1751 531 346 310 OJS7

C 1756 536 bull 350 305 035 1801 541 351 _no__ 0 bull0es___ _____ ______middot-middot-------middotmiddot 1806 ~4i~ 0313 3D~ 330 OC84

( 1811 551 358 320 0085 1816 559 ~-~-middot--middotmiddotmiddotmiddotmiddot~-58 32middotJ OC81 _____ -middotmiddot--bullmiddotmiddotmiddotmiddot-----middot---middotmiddot ----- 1s21 561 358 320 oc33 1826 566 360 315 0083 1831 571 36J 315 0083 1S36 ___ 576- 36o 320 oca1 1841 581 ~ 380 315 0078 1846 586 middot---middotmiddot 38 bull0_ 320 0081 1851 591 379 ~jo---6019

C 1856 596 377 335 007S 1901 60Jbull UUbull 376 330 0078 1906 606 0328 375 340 Q078 1911 611 375 335 0078 1916 616 376 330 0076 1921 middot621 376 33o middotocn

C 1926 626 376 335 0077 1931 631 376 34 0 OC7t 1936 636 bull 375 345 0070

C 1941 641 372 345 0074 1946 646 372 340 0074

0

1951 651 37~ 340 0074 ( 1956 656 37l 345 0073

2001 661 370 350 0071 2006 666~ 370 350 0072

( 2011 671 369 355 ocn 2016 676 36I 35 5 0068 2021 681 36l 36 0 OC68

( 2026 686 349 365 )069 2031 691 0 349 365 J070middot 203~ 696 349 370 OC6i 2041 701 350 370 0066 2046 706 349 3~o ooes 2osi 111 o341 35o 3Bo 0001

( 2056 116 0341 35o 38s o066 2101 121 0343 337 385 0066

115

r I

I~

) I I

H l

Ji

I

~ I

l _

I1 i

~ t 1 t

I r ~ ~

f ~bull1

1

1 r i

AGC-21S-IO 502 401 RH GLASS CHA~tHR 1976 AtlG 5-6

ADD 720 MIN TO ELAPSED TIME AT 2059 PR~~ENE 164 ML) AND FC-1 (590 Mll WE~E l~JECTED AT 2217 IO ML OF S82 WAS INJECTED

CLOC~ ELiDSEJ ri~~bull TSL ~fl HJ~ 5~~ TIM~ TIMEl~INI (PPM) (nEG Cl Ill (PP~)

2106 6 0 32l 345 390 2111 11 0314 34 bull 0 Crmiddot 2110 lf 0300 34 q_ 390 OJtO 211 21 () 2lJ 3bullbull 9 390 0057 2126 26 0231 350 ~9 0 JC56 2131 31 ()282 35Q 39bull 0 OC55 213b 36 tic 350 39 () or56

2141 41 O~ 35Q ~9J 0C54 2146 46 (~-ti 35bull Q 390 )054 2151 51 iei 350 390 0051 2156 56 ~laquo 35o 390 0053 2201 bl 35o 395 0053 2206 66 0241 35o 39S o)51 2211 71 35) 390 0051 2216 U 350 39S C85l - -middot--middot---- middot---middotmiddotmiddot39middotmiddot3middot -- - o middot2 ti -middotmiddot - --middot--middotmiddot-~---middot-middot-middot --- -middot middotbull-- ___________ ~middot-middotmiddotmiddot middot2 221 81 u-- 33 8 2226 34 7 395 0222

91 c2222231 middot 349 39s 2deg236 96 laquo 34middot9middot 390 0221 224 l l 01 =bulltll~ 350 390 0217 2246 bullioi ----- 34 9 _____ 38bull 5 __bull Gbull 22Q-middot-middotmiddot--bull-----middot-middot-middot---- middot_ _ --middotmiddot-middot - _ middot---middotmiddotmiddot -middot--middot--2is1 lll 39) 0220 349 2256 116 350 390 0219 2301 12 l cent 349 3llJ 0216 2306 126 349 8 15 0214 2311 131 t 349 385 0213

- -2316 136 t J(I~ 349 39) 0211 middotmiddotmiddotmiddot----141 2321 t~ 31 7 390middot 0209

2326 146 --Ccent0= 347 39o czoc 2331 151 4te 34 7 3Bs o2J1 2336 156 l) 347 390 0206 2341 lo fc 34 7 39) 0204 2346 166 -e~ 34 7 39 bull0 02l5

~obullicent-V235[ 1 71 347 385 0204 2~56 176 ~~ 34 7 385 02)3

1 l 81 ~ 346 390 0193 6 186 =1centCt 341 3 019

11 191 ~(r 345 390 0200 16 1S6 taici 345 ~85 0 19B middotmiddot- middot- -- --~ 21 201 Cdeg trtrbull) 345 38 ) 0195 26 206 345 39 G 0195 31 211 ltclI 345 3l() ~ 1 g1 36 2i6 V4-tiq 345 39 0 0 14 41 221 iocent 343 38 5 191 46 226 $ 345 rn s Clql 51 231 (r(c 343 ll 0 O lJ2

56 236 ~bullt~ 34~ ~9 ( J137 101 2 1l ftfilt 31-t 3 3e 5 c 188

0itW~106 246 34 3 JAS 0 1~9 11 l 251 4)QJ~4 Jlt bull j 3fl 5 C bull l 4

ibull1 DATA T~K rn ---- D~U DSCA~JEC 1 QIJ[ST tSbull~flLE DAT~

116

AGC-21d-11 S01 40t RH GLASS CHAltt8ER 1976 AUG 6

AOO 720 MIN TO ELAPSED TlE

CLOCK ELjPSED ozc~~ TSl ~~L HUM scz Tl~E T[MEt~l~l (PP~) IJEG Cl Ill l lP I

i16 121 176 131 136

256 261 266 271 276

bull ~bullbull bullbull~

343 343 343 342 342

365 e5 38C ~85 385

0183 01S4 0 I S2 0lSl 01s2

14 l 291 bullbullbullbullbullbull 342 8C 0 lilbullJ

( 140 151

236 291

-bullbull

342 342

360 3tiC

0 177 o 176

(

156 201 206

296 301 306

~~~~

342 342 342

385 330 8C

o fn0 176 0 l 75

211 3ll ~~~~ 342 38C o 172 216 22 l 226 231

316 32 326 331

bullbullbullbull middotmiddot

342 342 341 3 11

385 )35

85 3d5

0 173 0 171 0 161 0169

236 middot241

- 246

33~ 341 346

$ uuu

339 3go 339 3U533~9middot-- 355

J H5 C l 70

0 1 7J 251

middotmiddotmiddotmiddotmiddotmiddot--middotmiddot256 301

351 middotmiddot~middotmiddotmiddot ~5~--middotmiddot--- 361 bull-

339 33 9 339

385 39 0 ~ss

0165 0 167 o 166--

306 366 339 335 Q 164 311 316 321 326 331 336

311 376 361

_386 391 396

bullbullbullbullbullbull bullbullmiddotmiddot

339 339 339 338 338 338

3as 385 380 38Q 385 385

0161 C161 016) 0 161 0161 C 158

341 -346 401406

middotiimiddot-

33S 338

3BO335

0 159 0156

351 411 338 385 Q156 356

4151middot 406

- 411 - 416

421 426 431 436 441

416 421 426 431436~middotmiddotmiddot 441 446 451 456 461

~bullbull~ bullbullbull=bullmiddotmiddot OU

~~bull7

338 33S 33d 336 middot3)i3

338 33S 33S 33~8 337

320 385 385 390 a) 3B5 3dO 380 3d5 335

0 156 C151 J153 0153 0 15) -o l51 0 149 middot oi5o 0145 0149

middot middot middot middot

446 466 bullbullbullbullbullbull 33~B 365 0 14 3 451 456 middotsol

471 4t6 461

=~~~ ~bull

337 338 337

90 0ia ~~- 5

0 145 0 144 0148

J

506 $11 516 521

486 4l 496 5Cl

t fr(laquo ti~ lt0lf11

middot~ tI

33 IJ 337 3 3 3 3J a

R 5 ~f

~bulls lJ 3o o

0143 C14J D 142 0 1~ 1

bullobullbullbullbull NO fMTA TA~ fj ---- iHt Dl SCA 0 i)E0 OU Sr I~-bull ~-1 ~ ()A TA

117

l

u I

AGC-llS-12 SJl 4Jt ~H CLSS Crbullt~tH-~ 197 ~JC

bullco 720 ~IN JC ELAPSED JIME

__(_l CC -~-----EL I~bull-~ ___ )Jgtl________ T_~J Bf_t t1l~ smiddotmiddot-~ ~ TlMt TiMtlil l p- ( UCG ( l ( t) I Pi l

jIL szc gtt~ ~ ))~ti ~-3J 5~middotJ c1--

5ol Sl 336 3S ClgtC

-~-4 ~- t_ bull bullbull - t1-- ---~ ) bull ~ ___ _-bullbull__G_ Y~ l_~ l --middotmiddot- middotmiddotmiddotmiddotmiddot-middotmiddot middot--middot-middot-middotmiddotmiddotmiddotmiddotmiddot middot--------middot-middot-middotmiddotmiddot ---middotmiddotmiddotmiddot _ 541 521 ~~~~ 33H 75 CJ~7

( S4~ 52t _~ 33CI 370 01tti

ss1 31 _JJ1_ nc middotJ13bull 55~ 53~ middotmiddotbull ]31 7~ ~-1bull~

( 6~1 541 bullbullbullbullbullbull 331 ~7C Oi3J CC i 5 t l ~ i i_ 3_ gt bull imiddot-middot 1lt- bull bull_ Cbull _ 1 i 1 I 5~ j bullbullbullmiddotmiddotmiddot ~-~--~middot-middot- 3 3 bull ~ jt C l t - _______

616 gt~6 )__Q1bull 337 36i i l3i t i 1 lt 1 ~- -middot bull ( 3 ~ ii c C l _l- _

middot-626 G ~iu JJd J7G Qii

i 631 571bull bullbullbullabullbull 331 37C Ol~I 636 j76 ~=~~~ 335 ~7C 0t~S 6il 5ilbull (middot~vrr s1 31L Llmiddoti

64i Scit =~~bull~ 337 370 C126 t~ gt~1 bull to~-c~t i 7 3C 017 65c 5Stmiddot middotmiddottimiddotmiddotraquo=ii~middotti 3i 2lbull C lit 7Gl 6Cl bullbullbullbullbull 337 370 0127 7C6 lJ6 bullbullbullbullbullbull 33 J70 01257 11 611 -J 343 - ) 3 7 37 C ~ ~ 12 5 middot-middot-- middot-middot---middotmiddot-middotmiddot--middot- -----middot-----middotmiddot--middot-middot--middot-middot--middot--middot - middotmiddot-middotmiddot- middotmiddotmiddotmiddot-middotmiddot--middotmiddot

7lb 616 ~middot 33l 375 CJZl 721 62Jo HmiddotgtU 3)8 37a___ pU3_ _

middot-iii l2e middot bullbull --middot- 3i~imiddot 3c c c in l ( 731 631 bullbullbullbullbullbull J37 37s c121 I middotmiddotmiddot--- ]3l ________ l t_ 1 c~~_middot=_ ___ ____ 33 7 6 gt C bull l _~middot--middotmiddot bullbull middot---- ____

7itl 041 ~yen~~ 331 3~ C12 ( 74t 646 bullbullbullbullbull 331 385 c120

751 ~51 bull 3JI 3S0 C12~ _7 smiddotmiddotmiddotmiddot-- 6 56 ~ ~n-1~ 3 j rmiddotmiddotmiddotmiddotmiddot 3 bull~ j i r~ 8Cl 661 bull~bull 33B ~a OllE 80amp 666 yen~~___ 33 ~middot-middot---middot-middotmiddot ~9 5 ~middot-middot ~f--~

middot middota11 67i- tl~~ibull( ~ middotscmiddot e1 ~16 676 ~~~~ ~3b 36C C117

__s21_______ ~ci~ ~ 1r-t 3--z _bull J111 ti26 66 1-r~~~ middot3middotmiddotimiddot-middot middotH5 cflG-

( Sil c~jl centr(tiri 3-i2 1~bull t11 1

118

i I J I I j

l I

j

I AGC-218-ll 502 40t RHmiddotmiddot1 GLASS CHA~8E~

bullS 1970 AUG 6 t J

ACO 1410 MIN TO ELAPSED TtIEmiddot~ I l

t l I

~

CLOCK ELaPsrn ClCbullE TSI R~L HUM sn Tl ME TIMEPPil ( PP11 lo~ cY 01 IPPMI

l ~I l

829 -I ~ 342 390 0114abull

( 836 ( bullbull~bull 33CJ 19 0 aus middot

841 11 bullJ$rfll(cent 339 39S 0 l l 4 -- ~ _ __ _________ Il --middotmiddotmiddotmiddot-middot--middotbull- -- 846 16 nsmiddotmiddot 40) gt bull 112 ~- ( 851 21 Cit-o 337 4CO 0 116middotf 856 26 (I 337 c 0 0112

f I

901 31 ~ 337 nmiddoto 0112 i 1

~

- 906 36 =-= 338 380 c110 911 41 tt~ 34l 370 o 109 --middotmiddot ____ -middot-- __ ~ -- middot-middot--bull-middotmiddotmiddot middot- -middot lti16 4( =~ 3 3 370 o1oi middot 921 51 -tCio 35 365 c 11)6 926 56 tOO 3+7 3o5 c1-~r I

I

i

l

l

[ I

j

middot-

1~

931 61 3-7 38 0 C-104~ lt 936 11 H5 38 5 0 l) 3 middott 941 71 3t5 Jd5 0104 946 76 343 ]8 5 0105 ( 951 Sl laquo1tbull 342 385 I 104

950 86 34l 385 0103 middotbullmiddot1001 91 middot=+ 339 38 0 0103

1006 339 37 5 o 105 1011 101 339 375 C 10 l __

I - --middotmiddotmiddotmiddotmiddot-middot 1016 106 339 380 0C99 f

1021 ltl laquoO 339 380 c 099 1026 116 C10$C 339 370 0101 1031 121 Ct 33lt~ 37 0 0096 1036 126 buller 339 370 0096 1041 131 (e 339 375 0 99 l046 136 lit 34l 37 5 o middot]98 1051 141 t 339 no CJ98 1056 146 C~bull 339 370 0G95 110 1 15 l ~IIX$centU 3- l 3 7 5 00-~1 1106 156 bull )~t-C(t 342 37 C oc9s

~Q(~cent 1111 lbl 342 37C O C9 3o C1116 166 Ccent~~ 342 0 ]96

1121 171 bull4- 3 36 C 0093 1126 176 ilc(tOC~cent 342 009436 5 l I 31 161 tiOt(i$cent 3 1 2 36 5 C0)4middot 1136 middot l e6 t-r-oebullbullgtt 3- 2 36 C 0090 1141 Illbull 3 5 0 0094lrmiddot0-J(J 31 3 1146 l lt6 -C 343 35C ono

I 1151 201 e 343 340 0 CtJG 1156 2u iC111 3 3 340 0089

( 120 l 211 middot~ 34 3 33 5 ocn nliittiraodc1206 2H 343 ~o OCl7

1211 221 -~bull-1fJlic H5 330 O CH9 1216 226 -yen 345 320 0 Cl9

1221 2 31 (1$11r 3diams 5 3middot2s or~ 1226 736 bullcqtcentbull 345 3l 5 COil 7 1231 741 bullt-laquobullbullmiddot 3 5 11n middotJ J9bull l 236 24amp 3 6 30 0 i~lbull 4

(ATA ~-~middotbullbull TAtH[

119

rmiddot 11

AGC-213-14 S02 40yen RH GLASS CHAlfER 1976 AUG 6

ADO 1410 tN TO ELAPSED TIME AT 1424 1 Ml CF S02 AND l6 Ml OF PRCPENE WERE INJCTED CLIMET AND WHTSY WERE 0~ THE CHAMBER FRON 1313 TO 1645 DASIBI 1212 WAS ON THE CHAMBER FROM 1634 TO 1638

CLOCK LiPSED Ol0N~ TS REL H~~ Sl2 TIME Tl~~(~l~Imiddot IPP~I lb~G ti (Cl (PgtI)

middotmiddot-middotn41 middot -middotzsi~-- middotmiddot$~I middotj~t q 3zo ocas 1246 256 bulltbullbullbullcent 349 32J 0 C8 1+

-middotmiddotbullmiddotmiddot -- - middot---middotmiddotmiddotmiddotmiddot bull_ 34bull ~----1251 261 0lrU 31~ 9 Q_~_7_i 256 266 347 325 on2bullIt 1301 271 =to~ 34 7 325 oJS3 130 276 346 315 0083 ---middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot- 13 I 1 28 l O-ht~(I 346 Jl5 CJ83 1316 286 O 346 31C middotOOi33 132 r 2lt1 ~tc1 346 305 o_C81_ middot-middot-middot

i326 2ltJ6 - middotmiddot34~5 31 5 008 1331 3Gl 34 5 3 l 5 0082 1336 3C6 345 31 5 0C7t 1341 311 3bullbull 6 29 5 0078 1346 316 b~ 346 ZltJ5 OJ77 1351 321 --- _3_45 30 J ---- -1356 middotbull~ 0 j73 _ middotmiddot-middot--middotmiddot-middotmiddotbullmiddot middotmiddot-------middot--middotmiddotmiddotmiddot middot-middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotbullmiddotmiddot- middotmiddot-bull 326 345 ZltJO Q)71 1401 33 l 346 290 0)73

1406 336 middotlaquo 3 6 gtltJ bull S 0073gt 1411 341 34~6 30 C 0072It~- 1416 346 347 305 0071 ~ 1421 351 34 6 310 OJ73

~~ 1426 --middot middotmiddot--jsamp~ __ 33i middot--3middot1o C 13 $ middotmiddotmiddot-- --middotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddot- ____ middot--middot-----bullmiddotmiddotmiddotmiddotmiddot-middotmiddot-middot~---~~middot-middot

1431 361 343 310 0221 1436 366 ~ 345 2 0 0232

-middot-middotmiddotmiddot--middot-middot34 6 middotmiddotmiddota 231 middot ----middot-- --middot middotmiddot- middot-middot--middot-middotmiddotmiddotmiddot-middotmiddot-middot--middot-middot- middotmiddotmiddot--middot middot middotmiddot--middot--i441 3 71 33middot 5 1446 376 o 346 335 o 22a 1451 391 34 7 34l~~= 0 226 middot-middot- -middotmiddotmiddot------middot- middotmiddotmiddotmiddotbull -- --middotmiddot---middot--middotmiddot-middotmiddotmiddot- middotmiddotmiddot-middotmiddot --middotmiddotmiddot-middot----1456 336 ~ 34 i 340 0 223 1501 3lt 1 -ti~~ 347 345 0222 1506 396 347 345 0221 1511 401 ~ 347 350 0217 1516 406 347 35) 0214 1521 411 X 347 350 0211 1526 416 )$ 349 340 0209

( 1531 421 Ji 349 335 0206 153gt 426 Clltf 349 335 0202 1541 431 ~ 3t 9 33J 0 bull fJ2 1546 436 t=Cilc 349 325 0202 1551 441 ~=gt4 350 3 lj 0198

4461556 JO ~49 32G 0 195 1601 451 Jlrltlf~Tc 350 31 $ 0192

Vcent~~raquo1606 456 350 J 1 0 0 l llt 1611 461 lttlO-t 350 3J 1 fJ ll l 1616 466 ~~ 350 29 5 0186 1621 471 350 zq s C1A4middotmiddot 1626 476 350 31 C 018 1bull

~ ~ ~ 1631 481 1119$~rc 3o 31 5 0181 ~ ~~ 1636 4a6 0)7 351 2 5 c 161)

1641 49 l llir-4-it 35Q 32 0 Ol77L - (

166 496 middotbullbulltbulltr 35 l 34 s 0 IIH

middotbullbull-tiort ~ si bullmmiddot DATA TAK[i ---- OATA 01 $~APi)euroC QIJ ST 1(lLE LmiddotbullTA

~ - l f

r

120

i

1 --~middot---- ~- Ac-middot21q~f-sri~ middots~ ~H middot ~

q l r GLASS CHA~dER 197b AUG lo

--middot0middoti11t1 middotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddot-------- middot-middotmiddotmiddotmiddot--middotmiddot middotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddot bull AT 1545 FC-12 ~~S INJSCTEO INTJ TH CH~M~~R AT 1646 S02 WAS INJtCTEC INTJ THE C~AN~E~

-middotmiddot1ECC 43 SP~NNrn ll6SfC o-middotcHA-lEft trJtCTl)~ideg-------------middot------middot-middot-TECO 43 SANPLI~~ ~ATE 1213 ~LNlN SRACV ll9b CALIS~ATU~ 1976 JUL lb

-----middot soz COiRECTIGII o11s4 PigtM middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot-middotmiddotmiddot-middot-middotmiddot middotmiddotmiddotmiddot-middotmiddot----middotmiddot- --middot--middot- --middot--middotmiddotmiddotmiddotbull--middotmiddotmiddotmiddotmiddotmiddotmiddot

---r7JI 3 bullbullbullbullbull middot bull- 1735 5 3Zb 815 0237

1740 10 326 ot5 C29-J ------------------------------------r1-- 1s --32e air-middotmiddotc2middot- 1150 20 326 815 C297

1755 25 326 815 0302 -- lBOJ middotmiddot--3r-middotmiddot 32 7--olO -middoto ~ 3-)=o-----------------

C 1805 35 32T 80 0303 l 810 40 2 7 8~0 03J7_-----------------------~-------shy

--faf5 45---rz3 s1o o--io3 C 1a20 50 321 s1o o3C~

l 825 55 32 7 81 J J bull 3C~ middot-------------middot----------------------[830 60 na-middot~os--(rr-or 1835 65 328 SJ5 0302

middot l 84l 70 32 7 805 C 302________________________________ --1a-5 5 33~aoj -029~

1asc ao ]27 eos c303 1655 85 327 SJ5 C297

--r9li0--90-fzmiddot a ss o-middot211----------------------------------1905 95 3~2 aos 0292 1910 100 3 3 bull-2_ _middotg~-J~bull5_C=2~-92--~----------middot-------------------------~--nTs 1cs----3rL t105 02n 1920 110 33t ao5 c290 1925 115 331 aos c2a1

--1~Jo---uil------rr-ar--~-2-rmiddot3-------------------------------1935 125 331 ao5 o2ss 1940 130 33l 8J5 C233

--middot1945 135 330 d05 C282 1950 140 330 SJS 0281 1955 145 330 aos c201

--2000 150~2S 8JS C232 ( 2005 1ss 33o aos c200

2010 160 330 aos c216

C

--ni5 - 165 32a aJs a21~-----( 2020 110 328 ao5 c21i

2025 175 330 sos 06~6______ zoo-- ldegamiddoto middotmiddot-32s- eos tmiddot--n2 2035 185 334 79~5 C263C 2040 190 bull 33 S 790 0 bull 2b9________- ___________________

--2045 1ss middot335 785 o2s9 ( 2oso 200 33a 110 o2sa

2055 zos 33e 110 ozampo middotmiddot-- -------middot---------middotmiddot2lo)- 21c ----middot33s -middot--16s--middot-cmiddoti4 (_ 2105 215 339 7amp5 C259

2110 220 339 7os o1s1 --2115 ---22~ --middot-middot339 765 c2sa-middot

C ------ --middot- ----- --------------- ---------middot-----------~middotmiddot-bullmiddot--middotmiddotmiddot-middotmiddot----

j1 ---------------- -----middot---- 2120 236 342 76C C253

212s 235 347 7ampo o2so 2130 240 34l 760 OZSO

middot- n ---- 2135 middot - middotmiddot-z~-middotmiddot - imiddot-1-middotmiddot-middotgomiddot middotmiddot- o i4-1

-

l

1-~iI

_middotbull

1 ~ l

i

121

~

i

I~

I l I

middot1

------ --AGC-219middot2 S02 e 1~---middotmiddot -middotmiddot- - middot- --- -------GLASS C~Amiddot~~H 1916 AUG 16-17

-i C -- - - middot-middot-- --middot---- middotmiddotmiddotmiddot-------middotmiddotmiddotmiddotmiddotmiddot--middot-----middot -- - bullbullmiddot-middotmiddotmiddot---- - - -middot --- __ -------middot bull

-il _

-l ~ I

middot l

l CLCCK ELAPSED TSl qL ~U~ 502

--Me--TTfn Iff-middotccn------n1--rp-r~ -----------middot

I -~1

~ --71rcr------2cr~-z---7smiddot--c72o-4 2145 255 339 7ampJ 0247

2150 260 338 7bO 0244--middotzr5--middotzrs---n--s--middot16-0---y-2middot~----- -------

( 2200 middot 270 339 755 02J9 2205 275 J)$ 755 0247t I

A ----zz-r~1o--------yr----73-~~-u-r-r~ti ( 2215 2~5 339 7~5 C241 J 2220 2~~ 33 8 75S 0241---izz---2s~--3T7--s--o-ZTImiddot---------middot----------middot----middot-------f ( 2230 300 33~lt 755 023-

l 2235 3C5 338 75S 0235 ---z2-0---TIU--~3 -7 middot---s-u23c---------

224 S 315 339 755 C235~ f 2250 320 337 75_~5_ __o~2~3~~__-----------------~----------~---- l ~ ~ JlS--middot 33 bull 7 75 ~ bull ~

I 2300 330 33S 755 C231 2305 335 7 75 5 Czz_a__________________________________33 4 --middot--2n-~4middot07 J3 7 7575----U--ZZ ~middot 2315 345 337 755 0 224 l 2320 3 50 33 5 75 5 C22_1~------------------ ________________2325 355 33S sgt--e~z-2330 360 337- 755 0226--~ 2335 middot 365 33 s 75s c22o--____________________________

--i140 nc---3-i~1s--o--1 2345 375 33S 755 C224

~ J C

2350 3JO 334 755 0221middotf --n-sr--middot3r~~--~r---r5-c~2-i-20------------------------------

3 t 0 390 335 75 0213 1 ~~

___rs~ 3q5 334 1ss c21~6---------------------------- _______lO 400------rrz---nQ-zi l

~

C 15 405 334 755 0213 20 410 334 755 c211

---25 4 I 5---j3-7----gmiddot5---o2l____i ( 30 420 334 755 C209~

35 425 33 2 755 C214d l j I o 43b 33l 7~s 0211 45 435 332 755 C206l C _____________j50 440 332 755 C206

-middot----s-s 44-s---33-~---1-s-middot-o-zo~s----I

( 10c 450 332 755 C204 I -r ~ 105 455 B1 75 C204 l i HO 46C_ ]Lr ts C2)J bull -------------------1 Ii ( 115 465 332 75S 0197

I ~ 120 47C 33l 75i 0191 middoti

-- 12gt 33 l- Vi5 -----------------------middot7475 C20C

t_ bull

fi I

( I

middot---middot ______J--- ----- ------------------- --------middot----- ---------------

ad ----- middotmiddotmiddotmiddotmiddot----------- ________jrl -middot- llO --- 4-middot 311 0 20273 5 ~ i n 135 4F~ 330 155 C 1bull15

140 4S~ 33 1 7gt5 CIHf -----middot l4Sdeg- --- 45------ 33 l - --- middot-middot -- -- iI

755 QlHbullJ

~ 1 j 1

1 t

ibull1 l I 122lI middot1 I

1

----------

--------------

r ------ACC-219-3 s02middot soimiddot RH --middotmiddot---middot---middot--middotmiddot----- - middot--- middotmiddotmiddot---~--------------middot------ ------------

GLASS CtiA4t3ER

l~_7t AUG __17____middotr-- middot-middotmiddotmiddotmiddotmiddot-----------------middot middot---------middot----middot---middotmiddot-middot-----------middotmiddot--middot-

---------middot------------------------------------I (

---rso -middot-soo - ~3T___ 75bull middotci_94 ( 155 505 33~1 7~s c1s2

200 510 33l 75~ C~bull~l9~l_____ ---20gt 51s fJo iss--o 1a1

210 520 330 755 C192 215 525 331 755 C184

--- 220 ___ 530 middot iza 755 cc1s~o-------------- 22s 535 33~0 75o o1a1

230 540 3l 750 0137 --Z3s___545 328 755 J182-----

( 24C 550 328 750 Old3

215 555 33 o 75 o o tn-=--------------------------------- f50 -- 51o- 32a ---iTo - 1so 255 565 328 750 C179 300 570 328 750 01B0

---3tf5___575 3 l 1 1middot5o--odeg17le-------310 5SO 32 7 7iO 0176 315 5e5 3o 75o 0115

middot--320 5co 32 1 1o o 112 325 5S5 327 75Q 0173 330 6CC 328 750 0172 middot

-----3i5 6C5 327 10 011s 340 610 327 750 0171 345 615 32s 75o 0110

~5c 62c1~middot2-t-----ro--o-r6middot~------~---------------------( 355 625 321 middot 75o 0161

400 630 n a 75o ~ 165______________________________ --middot--cs 635 321 15o o i6s

( 410 640 ~27 7a 0lol

415 645 2 d 75 a O 102~---------------------------------middot-420middot-- b50-middot327 74S Cl~J ( 425 655 327 745 C158

430 660 3l8 745 C15~ middot 435 665 327 745 C15------------

( 440 67J 32 7 745 0155 445 675 32a 75o 1ss______ ----------middot--middot 4~b 680 327 745 C153

( 455 685 327 745 C153 500 610 32 7 74 5 C t S-igt_______________________---middot----middot----

--middot-50middot~---6lti5 2 1 145-middot-TT~l SIC 700 327 745 C55

____ 515 105___ 32_1 ____ 745__ c1s______________________

bullbullbullbullbullbull NO DAT4 TAKEN --- OAT4 DISCA~DED 1 QUE~TIONl~LE D4T4 --------------middot------------

---~~-----middot-----__________ -------------middotmiddot-------_-middot ---~--middot-middotmiddot -middot-

123

cl

I I

i

AGC-219-4 soi so ~H CLASS CHA~ilER 1916 AUG 17

l ACO 710 ~IN TO ELAPSED TINE

j

r 1bull

~ i_ CLCCK ELAPSED TSL qEl HU~ 502-1 Tl~= TIMEl~l~I l0EG Cl ltl (PPMI

I j (i

l

So O 326 745 C149 525 5 326 74S Cl5J

iJ 530 ________ 10~---middot-bullmiddot32bullT_____74_5___ _ Cbull11tt_____ middot---~--- ___ --middot-middotmiddot---- middot--middot----- --------- --middot- middotmiddot---- _ - -----middot--------~--------middotmiddot middoti 535 15 36 745 C148 C 540 20 326 745 C147

545 25 _32_____ 745 0143l 1 550 30 324 745 C144

~ C 555 35bull 3Z6 74s oi4l too 40 __ ~6 l45o 147_________________________________________ ---- _______ ----middot-middot ________ -----605 45 324 745 0138r l 610 50 324 745 C133

615 55 ~27 741 0139 620 60 32-4 745 0142

C 625 65 324 745 C136 d

f fi 631J 70 3gt 745 __C134 --middot-middot----------------- middot-----------------635 75 )4 745 0133 64C 80 324 740 0136l j C

-~ 645 85 324 740 0132 650 90 324 740 0131

4 C 655 c5 324 74o 0131

l 700 ____ 1JO_ 326 740 __O l31 ____ 7C5 105 324 740 0127

C 710 110 324 740 012Bii 715 middot 115 326 740 0127 ~ --middot----120---middotmiddot120 --middotnsmiddot-----nsmiddot c126 - middot--

725 125 no no 0121~ C --- 730__ 130 bull ___ 33 2 _ 72 5 QJ28_________________________________i 1 735 135 332 720 0121

l C 740 140 334 720 C125j 745_______ 145___ 31 5_____ 71 5_ 0 bull 122 ------middot--middot-middotmiddot-- ---------------------- --------- -------middot----i 750 150- 334 715 0121

C 755 155 334 715 0122 ----middot JQ 160o _______3)bull _ 7l o5 __ 0_122 L_--------middot-middot---~----middotmiddotmiddot--middot------middot-middot---------

eOS -------i65 332 720 0121 A 810 170 33I 720 0119

~ C I 815 175 33-0 720 0119 -------------------------------------------------middot--middotmiddot --------middot ------middotmiddot---1 i 820 180 3Jdeg-middoto _iz omiddot _ omiddot122 --middot--middot-middot- -middotmiddotmiddot-I C 825 185 330 720 C~ll9 ~ __ e30 1co 30______12o_____o 11 s ____________________________________________1

8)5 195 328 720 0120 I1 C 840 200 328 720 0112

845 205 32a 120 0119 i 850 210 3za 72omiddot oui

855 215 328 120 0114bull_ Cil o 220 3~Q __72_0 0bull llO __ ---------------- ~ 905 225 32~8 720 0112 middot-~ -(

~

JI middot (_

1 9lJ 230 328 721 C1)91r ( 915 235 32S 730 010ai ltO 240 327 735 C1J l J 925 245 32 1 7l5 () 10

(-1 bullbullbullbullbullbull NO DATA TAKf~4 ---- OATamp DISCAPO~G 1 OUESTin~ABLE CATA

~ l ~

t ~

I

ii l iJ

124

AGC-219-5 S02 SOC RH GLASS CHABER 976 AUG 17

AOO 710 MIN TO ELAPSD TIMeuro

CLCCt ELIIPSED TSl Rl HU~ soz TIME TIME IHlN) (DEG Cl lampI IP~l

930 250 3~$ 740 0Cl3 ( 935 255 32 7 740 Q)4

940 260 bull 327 110 O 04 945 265 32 8 741) o leamp

( 950 270 32 7 735 C108 955 275 na -middot 730 o 105

1000 280 32 7 730 0106

~-_CAT AbullDISCAROEO -middot- _1 QUSTOIIIABLE OATA

(

(

C

(

--middot-middot----middot ----middot--middot--middot------ -------(

--~-----------middot-----------------middot-middot------------ ---middotmiddot-------middotmiddot------middotmiddot----bull-bull------ -------------_______ ________ ----

-middot-middot - ___ ______________________________---------middot---middot------------

-- -middotmiddotmiddotmiddotmiddot---middot-----------middot---middot---middot--middot--middot-middot--------middot-middot ------middot middot-middot------middot ---- --middot

125

( I

rmiddot

l i

j

j J

j )

j j AGC-2~0-1 S02-03 PROPENE middot GLASS CnA18ER

1lt176 ~UG 19

bullj OA~K

S02 AND FC-12 INJfCTEO AT 1115 OZONE ADDED AT 1149 PRCPENE AT 1155 BRADY 1296 CALIBRATIJN lS7b JULY 16

CLCCK EtiPSED ~ZCfrac34E TSl ~~L HU~ S~2 P~CPfN lF lMEl~Nl (PPlt) lEG C) 11) (PPI-IJ (igtiI)

1200 o o~4 327 41 0 0363 1014 120 5 5 06)6 328 410 0344 middot 1211 11 0557 12s 410 middot~ $f r~middot 3t1216 16 0511 328 10 0318 0 BCl 1221 21 0 4 74 32 7 4 I 0 0304 0cent3-ii

1226 21 C4-+0 32 7 410 02l7 (q~cent-0(I

12 30 30 o 40 328 4ltJ 0291 0 (83 135 35 003 32 7 410 0283 ~4 1240 40 c~11 3 8 410 0 bull 776 1)lcent1 ltlaquo 1245 45 C bull 3i2 328 41C 0211 0~9J 1250 so o 335 328 410 026( deg6 12 15 55 0 318 330 405 0206 bullii t~ 1300 oO D3J3 no 405 0260 0522

C l 3C 5 65 l2 56 32S 40S 0258 -c11ie 1310 7J 0 24 32s 405 0254 itbullit ---------------- middot-middot-middotmiddot- ------- 1315 75 C 251 na 405 czso bull1320 sc o 29 32 d 405 024S bulllilCe 132 5 65 0231 32a 405 0249 -------middotmiddotmiddotmiddot-middotmiddotmiddotmiddot-133l 91 C2~) 328 400 0247 043 1336 t C 22 32 8 400 0244 ~ tP+l l 01 o 213 3 S 40 bull0 0 22 ________ __________ bull -middot middotmiddotmiddotmiddotmiddot-middot-middot middot--middotmiddot-middotmiddotmiddot middot- -middotmiddotmiddot middotmiddot- -----middot--middot---middot1316 l C6 ozos 328 400 0238 JOcentht

C 1350 110 on0 328 400 0239 bullc 1355 115 0191 328 400 0239 gt~ middotmiddotmiddotmiddotmiddot- ___ ________ __ middotmiddot---middot- -middotmiddotmiddotmiddot-middot ___ ----- ------ middot--1400 120 o ta6 33 omiddot- middotmiddot 395 o23i o 3 76

( 1405 125 C178 32amp 39S 0236 1410 130 D I 76___ 32bull 8 39 bull 5 02~---U bullbull --bullbullbull---bull -bull-bullbullbullbullbulln___ bull -bullbullbullbullbull bullbull bull---bull---bull-bull bull-bull--bullbull -bull-i415 135 0 lb6 326 395 0231 tlllllc bullitbull 140 140 o l SI 32 8 395 0232 cu~ Ji 142 5 145 0 159 32 bull 8 395 0230 16CC- --- ---middot-middot -middotmiddot __ --1430 150 I 151 32 S 3c5 0230 0336

( 1435 155 0147 33C 39 5 C226 (laquo 1440 160 C bull142 328 395 0225 gtccent( _____ middot-bullmiddot--middot ___ middotmiddot-middot--middot-middotmiddotmiddot-middot--- middotmiddotmiddotmiddot---middot-1445 165 J 1 39 331) 395 0225 ~ ( 14Sl 171 0 134 328 3-i5 C223 1456 1 76 012 middot 32 8 3) 5 0223 ~b 1501 181 0 0 I 21 328 3lt bull) 0222 0311 1506 l 56 o 122 32a 39) 0225 ctcr 1510 l SO c122 330 390 0221 bull~ _middot middotmiddot-151~ lltS Cld 32B 390 0221 I~ 150 2 co 0115 3ZR 390 0220 tTt 1525 2 cs C I lO 328 3SO 0220 bull15~0 210 C 11] 330 390 0221 0289

( 1535 21s C l middot~) ~20 390 0216 +rrmiddot 1540 220 tt~ 12Y 390 016 XlC-$1(1

1545 zc~ (lt(I~ 328 3()0 015 Cr4Ccent

1550 23-Cmiddot bull fl 328 39C o 715 tCit q

15~5 235 330 39 0 0215 lCi9bullbull 1(cot

160() 4C ~l)l-fl 130 390 o 13 0274 161)5 2 4 ~- _ bull C1~ ~ 328 390 0211 (rj

t1ilI ~~G DA Tf Ttt Li ---- DAT A Ol~rA~fJEO 7 OU Sr Pit tll I OIITt

126

r

middot1

AGC-220-2 $02-03 PROPENE GLASS CHAMBER 1976 AUG 19

t (

CLCCK ELAPSED ozmiddot-E TSl REL rlUI S02 PPCP EtliE TIME TME I Mll l I PPI J (DEG Cl 11 I DP-1 l I PPFgtI

(

1611 251 0085 3o 3t5 o 21-4 ~~lJltf ( 1616 256 C090 328 385 0211 middotmiddotmiddot 1621 261 0085 33o 3S5 c 211 (ercent

1626 261 QCd3 330 33 5 C208 = ( 1630 270 ocn 33o 5 0209 0254 1635 275 OCdl 330 35 0208 ~ 1640 280 0078 33 O 335 D209 bull~tbullitt

( 1645 285 0011 33l 3amp 5 0205 bullcentt41A

1650 290 0076 330 3B5 0 2J5 bulltcbull 1655 2cs 0076 330 385 0206 middot~

C 1700 300 (1071 33a o5 C205 024S

NO DATA TAKEN ---- DATA DSCARDO QUEST ON ABLE CATA ( middot-- -----middot-middot-middotbull ----- bull - middot-- -

(_

C

C

(

(

(

(

r 127 I

AGC--1 502-03 GLAaS (HAliH 1976 IIUC 20

DAIK BRADY 1296 C~LIBRAT[O~ 1976 JULY 16 ril NE WAS INJECTED AT 0933

CUXK fl ~rsrn Ol(lr lS l il El HUbullI smiddot 2 l I MF TJbullE ( NI ( r1) lCEG C) ()l ( PP I

I

845 o oc 32 7 440 0379 850 5 oo 330 435 C360 855 10 oo 330 435 C377 900 15 oc 331 435 C376 905 20 oo 33o 435 c J 76 110 25 oo 33Q 43 5 C370 915 30 oo J3l 430 0370 920 35 oc 330 430 0369 925 40 oo 33l 430 03amp9 930 4) oo 330 430 036 935 5C o~gtt2 324 425 0360 940 55 0576 330 425 035$ 946 61 0572 330 42 5 03~7 951 66 o 5 7 330 425 03~S 956 71 0569 33p 425 0352

1000 75 0567 330 425 o 3$2 1005 80 o 567- 330 425 0349 1010 e5middot 0562 30 425 C349 1015 ltO Cmiddot 551 330 420 C 34 7 1020 95 0557 330 42 0 a 34 7 1025 1 co 0554 33 l 420 0344 1030 105 o 552 330 420 c 34 1035 110 0552 33Q 42C o 342 1040 115 middot 550 330 420 o 34) 1045 120 0545 330 420 0342 1050 125 o 542 33l 420 middotO 340 1055 130 o 542 33 I 415 o 30 1100 135 o 540 331 4 l 5 C340 1106 141 0537 330 41~5 0336 1111 146 0537 33I 415 0335 1116 151 0532 330 415 0333 1120 155 o 5 32 33l il 5 035 1125 160 0530 33l 415 o 333 1130 165 C530 331 410 0332 1135 170 0528 330 410 033 1140 175 0528 330 41 () 0330 1145 1eo 0523 330 410 0 bull 325II

r 1150 185 0520 330 410 o 326

1155 190 05) 330 410 0325 1200 195 0515 130 41 0 0321 120~ 200 c~1e 311 4()5 034 1210 205 o13 330 45 O 32 l

ft 1215 2 LO I) 511 330 405 0311 1220 21 s f~ ec gtlC 33 I 405 c20~

i_ 1226 221 0503 330 405 0319 1231 226 osoa 331 40~ 0 bull 319

~ 1l J ii

1236 23 05ll l30 405 0119 1240 235 OiOl 330 40S 0318 1215 240 051)1 l3 o 4GO o~1s

f Ij

1250 24 04H1 BO 400 0 314~ I

middotbullbullyen ll() r11u TKEI DATA or ~c11ourc iIJl l)NeLE DATA f

f

~-

~ 1

f -~ 1l 1

~t 1 128 l

IJ 1

~-

1 1

bull

t-~ I

lIT 1 l

middot(I

11

AGC-221~2 S02-03 GLASS CHlMSER 1976 AUG 20

t J

middot

t

rr

a ~

bullmiddot ~

(

--1255 --middot- 250middot 049smiddotmiddotmiddotmiddotmiddot- 330 40omiddot---middotomiddot~jfi middot-middotmiddot-middotmiddot--------middot----middotmiddotmiddot-middot---~middot-middot--middotmiddot- middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

i l3b0 255 0493 331 40C 0313 ~ 1 1305 26J q 493 33 o 40 O C_309_____ middotmiddotmiddotmiddot--middot-middotmiddot-middotmiddotmiddotmiddot--middotmiddotmiddotmiddot------middotmiddot--middot -middotbull-middotmiddot-middotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot middotmiddotmiddot--middot-middot-

1310 265 o411 n 39s o3oa middot C 1315 270 0491 332 395 C308

1320 275 0489 331 39S C310 - --bullmiddot-middotmiddot- middotmiddot--bull-middotmiddot middotmiddotmiddot-middot-middotmiddot- _ middot--- -middotmiddotmiddot bull-middot

a tlmiddot

)

13zs-middotmiddotmiddotmiddot2ao~middotmiddotmiddot-omiddot4a9 33middoti--middotmiddotmiddot-ji~cmiddot middotmiddot 0309 C 1330 285 04114 332 39C 0307

1335 290 0484 332 39C 0308----middot13o middotmiddot 29s middotmiddotmiddotmiddotmiddot0middot4s1middotmiddot middot ir~middotxmiddotmiddot -middot59 c 0~middot3ci4 --middot bull--middot------ - middot--middot--------middotmiddot-middotbullmiddotmiddotbullmiddotmiddot- ---middotmiddotmiddotmiddot-----middotmiddotmiddot -C 1346 301- 0481 332 385 0303

1351 306 0479 33l 39C 0~304

H c

1356 middotmiddotmiddot311 middotmiddotmiddotmiddotmiddot-0middot~middot419middotmiddot middotbull middotmiddot33~1 39 omiddot o 303 1400 315 o476 33t 390 o302 14C5 320 C476 33l 390 0299

-1410middotmiddot -- 35 middoto474 33l 390 0298 1415 330 Q474 33l 385 0298 1420 335 0471 33l 385 o296

a i425 middotbullmiddot-340- 0~469middotmiddotmiddot 33 385 0294

1430 345 0457 332 385 0296 i

f J

ffi C ~

1[ C 1middot11

lf~middot i$~ C

(

(

(

(

(

129

i I i

-

j i iI

l j

l i i 1

ampGC-222-1 SJ2-N X-SURR-U GCASS CHAll~fi 1976 AUG H

O~RK CO FACTOR lq122 eR~OV 129~ 21 ~l ~ox INJECTED AT 0920 HJURS AT T=o ~c~-METH~~E ~ bull 1740 PSC MTHAN~ bull 32CO PPB

CLJClo ELAPSED 0ONE CJ TSl ctEL HUll SmiddotZ ---middotmiddotmiddotun TlM~(M1-ifmiddotmiddot-PPM)middot--(p y ID~G Cl - u IPP~I

q4~- middot-middotmiddot-middotomiddot oo 53 n2 465 o--j~ middot-------middot--middotmiddot-middot---------950 5 oo 56j 33l 465 034~ 955 10 0 002 5 65 n l 46 5 0344

1000 15 oo 561 HO 465 0344 ~ 1005 20 oo 560 ]30 465 0340

1010 25 bullbullmiddotbull bullbullbullbullbullbull bullbull~middotbullmiddot bullbullbullmiddotmiddot middot~middot~bullmiddot------bullri1s 30 oo middot 563 33o 465 o1Ja 1020 35 oo 564 330 465 0)38 1025 40 oo 5ss 330 465 0337 middot----103) 45 o bull i 556 330 4amp5 o333 1035 so oo 5-~6 130 465 0335 1040 55 00 556 330 460 0332______ -----middot---middotmiddotmiddot- --------------middot i 1045 60 00 551 330 4bO 0332 1050 65 OJ 552 330 4bO 0333 1055 70 oo 54il 330 460 0329_---------------------1100 75 co 548 330 455 0329 1105 so oo 548 330 455 Q327 1110 85 00 547 33l 455 03_6_______ middot-----middot--middot---- ------middotmiddotmiddot-middot 1115 90 OO 550 33l 455 Ollb 1120 S5 00 548 33l 455 0325 1125 lCO OO 55 33l 455 0324~------------------------(130 ____ 105-middot-middotmiddoto002__ 542-middot 330 -- 45o 0322 1135 110 oo 540 330 450 0319 1140 115 0002 542 330 450 0320---1145 middot -middot--120 0002 5ia 33o___45o omiddot319____________ middot------bullmiddot--middot 1150 125 oo 540 330 middot 450 0318 1151 0 o 541 330 45 0 03_1_8_________________________131

1200 135 OC 532 330 45C 0314 1205 140 0010 539 330 450 0311 1210 145 oo 535 330 450 0314 1215 15bull) oo 534 328 450 0313 1220 155 00 533 330 445 0310 122s 100 oo 534 33o 445 0313 1230 165bull 00 52b 330 445- 0313 1235 170 oo 531 330 445 0310

1240 175 00 53()___ 332 44C 0 0_3C________________________middot-middotmiddot-middotmiddotmiddotmiddot--middotmiddotmiddot-middotmiddotmiddotmiddotbullmiddot-middot--middot----- -middotmiddotmiddotmiddot--1245 180 00 526 33 l 440 0303 1250 1s5 oo sza 332 44c oJn 1255 190middot oo 529 332 435 0304~--~- -----------middotmiddotmiddotmiddot-----middot-----------1300 195 oo sn n2 435 aJes 1305 200 OO 52b ]32 435 03l4 1310 205 oo 524 332 435 0304 1315 210 oc-62 s24___ -~3i -middot--middot43s o302middotmiddot--middot------ middot- middot ----------------~-- -1370 215 00 523 332 435 0300 1325 220 oo 5 lil 332 43c ono 1330 225middot middot-oo middotmiddotmiddot-middot--s -19middot --middot~j~z--middot3if-middot 0300 ----middot--middotmiddot----middotmiddotmiddotmiddotmiddot-middot middot-- -middot--middotmiddot -----middot

r BH 230 oo 519 33l 43 G 03iO 1341 236 oon 5 IIgt 33 1 -3 0 in1

1345 240 oo 5 15 H l 430 J297 1350 245 oo 5 13 3l2 43C 01~

bullbullbullbullbullbull NO nTA TAKE~ ---- 0lTA 01 SCAPgtFl

130

AGC-222 2 S02-NOlt-SbulljRR-U CLASS CHAMBER 1976 AUG __ 24

0

----------middotmiddot-----

-- 1355 ____ 250middot-middotoo s13 332 41c 02 middot -----middotmiddotmiddot-------------( 1400 255 oo 5lZ 332 43C 0294

___1405__ 260 oo 5 ll __ H2__ 3t3C 0_293________ 1410 265 oo 512 330 43= 0291

1415 270 00 50ltgt 330 430 02ll 120 215 co 501 32s 43o o2bulln ___________________ ---- -------middot -middot--1425 280 00 503 328 43C 0211

C 430 285 oo 578 328 425 0291 143 s 290 o o s 04 32 s 42 5 o z_a_________________________--_

--To---i9middots oo 504--fj-middoto- 1t25 middoto-zag C l4t5 300 CO 502 330 425 0283

1450 305 oo 5oz 33o 425 ozss___________________________ lt55 310 00 497 330 420 0283

middot 1500 315 OO 499 330 _42C 0285 1505 320 00 496 330 42C 0285----------------

--Tsio 325 o-o---soo 33o 4z-o--ozas 1515 330 00 501 330 42C 0285 1520 335 0002 493 33o 415 o2a______

----1526___341 oomiddot---4~-33l 415 0281 1530 345 oo 493 334 415 0280

__J2~1__3j____~g_ 492 332 415 Q__1_80_________________________ 1540 355 0002 491 33t 415 0273 1545 360 0002 492 330 415 0280 1550 365 G0 4 93 32 8 41 5 0276--------------------------1555 370 oo 489 328 415 0276

C 1600 375 00 489 328 415 0275 1605 380 o o 4 88 33 o 41 s o__2_1-=1--------------------------c-------H io 3a~-middot002 490--ffa 410 f21-

( 1615 390 0002 483 330 410 0212 1620 3c5 oo 487 330 410 0211_______________ 1625 400 co 481 330 410 0274

C 1630 405 0002 481 330 410 0270 1635 410 0~002 487 330 410 027-=)---------------------------1640 415 oo 480 330 405 0270

( 1645 420 0002 4i5 330 4C5 0269 1650 425 0002 481 330 405 0210 ---- -----middot-- ----middotmiddot-middotmiddotmiddot -------------------1655 430 00 463 330 405 026b 1700 435- oo 484 330 405 0265

--~70115 ______ 440 _____ oo 482____330 405 _026_6_____ 446 oo 482 331 405 0266

1715 450 oo 4 77 332 40c o2u 1720 455 oo 4 74 332 40C 02E4 1125 460middot--middotmiddotoo middot 479 n2 40c 0265

1bull 1730 465 00 479 332 40C 02(5 1735 470 00 480 33l 400 02t4_____

--f140 475 co 4 75 n2 4oc 020

middotmiddot-middotmiddotmiddotmiddotmiddot-middotmiddotmiddotmiddot-middotmiddot ----middot-------middotmiddot---middot-------------middotmiddot---------middot-middot--middot--middotmiddot---middot------ --middot----middotmiddot

----------------C

bullbullbullbullbullbull NO OITA TAKE~ _1 QU~STlnNIHL~_CATA

r

131

0 AGC-Zll-3 smiddotczNOX-SUR~u CLASS CHAISER 1976_ AUG 24 -middot-middot middotmiddotmiddot-middot -middot

_CLOCI( _ELASEC ___ OZCNE_ CO ______T_Sl REL HU _ SC2 TlHE TIMEl~INJ IPPI (PPMI (DEG Cl (II IPPMI

-- 1805 -- 500 -- oo --2--331 395 02cl ( 1s10 so oo 472 332 395 ozs6

1815 middot 510 oo 4 70 339 395 0259___________________~----1820- 515 omiddotc middot 69 34 1 39 5 0-~lsi

( 1825 520 oo 469 34l 3gt5 0256 ___1830______ 525i __oo___46S__ 34t t9_5___ o2ss _________________________

1835 530 oo 467 34l 395 0256 ( 1840 535 oo 466 342 395 0254

1845 540 oo 469 342 3S5 0254_________________________ --irngt----5s oo 461 342 iis_____o--fsi

( 1856 551 oo 466 343 395 0255 1900 555 oc 4-oo 341 395 o254~---------1905 560 oo 470 34l 395 0254 1910 565 oo 465 341 395 0252 l 915 570 0 0 4 51 34 bull 1 39bull=5__0ebullc2-5-2__________________________ 1920 575 oo 464 341 395 0249 1925 580 oo 458 34 l 390 0 249

1930 585 oo 45a 341 39o o241____~------------~-------1935 590 oo 465 341 395 0249 1940 595bull middot oo 460 339 390 0~245 1945 600 oo 4ss 339 390 o~2~45__________________________

--C95(---6C5~--o~o 458 34l 39~0middotmiddot-0247 1955 610 oo 461 338 390 0244 2000 615 oo 460 338 390 0-2~4~5_____________________-----

2005 620 00 456 339 39C 0244 ( 2010 625 oo 454 339 390 0245

201 s 630 o 002 4 59 33 9 39 c__o-_=2_4J--------------------------2020 635 00 456 339 39C C245

( 2025 640 0002 453 339 390 0241 2030 645 middot oo 455 339 39o 0241 2015______ 650 ----middoto~--middotmiddot--453 - 33 9middot-middotmiddot 39omiddot o239=------------

C 2041 656 0002 459 339 390 0239 2045 660 0002 459 336 3B5 0238

--2050 - - - 665 -0002 45z -i3~B--3as middot 0231middot-----------( 2055 670 oo 451 339 3ii5 0237

2100 675 oo 451 339 385 0237--2105 680 --oo 44smiddot-----33-9---middot3s-smiddot--o237-- -------middotmiddot-middot--------- - -----

C 2110 685 oo 453 339 365 023 2115 6~o co 44a 339 3as o23~6___ 2120 695 oo 44) 33C 365 0236 ----middot----middotmiddot----

( 2125 700 oo 455 339 335 0232 2130 7os _____oo ______449 ______33 bull ____ 3-a 5 ____ 02 J4_____________________ middot------middotmiddot-----

bullbullbullbullbullbull NO DATA TA~EN ---- DATA DISCARDED 1 0UcSTIONASLE DATA

--------middot-middotmiddot---- middot--middot--middot---------middotmiddotmiddot-middotmiddotmiddot middot-middotmiddotmiddot------ middotmiddot- _________ middot------

132

l [

f

l i

t ~ C- 2 2 -middot 2 - bullj tmiddot- $ VXA- _ Gl~SS C 1~gt ti 1976 H Z -h

lC~ 710 ~IN TO ELAPSfC TIM~

CtCCk tlh~~~e middot_lC1Ji ~l T P f ll ~ Pi l p bull n I ) ( E Cl

middot13s middotc oo middotmiddot s i9 middot 21~0 JQ bull 51 3 C 2145 Le 1c bull 1~- J_a 2 l ~C cc 4 f 21~5 oo ~ ~ ~I~

22middot)0 2 CG 3 middotn0imiddot- middot3middot1 j ~~3 -cc

35 ~c 3 ~- 9 i) C t 3 l~

bc ~ bull ll middot3 - ( 222c 5 l ( c bull 4 2230 55 bullbullbull 1 ~ ~1 2235 middotc middotc ~ QC ~ ~ 1 I 224G C 5 C itbull 3 ~ 7 2~ 5 70 oc ~ 3 I 3L 8

2~5 1smiddotmiddotmiddot oc middotbullbull-i -~ 7 215 FC oc 230C CS 33 S 205 sc 3i 5 231C ~5 CO 440 ~3~4 2315 lCQ 0c____ l)~-__ i~middotzc------imiddotsmiddot~ - u c ibull ~s 2325 l l O oc ~ 4C

2BC ~-9 _____ 41 _ 235 u 3(61

2340 liS bull C C t 34 235 19 Cc middotmiddot------~middot])2350 1 5 bull 0 C bull 3 3 1

2355 l-8bull cc i3lt 33 1 0 l~ ov 43 )31

--middot-s middot-- iSv oomiddot ~31 331 ll 15 6 Oc ~-27 3i~C

C _)-(1 20 -middot iljmiddot oc I 2 2 d 25 17C J i2 32 B 30 _J 1 5 ___9 c_ ~7 G35middot-- 24 3 8 4C 125 oc bull 2i 3225 lCbull __QC 4 2~ - bull n 50 15 middot 3l55 2c i 2 5

l co_ _2 ~ ~21 10 ~ 21c oc bull z I lt1 11 J 21 r bull 4 bull ~middot 6 u______ -middotmiddot_ac o~ _____ it bull ( 120 2~ o~ ~2

15 130 j

middot I 7 tbull 1 J t 1

- --- - 1 1 r -

~-1 1~- SC_ l P)~)

c ~ ~7middot

~3T middotis4middotmiddotmiddot

3 bull 3 ~ ~

3 ~$ )

)

J8

3 J middot

3-3shyJS~ -

3G 3BJ i $

Id i c 3 j

3 3 5

3SC 3 middot-~c bull C _ bull C 3 (~ 3j imiddotbull 3

~ r middot i c

0220 1) 2 H ) bull ( 7

c~J ~ _ 7 G -- 0 u 2 2 gt J22o J2D imiddot

G bull (2 ) 2 ~2 c21 -21 bull 2 l cn Cl2t C 22l middot~ 2 3 7 2 G L t(t ( 2 l middot1 C1219 G~O 16 ) bull 216 0 216 cdmiddot i) bull 15 ~214 ) bull2 t 7 C ll 3 ) bull 13 bull 2l 1 )2 h

( 11 G bull 2 01

133

T

AGC-2l-S SC2-1x~~ltR~-LJ GUSS CHMmiddotWE

J l176 AJG l~ l

ACU 71C MIN 10 ELArsro Il~E

CLrCK EL~PStC CZ~NE cc 1 S l f L i Lbull S1 2 THit rmiddoti ME ( lbulll jmiddotJ ( po11 middot1 ppl(J iCtf~ (~I lPr-q

1 s middot-2smiddotc- 00 middot 4-~ middot 3middot C2CJ 150 255 U C 1-t~l ~L0 155 261 cc 421 32 3 - 200 26~ 4 b 3 _ s --~ l 205CbullC

20 5 2 7 C li bull ~ 4 bull t 2 3 ~~ i C i ~J bull C ~10 ~J_ ObullQ middotmiddot-bull~ rt ) 2bull~2 Jis-middotmiddot 2euro0 0Lo 1ll ~~~bull J 2(

220 2~middot oo 119 j 02c 225 2S0 0 bull1 Ui 3 3 bull 2C 2H i9smiddot cbullmiddotmiddot 4middot11 - l c) 235 JC C~ 46 ]2~~ ~- ( bull r G ~

2o 305 cc 1 _2l 3 020 middotmiddot 2smiddot------ middot 31c oo middot4middot2t 12 bull i 2~-

250 315 CO 416 3l5 C2Qj 255 32J o 4ll ____1~ 3S 5 lbull 2fJ2 3JO 35 OC 407 I i L bull 02 3C5 330 CC 414 3l~3 3S J l bull 2Cmiddot 310 33 cc 4 1J 31i 3 I~ 5 CtCl 31s middot30 cmiddotc middot--middotmiddotmiddot13 313 3S C Si) 20 345 o~ 414 31J 3middot ~) C2C) 325 350 oc 4Js 313 3 0196

330 3jJ -middotcc 410 31i 3( 5 J 14 7 335 360 uC 410 3l2 3 s gt i 1 S6 341 366 00 4C4 312 3 s_ C l_Y 7 3~5 370 GC 4d 3l2 3 - bull s ) 19 I 350 375 oo -t)8 312 S bull 3 L 1 e 355 38C OJ 401 312 _y~ C I l~ 400 3i~ oc middot 4~2 312 3S5 C195 ADS 390 OC 4J 311 ClSi

______41 c ______ ys______ n ~----- ____4c4 _______J_1 3 middots 5 01lt7 415 -tCO CQ 117 311 35 0 i 2 420 4C5 OC 4C 311 ymiddot J] 4 2 5 __________ 4 lO 0 ~ 4 ~_ -~ l I C I~ 43C 415 0bullJ 3S9 31 l 3 bull 5 (ts) 435 420 CC 47 JiI 3 middot - bull ls l

____40 4 __c_ __________ __2___ 31bull i - bull 8~ 445 430 )C 3S3 311 3 middot v1c1middot1 450 435 O~ 3middot3 31 l 3 middotbull n 1 c)

_4_)5 _____ 44~ 0 bull ~ It~_-) bull J 3 middot ~ bull 1 d 500 445 oo 4tl 30c 3 middot C lk ~cs 45G o ~ ~o zc~ 3~ 5 u te 510 1 j j 1 8 middot 55 460 0( 3 C middot ] ) 1_ s2O 405 0c 3 middot I 30 C j gt C l 8

52igt_____~1l __ ) c__________ i bull ~J___j middotmiddot-middotmiddotmiddot- -~ Gbull d J l 7 530 475 Ot 4l 3Ci bull S

4eo J

_middot 3-bull I 3 -d jJ -~ V I H

134

I J

A~C-2l2-6 5ji-NOK~S0KR-U GLASS Cf_cofJ 1976 AUG 25

ADO 710 MIN TO ELAPSED TIME

CLCCK EL1~SED middotrbull C i TS l t rl _ ~ t D c ~ ) (fI)TlH THfPbullIH I )G Cl l-l

55 500 oo 3C 7 I) 5 ) bull ~4 600 507i 3 93 3middot) I 3 middot) ~ J bullbull middot)2

605 51() ) bull 9~ 30 610 15 3 1S 3J 7 r~ ) ~ i 615 520 00 396 30 7 n5 -) bull l 6 620 ~) 5 ~ 0 bull]7 3( 7 -) ~

625 53C t- ~ 0 5gt~2 3iJ 7 ~ gt 630 5~5 oc 69 3~5 )13030 65 5) )0 3 - 3) 7 _ i ~ bull ~l

640 middoto os2-middot - 3 Ji o 7 j ~S -Jmiddot1middot7d 5 1t5 i 645 5~0 oo 391 305 ~ J131middot 650 555 oo ~dd 3G5

655 middotmiddotillf Cmiddot o 3 9J io ~ 7JO scs co 3 sc 3C 705 570 o ---middot-middotmiddotmiddot-nrmiddot middot - -- cmiddot o middot 715 seo Ii GJ2 middot1 middot 5 J l 76

57c 0 s 720 555 C 31 5 ol v J l 73

-- -725 sso o u ~ rmiddot-middot-- 3bull) 5 ~ ( -middot----y~rrr----- middot middotmiddot 730 gtlt3 o Cl2 lt 3C 39G J-l 71

735 6C-O oJn 382 3C5 ~--J bullJ i17o 746 - -ij~ c-002 3 37 3middott1 3middotmiddot~middotT- )itb

( 745 ~10 Omiddot) ll 30~ 3 ~ J Jl3 7$0 615 CJ 3 H l 3J I ------- -75 ~ - middot-- 62 --- o Jo2 ------middot Jaf -il (

( 800 625 Ci J 3 8 l 3 l 3 3 C ]72 805 6~~ G 3 3-t Higt 3 7 C J l 72 810 i 3 5 i iJ ] 1 3middot ) middotmiddotmiddotmiddot middotmiddot1 fj-middotmiddot --

( P15 610 ~ 3) J) - bull 73 20 6t _ c2 32 J bull 1 7 ~2 s 6) 0 bullbull ) i l l 3d l 3 ~I bullO ~ J (1 i

( 830 65 oo 3 l~6 3t3 3- 5 ~j -i1 i)

835 UC vo 3 77 3) 3 i bull 1 7) middota4Cl- bl C bull ) 3 31) 32 middot1- ) s -~ 1C)

a4 s 6n 76 middot 3 i) 3middot ) )ll ao o7 (i0 j gri 32 7 34 ~ a19

middotmiddotmiddotas1 middot---middot middoti8i omiddotmiddoto j o middotmiddotmiddot32ibull ~ t-~--cmiddot middotmiddot i ~middotmiddot 900 6 0 ) 7) ~ 2 l ~ 1- 7 ltJS 6Jj C 0 3 __bull -~ 32 bull 1 ~

-910 ftJ 00 L ~-~bulli

(

f 135

I

r

j I

AGC-222-l S(12-N]~1-St 11~-U GLASS (bull-Ufis 197( Au 25

ADO 710 HIN TO ELAPSEC TIME

CLOC~ fLlr5~J oz~-J~ CJ _TSl P~l 1U-~ _5J2 TIMf TPHlNJ (iPMJ (fgtbull-1 [IJEG Cl [) crPl

915 92~middot

7~ Jmiddot iCS

0 0 OOJ2

- bull lbull) 377

32 i 32

3 C~ --loz- iimiddot1-V O c 169

_925 7 ) 0 o 3 79 37 0 l c- 93) 715 00 3 79 32 7 0 l 6 935 7~C C0 n 32 7 0 l 64 940

i45 75 )

0) 0 0

~ 7_7 3 79

32 bull 8 3 3

middot3 ~ 33

0 Jc~ C lomiddotbull

75 oo 3 7l 32 raquo 330 O l l2 955 7~middotJ GO 3 79 32 a 33 0 0 16-t

middot1000 71 omiddoto bull middot1 33~ 3L 0 o 162 lmiddotl05 7middotC- oo 3 7S 3 bull3 33D O l 62 1010 1015

75 f-Jmiddot

uo 0 o

3 7o 3 7z

3) ~ 3) J

33 c 325

0 l 61 O l cD

1020 7c5 0(1 3 73 33 ltI 325 OHl 1025

-middot-1030 --770 7i5

oomiddotcomiddot

375 3middot middot1a

~-~- i 33 e

325 v _1593_i_-middot 0 bull I Sc 1035 co CG02 3 7) 3] ~ 32 ~ bull l 5j 1041 1045

7 7 0middot~

OD ( o 37S middot3middot~ f

13~ 33 7

3l~middot-z~middot ~- middotmiddotmiddot

Vlt~l c middot 1middot~~8

1050 7lt5 0 bull) 3 71gt 33 7 325 v158 1055 Smiddotjbull oo 3 75 336 3 2 5_ gt-t~-- _

~UES1l~NA8LE DAlA

136

l

Jbull j

---ACC-2~2-emiddotmiddot~c2-NC~-sugttl-1J _______________ --- -middot GLASS CHA-l~EQ 1middot91J liJC 25

-middott tc1-1rsmiddot O- 1100 -lH1STY 1Jf middotmiddot----- bullmiddot-middot -- --middotmiddotmiddotmiddot-- middotmiddotmiddotmiddot------middot-middot-middotmiddot middot- ---- -middotmiddotmiddot -- - bull middot- middot-------middot--middot- -middot co FACTuR l91Z e~ACY 1~1 TECO 14D ~IS ON TH CHl~OE~ FRO~ 11J5 TO 1111 1200 TO l2J5 1~00 TO 1305 1400

----middotmiddotmiddotro-1405middot lgtCJ TC 15J5 11 l01610 ANl lb55 TO 11Cv middotbullbullmiddot-bullmiddotmiddotmiddot- middot------middotmiddotmiddot TECO 140 s~raquoPLlG UTE 112a ILMIN PAN NOT ~EiSURED ~02 AND N~a VALUES NDT C0ARECTEO

---ATT=l5 MP NOS--ffVIE i-C =middotmiddot1130middot PP3C middotmiddot ~=TH~~E middotmiddot-middot29oc middotpamiddotmiddot ------ middot- ---middot-middotmiddotmiddot-middotmiddotmiddotmiddot---middot---middot-middotmiddotmiddotmiddotmiddotmiddot

CLQCK EUSED OZC~ J iJ2-P~N bull1-P~r ca TSl ~El llH Sl2 -T1~-e--1Mtnbull1Nrmiddotmiddotmiddotmiddotr11-r- - HbullJfr-middot middotmiddotr~- --- nirr-TPgt)n- middottoEG middotmiddotci--- ni middotmiddot-middotmiddot middot 1gtsi-1-middot--------------- ------- middotmiddotmiddot----

--middot-ruo c---rv----~i ~if----~----~-i---1middot-n-~1 o 32 lmiddot-middot -rrs 1105 5 OC27 ebullbullbullbull bullbullbullbullbull~ bullbullbullbull~bull l74 3Ja ~iO 0154 1110 10 oc54 a~3a csoa csJc 37bull 3~1 31s o153

---n 15 15middotmiddot--r-T~--t~bullJgtT--az-m------Ti-~-- bull 32 o middotmiddotoT~---------------l 12J 20 ~095 ~bullbullbull ~bullbullbullbullbull bullbullbullbull 373 34l 325 0149 1125 25 o11~ bullbullbullbull bull-bullbullbull H-u- 373 34l 35 014S middot

---rr3middot--middot-middot-middotmiddot3u---rzz-middotnH-----ymiddoti--nmiddotmiddot~---middot-rn-----r--n-smiddot-or~-----( 113s 35 0132 bullbullbullbullbullbull bullbullbullbullbullbull bull~bullbullbullbull 37ti 34l 325 014S

1140 40 0142 bullbullbull--bullbull bullbullbullbullbullbull bullbullubull 373 34l 325 0147-middot----x-Ps- middot----middots--middot -middot middotmiddotJI-z---middot-~i- middot --middoteimiddotn -- flyen----middot- 3-middot--J z----7)___ middotefv-2 ( 11so middotsc 0164 bullbullbullbullbullbull bullbullbullbull~bull bullbullbullbullbullbull J73 343 320 0143

1155 55 0176 bullmiddot 37 334 31-5 014312CO 5u---n1-middotomiddot1gt~-n-nmiddotmiddotmiddotbull--middot_bullmiddot~amiddot-~--nmiddot~--5- --v-1~4-----1205 65 0138 0~21 44~ 0468 371 33 31S 0140 1210 70 0198 middotmiddotmiddot~middotmiddot middot~bull 373 3)5 31J 014012(5 15 20d omiddotn n ~-n- 36l 3~ I 31V--lr~~--------------1220 80 0211 middotmiddotbullbulltbull middotmiddot~middotmiddotmiddot 372 337 310 0138 1226 86 0225 bullbull~bullbullbull bullbullbullbullbull~ bullbullbullbullbullbull 371 ~3S 305 0138

---rz3middotcr----middot- u--middot-rz-zr--nmiddot~bull-bullmiddotbulln--middoti-1f 3 1r--TS-e--rcmiddot~5-middotmiddoto-r3-1235 95 C234 bullbullbullbullbullbull 373 33~ 305 0138 1240 100 0244 u- 3 74 33S 30S 013b_______________

--r-245 105 o~middotmiddotn-~n---~nbull 3lamp-33 l~o7no 12somiddot 110 o2s bullbullbull bullbull 3 10 339 3co 0131 1255 115 021gt bullbullbullbullbullbull bullbullbullbullbullbull bullbullbullbullbullbull 369 33 30C 0136

--ncHr----zu-----zb-middot--tmiddotbullmiddot~-----middotpoundn----i-nu 3 11 - 34 l 30-imiddotmiddot-r-rn~----- ---------~ ( 1305 125 0263 OQZO C370 C390 362 34l 29S 0134

1310 130 0286 366 343 -295 0133--n-rr--rn---rz-middotr~- bullbullbullu 31- 3--z 2s 0133_______________

( 1320 140 0303 bullbullbullbullbullbull 367 343 295 0131 1325 145 0313 bullbullmiddot 310 35~ 295 0132

-----nomiddot----5u----o---Jr~nmiddot-----$--bull bull bull 3cs-middotmiddot-3middot5~ro--onmiddot9~---( 133 s 155 0325 bullbullmiddot ~ 367 345 290 0129

1340 middot 160 0332 bull 370 35b 29() 0129 -------r-s---n-TlT---Thh Ohu hmiddot 3b9 356 29J---omiddot129_---------------

( 1350 170 0144 middotbull~~-middot $ 360 356 235 0129 135S 175 0352 bullbullbull~bullbull bullbull~bullbullbull 36amp 351 2a5 0129

-middot-middot1400middot--middot--1middotpound0middot-----0---i-srmiddotmiddotbull~-yen----middot-middot-r-bull ------y-fi~---7-S-t---za--s-- (fTzz----------------( 1405 185 03b2 OJZ5 C31C 0335 367 357 285 0127

1411 -Ill 0371 364 357 28l 0125--ras-15---middot 0376 ~Tlaquo middotmiddotmiddotmiddotmiddotmiddotmiddot-bull J64 middotmiddotmiddot351 2lt1s o--lZ5~-------------

( l420 zco o3a3 bullbullbullbullbull bullbullbullbullbull bullbullbullbullbullbull 36- 357 zao o1z3 1425 2C5 0-391 bullbullbull bullbullbullbullbullbull bull~ 36 358 250 0125

--middotmiddot-1130 middot-middot-middot2lo oJmiddotu--- --- bullbull middotbull~bullbullbullbull - 3sd--JJ - zaJ middotmiddotmiddot 0-125 ---------( 1435 215 04Jl bull bullbullbullbullbullbull 362 36G 28J 0122

1440 220 0410 middotbullbullabullbull bullbullbullbullbullbull 362 34~ zsJ 0122 middot 145 - 225_ o413- bullbullbullbull --- -middotbullbullbull 362-middotmiddot- ~~-c-middotzao middot 0122=-------------

-----middot-middot--------middot- middot-------------------------

--middotr-so 230 D42~ bullbullbullbullbullbull bullbullbullbullbullbull bullbullbull~bullbull 3~~ 35~ 1= o_120

middotmiddotmiddotmiddotbull middotmiddotbull~~-1455 23~ 042~ bullbullbullbullbull ~ 36t 35ry z1s C 12 I 1500 240 04Z7 bullbullbullbullbullbull bullbullbullbullbull~ bullbullbullbullbull 3bJ J~l 27) o liO

1505 middot middotmiddot-z smiddot-middotmiddotmiddotmiddotmiddotmiddot o 43-s middotmiddotmiddot middot-- middot fy-middot-il6 t -- o Ao ______ 1~ s~ middot l5 Z 7~ ~-- middot- c-11c1

OlJI~ C) ~c f l l() 41JJ Pgt~-tI-i2

OLGlE CJ G S C10 41~ 12 o middot~r1 ~~2-PA~ CC A~ ~rmiddotmiddott~21 Jbull bulli-1 middotpi-~-middotmiddotqN

137 )

_j

j

I ___~ -Irr-=rgt--~ fi -~pJ13 microc w--7 Fria---+ a-bull---middot--=-r ---rc=u- r ~~1-- r-=~l ~~ _ _ ~l~ ~~- _j =middot1 - --1 middot~----=---i ~-~

i 97 7 -- ~

~- bull -_bullbull _ -

-~ middot o- l ~ middot_ _ --c 5

-_

- ~ __ -i1---)

-bullmiddotJ _ deg _~Li--lt Cttf~middot -~J_J Tl Slr-Y~ --- cbull T[C-T~ - l c 7f t C i_ I---lt

l bull - ~ ~ --~ - - _ _-- ---

~i~ gt bull Tftf- iJbull-~_ jl ~~SiF= middot middot1F ~1 _1~-CLD_

SY~ l-~l1~ 24-5-f o --tY VJL c C ~-~PL[ PCRT

--~ __ _] 5 bull1 - ltmiddot_-_middotbull bull --~ ~---r_ r~ -t imiddot c1-~-middot rrc-i c---middot--u1 1Nr =ii - ~ L _ middot L ~ -bullbull bull bull bull l ~ middot~-l_~ st lmiddot ~ ~--t1 iC cbullmiddotbull-_fCT LEil

_-- - __middott_i middot-middot LAT r= ~ ~- T ) r middotmiddot-1 r-- ~ - _- ~ ~- ~ - bull i I 1J 1 middot- 1 ~ j_ t __~i~ r-lbull bullbullXtL-JC nt1

middot -1-bull Ci--1-r bull

_ bull ~ middoti ~ - i) rtJ rmiddot

_J 1rmiddott

1_() l t ~ ) )20

i -~ bull middotmiddotmiddot- ti0

i middot - ___ --~bullrJ

l 111 i 300_

lbull~ 36)

lbtt5 _420 _

l l bull 1t50

2J ~ ~j

63G lJ-i)

vv Cl lgt

n-9C

L~middot--~TICf~S iPPl-1

~-~~--~-~--

c bulln

i t~ -t -~

_middot bull ~

)l J) J

i 3 1 3-J

) l tJ imiddottJ

middot 7 H middot)

-pbullJO 3-JltJ)

11 ri~J )100

il 1-1 3110

ai

9= (( ~ ~ -laquoiry

)- ~ (I

-- bulllt~

yenyen~11

) bull )bull 1)

3gt0

--bull- l -gt 1

bull1 bull 7 il)

3 7 2 1 J

396 Ibullbull 3

1 2 l bull

39 bull -gt

ld d 310 fu l

3d 1t

70 ii 36ltJ nJ

-

( tic

-0~i

iu~

~-

raquoyen) ~

j_-4

i q

I- w

_ ~ I i-1

i ~ bullj J bull j

)_)

ur fj

iJ (bullmiddot1 -)

~ (~ ~ 6 _

l 2 v2 u

126 o t~

t ~ 6 ~ --)bull-1

ltbull ~ -lt

rt gtltljcent-C

~gtltO~

it-~_~ L-J bull 3 12 l

0 - ~middot- imiddot ~- ~ - _ =~ i 1t f 2 3lt -1 bull 451 ~2J 42l l 0 478 ~ ~Jf(l yengtiO ~ 3middotbull 5 t r bull~ ~ i-1 i8 bull U15 6 JJ bull l 356 o~3 fi o 9i5 (ltti v1qgti c-c lltoi1 -11 l

- l - loz-__

i bull bull 5

l ~~ bull - ~ 7

l j bull 3 3- )

lJ bull lt 1 l C

l -t 1 1t 3

14 I t2 bull

lmiddot J 41

1 frac14 3 1t3 0

14 l 423

l iS 46 amp

~ middot~ 45-S

s s

pound 1 5 9

~J ~ ~

- 7

11 flgt~bull-

1- 11

lG _ l bullJ

l l bull f ) 1t t

lbull1 q s~ 6

l J 7 5 2

l O o Jl

tG 5 Jl lt1

11 ~ q6

10 l 303

)9 296

1-)0 323

62 lB e

(I 2 loo

(1 l cl 0

~ -_ l bull) middot ~-

_ 0gt i 1

Jr

rmiddot1 ctmiddottf-

aigt_ti

lUO r - l

loll (11J

1( hlH

l57 (110

~

160l

15lt t l_t

917 )(J -

91 l _-_

d7 3 i

c ~ middotmiddot ~ bullf ~rgt_(

1 Ibullbull 1t 1

1til 103

r 1i 92 lt

- 7 l9 t

3l) H 1middot1 6

4 02 b0 1t

402 804

40 t al l

6lttgto(t

(clE

4 l u 937

4l - 85 3

n4 41gt8

LJd 41o

ijO

9

r -- -- J

i~ middot- --

j _i bull 7 a

bull middot1

r 5 _fj

0 j 2l

0 j

L bull Ob 2

)6

middotbull ) bull 5

2 bull CH J bull i

07 l il

05 t9

o bull l~

0 1 t

_ f - I

PP C tJ

bullJ ~ C j_ 6 )~ 3

L 2 bull 50 5

P2 487

124 ti 3

t 49 o

liS 5JO

12 I 50 8

t2 t9 a

I 2 8 51 4

Ui 31 t

75 ltgt9

76 30 bull

78 H l

------ - -L )-middot _HmiddotrmiddotL r-__7bull=

Vimiddot~~c i-c~

1Y1ffbull

-t 6 7 ~~ g)

4J _ iJ

ltf 3 tt l d

ttfl -2 It

1t6 2 nr

1) 1 l l

middot15 6 274

4 -3

266 tlt

276 16 1

2 7o ll6

160 2( tl

lvi f2

2i6

L-i~bull-L ~~_pound_-- -bull~

-1_ bullbull 1

-Cbullli-

3 7 i l 7

383 d j

1 7 ltl

30 I 2 7o

39 1J

3o7 77

383 72

358 7 _

362 12

35B 4 3

21 7

221 7 l

3_4

~bullyen-- ----bull middot ~-- ~--~-- ~-Ibull_-bull_middot-(~~centbull f f _bull-_-bull ~-~~ --=middot-_- -~-tI ~~--~ middota1rbullbull middot _r~ -lt~lt-bull -_~ - middotbull bulli--e- -~- _ middotmiddotlr---bull

rmiddot=1=- r-~=bull1 l--Jfil1middot--1 rur=-=i -f~w-_a1 ~ _r~- r--ra-c=~ ~ f-1-tliiilllllit ~~ ~~~j bull~~-r--

l-i77 ~~~ 21 --- J- -

) ~ ---

L~~ T9~ _~-~i-J ri~rt~

bullmiddot_

- bull~ ~ l~ 1 101s

Jj 104-=i

(J

115 lcO

l 2t5 1 ~HJ

1345 240

l bull -~ 5 300

l )It 5 360

l t4 5 lt20

17 5 45C

2Cl5 t30

lJ4S ltgtov

ell i omiddotc

middot---middotmiddot rtC _t c

) 0 J 1)

(__ _

C5 l ~j bull bull__

( - bullt-eL

__ ) ftc_

middot- -) 3 15 l

lt)_o j 3

87 o06

~-ii-lt

$igt~((

~~n ~t-gti

e diams U

Gt1

~-q ti 6 ~J3

--~ r-

p C middot_7c _3 l _

bull ~7 3 3_-J - 2f1f

3 i 6_ 753

3l 9 2j

(

laquo 30_ 4 4 1

2$ _5____ ~-~ ~middot (t~

22 3 degdnt

UC

I ~ix

~bull r12

ff4yen

2 r 9u ~middot -~-- -bull 1middot- ~ ---~i 2bullmiddotJ

bull I ~middot 21

bull 2ltZ -

29t 1bull1

_20 ~ ~ nti

268 1a1

2H Bl

298 ~ bulli J

2~3 2~1

ilC J IC

l 72 l 1

75 [

middotbull -

~

middot middot

i ~ (J

bull-~J

~-- 01

1~middot1 lle-1 10j

tlgt~~ gt 111 middot)_middot3-~~middotlc 6(J3 1t 1J 0middothmiddot~

middotLgt7~ li-J3 ltbull=-

middot7lt1o i-_middotJ ~-rt_

S04H bull - j((bull)bullt

tlt~o

-JJ6 )JQf 1cLJJ

ll703 1101

) 1164~ llbfJ

~oc - imiddottI 0~middot1

V _deg J-44 l--r-

rt1 J bull 1 2- ) 12iJJ

f-- i

0

~ -~ _- -K_---middot~-~- --(middotmiddot -middot -middot---=-middot-)~7-- l(~f-~~ _-~- ~~middotgtamp--~ ~ _-1--gt ~ ~--~~~---~bull middot--bullmiddott~~ ____ ~~ J-P~---yen-4middotbullbull--middotmiddot-middot

i UO bullt _ Od_ (middot JJ ~ c C ltgt lj (l bull- N

rmiddot -1middot - bull~ ) l

bullI

I) middotd (middotJ J -~ - ~ middot JI 4 ) 0

~ bullJ ~ Jbull ~ 1 r M

i- t---

I

1 I00 bull lt CC NN 0 -0

lt)1l

middot)

-~ - -300 NN middotbull Cmiddot ii NN S (1- O 0-- ~ r- -

I I

~- rmiddotcshy -1 NJ bull1---1-

J middotshy

ltbull 0 s- bull middotl _ _ middotc o

0 -- j r-I-j r-- _

ru middot

0

~ rmiddotmiddot - lj a)

-J O

I lJ(_ - r- -

~ middot~~- _

r

_ (bull - ~J middot-- -

~ -j

middot -

I

middotmiddotmiddotbullbull I middotbull bull bull

-shyJ middotmiddotbullbull I JI -bull r ) 1 ~- I -

C bullmiddot -bull _ 11

i ) ) )

141

- ~

_

ij (Y

1

l

j t ~

1 l

l i

r t

1 i I

i I

I

i e clf ~~j

i Ii

J --1 c--c- r-middot rJ

llJmiddot t middot C C r-bull

- )

middotmiddot

1J middot

-~ CJ-- bullS- bullbull

middotC - lt ()~--

tJ~-r ~- r bull J)

-r--middot J 1 I ~ ~ - -~ _ _

~

~ middotbull1 r~1 J

middotr

I ~-1bull11 J

)bull ~ --

142

bullbullbullbullbullbull

__

SURROGATE RUN 223-U CLASS CHAMSER 1976 OCT 5

LIGHTS ON 1215 INTENSITY IOOt OF MAXIHU~ 39 CC SAMPLES TAKEN CO FACTJR l9lOl PA~ CALIBq 9 6~ADV 1296 1215 PAN SAMPLE WAS TAKEN AT TbullO TOTAL NON-METHANE

CLOCK ELAPSED TJ~e nx2uaN)

1215 middotomiddot ( 1230 15

124s 30_~ t3bo 45

( 1315 60 1330 75 1345 90

( 1400 1~5 1415 120 143()-middotmiddot 135

C 1445 150 1500 165isismiddot-middot-middot--middotiso 1530 195

1615 1630

---i645 1700 1715

--1730 1745 1800

OZCNC ltPPmiddot~middotmiddot

omiddotmiddoto 0020 q04 0011 00~8

5139 0159 C181

AT 1221 HCbull 2346 PPSC METHANE= 2950 PPB

middotmiddotc~J3middotmiddotmiddotmiddotmiddotmiddotmiddot~J24deg 0222 0)12 0242 011

~1 t 0 M1

O 150 oJ94 005s oo3s OJ28 oJ23 oJ20 0)17 1))15

- omiddot2sgmiddotbullbullo1middot0middotmiddotmiddot 0147 o154 5~53 0022 0081 0276 OJO 0140 0145 546 bullbullbullbullbullbull

N02-PAN ~OX-PAN er PAN _ H(fO 1orM1 11gtPM1 tPPll (PPrl IPPHI

0143 cz1H 5S~ OOCl OC40 o1s1 0212 s75 bullbullbullbullbullbull bullbullbullbullbullbull c200 o2s1 s 15 __ 0000 llt~bull ozca 0237 s12 bullbullbullbullbullbull bullbullbullbullbull C2)0 0214 572 OJll 0063 o194 0214 510 bull~bullbullbullbull o1ss 020s 563 o~14 bullbullbullbullbull~ 0181 0194 561 bullbullbullbullbullbullbullbullbullbullbullbull

cgtbull11) 0195 ~5_7____ 0_1)_15 _______009~ 0157 0176 ~56 M~deg 0161 C16g 552 0021 bull~bullbullbullbull oJ53 ()160 s51

~~~-- -middot -JJtmiddot-middotmiddotmiddotmiddotmiddottfrac12H----middot1middot-middotbullgffr-bull-g ilb----middot-middotmiddot11~------~-~-middotzmiddot

iii5middotmiddotmiddot-- 360 middot middot omiddoti19 oco2middotmiddot c068 middot o069 middot53i 0039 C

-- DATA DISCARDED

OZONE CJSAGE GT OlJ 5~53 PP-IIN OZONE DJSAre GT )gt~ 6466 PPl-N

N02-PAN CJSIGE GT 025 J0 gtPbull-MN

C

(

middot1-bull

(middot middot middot

(

143

240 0337 0012 0124 0131 539 0027 0024 255 0354 OJJ7 0114 0116 543 bullbullbullbullbullbull

middotmiddot210~---middot-middot0middot37-middotmiddot -oSoimiddot--middot-middoto10s o 10g middotsmiddotimiddot - 0~03fmiddot bullbull 265 0393 OJ~5 0099 0101 536 bullbullbullbullbullbull 3JO 041() 0l05 Cl93 0095 5~z -U_9Q11

_____ 3l5 0427 0()05 oomiddotsamiddotmiddot--middotomiddot8f-middots~~-B 330 0445 oaos C081 OORl 535 bullbullbullbullbullbull 345 0462 0007 C074 0075 539 bulllaquobullbullbullbull

TSl REL HUM IOEG Cl Ill

31 610 33I 630 338 630 336 625 336 620 336 61 5 337 610 33il 60 5

_y_o _____ 59 ~ 341 590 34 o 58 5 t bull 2 58 5 343 575 345 575

3t 5_______ 57 0 34 6 56 5 347 SbO 34 s 56 0 349 555 34 9 55 5 34 8 ------- 55 bullo 34I 550

lt 550bullmiddot 54534 55 0

middott--1_r_-0- ~-ur1~_1 ~-m1=-middot cacalJ-aej qr-middot_~=~ f 1r~bull~1 ~ ii~ ~~-lt a -~ -bull-I ------ ----bull----- -- -middot-- --- ------middot-----------

middot-------- ------ - -- -- ----l lt T 1 I~ l ~

LwO(~ATE 223-U-1

USS (i-A3cK lS76 CT 5

----middotmiddotmiddot--------- ------------ ------------------fgtCCP ne1PRATuRE STA3li TY ori POROiiiK-~I-T1isrRuMENT 134~- u~ SA~rLE lJ~fC if~ POOPA~ II 4UP GEHrJF iRCPIC-LCftbullYDE ACETONE _lltJTYAlPEt-YDE ANDMl1Cf8011 C-600 _____

T LUEhE A~J ~-iYL2NE fRCM 3P

cirrr T J tltI 10 l 5 l 112 1215 1230 ll 1t5 1 middotmo 1315 1no lJ45 l 4DO lbull I~ l 3J l bullttgt LJOELLco r [ME tMl -) -12c -43 0 1~ 30 45 oomiddot 75 90 105 120 lJ5 ljj 165

-------middot-------------- ---~--------bull------------ -middot---- ---bull- -- --CONCENTRATIONS IPPB

MfTt-~ ll20 29Su_ _1QI ---- - ____ 2920 middotmiddot---1~L- t 2060 bull t bullbull $V- +- 0

-0fJlfljlP~UC lllO 29~0 )~$ yen 2920 ti -( bullbullbullbull 2B 80 lti

1Tt--f bull~ ld 4b11) bulltn)it middot(c middot~IQmiddot middotmiddot 3u I 21 5 yen_ ~yen -ilgt11$

Pb[ 2b 61 4 550 yen ~~ ~middot ~

bullE Tbulltbull~ _bull~ i middotmiddot--- ~v ~--~~-----~-~~~----___ __~--~_ _~~---~~__at bull9 ____-q~~ ______ a10 ~middot-I~ -gt-~bull $

Cr)(tl((PP8C 34 ~ yen4 17J )) 162 bullbullov lj[ middot ltCETfl~-E ( SPCJPM li 24 ~-~ ~IX $ O icbullbull 423 I)middotmiddot 38i

Pl1 BC 48 ~Ct bull(I bull bullbullbull bullbullbullbull bullierbull~ bullbullbullbull 846 112 bullbullbullbull bullbullyen t

bull QJ~~~tE _____ 4_J___________2_0 _Q~__-~___l)_6____l_o_---18_L_o__L____lt__---_-_~__iJ8 _ _bull_e____laquo_middotmiddot-middot---lo 2_________________ -middotmiddot-

I- P8C 129 bull~bullbull 600 586 567 564 bull gt4b ~

Igt)~gt)~ p~ -P~~E 07 _12 9 12q )iJ~--middot amp~1___-_J4 _____ ~s ~--~-middot~~ ___c_U_-0~ 4C O-ilt bull f igtPBC 21 38 7 387 2bt 195 120 IC fd-- middotmiddotmiddot-l _ I_SJ81JTAIE________________QL_ bullbullbullbull - __ --- middot-~-- -- bullbull ___________ _bull PPBC 04 bullbullbullbull bull bullbull~bull bull bull~~ ~ -bull~bull bullbullbull~ bull9bullbull bullbullbull

Nmiddot-Bur i1E -- 1 5____ 196 l ____ middot--middot-middotmiddot l8lt_____ _____deg _ - ______ 171 ~ 164bullshyPPBC 1 10 790 784 744 bull bullbullbullbull bull b64 bull+bullbull middotbullbull=bull o5

__A_ CETYL~iE__j QI I ____________25__4_~___425___gt1lt-bull__t25 ____bull__lt25_-13lt____i-~L__bull----___l __iof_lt____-----1~2 --- -- --middot --middotmiddot PttC 5o uco aso ~bull 85O aso bull~ bull~bullbullmiddot 02e bullbullbullbull yen~ 1a4

TP~ rs-2-aur c bullE oo C_i _____() 0 _ ____03 -middot---deg-degmiddot----middotQbullO --- _ oo bull bullbull -bulloishy va ~middot~middotshyPPtC oo 32 32 12 oo bull oo bullyenbull 00

-- i S0PENTAIJE____ ---middot-middot --- ___o_ L ____c_J ___ 0_2____gt1lt_bull__-1o_____(lt_______l_bull L__________o____ ~-bullbull___J_l____gtlltbull____U~-----1-L__ PPBC 15 35 4i bullbullbullbull 50 55- middotgtjlmiddot~ bullobull bOiS bull-ttlll

CIS-2-SUTEIE _ JJ__ _ 14 6 ___ __ 14 o ___ _-yen~~~------5 2middot-----~--~ ____l 7-----~bull-~~- bull-laquo~ ~ -- o o ---middot~U----~bullbull - v c PPac oo 592 584 bullbullbullbull 208 68 00 bull oo

_ fi-gtE~TANE ____ _________o D C L_O_bullL_~gttlt______o_l__llt~tt___Q 5---~~---middotmiddotmiddotjlt________-D5 -~----bullbullfltltgtl___lflt__ ______________ -PPBC OO lO 15 15 bullbullbullbull Z5 bull 25 bullbulloi bull bullbullbullbull

2 3-0 iMET_Hll ilU_TAIJ~ ____Q_Q ____ _0_9_____1 lQ_ bull-~-bull- 99 5-~___9JJ____~bull~-bull-middotmiddot-middotmiddot~--- ~-~ __ 84bull 6 --bull~bull----- __ Zt5 __ PPBC OO 652 658 bullbullbullbull 597 559 bullbullbullbull bullbullbullbull bullbullbull 509 gt77

__z_- ETHYI __SJ TE gt E~-- _______Q__Q____l6__2___16 bull 6_bull~---middotlldeg___-1lQ__5gtI-- -------2- ___i)C___tl deg-_JtlltbullL ___JlQ _____________

- _ -~--- bull-------__ _____ __ -----~~ - -_--~--------bull~bullr- t-=~~t~~= _~f~~~~~~~1bull~~~~~frac34lf-~~m~~bull~r~-~-fq~l~-~~~~----~-~~~~r-fltbullbullmiddot -r-middot ~ middotmiddot--bull----~-

bullbull

--

---- -_micro__middot1 _---j--- _- irr I-- ---1~ f~i=lbullaj i---r-J-p---1 --or __ ~ 0 I -lt-cc--l~~f1- ~~middot

1971 lltAR 18 i J Sl~~OGATE 223-li

GlhSS CrA-CR l-76 CCT 5

CL~CK TllE 1015 1132 l~ lL l230 _l245____ DOO____ JHgt l3JO _ lH5 l 400 _ l415 lo30 - llttlttgt l00 fLAPStD TtMEIMl~i -120 -43 0 l 5 30 45 60 75 90 105 120 135 ljO 165

PlllC ____(l(L__i lQ__l)l o____5_____ t2 bull0__~_jltjlt__i)_~~-4___ ___ OO _middot- __gt-yen ____ v C

j(ETALCEhYOE 28 ~~ qbull bullbullbullbull bullbull bull

_ PBC _5_ b___ _ 4~ middot-middot-~ -- bullbull~~ - bullc t _itoo -- ~-- middot - --- bullbullbullbull middotmiddotmiddot -~-- bull -- bullbullbullbull PllJlNALCEHYOF 02 03 bull~ $lt-))(l bulltctll yen bullbullbullbull 26 bullbullbullbull ia ~middotmiddotmiddot middot~llillP_lly

( -~-- (t~---middot Ci _9___ nill-1) -_ ~ ---middot _____ __ middotmiddotmiddot- 7B ~ bullClfc~

ACiTCI-E 07 79lit O bull~middotmiddot ~~ 366 ~ ~9 bull~~-PH 1 (tV~_ 2)bullJ --bull--bull bullmiddot-- --middot~bull---middot-bullbulllaquobull ~bullbullbull___ t(- _____l_l_O __ _--~bull~ __ bull 9 --~-- ltill diams 11 bullbullmiddotmiddotmiddotmiddot--

METHYL ETHYL KETONE 03 1a 82 yen$t9 ljllf-bulliimiddotbull~ bull~middot yenbullbull middot~ bullbullbull middot~middotmiddot ~ Ibullmiddot bullrPc_ i 2 Amiddot 7_2__ ~___ -~_ -~J__~~~ - -bull~----middotmiddot Imiddot----~ yen 32o lClO~ -0

T CltJEN 02 155 16l middotbullCt 144 135 126 bullbullbull deg PPHC l _(____ 1()8 bullyenljlCl lJ 3 ~bulletbull 101_ __--- 94bull L ___ --middot-- 111 87 J _J~~

4ET4-HLENE oo 523 53 l -4t 3fl ~ 219 4(Uit4 rcit U3 -bullljl flt PPBC 0() 418 _4_25 11_ 297 bull~ 23i t l 78 1)jff laquolI ~middotmiddot iHryRtLCEHYlc Ol Ol middot~bullmiddot bullbullbullbull bull yen0~ middot~bull 10 +9~ bullbull

-------middotmiddot-middot-middot--------middot---- PPDC 04 04 ---~- ____ ilit middotmiddot~middot _-I -- 40_ __cent~___ $~ bullbull ~iarabullbull

0 ICHLCHltO UI I-UJbullllgt01f TlbullMJpound oo 3S~ 351 347 J39 iyen0c 1jl$~middot jl7I- QI middotmiddot~ - bull q 3H

ishy _Poec O~Q 355 3_51 347 middotmiddot- ___ 339 ~ --bull~~- -- middot~bull--middot- 3 37 lit~yen j ~ 7 middot--middot -- ICr TCfAL HC PPBC

v ll7ij3 bullbullbull 56471 43268 52043 bullbullbull~ bull~bull~ bullbullbull

__TAL 101-ETHPE _t_C____ _ 583 l24l5 2345Q 00 19495 00 1068l 00 3158 QO l9872 middot 00 oo lldJZ TCfAl SU~fltJGATE 46-~5 zz37 middotomiddot 2307 i-------19-4degici---- i060~- imiddot----- -315 ~a----bullbull --- 1624amiddot ---- ---- i 21- 2

--~---middot-----middotmiddotmiddot------bull middot--middotmiddot------ middot----middotmiddot---middotmiddot-----middot--middot-middot----

bull-bull-bullbull bull-----bull---bull-bull ---r--~ --bull--bull----~bullbull-

- - - - - - - ------ -- ----------middot-bull------middot-middot------middotmiddot-- --

------------------middot-middot-middotmiddot- middot- ----

--------- --------middot-middot - middot----middot - ---- - - -- - - ---- -

-~lf4~--bull_~ ~~~~-~-~_-~~-~ -__~~bull- fF-~~~~~-g-~lT~~~~~~~pound~~etflitlilJ _~~~~flf-middot-bulltrmiddot--middot~- -middot-v--~--~-middot--~~ bull--bull~ ( s-~V __- -- bull bull bull

-~sgtlt-bull=ns-~ 1=_1i l-mc-a-1 __~bullmiddotloii1 ~bullbullcai=r J_t-~~ip7 -= __tJ~ ~ -__ __ j-Diii~I ~ ~~ ~_J IJcSi~~-~ J -=- -

1977 gt1~ ci Si~~C~~7E 223-0 ll~r (~middothPJ~ 1~76 CCT ~

(

CLCCie TJ~E l5l5 150 15 5 1600 1615 __1630 _l 6 4 5 ____ l 7 00 _ 1715 _______ --------middot middot- middot- --------[LAPSEC TMti~l~I 180 (95 2 l ) 225 240 255 270 285 300

CONCENTRATICNS_ PP6)

ME T-it rti 2900 bull bullbullbullbull bull 2Hl0 2880 pcgt~C 21 )J -------____2_810 - _ ___2_880 ________________ ---- -------------------------------

Tipound yen4l231 f~ ~ 203 ~~~ ~~~~ ~ 16 fJP~C 4 7 ir ~dbullflcent ~~$~ 40( 32 2bull~~ ~bull

E Tbullbull4E 78amp middot~lll ~ middotbull~-t 780 4el(( 749 PPH( l i r yenltI~ bull~ bull 7 9 _____ lJU_ ~-~e-~----2_~-~---middot-~tlt_~---middot ~----- -middot------------middot------- middot-- middot------- middotmiddot- -

A(middotfyi_t~~C (PfJPlbullr ) 35tJ 4 bullJ) Jqu~ J~7 ~4bull 3( iJii _ic 7 6 ) ~q (Jc 71 bull Cc~ ~-ii 7(

prmiddotPPE 184 ~ tnmiddoto 10a bullbull bullbull 116 1-~fiC ------- 552____ bull~ _ 540 ___ _itL__ -~---528

PJltbull)micro( bull-s -O l bull 7 tc l4 09 06 )pl)_l~PirC ti 5 l 42 Z l ___ l bull d lll middot~~- bull~~-

l rnu f hf -+--+=bull ittcagtICI middot ~ (I diamsdiamsbull -bullmiddot ~ POtC 4~~--- ~6 irc q ~ -~~-middot~ middot

I- N-~iiT ~E ~4tlllC l ~) 2 6-middot) 15b It 154 (lt l bull4f- lPhC diams (t4lt t~- t~gt-111 62_12_ ---~-lltmiddotbull--middot 01bulli___ yen$ia~_ lI~--- _57~ _ ______ --

deg ~ ACETYlffH ((JIJ~) 40 bull Jjl-C 395 bull 30d bull 373

PfflC ytlbull 806 790_ _l7 fJ____bullbullbullbull ------bullbullbull-bull----1t6 i TRtiS-7-BU_TUiF bullbull-amp oo oo yenbull oo middot~bull ~~middotmiddot oo pmicrolbullC yen~bull o_o ltcbull o_o _____________QJl___bull~-~--------obullo _________ --bull-----

I SOPcIITANE ~-90-~ 13 ~ l3 iU ~ ~~ l6 PP8C __ 65 ~~-~-_____ 6_5 ______~ _____a_v __ vbullbull~-- bullet __9o _____

C I-J-a1Jrrbull1- obullJ 00bull~bull middot~ oo ~middotmiddotmiddot oo middotmiddot~~ bull+bull~PPi3C ~c-~ ~o_ _______ oo ____ ----obullo - 00

N-PEl-ltTANE os o6 bullbullbullbull os bull 01 PPC t-6-bullo middotmiddot-middot 2_5___ ~-bull___ JQ___ bullbull~middot _2 2__ bullbullbull _0l __ ____]_5____ ----------

2l-0111 EThYL B1JT flff Vyen-(-9 -6 6 41(nr(c 122 bullbull(-II- 63 5 PPBC 1tOE-fl 460 Jl(I 4J3 -- ___1s -~bull- bullbullbull middot 3tll

z-~ET~YL e~Tc~E-2 oo 162 166 bull 24 oo bullbullbullbull

(9 7 bulliibull

PPBC____o_o___JU_Q__ijJ__Q______ __ _____120________)J)__ _gtlt__________

ACULCEt-tYOc bull9ic ric 9 Ii PPilC yenyenct -- ~~-middot- __~~bull_ middot-----middot-iiiyen___ ~~ ___ _______ -bull-middotmiddot--~---middot~middotmiddot PIJlICNALCEhYGE $$ bull4~ q bullbullbull 40 vbull bullbullbullbull ~bull 48

PPBC __ -- _ ---middot-bull _____l2J_Q __ L ----- __ lt~4____________ _

-_

--- ~~~~ -----_-~~-~--r----middot~--~ ----~-_____ ~0ltmiddot~bull_bull~~~cmiddotbull=-~~1~~rJ~~lt~~-~~~~yen-9 rr~~~~~~~~~~~~~~bull1~~~-Jf-it~~frac34WMP~~fUffM~~-~~~-~-middotmiddotmiddotmiddot1

bull-L)c~iJgt ~JJJI~ amp=-=-middot f-i~ aa-J-_e__jI micro-i~ismiddot --gtbull____- -=---- _ ~Jr i~~-( ____--__p_f I __rei -~~--1r---- l rbull~~h P~bullwii ~~iiI~

7 SLlt~4F 2pound3-U 177 ~~ ltgt

IJL1)~ C-oYjf-P

i-1 er 5

(LCV TJJ 1~ l~ 1~30 ___ J545 ____ l600____ 16l~ ___ H30_____ H4~---- 1700 ____171- ______ -------------ELAPSED Tl~fl~i~J liJv l95 210 225 240 255 270 285 300

_4CE rbull~ PPiC

--middot~~gt)_

icibullbull _(ot$

lI raquo-1c ----bull er lfrtJ11( yen

_360 ll4

-~-~------- ~~ bullbull deg

-bulliibullbull bullbullbull l(l

_i-HHYl ETHYL lttTC~~C pp_c

~icbull

yen(t )C --~~~ ____ii-------- _9_7_ ~-middot~ ~ 388

~--yen

middot~il$___18 --------------~ 728

--~----------- --- ------- -- - -

TtiE~IE P9rtC

109 763

yen-) ttgtlt-

(c~ laquoY bull 107

1fi - bull

(16JCtt

bullicebull iaibullmiddot bullic(t~

102 7lb

MET-4-Xllf E PPflC

__7 f l V

-middot~~- -- ~$ IF (n~v~

-----bull~~ 12-i ------------gt1lt______ 94_ --000 bullbull~bull bullbull~bull ~ 75L

L ry __ Cf 1 tYf rr~c

) ( ~yen

yen~0$

v(r

bulll- _ iV

~ --r1(

2 z 88

Jcentii

it) ~(

~ ~llf

gtii -2 6 lJ4

u-bull1Lor JffLiJ--uirt-lf PPpoundgtC

~ (I~

~ 330 330

( 1t-4

26 326

v~bull

_____ n2___ ------I) bullbull322 Hl 311

rr~t-L TCTAL

lfC -gt~ ~J~-Y

c iHl~E HC

jjJlt3 494middot3

middotbullbull13393

irbullilr

630 bull~ 34Jq _7_

l2 C5 5 tgtZil1 tilt~bull -- middotmiddot--middot-middot--- U------- __ 4713(___

11770 00 oo l5229 ___

TCTAL St~PC AT~ 49tdiamsbull 3 1330 3 830 ll lt60 455l l166 5 14128

middot---middotmiddotmiddot------

I- ~

~l~-~ ___gt-_____ bullA ___ _9~~--bull ______-~7~~~~tqt1f~~1_4_~tP-amp-i-~ffltW-iff~~~iitt~~laquoFifampoiijiM1l~trt~~ -_ Cl-iII~~~ --v-~ -middot ____ ~yen-

APPENDIX C

Plots of ln so2

vs time for

AGC Runs 216 through 222

bullf

lmiddot1

148

RGC-216-1-3 se2 DARK DECRY 2 RH PURE RIA

C) 1976 JUL 27-28 C) C)

p

I

0 C) _ - 0

ru (I) 0

C)

() ()

() Ce() () () -00197 plusmn 00003 hr

-1

() ()

() () C) ri)[J

~() I

~

C)~c CO(L Q_ CJO()

0CLc o--_(I)

_ (J

CJ I 0 0 (J)

o zo

en

_J~

0 =

I

()

f P1

0 Cl co -- 0I

4 8 TJME

12 CHA)

16 20

CJ 0 CJ

24deg

0 Cl LJ)bull

N -0

ll-

149

I

C)

0 ()

bull

AGC-217-1-2 SC2 LlGHT DECAY 151 RH PURE RIA

(r)0 1976 JUL 30-31 (I)0 (I) 0

0 I ti)

N 0

0 0 LI)

I o - C)E ~ a_ (Lo Oo_

CLo __ r- ru (J I 0

()El U1

0C) Lilzo

_J~ 0 I

D D CI

I

0 0 C) 0

~+------r---------------------------+~ltil0 50 100 150 200 250 30P

I TIME (HA)

150

RGC-218-1-3 se2 DARK DECAY 40 RH PURE AIR

0 tO

1976 RUG 4 O)

f I

c

I

C)

r C)

a N-

-1-00327 plusmn 00002 hr

(I

I

0

c co

bull

C) (Jr ~

0~ --L CL CL CLI o_g

(J

(J E

0 en en

0 co

zro CJ _J~ 0

a

~ ~ ~-i------------------------------------~-- o 2 4 s a 1o 12deg I TIME (HR)

151

RGC-218-7-9 se2 LT DECRY 401 RH PURE AIR

C) 1976 AUG 5 C)

CD

C) Cl Q-0 C)

0 (J

I

-00830 plusmn 00005 hr-l

CI (J I

~ (f1

Cl Cl CD (J

I

CJ 0 (I 0

a -(D

bull 0

oshyNE -a ca

-

(J

0 en

0 (I) 0 0

C) -

W O

-r---------------------r------------------~W 0

0 2 4 6 8 10 I TIME (HAl

152

r-

i]1

l _

middot

AGC 219-1-5 i 5~2 DARK DECAY 80 RH~1

PURE AIR 1976 AUG 16-17i 0

-middot 0

f 71 l

l ii gj

I

0- U)

CJ

I i I IC)

0

f II) i

r-- l I

~-- -~ o_ Oa_I ~ j(l g - r- I ~

- middot -00689 plusmn 00004 hr-l Ibull t 7 I (Ji ~ i

~] 0 l_ zo l~~

_J~ - iIu i _E I C

i 0 0

I I~- - I(J

I

-

() Ifr

I I

fl L

CJC)

~ 10bullq er [

C)

~------------------------------r------ N

I (j 4 8 12 16 20 24deg

TIME fHRl ~ Q

153

l

RGC-220-1-2 se2 DARK DECRY ijQ RH (jZCJNE-PRCPENE

ro0 1976 AUG 19 tO0 C) t

~~ r~I I

i (

c

-l a

0f

L 0 C

(J

-- ~I ()f c 7

~

()n

l c co

~ CI 0 C) () o

(j() () -poundo

Q_ Q_

(X)(1 I

( z (middot

(J_Jo (J0

=J ~h 0~ r (I)

()() (J -I 0ePgt~

()efJ(JJ 0 0 ~ (JLI)

- ~~()

~ () lt() lt()

0 ()yen ~ o ~ a

~-----------------r----------------~----~~-G 1 2 3 4 5 6deg

I TIME (HR)

154

AGC-22O 00-05 H~UA5 502 CPRk DECAY 401 RH C2l3r~E-PRCJPENE

0 197S AlJG 19 C)

0 bull 7

I I

l CD

I

~J r ~7 Q_

0 _

~I ru- J 81 en

z -1c

tO-c c ru

t =I

+--------------------6 00

I 0 10 020 030

TIME (H AJ

a tO (I)

bull 0

ti (I)

bull ti

--- 0

(j

0 cn

C)

Ol a CJ

0 lO

155 )

AGC-220 1 75-50 HQURSSD2 DARK DECAY 401 AH D2DNE-PR()PENE

r-0 1976 AUG 19 Lf)(P (I()

I ro 0 0 J

I

0 J N bull0 0J-J

c CL CL ~

0 tO

CJ r D ~ Cf) I Cl

0 -a z

CI-1o () CI (J[J

U) oO en-I

()()

middot~ c CD () ()1)

bull ~ ()-I 0~

(J0 CJ0

co eI -t 60 2LJO 320 400 480 560 6 4ij

I - 0TJME (HA)

156

RGC-221-1-2 5~2 DARK DECAY 40 RH ADD ~2~NE 080 HRS

co 1976 AUG 20 If)

(D r 0 0

I 0 D r 0

r CJ) Cl

I

0 D

I I

Qj I

-J 71

v 00 100 200 300 4 00 500

C)

rO

0 ~ (L

CL-

TJME fHASl

157 j

-

-003009 plusmn 000008 hr-l

~

RGC-222-1-7 rr

~ 1

l If

t f

t

l [

r l_

~ ti

1c l

L

Q

1 ~

a

[J ~ I

-

IL

S02 DARK DECRY_ 401 RH SURR(jGHTE-N(jX

00 1976 AUG 24-25 30 0 r

~1 iI

0

~1I

0 (J (tl

t 0 CI-I

-- -~ ~ o_ aa_g oO -r

(Jr - (J -I OCJ

0~ en(1

01 zc --deg-I

0 C) 0co -tO

I 0

Ul

-(

~1 -

(I 0 s 10 15 20 25 300 I TI ME (HRJ

158

PG f-2--Jc_~ __ Q _ --

se2 LIGHT OECHl 30Z AH SUAr-rCRTE-NQX

CI0 w 1976 AUG 25 r-r- -bull l

71 rol gj 0

-=f I I

()()

0

r ---= ~ oa_ a

(j

0

~ (1

1- bull middot-0

() tD

al

~~ i

~I j

1 ()

0 ZtP J~

I

I

-00574 plusmn 00007 hr-l

O ~ 0

~-t-------------------------------------~~~ ~o 1 2 3 4 s 6deg

TIME (HR)

159

I

Page 7: Report: 1977-05-00 (Part 2) Chemical Consequences of Air

794

E Wilson Jr J Phys Chem Ref Data 1535 (1972) (3) H S Johnston Adv Environ Sci Technot 4263 (1974) (4) P Crutzen Can J Chem 52 1569 (1974) (5) M 8 McElroy S C Wolsy J E Penner and J C McConnell J

Atmos Sci 31 287 (1974) (6) H Levy II Adv Photochem 9369 (1974) (7) K L Demerjian J A Kerr and J G Calvert Adv Environ Sci Techshy

nol 4 1 (1974) (8) H Niki E E Daby and B Weinstock Adv Chem Ser No 113 16

(1972) (9) J N Pitts Jr and B J Finlayson Angew Chem Int Edit Engl bull 14 1

(1975) (10) C C Wang and L I Davis Jr Phys Rev Lett 32349 (1974) (11) C C Wang L I Davis Jr C H Wu S Japar H Niki and 8 Wein-

stock Science 189 797 (1975) (12) 8 Weinstock and H Niki Science 176290 (1972) (13) 8 Weinstock and T Y Chang Telus 26 108 (1974) (14) J G Calvert and R D McQuigg Proceedings of the Symposium on

Chemical Kinetics Data for the Upper and Lower Atmosphere Warrenshyton Va Sept 15-18 1974 Int J Chem Kinet Symposium No 1 113 (1975)

(15) T A Hecht J H Seinfeld and M C Dodge Environ Sci Technol 6 327 (1974)

(16) A a Eschenroeder and J R Martinez Adv Chem Ser No 113 101 (1972)

l (17) D D Davis S Fischer and R Schiff J Chem Phys 61 2213 (1974) (18) R Overend G Paraskevopoulos and R J Cvetanovlc 11th Informal

Conference on Photochemistry Vanderbilt University Tenn June 1974

I (19) J Margltan F Kaufman and J G Anderson Geophys Res Lett 1 80

(1974) (20) S Gordon and W A Mulac Proceedings of the Symposium on Chemishy

cal Kinetics Data for the Lower and Upper Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Symposium No 1 289 (1975)

(21) E D Morris Jr and H Niki J Phys Chem 75 3640 (1971) (22) J N Bradley W Hack K Hoyermann and H Gg Wagner J Chem

Soc Faraday Trans 1 69 1889 (1973) (23) R A Gorse and D H Volman J Photochem 1 1 (1972) 3 115

(1974) (24) N R Greiner J Chem Phys 53 1070 (1970)

t (25) N R Greiner J Chem Phys 46 3389 (1967) (26) J Peeters and G Mahnen Symp (Int) Combust [Proc] 14th 113

(1973) (27) F Stuhl Z Naturlorsch A 28 1383 (1973) (28) F Stuhl Ber Bunsenges Phys Chem 77 674 (1973) (29) N R Greiner J Chem Phys 53 1284 (1970) (30) E D Morris Jr D H Stedman and H Niki J Am Chem Soc 93

3570 (1971) (31) I W M Smith and R Zellner J Chem Soc Faraday Trans 2 69

1617 (1973) (32) A V Pastrana and R W Carr Jr J Phys Chem 79 765 (1975) (33) R A Cox Proceedings of the Symposium on Chemical Kinetics Data

for the Lower and Upper Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Sypposium No 1379 (1975)

(34) S Fischer R Schiff E Machado W Bollinger and D D Davis 169th National Meeting of the American Chemical Society Philadelphia Pa April 6-11 1975

(35) R Atkinson and J N Pitts Jr J Chem Phys 63 3591 (1975) (36) D D Davis S Fischer R Schiff R T Watson and W Bollinger J

Chem Phys 63 1707 (1975)

Lloyd Darnall Winer and Pitts

(37) E R Stephens Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973

(38) A P Altshuller S L Kopczynski W A Lonneman F D Sutterfield and D L Walson Environ Sci Technol 4 44 (1970)

(39) H Mayrsohn M Kuramoto J H Crabtree T D Sothern and S H Mano Atmospheric Hydrocarbon Concentrations June-Sept 1974 California Air Resources Board April 1975

(40) D A Hansen R Atkinson and J N Pitts Jr J Phys Chem 79 1763 (1975)

(41) D D Davis W Bollinger and S Fischer J Phys Chem 79 293 (1975)

(42) G J Doyle A C Lloyd K R Darnall A M Winer and J N Pitts Jr Environ Sci Technof 9 237 (1975)

(43) J N Pitts Jr P J Bekowies G J Doyle J M McAfee and A M Wirier An Environmental Chamber-Solar Simulator Facility for the Study of Atmospheric Photochemistry to be submitted for publication

(44) G J Doyle P J Bekowies A M Winer and J N Pitts Jrbull A Charshycoal-Adsorption Air Purification System for Chamber Studies Investigatshying Atmospheric Photochemistry Environ Sci Technol submitted for publication

(45) E R Stephens and F R Burleson J Air Pollut Control Assoc 17 147 (1967)

(46) Ozone measurement was based on calibration by the 2 neutral buffshyered Kl method and was subsequently corrected from spectroscopic calibration data (see J N Pitts Jr J M McAfee W Long and A M Winer Environ Sci Technol in press)

(47) J R Holmes R J OBrien J H Crabtree T A Hecht and J H Sein-feld Environ Sci Technol 1519 (1973)

(48) W P Carter A C Lloyd and J N Pitts Jr unpublished results (49) D H Stedman CH Wu and H Niki J Phys Chem 11 2511 (1973) (50) D H Stedman and H Niki Environ Lett 4303 (1973) (51) J J Bufallnl and A P Altshuller Can J Chem 45 2243 (1965) (52) P L Hans E R Stephens W E Scott and R C Doerr Atmospheric

Ozone-Olefin Reactions The Franklin Institute Philadelphia Pa 1958

(53) S M Japar CH Wu and H Niki J Phys Chem 18 2318 (1974) (54) H Niki and B Weinstock Environmental Protection Agency Seminar

Washington DC Feb 1975 (55) S M Japar and H Niki J Phys Chem 79 1629 (1975) (56) A C Lloyd Int J Chem Kinet VI 169 (1974) (57) J M McAfee J N Pitts Jr and A M Winer In-Situ Long-Path Inshy

frared Spectroscopy of Photochemical Air Pollutants In an Environmenshytal Chamber presented at the Pacific Conference on Chemistry and Spectroscopy San Francisco Calif Oct 16-18 1974

(58) T Nash Telus 26 175 (1974) (59) J G Calvert J A Kerr K L Demerjian and R D McQulgg Science

175 751 (1972) (60) W i Schwartz P W Jones C J Riggle and D F Miller Chemical

Characterization of Model Aerosols EPA-6503-74-011 Aug 1974 (61) F S Toby and S Toby Proceedings of the Symposium on Chemical Kishy

netics Data for the Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Klnet Symposium No 1 197 (1975)

(62) K H Becker U Schurath and H Seitz Int J Chem Kinet 6 725 (1974)

(63) R E Huie and J T Herron Proceedings of the Symposium on Chemishycal Kinetics Data for the Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Kinet Symposium No 1 165 (1975)

(64) R J Cvetanovic and L C Doyle Can J Chem 38 2187 (1960) middot (65) K R Darnall A C Lloyd A M Winer and J N Pitts Jr Environ Sci

Technol in press

middotThe Journal of Physical Chemistry Vol 80 No 8 1976

64

rl

i

8 ~

ct il

Introduction

During the last six years the major role of the hydroxyl radical (OH) in atmospheric chemistry and photochemical air pollution has been recognized1-7 and kinetic data for the reshyaction of OH with both organic and inorganic species have increased substantially8 However there are currently no published rate constant determinations for the reaction of OH with ketones chloroethenes or any of the naturally occurring hydrocarbons such as the nionoterpenes Such rate constant data for the reaction of OH with these three classes of com-middot pounds would be useful in part because of their increasing importance for modeling the atmospheric processes occurring both in urban and rural atmospheres Specifically ketones and chlorinated hydrocarbons are components of commercial solvents910 Both tri- and tetrachloroethene have been obshyserved in the troposphere at part per trillion (ppt) concenshytrations of lt511 and 20 ppt1112 respectively while methyl ethyl ketone has been observed at concentrations of 1-6 parts per billion (ppb)13 Monoterpene hydrocarbons have been shown to be present in the atmosphere with source strengths of millions of tons annually14 Thus Rasmussen1516 and coshyworkers have estimated that on an individual basis such naturally occurring hydrocarbons have ambient concentrashytions in the low ppb range and are largely responsible for the blue haze occurring in certain forested areas 17

This paper describes an extension of our recent experiments in which an environmental chamber has been employed to obtain relative rate constants for the gas phase reaction of the hydroxyl radical with a series of hydrocarbons1819 In this case we report data for the reaction of OH with three ketones two chloroethenes and three monoterpene hydrocarbons using isobutene as a reference compound

bullExperimental Section

The experimental methods and procedures employed have been described in detail e1Rewhere1819 and are only briefly summarized here Irradiations of the hydrocarbon-NO_-air system were carried out in a Pyrex chamber20 of approxishymately 64001 volume equipped with externally mounted

tteprmteo _rrom me urna1 I tnys1ca1 ~em1suy liU 1_01_ l l~ m1f Copyright 1976 by the American Chemical Society and reprinted by perm1ss10n of the copyright owner

Relative Rate Constants for the Reaction of the Hydroxyl Radical with

Selected Ketones Chloroethenes and Monoterpene Hydrocarbons

Arthur M Winer Alan C Lloyd Karen R Darnall and James N Pitts Jrbull

Statewide Air Pollution Research Center University of California Riverside California 92502 (Received January 30 1976)

Publication costs assisted by the University of California Riverside

The relative rates of disappearance of three monoterpmiddotene hydrocarbons two chloroethenes and three alishyphatic ketones were measured in an environmental chamber under simulated atmospheric conditions at 305 middot plusmn 2 K The observed rates of disappearance were used to derive relative rates of reaction of these organic compounds with the hydroxyl radical (OH) on the previously validated basis that OH is the species domishynantly responsible for the hydrocarbon disappearance under the experimental conditions employed Absoshylute rate constants obtained from the relative values using the published rate constant for OH + isobutene (305 X 1010 M-1s-1) are (k X 10-10 M-1s-1) o-pinene 35 plusmn 05 B-pinene 41 plusmn 06 d-limonene 90 plusmn 14 methyl ethyl ketone 020 plusmn 006 methyl isobutyl ketone 09 plusmn 03 diisobutyl ketone 15 plusmn 05 trichloshyroethene 027 plusmn 008 tetrachloroethene 013 plusmn 004 No previous determinations of these rate constants have been found in the literature Rate constants for an additional nine monoterpene hydrocarbons have been derived from data recently published by Grimsrud Westberg and Rasmussen

Sylvania 40-BL fluorescent lamps whose spectral distribution has been reported elsewhere21 (photon flux at 300 nm is apshyproximately 1 of the photon flux maximum at 360 nm) The light intensity measured as the rate of NO2 photolysis in nishytrogen22 k1 was approximately 04 min-1bull All gaseous reacshytants were injected into pure matrix air23in the chamber using 100-ml precision bore syringes Mixtures of the liquid reacshytants were injected using micropipettes During irradiation the chamber temperature was maintained at 305 plusmn 2 K

Alkene terpene and ketone concentrations were measured by gas chromatography (GC) with flame ionization detection (FID) using the columns and techniques developed by Steshyphens and Burleson2425 The chloroethenes were also monishytored with GC(FID) using a 10 ft X frac34instainless steel column packed with 10 Carbowax 600 on C22 Firebrick (100110 mesh) Ozone26 was monitored by means of ultraviolet abshysorption (Dasibi Model 1003 analyzer) carbon monoxide by gas chromatography (Beckman 6800 air quality analyzer) and NO-NOrNO by the chemiluminescent reaction of NO with ozone (TECO Model 14B)

The initial concentrations of reactants are shown in Table I In addition to these compounds ethene (20-28 ppb) ethane (48-61 ppb) acetylene (25-37 ppb) propane (13-15 ppb) and variable concentrations of formaldehyde (16-134 ppb) acshyetaldehyde (0-7 ppb) and acetone (3-19 ppb) were present Initial concentrations in these experiments were 1200-2100 ppb C of total nonmethane hydrocarbons 058 ppm of NO (with an NOvNOx ratio of005-010) 5 ppm of CO and 2900 ppb of methane together with water vapor at 50 relative humidity Replicate experiments were carried out in which this mixture was irradiated for 2-3 h with continuous analysis of inorganic species analysis of hydrocarbons every 15 min and analysis of monoterpenes chloroethenes and ketones every middot30 min

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilution rate (12 per hour) from the observed hydrocarbon disappearance rate The HCNO and NONO2 ratios were chosen to delay the forshymation of ozone and ozone was not detected during the irra-

The Journal of Physical Chemistry Vol 80 No 14 1976

65

i

1636

TABLE I Rates of Disappearance and Rate Constantsa for Selected Ketones Chloroethenes and Monoterpene Hydrocarbons at 1 atm in Air at 305 plusmn 2 K

middot Relative Initial rate of concn disap- koH0 Mmiddot

Compound ppb pearance smiddotbull X 10middot10

C

A M Winer A_ C Lloyd K R Darnall and J N Pitts

100-------~-------r-------- _eo___J-__

--~bull middot METHYL ETHYL KETONE 60

~ r-----__ g 2o+---__ ~--------t5 -- __ middot METHYL ISOBUTYL KETONE

u bull --------8 - middot---- 0 10 -- DIISOBUTYL KETONE ~ a

~ 6 ~bull ISOBUTENE

0 05 10 15 20 HOURS OF IRRADIATION

Figure 1 Concentrations of ketones (plotted on a logarithmic scale) during 2-h photolysis of HC-NO mixture in air at 305 plusmn 2 Kand 1 atm

-60

-~ ~-- I - -~ 40bull __ middot---

~ ~ __ ------~ 2 ----_ middot-middot- ~20~ _____ ISOBUTENE

~ ----- middot---0 bull bull

~ bull -~ a-PINENE

z 10 ---8 8 bull --

~6 - --

ll d-LIMONENE e-PINENE (D

0 4~----__---_________J_~_ 0 2 3

HOURS OF IRRADIATION

Figure 2 Concentrations of monoterpene hydrocarbons (plotted on a logarithmic scale) during 3-h photolysis of HC-NO mixture in air at 305 plusmn 2 K and 1 atm

X 106 radicals cm-3 using the observed rates of isobutene disappearance (corrected for dilution) and the previously determined rate constant for OH + isobutene35These con-

centrations are of the same order as those observed directly 32 36 37in ambient air31

Results and Discussion

Typical rates of disappearance observed during a 2-h irrashydiation of the three ketones and 3-h irradiations of the three monoterpene hydrocarbons and the two chloroethenes are shown in Figures 1 2 and 3 respectively Isobutene was used as the reference compound (and is included in each figure) rather than n-butane which was used in our previous studshyies1819 because its reactivity was closer to that of the terpenes and its rate of decay could be measured more accurately in our system In addition the ratio of k0Hlk0a for isobutene is greater3235 than that for any of the other olefi ns studied thus minimizing any contribution to the disappearance rate due to reaction with ozone Table I gives the disappearance rates

66

lsobuene Prop-ne cis-2-Butene Methyl ethyl

ketore Methyl isobutyl

ktgttone Diisobutyl ketone o-Pinene 3-Pinene d-Limonene frichloroethene Tetrachloroethene

17-20 5-7 7-8

50-100

20-70

20-32 10-20 10-20 10-20 41-161 14-88

10 049 122 007

03

05 114 133 295 0088 0044

305 plusmn 031 149 plusmn 022 372 plusmn 056 020 plusmn 006

09 plusmn 03

15 plusmn 05

a Placed on an absolute basis using 305 X 10 0

OH isobutene from ref 35 b The indicated error limits are plusmn 15 except in the case of the chloroethenes and ketones for which they are plusmn 30 These represent the estimated overall error limits and include both experimental errors and uncertainties which may occur in assuming that hydroshycarbon disappearance is due solely to reaction with OH

diation period except in the case of one experiment for which a small correction for the loss of hydrocarbon due to reaction with ozone was applied to the alkene disappearance rates

In order to obtain additional data (at lower OH concen- trations) to correct for the concurrent photolysis of the ketones as discussed below irradiations of a mixture of ketones and isobotene were carried out In these experiments NO CO and other hydrocarbons were not added and under these conditions relatively low concentrations of OH ( lt5 X 105 radicals cm-3) were obtained

Hydroxyl Radical Source in this System As discussed previously19 the major sources of OH and its precursors in our experimental system are probably the reactions452728

NO + N02 + H20 plusmn 2HONO (1)

H02 + N02 - HONO + 02 (2)

HONO + hv (290-410 nm) - OH + NO (3)

H02+NO--OH+N02 (4)

The first reaction is now thought to occur slowly homogeshyneously29 but its rate is probably significantly faster when the reaction is catalyzed by surfaces Thus nitrous acid has been observed in a chamber study of simulated atmospheres carried out in our laboratory30 while direct evidence for formation of OH radicals in an environmental chamber has been proshy

32vided recently by Niki Weinstock and co-workers31

Reaction 4 of major importance provides a further source 34of the OH radical H02 can be formed in air33 by any

mechanism producing H atoms or formyl radicals (eg formaldehyde photolysis) via the reactions

H + 02+ M-H02 +M (5)

HCO + 02 - H02 + CO (6)

Thus any mechanism producing H02 in our system is also a means of furnishing OH radicals via reaction 4

The concentration of OH radicals present during these irshyradiated HC-NO experiments was calculated to be (14-35)

The Journal of Physical Chemistry Vol 80 No 14 1976

348 plusmn 052 406 plusmn 061 900 plusmn 135 027 plusmn 008 013 plusmn 004

M-1 s-bull for

OH Radical Reaction with Selected Hydrocarbons

50------------~----~--

-middot---middot TRICHLOROETHENE

bull TETRACHLOROETHENE ---middot

IOloz--------l--------l2-----1-3---

HOURS OF I RRAOIATION

Fgure 3 Concentrations of chloroethenes (plotted on a logarithmic scale) during 3-h photolysis of HC-NOx mixture in air at 305 plusmn 2 Kand 1 atm

l (corrected for dilution) for these reactants relative to that for isobutene based on data for the three separate experiments for monoterpenes and four separate experiments for methyl

t isobutyl and diisobutyl ketone and chloroethenes Methyll ethyl ketone was present in all experiments

Employing the fact that a range of OH concentrations (20 X 105-35 X 106 radicals cm-3) was observed in these experishy

[ ments corrections to the measured rates of disappearance of the ketones were made for the possible small contribution

middotfrom photolysis of these compounds These corrections were made in the following manner The observed rate of disapshypearance ofa ketone is given by

d ln (ketone]dt = kK[OH] + khv (7)

where kK and khv are the rate constants for reaction with OH and photolysis respectively The isobutene disappearance rate is controlled solely by reaction with OH hence

[OH] =d In [isobutene] (8)dt ks

where kB is the rate constant for reaction of OH with isobushytene Thus substituting for [OH] in eq 7

d In [ketone] _ kK d In [isobutene] dt - kiB dt + kh (9)

Based on eq 9 the relative rates of ketone disappearance were determined from the slopes of plots of d In [ketone]dt vs d ln [isobutene]dt The intercepts of these plots gave the rate constants for photolysis For methyl ethyl methyl isobutyl and diisobutyl ketone the ratios k Kfk iB were 007 03 and 05 respectively and the photolysis rate constants khv were 0007 0014 and 025 h-1 respectively

On the basis that the OH radical is the species dominantly responsible for the hydrocarbon depletion during the 2- or 3-h irradiations (as discussed in detail in our earliermiddotpapers)1819 absolute rate constants were derived from the relative rates of disappearance using Atkinson and Pitts35 value of (305 plusmn 031) X 1010 M-1s-1for the reaction of OH with isobutene These results are shown in Table I It should be noted that the ratio of rate constants (05 and 12 respectively) obtained here for propene and cis-2-butene relative to isobutene are in exshycellent agreement with the ratios obtained by Atkinson and Pitts (05 and 11 respectively)35

1637

Ketones To our knowledge the data presented here repshyresent the first experimental determination of rate constants for the reaction of the OH radical with any ketones in the gas phase The only literature value for ketones is an estimated rate constant of 21 X 109 M-1s-1for the reaction of OH with methyl ethyl ketone which was made by Demerjian Kerr and Calvert5 on a thermochemical basis This value is in remarkshyably good agreement with the experimental value obtained here (20 X 109 M-1 s-1) middot

The rate constants for the reaction of OH with the two other ketones reported here are significantly larger than that for methyl ethyl ketone Thus the rate constant for diisobutyl ketone is about the same as that for OH+ propeneB1935 The dominant mode of reaction of OH with ketones is expected to be one of hydrogen abstraction This is consistent with the increased rate constant in going from methyl ethyl ketone to diisobutyl ketone reflecting a weaker C-H bond strength in going to more highly substituted ketone

Acetone is relatively stable under conditions employed in our photooxidation studies and consequently the rate conshystant for OH + acetone was not measured Based on the fact that the C-H bond strength in acetone (98 kcal) is 6 kcal stronger than that for methyl ethyl ketone (92 kcal) one would e~pect OH to react significantly slower with acetone than with methyl ethyl ketone

Chloroethenes Rate constants for the gas phase reactions of OH with tri- and tetrachloroethene (C2HC3 and C2CI4

respectively) have not been reported previously The rat constants found in this study are 05 and 025 respectively of the rate constant for OH + C2Hi19 This difference in reshyactivity for the chloro-substituted ethenes and ethene is consistent with the results of Sanhueza and Heicklen38-40 who reported that the rates of reaction of 0(3P) with C2HC13and C2C4 were the same and were both a factor of 10 less than that for the reaction of 0(3P) with ethene

Our results show that trichloroethene is mor~ reactive with respect to attack by OH than tetrachloroethene This is in agreement with the results ofLissi41 for CH30 reactions and Franklin et al42 for CI atom reactions with these compounds These workers found relative rates for attack on C2HC3 and C2C4 of 22 and 26 for CH30 and Cl respectively compared to 20 for OH as found in the present study Gay et aI43 reshycently reported results from a photooxidation study of chloc roethenes which while not directly comparable to the present study due to the presence of substantial concentrations of ozone showed that C2HCI3 disappeared more rapidly than C2Cl4 (near the beginning of their irradiations when ozone concentrations were relatively low the ratio of the rates of disappearance was ~2)

Since addition is likely to be the primary reaction pathway for attack by OH the relative reactivity of C2H4 C2HCia and C2Cl4 should reflect the relative magnitudes of the ionization potentials of these molecules which are 1066 948 and 934 eV respectively Our results are consistent with this trend

Monoterpene Hydrocarbons The terpenes experimentally investigated were a-pinene (I) 1-pinene (II) and d-limonene (III) The detection limit for ozone in these experiments was

XI) xD -0-lt II III

~1 ppb and since no ozone was detected during irradiations of the terpenes an upper limit to the contribution due to reshyaction with ozone to the observed rates of terpene disap-

The Journal of Physical Chemistry Vol 80 No 14 1976

67

1638

TABLE II Reactivity of Selected Monoterpenes with O(P) 0

3 and OH

Rate constant M-1 s- 1

Compound O(P)l 03 OHe

o-Pinene 160 plusmn 006 20 X 105 b 35x10 0

X 10 0 10 X 105c 88 X l0~d

J-Pinene 151 ~ 006 22 X l0bulld 41 X 10 0

X 10 0

d-Limonene 650 plusmn 052 39 x 105 d 90 X 10 0

X 10 0

a Reference 49 b Reference 48 c Reference 45 d Referbull ence 16 e This work

pearance can be calculated Thus assuming an ozone conshycentration of 10 ppb and using published rate constants for the reaction of ozone with the terpenes1643-45 an upper limit of 7 of the overall disappearance rate is obtained for the case of d-limonene (the worst case) at the lowest OH concentration present in these experiments (14 X 106radicals cm-3)

l It is interesting to note that the rate constant 37 X 1010

M- 1 s-1 obtained in this study for OH + cis-2-butene a component in the hydrocarbon mix (Table I) used in this set of experiments is in good agreement with the values of 32 X

l 1010 and 37 X 1010 M-1 s-1 obtained by Atkinson and Pitts35 and Morris and Niki46 respectively although our value is somewhat higher than the value of 26 X 1010 M-1 s-1obtained by Fischer et al47 in these three studies the rate constant was r determined from elementary reaction measurements

Table I shows the absolute rate constant values obtained for the terpenes Clearly these natural hydrocarbons react very rapidly with OH For example a-pinene reacts about 3 X 105 times faster with OH than with ozone1648 Thus for an ozone concentration of 3 X 1012 molecules cm-3 (012 ppm) and an OH concentration of 107 radicals cm-3 the rates of disappearance of a-pinene due to reaction with 0 3 and OH respectively will be essentially equal A comparison of the rates of the three terpenes with O(3P) 0 3 and OH is given in Table 1116bull4546 Within the experimental errors for the rate constants for OH + a- and 6-pinene the trend observed for reaction with OH is the same as that observed for reaction with O(3P) and 03

Grimsrud Westberg and Rasmussen (GWR)16 have reshyported the relative rates of photooxidation of a series of monoterpene hydrocarbons using mixtures of 10 ppb of the monoterpene and 7 ppb of nitric oxide which were irradiated for periods ranging between 60 and 120 min Making the rsasonable assumption that as in the case of our studies OH is the major species depleting the hydrccarbon in their exshyperiments then a series of rate constants relative to isobutene (which was included in the GWR study) can be generated in the same manner as described above The data from GWR are given in T-able III relative to isobutene = 10

Considering the- uncertainties involved in this approach (including a lack of knowledge of the exact ozone concentrashytions formed in the experiments of GWR) the agreement between our results for the reaction of OH with a- and 6-pinene and d-limonene and those shown in the fourth column of Table III is quite good and except in the case of a-pinene well within the estimated experimental uncertainty for our determinations The fact that our value of OH + d-limonene is only slightly higher than GWR suggests that little or no 03 was formed in their experiments since there was less than 1 ppb formed during our irradiations

The Journal of Physical Chemistry Vol 80 No 14 1976

A M Winer A C Lloyd K A Darnall and J N Pitts

TABLE III Relative Reaction Rates of Monoterpene Hydrocarbons and Rate Constantsl for Their Reaction with the OH Radical Based on Data from Grimsrud Westberg and Rasmussen (Ref 16)

Rel koH M-bull Hydrocarbon Structure reactivity s-bull X 10-10

p-Menthane 013 040-0-lt p-Cymene 030 092 (078 -0-lt plusmn 016)b

Isobutene )= 10 305

~Pinene 13 40 (41 gtQ) plusmn 06)C

Isoprene 155 47 (46 ~ plusmn 0 9)d

o-Pinene 15s 47 (35 plusmn 05)C~

3-Carene 17 52-cl-~Phellandrene 23 70-0-lt Carvomenthene 25 76-0-lt d-Limonene 29 88 (90-0-lt plusmn 14)C

Dihydromyrcene 36 101~ Myrcene 45 137~ cis-Ocimene 63 192~

a Placed on an absolute basis using 305 x 10 0 M- 1 s-bull for OH+ isobutene from ref 35 b For p-ethyltoluene which is structurally similar (ref 19) c Present work (see Table II) d For 13-butadiene which is structurally similar (ref 19)

A further check on the validity of using the results of Grimsrud Westberg and Rasmussen16 to obtain OH rate constant data is provided by the values derived for the reacshytion of OH with p-cymene and isoprene p-Cymene is structurally very similar to p-ethyltoluene and hence the OH rate constants for these two compounds should be comparable In fact this is the case with the value for OH+ p-cymene of 91 X 109 M-1 s-1 derived from the data of GWR being very close to that obtained for OH+ p-ethyltoluene 78 X 109 M-1

s-1 in our previous study19 Likewise isoprene is structurally similar to 13-butadiene and the rate constant derived for isoprene of 47 X 1010 M-1 s-1 is consistent with that preshyviously measured19 for OH+ 13-butadiene of 46 X 1010 M-1

s-1 On the basis of these comparisons it appears valid to use the photooxidation data of Grimsrud Westberg and Rasshymussen16 to obtain OH rate constant data for the series of monoterpenes which they investigated

Conclusion

Relative rate constants have been experimentally detershymined for the reaction of OH with eight compounds and these rate constants have been placed on an absolute basis using the literature value for the rate constant for OH + isobutene35

In the same manner rate constants for the reaction of OH with nine additional compounds (monoterpene hydrocarbons) for

68

OH Radical Reaction with Selected Hydrocarbons

which no previous rate constants are available have been deshyrived from data recently published by Grimsrud Westberg and Rasmussen16

The comparatively large rate constants obtained for the ketones and monoterpene hydrocarbons indicate that they will be quite reactive in the troposphere The implications for photochemical oxidant control strategies of the chemical reshyactivity of the ketones chloroethenes and terpenes are disshycussed in detail elsewhere5051

Acknowledgments The authors gratefully acknowledge the helpful comments of Drs R Atkinson and E R Stephens during the preparation of this manuscript G Vogelaar and F Burleson for the gas chromatographic analyses and W D Long for valuable assistance in conducting the chamber exshyperiments

This work was supported in part by the California Air Reshysources Board (Contract No 5-385) and the National Science Foundation-RANN (Grant No AEN73-02904-A02) The contents do not necessarily reflect the views and policies of the California Air Resources Board or the National Science Foundation-RANN nor does mention of trade names or commercial products constitute endorsement or recommenshydation for use

References and Notes

(1) J Heicklen K Westberg and N Cohen Publication No 114-69 Center for Air Environmental Studies Pennsylvania State University University Park Pa 1969

(2) D H Stedman E D Morris Jr E E Daby H Niki and B Weinstock presented at the 160th National Meeting of the American Chemical Society Chicago Ill Sept 14-18 1970

(3) B Weinstock E E Daby and H Niki Discussion on Paper Presented by E R Stephens in Chemical Reactions in Urban Atmospheres C S Tuesday Ed Elsevier New York NY 1971 pp 54-55

(4) H Niki E E Daby and B Weinstock Adv Chem Ser No 113 16 (1972) (5) K L Demerjian J A Kerr and J G Calvert Advances in Environmental

Science and Technology Vol 4 Wiley-lntersclence New York NY 1974 p 1

(6) H Levy 11 Advances in Photochemistry Vol 9 Wiley-ln1erscience New York NY 1974 p 1

(7) S C Wofsy and M B McElroy Can J Chembull 52 1582 (1974) (8) R F Hampson Jr and D Garvin Ed Chemical Kinetic and Photoshy

chemical Data for Modeling Atmospheric Chemistry NBS Technical Note No 866 June 1975

(9) A Levy and S E Miller Final Technical Report on the Role of Solvents in Photochemical Smog Formation National Paint Varnish and Lacquer Association Washington DC 1970

( 10) M F Brunelle JE Dickinson and W J Hamming Effectiveness of Orshyganic Solvents in Photochemical Smog Formation Solvent Project Final Report County of Los Angeles Air Pollution Control District July 1966

(11) E P Grimsrud and R A Rasmussen Atmos Environ 9 1014 (1975) (12) J E Lovelock Nature (London) 252 292 (1974) (13) E R Stephens and F A Burleson private communication of unpublished

data (14) R A Rasmussen and F W Went Proc Natl Acad Sci USA 53215

(1965) R A Rasmussen J Air Polut Control Assoc 22537 (1972) (15) R A Rasmussen and M W Holdren Analysis of Cs to C 10 Hydrocarbons

in Rural Atmospheres J Air Pollut Control Assoc Paper no 72-19 presented at 65th Annual Meeting (June 1972)

(16) E P Grimsrud H H Westberg and R A Rasmussen Atmospheric Reshyactivity of Monoterpene Hydrocarbons NOx Photooxldation and Ozonolshyysls middot Proceedings of the Symposium on Chemical Kinetics Data for the

1639

Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Kinet Symp No 1 183 (1975)

(17) F W Went Nature(London) 187641 (1960) bull (18) G J Doyle A C Lloyd K R Darnall A M Winer andJ N Pitts Jr Enshy

viron Sci Technol 9237 (1975) (19) A C Lloyd K R Darnall A M Winer and J N Pitts Jr J Phys Chem

80 789 (1976) (20) J N Pitts Jr P J Bekowies A M Winer G J Doyle JM McAfee and

K W Wilson The Design and Construction of an Environmental Chamber Facility for the Study of Photochemical Air Pollution Final Report Calishyfornia ARB Grant No 5-067-1 in preparation

(21) Sylvania Technical Bulletin No 0-306 Lighting Center Danvers Mass 01923 1967

(22) J R Holmes R J OBrien J H Crabtree T A Hecht and J H Seinfeld Environ Sci Technol 7 519 (1973)

(23) G J Doyle P J Bekowies A M Winer and J N Pitts Jr Environ Sci Technol accepted for publication

(24) E R Stephens Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973 NTIS No PB 230 993AS

(25) E R Stephens and F R Burleson J Air Pollut Control Assoc 17 147 (1967)

(26) Ozone measurement was based on calibration by the 2 neutral buffered Kl method and was subsequently corrected from spectroscopic calibration data [-see J N Pitts Jr J M McAfee W Long and A M Winer Environ Sci Technol in pressJ

(27) B Weinstock and T Y Chang Telus 26 108 (1974) (28) T A Hecht J H Seinfeld and M C Dodge Environ Sci Technol 8 327

(1974) (29) L Zafonte P L Rieger and J R Holmes Some Aspects of the Atmoshy

spheric Chemistry of Nitrous Acid presented at 1975 Pacific Conference on Chemistry and Spectroscopy Los Angeles Calif Oct 28-30 1975 W H Chan R J Nordstrum J G Calvert and J N Shaw Chem Phys Lett 37441 (1976)

(30) J M McAfee A M Winer and J N Pitts Jr unpublished results (31) C C Wang L I Davis Jr CH Wu S Japar H Niki and B Weinstock

Science 189 797 (1975) (32) H Niki and B Weinstock Environmental Protection Agency Seminar

Washington DC Feb 1975 (33) A C Lloyd Int J Chem Kinet 6 169 (1974) (34) J G Calvert J A Kerr K L Demerjian and R D McQuigg Science 175

751 (1972) (35) R Atkinson and J N Pitts Jr J Chem Phys 63 3591 (1975) (36) D Perner D H Ehhalt H W Patz U Platt E P Roth and A Volz OH

Radicals In the Lower Troposphere 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(37) D D Davis T McGee and W Heaps Direct Tropospheric OH Radical Measurements Via an Aircraft Platform Laser Induced Fluorescence 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(38) E Sanhueza and J Helcklen Can J Chem 52 3870 (1974) (39) E Sanhueza and J Helcklen Int J Chem Kinet 6 553 (1974) (40) E Sanhueza I C Hisatsune and J Heicklen Oxidation of Haloethylenes

Center for Air Environment Studies The Pennsylvania State University CAES Publication No 387-75 Jan 1975

(41) E A Lissi private communication to authors of ref 40 and quoted therein (42) J A Franklin G Huybrechts and C Cillien Trans Faraday Soc 65 2094

(1969) (43) B W Gay Jr P L Hans J J Bufalinl and R C Noonan Environ Sci

Technol 10 58 (1976) (44) R F Lake and H Thompson Proc R Soc London Ser A 315 323

(1970) (45) LA Ripperton and H E Jefferies Adv Chem Ser No 113 219 (1972) (46) E D Morris Jr and H Niki J Phys Chem 75 3640 (1971) (47) S Fischer R Schiff E Machado W Bollinger and D D Davis 169th

National Meeting of the American Chemical Society Philadelphia Pa April 6-11 1975

(48) S M Japar CH Wu and H Niki Environ Lett 7245 (1974) (49) J S Gaffney R Atkinson andJ N Pitts Jr J Am Chem Soc 97 5049

(1975) (50) K R Darnall A C Lloyd A M Winer and J N Pitts Jr Environ Sci

Technol in press (51) J N Pitts Jr A C Lloyd A M Winer K R Darnall and G J Doyle

Development and Application of a Hydrocarbon Reactivity Scale Based on Reaction with the Hydroxyl Radical to be presented at 69th Annual APCA Meeting Portland Oreg June 27-July 1 1976

The Journal of Physical Chemistry Vol 80 No 14 1978

69

l

Reactivity Scale for Atmospheric Hydrocarbons Based on Reaction with Hydroxyl Radical

Karen R Darnall Alan C Lloyd Arthur M Winer and James N Pitts Jrbull

Statewide Air Pollution Research Center University of California Riverside Calif 92502

Bv use of relative and absolute rate constants for the reshyactiltn of the hydroxyl radical (OH) with a number of alkanes alkenes aromatics and ketones a reactivity scale is formushylated based on the rate of removal of hydrocarbons and oxyshygenates by reaction with OH In this five-class scale each class spans an order of magnitude in reactivity relative to methane Thus assigned reactivities range from lt10 fo~ ~lass I (conshytaining oniv methane) togt104 for Class V cotammg te mo~t reactive compounds (eg d-limonene) This scale differs m several significant ways from those presently utilized by _air p(llution control agencies and various industrial laboratories For example in contrast to other scales based o~ s_eco~dar_y marifestations such as yields of ozone and eye 1rritat1on it focuses directlv on initial rates of photooxidation The proshyposed scale als~ provides a clearer understandin~ of the_imshyportance of alkanes in the generation of ozone durmg per10~s of prolonged irradiation The present ~cale can be readily extended to include additional orgamc compounds (eg natural and anthropogenic hydrocarbons oxygenates chloshyrinated solvents) once their rate of reaction with OH is known

It has been recognized for many years (1-21) that all hyshydrocarbons occurring in polluted atmospheres are not equally effective in producing photochemical oxidant and hence that the application of cost effective strategies for the control of hydrocarbons requires that more stringent emissions reducshytions be applied to the more reactive organic compounds (22-25) This in turn has led to a continuing requirement for a rational assessment of hydrocarbon reactivity as a basis for control decisions Such an assessment is particularly critical since attainment of the Federal air quality standard for phoshytochemical oxidant has been sought largely through the stringent control of hydrocarbon emissions (26-27)

The first effort to formulate and apply a practical hydroshycarbon reactivity scale was taken in 1966 with the impleshymentation by the Los Angeles Air Pollution Control District (LAAPCD) of a regulation known as Rule 66 to limit solvent organic emissions on the basis of their capacity for promoting photochemical smog formation (24-25) This rule an~ other conceptions of reactivity scales (28) represented a maJor adshyvance in the application of the information then available concerning the mechanisms of photochemical smog formation to the development of practical air pollutant emission control strategies

Not surprisingly however both in the past and present there have been significant differences in hydrocarbon reacshytivity scales proposed by local regional and national air pollution control agencies (23 29-31) as well as by industy (14 16) As shown in Table I this can lead to very large difshyferences in emission inventory estimates and in approaches to hydrocarbon control (29 32 33) In this case reactive hyshydrocarbon emission inventory levels calculated by Goeller et al (32) using hvdrocarbon reactivity definitions of the Envishyronmental Protection Agency (EPA) on tlie one hand and the California Air Resources Board (ARB) and LAAPCD on the other differed by factors of 3 to 4

A second problem common to virtually all previous reacbull tivity classifications has been their reliance on smog chamber data obtained for relatively short irradiation (~2-6 h) periods

Thus the recent concern over oxidant formation resulting from ionger irradiations during pollutant tr~sport ~o ~egio_ns downwind of urban sources introduces additional d1fficult1es both in defining what constitutes a reactive hydr~carbon and in categorizing degrees of reactivity For example a compound such as propane the major component in liquefied petroleum gas (LPG) and often cited as a clean fuel is now known (34-36) to contribute to the formation of photochemical oxishydants in the later stages of day-long irradiation periods However on the basis of data obtained during short-term ir- middot radiations propane has been classified as unreactive in a reactivity scale proposed (23) by B Dimitriades of the EPA (hereafter referred to as the EPA reactivity scale)

Altshuller ald Bufalini (9 17) have reviewed the various definitions of hydrocarbon reactivity ~nd summarized results of numerous studies up to 1970 The criteria used for evalushyating hydrocarbon reactivity include hydrocarbon conshysumption the conversion of nitric oxide to nitrogen dioxide ozone formation aerosol formation eye irritation and plant damage It is generally agreed that the criteria most suitable with respect to photochemical oxidant control strategies are ozone dosage or maximum ozone concentration (29) However establishing a definitive hydrocarbon reactivity scale to be applied specifically to the control of ozone formation requires an extensive and lengthy experimental program in which the ozone-forming capability of each individual hydrocarbon is determined under simulated atmospheric conditions inshycluding long-term irradiation (ie 12-14 h)

An alternative basis for assessing hydrocarbon reactivity which would appear to have considerable utility and a valid experimental foundation is the formulation of a reactivity scale based on the rate of disappearance of hydrocarbons due to reaction with the hydroxyl radical the key intermediate spcies in photochemical air pollution

Results and Discussion

It is only in the last six years that the critical role-of OH in photochemical smog formation has been generally recognized (37-40) and that appreciable rate constant data have become available for the reaction of OH with several classes of hyshydrocarbons The importance of OH as a reactive intermediate relative to species such as Oa 0(3P) and H02 has been shown previously (39-41) through computer modeling of smog chamber data For example Niki et al (39) showed that the reactivity of a number of hydrocarbons as measured by the rate of conversion of NO to N02 correlated significantly better with OH rate constants than with either 0(3P) or Oa rate constants

Table I Comparison of Reactive Hydrocarbon Inventory Levels for Fixed Sources Under Alternative Reactivity Assumptions (from Ref 32 Based on Pre-1973 Data)

Reactive hydrocarbons tonsday

Control Conslslenl ARB-

strat-iy EPA lAAPCD Rand Corp

1970 8760 2283 6363 1975 nominal 4273 1022 2399 1975 maximal 2906 577 1299

Reprinted from ENVIRONMENTAL SCIENCEamp TECHNOLOGY yo 10 Page 692 ~uly 1976 Copyright 1976 by the American Chemical Society an1 0eprinted by perm1ss1on of the copynght owner

The utility of a large environmental chamber in obtaining relative rate constants with an accuracy of plusmn20 for the reshyaction of the hydroxyl radical with a variety of hydrocarbons was demonstrated in an earlier study in this laboratory (41 ) This method has recently been extended to an investigation of more than a dozen additional hydrocarbons including seven compounds for which OH rate constants are not currently available The detailed kinetic data derived from this invesshytigation have been reported elsewhere (42) In these studies we determined the rPlative rates of disappearance of selected alkanes alkenes and aromatic hydrocarbons under simulated atmospheric conditions of temperature pressure concenshy

l

middottrations light intensity and other trace contaminants (NO CO hydrocarbons water) These relative rate constants were placed on an absolute basis using the published rate cons~ts for OH+ n-butane The assumption that OH was responsible for the hydrocarbon disappearance under the experimental conditions employed (41) was subsequently supported by the very good agreement between OH rate constants determined for the individual compounds using flash photolysis-resoshynance fluorescence techniques (43 44) and those obtained in

l the initial chamber study (41) The general validity of the chamber method for obtaining OH rate constants is illustrated in Figure 1 where the good correspondence between chamber values (41 42) and the available literature values [(45) and references in Table IV] is shown graphically

The importance of the chamber method for the purposes of formulating a reactivity scale is the simultaneous detershymination of valid rate constants for reactions of OH with a large number and wide variety of atmospherically important hydrocarbons This substantially expands the number of compounds which can be incorporated now and in the near future in the resulting reactivity scale In this regard we are currently extending (46) the chamber method to the detershymination of rate constants for reactions of OH with natural hydrocarbons such as terpenes and solvent hydrocarbons such as ketones and chloroethenes for which no data currently exist Preliminary kinetic data (46) for selected natural hyshydrocarbons and ketones are included in our proposed reacshytivity scale

Use of OH Rate Constants as a Reactivity Index From the successful correlation of OH rate constants with the rates of hydrocarbon disappearance observed in our chamber simulations we conclude that to a good approximation this

Ill 1-- 25 z

~~ a ii ~ lt 20 ux ow ~ f5 ~ ~ 15 u lt(0 c

()

~ ~ 10 14

~ tla z ILI lt(

~ 1i 5 I- w lt( Q __ Q

ILI lt(a Ill

i5 o 5 ~ ~ W ~ ~ ~ 40

PUBLISHED RATE CONSTANTS ( J mol-1sec-I x 10-9)

Figure 1 Comparison of relative rates of hydrocarbon disappearan~e determined by environmental chamber method (refs 41 a~d 42) with selected published rate constants (cited in Table IV) for reaction of those hydrocarbons with OH radicals Line shown represents one to one correspondence and has slope of ( 1 18) X 10-9 mol s 1- 1bull Compounds shown are 1 n-butane 2 isopentane 3 toluene 4 2-methylpentane 5 n-hexane 6 ethane 7 3-melhylpentane 8 p-xylene 9 erxylene 10-11 m-xylene 12 123-trimeth~lbenzene_ 13 propane 14 124--trimethylbenzene 15 135-trimethylbenzene 16 cs-2-butene

71

Table II Effect of 0 1 PPM Ozone on Calculated Lifetimes of Selected Alkenes Based on Reaction with OH Radicals (1 X 107 Radicalscm3 ) a at 300 K

OH rate constants b Hall-Ille c tor Hall-Ille d lor Alkenamp I mo1- 1 bull-1 [o3J=0 h (03) = 01 ppm h

Ethene 38 X 109 30 28

Propene 15 X 1010 076 067

cis-2- 32 X 1010 036 020 Butene

13-Buta- 46 X 1010 025 024 diene bull b bull

bull Concentration used in these calculations-see text See references on Table IV c t112 = 0693kOH[OH] under the assumption ol attack only by OH d t12 = 0693(kOH[OH] + ko(03]) ko3 taken from refs 45 and 59

correlation can be extr~polated to the atmosphere for alkenes in ambient air parcels during the early morning hours when ozone levels are generally quite low (5005 ppm) and for alshykanes and aromatics at essentially all times and locations The latter assumption namely that an OH rate constant is a good reactivity index for alkanes and aromatics throughout an irradiation day (or multiple irradiation days) rests upon the fact that the rates of reaction of these classes of hydrocarbons with species such as ozone 0(3P) atoms and hydroperoxyl radicals are several orders of magnitude slower than with OH (45 47-49) For example even at the highest ozone concenshytrations experienced in ambient atmospheres 03 will not contribute significantly to the photooxidation of alkanes and aromatics

This is in contrast to the case for alkenes which although the rate constants for reaction of Oa with alkenes are not particularly large (45) react rapidly with ozone at the average concentrations commonly encountered in polluted ambient air (---01-02 ppm) The approximate magnitude of the effect of ozone on the atmospheric lifetimes of alkenes is given in Table II From their OH rate constants (see Table IV) atshymospheric lifetimes for four alkenes were obtained by asshysuming an OH radical concentration in polluted atmospher~s of 107 radicals cm-3 which is a reasonable value on the bass of both model calculations (50) and recent atmospheric measurements (51-53) The half-life given in column 3 of Table II is defined as t 1 2 = 0693k(OH) and assumes deshypletion of the hydrocarbon solely by the hydroxyl radical When one assumes an average concentration of 010 ppm of 0 3 the more reactive alkenes show considerably shorter half-lives (column 4) For example the lifetime of cis-2-butene in the atmosphere is 036 h assuming only reaction with OH but this is reduced to 020 h when reaction with Oa at a conshycentration of 01 ppm is considered

Proposed Reactivity Scale Under the assumption that hydrocarbon depletion is due solely to attack by OH (with the qualification noted for alkenes) we propose a five-class reshyactivity scale based on hydrocarbon disappearance rates due to reaction with OH The ranges of reactivities for the five proposed classes each span an order of magnitude in reactivity relative to methane and are shown in Table III The hydroshycarbon half-lives as defined above are also shown for each reactivity range

Hydroxyl radical rate constant data for a wide ra~ge of atshymospheric hydrocarbons have been taken from the literature as well as from our own studies and are compiled and refshyerenced in Table IV The assignment of these compounds in the various classes of our proposed reactivity scale is shown in the last column of Table IV For interest carbon monoxide is included in this table since although it is not a hydrocarbon it is present in polluted urban atmospheres but is generally regarded as being unreactive in ambient air Thus carbon

Volume 10 Number 7 July 1976 693

l

monoxide appears as being somewhat reactive in Class 11 Cohen (o) and Glasson and Tuesday (8) was essentially the which also includes ethane and acetylene In our current same as that obtained from the studies of hydrocarbon conshycompilation of compounds methane is the only compound sumption carried out by Schuck and Doyle (1 ) Stephens and listed which appears in Class I and 2-methyl- and 23-dishy Scott (3) and Tuesday (5) We are currently investigating methyl-2-butene and d-limonene are the only compounds in methods of quantitatively relating hydrocarbon consumption Class V Several of the higher alkenes and 13-butadiene apshy to nitric oxide oxidation and ozone formation the parameter pear at the upper end of Class IV Data from our recent study of greatest interest in formulating control strategies for oxishyof monoterpeiie hydrocarbons ( 46) indicate that many of these dant reduction compounds will appear in Class V (54) As indicated above Rule 66 formulated by the LAAPCD

Comparison with Other Scales The ranking of reacshy in 1966 represented the first hydrocarbon control measure tivities for the aromatic hydrocarbons in our scale is essentially based on photochemical reactivity Although this regulation the same as that obtained by Altshuller et al (4) and by has been effective results from recent studies (34-36) indicate Kopczynski (7 17) Although our proposed scale is based that the 4-6 h irradiations (25) from which assignments of solely on hydrocarbon disappearance rates Altshuller and the degree of reactivity of hydrocarbons were made in forshyBufalini ( 17) have shown that this measure of reactivity is very mulating Rule 66 did not give sufficient recognition to the similar to the one based on nitric oxide oxidation rates They ozone-forming potential of slow reactors such as n-butane and showed that the ranking of reactivities of hydrocarbons from propane Consequently it is now realized that measures more the nitric oxide photooxidation studies of Altshuller and stringent than Rule 66 are necessary to achieve reductions in

ozone formation to levels approaching th(se mandated by the US Clean Air Act Amendments of 1970

Table Ill Reactivity Scale for Hydrocarbons Based on Recognition of such deficiencies in current hydrocarbon Rate of Disappearance of Hydrocarbon Due to control regulations has led to reexamination of present hyshyReaction with Hydroxyl Radicals drocarbon reactivity classifications The focus of these reshy

evaluations has been the five-class reactivity scale (see TableClasa Hall-Hiebull Reactivity rel to methane ( =1)

I gt99 days lt10 V) proposed by B Dimitriades at the EPA Solvent Reactivity II 24 h to 99 days 10-100 Conference in 1974 (23) Significant changes have been sugshy

gested for this reactivity classification by the California ARB (29 30) the LAAPCD (31) the EPA (55) and by industry

Ill 24-24 h 100-1000 IV 024-24 h 1000-10 000

However since no final conclusions have been reached by any V lt024 h gt10 000 t112 = 0693kOH[OH] of these agencies at this time we will restrict comparison of

our proposed scale to the 1974 EPA scale

r Table IV Proposed Reactivity Classification of Hydrocarbons and CO Based on Reaction with Hydroxyl Radicals

Compound koH + Cpd (I mo1- 1 s-1) X 10-9 Rat Reactivity rel to methane ProPQsad class see Table Ill

Methane 00048 (60) 1 I co 0084 (45) 18 II Acetylene 011 (45 61 66) 23 II Ethane 016 (62) 33 II Benzene 085 (43 44) 180 Ill Propane 13 (63) 270 Ill n-Butane 18 (41 42) 375 Ill lsopentane 20 (42) 420 Ill Methyl ethyl ketone 21 (46) 440 Ill 2-Methylpentane 32 (42) 670 Ill Toluene 36 (43 44) 750 Ill n-Propylbenzene 37 (42) 770 ill lsopropylbenzene 37 (42) 770 ill Ethane 38 (42 64-66) 790 Ill n-Hexane 38 (42) 790 Ill 3-Methylpentane 43 (42) 900 Ill Ethylbenzene 48 (42) 1000 Ill-IV P-Xylene 745 (41 43) 1530 IV p-Ethyltoluene 78 (42) 1625 IV o-Ethyltoluene 82 (42) 1710 IV o-Xylene 84 (41 43) 1750 IV Methyl isobutyl ketone 92 (46) 1920 IV m-Ethyltoluene 117 (42) 2420 IV m-Xylene 141 (4143) 2920 IV 123-Trimethylbenzene 149 (41 43) 3100 IV Propene 151 (67) 3150 IV 124-Trimethylbenzene 20 (41 43) 4170 IV 135-Trimethylbenzene 297 (41 43) 6190 IV cis-2-Butene 323 (67) 6730 IV 8-Pinene 42 (46) 8750 IV 13-Butadiene 464 (42) 9670 IV-V 2-Methyl-2-butene 48 (68) 10 000 V 23-Dimethyl-2-butene 67 (69) 14 000 V d-Limonene 90 (46) 18800 V

bull Where more than one reference is cited an average value is given for the rate constant

694 Environmental Science amp Technology 72

i

Table V Proposed EPA Reactivity Classification of Organics (from Ref 23 1974) Claul Class II Class Ill Class IV Class V

nonreactive reactive reactive reactlVe reactive

C-C3 paraffins Mono-tertiary- CH paraffins Primary and secondary Aliphatic olefins

Acetylene Cycloparaffins a-Methyl styrene alkyl benzeries alkyl benzenes

Cyclic ketones Dialkyl benzenes

Benzaldehyde Tertiary-alkyl n-Alkyl ketones Branched alkyl Tri- and tetra-alkyl acetates ketones

Benzene Styrene Aliphatic aldehydes

benzenes 2-Nitropropane Primary and secondary

Acetone Primary and secondary alkyl acetates Unsaturated ketones Methanol alkyl alcohols N-methyl pyrrolidone Diacetone alcohol Tertiary-alkyl Cellosolve acetate

3lcohols NN-dimethyl Ethers ace tam Ide Partially halogenated

Phenyl acetate CellosolvesolefinsPartially halogenated paraffins Methyl benzoate

Partially halogenated Ethyl amines paraffins

Dimethyl formamlde

Perhalogenated hydrocarbons

Reactivity rating 10 35 65 97 143

Briefly the EPA has proposed on the basis of previous experimental studies that methane ethane acetylene proshypane and benzene are essentially nonreactive for typical urban ambient hydrocarbon-NOx ratios (23) and these compounds are placed in Class I on their scale Three other classes have been proposed for mobile source hydrocarbon emissions (56)-Class III (C4 and higher alkanes) Class IV (aromatics less benzene) and Class V (alkenes) When stashytionary source hydrocarbons including solvents (Class II) are added to the list five classes are suggested as shown in Table V

Thmiddot reactivity classification proposed here (Tables III and IV) can be compared with that suggested by the EPA (Table V) It is evident that several significant differences emerge

bull The C1-C3 alkanes are given equal weighting in the EPA scale and all are designated unreactive whereas our scale clearly differentiates among the three compounds from methane in Class I and ethane in Class II to the more reactive propane in Class III

bull According to our proposed classification benzene and n-butane are of similar reactivity whereas the EPA scale places them in Class I and III respectively

bull All the alkenes are placed in Class V of the EPA scale whereas our proposed scale shows a differentiation in reacshytivity from ethene in Class III to 23-dimethyl-2sbutene in Class V

bull Our scale g1ves recognition to the high reactivity of natshyural hydrocarbons such as 3-pinene and d-limonene placing these in Class IV and V respectively The present published EPA scale does not give a classification for natural hydroshycarbons although they could be loosely categorized as subshystituted alkenes in Class V

In addition to noting these differences some similarities exist between the two scales For example our scale shows that 13-butadiene is highly reactive which is consistent with preshyvious studies indicating it to be a facile precursor of eye irrishytants (17) and highly effective in producing oxidant during irradiation of HC-NOx mixtures (57) Also methanol would appear in the low half of Class II in our scale based on a recent dstermination of the rate constant for OH attack on methanol (58) The value found was k(OH+CH30H)lkltOH+CO) = 063 at 298 K This reduces to 53 X 107 1 mo1-1 s-1 based on k(oH+CO) = 84 X 107 1 mo1-1s-1 (45) Hence both our scale and the EPAs show methanol to be relatively unreactive

It should be emphasized that the classification proposed in our scale is not strictly applicable to compounds which

73

undergo significant photodissociation in the atmosphere for example aliphatic aldehydes In such cases the compound will be more reactive than predicted from a scale based on hydrocarbon depletion due solely to OH attack However our proposed classification emphasizes that most compounds react in polluted atmospheres and suggests that thf Class I scale be reserved only for the few compounds which have half-lives greater than about 10 days

Conclusion

Our proposed reactivity scale based on the depletion of hydrocarbons by reaction with the OH radical has utility in assessing hydrocarbon chemical behavior in polluted ambient air Since only those organic compounds which participate in atmospheric reactions are of consequence in the chemical transformations in ambient air their relative reactivity toward OH is a useful and directly measurable index of their potential importance in the production of secondary pollutants

Ohe advantage of the proposed scale is that because it is based on the individual rate constants for hydrocarbon reacshytion with OH any degree of gradation in reactivity may be used to formulate any desired number of classes-from relashytively few to a large number of classes or even an ordered ranking of compounds A second strength of the present scale is that it can be readily extended to include additional organic compounds once their rate of reaction with OH is known Fishynally the proposed scale gives greater weight than previous reactivity scales to the alkanes and a number of aromatic hydrocarbons which require a longer period of time to react but can contribute significantly to ozone formation during longer irradiation periods eg during their transport downshywind from urban centers-a phenomenon of increasing conshycern to air pollution control agencies

Acknowledgment

We gratefully acknowledge helpful discussions with R Atkinson G J Doyle D M Grosjean and E R Stephens

Literature Cited

(1) Schuck E A Doyle G bull J Photooxidation of Hydrocarbons in Mixtures Containing Oxides of Nitrogen and Sulfur Dioxide Rept No 29 Air Pollution Foundation San Marino Calif 1959

(2) Leighton PA Photochemistry of Air Pollution Academic Press New York NY 1961

(3) Stephens E R Scott W E Proc Am Pet Inst 42 (111)665 (1962)

Volume 10 Number 7 July 1976 695

l

1 I l

(4) Altshuller A P Cohen I R Sleva S F Kopczynski S L Sciena 135442 (1962)

(5) Tuesday C S Arch Emmiddotiron Health 7 188 (1963) (6) Altshuller A P Cohen I R Int J Air Water Pollut 7 787

(19631 (7) Kopczynski S L ibid 8 107 (1964) (8) Glasson W A Tuesday C S paper presented at the 150th

National Meeting ACS Atlantic City NJ September 1965 (9) Altshuller A P Bufalini J J J Photochem Photobiol 4 97

(J96fi (10) Heuss JM Glasson W A Environ Sci Technol 2 1109

(19681 (11) Altshuller A P Kopczynski S L Wilson D Lonneman W

Sutterfield F D J Air Pollut Control Assoc 19 787 (1969) (12) Altshuller A P Kopczynski S L Wilson D Lonneman W

Sutterfield F D ibid p 791 (13) Dimitriades B Eccleston B H Hurn R W ibid 20 150

(19701 (14) Levy A Miller S E Final Technical Report on the Role of

Solvents in Photochemical Smog Formation National Paint Varnish and Lacquer Assoc Washington DC 1970

(15) Wilson K W Doyle G J Investigation of Photochemical Reactimiddotities of Organic Solvents Final Report SRI Project PSU-8029 Stanford Research Institute Irvine Calif September 1970

(16) Glasson W A Tuesday C S J Air Pollut Control Assoc 20 239 (1970)

(17) Altshuller A P Bufalini J J Environ Sci Technol 5 39 (1971)

(18) Glasson W A Tuesday C S ibid p 153 (19) Stephens E R in Chemical Reactions in Urban Atmospheres

pp 45-54 C Tuesday Ed American Elsevier New York NY 1971

(20) Stephens E R Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973

(21) Kopczynski S L Kuntz R L Bufalini J J Environ Sci Technol 9608 (1975)

(22) Control Techniques for Hydrocarbon and Organic Solvent Emissions from Stationary Sources Nat Air Pollut Control Admin Publication AP-68 March 1970

(23) Proceedings of the Solvent Reactivity Conference US Enshyvironmental Protection Agency Research Triangle Park NC EPA-6503-74-010 November 1974

(24) Hamming W J SAE Trans 76 159 (1968) (25) Brunelle M F Dickinson JE Hamming W J Effectiveness

of Orga1ic Solvents in Photochemical Smog Formation Solvent Project Final Report Los Angeles County Air Pollution Control District July 1966

(26) Emironmental Protection Agency Region IX Technical Support Document January 15 1973

(27) Feldstein J J Air Polut Control Assoc 24469 (1974) (28) Altshuller A P ibid 16257 (1966) (29) California Air Resources Board Informational Report Progress

Report on Hydrocarbon Reactivity Study June 1975 (30) Organic Compound Reactivity System for Assessing Emission

Control Strategies ARB Staff Report No 75-17-4 September 29 1975

(31) Los Angeles County APCD Proposed Reactivity Classification of Organic Compounds with Respect to Photochemical Oxidant Formation Los Angeles County Air Pollution Control Departshyment July 21 1975

(32) Goeller B F Bigelow J H DeHaven JC Mikolowsky W T Petruschell R L Woodfill B M Strategy Alternatives for Oxidant Control in the Los Angeles Region R-1368-EPA Rand Corp Santa Monica Calif December 1973

(33) Impact of Reactivity Criteria on Organic Emission Control Strategies in the Metropolitan Los Angeles AQCR TRW Interim Report March 1975

(34) Holmes J California Air Resources Board private communishycation 1975

(35) Pitts J N Jr Winer A M Darnall K R Doyle G J McAfee JM Chemical Consequences of Air Quality Standards an~ of Control Implementation Programs Roles of Hydrocarbons Oxides of Nitrogen and Aged Smog in the Production of Photoshychemical Oxidant Final Report California Air Resources Board Contract No 3-017 July 1975

(36) Altshuller A P in Proceedings of the Solvent Reactivity Conference US Environmental Protection Agency Research Triangle Park NC EPA-6503-74-010 pp 2-5 November 1974

(37) Heicklen J Westberg K Cohen N Puhl 115-69 Center for Air Environmental Studies University Park Pa 1961

(38) Weinstock R Daby E E Niki H Discussion on Paper Presented by E R Stephens in Chemical Reactions in Urban Atmospheres pp 54-55 C S Tuesday Ed Elsevier New York NY 1971

(39) Niki H Daby E E Weinstock B AdLbull Chem Ser 113 16 (197)

(40) Demerjian K L Kerr J A Calvert J G Adv Environ Sci Technol 4 1 (1974)

(41) Doyle G J Lloyd A C Darnall K R Winer A M Pitts J N Jr Environ Sci Technol 9237 (1975)

(42) Lloyd A C Darnall K R Winer A M Pitts J N Jr J Phys Chem 80 789 (1976)

(43) Hansen D A Atkinson R Pitts J N Jr ibid 79 1763 (1975) (44) Davis D D Bollinger W Fischer S ibid p 293 (45) Chemical Kinetic and Photochemical Data for Modeling Atshy

mospheric Chemistry NBS Technical Note 866 R F Hampson Jr llQJJQarvin Eds Ju_ne 1975_____~ middot middot

(46)rloyd A C~arnliltKR-XWiner A JI_) Pitts J N Jr J Phys Chem 80 lflgti (1976)

(47) Pate C T Atkmiddot ori R Pitts J N Jr J Environ Sci Health All 1 (1976)

(48) Atkinson R Pitts J N Jr J Phys Chem 78 1780 (1974) (49) Stedman D H Niki H Environ Lett 4303 (1973) (50) Calvert J McQuigg R Proceedings of the Symposium on

Chemical Kinetics Data for the Upper and Lower Atmosphere Warrenton Va September 15-18 1974 Int J Chem Kinet Symposium No 1 113 (1975)

(51) Wang C C Davis L I Jr Wu CH Japar S Niki H Weinstock B Science 189 797 (1975)

(52) Perner D Ehhalt D H Patz H W Platt U Roth E P Volz A OH Radicals in the Lower Troposphere 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(53) Davis D D McGee T Heaps W Direct Tropospheric OH Radical Measurements via an Aircraft Platform Laser Induced Fluorescence ibid

(54) Pitts J N Jr Lloyd A C Winer A M Darnall K R Doyle G J Development and Application of a Hydrocarbon Reactivity Scale Based on Reaction with the Hydroxyl Radical to be preshysented at 69th Annual APCA Meeting Portland Ore June 27-July 1 1976

(55) Informal EPA meeting Philadelphia Pa July 30-31 1975 (56) Black M High L E Sigsby JE Methodology for Assignshy

ment of a Hydrocarbon Photochemical Reactivity Index for Emissions from Mobile Sources US Environmental Protection Agency Research Triangle Park NC EPA-6502-75-025 March 1975

(57) Haagen-Smit A J Fox M M Ind Eng Chem 48 1484 (1956)

(58) Osif T L Simonaitis R Heicklen J J Photochem 4 233 (1975)

(59) Japar S M Wu CH Niki H J Phys Chem 78 2318 (1974) (60) Davis D D Fischer S Schiff R J Chem Phys 61 2213

(1974) (61) Pastrana A Carr R W Jr Int J Chem Kinet 6587 (1974) (62) Overend R Paraskevopoulos G Cvetanovic R J Hydroxyl

Radical Rate Measurement for Simple Species by Flash Photolysis Kinetic Spectroscopy Eleventh Informal Conference on Photoshychemistry Vanderbilt University Nashville Tenn June 1974

(63) Gorse R A Volman D HJ Photochem 3115 (1974) (64) Greiner N R J Chem Phys 53 1284 (1970) (65) Smith I W M Zellner R J Chem Soc Faraday Trans II

69 1617 (1973) (66) Davis D D Fischer S Schiff R Watson R T Bollinger W

J Chem Phys 63 1707 (1975) (67) Atkinson R Pitts J N Jr ibid p 3591 (68) Atkinson R Perry R A Pitts J N Jr Chem Phys Lett

38607 (1976) (69) Atkinson R Perry R A Pitts J N Jr unpublished results

1975 Received for review November 3 1975 Accepted January 30 1976 Work supported by the California Air Resources Board (Contract No 4-214) and the National Science Foundation-RANN (Grant No AEN73-02904 A02) The contents do not necessarily reflect the vieumiddots and policies of the California Air Resources Board or the National Science Foundation-RANN nor does mention of trade names or commercial products constitute endorsement or recommendation for use

696 Environmental Science amp Technology 74

Ii

rl

I r I

G

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE

BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Statewide Air Pollution Research Center University of California

Riverside CA 92521

Paper No 76-311

Presented at the 69th Annual Air Pollution Control Association Meeting

Portland Oregon

June 27 - July 1 1976

75

76-311 rII 2

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Statewide Air Pollution Research Center University of California

Riverside CA 92502

Abstract

Measurements of the relative rate constants for the reaction of the hydroxyl radical (OH) with some 35 atmospherically important hydrocarbons have been made in the SAPRC 6400 i glass irradiation chamber These rate constants were placed on an absolute basis using literature values for either n-butane or isobutene and have been augmented with OH rate data obtained by elementary reaction measurements and other appropriate data such as that from photoshy

l oxidation studies from which relative and absolute OH rate constants could be calculated

l Utilizing these data a reactivity scale for some 80 compounds including alkenes alkanes aromatics oxygenates and naturally occurring hydrocarbons has been formulated based on the removal of the hydrocarbons by reaction with OH The resulting scale is an ordering of the reactivities of the hydrocarbons relative to methane The scale can be divided into an arbitrary number of classes for purposes of application to control strategies or comparison with other reactivity scales

Some comparisons of the present scale with proposed EPA and ARB reactivity scales are made and the implications of the present scale for the role of alkanes and a number of aromatic hydrocarbons in the formation of ozone in regions downwind of urban centers is analyzed

76

r I

I D

-I

f

76-311 3

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Introduction

1A major result of the photooxidation studies of the past 20 years - 26 has been the recognition that atmospherically important hydrocarbons do not all contribute equally to the production of photochemical oxidant and hence that the application of cost effective strategies for the control of hydrocarbons requires that more stringent emissions reductions be applied to the more reactive organic compounds 10lll9 26 This in turn has led to a continuing requirement for a rational assessment of hydrocarbon reactivity as a basis for control decisions Such an assessment is particularly critical since attainshyment of the Federal air quality standard for photochemical oxidant has been sought largely through the stringent control of hydrocarbon emissions2728

The first effort to formulate and apply a practical hydrocarbon reactivity scale was taken in 1966 with the implementation by the Los Angeles Air Pollution Control Districtmiddot (LAAPCD) of a regulation known as Rule 66 to limit solvent organic emissions on the basis of their capacity for promoting photoshychemical smog formation 10ll This rule and other conceptions of reactivity scales29 represented a major advance in the application of the information then available concerning the mechanisms of photochemical smog formation to the development of practical air pollutant emission control strategies Thus the basic concept of selective control of emissions based on their reactivity is now widely established

Not surprisingly however there have been significant differences in hydrocarbon reactivity scales proposed by local regional and national air pollution control agencies2530-34 as well as by industry161823 This in turn can lead to quite large differences in emission inventory estimates and in approaches to hydrocarbon control303536

Most although not all previous reactivity classifications have relied primarily on smog chamber data obtained for relatively short irradiation (~ 6 hrs) periods Thus the recent concern over oxidant formation resulting from longer irradiations during pollutant transport to regions downwind of urban sources introduces additional difficulties both in defining what constishytutes a reactive hydrocarbon and in categorizing degrees of reactivity For example a compound such as propane the major component in liquified petroleum gas (LPG) and often cited as a clean fuel is now known37-39 to contribute to the formation of photochemical oxidants in the later stages of day-long irradiation periods However on the basis of data obtained during short-term irradiations propane has been classified as unreactive in a reactivity scale

77

76-311

[

r I l

J

I

4

proposed25 in 1974 by B Dimitriades of the EPA (hereafter referred to as the EPA reactivity scale)

A third difficulty with reactivity scales which are based on previous smog chamber data concerns their reliance on measurements of smog manifestations such as maximum ozone concentrations Observed values of such secondary properties of a photooxidation system can be significantly affected by the particular chamber materials light source purity of matrix air and other aspects of the chamber methodology employed This fact can account in large measure for the significant number of discrepancies which arise from comparison of the specific ranking of hydrocarbons in reactivity scales formulated on the basis of different sets of chamber data

Altshuller and Bufalini9 zo have reviewed the various definitions of hydroshycarbon reactivity and summarized results of numerous studies up to 1970 The criteria used for evaluating hydrocarbon reactivity include hydrocarbon conshysumption the conversion of nitric oxide to nitrogen dioxide ozone formation aerosol formation eye irritation and plant damage It is generally agreed that the criteria most suitable with respect to photochemical oxidant control strategies are ozone dosage or maximum ozone concentration30 However establishing a definitive hydrocarbon reactivity scale to be applied specifishycally to the control of ozone formation requires an extensive and lengthy experimental program in which the ozone-forming capability of each individual hydrocarbon is determined under simulated atmospheric conditions including long-term irradiation (ie 10-12 hrs)

An alternative and perhaps supplementary basis for assessing hydrocarbon reactivity which appears to have considerable utility and a valid experimental foundation is the formulation of a reactivity scale based on the rate of disshyappearance of hydrocarbons due to their reaction with the hydroxyl radical the key intermediate species in photochemical air pollution

Results and Discussion

It is only comparatively recently that the critical role of OH in photoshychemical smog formation has been generally recognized40-44 and that appreciable rate constant data have become available for the reaction of OH with several classes of hydrocarbons The importance of OH as a reactive intermediatz

46relative to species such as o3 o(3P) and H02 has been shown previously 3-through computer modeling of smog chamber data For example Niki Daby and Weinstock43 showed that the reactivity of a number of hydrocarbons as measured by the rate of conversion of NO to NOz correlated significantly betterwith OH rate constants than with either 0(3P) or 03 rate constants

The utility of a large environmental chamber in obtaining relative rate constants with an accuracy of plusmn20 for the reaction of the hydroxyl radical with a variety of hydrocarbons has been demonstrated in a number of recent studies both in this45-48 and other laboratories49 To date we have measured relative rates for the reaction of OH with some 35 organic compounds The

78

l l t

l

r L

76-31 1 5

detailed kinetic data derived from these investigations have been reported48elsewhere 45 - In these studies we determined the relative rates of disshy

appearance of selected alkanes alkenes and aromatic hydrocarbons under simushylated atmospheric conditions of temperature pressure concentrations light intensity and other trace contaminants (NOx CO hydrocarbons water) These relative rate constants were placed on an absolute basis using the published rate constants for OH+ n-butane or isobutene The assumption that OH was responsible for the hydrocarbon disappearance under the experimental conditions employed was subsequently supported by the very good agreement between OH rate constants determined for the individual compounds using flash photolysisshyresonance fluorescence techniquesS051 and those obtained in our initial chamber experiments4546

The importance of the chamber method for the purposes of formulating a reactivity scale is that it permits the simultaneous determination of valid rate constants for reactions of OH with a large number and wide variety of atmospherically important hydrocarbons This substantially expands the number of compounds which can be incorporated now and in the near future in the resulting reactivity scale

Use of OH Rate Constants as a Reactivity Index

From the successful correlation of OH rate constants with the rates of hydrocarbon disappearance observed in chamber simulations at the SAPRc45-48 and Ford49 laboratories we conclude that to a good approximation this correlation can be extrapolated to the atmosphere (a) for alkenes in ambient air parcels during the early morning hours when ozone levels are generally quite low (~005 ppm) and (b) for alkanes and aromatics at essentially all times and locations The latter assumption namely that an OH rate constant is a good reactivity index for alkanes and aromatics throughout an irradiation day (or multiple irradiation days) rests upon the fact that the rates of reaction of these classes of hydrocarbons with species such as ozone 0(3P) atoms and the hydroperoxyl radical are several orders of magnitude slower than

52- 54with OH 8 For example even at the highest ozone concentrations experienced in ambient atmospheres 03 will not contribute significantly to the photooxidation of alkanes and aromatics This is in contrast to the case for alkenes which although the rate constants for reaction of 03 with alkenes are not particularly large55-57 react rapidly with ozone at the average concenshytrations connnonly encountered in polluted ambient air (~01-02 ppm)

Proposed Reactivity Scale

Under the assumption that hydrocarbon depletion is due solely to attack by OH (with the qualification noted for alkenes) we propose a five-class reacshytivity scale based on hydrocarbon disappearance rates due to reaction with OH The ranges of reactivities for the five proposed classes each span an order of magnitude in reactivity rel~tive to methane and are shown in Table I Although a scale based on OH rate constants can be divided into an arbitrary number of classes we have found it convenient and useful (particularly for purposes of

79

l r f

1

76-311 6

comparison with other scales) to employ the order of magnitude divisions which lead to a five-class scale

The hydrocarbon half-lives (defined as t12 ~ 0693k[OH]) corresponding to each class are also shown in Table I These half-lives were calculated assuming depletion of the hydrocarbon solely due to reaction with the hydroxyl radical and assuming an OH radical concentration in polluted atmospheres of 107 radicals cm-3 a reasonable value on the basis of both model calculations58 and recent atmospheric measurements59-61

Table II shows the compounds for which OH rate constants have been found or calculated distributed among the five classes of our proposed reactivity scale in the order of increasing rates of reaction within each class Employing OH rate constants obtained from hydrocarbon disappearance rates measured in photooxidation studies62 63 as well as those from elementary rate determinations and our chamber studies has permitted tabulation of OH rate constant data for 80 hydrocarbons These 80 hydrocarbons are incorporated in Table II

For interest carbon monoxide although not a hydrocarbon is included in Table II since it is present in polluted urban atmospheres Although CO is generally regarded as being unreactive in ambient air in our scale it appears in Class II which also includes ethane and acetylene

In our current compilation of compounds methane is the only compound listed which appears in Class I although the recent work of Chameides and Stedman has shown that even methane will react given sufficient time64 Most of the straight chain alkenes appear in Class IV with the substituted alkenes occurring in the upper half of Class IV and in Class V The alcohols fall into Class III while the monoterpene hydrocarbons are highly reactive and most of them appear in Class V with a- and $-pinene occurring in the upper half of Class IV The reactivity classification shown in Table II is similar to an earlier one we have formulated65 but many more compounds have now been included

Comparison with Other Scales

The ranking of reactivities for the aromatic hydrocarbons in our scale is essentially the same as that obtained by Altshuller et al4 and by Kopczynski 7 66 Although our proposed scale is based solely on hydrocarbon disappearance rates Altshuller and Bufalini20 have shown that this measure of reactivity is very similar to the one based on nitric oxide oxidation rates They showed that the ranking of reactivities of hydrocarbons from the nitric oxide photooxidation studies of Altshuller and Cohen6 and Glasson and Tuesdays was essentially the same as that obtained from the studies of hydrocarbon conshysuinption carried out by Schuck and Doyle 2 Stephens and Scott3 and Tuesday 5

As indicated above Rule 66 formulated by the LAAPCD in 1966 represented the first hydrocarbon control measure based on photochemical reactivity Although this and similar regulations have been effective results from recent

80

T

I I t

I Ii

76-31 1 7

d 37-39 d h h ffmiddot hstu ies in icate tat t ey give insu icient recognition tote ozone-forming potential of slow reactors such as g_-butane and propane under longshyterm irradiation conditions Consequently it is now realized that measures more stringent than Rule 66 are necessary to achieve reductions in ozone formation to levels approaching those mandated by the U S Clean Air Act Amendments of 1970

Recognition of such deficiencies in current hydrocarbon control regulations has led to re-examination of present hydrocarbon reactivity classifications The focus of these re-evaluations has been the five-class reactivity scale (see Table III) proposed by B Dimitriades at the EPA Solvent Reactivity Conference in 1974 25 Significant changes have been suggested for this reactivity classishyfication by the California ARB30-33 the LAAPCn34 the EPA67 and by industry The EPA is currently examining this question and since no final conclusions have been reached at this time we will restrict comparison of our proposed sci=Lle to the scale proposed in 1974 by Dimitriades of the EPA In addition we will discuss our proposed scale in the context of the three-class system r~cently approved32 by the ARB for application to hydrocarbon pollutant invenshytories and for planning future control strategies

Briefly the EPA has proposed on the basis of previous experimental studies that methane ethane acetylene propane and benzene are essentially non-reactive for typical urban ambient hydrocarbon-NOx ratios25 and these compounds are placed in Class I on their scale Three other classes have been proposed for mobile source hydrocarbon ernissions68__Class III (C4 and higher alkanes) Class IV (aromatics less benzene) and Class V (alkenes) When stationary source hydrocarbons including solvents (Class II) are added to the list five classes are suggested as shown in Table III

The reactivity classification proposed here (Tables I II) can be compared with that suggested by the EPA (Table III) It is evident that several signifishycant differences emerge

(1) The C1-C3 alkanes are given equal weighting in the EPA scale and all are designated unreactive while our scale clearly differentiates between the three compounds methane ethane and propane in Classes I II and III respectively

(2) According to our proposed classification benzene and n-butane are of similar reactivity while the EPA scale places them in Class I and III respectively

(3) All the alkenes are placed in Class V of the EPA scale while our proposed scale shows a differentiation in reactivity from ethene in Class III to 23-dimethyl-2-butene in Class V

(4) Our scale gives recognition to the high reactivity of natural hydroshycarbons such as the pinenes_and i-limonene placing these in Class IV and V respectively The present published EPA scale does not give a classification for natural hydrocarbons although they could be loosely categorized as substituted alkenes in Class V

81

l l

i

l

76-311 8

In addition to noting these differences some similarities exist between the two scales For example our scale shows that 13-butadiene ts highly reactive which is consistent with previous studies indicating it to be a facile precursor of eye irritants20 and highly effective in producing oxidant during irradiation of HC-NOx mixtures1 Both our scale and the EPAs show methanol to be relatively unreactive with a greater reactivity exhibited by the higher alcohols although our sc-ale predicts a lower overall reactivity than that of the EPA

The three-class system recently approved by the ARB is shown in Table IV and is similar to one being considered by the EPA30 According to the ARB 32

Class I would include low reactivity organic compounds yielding little if any ozone under urban conditions Class II would consist of moderately reactive organic compounds which give an intermediate yield of ozone within the first day of solar irradiation Class III would be limited to highly reactive organic compounds which give very high yields of ozone within a few hours of irradiation

In general the three-class ARB scale is in line with the scale presented here based on OH rate constants with only minor exceptions For example the ARB scale shows the primary and secondary Cz+ alcohols to be highly reactive in Class III while our scale shows them to be of moderate reactivity

Finally we wish to note two limitations of the reactivity scale proposed here One limitation of our scale is that it is not strictly applicable to compounds which undergo significant photodissociation in the atmosphere and aldehydes have been omitted for this reason In such cases the compound will be more reactive than predicted from a scale based on hydrocarbon depletion due solely to reaction with OH A second limitation in the application of our scale concerns the inherent problem arising from uncertainties in the identity and fates of subsequent products33

Conclusion middot

Our proposed reactivity scale based on the depletion of hydrocarbons by reaction with the OH radical has utility in assessing hydrocarbon chemical behavior in polluted ambient air Since only those organic compounds which participate in atmospheric reactions are of consequence in the chemical transshyformations in ambient air their relative reactivity towards OH is a useful and directly measurable index of their potential importance in the production of secondary pollutants

One advantage of the proposed scale is that because it is based on the individual rate constants for hydrocarbon reaction with OH any degree of gradation in reactivity may be used to formulate any desired number of classes-shyfrom relatively few to a large number of classes or even an ordered ranking of compounds A second strength of the present scale is that it can be readily extended to include additional organic compounds once their rate of reaction

82

76-311 9

~

l

I

with OH is known Finally the proposed scale gives adequate weight to alkanes and a number of aromatic hydrocarbons which require a significant period of time to react but can contribute substantially to ozone formation during longer irradiation periods eg during their transport downwind from urban centers-shya phenomenon of increasing concern to air pollution control agencies

Acknowledgement

We gratefully acknowledge access to the final report of the ARB Reactivity Committee prior to official release

This work was supported by the California Air Resources Board (ARB Contract No 5-385) and the National Science Foundation-Research Applied to National Needs (NSF-RANN Grant No ENV73-02904-A03) The contents do not necessarily reflect the views and policies of the ARB or the NSF-RANN nor does mention of trade names or commercial products constitute endorsement or recomshymendation for use

References

1 A J Haagen-Smit and M M Fox Ozone formation in photochemical oxidashytion of organic substances Ind Eng Chem 48 1484 (1956)

2 E A Schuck and G J Doyle Photooxidation of hydrocarbons in mixtures containing oxides of nitrogen and sulfur dioxide Rept No 29 Air Pollution Foundation San Marino California 1959

3 E R Stephens and W E Scott Relative reactivity of various hydrocarbons in polluted atmospheres 11 Proc Amer Petrol Inst 42 (III) 665 (1962)

4 A P Altshuller I R Cohen S F Sleva and S L Kopczynski Air pollutionphotooxidation of aromatic hydrocarbons Science 138 442 (1962)

5 C S Tuesday Atmospheric photooxidation of olefins Effect of nitrogen oxides Arch Environ Health l 188 (1963)

6 A P Altshuller and I R Cohen Structural effects on the rate of nitrogen dioxide formation in the photooxidation of organic compound-nitric oxide mixtures in air Int J Air Water Pollut l 787 (1963)

7 s L Kopczynski Photooxidation of alkylbenzene-nitrogen dioxide mixtures in air Int J Air Water Pollut _ 107 (1964)

B W A Glasson and C S Tuesday paper presented at the 150th National Meeting ACS Atlantic City N J September 1965

9 A P Altshuller and J J Bufalini Photochemical aspects of air pollution a review J Photochem Photobiol _ 97 (1965)

10 M F Brunelle JE Dickinson and W J Hannning Effectiveness of organic solvents in photochemical smog formation Solvent Project Final Report Los Angeles County Air Pollution Control District July 1966

11 W J Hamming Photochemical reactivity of solvents SAE Transactions Ji 159 (1968)

83

10 76-311

12 JM Reuss and W A Glasson Hydrocarbon reactivity and eye irritation Environ Sci Technol I 1109 (1968)

13 A P Altshuller S L Kopczynski D Wilson W Lonneman and F D Sutterfield Photochemical reactivities of n-butane and other paraffinic hydrocarbons J Air Pollut Contr Assoc 19 787 (1969)

14 A P Altshuller S L Kopczynski D Wilson W Lonneman and F D Sutterfield Photochemical reactivities of paraffinic hydrocarbonshynitrogen oxides mixtures upon addition of propylene or toluene J Air Pollut Contr Assoc 19 791 (1969)

15 B Dimitriades B H Eccleston and R W Hurn An evaluation of the fuel factor through direct measurement of photochemical reactivity of

l emissions J Air Pollut Contr Assoc 20 150 (1970)

l 16 A Levy and S E Miller Final technical report on the role of solvents

in photochemical smog formation National Paint Varnish and Lacquer Association Washington DC April 1970

17 K W Wilson and G J Doyle Investigation of photochemical reactivities organic solvents Final Report SRI Project PSU-8029 Stanford Research Institute Irvine California September 1970

18 W A Glasson and C S Tuesday Hydrocarbon reactivity and the kinetics of the atmospheric photooxidation of nitric oxide J Air Pollut Contrl

t Assoc 20 239 (1970)

19 Control Techniques for hydrocarbon and organic solvent emissions from stationary sources Nat Air Pollut Contr Admin Publication IIAP-68 March 1970

20 A P Altshuller and J J Bufalini Photochemical aspects of air pollution a review Environ Sci Technol i 39 (1971)

21 W A Glasson and C S Tuesday Reactivity relationships of hydrocarbon c mixtures in atmospheric photooxidation Environ Sci Technol 5 151 I (1971) -

22 E R Stephens Hydrocarbon reactivities and nitric oxide conversion in real atmospheres in Chemical Reactions in Urban Atmospheres C S Tuesday Ed American Elsevier Inc N Y 1971 pp 45-54

23 Solvents Theory and Practice R W Tess Ed Adv Chem Series 124 (1973)

24 E R Stephens Hydrocarbons in polluted air Sunnnary Report CRC Project CAPA-5-68 June 1973 NTIS No PB 230 993AS

25 Proceedings of the solvent reactivity conference U S Environmental Protection Agency Research Triangle Park N C EPA-6503-74-010 November 1974

26 S L Kopczynski R L Kuntz and J J Bufalini Reactivities of complex hydrocarbon mbtures Environ Sci Technol 2_ 648 (1975)

ltL

27 Environmental Protection Agency Region IX Technical Support Document January 15 1973

28 M Feldstein A critical review of regulations for the control of hydroshycarbon emissions from stationary sources J Air Pollut Contr Assoc 24 469 (1974)

84

l l f [

l

middot-i~ I~ ~ 4 -

11 76-311

29 A P Altshuller An evaluation of techniques for the determination of the photochemical reactivity of organic emissions J Air Pollut Contr Assoc 16 257 (1966)

30 Progress report on hydrocarbon reactivity study California Air Resources Board Informational Report No 72-12-10 June 12 1975_

31 Organic compound reactivity system for assessing emission control strageshygies California Air Resources Board Staff Report No 75-17-4 September 29 1975

32 Board approves reactivity classification California Air Resources Board Bulletin March 1976 p 4

33 Tinalreport of the committee on photochemical reactivity to the Air Resources Board of the State of California Draft April 1976

34 Los Angeles County APCD proposed reactivity classification of organic compounds with respect to photochemical oxidant formation Los Angeles County Air Pollution Control Department July 21 1975

35 B F Goeller J H Bigelow J C DeHaven W T Mikolowsky R L Petruschell and B M Woodfill Strategy alternatives for oxidant control in the Los Angeles region The RAND Corporation Santa Monica California R-1368-EPA December 1973

36 J C Trijonis and K W Arledge Utility of reactivity criteria in organic emission control strategies for Los Angeles TRW Environmental Services Redondo Beach California December 1975

37 J Holmes California Air Resources Board private communication 1975

38 J N Pitts Jr A M Winer K R Darnall G J Doyle and JM McAfee Chemical consequences of air quality standards and of control implementation programs roles of hydrocarbons oxides of nitrogen and aged smog in the production of photochemical oxidant Final Report California Air Resources Board Contract No 3-017 July 1975

39 A P Altshuller in reference 25 pp 2-5

40 N R Greiner Hydroxyl-radical kinetics by kinetic spectroscopy II Reactions with c H6 c H8 and iso-c H at 300 K J Chern Phys 462 3 4 103389 (1967)

41 K Westberg and N Cohen The chemical kinetics of photochemical smog as analyzed by computer The Aerospace Corporation El Segundo California ATR-70(8107)-1 December 30 1969

42 B Weinstock E E Daby and H Niki Discussion on paper presented by E R Stephens in Chemical Reactions in Urban Atmospheres C S Tuesday Ed Elsevier N Y 1971 pp 54-55

43 H Niki E E Daby and B Weinstock Mechanisms of smog reactions Adv Chem Series 113 16 (1972)

44 K L Demerjian J A Kerr and J G Calvert The mechanism of photoshychemical smog formation Adv Environ Sci Technol ~ 1 (1974)

45 G J Doyle A C Lloyd K R Darnall A M Winer and J N Pitts Jr Gas phase kinetic study of relative rates of reaction of selected aromatic compounds with hydroxyl radicals in an environmental chamber Environ Sci Technol 2_ 237 (1975)

85

12 76-311

46 A C Lloyd K R Darnall A M Winer and J N Pitts Jr Relative rate constants forreaction of the hydroxyl radical with a series of alkanes alkenes and aromatic hydrocarbons J Phys Chem 80 789 (1976)

47 A M Winer A C Lloyd K R Darnall and J N Pitts Jr Relative rate constants for the reaction of the hydroxyl radical with selected ketones chloroethenes and monoterpene hydrocarbons J Phys Chem 80 1635 (1976) -

48 A C Lloyd K R Darnall A M Winer and J N Pitts Jr Relative rate constants for the reactions of OH radicals with isopropyl alcohol diethyl and di-n-propyl ether at 305 plusmn 2 K Chem Phys Lett~ 405 (1976)

49 CH Wu S M Japar and H Niki Relative reactivities of HO-hydrocarbon reactions from smog reactor studies J Environ Sci Health All 191 (1976)

i 50 D A Hansen R Atkinson and J N Pitts Jr Rate constants for the reaction of OH radicals with a series of aromatic hydrocarbons J Phys Chern JJ 1763 (1975)

51 D D Davis W Bollinger S Fischer A kinetics study of the reaction of the OH free radical with aromatic compounds I Absolute rate constants for reaction with benzene and toluene at 300degK J Phys Chem J_J_ 293 (1975)

f 52 C T Pate R Atkinson and J N Pitts Jr The gas phase reaction ofi 03 with a series of aromatic hydrocarbonsmiddot J Environ Sci Health All

1 (1976)

53 R Atkinson and J N Pitts Jr Absolute rate constants for the reaction of o(3P) atoms with selected alkanes alkenes and aromatics as determined by a modulation technique J Phys Chem 78 1780 (1974)

54 D H Stedman and H Niki Ozonolysis rates of some atmospheric gases Environ Lett_ 303 (1973)

55 Chemical kinetic and photochemical data for modeling atmospheric chemistry R F Hampson Jr and D Garvin Eds NBS Technical Note 866 June 1975

56 D H Stedman CH Wu and Hbull Niki Kinetics of gas phase reactions of ozone with some olefins J Phys Chem ]J_ 2511 (1973)

57 S M Japar CH Wu and H Niki Rate constants for the reaction of ozone with olefins in the gas phase J Phys Chem 78 2318 (1974)

58 J G Calvert and R D McQuigg The computer simulation of the rates and mechanisms of photochemical smog formation Int J Chem Kinetics Symposium No 1 113 (1975)

59 C C Wang L I Davis Jr CH Wu S Japar H Niki and B Weinstock Hydroxyl radical concentrations measured in ambient air Science 189 797 (1975)

60 D Perner D H Ehhalt H W Patz U Platt E P Roth and A Volz OH radicals in the lower troposphere 12th International Symposium on Free Radicals Laguna Beach California January 4-9 1976

61 D D Davis T McGee and W Heaps Direct tropospheric OH radical measurements via an aircraft platform laser induced fluorescence 12th International Symposium on Free Radicals Laguna Beach California January 4-9 1976

86

13 76-311

62 J L Laity I G Burstain and B R Appel Photochemical smog and the atmospheric reactions of solvents in Reference 23 p 95

63 E P Grimsrud H H Westberg and R A Rasmussen Atmospheric reactivity of monoterpene hydrocarbons NOx photooxidation and ozonolysis Int J Chem Kinetics Symposium No 1 183 (1975)

64 W L Chameides and D H Stedman Ozone formation from NOx in clean air Environ Sci Technol 10 150 (1976)

65 K R Darnall A C Lloyd A M Winer and J N Pitts Jr A reactivity scale for atmospheric hydrocarbons based on reaction with the hydroxyl radical Environ Sci Technol 10692 (1976)

66 S L Kopczynski quoted in Reference 20

67 Informal EPA meeting Philadelphia Pennsylvania July 30-31 1975 l 68 M Black L E High and JE Sigsby Methodology for assignment of al hydrocarbon photochemical reactivity index for emissions from mobile

soucres EPA-6502-75-025 U S Environmental Protection Agency Research Triangle Park North Carolina March 1975

J i

J

s

87

ii

1

14 76-311

Table I R~activity Scale fer Hydrocarbons Based on Rate of Disappearance

of the Hydrocarbon due to Reaction wih the Hydroxyl Radical

Reactivity Relative Class Half-lifea (days) to Methane(== 1)

I gt 10 ~ 10

II 1 - 10 10 - 100

III 01 - 1 100 - 1000

IV 001 - 01 1000 - 10000

V 001 ~ 10000

a 7 -3[OR] is assumed to be 10 radicals cm

88

-- _1---c=r- FFIT~ Ja--~uli -~4 P-iJJia-degR j_--CL[Jl_j i---i_ 0-1 j-____-~ ~ -Ji=-ej ~~~ ~~- I -middot~1--c--aC-

Table II Proposed Reactivity Classification of Hydrocarbons and CO Based on Reaction with the Hydroxyl Radical

CLASS I CLASS II CLASS III CLASS IV CLASS V (S48 x107a (48 X 107 - 48 X lQB)a (48 X 108- 48 X 109) 8 (48 x 109 - 48 x 10lO)a 4 8 X 1Ql0) a

Methane Methanol Neopentane n-Octane 2-Mcthyl-2-butene Carbon monoxide Cyclobutane Diethyl ether 3-Carene Acetylene 2233-Tetramethylbutane pXylene 23-Dirnethyl-2-butene Ethane Benzene p-Ethyltoluene 13-Phellandrene

Ethyl acetate o-Ethyltoluene Carvomenthene Isobutane o-Xylene d-LimoneneshyPropane p-Cymene Dihydromyrcene Diethyl ketone Methyl isobutyl ketone Myrcene Isopropyl acetate Di-n-propyl ether cis-Ocimene n_Butane m-Ethyltoluene n-Butyl acetate m-Xyle~e Ethanol 123-Trimethylbenzene Methylethyl ketone Propene Isopentane 1-Butene 1-Propanol 33-Dimethyl-1-butene 224-Trimethylbutane 1-Pentene V

23-Dimethylbutane 1-Hexene co 223-Trimethylbutane 124-Trimethylbenzene0

Tetrahydrofuran Isobutene 2-Methylpentane 135-Trimethylbenzene Toluene cis-2-Butene Cyclopentane Diisobutyl ketone n-Propylbenzene 2-Methyl-1-butene Isopropylbenzene a-Pinene Ethene Cyclohexene n-Hexane cis-2-Pentene Cyclohexane trans-2-Butene n-Pentane 13-Pinene p-Menthane 13-Butadiene 1-Butanol Isoprene Isopropyl alcohol 4-Methyl-2-pentanol 3-Methylpentane Ethylbenzene

--J 0 a -1 -1Range of values (in liter mole sec ) for the rate constant for reaction of the OH radical with the listed w

compounds

I

------t-L ~- ~ J---1 bull middotmiddott1- lTLJ_J 1--___r _ ~II ~Ai ~-_c11 )----_-J1bull~

Table III Proposed EPA Reactivity Classification of Organics (from reference 25 1974)

CLASS I CLASS II CLASS III CLASS IV CLASS V ~Nonreactive~ (Reactive) (Reactive) (Reactive) (Reactive)

c1-c paraffins3

Acetylene

Benzene

Benzaldehyde

Acetone

Methanol

Tertiary-alkyl alcohols

Phenyl acetate

Methyl benzoate

Ethyl amines

Dimethyl formamide

IO Perhalogenated 0 hydrocarbons

RFACTIVITY RATING 10

Mono-tertiary-alkyl benzenes

Cyclic ketones

Tertiary-alkyl acetates

2-nitropropane

35

c4+ paraffins

Cycloparaffins

Styrene

n-Alkyl ketones

Primary amp Secondary alkyl acetates

N-methyl pyrrolidone

NN-dimethyl acetamide

Partially halogenated paraffins

6S

Primary amp Secondary alkyl benzenes

Dialkyl benzenes

Branched alkyl ketones

Primary amp Secondary alkyl alcohols

Cellosolve acetate

Partially halogenated olefins

97

Aliphatic olefins

a-Methyl styrene

Aliphatic aldehydes

Tri- amp tetra-alkyl benzenes

Unsaturated ketones

Diacetone alcohol

Ethers

Cellosolves

deg

143

-J OI

I) I-

I

17 76-311

Table IV California Air Resources Board (ARB) Reactivity Classification of Org_a1ic Compounds 32

Class I Class II Class III (Low Reactivity (Moderate Reactivity) (High Reaccivity)

c1-c Paraffins2 Acetylene

l

l B2nz2ne

Benzaldehyde

Acetone

Methanol

Tert-alkyl alcohols

Phenyl acetate

Methyl benzoate

Ethyl Amin-lts

Dim2thyl fcr-amide

Perhalogenated Hydrocarbons

Partially halogenated paraffins

Phthalic Anhydride

Phthalic Acids

Acetonitrile

Acetic Acid

Aromatic Amines

Hydroxyl Amines

Naphthalene

Chlorobenzenas

Nitrobenzenes

Phenol 1

Hono-tert-alkyl-benzenes

Cyclic Ketones

Alkyl acetates

2-Nitropropane

c + Paraffins3

Cycloparaffins

n-alkyl Ketones

N-Methyl pynolidone

NN-dimethyl acetamide

Alkyl Phenols

Methyl phthalates

All other aromatic hydroshycarbons

All Olefinic hydrocarbons (including partially haloshygenated)

Aliphatic aldehydes

Branched alkyl Ketones

Cellosolve acetate

Unsaturated Ketones

Primary amp Secondary c + alcohols

2 Diacetone alcohol

Ethers

Cellosolves

Glycols

c + Alkyl phthalates2

Other Esters

Alcohol Amines

c + Organic acids+ di acid3

c + di acid anhydrides3

Fannin Hexa methylene-tetramine)

Terpenic hydrocarbons

Olefin oxides

Reactivity data are either non-existent or inconclusive but conclusive data from similar compounds are available therefore rating is uncertain but reasonable

Reactivity data are uncertain

91

r1_

l

Volume 42 number 2 CHEMICAL PHYSICS LETTERS 1 September 1976

RELATIVE RATE CONST ANTS FOR THE REACTIONS OF OH RADICALS

WITH ISOPROPYL ALCOHOL DIETHYL AND DI-11-PROPYL ETHER AT 305 plusmn 2 K

Alan C LLOYD Karen R DARNALL Arthur M WINER and James N PITTS Jr Statewide Air Pollution Research Center University ofCalifornia Riverside California 92502 USA middot

Received 27 April 1976

Relative rate constants have been obtained for the reaction of the hydroxyl radical (OH) with isopropyl alcohol and diethyl and di-n-propyl ether in environmental chamber photooxidation studies employing hydrocarbon-NOx mixtures in air it 1 atmosphere and 305 plusmn 2 K These results were obtained from measurements of the relative rates of disappearance of these compounds on the previously validated basis that OH radicals are dominantly responsible for their disappearance in the initial stages of reaction under the experimental conditions employed Absolute rate constants obtained by using the published rate constant for OH+ isobutcne of 305 X 1010 Q mole-1 s-1 are (k X 10-9 I mole-1 s-1) isopropyl alcohol 43 plusmn 13 diethyl ether 56 plusmn II and di-nbullpropyl ether 104 plusmn 21 No previous determinations of these rate constants have been reported

1 Introduction 2 Experimental

The hydroxyl radical plays a fundamental role in The technique used to determine relative OH rate chemical transformations in photochemical air pollushy constants in this study has been previously employed tion [ l -7] With the realization of the importance of to obtain kinetic data for reactions of OH with alkanes OH has come an extensive experimental effort to [14 15] alkenes [ l 115) ketones [ l l] aromatics determine rate constants for the reaction of OH with a [1415] and halogenated [I 116) and natural hydroshylarge number of organic compounds These studies carbons [I l] Briefly irradiations of the hydrocarbonshyhave been documented in recent reviews [7] and in a NOx-air system were carried out in a Pyrex chamber critical compilation [8] of approximately 6400-liter volume at a light intensity

To date however comparatively few data have been measured as the rate of N02 photolysis in nitrogen obtained for the gas phase reactions of OH with oxyshy (k1) of 04 min- 1 All gaseous reactants were injected genated hydrocarbons [9-1 l] In this work rate conbull into pure matrix air [ 17] in the chamber using l 00-ml stants are reported for the reaction of OH with three precision bore syringes Liquid reactants were injected ingredients of commercial solvents [1213] - isoshy with micropipettes During irradiation the chamber propyl alcohol and diethyl and di-n-propyl ether temperature was maintained at 305 plusmn 2 K Such data are of fundamental importance in assessing The alcohol and ether concentrations were monitored the role of these oxygenated hydrocarbons in atmosshy with gas chromatography (FID) using a 5-ft X I 8-in pheric chemistry particularly since as controls on stainless steel column packed with Poropak Q (80-

automobiles reduce the contribution of hydrocarbons 100 mesh) operated at 393 and 423 K respectively from mobile sources emissions of such oxygenates Ozone was monitored by means of ultraviolet absorpbull from stationary sources become increasingly of tion CO by gas chromatography and NO-NO2-NOx greater concern by the chemiluminescent reaction of NO with ozone

92

205

Volume 42 number 2 CHEMICAL PHYSICS LETTERS I September 1976

i l

l

The initial concentrations of reactant were isoproshypyl alcohol 60 ppb ( 1 ppb in air= 40 X I o- 11 mole liter - I at 305 K and I atmosphere) diethyl ether 20 ppb and di-11-propyl ether 55 ppb In addition to these compounds traces of several alkanes alkenes and oxygenates were present [I 115) Initial concenshytrations in these experiments were 800-1500 ppbC of total non-methane hydrocarbons 060 ppm of NOx (with an NO2 NOx ratio of 003-008) 6 ppm of CO and 3000 ppb of methane together with warer vapor at 50 relative humidity Replicate 3-hour irradiations vere carried out with continuous analysis of inorganic species analysis of hydrocarbons every 15 minutes and analysis of isopropyl alcohol and the ethers every 30 minutes

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilushytion rate (12-l6 per hour) from the observed hydrocarbon disappearance rate The HCNOx and NON02 ratios were chosen to delay the formation of ozone and ozone was not detected during the irrashydiation period [11 14]

As discussed in detail previously [1115] the major sources of OH in our experimental system are probably the photolysis of HONO and the reaction of H02 with NO [561819]

NO+ N02 + H20-= 2 HONO (l)

H02 + N02 HONO + P2 (2)

HONO + hv(290-410 nm) OH+ NO (3)

l-102 +NO OH+N02 (4)

The first reaction is thought to occur relatively slowly homogeneously [2021] but its rate is probably sigshynificantly faster when the reaction is catalyzed by surfaces Thus nitrous acid has been observed in a chamber study of simulated atmospheres carried out in our laboratory (22] while direct evidence for formation of OH radicals in an environmental chamber hasbeen provided recently by Niki Weinstock and co-workers [2324]

The concentration of OH radicals present during these irradiation experiments was calculated to range from 14 to 35 X 106 radicals cm-3 depending upon the conditions of the specific experiment The calculashytions employed the observed rates of isobutene dis-

206

appearance ( corrected for dilution) and the previously determined rate constant for OH+ isobutene [25] These concentrations are the same order as those calshyculated [182627] and observed directly 232428 29] by other workers

3 Results and discussion

Typical rates of disappearance observed during the irradiations of isopropyl alcohol and of the two ethers are shown in figs I and 2 respectively lsobutene wJs

used as the reference compound and is included in the figures From these pseudo-first-order rates of disshyappearance of the hydrocarbons rate constants reshylative to that of isobutene were obtained for the reshyaction of the PH radical with isopropyl alcohol and diethyl and di-n-propyl ether These were placed on an absolute basis using a value of 305 X 1010 Q

mole- 1 s-1 for the reaction of OH with isobutene [25] These results are presented in table I

There are no rate constants currently available for the reaction of OH radicals with ethers Assuming that hydrogen abstraction is the major reaction pathway one would expect these rate constants to be larger than

z 0

~ a 5 z w lt) z 0 u

0 w gta w ()

ID

ISOPROPYLALCOHOL

0

3 ______________________

omiddot 05 10 15 20 HOURS OF IRRADIATION

Fig 1 Concentrations of isopropyl alcohol and isobu tene plotted on a logarithmic scale) during photolysis of HC-NOx mixture in air at 305 plusmn 2 K and I atm

93

l

Volume 42 number 2 CHEMICAL PHYSICS LETTERS 1 September 1976

50

Fig 2 Concentrations of diethyl and di-n-propyl ether and isobutene (plotted on a logarithmic scale) during -photolysis of HC-NOx mixture in air at 305 plusmn 2 Kand 1 atm

those for the corresponding alkane since the C-H bond strengths in the ethers are at least several kiloshycalories weaker [30] Thus our rate constants ( at 305 K) for diethyl and di-n-propyl ethers of 56 and 104 X 109 Q mole-1 s-1 respectively compare with values for the corresponding alkanes n-butane and n-hexane (at 298 K) of 16 and 29 X 109 Q mole-I s- 1 respectively calculated from the formula of Greiner [31]

Two recent measurements of the rate constants for the gas phase reaction of OH radicals with alcohols

Table 1

iftltt a z w ~ 10 0 u

0 gta S 5

0 05

a DIETHYL ETHER

--0--

10 15 20 25 HOURS OF IRRADIATION

have been reported Osif et al [9) obtained a value of 53 X 107 Q mole- 1 smiddot- 1 for OH+ methanol using a value of 84 X 107

Q moiemiddotmiddot 1 s- 1 for OH reaction with CO [8] Recently Campbell et al [IO] have carried out studies of the reaction of OH With a series of alcohols-shymethanol ethanol 1-propanol and 1-butanol Our value for OH+ isopropyl alcohol of (43 plusmn 13) X 109 Q mole- 1

s-1 at 305 K is consistent with the value of (2 3 plusmn 02) X lQ9Q moie- 1 s-1reported for 1-propanol by Campbell et ai (10) at 292 K middot Although as mentioned no literature data are availshyable for the reaction of OH with ethers it is interesting to examine the data for solvent photooxidations obshytained by Laity et al [32] in chamber studies These workers irradiated separate solvent-NOx-air mixshytures in a stainless steel chamber at 305 K and reshyported t_he maximum rate of hydrocarbon disappearshyance observed in these experiments relative to toluene If this disappearance is assumed to be predominantly duemiddotto attack by OH then absolute rate constants may be derived from these data using a value of 36 X 109 Q moie- 1 s-1 for the reaction of OH+ toluene [3334] Values for OH+ isopropyl alcohol and OH+ diethyl ether are 31 X 109 and 54 X 109 Q mole-1 s-1 respectively compared to our results of 43 and 56 X 109 Q moie-1 s-1 Considering the differences in experimental methods and apparatus as well as the uncertainties involved in such an interpretation of the data of Laity et al [32] the agreement obtained for isopropyl alcohol and diethyl ether is quite satisshyfactory Similar treatment of their chamber data for other compounds for which the OH rate constants are known yields results (35] in fair agreement with literature values

Relative and absolute rate constants for the reaction of OH with selected hydrocarbons

Compound Relative rate of k(ll mole-1 s-1 X 10-9 )

disappearance this work a) literature

isobutene 1 305 isopropyl alcohol 014 43 31b) diethyl ether 0185 56 54 b) di-ndegpropyl ether 034 104

a) Using a literature value of 305 X 1010 ll mole- I s-1 for OH+ isobutene (25] b) Using the data of Laity et al [32] and attributing the HC loss solely to reaction with OH results placed on an absolute basis

using a value of 36 X 109 ll mole-1 s-1 for OH+ toluene (see text) middot

94

207

Volume 42 number 2 CHEMICAL PHYSICS LETTERS I September 1976

r

I l i l l r il

l11e atmospheric half lives tl2 = 0693kou +RH

X [01-1] for isoprupyl alcohol and diethyl and di-11-propyl ether are akubted to be 5 4 41 and 22 hours respectivdy using an ambient OH concentrashytion of 5 X 106 radicals cm-3 [18232426-29] and our rate constants Thus these compounds react with OH at rates similar to ethene c6 - c7 alkanes and mono-alkyl substituted benzenes [36] The relative importance of alcohols ethers and other oxygenated hydrocarbons in photochemical smog formation are discussed in detail elsewhere [35-37]

Acknowledgement

The authors gratefully acknowledge the assistance of FR Burleson in carrying out the gas chromatoshygraphic analyses WD Long for valuable assistance in conducting the chamber experiments and Dr R Atkinson for useful comments concerning this manushyscript This work was supported in part by the California Air Resourses Board (Contract No ARB 5-385) and the National Science Foundation-Research Applied to National Needs (NSF~RANN Grant No AEN73-02904-A02)

References

[I] NR Greiner J Chem Phys 46 (1967) 3389 [2] J 1-Ieicklen K Westberg and N Cohen Center for Air

Environmental Studies Pennsylvania State University University Park PA Pub 114-69 (1969)

[3] DH Stedman EE Morris Jr EE Daby H Niki and B Weinstock 160th Natl Meeting American Chemical Society Chicago September 14-18 1970

(4] B Weinstock EE Daby and H Niki Discussion on paper presented by ER Stepens in Chemical reactions in urban atmospheres ed CS Tuesday (Elsevier Amsterdam 1971) pp 5455

(51 H Niki EE Daby and B Weinstock in Advances in Chemistry Series No 113 (American Chemical Society Washington 1972) p 16

(6) KL Demerjian JA Kerr and JG Calvert Advances in environmental science and technology Vol 4 eds JN Pitts Jr and RL Metcalf (Wiley-lnterscience New York 1974) p 1

(7) JN Pitts Jr and BJ Finlayson Angew Chem Intern Ed 14 (1975) l BJ Finlayson and JN Pitts Jr Science 191 _(1976) 111

(8) RF Hampson Jr and D Garvin eds Chemical kinetic and

208

photochemical data for modeling atmospheric d1cmi~try NBS Tbullchnk11 Note 866 ltJune 1975)

[9] TL Osif R Sinrnnaitis and J lkicklcn J Photod1cm 4 (1975) 233

[10] JM Campbell DF McLaughlin and BJ Handy Ch~m Phys Letters 38 ( 1976) 362

[11] AM Winer AC Lloyd KR Darnall and JN Pitts Jr J Phys Chem 80 (I 976) to be published

( 12] KW Wilson and GJ Doyle Investigation of photocmiddothemishycal reactivities of organic solvents Stanford Research Inmiddot stitute Repor EPA Contract IICPA 22-9-125 (September 1970)

(13) Solvents theory and practice Advances in Chemistry Series No 124 (American Chemical Society W1hingtrn 1973)

[14] GJ Doyle AC Lloyd K Darnall AM Winer and JN Pitts Jr Environ Sci Technol 9 (1975) 237

[ 15) AC Lloyd KR Darnall AM Viner and J N Pitts Jr J Phys Chem 80 (1976) 789

(16) R Atkinson KR Darnall AM Winer and JN Pitts Jr Environ Sci Technol (1976) submitted for publication

(17) GJ Doyle PJ Bekowics AM Winer and JN Pitts Jr A charcoal-adsorption air purification system for clrnmshyber studies investigating atmospheric photochemistry Environ Sci Technol (1976) to be published

(18] B Weinstock and TY Chang Tellus 26 (1974) 108 [19] TA Hecht IH Seinfeld and MC Dodge Environ

Sci Technol 8 (1974) 327 (20] R Graham and BJ Tyler J Chem Soc Faraday Trans

I 68 (1972) 683 [21) WH Chan RJ Nordstrom JG Calvert and JN Shaw

Chem Phys Letters 37 (1976) 441 (22] JM McAfee AM Winer and JN Pitts Jr unpublished

results (1974) (23] CC Wang LI Davis Jr CH Wu S Japar H Niki and

B Weinstock Science 189 (1975) 797 (24) H Niki and B Weinstock Environmental Protection

Agency Seminar Washington (February 1975) [25] R Atkinson and JN Pitts Jr J Chem Phys 63 (1975)

3591 (26) H Levy II Advan Photochem 9 (1974) 369 [27) J G Calvert Environ Sci Technol 10 (1976) 256 (28) D Perner DH Ehhalt HW Patz U Platt EP Roth

and A Volz OH radicals in the lower troPosphere 12th International Symposium on Free Radicals Laguna Beach CA January 4-9 1976

(29) DD Davis T McGee and W Heaps Direct tropospheric OH radical measurements via an aircraft platform laser induced fluorescence 12th International Symposium on Free Radicals Laguna Beach CA January 4-9 1976

(30] JA Kerr and AF Trotman-Dickenson in Handbook of chemistry and physics 57th Ed (The Chemical Rubber Company Cleveland 197677)

[31] NR Greiner J Chem Phys 53 (1970) 1070 [32] JL Laity IG Burstein and BR Appel Solvents

theory and practice Advances in Chemistry Series No 124 (American Chemical Society Washington1973) p 95

95

Volume 42 number 2 CIIEMICAL PHYSICS LETTERS 1 September 1976

[33] DA Hansen R Atkinson and JN Pitts Jr J Phys Chem 79 ( 1975) 1763

[ 34 I DD Davis Bollinger and S Fischer J Phys Chem 79 (I 975) 293

[35 I JN Pitts Jr AC Lloyd AM Winer KR DamaII and GJ Doyle Demiddotelopment and application of a hydroshycarbon rlactivity scale based on reaction with the hydroxyl radical presented at the 69th Annual APCA Meeting Portland OR June 27-July I 1976

l

f I

If

i )

(36] KR Darnall AC Lloyd AM Winer and JN Pitts Jr Environ Sci Technol 10 (1976) to bl published

(37] JN Pitts Jr AM Winer KR Darnall AC Lloyd and GJ Doyle Smog chamber studies concerning hydrocarbon reactivity and the role of hydrocarbons oxides of nitrogen and aged smog in the production of photochemical oxidants to be presented at the In-tershynational Conference on Photochemical Oxidant Pollushytion and Its Control Research Triangle Park NC September I2-17 I 976

96

209

Volume 44 number 3 CHEMICAL PHYSICS LETTERS 15 December 1976

I

l

i

RELATIVE RATE CONST ANTS FOR THE REACTION OF OH RADICALS

WITH SELECTED C6 AND C7 ALKANES AND ALKENES AT 305 plusmn 2 K

Karen R DARNALL Arthur M WINER Alan C LLOYD and James N PITTS Jr Statewide Air Pollution Research Celter University of California Riverside California 92502 USA

Received 16 August 1976

Measurements of the rates of disappearance of three alkenes and two alkanes relative to isobutene in environmental chamber photooxidation studies employing hydrocarbon-NOx mixtures in air at 1 atmosphere have been used to obtain relative rate constants for the reaction of these compounds with the hydroxyl radical Absolute rate constants at 305

1plusmn 2 K obtained using a published rate constant for OH+ isobutene of 305 X 1010 l2 mole-1 s- are (k X 10-9 Q mole-I

s- 1) cyclohexene 47 plusmn 9 1-methylcyclohexene 58 plusmn 12 1-heptene 22 plusmn 5 23-dimethylbutane 31 plusmn 05 223-trishymethylbutane 23 plusmn 05 No previous determinations of OH rate constants have been reported for 1-heptene and 1-methylshycyclohexene For the remaining compounds these results are shown to be in good agreement with literature values reported for elementary or relative rate constant determinations

I Introduction

Recently we have reported rate constant determinashytions for the reaction of OH with alkanes [l 2] alshykenes [2 3] aromatic hydrocarbons_ [I 2) monoshyterpene hydrocarbons [3) halogenated hydrocarbons [3 4 J ketones [3] and ethers and isopropyl alcohol [5] These rate constants were obtained by measuring the relative rates of disappearance of hydrocarbons in a hydrocarbon-NOx mixture in air at 1 atmosphere and at 305 plusmn 2 K Absolute rate constants were obshytained [1--3 5] by using literature values for OH+ nshybutane andor isobutene at least one of which was employed as a reference compound in each study A similar technique has recently been employed by Niki and co-workers [6] Results obtained from these relative rate studies have uniformly been in very good agreement with literature values reported for elemenshytary rate constant determinations [7]

Here we report rate constant data at 305 plusmn 2 K for the reaction of OH with 1-heptene 1-methylcycloshyhexene cyclohexene and two substituted alkanes -2 3-dimethylbutane and 2 2 3-trimethylbutane These long-chain alkanes and cyclic alkenes have been suggested to play a major role in the formation of the organic portion of aerosols found in polluted ambient air (89)

2 Experimental

The experimental technique used to determine relashytive OH rate constants in this study has been described in detail previously [1-3) Briefly irradiations of the hydrocarbon-NOx-air system were carried out in a Pyrex chamber of approximately 6400-liter volume at a light intensity measured as the rate of NO2 photoshylysis in nitrogen (k1) of 04 min- 1bull During irradiation the chamber temperature was maintained at 305 plusmn 2 K

The alkane and alkene concentrations were monishytored with gas chromatography (FID) using a 5 X 18 SS of Poropak Q (80-100 mesh) column and a 36 X 18 SS column of 10 dimethylsulfolane on AW C-22 Firebrick (60-80 mesh) followed by 18 X 18 SS column of 10 Carbowax 600 operated at 433 and 273 K respectively Ozone was monitored by means of ultraviolet absorption CO by gas chroshymatography and NO-NO2-NOx by the chemiluminesshycent reaction of NO with ozone

The initial concentrations of reactants were 2 3-dimethylbutane 7 ppb (I ppb in air= 40 X 10-11

mole liter-I at 305 Kand 1 atmosphere) 223-trishymethylbutane 14 ppb cyclohexene 10 ppb I meshythylcyclohexene 21 ppb and 1-heptene 14 ppb In addition to these compounds traces of several alkanes alkenes and oxygenates were present [2 3] Initial

97

415

Vol um~ 44 number 3 CHEMICAL PHYSICS LETTERS 15 December 1976

i l

l

concentrations in these experiments were 700-800 ppbC of total non-methane hydrocarbons 061 ppm of NOx (with an NO2NOx ratio of 004-005) 6 ppm of CO and 2900 ppb of methane together with water vapor at 50 relative humidity Replicate three-hour irradiations were carried out with continshyuous analysis of inorganic species and analysis of hydrocarbons eve~y 30 minutes

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilushytion rate (16 per hour) from the observed hydrocarshybon disappearance rate The HCNOx and NON02 ratios were chosen to delay the formation of ozone and ozone was not detected during the irradiation peshyriod [13)

As discussed in detail previously [23) the major sources of OH in our experimental system are probably the photolysis of HONO and the reaction of HO2 with NO [10-13)

NO+ NO2 + H2O ~ 2 HONO (1)

HONO + hv (290-410 nm) OH+ NO (2)

HO2 + NO OH + NO2 (3)

The first reaction is thought to occur relatively slowly homogeneously [14-16) but its rate is probably sigshynificantly faster when the reaction is catalyzed by surshyfaces Thus nitrous acid has been observed in a chamshyber study of simulated atmospheres carried out in our laboratory [ 17] while direct evidence for formation of OH radicals in an environmental chamber has been provided recently by Niki Weinstock and co-workers [6 18 19] The reaction of HO2 with NO2 has also been proposed a~ a source

(4)

of nitrous acid [20 21] but recent results [22 23) suggest that peroxynitric acid is the major product of reaction (4)

(5)

The peroxynitric acid may decompose back to HO2 and NO2 or possibly give HONO but this is currently uncertain [22 23]

The concentration of OH radicals present during these irradiation experiments was calculated to range

416

from (25-50) X 06 radicals cm- 3 depending upon the conditions of the specific experiment The calculashytions of OH concentrations employed the o~served rates of isobutene disappearance ( corrected for dilushytion) and the previously determined rate constant for OH + isobutene [24] These concentrations are the same order as those calculated [12 25 26) and obshyserved directly [I 8 27 28) by other workers

3 Results and discussion

lsobutene was used as the reference compound in this series of experiments From the pseudo-first-order rates of disappearance of the hydrocarbons rate conshystants relative to that of isobutene were obtained for the reaction of the OH radical with 2 3-dimethylbushytane 2 2 3-trimethylbutane cyclohexene 1-methylshycyclohexene and 1-heptene These were placed on an absolute basis using a value of 305 X 1010 Q mole-ls-I for the reaction of OH with isobutene [24] These reshysults are presented in table 1 together with the availshyable literature data

Within the estimated 20 uncertainty in our rate constant values the agreement among our data and the literature values is good For example our value of (31 plusmn 06) X 109 Q mole- 1s-1 for 2 3-dimethylbutane agrees within experimental uncertainty with that of (26 plusmn 03) X 109 Qmole-1s- 1 recentlY determined in a separate study in this laboratory by Atkinson et al [4] This latter value was derived from the relative

1

rates of disappearance of 2 3-dimethylbutane and ethane during a 216-hour irradiation in the Pyrex chamber Both of these values are significantly lower than the value directly determined by Greiner [29] at 300 K of (516 plusmn 013) X 109 However it is expected [28) that the rate constant for the reaction of OH radicals with 2 3-bulldimethylbutane would be less than twice as fast as with isobutane on the basis of the numshybers of primary and tertiary hydrogen atoms in these two alkanes The absolute rate constant for the reaction of OH radicals with isobutane has been determined to be 15 X 109 Qmole-1s-1 at 304 K [29) and hence the OH rate constant for 23-dimethylbutane is exshypected to belt 3 X 109 Q mole-1 s-1 which is in agreement with both the determination of Atkinson et al [4) and with the present work

Similarly our value of (23 plusmn 05) X 109 Qmole-I

98

Volume 44 number 3 CIIEIICAL PHYSICS LETTERS 15 December 1976

Table l Pclativc and absolute rate constants for the reaction of OH anltl 0(3P) with selected hydrocarbons

---middot-middot--------

ko11 + compound at 305 K Compourd Relative rdte ko(3P) + compound

of disappearance this work a) literature at 298 K

------ -middot-middotmiddotmiddotmiddotmiddotmiddotbull-middot-middot----------------------isobutene 1 305 L2 e)

2 3-dimethylbutane 010 031 plusmn 006 045 b) 026 plusmn Oo3 c) 0012 e)

2 2 3-trimethylbutane 0074 023 plusmn 005 029 b) 1-pentene 18 plusmn 02 d) 028 e)

1-hexene 19 plusmn 02 d) 031 e) 1-heptenc 073 22 plusmn 05 cyclohexene 153 47 plusmn 09 38 plusmn 04 d) 13 e)

f 1-mcthylcyclohexene 191 58 12 49 plusmn 02 f)

a) Using a literature value of 305 X 1010 Q mole-1 s-~ for OH+ isobutene (24 ] b) Ref [29) T= 298 K c) Ref [4] T= 305 K d) Ref (16) using a literature value of 31 X 1010 Q mole-1 s-1 at 303 K for OH + cis-2-butene [24 ] e) Rcf(32] ORef(31) bull

s-1 for 22 3-trimethylbutane is in reasonable agreeshy addition reaction of 03P) atoms with cyclohexene l ment with the value of 29 plusmn 01) X 109 Q mole-1 s-1 and 1-methylcyclohexene (091 and 421 relative to obtai_ned by Greiner at 303 K (29] In addition the O (3P) + cyclopentene) (31] decrease in rate constant in going from 2 3-dimethylshy Table 1 shows a comparison of the reactivity of butane to the larger molecule 2 2 3-trimethylbutane 0(3P) atoms (31 32] as well as OH radicals towards is consistent with a decrease from two to one in the the compounds studied here and other selected comshynumber of tertiary hydrogen atoms [29] These atoms pounds Since both 0(3P) and OH are expected to are the most easily abstracted since the C-H bond primarily undergo addition to the alkenes one would strength for tertiary hydrogens is 3 kcal mole-1 and expect the same trend in going from 1-pentene to cyshy6 kcal mole- 1 weaker than that for secondary and clohexene and this is in fact observed In addition primary hydrogens respectively [30) the value of 18 X 1010 Qmole-1 s-1 obtained for

Recently Wu et al (6] us~d a technique similar 1-hexene by Wu et al [6] and our value of to the one employed here namely the photooxidation 22 X 1010 Q mole-1 s-1 for 1-heptene both obtained of hydrocarbons in the presence of NOx in air at 1 atshy by similar methods are consistent with the trend obshymosphere and 303 K middotunder the assumption that OH served by Wu et al (6] of an increase in rate constant was the principal species depleting the hydrocarbon with the larger molecular size of the alkene they obtained rate constants relative to cis-2-butene As mentioned above the higher straight chain and for several of the higher alkenes Using a value of cyclic alkenes are assumed to be important precursors 31 X 1010 Qmole-I s-1 for OH+ ds-2-butene at of the organic content of ambient aerosols found in 303 K [24] one obtains a value of 38 X 1010 mole-I polluted air [9 10] The rapid rate of reaction of OH s- 1 for cyclohexene at 303 K from the data of Wu et with these species ensures that in addition to 0 3-al [6] This value is in reasonable agreement with our alkene reactions OH attack will be an important reacshyvalue of (47 plusmn 09) X 1010 Qmole-I s-1 at 305 K tion pathway in real and simulated atmospheres posshy

Substitution of a methyl group for one of the hyshy sibly yielding multifunctional oxygenated species in drogen atoms in cyclohexene increases the rate conshy the aerosol phase (9 33] stant slightly since we obtain a value of Assuming an ambient OH concentration of 5 X 106 (58 plusmn 12) X 1010 Q mole-1 s-1 for 1-methylcycloshy radicals cm-3 (18 2728] the atmospheric halfclives hexene This is expected by analogy with the similar t112 =middot0693koH+RH [OH] based solely on reaction

middot 417

99

l

Volume 44 number 3 CHEIICAL PHYSICS LETTERS 15 December 1976

[

with OH are (in hours) 2 3-dimethylbutane 75 2 2 3-crimcthylbutanc 100 cyclohexcne 049 1-methylcyclohexcne 039 and 1-heptene 10 In the case of the alkenes the actual half-lives in the atmosshyphere are expected to be significantly less since 0 3 reacts with the alkenes at significant rates [934]

Acknowledgement

The authors gratefully acknowledge the assistance of FR Burleson in carrying out the gas chromato-

graphic analyses WD Long for valuable assistance in conducting the chamber experiments and Dr R Atkinson for helpful comments concerning this manushyscript This work was supported in part by the California Air Resources Board (ARB Contract No 5-385)

References

[ l] GJ Doyle AC Lloyd KR Darnall AM Winer and JN Pitts Jr Environ Sci Technol 9 (1975) 237

[2] AC Lloyd KR Darnall AM Winer and JN Pitts Jr J Phys Chem 80 (1976) 789

(3) AM Winer AC Lloyd KR Darnall and JN Pitts Jr J Phys Chem 80 (1976) 1635

[4 J R Atkinson KR Darnall AM Winer and JN Pitts Jr Tropospheric Reactivity of Halocarbons Final Report to EI DuPont de Nemours amp Co Inc February l 1976

[5] AC Lloyd KR Darnall AM Winer and JN Pitts Jr Chem Phys Letters 42 ( 1976) 205

[6] CH Wu SM Japar and II Niki J Environ Sci HealthshyEnviron Sci Eng A11 (1976) 19 l

(7] R Atkinson KR Darnall AC Lloyd AM Winer and JN Pitts Jr Accounts Chem Res submitted for publication (1976)

[8] D Grosjean National Academy of Sciences Report (1976)

(9] WE Schwartz PW Jones CJ Riggle and DF Miller Chemical Characterization of Model Aerosols Office of Research and Development US Environmental Proshytection Agency EPA-6503-74-011 August 1974

(10] H Niki EE Daby and B Weinstock Photochemical Smog and Ozone Reactions Advances in Chemistry Series No 113 (American Chemical Society Washington 1972) p 16

I11] KL Demerjian JA Kerr and J G Calvert in Advances in enviromi1ental science and technology Vol 4 eds JN Pitts Jr and RL Metcalr(Wiley-lnterscience New York 1974) p 1

418

[12] B Weinstock and TY Chang Tcllus 26 (1974) 108 [13) TA Hecht JH Seinfeld and MC Dodge Environ Sci

Technol 8 (1974) 327 [14] R Graham and BJ Tyler J Chem Soc Faraday Trans

I 68 (1972) 683 (15] WH Chan RJ Nordscrom JG Calvert and JN Shaw

Chem Phys Letters 37 (1976) 441 Environ Sci Techshynol 10 (1976) 674

(16) L Zafontc PL Rieger and JR Holmes Some Aspects of the Atmospheric Chemistry of Nitrous Acid presented at the 1975 Pacific Conference on Chemistry and pecshytroscopy Los Angeles CA October 28-30 1975

(17] JM McAfce AM Winer and JN Pitts Jr unpublished results (1974)

(18] CC Wang LI Davis Jr C11 Wu S Japar II Niki and B Weinstock Science 189 (1975) 797

(19) H Niki and B Weinstock Environmental Protection Agency Seminar Washington DC February 1975

[20] R Simonaitis and J Heicklen J Phys Chem 78 ( 1974) 653 80 (1976) 1

(21) RA Cox and RG Derwent J Photochem 4 (1975) 139 (22] H Niki P Meker C Savage and L Breitenbach 12th

Informal Photochemistry Conference National Bureau of Standards Gaithersburg MD June 28-July 2 1976

(23) J Heicklen 12th Informal Photochemistry Conference National Bureau of Standards Gaithersburg MD June 28-July 2 1976

[24) R Atkinson and JN Pitts Jr J Chem Phys 63 (1975) 3591

(25) H Levy 11 in Advances in photochemistry Vol 9 eds JN Pitts Jr GS Hammond and K Gollnick (VileyshyInterscience New York 1974) p 1

[26] JG Calvert Environ Sci Technol 10 (1976) 256 [27] D Perner DH Ehhalt HW Patz U Platt EP Roth

and A Volz OH Radicals in the Lower Troposphere 12th International Symposium on Free Radicals Laguna BeachCAJanuary 4-9 1976

[28] DD Davis T McGee and W Heaps Direct Tropospheric OH Radical Measurements Via an Aircraft Platform Laser Induced Fluorescence 12th International Symposhysium on Free Radicals Laguna Beach CA January 4-9 1976

(29] NR Greiner J Chem Phys 53 (1970) 1070 (30] JA Kerr and AF Trotman-Dickenson in Handbook

of Chemistry and Physics 57th Ed (The Chemical Rubber Company Cleveland 1976)

(31] JS Gaffney R Atkinson and JN Pitts Jr J Arn Chem Soc 97 (l 975) 5049

(32) JT Herron and RE Huie J Phys Chem Ref Data 2 (1973) 467

[33] WPL Carter KR Darnall AC Lloyd AM Winer and JN Pitts Jr 12th Informal Photochemistry Confershyence Gaithersburg MD June 28-July 2 1976

(34] JN Pitts Jr and BJ Finlayson Angew Chem Intern Ed14 (1975) 1 BJ Finlayson and JN Pitts Jr Science 191 (1976) 111

100

APPENDIX B

i Inorganic and Hydrocarbon Data for

AGC Runs 216 through 223

l Jl

[

l

101

AGC-216-l S02 CRY C GLASS CHA~SER

1976 JUL 27

OiRK FROM 1200 TO 1545 HIE TE~PERATURES ~ERE TAiltE~ FRC~ IHE LCG __ MOK__ FROM 16QQ__ Cgt ---middot-middotmiddotmiddotmiddotmiddot----middot- ---------middotmiddotmiddotmiddot-middotmiddotbull- TH~ TEMPERATURE~ WE~E TAK~N )R6MTHE iOMPUTER REicoui TECO ~3 SAMPLING RATE 1161 HLMlN

ClCCtlt __ ELMSpound0 ___ TSL _Rl HUI _____ SC2 ----middot--bullmiddot-middot ----middotmiddotmiddot-----middot-middotmiddotmiddotmiddotmiddot-------middot-middot-------middot-middot-middotmiddotmiddot-middot-middotmiddot-middot--middot TIME TIMEl~lNI IOEG Cl 11 (~PHI

bull1200 bullbullo 29-4bullbull bull---bullbullbull1bullo---middotbullo3bull59middot--bull bullbull-- bullbull--bullbullbull --bullbull-bull----bull-middotbull---- bullbullbullbull-bull------bullbullbullbullbullmiddot------ -bullbull bullbullbull-bull-bullbull-bullbullbullbull bull bull bull-bullbullORbullbullbullbullbull-bullbullbullbullbullbull~bullbullbull bullO O O bullbull-

1215 15 294 00 C353 _____ 1230 _______30_ ___22r__ aa ___ c~s_9 ____bull ________________________________________________________ _

124s 45 2ltJ6 Jo aJss 1300 60 296 2s c355 1315 75 29 ~--- _________2_o _C ~ 344 ---middot--- ______________________ __________ - middot-middotbull--middot ---------middot------middot--middot - --middot-middotmiddot - middot--middotmiddot 1330 JO 294 20 C357 1345 105 296 20 0344

____ 14_0_0 _____ 1o ____ J9 bull 7 __z_o ___ o_342__________________________ __________________________________________ ______ __ 1415 135 297 15 C344 1430 1sc 297 1s c34q

-- _ --~_lt45__ middot--- J6_5_ _______29_7_ --middotbull-middotmiddot2bull Q_______QU5____ middotmiddotmiddotmiddotmiddotmiddot---1500 160 297 1S C330 1515 195 299 15 C338

_______1530 ____ 210 ______3c bullo _1s____c_32g middot-----middotmiddotmiddotmiddot-1s4 22s 267 15 c331 1600 240 middotmiddotmiddotmiddotmiddot~ bullbullbullbullbullbullbullbullbullbullbullbull

l615______ 255___ _ _bullo~~__________

NO DATA TAKE~ ---- CATA OISCARCED QUESTIONABLE QATA

____________________ __ __ -middot

102

AGC-216-2 SC2 CRY GLASS CHA~eER 1976 JUL 27-2~

CLCCK El~PSfC TSl REL rUM S02 1111pound middotT111emiddot(M1~middotmiddot1oec cT (g (PPII

middoti63amiddotmiddot- -210 -middot33~middot4middot--middot--1--smiddot c3f3-middotmiddot---middot-- - middot 1646 286bull 334 15 C315

--middotmiddotmiddot- po1 middot--middot-middot301_ ____ 334 middotmiddotmiddotmiddotmiddotmiddotmiddot--middotl bull5 middot-middot (320 ___ middot----- _ middotmiddot--middot---- ----middot--bull-middotmiddot----middot-middot-middot middotmiddotbullbullmiddotmiddotmiddot-middot--middot-------middot--l7l6 316 335 15 C10 1731 331 335 l5 C315

-middotmiddot middot- _1746 346 _ 3~_5_ --middotmiddot 15C 3l4___ -------middot---middotmiddotmiddot---- _____ __ 1800 360 337 15 C321 1a1s 375 335 1s 0313

_ JSJO __ 390_335___1_5 C03______ middotmiddot-----------1845 405 335 15 C303

bull1900 420 334 20 0305 _______ middot1915___ middot-- 4 3_5bull middot-middot 3 3 2 ---middot- 2 o __ Cbull 309 -----middot----middotmiddotmiddotmiddot

193C 450bull 33 2 20 C299 1945 465 331 20 0297 2000 480 332 20 C300

- middot 2015- --middotmiddot45middotmiddotmiddotmiddot-- 334 - - 20 C 310 2030 510 335 20 0296 2045 525 337 20 C3072ico middot 540 middot3jmiddot----i~o-middotmiddotc299-middot-middot----bullmiddot-211s 555 338 20 0294

__ 21Jo ____ 5_7c_ __ 33 1 20 _o 300________

~~

il middot 2145 585 338 middot 20 0296J 1middot 2200 600 337 20 0296 2215 615 33 7 20 0296

~-middot 223c 630- middot 33 1 2 o a294 middot 1 C 2245 645 337 20 0294

2300 660 337 20 C291_____middot1 -------middot--------------middotmiddot------middot 2315 675 337 20 0237

C 2330 690 337 20 0293 2345 705 33~~middot-middot 20 0291 --------middotmiddot-middot-----------------middot-middot ---middot---- --- middot- middotmiddot o 120 334 2 a o2as

( 15 735 334 20 0268

(

103

t bull middotmiddotmiddotmiddot--

AGC-216-3 S02 CRY L GLASS CHAMlgtER

1976 JUL 2E

c1oc_~ ELAPSEC rs1 l=L HU S02 Tl~E Tl~~ibull~l IDEG Cl Ii) (PPMI

30 750 339 20 C287 45 765 346 zo 0278

- _lOQ_ middot- _]so ~sr 2 O C ~Obull middot-middot-middot-bullmiddot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot----middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middot-middotmiddot-middot-middotmiddotmiddotmiddot-middot---- middot-middot-middot- middotmiddot-middotmiddot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot------115 7~5 354 15 C276 130 810 354 l 5 C2ol

J45 sect25 35bull1_ 1 _CZJ7 middotmiddot--middotmiddotmiddot -middot--bullmiddotmiddot-middotmiddotmiddotmiddotmiddot-bullmiddotmiddot---middotmiddot-bull---middotmiddotmiddot--middot -middotmiddotmiddotmiddotmiddot --------- --bullmiddotmiddot--- middot-200 840 354 15 C277

l 215 855 356 15 C277 ___ _230 870 _356 _ l5 _C bull ZH ---middotmiddot-middotmiddotmiddotmiddotmiddot---- ----middotmiddot-------------middot--

245 8S5 354 15 C275f 300 900 356 15 C27J

_ 315 915 bullbull~5bull4 bullmiddotbull-middotmiddotmiddotmiddot-middots middotmiddotmiddot- cZ69____---middotmiddotmiddotmiddot-middot-middotmiddot -------- --middotmiddot--middotmiddot--middot----- -middotmiddotmiddot-330 93() 356 15 C271 345 945 354 zo 0271

_ 400 __96Q___ 3_j4 --middotmiddot--bulll5 C2l_________________________________ 415 975 354 20 C250 430 990 354 20 C264 445 1005 353 20 C264 500 1020-~ 354 20 C260 515 1035 353 20 C250 530 1050 353 20 0254 -----middotmiddot--------middot-middot------middot ------middot-middot-middot-545 1065 354 20 C250 6~C 1080 35l 20 0252 615 lOC5 bull350 20 C49 middotmiddot-middot-middot-- middotmiddotmiddot-middotmiddot-middotmiddotmiddotmiddot-_ 630 1110 350 20 0248

C 645 1125 350 zo 0249 ____100 1140 bull_3s o middot--middotmiddotmiddotmiddotmiddot zo__o 2t9 middot-bull-bullmiddotmiddot--middotmiddot--------middotmiddot------------middot----middot---middotmiddotmiddotmiddotmiddot ______

715 1155 350 20 0243 C 730 1170 350 20 024

745 118S 350 25 C239 800 1200 middotmiddot37 25 C233

C 815 1215 347 25 0238

830 l 23() middot- 34 5 _ 2 5 middot-middotmiddot 0 236 ----middot--middot----middot 845 124) 345 25 C241

( 930 1260 347 25 C237 9J5 1275 4 bull7 2bull ~23) 930 129J 347 25 0236

( 945 13C5 347 25 C231 middotmiddotmiddot-~middotmiddotmiddotmiddot l Obull C l 3 0 bull 3 4 7 2 5 C 23 3 middotmiddot- middotmiddot-middot- __ middot-middotmiddotmiddotmiddot-middot- middotmiddot- -middotmiddot bull middot-bullmiddot---bull middot-middot--middot middotmiddot bull _____ -middot middot-middotmiddotmiddotmiddot-- -middot _ _ -

1015 1335 34 7 25 C232 1030 us 34 1 2s c221 1045 131gt5 34 7 2bull~ C225 1100 13eo 349 2s c221 lllS 1395 349 2s c22c

--middotmiddotmiddotmiddotmiddotU30 ltLO 349 z- _C2l6 1145 1475 347 25 C215

1

104

AGC-217-1 S02 LIGHT ORY7 GLASS CtlAHBER

1976 JUL 30 CONTINUATION Of AGC-216 LIGHTLIGHTS ON JUL 29 AT COO ~TENSITY 1ooi OATA FOR 216-LIGHT USELESS DUE TO FAULTY OACS CHANNEL S02 STRIP CHiRT DATA USEO FOR THIS RUN 25 HL CF S02 INJECTED HITH 90 ML Of NZ ON JULY 30 AT 1003 OASIBI 1212 ON CHAMBER AT ABOUT 1534 TO 1537 ON JULY 30 ANO FROM 1201 TO

1230 CN JULY 31 SAMPLING RATES tHLHINI TECO 43 - 1161 DASIBI 1212 - 600

middot~ CLOCK ELAPSED OZCNE TSl REL HUH SC2 ~

ii TIME TIHEIMINI tPPH) IOEG Cl Ill (PPM)

l 1130 -15 bullbullbullbullbullbull bullbullbullbullbullbull o3ze 1145 o bullbullbullbullbullbull 346 220 0321 1200 15 351 215 0315 1215 30 354 195 C310

l 1230 45 bullbullbullbullbullbull 356 18J 0307 1245 60 bullbullbullbullbullbull 357 17Q 0305 1300 75 bullbullbullbullbullbull 360 165 0301 1315 90 bullbullbullbullbullbull 360 155 0296

l 1330 lC5 bull bullbullbullbullbullbull- 36l 145 0 292 1345 120 bullbullbullbullbullbull 364 130 C290 1400 135 bullbullbullbullbullbull 366 110 0286

1415 150 366 _ll5 0282 1430 165 bullbullbullbullbullbull 365 115 027~ 1445 180 bullbullbullbullbullbull 365 110 021 1500 195 362 11C 0273 1515 210 36l 130 0269 1530 225 0519 360 140 0265

~[ ~~ i~~-- ~~ ~ ~~ - middotmiddotmiddotmiddot-- -middotmiddotmiddotmiddot- --middot - -middot middotmiddotmiddot-middot--------middot

sect ~ 1615 270 bullbullbullbullbullbull 357 160 0255

l ____1630 _______2s5 --bullbullbull _____ 35 bull7__Jo 5middot-middot--middotmiddot-cmiddot253middotmiddotmiddotmiddotmiddotmiddotmiddot--middot

1645 300 bullbullbullbullbullbull 357 110 025C l7CO 315 357 170 025C

___ 111s___330 __ bullbullbullbullbullbull __35 bull 7 -middot--- 1a bullomiddotmiddot--middotmiddotmiddotmiddot0241 middotmiddot--middot--middotmiddotmiddot----middot---middot-middot--middotbullmiddotmiddotmiddotmiddot-middot-middot middot-------------1130 345 357 190 0245 1745 360 bullbullbullbullbullbull 356 20c 0242

___a_oo_~--middotmiddot--3_15_ __bull___S_bullt____ 21 o -bullmiddot _o 24c middot-middot--middotmiddotmiddotmiddotmiddot--------middotmiddot----------------I 1815 390 bullbullbullbullbullbull 354 225 0231 1 1830 4C5 357 21~ 0236

___J_B4~ middot- ____420-~bullbull middot---middot _3l bull l___19 0 0 235 1900 435 bullbullbullbullbullbull 364 170 0233

) 1915 450 bullbullbullbullbullbull 365 160 0230

i 1 _ ____19 3 0 __ ---middotmiddotmiddot 465 bull bull bull middotmiddotmiddotmiddot--- 3 6 bull 6 -middot--1 5 bull 5 _ C bull 2 2 7 middotmiddot-middot-middot--- --middotmiddotmiddot --middot -middot - ------

1~45 480 366 145 C225 2000 495 366 150 0222

____2015 ___middot _i 10__ bullbull_____36o6_- JS_ Q_middotmiddotmiddot 0 220 2030 525 bullbullbull$bullbull 366 155 021ar 2045 540 366 155 0216 ___2100________ssbull_____ ---middot6J__ __1 s s _o 213 2115 570 bullbullbullbullbullbull 3os 165 c211 2130 585 bullbullbullbullbullbull 365 110 c210 2145 600 bull 365 175 0208

J --middotmiddot-middot2200 middotmiddotmiddot-middot--615middot-middotmiddotmiddotbullbullbull bull--middotmiddot--middotmiddot-364----middotmiddot iso middot o206

middotI 2215 630 bullbullbullbullbullbull 364 180 0204 _ -middotmiddot----middotmiddot2230 645__bullbullmiddotmiddotbullmiddotmiddot-middot--middotmiddotmiddot 31i bull 2_ 19 0203

2245 660 bullbullbullbullbullbull 364 195 c200

i1

zjo_ci ___---1s bullbullbullbull 362---middotmiddotiomiddotmiddotomiddotmiddotmiddot omiddot196 -r l 2315 690 bullbullbullbullbullbullbull 362 205 0195middotbull 2330 705 bullbullbullbullbullbullbull 36l 215 0193g 2345middot 720 bullbullbull ~ bullbullbull 36l 225 0190l

bullbullbullbullbullbull NO DATA TAKEN ---- DATA OISCARO~D QUESTlONAuLE DATA r ~ 1~

IT Q

~

105 F

AGC-217-2 S02 LIGHT DRY GLASS CHAMBER 1976 JUL 31

CLOCK ELAPSED OlONE TSl REL HUM S02 Tl~E TIMEIMNl IPPMI IDEG Cl 11 IPPMI

1 0 735 3bO 22C 0188 15 750 3bO 220 C185

_ 30 ---middot-middotmiddot--765__ 358 -middot-middotmiddot 220 0183 45 780 358 220 o1a1[ 100 795 bullbullbullbullbullbull 358 225 0180

115 810_bull___-middotmiddotmiddot-middotmiddot-middot 35 bull8 middot-middot-middot-middot225 0177

l 130 825 bullbullbullbullbullbull 357 225 0175

( 145 840 357 225 0112 200 855 bull _357_ ___ zzs c111

215 870 356 225 0169

f

I ( 230 885 35b 230 0168

245 coobull 356 230 c166 middot300 915 356 230 0163

C 315 930 356 230 C160 330 945 35bull6 230 C160 345 960 bullbullbullbullbullbull 356 230 0158 400 975 bullbullbullbullbullbull 354 230 0156

_415 _990 ~5~6 230 0154 430 10C5 356 235 0152 445 1020 354 235 C150

L -middot----middot-middot500__1035 __ -middotmiddot 354_ _ ___ 23 5 0148 515 1050 354 235 C147

( 530 1065 bullbullbullbullbullbull 354 235 0145 545 1000 354 235 0144 600 10lt5 354 235 C142 615 1110 354 235 0140

___630 ____ 1125 bull - ___ 35bull 4_ ___ 24o013lt 645 1140 354 240 0137 100 1155 bullbullbullbullbullbull 354 24o 0135

--- _715 1170bull 35 24-0 0134 730 1185 354 240 0133

l 745 1200 354 240 0131 800 121~bull -middot-middot____35~---middotmiddotmiddotmiddot24bull C_ _O 129 815 1230 354 240 0128 830 1245 354 245 0121

-middotmiddot----845 1260~ 34 245 0-126 9CO 1275 354 245 0124

( 915 1290 354 245 0122 -middot--middot_930___1305_ -middotmiddotmiddot)54___ 245 c120

945 1320 bullbullbullbullbullbull 354 245 011a ( 1000 1335 354 245 0116

________1015_ __ _1350 354 240 0115 1030 1365 middot-middot--356 240 0113 1045 13130 354 24C 0112 1100 1395 354 240 0111 1115 1410 354 240 0109

- middotmiddot--middot-~--- middotmiddotmiddotmiddotmiddotmiddot-middot--middotmiddot-lDO 1425 354 240 0 107

l 1145 1440 356 240 0 bull 106bullbull12cc 14gt5 bull bullbullbullbullbullbull 3gt6 40 0105 1215 14 70 0504 354 240 0 103

middotmiddotmiddotmiddot-middot- middot---middot-------middot--middotmiddotmiddot --middot middotmiddot-middotmiddot middot-middotmiddotmiddot-middotmiddotmiddot

__ middotmiddot-middot---------middotmiddotmiddotmiddot_ - ___ middotmiddotmiddotmiddotmiddot

----------middot--middot--middot- middot--middotmiddotmiddot--middotmiddotmiddotmiddotmiddotmiddot-middotmiddot -middot---

middotmiddotmiddot--middot middotmiddotmiddot-middotmiddot-middot--middotmiddotmiddotmiddotmiddot-middotmiddot-----

bullbullbullbullbullbull NO OATA TAKEN ---- DATA DISCARDED QU~STIUNABLE UATA

106

AGC-218-1 S02 40t RH GL~SS CHAMBER 1976 AUG 4

DARK AT 0850 FC-12 ANO S02 WERE INJECTED INTQ THE CH4~8ER THE OASIBI 1212 WAS CN THE CHA~~ER F~OM 1651 TO l65S BRADY 1296 CALISAATION 1Q7~ JUL 16 SAMPLING RATES IMLMINI TECO 43 - 1~33 CASIS 1212 - 600

CLCC~ ELAJSEO czc~~ TSl R~L HU~ 50 Tin TIMEl~Nl (P~gtI DEG Cl a1 PPM)

1100 c bull~~ 334 4J ~-377 1105 5 ~ 334 485 l3Sl 1110 10 bullbullbullbullbullbull ~34 485 C3BJ 1115 15 middotmiddotbullcent 334 460 0379 1120 C bullbullbull 334 475 0374 1125 2~ bullbullbullbullbullbull 33S ~70 0375 1130 30 middotmiddot-~middotmiddot 332 475 0371 1135 35 334 47o o372 1140 40 bull bullbullbullbullbullbull 334 65 C370r J 1145 45 bullbullbullbullbullbull 334 4~c 0111l i 1150 50 middotbull 334 465 03t9 1155 55 334 16 5 0364 1200 60 - 334 45 5 0366 1205 65 bull 335 450 036rl ~ 1210 70 ~bull~ ~)5 ~5J_ 035~

1215 7~~ bullbullbull 335 450 C162 1220 so bullbullbullbullbullbull 334 450 o~

di 1225 85 334 440 0362

iz3d o ~~bullbull 3J4 44o o3e2 1235 95 334 445 C355 1240 100 332 45 0355 middot--middot-middot---middot--middotbull- middotmiddotmiddot-middot --middot - _____ _ f24middot5middot 10smiddot~middot Jl 332 4middot4~ 6 middoto-353-middot

~ i C 12so 110 332 4~o o353 125 5 115 i__ 4 ) _ 0 bull 352_ _--bull-middot __ ----middotmiddot-middot __ middot-- _____ - _ ___13()0 __ 120-middot-- 332 435 0354

J 1305 125 334 430 0351i I J31 o __ _ uo __ ~bull-- u-~--middot middot-middot-42 bull0 o- 1ssmiddot--middotmiddot-middot-middot- ----________----middot- ---middot __

1315 135 334 420 0348 bull ( 1320 140 334 420 0348i l32S 145 -middot_ _3 bull~--4t5 Q352

1330 150 334 41middot) 037 1335 155 335 420 0344

1340 160 335 420 0344 middot 1345 -165 uu 3ibull 4 - middot41smiddot cl44

C 1350 170 ~bull 335 415 0343 1355 175 335 420 C343 1400 180 335 415 C341 1405 185 337 405 0341 1410 190 33 bull 5 400 0343 1415 liS bullbullbullbullbullbull 335 41C 0340 1420 2cc bullbullbullbullbullbull 337 41o 0331 1425 2cs bullbullbullbullbullbull 337 405 oJe 1430 210 bullbullbullbullbullbull 334 410 o33e 1435 215 33l 42v 0336 1440 220 bullbullbullbullbullbull 317 415 C]36 1445 225 middotmiddotmiddotmiddotmiddot~ 335 45 0332

ti~tmiddot -g 1450 230 bt~ 337 41 5 c~32

1455 2 35 33 7 bullbull 0 o 13cmiddotmiddotmiddotmiddot~ ~ 1500 240 33 7 42) 0330

$C t-kOt~ ~ 1505 745 H 7 42 D 0330

bull~ 11C f ~ () D~ TJ T ~r EI ---- ChT~ orsrA~ncn 0UST l1~111c [)TA ~ 4

J 1(

i[ i l bull1

~ ~ Imiddot

middoti_ ~

107

I

il ~ ij

1 i ii l

Ir

~ 11

ij

Ibull ~

J ~ l

j (

) AtC-21S-2 502 401 RHT CLASS CHAMBER

1976 AUG 4

i i

CLOCK ~LAP$) JlC TS l EL rIJ~ S72 Tl bullE TlEPlll I I P1 l lDEG CI (1) I PP~ I

1510 250 middot~ 337 415 o 32~ 1515 255 cie-(wt 337 t~ 0 032S 1520 2t) 337 420 0PI 152 5 265 bulltI 3l 7 42 1 I~bull)~ 1530 2 7 C=it~bull 334 41 5 0327

bull 1-tit~o

middot~

1535 27 D5 420 bulll 324 1540 middot2cu 335 42 C32C 1545 285 middot=~ 334 430 C322 155C 29J t rLI 334 430 0122 1555 295 o CJ3 334 4t 5 c 320 1600 3CO bull Iii- 334 420 0322 1605 3C5 emiddotbull= 334 42o J3lfl 1610 310 wc 33 4 425 0319 1615 315 ti 332 420 0316 160 32C 334 Z5 0 bull 114 deg 1625 325 -0laquot 33 t 430 0315 1630 330 335 430 ons~ li35 335 cent 33 5 435 0310 middotmiddot-- ____ -- 1640 340 $Qt 335 44) 0313

( 1645 345 33 5 435 o 311 1650 335 440 0309--~-- ~~~~-----middot~-~~-~-~-~--- ---middotmiddotmiddotmiddotmiddotmiddot-middotmiddotbullmiddot-- middotmiddotmiddot--middotmiddotmiddotmiddot--middot-middotmiddotmiddot-middotmiddotmiddotmiddotmiddotmiddot --- middot-middot-- middotmiddotmiddotmiddot--bullmiddot--middotmiddot-middot--middot middot-bull------middotmiddotmiddotmiddotmiddot-- ---middot-middotmiddotmiddotmiddotfo55 355 bull-c-t-t-it 33 r 43 5 C313 1700 360 $0~IZ 335 45 C305 l705 365 338 4 5 0308bullbull ---- middot-- middotmiddotbull---middot-middotmiddotmiddotmiddotmiddot--middot-- l7l0 370 ~~emiddot i8 440 CJC8 1715 3 75 bull-tt~iU 337 44J C310 1720_ 380 bull ie~~bull -~3 8 35 J303 - middotmiddotmiddotmiddotmiddotmiddotmiddotbull-middot-middotmiddotmiddotmiddotmiddot middotmiddot-middot- middotbullmiddotmiddotmiddot-middotmiddotmiddotmiddotmiddotmiddot-middotmiddot1725 385 -tttr~ 33a 440 0308 1730 39J ~cent n a 440 0303 1735 395 izc 338 440 0 3)2 middot--middotmiddotmiddot middotmiddotmiddot- 1740 co VIOct- lt= 338 430 o 30 1745 40J (rfl$~bull 338 430 0302

OJei1()01750 410 33 I 430 029d middotmiddot--middotmiddot---middotmiddotmiddotmiddotmiddot--middotmiddotmiddot-middot-middot 1755 415 t 338 44) 0299

1800 420 bullti-it 333 43 5 0296 1805 425 i-t-7Icent 33 8 430 0299 middotgt l8U 4 3 I cent46 317 3 0 029 l Bl 6 436 c-oilaquo4t 337 430 0298 lil21 441 33 7 43 5 ( ~9 7

~tf(p ~

middotmiddotmiddot--middot-middotmiddotmiddot--middotmiddotmiddot--middot middotmiddot----middotmiddotmiddotmiddot----I B26 4d plusmn~ 337 430 o 2-7 1831 451 (-tilll- 337 415 0296 1836 456 tdcmiddotC n13 430 C291 --middot - -- 1341 461 t(I~ 33 7 435 0292 le46 466 bullt~tci 33e 435 o 292 1851 4 71 33_ 3 425 Oll Hi56 4 76 337 425 0291

1901 4 il I it-Otcbull 33 43C bull)2Rq1906 96 t~illtt 338 475 J217

_Clt-~4t1911 t91 l3 7 42) middot t~HJ 1916 bull c( bull ie--iJtll)ill6 4l1) 0187n ___ iil 111 [t 1 T el rbullNJ Crf fISCAP[E) QU~ 5 T t 1Jt-bl E 1)1 TA

108

AGC-218-3 SOZ 40l RH 7 GLASS CHAMSER

__1976_ AU( 4

CLOCK ElAPSED oz~~~ TSl qEL HUM S02 TIME TfME (lfrjf- I PP~I oeG c- -ii --middotmiddotcigtTmiddot----

(

1lt121 sci-middot umiddotbullmiddotmiddotmiddotmiddotmiddotmiddot-- 3fmiddots~ 425 o~io6 1926 5~6 bullbullmiddot 338 42-0 0285

______1931_____511 ~-~- 33 1_ 41 s o_2s5___ 1936 516 337 425 ozss

( 1941 521 337 415 021a 1946 526 337 415 0282 19si ~31 bullbullbullbullbullbull 33i middotmiddot425 021a 1956 536 337 420 0278 2001 541 335 420 0283 200middot6 5t6 -middotubullu-middot----33s- 12s -0211 - middot middotmiddotmiddot middot ----------

( 2011 551 bullbullbullbullbullbull 335 420 0278 2016 556 334 415 0277 2021 561 334 425 0277

( 2026 566 bullbullbullbullbullbull 334 425 0276 2031 571 bullbullbullbullbullbull 33~-- 420 0278

middot-middotmiddot- 2036 576~ UU 334 425 0275 ( 2041 581 middotmiddotmiddotmiddotmiddot~ 335 420 0274

2046 586 335 420 0275 205( 591 337 430 0211

C 2056 596 335 425 0211 2101 601 337 --~2s 0210 2106 606- -middot~bullbulli 3~s 430 0211

C 2111 611- 337 425 0269 2116 616__ = 337 425 0270rmiddotmiddot- 2121 621 ibullbullbullibull 33~7 436 0210

C 2126 626 c 337 420 0270 -l 2131 631 ~ 337 __ 430 0210

2136 636 337 425 0267 C 2141 middot 641 bull 337- 425 0266

2146 646 337 430 0265 2151 651 337 425 0265

C 2156 656 middotmiddotmiddot~middotmiddot 335 425 0269 2201 661 33J__ 431) 0266 2206 666 335 425 0263

( 2211 671 335 425 0265 2216 676 337 430 264 2221 681 335 425 C261

( 2226 686 33S 435 0263 2231 691 bull h 335 430 Q2(3 2236 696 335 425 0259

( 2241 701 335 430 0256 2246 706 335 425 0258 2251 711 335 425 0255 2256 716 335 430 0256

OU~STICNA6LE DATA

109

AGC-ZIR-~ ~02 401 RH GLASS CHA~t1Fl-1976 AllG 4-5

AOO 660 MIN TO ELAPSEO llM

CLCCK fL~PSEe TS l l~L HJ~ Si~bull- T -IF Tl~cllO ING CI (o (r~M)

22C6 6 33S 4l5 C263 22tl 11 335 425 C265 2216 16 ~37 43i) i)264 2221 21 335 12 5 Obl 2226 71 D5 435 C26~ 2211 31 ns 430 0263 2236 36 335 425 i)5G 241 41 335 430 C256 24( 46 335 2 _5 middot 253 51 51 33 5 42S C 25 256 56 -3 ~ 43(1 0256 230 t 61 335 425 C254 2306 66 35 42 C25S 2311 71 33 5 430 C 50 2316 76 337 425 CZSv 231 81 33S 43) C 5) 2326 86 33gt 43J 0252 2331 91 334 420 0249 233b 96 335 430 C z5J

middotI 2341 1C1 ~35 425 C252 2_34~ 1C6 335 420 obull45 2351 111 33 middot-middotmiddot 42 5 G248 2356 116 334 420 0248

1 l21 334 425 0247 6 126 334 42~5 C~250

11 131 334 420 0244 16 l36 334 __ 425 c 245 21 141 334 42middoto 0244

26 146 334 420 0244 31 151 332 42o 0242 36 156 334 415 0242 41 161 334 425 0241

i 46 161 132 42 o G2391i 51 171 334 430 ~ 239-~

i 5b 176 332 430 oz3gmiddot 10 l lBt i 2 425 023ltgtt 106 186 332 435 C236

I -~ -~ 111 l SI 332 431) 0238 ~ ~ 116 l c6 33l 431) IJ2 1l 201 332 435 C23gt

126 2C6 332 430 a 233 I 131 211 3 2 435 0232

f 136 216 3 3 2 430 0233 p 14 l 221 3) 425 0233 I 146 226- 312 435 C233

I 151 23i 33 l 425 c22s

C (

~ ti

) ~ I ~i 6 236 332 4)5 cna 201 bull1 3 3 I 430 C bull J )

f 20lt 246 33 l 4 s C2 n E 211 251 3 3 l 4gt0 0231)]

Iimiddot~- ~ll QtTh TAK f1 fl AT

~ -- 1 l middotmiddot1

I 1

middotmiddotmiddotmiddot--middot-middotmiddotmiddotmiddotmiddotmiddotmiddot --middot-middotmiddot--middot-middot ----

_ - middot- --middot---- middotmiddot-middot-middotbullbullmiddotmiddot-middot -middot--- ---

--middot bullbullbullbullmiddot bull-bullbullbullbullbullbullbull M bull-bull 0 middot---middot-middotmiddot middotmiddot----middotmiddot - -

- --middot---middot- -- -~middotmiddotmiddotmiddot-middot--middot-middot middotmiddot--middot

____ ___ --- middotmiddotmiddotbullbullmiddotmiddot----- __ middotmiddotmiddot-middotmiddotmiddot -~ ~-

n1 s1or~o

110

AGC-218-5 S02 4Ct RH Gl ASS CHA~lrn lH6 lllJG 5

AOO 6amp0 HIN TO ELAPSED TtME

ClCCK l~llSFt 1$1 REL HiPl SO TIME TIMEl~lNl ID~G Cl Ill IPPM1

216 256 331 430 0211 221 u1 331 4-L~ c2n 226 ~66 33o 43~ C27 231 211 JJo 44o 022s 23~ 276 3l0 44S C28 241 281 330 435 C26 246 266 330 44 5 C2Z5 251 291middot 330 43s o22~ 256 296 33o 415 c23

middot301 301 bull3middot3omiddotmiddot---middot40 022s 3C6 306 328 435 0225 311 311 328 445 C226 316 316 32 1middotmiddot middot -4middot3smiddot c222

( 321 321 32S 440 C222 326_______ 36 32_ a______ 43 bull s__ c 221 middotmiddot---middot--bullmiddot-middotmiddotmiddot ___ __________ ----------middot-middotmiddotmiddot-middot 331 331 328 430 023 336 336 32S 435 C220

34134-1 e a~middotbull~- fl 9 0 211 346 346 3Z8 440 0220 351 351 32s 435 c220

1 ~t t---ttt-middot -t~g ____ --middotmiddotmiddot -middot-middot-middot-middot middotmiddot- middotmiddotmiddotmiddotmiddotmiddotmiddot--middot middotmiddotmiddotmiddotmiddot-middot--middot---middot middot--middotmiddotmiddot-middot- ---middot-bullbull _ 406 366 327 440 0216 411 311 n1 445 o_215 __ __ --------middot- middot--middot--- 416 376 326-middotmiddotmiddotmiddotmiddotmiddot43s-middot C211

( 421 381 327 445 C215 421 3~6 _32 bull6___~i1Lcn middot- ______ middotmiddotmiddot--middot--middotmiddot middot-middot--middotmiddot 4Jl 391 326 445 C211 436 396 32s 44o 0211 4 1l 401 326 450 0210 446 ~06 324 44o u211 451 411 34 45o 0213

_456_ 416 324 445 _C210 501 middotmiddot21 323 455 c211 506 426 323 445 c210 511 431 323 55 0204 516 436 323 44S 0209 s21 441 323 455 c210 526 _446 33 445 C208 531 451 3 3 455 003 536 456 323 445 0204 541 461 322 4S5 c20~ 546 466 322 445 C215 551 471 322 450 0206 556 476 316 4o 0210 601 481 316 450 020gt

C

606 4fl6 31 6 455 C zomiddotJ 611 491 316 5 ~ c2n 616 496 316 4tC on 621 501 316 455 C2J2

bullbull bullbull NO OAH T6KFN ---- ll 11T VJ ScAmiddot~~~u

111

AGC-218-6 S02 40l RH GLASS CHAIBER 1976 AUG 5

ADO 660 HIN TO ELAPSED TIME

CLCCK ELAPSED TSl REL HUM S02 TIME TIMEIM~) IOEG ti Ill (PPII

626 5C6 middot3f~6middot 46ci 0200 ( 631 s11 316 455 c2ao

636 516 316 45s c200 641 521 31~imiddot 4ampomiddot 019

( 646 526 315 45o 0199 651 531 316 455 0199 656 536 315middotmiddotmiddot 45S 0195

C 701 541 31a 45o 0191 706 546 319 45~5 C197 711 551 319 455 C115 716 556 320 45~ 0199 721 561 322 460 C197

566 323middotmiddotmiddotmiddotmiddotmiddot 45~5 C195- -middotmiddot - --middotmiddot--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot- ---- middotmiddot-middotmiddot-middot middot-middot-middotmiddotmiddot middot--726 ( 731 571 324 460 0194

736 5 76___32 bull middot-middot --4~-~~---middotmiddotmiddotc ~q_5 ______________ middot------middot-middotmiddot-middot--middot-middot-middot-- -- middotmiddotmiddotmiddotmiddotmiddot-middotmiddot-middotmiddot~--middotmiddotmiddot-~-middot-middotmiddot----- middotmiddotmiddot--- middotmiddotmiddot-----bullbulln-bullbull-middotmiddotmiddot -------middot-middot 741 581 3t4 455 0193

746 586 326 45o 012 751 591 327 455 0194 756 middotmiddot- middotmiddot-s96~-middot -- 32-amiddot- middotmiddot4smiddots middotmiddot middotc194 801 601 330 455 C193 806 606 33l 460 C191811 ------middotmiddotmiddot-middotmiddotmiddot-middotmiddot--middot----middotmiddot------middotmiddotmiddotmiddot-middot-middotmiddot----------middot- 611 33l 45bull 0 0171 ------middot-- middotmiddotmiddot-middot----------816 616 332 460 0191 821 621 332 455 0192

826 626 33--middot 460 o 183 C 831 631 334 455 C188

836 636 334 ____4S_o___Cl36 --middotmiddotbull---------841 641 -middotmiddot-middot-middot33 5 45 o o1ss

( 846 646 335 46 C137 851 651 335 455 CS6 856 656 335 40 0184

(

l

a ~ -

112

AGC-2ld-i s02 -~ r~ iliS5 (I--A~tl[f-

196 AUC ~

libulloHTS Cl 01CC 1nSlY lmiddotJOt lJ~ OA~JJI_ 12L r c~~ itmiddotE (Hit~t t~uG~j cic6 10 tll f-RC~ 1 Mi TJ S lf ftf-lt

Tt~ ~Ol~ fbull~0~ 1C~0 T2 l~Ji ~~~J TJ 113( ~2~1-~~C~ AU~ t VlOT--0110 s~tY 12s6 CAlt1 ~i11u- 1-h vl imiddot StPLllG RATES OL11) TcCU ~ -middot 123bull C~Slfl 12l - t()(

ccci- fL 0 )~middot) i Sl i l ht ~-it t-bullc r l -pound ( l 1imiddotc Cl 1 ~ ~~(

1 tti ~ C i t ( bull t ~ 1i1t ~) ~i cu

--bull-- -~ll __11 middot-- middot ~~) 5 ) -bull ~ __ S bull lmiddot~ __ _ gt le 1~J yen ~ ~s ~ss 1~1s~ 92l 21 ~bull~ 46C c11middotgt)c~~

S2C ~tbull 1 ~ ~ ~4 bull_ bull l ))(~-~

middot93 l 31 1 ~ _j_l bull bulltC Cl-bull 936 ~l 01 L

--------~ -~ ___ ______ 4_1 -1=i 1 5 0 l i 4t 41 tit~ 4 middot1 middotmiddot3 C -_ bull 1 i~l

( 951 roc -i 5~L 3 1 42 bull G ct 51 ~( - 3 f gt 41 i 0 1(_bull(

1)0 l c 1 ~centelaquo 4middot1 5 01X lOUc cc 15 ClL~ [011 7 l ~d~bullt~(c 3lt bull 7 41 bull -J16-t lOlt 76 it20 OltG t~~01gtt j4 9

102 l 81 (-ttI centicx 3i ~gt 01~2 iOU 8t i-uc~ ~2) C l 5t1oii -middot middotsf~- middotmiddot~~-~~- -----~-~ ~

)~bull- ~ l () middoto i5t1middot i03amp ~6 ~~ 4C bull i C lJ6 041 10 1 middot~bull-p(t 1t _ ----~ bull~-----~ ~+- ~ middottC46 [Ct bulllaquo 4 7 4 bull U r bull l bullmiddot

1051 111 ~~-~~ tCi ~gt 0 l i0~6 J1~- ~ 347 41u 01~ llOl 121 -middot--bullomiddot- -middot 41 c (i1smiddot1

C 1106 126 4s ) 153 llll l31 ~middot~ 34 5 4rJC middotO 140 lll6 136 bullbull~bull~ 3lt bull j =~- --~ O l4

( ~121 l~l $enyen 34 o 3i G 14ltgt i12o 146 ~~ 34Q Jl0 011

--i131 -middot-- 1s1middotmiddot middot_ __ middotf 3 ~ ---143 middot-- C 136 1f 3C 0112

~14_1 -middotmiddot--middotmiddotmiddot16_1 -e-~ )-t _ b5 1~2 qri middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot3middot4--_middot- Ji ~ C bull 1 j S bullmiddotmiddotmiddot - middotmiddot---middotmiddot-middotmiddot -middot middot-lee

( H51 171 3-1-ti ~ 7 5 013S 11~6 I 76 )) 3 1r ~ 37 0 0 1+C 220 l -- 1cimiddot1 x middot3middot- i~ bullmiddot 3( I Olle i06 d6 J ~ C6 34h 330 01n 21 I I l 31-9 middots o 0 131

l21 t I S6 - l(~q~cent 5middot ~middot0 ~4middot-~middot--middot-- bull i l2 ( 122 l 2Jl J~1 34 1 C l J

1226 2c1 c~bull~ 34~ 34C n 12s Tiit 2ll _(Ybullbull~- bull~bull~- i j~bull ~j cbull1it1 l23l 2 ll ~~UCO ~4a ~c Oi3~ i24l 221 bull~bull~ ~~-~ 3~~ Cll~

middot 124c 22~ v~-y 34~ 34i cmiddot ld

1251 iil laquoriribullmiddot ~middotmiddott o ~) 12middotmiddot 12~0 2 j() - bullrl-1- 3 ~ ~ ( 1bull~ 3C l -~ middot ~ ) J di ~ ~ l (l

113

AGC-2lS-8 S02 40l RH GLASS CHAMBfR l976 AUG 5

CtrCK TIME

EL AP SEO TlIOIMINI

Clf~C (PPM

TS l IOEG Cl

~FL HUf n1

SJZ C PPI I

1311 251 -$ H5 33middotbull 0125 l3lb 256 (centcent 345 n 5 0 129 1321 261 ltirtQlaquo- 34bull ~ 325 0 12 3

C 1321gt t31

266 27l

(~~laquo~ q~t~laquo

~4-7 3 9

335 340

0 12 S o 122

1336 1341

276 281

__ t

347 34 7

34J 31 5

0 122 0123

( 1346 286 1(11) 347 345 c120 1351 291 t l ~4-7 360 0-1 zo

( 1356 1401

296 301

346 346

36C 35S

0118 0117

140(gt 3C6 o 254 346 355 0 118

1411 1416 1421 146 1431

311 316 321 326 3 31

~YJJ

bullbullicent lCbullmiddot (11Ctlaquo

346 350 35l 35l 35o

34J 355 360 35 5 335

0118 0 118 0117 o ll amp o 114

1436 336 $$) 354 350 0 114 141 l 31 354 35S 0111 1446 1451

346 351

t(c=~

tit 354 353

355 350

C 112 0110

1456 1501

356 361

bull~

35 l 35l

360 34 5

o 111 0110

1506 1511

366 371

0287 $

35_o 1so

345 345

o1oq 0 lOl

1516 1521 1526

3 76 3A I 386

ICi -C ~IX$

349 347 347

340 340 355

0 109 0 109

0107 1531 391 tamp 347 36C D107 1536 396 346 365 010 1

1541 4 01 Or 346 36C 0106 1546

1551 406 4 l l

Cittcent

346 34o

36 5 365

010 0104

-15~6 416 6~ 346 365 0104 1601 421 ~( 345 365 0103 1606 426 c 302 346 36 C o 103 1611 1616

4 3 l 436

lJ rit II

~ 345 3 5

365 37 5

ClOJ 0100

1621 441 ltftt11 345 37 0 0100 1626 1631

446 451

~ 1tcent bull1Cc

345 345

36 C 36 0

0098 OCll

1636 456 tC06J 345 36 5 o 098 1641 1646

461 466

(Ittbullittbull

345 3 5

-c 365

o )Ya 0094

1651 1656

4 71 4 71

11)fI)

$$(1Jfbull 345 345

310 3 7 0

0 ))4 0 Oi4

middot7 1701 1706

4 81 48b o 315

3 s 34gt

0 3t 0

oogs o 094

1711 I 716

491 49amp

bulltttoJt--r

ittt t 345 345

355 H bull5

0014 oon

bullbullbullbull ijir mJ DU4 Tf~ fl -- middotmiddotmiddot- l)f TA 01 $ChIHG I OUET rorAILE tJIH

114

AGC-218~9 S02 401 RH GLASS CHA18ER 1976 AUG 5

AT 2059 PROPE~f (64 ML) ANO FC-12 1580 MLI WERE INJECTED

f (r CLOCllt El ~PSEO QZCNt___ J51 TIME TIME(~I~) 111 (DEG Cl

(

i7ii soi ~ 34~middot5middotmiddotmiddotmiddotmiddotbull-middotmiddotj4_Q 0092 bullmiddotmiddotmiddotmiddot----middot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot--~------middot----middot-middotmiddotmiddotmiddot----------middot-middotmiddotmiddot

C 1726 50~ 345 340 OC92 ll3 l_ middot--middot51 l ~~~~---3~--~middot-middotmiddotmiddotmiddot-3t i____QJJ12

1736 516 343 350 OC89 1741 521 bull 343 335 OC89

_1746 -middotmiddot ---526 u _ )45 _J3 O_ 0 bull C$8 __ _____ 1751 531 346 310 OJS7

C 1756 536 bull 350 305 035 1801 541 351 _no__ 0 bull0es___ _____ ______middot-middot-------middotmiddot 1806 ~4i~ 0313 3D~ 330 OC84

( 1811 551 358 320 0085 1816 559 ~-~-middot--middotmiddotmiddotmiddotmiddot~-58 32middotJ OC81 _____ -middotmiddot--bullmiddotmiddotmiddotmiddot-----middot---middotmiddot ----- 1s21 561 358 320 oc33 1826 566 360 315 0083 1831 571 36J 315 0083 1S36 ___ 576- 36o 320 oca1 1841 581 ~ 380 315 0078 1846 586 middot---middotmiddot 38 bull0_ 320 0081 1851 591 379 ~jo---6019

C 1856 596 377 335 007S 1901 60Jbull UUbull 376 330 0078 1906 606 0328 375 340 Q078 1911 611 375 335 0078 1916 616 376 330 0076 1921 middot621 376 33o middotocn

C 1926 626 376 335 0077 1931 631 376 34 0 OC7t 1936 636 bull 375 345 0070

C 1941 641 372 345 0074 1946 646 372 340 0074

0

1951 651 37~ 340 0074 ( 1956 656 37l 345 0073

2001 661 370 350 0071 2006 666~ 370 350 0072

( 2011 671 369 355 ocn 2016 676 36I 35 5 0068 2021 681 36l 36 0 OC68

( 2026 686 349 365 )069 2031 691 0 349 365 J070middot 203~ 696 349 370 OC6i 2041 701 350 370 0066 2046 706 349 3~o ooes 2osi 111 o341 35o 3Bo 0001

( 2056 116 0341 35o 38s o066 2101 121 0343 337 385 0066

115

r I

I~

) I I

H l

Ji

I

~ I

l _

I1 i

~ t 1 t

I r ~ ~

f ~bull1

1

1 r i

AGC-21S-IO 502 401 RH GLASS CHA~tHR 1976 AtlG 5-6

ADD 720 MIN TO ELAPSED TIME AT 2059 PR~~ENE 164 ML) AND FC-1 (590 Mll WE~E l~JECTED AT 2217 IO ML OF S82 WAS INJECTED

CLOC~ ELiDSEJ ri~~bull TSL ~fl HJ~ 5~~ TIM~ TIMEl~INI (PPM) (nEG Cl Ill (PP~)

2106 6 0 32l 345 390 2111 11 0314 34 bull 0 Crmiddot 2110 lf 0300 34 q_ 390 OJtO 211 21 () 2lJ 3bullbull 9 390 0057 2126 26 0231 350 ~9 0 JC56 2131 31 ()282 35Q 39bull 0 OC55 213b 36 tic 350 39 () or56

2141 41 O~ 35Q ~9J 0C54 2146 46 (~-ti 35bull Q 390 )054 2151 51 iei 350 390 0051 2156 56 ~laquo 35o 390 0053 2201 bl 35o 395 0053 2206 66 0241 35o 39S o)51 2211 71 35) 390 0051 2216 U 350 39S C85l - -middot--middot---- middot---middotmiddotmiddot39middotmiddot3middot -- - o middot2 ti -middotmiddot - --middot--middotmiddot-~---middot-middot-middot --- -middot middotbull-- ___________ ~middot-middotmiddotmiddot middot2 221 81 u-- 33 8 2226 34 7 395 0222

91 c2222231 middot 349 39s 2deg236 96 laquo 34middot9middot 390 0221 224 l l 01 =bulltll~ 350 390 0217 2246 bullioi ----- 34 9 _____ 38bull 5 __bull Gbull 22Q-middot-middotmiddot--bull-----middot-middot-middot---- middot_ _ --middotmiddot-middot - _ middot---middotmiddotmiddot -middot--middot--2is1 lll 39) 0220 349 2256 116 350 390 0219 2301 12 l cent 349 3llJ 0216 2306 126 349 8 15 0214 2311 131 t 349 385 0213

- -2316 136 t J(I~ 349 39) 0211 middotmiddotmiddotmiddot----141 2321 t~ 31 7 390middot 0209

2326 146 --Ccent0= 347 39o czoc 2331 151 4te 34 7 3Bs o2J1 2336 156 l) 347 390 0206 2341 lo fc 34 7 39) 0204 2346 166 -e~ 34 7 39 bull0 02l5

~obullicent-V235[ 1 71 347 385 0204 2~56 176 ~~ 34 7 385 02)3

1 l 81 ~ 346 390 0193 6 186 =1centCt 341 3 019

11 191 ~(r 345 390 0200 16 1S6 taici 345 ~85 0 19B middotmiddot- middot- -- --~ 21 201 Cdeg trtrbull) 345 38 ) 0195 26 206 345 39 G 0195 31 211 ltclI 345 3l() ~ 1 g1 36 2i6 V4-tiq 345 39 0 0 14 41 221 iocent 343 38 5 191 46 226 $ 345 rn s Clql 51 231 (r(c 343 ll 0 O lJ2

56 236 ~bullt~ 34~ ~9 ( J137 101 2 1l ftfilt 31-t 3 3e 5 c 188

0itW~106 246 34 3 JAS 0 1~9 11 l 251 4)QJ~4 Jlt bull j 3fl 5 C bull l 4

ibull1 DATA T~K rn ---- D~U DSCA~JEC 1 QIJ[ST tSbull~flLE DAT~

116

AGC-21d-11 S01 40t RH GLASS CHAltt8ER 1976 AUG 6

AOO 720 MIN TO ELAPSED TlE

CLOCK ELjPSED ozc~~ TSl ~~L HUM scz Tl~E T[MEt~l~l (PP~) IJEG Cl Ill l lP I

i16 121 176 131 136

256 261 266 271 276

bull ~bullbull bullbull~

343 343 343 342 342

365 e5 38C ~85 385

0183 01S4 0 I S2 0lSl 01s2

14 l 291 bullbullbullbullbullbull 342 8C 0 lilbullJ

( 140 151

236 291

-bullbull

342 342

360 3tiC

0 177 o 176

(

156 201 206

296 301 306

~~~~

342 342 342

385 330 8C

o fn0 176 0 l 75

211 3ll ~~~~ 342 38C o 172 216 22 l 226 231

316 32 326 331

bullbullbullbull middotmiddot

342 342 341 3 11

385 )35

85 3d5

0 173 0 171 0 161 0169

236 middot241

- 246

33~ 341 346

$ uuu

339 3go 339 3U533~9middot-- 355

J H5 C l 70

0 1 7J 251

middotmiddotmiddotmiddotmiddotmiddot--middotmiddot256 301

351 middotmiddot~middotmiddotmiddot ~5~--middotmiddot--- 361 bull-

339 33 9 339

385 39 0 ~ss

0165 0 167 o 166--

306 366 339 335 Q 164 311 316 321 326 331 336

311 376 361

_386 391 396

bullbullbullbullbullbull bullbullmiddotmiddot

339 339 339 338 338 338

3as 385 380 38Q 385 385

0161 C161 016) 0 161 0161 C 158

341 -346 401406

middotiimiddot-

33S 338

3BO335

0 159 0156

351 411 338 385 Q156 356

4151middot 406

- 411 - 416

421 426 431 436 441

416 421 426 431436~middotmiddotmiddot 441 446 451 456 461

~bullbull~ bullbullbull=bullmiddotmiddot OU

~~bull7

338 33S 33d 336 middot3)i3

338 33S 33S 33~8 337

320 385 385 390 a) 3B5 3dO 380 3d5 335

0 156 C151 J153 0153 0 15) -o l51 0 149 middot oi5o 0145 0149

middot middot middot middot

446 466 bullbullbullbullbullbull 33~B 365 0 14 3 451 456 middotsol

471 4t6 461

=~~~ ~bull

337 338 337

90 0ia ~~- 5

0 145 0 144 0148

J

506 $11 516 521

486 4l 496 5Cl

t fr(laquo ti~ lt0lf11

middot~ tI

33 IJ 337 3 3 3 3J a

R 5 ~f

~bulls lJ 3o o

0143 C14J D 142 0 1~ 1

bullobullbullbullbull NO fMTA TA~ fj ---- iHt Dl SCA 0 i)E0 OU Sr I~-bull ~-1 ~ ()A TA

117

l

u I

AGC-llS-12 SJl 4Jt ~H CLSS Crbullt~tH-~ 197 ~JC

bullco 720 ~IN JC ELAPSED JIME

__(_l CC -~-----EL I~bull-~ ___ )Jgtl________ T_~J Bf_t t1l~ smiddotmiddot-~ ~ TlMt TiMtlil l p- ( UCG ( l ( t) I Pi l

jIL szc gtt~ ~ ))~ti ~-3J 5~middotJ c1--

5ol Sl 336 3S ClgtC

-~-4 ~- t_ bull bullbull - t1-- ---~ ) bull ~ ___ _-bullbull__G_ Y~ l_~ l --middotmiddot- middotmiddotmiddotmiddotmiddot-middotmiddot middot--middot-middot-middotmiddotmiddotmiddotmiddotmiddot middot--------middot-middot-middotmiddotmiddot ---middotmiddotmiddotmiddot _ 541 521 ~~~~ 33H 75 CJ~7

( S4~ 52t _~ 33CI 370 01tti

ss1 31 _JJ1_ nc middotJ13bull 55~ 53~ middotmiddotbull ]31 7~ ~-1bull~

( 6~1 541 bullbullbullbullbullbull 331 ~7C Oi3J CC i 5 t l ~ i i_ 3_ gt bull imiddot-middot 1lt- bull bull_ Cbull _ 1 i 1 I 5~ j bullbullbullmiddotmiddotmiddot ~-~--~middot-middot- 3 3 bull ~ jt C l t - _______

616 gt~6 )__Q1bull 337 36i i l3i t i 1 lt 1 ~- -middot bull ( 3 ~ ii c C l _l- _

middot-626 G ~iu JJd J7G Qii

i 631 571bull bullbullbullabullbull 331 37C Ol~I 636 j76 ~=~~~ 335 ~7C 0t~S 6il 5ilbull (middot~vrr s1 31L Llmiddoti

64i Scit =~~bull~ 337 370 C126 t~ gt~1 bull to~-c~t i 7 3C 017 65c 5Stmiddot middotmiddottimiddotmiddotraquo=ii~middotti 3i 2lbull C lit 7Gl 6Cl bullbullbullbullbull 337 370 0127 7C6 lJ6 bullbullbullbullbullbull 33 J70 01257 11 611 -J 343 - ) 3 7 37 C ~ ~ 12 5 middot-middot-- middot-middot---middotmiddot-middotmiddot--middot- -----middot-----middotmiddot--middot-middot--middot-middot--middot--middot - middotmiddot-middotmiddot- middotmiddotmiddotmiddot-middotmiddot--middotmiddot

7lb 616 ~middot 33l 375 CJZl 721 62Jo HmiddotgtU 3)8 37a___ pU3_ _

middot-iii l2e middot bullbull --middot- 3i~imiddot 3c c c in l ( 731 631 bullbullbullbullbullbull J37 37s c121 I middotmiddotmiddot--- ]3l ________ l t_ 1 c~~_middot=_ ___ ____ 33 7 6 gt C bull l _~middot--middotmiddot bullbull middot---- ____

7itl 041 ~yen~~ 331 3~ C12 ( 74t 646 bullbullbullbullbull 331 385 c120

751 ~51 bull 3JI 3S0 C12~ _7 smiddotmiddotmiddotmiddot-- 6 56 ~ ~n-1~ 3 j rmiddotmiddotmiddotmiddotmiddot 3 bull~ j i r~ 8Cl 661 bull~bull 33B ~a OllE 80amp 666 yen~~___ 33 ~middot-middot---middot-middotmiddot ~9 5 ~middot-middot ~f--~

middot middota11 67i- tl~~ibull( ~ middotscmiddot e1 ~16 676 ~~~~ ~3b 36C C117

__s21_______ ~ci~ ~ 1r-t 3--z _bull J111 ti26 66 1-r~~~ middot3middotmiddotimiddot-middot middotH5 cflG-

( Sil c~jl centr(tiri 3-i2 1~bull t11 1

118

i I J I I j

l I

j

I AGC-218-ll 502 40t RHmiddotmiddot1 GLASS CHA~8E~

bullS 1970 AUG 6 t J

ACO 1410 MIN TO ELAPSED TtIEmiddot~ I l

t l I

~

CLOCK ELaPsrn ClCbullE TSI R~L HUM sn Tl ME TIMEPPil ( PP11 lo~ cY 01 IPPMI

l ~I l

829 -I ~ 342 390 0114abull

( 836 ( bullbull~bull 33CJ 19 0 aus middot

841 11 bullJ$rfll(cent 339 39S 0 l l 4 -- ~ _ __ _________ Il --middotmiddotmiddotmiddot-middot--middotbull- -- 846 16 nsmiddotmiddot 40) gt bull 112 ~- ( 851 21 Cit-o 337 4CO 0 116middotf 856 26 (I 337 c 0 0112

f I

901 31 ~ 337 nmiddoto 0112 i 1

~

- 906 36 =-= 338 380 c110 911 41 tt~ 34l 370 o 109 --middotmiddot ____ -middot-- __ ~ -- middot-middot--bull-middotmiddotmiddot middot- -middot lti16 4( =~ 3 3 370 o1oi middot 921 51 -tCio 35 365 c 11)6 926 56 tOO 3+7 3o5 c1-~r I

I

i

l

l

[ I

j

middot-

1~

931 61 3-7 38 0 C-104~ lt 936 11 H5 38 5 0 l) 3 middott 941 71 3t5 Jd5 0104 946 76 343 ]8 5 0105 ( 951 Sl laquo1tbull 342 385 I 104

950 86 34l 385 0103 middotbullmiddot1001 91 middot=+ 339 38 0 0103

1006 339 37 5 o 105 1011 101 339 375 C 10 l __

I - --middotmiddotmiddotmiddotmiddot-middot 1016 106 339 380 0C99 f

1021 ltl laquoO 339 380 c 099 1026 116 C10$C 339 370 0101 1031 121 Ct 33lt~ 37 0 0096 1036 126 buller 339 370 0096 1041 131 (e 339 375 0 99 l046 136 lit 34l 37 5 o middot]98 1051 141 t 339 no CJ98 1056 146 C~bull 339 370 0G95 110 1 15 l ~IIX$centU 3- l 3 7 5 00-~1 1106 156 bull )~t-C(t 342 37 C oc9s

~Q(~cent 1111 lbl 342 37C O C9 3o C1116 166 Ccent~~ 342 0 ]96

1121 171 bull4- 3 36 C 0093 1126 176 ilc(tOC~cent 342 009436 5 l I 31 161 tiOt(i$cent 3 1 2 36 5 C0)4middot 1136 middot l e6 t-r-oebullbullgtt 3- 2 36 C 0090 1141 Illbull 3 5 0 0094lrmiddot0-J(J 31 3 1146 l lt6 -C 343 35C ono

I 1151 201 e 343 340 0 CtJG 1156 2u iC111 3 3 340 0089

( 120 l 211 middot~ 34 3 33 5 ocn nliittiraodc1206 2H 343 ~o OCl7

1211 221 -~bull-1fJlic H5 330 O CH9 1216 226 -yen 345 320 0 Cl9

1221 2 31 (1$11r 3diams 5 3middot2s or~ 1226 736 bullcqtcentbull 345 3l 5 COil 7 1231 741 bullt-laquobullbullmiddot 3 5 11n middotJ J9bull l 236 24amp 3 6 30 0 i~lbull 4

(ATA ~-~middotbullbull TAtH[

119

rmiddot 11

AGC-213-14 S02 40yen RH GLASS CHAlfER 1976 AUG 6

ADO 1410 tN TO ELAPSED TIME AT 1424 1 Ml CF S02 AND l6 Ml OF PRCPENE WERE INJCTED CLIMET AND WHTSY WERE 0~ THE CHAMBER FRON 1313 TO 1645 DASIBI 1212 WAS ON THE CHAMBER FROM 1634 TO 1638

CLOCK LiPSED Ol0N~ TS REL H~~ Sl2 TIME Tl~~(~l~Imiddot IPP~I lb~G ti (Cl (PgtI)

middotmiddot-middotn41 middot -middotzsi~-- middotmiddot$~I middotj~t q 3zo ocas 1246 256 bulltbullbullbullcent 349 32J 0 C8 1+

-middotmiddotbullmiddotmiddot -- - middot---middotmiddotmiddotmiddotmiddot bull_ 34bull ~----1251 261 0lrU 31~ 9 Q_~_7_i 256 266 347 325 on2bullIt 1301 271 =to~ 34 7 325 oJS3 130 276 346 315 0083 ---middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot- 13 I 1 28 l O-ht~(I 346 Jl5 CJ83 1316 286 O 346 31C middotOOi33 132 r 2lt1 ~tc1 346 305 o_C81_ middot-middot-middot

i326 2ltJ6 - middotmiddot34~5 31 5 008 1331 3Gl 34 5 3 l 5 0082 1336 3C6 345 31 5 0C7t 1341 311 3bullbull 6 29 5 0078 1346 316 b~ 346 ZltJ5 OJ77 1351 321 --- _3_45 30 J ---- -1356 middotbull~ 0 j73 _ middotmiddot-middot--middotmiddot-middotmiddotbullmiddot middotmiddot-------middot--middotmiddotmiddotmiddot middot-middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotbullmiddotmiddot- middotmiddot-bull 326 345 ZltJO Q)71 1401 33 l 346 290 0)73

1406 336 middotlaquo 3 6 gtltJ bull S 0073gt 1411 341 34~6 30 C 0072It~- 1416 346 347 305 0071 ~ 1421 351 34 6 310 OJ73

~~ 1426 --middot middotmiddot--jsamp~ __ 33i middot--3middot1o C 13 $ middotmiddotmiddot-- --middotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddot- ____ middot--middot-----bullmiddotmiddotmiddotmiddotmiddot-middotmiddot-middot~---~~middot-middot

1431 361 343 310 0221 1436 366 ~ 345 2 0 0232

-middot-middotmiddotmiddot--middot-middot34 6 middotmiddotmiddota 231 middot ----middot-- --middot middotmiddot- middot-middot--middot-middotmiddotmiddotmiddot-middotmiddot-middot--middot-middot- middotmiddotmiddot--middot middot middotmiddot--middot--i441 3 71 33middot 5 1446 376 o 346 335 o 22a 1451 391 34 7 34l~~= 0 226 middot-middot- -middotmiddotmiddot------middot- middotmiddotmiddotmiddotbull -- --middotmiddot---middot--middotmiddot-middotmiddotmiddot- middotmiddotmiddot-middotmiddot --middotmiddotmiddot-middot----1456 336 ~ 34 i 340 0 223 1501 3lt 1 -ti~~ 347 345 0222 1506 396 347 345 0221 1511 401 ~ 347 350 0217 1516 406 347 35) 0214 1521 411 X 347 350 0211 1526 416 )$ 349 340 0209

( 1531 421 Ji 349 335 0206 153gt 426 Clltf 349 335 0202 1541 431 ~ 3t 9 33J 0 bull fJ2 1546 436 t=Cilc 349 325 0202 1551 441 ~=gt4 350 3 lj 0198

4461556 JO ~49 32G 0 195 1601 451 Jlrltlf~Tc 350 31 $ 0192

Vcent~~raquo1606 456 350 J 1 0 0 l llt 1611 461 lttlO-t 350 3J 1 fJ ll l 1616 466 ~~ 350 29 5 0186 1621 471 350 zq s C1A4middotmiddot 1626 476 350 31 C 018 1bull

~ ~ ~ 1631 481 1119$~rc 3o 31 5 0181 ~ ~~ 1636 4a6 0)7 351 2 5 c 161)

1641 49 l llir-4-it 35Q 32 0 Ol77L - (

166 496 middotbullbulltbulltr 35 l 34 s 0 IIH

middotbullbull-tiort ~ si bullmmiddot DATA TAK[i ---- OATA 01 $~APi)euroC QIJ ST 1(lLE LmiddotbullTA

~ - l f

r

120

i

1 --~middot---- ~- Ac-middot21q~f-sri~ middots~ ~H middot ~

q l r GLASS CHA~dER 197b AUG lo

--middot0middoti11t1 middotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddot-------- middot-middotmiddotmiddotmiddot--middotmiddot middotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddot bull AT 1545 FC-12 ~~S INJSCTEO INTJ TH CH~M~~R AT 1646 S02 WAS INJtCTEC INTJ THE C~AN~E~

-middotmiddot1ECC 43 SP~NNrn ll6SfC o-middotcHA-lEft trJtCTl)~ideg-------------middot------middot-middot-TECO 43 SANPLI~~ ~ATE 1213 ~LNlN SRACV ll9b CALIS~ATU~ 1976 JUL lb

-----middot soz COiRECTIGII o11s4 PigtM middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot-middotmiddotmiddot-middot-middotmiddot middotmiddotmiddotmiddot-middotmiddot----middotmiddot- --middot--middot- --middot--middotmiddotmiddotmiddotbull--middotmiddotmiddotmiddotmiddotmiddotmiddot

---r7JI 3 bullbullbullbullbull middot bull- 1735 5 3Zb 815 0237

1740 10 326 ot5 C29-J ------------------------------------r1-- 1s --32e air-middotmiddotc2middot- 1150 20 326 815 C297

1755 25 326 815 0302 -- lBOJ middotmiddot--3r-middotmiddot 32 7--olO -middoto ~ 3-)=o-----------------

C 1805 35 32T 80 0303 l 810 40 2 7 8~0 03J7_-----------------------~-------shy

--faf5 45---rz3 s1o o--io3 C 1a20 50 321 s1o o3C~

l 825 55 32 7 81 J J bull 3C~ middot-------------middot----------------------[830 60 na-middot~os--(rr-or 1835 65 328 SJ5 0302

middot l 84l 70 32 7 805 C 302________________________________ --1a-5 5 33~aoj -029~

1asc ao ]27 eos c303 1655 85 327 SJ5 C297

--r9li0--90-fzmiddot a ss o-middot211----------------------------------1905 95 3~2 aos 0292 1910 100 3 3 bull-2_ _middotg~-J~bull5_C=2~-92--~----------middot-------------------------~--nTs 1cs----3rL t105 02n 1920 110 33t ao5 c290 1925 115 331 aos c2a1

--1~Jo---uil------rr-ar--~-2-rmiddot3-------------------------------1935 125 331 ao5 o2ss 1940 130 33l 8J5 C233

--middot1945 135 330 d05 C282 1950 140 330 SJS 0281 1955 145 330 aos c201

--2000 150~2S 8JS C232 ( 2005 1ss 33o aos c200

2010 160 330 aos c216

C

--ni5 - 165 32a aJs a21~-----( 2020 110 328 ao5 c21i

2025 175 330 sos 06~6______ zoo-- ldegamiddoto middotmiddot-32s- eos tmiddot--n2 2035 185 334 79~5 C263C 2040 190 bull 33 S 790 0 bull 2b9________- ___________________

--2045 1ss middot335 785 o2s9 ( 2oso 200 33a 110 o2sa

2055 zos 33e 110 ozampo middotmiddot-- -------middot---------middotmiddot2lo)- 21c ----middot33s -middot--16s--middot-cmiddoti4 (_ 2105 215 339 7amp5 C259

2110 220 339 7os o1s1 --2115 ---22~ --middot-middot339 765 c2sa-middot

C ------ --middot- ----- --------------- ---------middot-----------~middotmiddot-bullmiddot--middotmiddotmiddot-middotmiddot----

j1 ---------------- -----middot---- 2120 236 342 76C C253

212s 235 347 7ampo o2so 2130 240 34l 760 OZSO

middot- n ---- 2135 middot - middotmiddot-z~-middotmiddot - imiddot-1-middotmiddot-middotgomiddot middotmiddot- o i4-1

-

l

1-~iI

_middotbull

1 ~ l

i

121

~

i

I~

I l I

middot1

------ --AGC-219middot2 S02 e 1~---middotmiddot -middotmiddot- - middot- --- -------GLASS C~Amiddot~~H 1916 AUG 16-17

-i C -- - - middot-middot-- --middot---- middotmiddotmiddotmiddot-------middotmiddotmiddotmiddotmiddotmiddot--middot-----middot -- - bullbullmiddot-middotmiddotmiddot---- - - -middot --- __ -------middot bull

-il _

-l ~ I

middot l

l CLCCK ELAPSED TSl qL ~U~ 502

--Me--TTfn Iff-middotccn------n1--rp-r~ -----------middot

I -~1

~ --71rcr------2cr~-z---7smiddot--c72o-4 2145 255 339 7ampJ 0247

2150 260 338 7bO 0244--middotzr5--middotzrs---n--s--middot16-0---y-2middot~----- -------

( 2200 middot 270 339 755 02J9 2205 275 J)$ 755 0247t I

A ----zz-r~1o--------yr----73-~~-u-r-r~ti ( 2215 2~5 339 7~5 C241 J 2220 2~~ 33 8 75S 0241---izz---2s~--3T7--s--o-ZTImiddot---------middot----------middot----middot-------f ( 2230 300 33~lt 755 023-

l 2235 3C5 338 75S 0235 ---z2-0---TIU--~3 -7 middot---s-u23c---------

224 S 315 339 755 C235~ f 2250 320 337 75_~5_ __o~2~3~~__-----------------~----------~---- l ~ ~ JlS--middot 33 bull 7 75 ~ bull ~

I 2300 330 33S 755 C231 2305 335 7 75 5 Czz_a__________________________________33 4 --middot--2n-~4middot07 J3 7 7575----U--ZZ ~middot 2315 345 337 755 0 224 l 2320 3 50 33 5 75 5 C22_1~------------------ ________________2325 355 33S sgt--e~z-2330 360 337- 755 0226--~ 2335 middot 365 33 s 75s c22o--____________________________

--i140 nc---3-i~1s--o--1 2345 375 33S 755 C224

~ J C

2350 3JO 334 755 0221middotf --n-sr--middot3r~~--~r---r5-c~2-i-20------------------------------

3 t 0 390 335 75 0213 1 ~~

___rs~ 3q5 334 1ss c21~6---------------------------- _______lO 400------rrz---nQ-zi l

~

C 15 405 334 755 0213 20 410 334 755 c211

---25 4 I 5---j3-7----gmiddot5---o2l____i ( 30 420 334 755 C209~

35 425 33 2 755 C214d l j I o 43b 33l 7~s 0211 45 435 332 755 C206l C _____________j50 440 332 755 C206

-middot----s-s 44-s---33-~---1-s-middot-o-zo~s----I

( 10c 450 332 755 C204 I -r ~ 105 455 B1 75 C204 l i HO 46C_ ]Lr ts C2)J bull -------------------1 Ii ( 115 465 332 75S 0197

I ~ 120 47C 33l 75i 0191 middoti

-- 12gt 33 l- Vi5 -----------------------middot7475 C20C

t_ bull

fi I

( I

middot---middot ______J--- ----- ------------------- --------middot----- ---------------

ad ----- middotmiddotmiddotmiddotmiddot----------- ________jrl -middot- llO --- 4-middot 311 0 20273 5 ~ i n 135 4F~ 330 155 C 1bull15

140 4S~ 33 1 7gt5 CIHf -----middot l4Sdeg- --- 45------ 33 l - --- middot-middot -- -- iI

755 QlHbullJ

~ 1 j 1

1 t

ibull1 l I 122lI middot1 I

1

----------

--------------

r ------ACC-219-3 s02middot soimiddot RH --middotmiddot---middot---middot--middotmiddot----- - middot--- middotmiddotmiddot---~--------------middot------ ------------

GLASS CtiA4t3ER

l~_7t AUG __17____middotr-- middot-middotmiddotmiddotmiddotmiddot-----------------middot middot---------middot----middot---middotmiddot-middot-----------middotmiddot--middot-

---------middot------------------------------------I (

---rso -middot-soo - ~3T___ 75bull middotci_94 ( 155 505 33~1 7~s c1s2

200 510 33l 75~ C~bull~l9~l_____ ---20gt 51s fJo iss--o 1a1

210 520 330 755 C192 215 525 331 755 C184

--- 220 ___ 530 middot iza 755 cc1s~o-------------- 22s 535 33~0 75o o1a1

230 540 3l 750 0137 --Z3s___545 328 755 J182-----

( 24C 550 328 750 Old3

215 555 33 o 75 o o tn-=--------------------------------- f50 -- 51o- 32a ---iTo - 1so 255 565 328 750 C179 300 570 328 750 01B0

---3tf5___575 3 l 1 1middot5o--odeg17le-------310 5SO 32 7 7iO 0176 315 5e5 3o 75o 0115

middot--320 5co 32 1 1o o 112 325 5S5 327 75Q 0173 330 6CC 328 750 0172 middot

-----3i5 6C5 327 10 011s 340 610 327 750 0171 345 615 32s 75o 0110

~5c 62c1~middot2-t-----ro--o-r6middot~------~---------------------( 355 625 321 middot 75o 0161

400 630 n a 75o ~ 165______________________________ --middot--cs 635 321 15o o i6s

( 410 640 ~27 7a 0lol

415 645 2 d 75 a O 102~---------------------------------middot-420middot-- b50-middot327 74S Cl~J ( 425 655 327 745 C158

430 660 3l8 745 C15~ middot 435 665 327 745 C15------------

( 440 67J 32 7 745 0155 445 675 32a 75o 1ss______ ----------middot--middot 4~b 680 327 745 C153

( 455 685 327 745 C153 500 610 32 7 74 5 C t S-igt_______________________---middot----middot----

--middot-50middot~---6lti5 2 1 145-middot-TT~l SIC 700 327 745 C55

____ 515 105___ 32_1 ____ 745__ c1s______________________

bullbullbullbullbullbull NO DAT4 TAKEN --- OAT4 DISCA~DED 1 QUE~TIONl~LE D4T4 --------------middot------------

---~~-----middot-----__________ -------------middotmiddot-------_-middot ---~--middot-middotmiddot -middot-

123

cl

I I

i

AGC-219-4 soi so ~H CLASS CHA~ilER 1916 AUG 17

l ACO 710 ~IN TO ELAPSED TINE

j

r 1bull

~ i_ CLCCK ELAPSED TSL qEl HU~ 502-1 Tl~= TIMEl~l~I l0EG Cl ltl (PPMI

I j (i

l

So O 326 745 C149 525 5 326 74S Cl5J

iJ 530 ________ 10~---middot-bullmiddot32bullT_____74_5___ _ Cbull11tt_____ middot---~--- ___ --middot-middotmiddot---- middot--middot----- --------- --middot- middotmiddot---- _ - -----middot--------~--------middotmiddot middoti 535 15 36 745 C148 C 540 20 326 745 C147

545 25 _32_____ 745 0143l 1 550 30 324 745 C144

~ C 555 35bull 3Z6 74s oi4l too 40 __ ~6 l45o 147_________________________________________ ---- _______ ----middot-middot ________ -----605 45 324 745 0138r l 610 50 324 745 C133

615 55 ~27 741 0139 620 60 32-4 745 0142

C 625 65 324 745 C136 d

f fi 631J 70 3gt 745 __C134 --middot-middot----------------- middot-----------------635 75 )4 745 0133 64C 80 324 740 0136l j C

-~ 645 85 324 740 0132 650 90 324 740 0131

4 C 655 c5 324 74o 0131

l 700 ____ 1JO_ 326 740 __O l31 ____ 7C5 105 324 740 0127

C 710 110 324 740 012Bii 715 middot 115 326 740 0127 ~ --middot----120---middotmiddot120 --middotnsmiddot-----nsmiddot c126 - middot--

725 125 no no 0121~ C --- 730__ 130 bull ___ 33 2 _ 72 5 QJ28_________________________________i 1 735 135 332 720 0121

l C 740 140 334 720 C125j 745_______ 145___ 31 5_____ 71 5_ 0 bull 122 ------middot--middot-middotmiddot-- ---------------------- --------- -------middot----i 750 150- 334 715 0121

C 755 155 334 715 0122 ----middot JQ 160o _______3)bull _ 7l o5 __ 0_122 L_--------middot-middot---~----middotmiddotmiddot--middot------middot-middot---------

eOS -------i65 332 720 0121 A 810 170 33I 720 0119

~ C I 815 175 33-0 720 0119 -------------------------------------------------middot--middotmiddot --------middot ------middotmiddot---1 i 820 180 3Jdeg-middoto _iz omiddot _ omiddot122 --middot--middot-middot- -middotmiddotmiddot-I C 825 185 330 720 C~ll9 ~ __ e30 1co 30______12o_____o 11 s ____________________________________________1

8)5 195 328 720 0120 I1 C 840 200 328 720 0112

845 205 32a 120 0119 i 850 210 3za 72omiddot oui

855 215 328 120 0114bull_ Cil o 220 3~Q __72_0 0bull llO __ ---------------- ~ 905 225 32~8 720 0112 middot-~ -(

~

JI middot (_

1 9lJ 230 328 721 C1)91r ( 915 235 32S 730 010ai ltO 240 327 735 C1J l J 925 245 32 1 7l5 () 10

(-1 bullbullbullbullbullbull NO DATA TAKf~4 ---- OATamp DISCAPO~G 1 OUESTin~ABLE CATA

~ l ~

t ~

I

ii l iJ

124

AGC-219-5 S02 SOC RH GLASS CHABER 976 AUG 17

AOO 710 MIN TO ELAPSD TIMeuro

CLCCt ELIIPSED TSl Rl HU~ soz TIME TIME IHlN) (DEG Cl lampI IP~l

930 250 3~$ 740 0Cl3 ( 935 255 32 7 740 Q)4

940 260 bull 327 110 O 04 945 265 32 8 741) o leamp

( 950 270 32 7 735 C108 955 275 na -middot 730 o 105

1000 280 32 7 730 0106

~-_CAT AbullDISCAROEO -middot- _1 QUSTOIIIABLE OATA

(

(

C

(

--middot-middot----middot ----middot--middot--middot------ -------(

--~-----------middot-----------------middot-middot------------ ---middotmiddot-------middotmiddot------middotmiddot----bull-bull------ -------------_______ ________ ----

-middot-middot - ___ ______________________________---------middot---middot------------

-- -middotmiddotmiddotmiddotmiddot---middot-----------middot---middot---middot--middot--middot-middot--------middot-middot ------middot middot-middot------middot ---- --middot

125

( I

rmiddot

l i

j

j J

j )

j j AGC-2~0-1 S02-03 PROPENE middot GLASS CnA18ER

1lt176 ~UG 19

bullj OA~K

S02 AND FC-12 INJfCTEO AT 1115 OZONE ADDED AT 1149 PRCPENE AT 1155 BRADY 1296 CALIBRATIJN lS7b JULY 16

CLCCK EtiPSED ~ZCfrac34E TSl ~~L HU~ S~2 P~CPfN lF lMEl~Nl (PPlt) lEG C) 11) (PPI-IJ (igtiI)

1200 o o~4 327 41 0 0363 1014 120 5 5 06)6 328 410 0344 middot 1211 11 0557 12s 410 middot~ $f r~middot 3t1216 16 0511 328 10 0318 0 BCl 1221 21 0 4 74 32 7 4 I 0 0304 0cent3-ii

1226 21 C4-+0 32 7 410 02l7 (q~cent-0(I

12 30 30 o 40 328 4ltJ 0291 0 (83 135 35 003 32 7 410 0283 ~4 1240 40 c~11 3 8 410 0 bull 776 1)lcent1 ltlaquo 1245 45 C bull 3i2 328 41C 0211 0~9J 1250 so o 335 328 410 026( deg6 12 15 55 0 318 330 405 0206 bullii t~ 1300 oO D3J3 no 405 0260 0522

C l 3C 5 65 l2 56 32S 40S 0258 -c11ie 1310 7J 0 24 32s 405 0254 itbullit ---------------- middot-middot-middotmiddot- ------- 1315 75 C 251 na 405 czso bull1320 sc o 29 32 d 405 024S bulllilCe 132 5 65 0231 32a 405 0249 -------middotmiddotmiddotmiddot-middotmiddotmiddotmiddot-133l 91 C2~) 328 400 0247 043 1336 t C 22 32 8 400 0244 ~ tP+l l 01 o 213 3 S 40 bull0 0 22 ________ __________ bull -middot middotmiddotmiddotmiddotmiddot-middot-middot middot--middotmiddot-middotmiddotmiddot middot- -middotmiddotmiddot middotmiddot- -----middot--middot---middot1316 l C6 ozos 328 400 0238 JOcentht

C 1350 110 on0 328 400 0239 bullc 1355 115 0191 328 400 0239 gt~ middotmiddotmiddotmiddotmiddot- ___ ________ __ middotmiddot---middot- -middotmiddotmiddotmiddot-middot ___ ----- ------ middot--1400 120 o ta6 33 omiddot- middotmiddot 395 o23i o 3 76

( 1405 125 C178 32amp 39S 0236 1410 130 D I 76___ 32bull 8 39 bull 5 02~---U bullbull --bullbullbull---bull -bull-bullbullbullbullbulln___ bull -bullbullbullbullbull bullbull bull---bull---bull-bull bull-bull--bullbull -bull-i415 135 0 lb6 326 395 0231 tlllllc bullitbull 140 140 o l SI 32 8 395 0232 cu~ Ji 142 5 145 0 159 32 bull 8 395 0230 16CC- --- ---middot-middot -middotmiddot __ --1430 150 I 151 32 S 3c5 0230 0336

( 1435 155 0147 33C 39 5 C226 (laquo 1440 160 C bull142 328 395 0225 gtccent( _____ middot-bullmiddot--middot ___ middotmiddot-middot--middot-middotmiddotmiddot-middot--- middotmiddotmiddotmiddot---middot-1445 165 J 1 39 331) 395 0225 ~ ( 14Sl 171 0 134 328 3-i5 C223 1456 1 76 012 middot 32 8 3) 5 0223 ~b 1501 181 0 0 I 21 328 3lt bull) 0222 0311 1506 l 56 o 122 32a 39) 0225 ctcr 1510 l SO c122 330 390 0221 bull~ _middot middotmiddot-151~ lltS Cld 32B 390 0221 I~ 150 2 co 0115 3ZR 390 0220 tTt 1525 2 cs C I lO 328 3SO 0220 bull15~0 210 C 11] 330 390 0221 0289

( 1535 21s C l middot~) ~20 390 0216 +rrmiddot 1540 220 tt~ 12Y 390 016 XlC-$1(1

1545 zc~ (lt(I~ 328 3()0 015 Cr4Ccent

1550 23-Cmiddot bull fl 328 39C o 715 tCit q

15~5 235 330 39 0 0215 lCi9bullbull 1(cot

160() 4C ~l)l-fl 130 390 o 13 0274 161)5 2 4 ~- _ bull C1~ ~ 328 390 0211 (rj

t1ilI ~~G DA Tf Ttt Li ---- DAT A Ol~rA~fJEO 7 OU Sr Pit tll I OIITt

126

r

middot1

AGC-220-2 $02-03 PROPENE GLASS CHAMBER 1976 AUG 19

t (

CLCCK ELAPSED ozmiddot-E TSl REL rlUI S02 PPCP EtliE TIME TME I Mll l I PPI J (DEG Cl 11 I DP-1 l I PPFgtI

(

1611 251 0085 3o 3t5 o 21-4 ~~lJltf ( 1616 256 C090 328 385 0211 middotmiddotmiddot 1621 261 0085 33o 3S5 c 211 (ercent

1626 261 QCd3 330 33 5 C208 = ( 1630 270 ocn 33o 5 0209 0254 1635 275 OCdl 330 35 0208 ~ 1640 280 0078 33 O 335 D209 bull~tbullitt

( 1645 285 0011 33l 3amp 5 0205 bullcentt41A

1650 290 0076 330 3B5 0 2J5 bulltcbull 1655 2cs 0076 330 385 0206 middot~

C 1700 300 (1071 33a o5 C205 024S

NO DATA TAKEN ---- DATA DSCARDO QUEST ON ABLE CATA ( middot-- -----middot-middot-middotbull ----- bull - middot-- -

(_

C

C

(

(

(

(

r 127 I

AGC--1 502-03 GLAaS (HAliH 1976 IIUC 20

DAIK BRADY 1296 C~LIBRAT[O~ 1976 JULY 16 ril NE WAS INJECTED AT 0933

CUXK fl ~rsrn Ol(lr lS l il El HUbullI smiddot 2 l I MF TJbullE ( NI ( r1) lCEG C) ()l ( PP I

I

845 o oc 32 7 440 0379 850 5 oo 330 435 C360 855 10 oo 330 435 C377 900 15 oc 331 435 C376 905 20 oo 33o 435 c J 76 110 25 oo 33Q 43 5 C370 915 30 oo J3l 430 0370 920 35 oc 330 430 0369 925 40 oo 33l 430 03amp9 930 4) oo 330 430 036 935 5C o~gtt2 324 425 0360 940 55 0576 330 425 035$ 946 61 0572 330 42 5 03~7 951 66 o 5 7 330 425 03~S 956 71 0569 33p 425 0352

1000 75 0567 330 425 o 3$2 1005 80 o 567- 330 425 0349 1010 e5middot 0562 30 425 C349 1015 ltO Cmiddot 551 330 420 C 34 7 1020 95 0557 330 42 0 a 34 7 1025 1 co 0554 33 l 420 0344 1030 105 o 552 330 420 c 34 1035 110 0552 33Q 42C o 342 1040 115 middot 550 330 420 o 34) 1045 120 0545 330 420 0342 1050 125 o 542 33l 420 middotO 340 1055 130 o 542 33 I 415 o 30 1100 135 o 540 331 4 l 5 C340 1106 141 0537 330 41~5 0336 1111 146 0537 33I 415 0335 1116 151 0532 330 415 0333 1120 155 o 5 32 33l il 5 035 1125 160 0530 33l 415 o 333 1130 165 C530 331 410 0332 1135 170 0528 330 410 033 1140 175 0528 330 41 () 0330 1145 1eo 0523 330 410 0 bull 325II

r 1150 185 0520 330 410 o 326

1155 190 05) 330 410 0325 1200 195 0515 130 41 0 0321 120~ 200 c~1e 311 4()5 034 1210 205 o13 330 45 O 32 l

ft 1215 2 LO I) 511 330 405 0311 1220 21 s f~ ec gtlC 33 I 405 c20~

i_ 1226 221 0503 330 405 0319 1231 226 osoa 331 40~ 0 bull 319

~ 1l J ii

1236 23 05ll l30 405 0119 1240 235 OiOl 330 40S 0318 1215 240 051)1 l3 o 4GO o~1s

f Ij

1250 24 04H1 BO 400 0 314~ I

middotbullbullyen ll() r11u TKEI DATA or ~c11ourc iIJl l)NeLE DATA f

f

~-

~ 1

f -~ 1l 1

~t 1 128 l

IJ 1

~-

1 1

bull

t-~ I

lIT 1 l

middot(I

11

AGC-221~2 S02-03 GLASS CHlMSER 1976 AUG 20

t J

middot

t

rr

a ~

bullmiddot ~

(

--1255 --middot- 250middot 049smiddotmiddotmiddotmiddotmiddot- 330 40omiddot---middotomiddot~jfi middot-middotmiddot-middotmiddot--------middot----middotmiddotmiddot-middot---~middot-middot--middotmiddot- middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

i l3b0 255 0493 331 40C 0313 ~ 1 1305 26J q 493 33 o 40 O C_309_____ middotmiddotmiddotmiddot--middot-middotmiddot-middotmiddotmiddotmiddot--middotmiddotmiddotmiddot------middotmiddot--middot -middotbull-middotmiddot-middotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot middotmiddotmiddot--middot-middot-

1310 265 o411 n 39s o3oa middot C 1315 270 0491 332 395 C308

1320 275 0489 331 39S C310 - --bullmiddot-middotmiddot- middotmiddot--bull-middotmiddot middotmiddotmiddot-middot-middotmiddot- _ middot--- -middotmiddotmiddot bull-middot

a tlmiddot

)

13zs-middotmiddotmiddotmiddot2ao~middotmiddotmiddot-omiddot4a9 33middoti--middotmiddotmiddot-ji~cmiddot middotmiddot 0309 C 1330 285 04114 332 39C 0307

1335 290 0484 332 39C 0308----middot13o middotmiddot 29s middotmiddotmiddotmiddotmiddot0middot4s1middotmiddot middot ir~middotxmiddotmiddot -middot59 c 0~middot3ci4 --middot bull--middot------ - middot--middot--------middotmiddot-middotbullmiddotmiddotbullmiddotmiddot- ---middotmiddotmiddotmiddot-----middotmiddotmiddot -C 1346 301- 0481 332 385 0303

1351 306 0479 33l 39C 0~304

H c

1356 middotmiddotmiddot311 middotmiddotmiddotmiddotmiddot-0middot~middot419middotmiddot middotbull middotmiddot33~1 39 omiddot o 303 1400 315 o476 33t 390 o302 14C5 320 C476 33l 390 0299

-1410middotmiddot -- 35 middoto474 33l 390 0298 1415 330 Q474 33l 385 0298 1420 335 0471 33l 385 o296

a i425 middotbullmiddot-340- 0~469middotmiddotmiddot 33 385 0294

1430 345 0457 332 385 0296 i

f J

ffi C ~

1[ C 1middot11

lf~middot i$~ C

(

(

(

(

(

129

i I i

-

j i iI

l j

l i i 1

ampGC-222-1 SJ2-N X-SURR-U GCASS CHAll~fi 1976 AUG H

O~RK CO FACTOR lq122 eR~OV 129~ 21 ~l ~ox INJECTED AT 0920 HJURS AT T=o ~c~-METH~~E ~ bull 1740 PSC MTHAN~ bull 32CO PPB

CLJClo ELAPSED 0ONE CJ TSl ctEL HUll SmiddotZ ---middotmiddotmiddotun TlM~(M1-ifmiddotmiddot-PPM)middot--(p y ID~G Cl - u IPP~I

q4~- middot-middotmiddot-middotomiddot oo 53 n2 465 o--j~ middot-------middot--middotmiddot-middot---------950 5 oo 56j 33l 465 034~ 955 10 0 002 5 65 n l 46 5 0344

1000 15 oo 561 HO 465 0344 ~ 1005 20 oo 560 ]30 465 0340

1010 25 bullbullmiddotbull bullbullbullbullbullbull bullbull~middotbullmiddot bullbullbullmiddotmiddot middot~middot~bullmiddot------bullri1s 30 oo middot 563 33o 465 o1Ja 1020 35 oo 564 330 465 0)38 1025 40 oo 5ss 330 465 0337 middot----103) 45 o bull i 556 330 4amp5 o333 1035 so oo 5-~6 130 465 0335 1040 55 00 556 330 460 0332______ -----middot---middotmiddotmiddot- --------------middot i 1045 60 00 551 330 4bO 0332 1050 65 OJ 552 330 4bO 0333 1055 70 oo 54il 330 460 0329_---------------------1100 75 co 548 330 455 0329 1105 so oo 548 330 455 Q327 1110 85 00 547 33l 455 03_6_______ middot-----middot--middot---- ------middotmiddotmiddot-middot 1115 90 OO 550 33l 455 Ollb 1120 S5 00 548 33l 455 0325 1125 lCO OO 55 33l 455 0324~------------------------(130 ____ 105-middot-middotmiddoto002__ 542-middot 330 -- 45o 0322 1135 110 oo 540 330 450 0319 1140 115 0002 542 330 450 0320---1145 middot -middot--120 0002 5ia 33o___45o omiddot319____________ middot------bullmiddot--middot 1150 125 oo 540 330 middot 450 0318 1151 0 o 541 330 45 0 03_1_8_________________________131

1200 135 OC 532 330 45C 0314 1205 140 0010 539 330 450 0311 1210 145 oo 535 330 450 0314 1215 15bull) oo 534 328 450 0313 1220 155 00 533 330 445 0310 122s 100 oo 534 33o 445 0313 1230 165bull 00 52b 330 445- 0313 1235 170 oo 531 330 445 0310

1240 175 00 53()___ 332 44C 0 0_3C________________________middot-middotmiddot-middotmiddotmiddotmiddot--middotmiddotmiddot-middotmiddotmiddotmiddotbullmiddot-middot--middot----- -middotmiddotmiddotmiddot--1245 180 00 526 33 l 440 0303 1250 1s5 oo sza 332 44c oJn 1255 190middot oo 529 332 435 0304~--~- -----------middotmiddotmiddotmiddot-----middot-----------1300 195 oo sn n2 435 aJes 1305 200 OO 52b ]32 435 03l4 1310 205 oo 524 332 435 0304 1315 210 oc-62 s24___ -~3i -middot--middot43s o302middotmiddot--middot------ middot- middot ----------------~-- -1370 215 00 523 332 435 0300 1325 220 oo 5 lil 332 43c ono 1330 225middot middot-oo middotmiddotmiddot-middot--s -19middot --middot~j~z--middot3if-middot 0300 ----middot--middotmiddot----middotmiddotmiddotmiddotmiddot-middot middot-- -middot--middotmiddot -----middot

r BH 230 oo 519 33l 43 G 03iO 1341 236 oon 5 IIgt 33 1 -3 0 in1

1345 240 oo 5 15 H l 430 J297 1350 245 oo 5 13 3l2 43C 01~

bullbullbullbullbullbull NO nTA TAKE~ ---- 0lTA 01 SCAPgtFl

130

AGC-222 2 S02-NOlt-SbulljRR-U CLASS CHAMBER 1976 AUG __ 24

0

----------middotmiddot-----

-- 1355 ____ 250middot-middotoo s13 332 41c 02 middot -----middotmiddotmiddot-------------( 1400 255 oo 5lZ 332 43C 0294

___1405__ 260 oo 5 ll __ H2__ 3t3C 0_293________ 1410 265 oo 512 330 43= 0291

1415 270 00 50ltgt 330 430 02ll 120 215 co 501 32s 43o o2bulln ___________________ ---- -------middot -middot--1425 280 00 503 328 43C 0211

C 430 285 oo 578 328 425 0291 143 s 290 o o s 04 32 s 42 5 o z_a_________________________--_

--To---i9middots oo 504--fj-middoto- 1t25 middoto-zag C l4t5 300 CO 502 330 425 0283

1450 305 oo 5oz 33o 425 ozss___________________________ lt55 310 00 497 330 420 0283

middot 1500 315 OO 499 330 _42C 0285 1505 320 00 496 330 42C 0285----------------

--Tsio 325 o-o---soo 33o 4z-o--ozas 1515 330 00 501 330 42C 0285 1520 335 0002 493 33o 415 o2a______

----1526___341 oomiddot---4~-33l 415 0281 1530 345 oo 493 334 415 0280

__J2~1__3j____~g_ 492 332 415 Q__1_80_________________________ 1540 355 0002 491 33t 415 0273 1545 360 0002 492 330 415 0280 1550 365 G0 4 93 32 8 41 5 0276--------------------------1555 370 oo 489 328 415 0276

C 1600 375 00 489 328 415 0275 1605 380 o o 4 88 33 o 41 s o__2_1-=1--------------------------c-------H io 3a~-middot002 490--ffa 410 f21-

( 1615 390 0002 483 330 410 0212 1620 3c5 oo 487 330 410 0211_______________ 1625 400 co 481 330 410 0274

C 1630 405 0002 481 330 410 0270 1635 410 0~002 487 330 410 027-=)---------------------------1640 415 oo 480 330 405 0270

( 1645 420 0002 4i5 330 4C5 0269 1650 425 0002 481 330 405 0210 ---- -----middot-- ----middotmiddot-middotmiddotmiddot -------------------1655 430 00 463 330 405 026b 1700 435- oo 484 330 405 0265

--~70115 ______ 440 _____ oo 482____330 405 _026_6_____ 446 oo 482 331 405 0266

1715 450 oo 4 77 332 40c o2u 1720 455 oo 4 74 332 40C 02E4 1125 460middot--middotmiddotoo middot 479 n2 40c 0265

1bull 1730 465 00 479 332 40C 02(5 1735 470 00 480 33l 400 02t4_____

--f140 475 co 4 75 n2 4oc 020

middotmiddot-middotmiddotmiddotmiddotmiddot-middotmiddotmiddotmiddot-middotmiddot ----middot-------middotmiddot---middot-------------middotmiddot---------middot-middot--middot--middotmiddot---middot------ --middot----middotmiddot

----------------C

bullbullbullbullbullbull NO OITA TAKE~ _1 QU~STlnNIHL~_CATA

r

131

0 AGC-Zll-3 smiddotczNOX-SUR~u CLASS CHAISER 1976_ AUG 24 -middot-middot middotmiddotmiddot-middot -middot

_CLOCI( _ELASEC ___ OZCNE_ CO ______T_Sl REL HU _ SC2 TlHE TIMEl~INJ IPPI (PPMI (DEG Cl (II IPPMI

-- 1805 -- 500 -- oo --2--331 395 02cl ( 1s10 so oo 472 332 395 ozs6

1815 middot 510 oo 4 70 339 395 0259___________________~----1820- 515 omiddotc middot 69 34 1 39 5 0-~lsi

( 1825 520 oo 469 34l 3gt5 0256 ___1830______ 525i __oo___46S__ 34t t9_5___ o2ss _________________________

1835 530 oo 467 34l 395 0256 ( 1840 535 oo 466 342 395 0254

1845 540 oo 469 342 3S5 0254_________________________ --irngt----5s oo 461 342 iis_____o--fsi

( 1856 551 oo 466 343 395 0255 1900 555 oc 4-oo 341 395 o254~---------1905 560 oo 470 34l 395 0254 1910 565 oo 465 341 395 0252 l 915 570 0 0 4 51 34 bull 1 39bull=5__0ebullc2-5-2__________________________ 1920 575 oo 464 341 395 0249 1925 580 oo 458 34 l 390 0 249

1930 585 oo 45a 341 39o o241____~------------~-------1935 590 oo 465 341 395 0249 1940 595bull middot oo 460 339 390 0~245 1945 600 oo 4ss 339 390 o~2~45__________________________

--C95(---6C5~--o~o 458 34l 39~0middotmiddot-0247 1955 610 oo 461 338 390 0244 2000 615 oo 460 338 390 0-2~4~5_____________________-----

2005 620 00 456 339 39C 0244 ( 2010 625 oo 454 339 390 0245

201 s 630 o 002 4 59 33 9 39 c__o-_=2_4J--------------------------2020 635 00 456 339 39C C245

( 2025 640 0002 453 339 390 0241 2030 645 middot oo 455 339 39o 0241 2015______ 650 ----middoto~--middotmiddot--453 - 33 9middot-middotmiddot 39omiddot o239=------------

C 2041 656 0002 459 339 390 0239 2045 660 0002 459 336 3B5 0238

--2050 - - - 665 -0002 45z -i3~B--3as middot 0231middot-----------( 2055 670 oo 451 339 3ii5 0237

2100 675 oo 451 339 385 0237--2105 680 --oo 44smiddot-----33-9---middot3s-smiddot--o237-- -------middotmiddot-middot--------- - -----

C 2110 685 oo 453 339 365 023 2115 6~o co 44a 339 3as o23~6___ 2120 695 oo 44) 33C 365 0236 ----middot----middotmiddot----

( 2125 700 oo 455 339 335 0232 2130 7os _____oo ______449 ______33 bull ____ 3-a 5 ____ 02 J4_____________________ middot------middotmiddot-----

bullbullbullbullbullbull NO DATA TA~EN ---- DATA DISCARDED 1 0UcSTIONASLE DATA

--------middot-middotmiddot---- middot--middot--middot---------middotmiddotmiddot-middotmiddotmiddot middot-middotmiddotmiddot------ middotmiddot- _________ middot------

132

l [

f

l i

t ~ C- 2 2 -middot 2 - bullj tmiddot- $ VXA- _ Gl~SS C 1~gt ti 1976 H Z -h

lC~ 710 ~IN TO ELAPSfC TIM~

CtCCk tlh~~~e middot_lC1Ji ~l T P f ll ~ Pi l p bull n I ) ( E Cl

middot13s middotc oo middotmiddot s i9 middot 21~0 JQ bull 51 3 C 2145 Le 1c bull 1~- J_a 2 l ~C cc 4 f 21~5 oo ~ ~ ~I~

22middot)0 2 CG 3 middotn0imiddot- middot3middot1 j ~~3 -cc

35 ~c 3 ~- 9 i) C t 3 l~

bc ~ bull ll middot3 - ( 222c 5 l ( c bull 4 2230 55 bullbullbull 1 ~ ~1 2235 middotc middotc ~ QC ~ ~ 1 I 224G C 5 C itbull 3 ~ 7 2~ 5 70 oc ~ 3 I 3L 8

2~5 1smiddotmiddotmiddot oc middotbullbull-i -~ 7 215 FC oc 230C CS 33 S 205 sc 3i 5 231C ~5 CO 440 ~3~4 2315 lCQ 0c____ l)~-__ i~middotzc------imiddotsmiddot~ - u c ibull ~s 2325 l l O oc ~ 4C

2BC ~-9 _____ 41 _ 235 u 3(61

2340 liS bull C C t 34 235 19 Cc middotmiddot------~middot])2350 1 5 bull 0 C bull 3 3 1

2355 l-8bull cc i3lt 33 1 0 l~ ov 43 )31

--middot-s middot-- iSv oomiddot ~31 331 ll 15 6 Oc ~-27 3i~C

C _)-(1 20 -middot iljmiddot oc I 2 2 d 25 17C J i2 32 B 30 _J 1 5 ___9 c_ ~7 G35middot-- 24 3 8 4C 125 oc bull 2i 3225 lCbull __QC 4 2~ - bull n 50 15 middot 3l55 2c i 2 5

l co_ _2 ~ ~21 10 ~ 21c oc bull z I lt1 11 J 21 r bull 4 bull ~middot 6 u______ -middotmiddot_ac o~ _____ it bull ( 120 2~ o~ ~2

15 130 j

middot I 7 tbull 1 J t 1

- --- - 1 1 r -

~-1 1~- SC_ l P)~)

c ~ ~7middot

~3T middotis4middotmiddotmiddot

3 bull 3 ~ ~

3 ~$ )

)

J8

3 J middot

3-3shyJS~ -

3G 3BJ i $

Id i c 3 j

3 3 5

3SC 3 middot-~c bull C _ bull C 3 (~ 3j imiddotbull 3

~ r middot i c

0220 1) 2 H ) bull ( 7

c~J ~ _ 7 G -- 0 u 2 2 gt J22o J2D imiddot

G bull (2 ) 2 ~2 c21 -21 bull 2 l cn Cl2t C 22l middot~ 2 3 7 2 G L t(t ( 2 l middot1 C1219 G~O 16 ) bull 216 0 216 cdmiddot i) bull 15 ~214 ) bull2 t 7 C ll 3 ) bull 13 bull 2l 1 )2 h

( 11 G bull 2 01

133

T

AGC-2l-S SC2-1x~~ltR~-LJ GUSS CHMmiddotWE

J l176 AJG l~ l

ACU 71C MIN 10 ELArsro Il~E

CLrCK EL~PStC CZ~NE cc 1 S l f L i Lbull S1 2 THit rmiddoti ME ( lbulll jmiddotJ ( po11 middot1 ppl(J iCtf~ (~I lPr-q

1 s middot-2smiddotc- 00 middot 4-~ middot 3middot C2CJ 150 255 U C 1-t~l ~L0 155 261 cc 421 32 3 - 200 26~ 4 b 3 _ s --~ l 205CbullC

20 5 2 7 C li bull ~ 4 bull t 2 3 ~~ i C i ~J bull C ~10 ~J_ ObullQ middotmiddot-bull~ rt ) 2bull~2 Jis-middotmiddot 2euro0 0Lo 1ll ~~~bull J 2(

220 2~middot oo 119 j 02c 225 2S0 0 bull1 Ui 3 3 bull 2C 2H i9smiddot cbullmiddotmiddot 4middot11 - l c) 235 JC C~ 46 ]2~~ ~- ( bull r G ~

2o 305 cc 1 _2l 3 020 middotmiddot 2smiddot------ middot 31c oo middot4middot2t 12 bull i 2~-

250 315 CO 416 3l5 C2Qj 255 32J o 4ll ____1~ 3S 5 lbull 2fJ2 3JO 35 OC 407 I i L bull 02 3C5 330 CC 414 3l~3 3S J l bull 2Cmiddot 310 33 cc 4 1J 31i 3 I~ 5 CtCl 31s middot30 cmiddotc middot--middotmiddotmiddot13 313 3S C Si) 20 345 o~ 414 31J 3middot ~) C2C) 325 350 oc 4Js 313 3 0196

330 3jJ -middotcc 410 31i 3( 5 J 14 7 335 360 uC 410 3l2 3 s gt i 1 S6 341 366 00 4C4 312 3 s_ C l_Y 7 3~5 370 GC 4d 3l2 3 - bull s ) 19 I 350 375 oo -t)8 312 S bull 3 L 1 e 355 38C OJ 401 312 _y~ C I l~ 400 3i~ oc middot 4~2 312 3S5 C195 ADS 390 OC 4J 311 ClSi

______41 c ______ ys______ n ~----- ____4c4 _______J_1 3 middots 5 01lt7 415 -tCO CQ 117 311 35 0 i 2 420 4C5 OC 4C 311 ymiddot J] 4 2 5 __________ 4 lO 0 ~ 4 ~_ -~ l I C I~ 43C 415 0bullJ 3S9 31 l 3 bull 5 (ts) 435 420 CC 47 JiI 3 middot - bull ls l

____40 4 __c_ __________ __2___ 31bull i - bull 8~ 445 430 )C 3S3 311 3 middot v1c1middot1 450 435 O~ 3middot3 31 l 3 middotbull n 1 c)

_4_)5 _____ 44~ 0 bull ~ It~_-) bull J 3 middot ~ bull 1 d 500 445 oo 4tl 30c 3 middot C lk ~cs 45G o ~ ~o zc~ 3~ 5 u te 510 1 j j 1 8 middot 55 460 0( 3 C middot ] ) 1_ s2O 405 0c 3 middot I 30 C j gt C l 8

52igt_____~1l __ ) c__________ i bull ~J___j middotmiddot-middotmiddotmiddot- -~ Gbull d J l 7 530 475 Ot 4l 3Ci bull S

4eo J

_middot 3-bull I 3 -d jJ -~ V I H

134

I J

A~C-2l2-6 5ji-NOK~S0KR-U GLASS Cf_cofJ 1976 AUG 25

ADO 710 MIN TO ELAPSED TIME

CLCCK EL1~SED middotrbull C i TS l t rl _ ~ t D c ~ ) (fI)TlH THfPbullIH I )G Cl l-l

55 500 oo 3C 7 I) 5 ) bull ~4 600 507i 3 93 3middot) I 3 middot) ~ J bullbull middot)2

605 51() ) bull 9~ 30 610 15 3 1S 3J 7 r~ ) ~ i 615 520 00 396 30 7 n5 -) bull l 6 620 ~) 5 ~ 0 bull]7 3( 7 -) ~

625 53C t- ~ 0 5gt~2 3iJ 7 ~ gt 630 5~5 oc 69 3~5 )13030 65 5) )0 3 - 3) 7 _ i ~ bull ~l

640 middoto os2-middot - 3 Ji o 7 j ~S -Jmiddot1middot7d 5 1t5 i 645 5~0 oo 391 305 ~ J131middot 650 555 oo ~dd 3G5

655 middotmiddotillf Cmiddot o 3 9J io ~ 7JO scs co 3 sc 3C 705 570 o ---middot-middotmiddotmiddot-nrmiddot middot - -- cmiddot o middot 715 seo Ii GJ2 middot1 middot 5 J l 76

57c 0 s 720 555 C 31 5 ol v J l 73

-- -725 sso o u ~ rmiddot-middot-- 3bull) 5 ~ ( -middot----y~rrr----- middot middotmiddot 730 gtlt3 o Cl2 lt 3C 39G J-l 71

735 6C-O oJn 382 3C5 ~--J bullJ i17o 746 - -ij~ c-002 3 37 3middott1 3middotmiddot~middotT- )itb

( 745 ~10 Omiddot) ll 30~ 3 ~ J Jl3 7$0 615 CJ 3 H l 3J I ------- -75 ~ - middot-- 62 --- o Jo2 ------middot Jaf -il (

( 800 625 Ci J 3 8 l 3 l 3 3 C ]72 805 6~~ G 3 3-t Higt 3 7 C J l 72 810 i 3 5 i iJ ] 1 3middot ) middotmiddotmiddotmiddot middotmiddot1 fj-middotmiddot --

( P15 610 ~ 3) J) - bull 73 20 6t _ c2 32 J bull 1 7 ~2 s 6) 0 bullbull ) i l l 3d l 3 ~I bullO ~ J (1 i

( 830 65 oo 3 l~6 3t3 3- 5 ~j -i1 i)

835 UC vo 3 77 3) 3 i bull 1 7) middota4Cl- bl C bull ) 3 31) 32 middot1- ) s -~ 1C)

a4 s 6n 76 middot 3 i) 3middot ) )ll ao o7 (i0 j gri 32 7 34 ~ a19

middotmiddotmiddotas1 middot---middot middoti8i omiddotmiddoto j o middotmiddotmiddot32ibull ~ t-~--cmiddot middotmiddot i ~middotmiddot 900 6 0 ) 7) ~ 2 l ~ 1- 7 ltJS 6Jj C 0 3 __bull -~ 32 bull 1 ~

-910 ftJ 00 L ~-~bulli

(

f 135

I

r

j I

AGC-222-l S(12-N]~1-St 11~-U GLASS (bull-Ufis 197( Au 25

ADO 710 HIN TO ELAPSEC TIME

CLOC~ fLlr5~J oz~-J~ CJ _TSl P~l 1U-~ _5J2 TIMf TPHlNJ (iPMJ (fgtbull-1 [IJEG Cl [) crPl

915 92~middot

7~ Jmiddot iCS

0 0 OOJ2

- bull lbull) 377

32 i 32

3 C~ --loz- iimiddot1-V O c 169

_925 7 ) 0 o 3 79 37 0 l c- 93) 715 00 3 79 32 7 0 l 6 935 7~C C0 n 32 7 0 l 64 940

i45 75 )

0) 0 0

~ 7_7 3 79

32 bull 8 3 3

middot3 ~ 33

0 Jc~ C lomiddotbull

75 oo 3 7l 32 raquo 330 O l l2 955 7~middotJ GO 3 79 32 a 33 0 0 16-t

middot1000 71 omiddoto bull middot1 33~ 3L 0 o 162 lmiddotl05 7middotC- oo 3 7S 3 bull3 33D O l 62 1010 1015

75 f-Jmiddot

uo 0 o

3 7o 3 7z

3) ~ 3) J

33 c 325

0 l 61 O l cD

1020 7c5 0(1 3 73 33 ltI 325 OHl 1025

-middot-1030 --770 7i5

oomiddotcomiddot

375 3middot middot1a

~-~- i 33 e

325 v _1593_i_-middot 0 bull I Sc 1035 co CG02 3 7) 3] ~ 32 ~ bull l 5j 1041 1045

7 7 0middot~

OD ( o 37S middot3middot~ f

13~ 33 7

3l~middot-z~middot ~- middotmiddotmiddot

Vlt~l c middot 1middot~~8

1050 7lt5 0 bull) 3 71gt 33 7 325 v158 1055 Smiddotjbull oo 3 75 336 3 2 5_ gt-t~-- _

~UES1l~NA8LE DAlA

136

l

Jbull j

---ACC-2~2-emiddotmiddot~c2-NC~-sugttl-1J _______________ --- -middot GLASS CHA-l~EQ 1middot91J liJC 25

-middott tc1-1rsmiddot O- 1100 -lH1STY 1Jf middotmiddot----- bullmiddot-middot -- --middotmiddotmiddotmiddot-- middotmiddotmiddotmiddot------middot-middot-middotmiddot middot- ---- -middotmiddotmiddot -- - bull middot- middot-------middot--middot- -middot co FACTuR l91Z e~ACY 1~1 TECO 14D ~IS ON TH CHl~OE~ FRO~ 11J5 TO 1111 1200 TO l2J5 1~00 TO 1305 1400

----middotmiddotmiddotro-1405middot lgtCJ TC 15J5 11 l01610 ANl lb55 TO 11Cv middotbullbullmiddot-bullmiddotmiddotmiddot- middot------middotmiddotmiddot TECO 140 s~raquoPLlG UTE 112a ILMIN PAN NOT ~EiSURED ~02 AND N~a VALUES NDT C0ARECTEO

---ATT=l5 MP NOS--ffVIE i-C =middotmiddot1130middot PP3C middotmiddot ~=TH~~E middotmiddot-middot29oc middotpamiddotmiddot ------ middot- ---middot-middotmiddotmiddot-middotmiddotmiddotmiddot---middot---middot-middotmiddotmiddotmiddotmiddotmiddot

CLQCK EUSED OZC~ J iJ2-P~N bull1-P~r ca TSl ~El llH Sl2 -T1~-e--1Mtnbull1Nrmiddotmiddotmiddotmiddotr11-r- - HbullJfr-middot middotmiddotr~- --- nirr-TPgt)n- middottoEG middotmiddotci--- ni middotmiddot-middotmiddot middot 1gtsi-1-middot--------------- ------- middotmiddotmiddot----

--middot-ruo c---rv----~i ~if----~----~-i---1middot-n-~1 o 32 lmiddot-middot -rrs 1105 5 OC27 ebullbullbullbull bullbullbullbullbull~ bullbullbullbull~bull l74 3Ja ~iO 0154 1110 10 oc54 a~3a csoa csJc 37bull 3~1 31s o153

---n 15 15middotmiddot--r-T~--t~bullJgtT--az-m------Ti-~-- bull 32 o middotmiddotoT~---------------l 12J 20 ~095 ~bullbullbull ~bullbullbullbullbull bullbullbullbull 373 34l 325 0149 1125 25 o11~ bullbullbullbull bull-bullbullbull H-u- 373 34l 35 014S middot

---rr3middot--middot-middot-middotmiddot3u---rzz-middotnH-----ymiddoti--nmiddotmiddot~---middot-rn-----r--n-smiddot-or~-----( 113s 35 0132 bullbullbullbullbullbull bullbullbullbullbullbull bull~bullbullbullbull 37ti 34l 325 014S

1140 40 0142 bullbullbull--bullbull bullbullbullbullbullbull bullbullubull 373 34l 325 0147-middot----x-Ps- middot----middots--middot -middot middotmiddotJI-z---middot-~i- middot --middoteimiddotn -- flyen----middot- 3-middot--J z----7)___ middotefv-2 ( 11so middotsc 0164 bullbullbullbullbullbull bullbullbullbull~bull bullbullbullbullbullbull J73 343 320 0143

1155 55 0176 bullmiddot 37 334 31-5 014312CO 5u---n1-middotomiddot1gt~-n-nmiddotmiddotmiddotbull--middot_bullmiddot~amiddot-~--nmiddot~--5- --v-1~4-----1205 65 0138 0~21 44~ 0468 371 33 31S 0140 1210 70 0198 middotmiddotmiddot~middotmiddot middot~bull 373 3)5 31J 014012(5 15 20d omiddotn n ~-n- 36l 3~ I 31V--lr~~--------------1220 80 0211 middotmiddotbullbulltbull middotmiddot~middotmiddotmiddot 372 337 310 0138 1226 86 0225 bullbull~bullbullbull bullbullbullbullbull~ bullbullbullbullbullbull 371 ~3S 305 0138

---rz3middotcr----middot- u--middot-rz-zr--nmiddot~bull-bullmiddotbulln--middoti-1f 3 1r--TS-e--rcmiddot~5-middotmiddoto-r3-1235 95 C234 bullbullbullbullbullbull 373 33~ 305 0138 1240 100 0244 u- 3 74 33S 30S 013b_______________

--r-245 105 o~middotmiddotn-~n---~nbull 3lamp-33 l~o7no 12somiddot 110 o2s bullbullbull bullbull 3 10 339 3co 0131 1255 115 021gt bullbullbullbullbullbull bullbullbullbullbullbull bullbullbullbullbullbull 369 33 30C 0136

--ncHr----zu-----zb-middot--tmiddotbullmiddot~-----middotpoundn----i-nu 3 11 - 34 l 30-imiddotmiddot-r-rn~----- ---------~ ( 1305 125 0263 OQZO C370 C390 362 34l 29S 0134

1310 130 0286 366 343 -295 0133--n-rr--rn---rz-middotr~- bullbullbullu 31- 3--z 2s 0133_______________

( 1320 140 0303 bullbullbullbullbullbull 367 343 295 0131 1325 145 0313 bullbullmiddot 310 35~ 295 0132

-----nomiddot----5u----o---Jr~nmiddot-----$--bull bull bull 3cs-middotmiddot-3middot5~ro--onmiddot9~---( 133 s 155 0325 bullbullmiddot ~ 367 345 290 0129

1340 middot 160 0332 bull 370 35b 29() 0129 -------r-s---n-TlT---Thh Ohu hmiddot 3b9 356 29J---omiddot129_---------------

( 1350 170 0144 middotbull~~-middot $ 360 356 235 0129 135S 175 0352 bullbullbull~bullbull bullbull~bullbullbull 36amp 351 2a5 0129

-middot-middot1400middot--middot--1middotpound0middot-----0---i-srmiddotmiddotbull~-yen----middot-middot-r-bull ------y-fi~---7-S-t---za--s-- (fTzz----------------( 1405 185 03b2 OJZ5 C31C 0335 367 357 285 0127

1411 -Ill 0371 364 357 28l 0125--ras-15---middot 0376 ~Tlaquo middotmiddotmiddotmiddotmiddotmiddotmiddot-bull J64 middotmiddotmiddot351 2lt1s o--lZ5~-------------

( l420 zco o3a3 bullbullbullbullbull bullbullbullbullbull bullbullbullbullbullbull 36- 357 zao o1z3 1425 2C5 0-391 bullbullbull bullbullbullbullbullbull bull~ 36 358 250 0125

--middotmiddot-1130 middot-middot-middot2lo oJmiddotu--- --- bullbull middotbull~bullbullbullbull - 3sd--JJ - zaJ middotmiddotmiddot 0-125 ---------( 1435 215 04Jl bull bullbullbullbullbullbull 362 36G 28J 0122

1440 220 0410 middotbullbullabullbull bullbullbullbullbullbull 362 34~ zsJ 0122 middot 145 - 225_ o413- bullbullbullbull --- -middotbullbullbull 362-middotmiddot- ~~-c-middotzao middot 0122=-------------

-----middot-middot--------middot- middot-------------------------

--middotr-so 230 D42~ bullbullbullbullbullbull bullbullbullbullbullbull bullbullbull~bullbull 3~~ 35~ 1= o_120

middotmiddotmiddotmiddotbull middotmiddotbull~~-1455 23~ 042~ bullbullbullbullbull ~ 36t 35ry z1s C 12 I 1500 240 04Z7 bullbullbullbullbullbull bullbullbullbullbull~ bullbullbullbullbull 3bJ J~l 27) o liO

1505 middot middotmiddot-z smiddot-middotmiddotmiddotmiddotmiddotmiddot o 43-s middotmiddotmiddot middot-- middot fy-middot-il6 t -- o Ao ______ 1~ s~ middot l5 Z 7~ ~-- middot- c-11c1

OlJI~ C) ~c f l l() 41JJ Pgt~-tI-i2

OLGlE CJ G S C10 41~ 12 o middot~r1 ~~2-PA~ CC A~ ~rmiddotmiddott~21 Jbull bulli-1 middotpi-~-middotmiddotqN

137 )

_j

j

I ___~ -Irr-=rgt--~ fi -~pJ13 microc w--7 Fria---+ a-bull---middot--=-r ---rc=u- r ~~1-- r-=~l ~~ _ _ ~l~ ~~- _j =middot1 - --1 middot~----=---i ~-~

i 97 7 -- ~

~- bull -_bullbull _ -

-~ middot o- l ~ middot_ _ --c 5

-_

- ~ __ -i1---)

-bullmiddotJ _ deg _~Li--lt Cttf~middot -~J_J Tl Slr-Y~ --- cbull T[C-T~ - l c 7f t C i_ I---lt

l bull - ~ ~ --~ - - _ _-- ---

~i~ gt bull Tftf- iJbull-~_ jl ~~SiF= middot middot1F ~1 _1~-CLD_

SY~ l-~l1~ 24-5-f o --tY VJL c C ~-~PL[ PCRT

--~ __ _] 5 bull1 - ltmiddot_-_middotbull bull --~ ~---r_ r~ -t imiddot c1-~-middot rrc-i c---middot--u1 1Nr =ii - ~ L _ middot L ~ -bullbull bull bull bull l ~ middot~-l_~ st lmiddot ~ ~--t1 iC cbullmiddotbull-_fCT LEil

_-- - __middott_i middot-middot LAT r= ~ ~- T ) r middotmiddot-1 r-- ~ - _- ~ ~- ~ - bull i I 1J 1 middot- 1 ~ j_ t __~i~ r-lbull bullbullXtL-JC nt1

middot -1-bull Ci--1-r bull

_ bull ~ middoti ~ - i) rtJ rmiddot

_J 1rmiddott

1_() l t ~ ) )20

i -~ bull middotmiddotmiddot- ti0

i middot - ___ --~bullrJ

l 111 i 300_

lbull~ 36)

lbtt5 _420 _

l l bull 1t50

2J ~ ~j

63G lJ-i)

vv Cl lgt

n-9C

L~middot--~TICf~S iPPl-1

~-~~--~-~--

c bulln

i t~ -t -~

_middot bull ~

)l J) J

i 3 1 3-J

) l tJ imiddottJ

middot 7 H middot)

-pbullJO 3-JltJ)

11 ri~J )100

il 1-1 3110

ai

9= (( ~ ~ -laquoiry

)- ~ (I

-- bulllt~

yenyen~11

) bull )bull 1)

3gt0

--bull- l -gt 1

bull1 bull 7 il)

3 7 2 1 J

396 Ibullbull 3

1 2 l bull

39 bull -gt

ld d 310 fu l

3d 1t

70 ii 36ltJ nJ

-

( tic

-0~i

iu~

~-

raquoyen) ~

j_-4

i q

I- w

_ ~ I i-1

i ~ bullj J bull j

)_)

ur fj

iJ (bullmiddot1 -)

~ (~ ~ 6 _

l 2 v2 u

126 o t~

t ~ 6 ~ --)bull-1

ltbull ~ -lt

rt gtltljcent-C

~gtltO~

it-~_~ L-J bull 3 12 l

0 - ~middot- imiddot ~- ~ - _ =~ i 1t f 2 3lt -1 bull 451 ~2J 42l l 0 478 ~ ~Jf(l yengtiO ~ 3middotbull 5 t r bull~ ~ i-1 i8 bull U15 6 JJ bull l 356 o~3 fi o 9i5 (ltti v1qgti c-c lltoi1 -11 l

- l - loz-__

i bull bull 5

l ~~ bull - ~ 7

l j bull 3 3- )

lJ bull lt 1 l C

l -t 1 1t 3

14 I t2 bull

lmiddot J 41

1 frac14 3 1t3 0

14 l 423

l iS 46 amp

~ middot~ 45-S

s s

pound 1 5 9

~J ~ ~

- 7

11 flgt~bull-

1- 11

lG _ l bullJ

l l bull f ) 1t t

lbull1 q s~ 6

l J 7 5 2

l O o Jl

tG 5 Jl lt1

11 ~ q6

10 l 303

)9 296

1-)0 323

62 lB e

(I 2 loo

(1 l cl 0

~ -_ l bull) middot ~-

_ 0gt i 1

Jr

rmiddot1 ctmiddottf-

aigt_ti

lUO r - l

loll (11J

1( hlH

l57 (110

~

160l

15lt t l_t

917 )(J -

91 l _-_

d7 3 i

c ~ middotmiddot ~ bullf ~rgt_(

1 Ibullbull 1t 1

1til 103

r 1i 92 lt

- 7 l9 t

3l) H 1middot1 6

4 02 b0 1t

402 804

40 t al l

6lttgto(t

(clE

4 l u 937

4l - 85 3

n4 41gt8

LJd 41o

ijO

9

r -- -- J

i~ middot- --

j _i bull 7 a

bull middot1

r 5 _fj

0 j 2l

0 j

L bull Ob 2

)6

middotbull ) bull 5

2 bull CH J bull i

07 l il

05 t9

o bull l~

0 1 t

_ f - I

PP C tJ

bullJ ~ C j_ 6 )~ 3

L 2 bull 50 5

P2 487

124 ti 3

t 49 o

liS 5JO

12 I 50 8

t2 t9 a

I 2 8 51 4

Ui 31 t

75 ltgt9

76 30 bull

78 H l

------ - -L )-middot _HmiddotrmiddotL r-__7bull=

Vimiddot~~c i-c~

1Y1ffbull

-t 6 7 ~~ g)

4J _ iJ

ltf 3 tt l d

ttfl -2 It

1t6 2 nr

1) 1 l l

middot15 6 274

4 -3

266 tlt

276 16 1

2 7o ll6

160 2( tl

lvi f2

2i6

L-i~bull-L ~~_pound_-- -bull~

-1_ bullbull 1

-Cbullli-

3 7 i l 7

383 d j

1 7 ltl

30 I 2 7o

39 1J

3o7 77

383 72

358 7 _

362 12

35B 4 3

21 7

221 7 l

3_4

~bullyen-- ----bull middot ~-- ~--~-- ~-Ibull_-bull_middot-(~~centbull f f _bull-_-bull ~-~~ --=middot-_- -~-tI ~~--~ middota1rbullbull middot _r~ -lt~lt-bull -_~ - middotbull bulli--e- -~- _ middotmiddotlr---bull

rmiddot=1=- r-~=bull1 l--Jfil1middot--1 rur=-=i -f~w-_a1 ~ _r~- r--ra-c=~ ~ f-1-tliiilllllit ~~ ~~~j bull~~-r--

l-i77 ~~~ 21 --- J- -

) ~ ---

L~~ T9~ _~-~i-J ri~rt~

bullmiddot_

- bull~ ~ l~ 1 101s

Jj 104-=i

(J

115 lcO

l 2t5 1 ~HJ

1345 240

l bull -~ 5 300

l )It 5 360

l t4 5 lt20

17 5 45C

2Cl5 t30

lJ4S ltgtov

ell i omiddotc

middot---middotmiddot rtC _t c

) 0 J 1)

(__ _

C5 l ~j bull bull__

( - bullt-eL

__ ) ftc_

middot- -) 3 15 l

lt)_o j 3

87 o06

~-ii-lt

$igt~((

~~n ~t-gti

e diams U

Gt1

~-q ti 6 ~J3

--~ r-

p C middot_7c _3 l _

bull ~7 3 3_-J - 2f1f

3 i 6_ 753

3l 9 2j

(

laquo 30_ 4 4 1

2$ _5____ ~-~ ~middot (t~

22 3 degdnt

UC

I ~ix

~bull r12

ff4yen

2 r 9u ~middot -~-- -bull 1middot- ~ ---~i 2bullmiddotJ

bull I ~middot 21

bull 2ltZ -

29t 1bull1

_20 ~ ~ nti

268 1a1

2H Bl

298 ~ bulli J

2~3 2~1

ilC J IC

l 72 l 1

75 [

middotbull -

~

middot middot

i ~ (J

bull-~J

~-- 01

1~middot1 lle-1 10j

tlgt~~ gt 111 middot)_middot3-~~middotlc 6(J3 1t 1J 0middothmiddot~

middotLgt7~ li-J3 ltbull=-

middot7lt1o i-_middotJ ~-rt_

S04H bull - j((bull)bullt

tlt~o

-JJ6 )JQf 1cLJJ

ll703 1101

) 1164~ llbfJ

~oc - imiddottI 0~middot1

V _deg J-44 l--r-

rt1 J bull 1 2- ) 12iJJ

f-- i

0

~ -~ _- -K_---middot~-~- --(middotmiddot -middot -middot---=-middot-)~7-- l(~f-~~ _-~- ~~middotgtamp--~ ~ _-1--gt ~ ~--~~~---~bull middot--bullmiddott~~ ____ ~~ J-P~---yen-4middotbullbull--middotmiddot-middot

i UO bullt _ Od_ (middot JJ ~ c C ltgt lj (l bull- N

rmiddot -1middot - bull~ ) l

bullI

I) middotd (middotJ J -~ - ~ middot JI 4 ) 0

~ bullJ ~ Jbull ~ 1 r M

i- t---

I

1 I00 bull lt CC NN 0 -0

lt)1l

middot)

-~ - -300 NN middotbull Cmiddot ii NN S (1- O 0-- ~ r- -

I I

~- rmiddotcshy -1 NJ bull1---1-

J middotshy

ltbull 0 s- bull middotl _ _ middotc o

0 -- j r-I-j r-- _

ru middot

0

~ rmiddotmiddot - lj a)

-J O

I lJ(_ - r- -

~ middot~~- _

r

_ (bull - ~J middot-- -

~ -j

middot -

I

middotmiddotmiddotbullbull I middotbull bull bull

-shyJ middotmiddotbullbull I JI -bull r ) 1 ~- I -

C bullmiddot -bull _ 11

i ) ) )

141

- ~

_

ij (Y

1

l

j t ~

1 l

l i

r t

1 i I

i I

I

i e clf ~~j

i Ii

J --1 c--c- r-middot rJ

llJmiddot t middot C C r-bull

- )

middotmiddot

1J middot

-~ CJ-- bullS- bullbull

middotC - lt ()~--

tJ~-r ~- r bull J)

-r--middot J 1 I ~ ~ - -~ _ _

~

~ middotbull1 r~1 J

middotr

I ~-1bull11 J

)bull ~ --

142

bullbullbullbullbullbull

__

SURROGATE RUN 223-U CLASS CHAMSER 1976 OCT 5

LIGHTS ON 1215 INTENSITY IOOt OF MAXIHU~ 39 CC SAMPLES TAKEN CO FACTJR l9lOl PA~ CALIBq 9 6~ADV 1296 1215 PAN SAMPLE WAS TAKEN AT TbullO TOTAL NON-METHANE

CLOCK ELAPSED TJ~e nx2uaN)

1215 middotomiddot ( 1230 15

124s 30_~ t3bo 45

( 1315 60 1330 75 1345 90

( 1400 1~5 1415 120 143()-middotmiddot 135

C 1445 150 1500 165isismiddot-middot-middot--middotiso 1530 195

1615 1630

---i645 1700 1715

--1730 1745 1800

OZCNC ltPPmiddot~middotmiddot

omiddotmiddoto 0020 q04 0011 00~8

5139 0159 C181

AT 1221 HCbull 2346 PPSC METHANE= 2950 PPB

middotmiddotc~J3middotmiddotmiddotmiddotmiddotmiddotmiddot~J24deg 0222 0)12 0242 011

~1 t 0 M1

O 150 oJ94 005s oo3s OJ28 oJ23 oJ20 0)17 1))15

- omiddot2sgmiddotbullbullo1middot0middotmiddotmiddot 0147 o154 5~53 0022 0081 0276 OJO 0140 0145 546 bullbullbullbullbullbull

N02-PAN ~OX-PAN er PAN _ H(fO 1orM1 11gtPM1 tPPll (PPrl IPPHI

0143 cz1H 5S~ OOCl OC40 o1s1 0212 s75 bullbullbullbullbullbull bullbullbullbullbullbull c200 o2s1 s 15 __ 0000 llt~bull ozca 0237 s12 bullbullbullbullbullbull bullbullbullbullbull C2)0 0214 572 OJll 0063 o194 0214 510 bull~bullbullbullbull o1ss 020s 563 o~14 bullbullbullbullbull~ 0181 0194 561 bullbullbullbullbullbullbullbullbullbullbullbull

cgtbull11) 0195 ~5_7____ 0_1)_15 _______009~ 0157 0176 ~56 M~deg 0161 C16g 552 0021 bull~bullbullbullbull oJ53 ()160 s51

~~~-- -middot -JJtmiddot-middotmiddotmiddotmiddotmiddottfrac12H----middot1middot-middotbullgffr-bull-g ilb----middot-middotmiddot11~------~-~-middotzmiddot

iii5middotmiddotmiddot-- 360 middot middot omiddoti19 oco2middotmiddot c068 middot o069 middot53i 0039 C

-- DATA DISCARDED

OZONE CJSAGE GT OlJ 5~53 PP-IIN OZONE DJSAre GT )gt~ 6466 PPl-N

N02-PAN CJSIGE GT 025 J0 gtPbull-MN

C

(

middot1-bull

(middot middot middot

(

143

240 0337 0012 0124 0131 539 0027 0024 255 0354 OJJ7 0114 0116 543 bullbullbullbullbullbull

middotmiddot210~---middot-middot0middot37-middotmiddot -oSoimiddot--middot-middoto10s o 10g middotsmiddotimiddot - 0~03fmiddot bullbull 265 0393 OJ~5 0099 0101 536 bullbullbullbullbullbull 3JO 041() 0l05 Cl93 0095 5~z -U_9Q11

_____ 3l5 0427 0()05 oomiddotsamiddotmiddot--middotomiddot8f-middots~~-B 330 0445 oaos C081 OORl 535 bullbullbullbullbullbull 345 0462 0007 C074 0075 539 bulllaquobullbullbullbull

TSl REL HUM IOEG Cl Ill

31 610 33I 630 338 630 336 625 336 620 336 61 5 337 610 33il 60 5

_y_o _____ 59 ~ 341 590 34 o 58 5 t bull 2 58 5 343 575 345 575

3t 5_______ 57 0 34 6 56 5 347 SbO 34 s 56 0 349 555 34 9 55 5 34 8 ------- 55 bullo 34I 550

lt 550bullmiddot 54534 55 0

middott--1_r_-0- ~-ur1~_1 ~-m1=-middot cacalJ-aej qr-middot_~=~ f 1r~bull~1 ~ ii~ ~~-lt a -~ -bull-I ------ ----bull----- -- -middot-- --- ------middot-----------

middot-------- ------ - -- -- ----l lt T 1 I~ l ~

LwO(~ATE 223-U-1

USS (i-A3cK lS76 CT 5

----middotmiddotmiddot--------- ------------ ------------------fgtCCP ne1PRATuRE STA3li TY ori POROiiiK-~I-T1isrRuMENT 134~- u~ SA~rLE lJ~fC if~ POOPA~ II 4UP GEHrJF iRCPIC-LCftbullYDE ACETONE _lltJTYAlPEt-YDE ANDMl1Cf8011 C-600 _____

T LUEhE A~J ~-iYL2NE fRCM 3P

cirrr T J tltI 10 l 5 l 112 1215 1230 ll 1t5 1 middotmo 1315 1no lJ45 l 4DO lbull I~ l 3J l bullttgt LJOELLco r [ME tMl -) -12c -43 0 1~ 30 45 oomiddot 75 90 105 120 lJ5 ljj 165

-------middot-------------- ---~--------bull------------ -middot---- ---bull- -- --CONCENTRATIONS IPPB

MfTt-~ ll20 29Su_ _1QI ---- - ____ 2920 middotmiddot---1~L- t 2060 bull t bullbull $V- +- 0

-0fJlfljlP~UC lllO 29~0 )~$ yen 2920 ti -( bullbullbullbull 2B 80 lti

1Tt--f bull~ ld 4b11) bulltn)it middot(c middot~IQmiddot middotmiddot 3u I 21 5 yen_ ~yen -ilgt11$

Pb[ 2b 61 4 550 yen ~~ ~middot ~

bullE Tbulltbull~ _bull~ i middotmiddot--- ~v ~--~~-----~-~~~----___ __~--~_ _~~---~~__at bull9 ____-q~~ ______ a10 ~middot-I~ -gt-~bull $

Cr)(tl((PP8C 34 ~ yen4 17J )) 162 bullbullov lj[ middot ltCETfl~-E ( SPCJPM li 24 ~-~ ~IX $ O icbullbull 423 I)middotmiddot 38i

Pl1 BC 48 ~Ct bull(I bull bullbullbull bullbullbullbull bullierbull~ bullbullbullbull 846 112 bullbullbullbull bullbullyen t

bull QJ~~~tE _____ 4_J___________2_0 _Q~__-~___l)_6____l_o_---18_L_o__L____lt__---_-_~__iJ8 _ _bull_e____laquo_middotmiddot-middot---lo 2_________________ -middotmiddot-

I- P8C 129 bull~bullbull 600 586 567 564 bull gt4b ~

Igt)~gt)~ p~ -P~~E 07 _12 9 12q )iJ~--middot amp~1___-_J4 _____ ~s ~--~-middot~~ ___c_U_-0~ 4C O-ilt bull f igtPBC 21 38 7 387 2bt 195 120 IC fd-- middotmiddotmiddot-l _ I_SJ81JTAIE________________QL_ bullbullbullbull - __ --- middot-~-- -- bullbull ___________ _bull PPBC 04 bullbullbullbull bull bullbull~bull bull bull~~ ~ -bull~bull bullbullbull~ bull9bullbull bullbullbull

Nmiddot-Bur i1E -- 1 5____ 196 l ____ middot--middot-middotmiddot l8lt_____ _____deg _ - ______ 171 ~ 164bullshyPPBC 1 10 790 784 744 bull bullbullbullbull bull b64 bull+bullbull middotbullbull=bull o5

__A_ CETYL~iE__j QI I ____________25__4_~___425___gt1lt-bull__t25 ____bull__lt25_-13lt____i-~L__bull----___l __iof_lt____-----1~2 --- -- --middot --middotmiddot PttC 5o uco aso ~bull 85O aso bull~ bull~bullbullmiddot 02e bullbullbullbull yen~ 1a4

TP~ rs-2-aur c bullE oo C_i _____() 0 _ ____03 -middot---deg-degmiddot----middotQbullO --- _ oo bull bullbull -bulloishy va ~middot~middotshyPPtC oo 32 32 12 oo bull oo bullyenbull 00

-- i S0PENTAIJE____ ---middot-middot --- ___o_ L ____c_J ___ 0_2____gt1lt_bull__-1o_____(lt_______l_bull L__________o____ ~-bullbull___J_l____gtlltbull____U~-----1-L__ PPBC 15 35 4i bullbullbullbull 50 55- middotgtjlmiddot~ bullobull bOiS bull-ttlll

CIS-2-SUTEIE _ JJ__ _ 14 6 ___ __ 14 o ___ _-yen~~~------5 2middot-----~--~ ____l 7-----~bull-~~- bull-laquo~ ~ -- o o ---middot~U----~bullbull - v c PPac oo 592 584 bullbullbullbull 208 68 00 bull oo

_ fi-gtE~TANE ____ _________o D C L_O_bullL_~gttlt______o_l__llt~tt___Q 5---~~---middotmiddotmiddotjlt________-D5 -~----bullbullfltltgtl___lflt__ ______________ -PPBC OO lO 15 15 bullbullbullbull Z5 bull 25 bullbulloi bull bullbullbullbull

2 3-0 iMET_Hll ilU_TAIJ~ ____Q_Q ____ _0_9_____1 lQ_ bull-~-bull- 99 5-~___9JJ____~bull~-bull-middotmiddot-middotmiddot~--- ~-~ __ 84bull 6 --bull~bull----- __ Zt5 __ PPBC OO 652 658 bullbullbullbull 597 559 bullbullbullbull bullbullbullbull bullbullbull 509 gt77

__z_- ETHYI __SJ TE gt E~-- _______Q__Q____l6__2___16 bull 6_bull~---middotlldeg___-1lQ__5gtI-- -------2- ___i)C___tl deg-_JtlltbullL ___JlQ _____________

- _ -~--- bull-------__ _____ __ -----~~ - -_--~--------bull~bullr- t-=~~t~~= _~f~~~~~~~1bull~~~~~frac34lf-~~m~~bull~r~-~-fq~l~-~~~~----~-~~~~r-fltbullbullmiddot -r-middot ~ middotmiddot--bull----~-

bullbull

--

---- -_micro__middot1 _---j--- _- irr I-- ---1~ f~i=lbullaj i---r-J-p---1 --or __ ~ 0 I -lt-cc--l~~f1- ~~middot

1971 lltAR 18 i J Sl~~OGATE 223-li

GlhSS CrA-CR l-76 CCT 5

CL~CK TllE 1015 1132 l~ lL l230 _l245____ DOO____ JHgt l3JO _ lH5 l 400 _ l415 lo30 - llttlttgt l00 fLAPStD TtMEIMl~i -120 -43 0 l 5 30 45 60 75 90 105 120 135 ljO 165

PlllC ____(l(L__i lQ__l)l o____5_____ t2 bull0__~_jltjlt__i)_~~-4___ ___ OO _middot- __gt-yen ____ v C

j(ETALCEhYOE 28 ~~ qbull bullbullbullbull bullbull bull

_ PBC _5_ b___ _ 4~ middot-middot-~ -- bullbull~~ - bullc t _itoo -- ~-- middot - --- bullbullbullbull middotmiddotmiddot -~-- bull -- bullbullbullbull PllJlNALCEHYOF 02 03 bull~ $lt-))(l bulltctll yen bullbullbullbull 26 bullbullbullbull ia ~middotmiddotmiddot middot~llillP_lly

( -~-- (t~---middot Ci _9___ nill-1) -_ ~ ---middot _____ __ middotmiddotmiddot- 7B ~ bullClfc~

ACiTCI-E 07 79lit O bull~middotmiddot ~~ 366 ~ ~9 bull~~-PH 1 (tV~_ 2)bullJ --bull--bull bullmiddot-- --middot~bull---middot-bullbulllaquobull ~bullbullbull___ t(- _____l_l_O __ _--~bull~ __ bull 9 --~-- ltill diams 11 bullbullmiddotmiddotmiddotmiddot--

METHYL ETHYL KETONE 03 1a 82 yen$t9 ljllf-bulliimiddotbull~ bull~middot yenbullbull middot~ bullbullbull middot~middotmiddot ~ Ibullmiddot bullrPc_ i 2 Amiddot 7_2__ ~___ -~_ -~J__~~~ - -bull~----middotmiddot Imiddot----~ yen 32o lClO~ -0

T CltJEN 02 155 16l middotbullCt 144 135 126 bullbullbull deg PPHC l _(____ 1()8 bullyenljlCl lJ 3 ~bulletbull 101_ __--- 94bull L ___ --middot-- 111 87 J _J~~

4ET4-HLENE oo 523 53 l -4t 3fl ~ 219 4(Uit4 rcit U3 -bullljl flt PPBC 0() 418 _4_25 11_ 297 bull~ 23i t l 78 1)jff laquolI ~middotmiddot iHryRtLCEHYlc Ol Ol middot~bullmiddot bullbullbullbull bull yen0~ middot~bull 10 +9~ bullbull

-------middotmiddot-middot-middot--------middot---- PPDC 04 04 ---~- ____ ilit middotmiddot~middot _-I -- 40_ __cent~___ $~ bullbull ~iarabullbull

0 ICHLCHltO UI I-UJbullllgt01f TlbullMJpound oo 3S~ 351 347 J39 iyen0c 1jl$~middot jl7I- QI middotmiddot~ - bull q 3H

ishy _Poec O~Q 355 3_51 347 middotmiddot- ___ 339 ~ --bull~~- -- middot~bull--middot- 3 37 lit~yen j ~ 7 middot--middot -- ICr TCfAL HC PPBC

v ll7ij3 bullbullbull 56471 43268 52043 bullbullbull~ bull~bull~ bullbullbull

__TAL 101-ETHPE _t_C____ _ 583 l24l5 2345Q 00 19495 00 1068l 00 3158 QO l9872 middot 00 oo lldJZ TCfAl SU~fltJGATE 46-~5 zz37 middotomiddot 2307 i-------19-4degici---- i060~- imiddot----- -315 ~a----bullbull --- 1624amiddot ---- ---- i 21- 2

--~---middot-----middotmiddotmiddot------bull middot--middotmiddot------ middot----middotmiddot---middotmiddot-----middot--middot-middot----

bull-bull-bullbull bull-----bull---bull-bull ---r--~ --bull--bull----~bullbull-

- - - - - - - ------ -- ----------middot-bull------middot-middot------middotmiddot-- --

------------------middot-middot-middotmiddot- middot- ----

--------- --------middot-middot - middot----middot - ---- - - -- - - ---- -

-~lf4~--bull_~ ~~~~-~-~_-~~-~ -__~~bull- fF-~~~~~-g-~lT~~~~~~~pound~~etflitlilJ _~~~~flf-middot-bulltrmiddot--middot~- -middot-v--~--~-middot--~~ bull--bull~ ( s-~V __- -- bull bull bull

-~sgtlt-bull=ns-~ 1=_1i l-mc-a-1 __~bullmiddotloii1 ~bullbullcai=r J_t-~~ip7 -= __tJ~ ~ -__ __ j-Diii~I ~ ~~ ~_J IJcSi~~-~ J -=- -

1977 gt1~ ci Si~~C~~7E 223-0 ll~r (~middothPJ~ 1~76 CCT ~

(

CLCCie TJ~E l5l5 150 15 5 1600 1615 __1630 _l 6 4 5 ____ l 7 00 _ 1715 _______ --------middot middot- middot- --------[LAPSEC TMti~l~I 180 (95 2 l ) 225 240 255 270 285 300

CONCENTRATICNS_ PP6)

ME T-it rti 2900 bull bullbullbullbull bull 2Hl0 2880 pcgt~C 21 )J -------____2_810 - _ ___2_880 ________________ ---- -------------------------------

Tipound yen4l231 f~ ~ 203 ~~~ ~~~~ ~ 16 fJP~C 4 7 ir ~dbullflcent ~~$~ 40( 32 2bull~~ ~bull

E Tbullbull4E 78amp middot~lll ~ middotbull~-t 780 4el(( 749 PPH( l i r yenltI~ bull~ bull 7 9 _____ lJU_ ~-~e-~----2_~-~---middot-~tlt_~---middot ~----- -middot------------middot------- middot-- middot------- middotmiddot- -

A(middotfyi_t~~C (PfJPlbullr ) 35tJ 4 bullJ) Jqu~ J~7 ~4bull 3( iJii _ic 7 6 ) ~q (Jc 71 bull Cc~ ~-ii 7(

prmiddotPPE 184 ~ tnmiddoto 10a bullbull bullbull 116 1-~fiC ------- 552____ bull~ _ 540 ___ _itL__ -~---528

PJltbull)micro( bull-s -O l bull 7 tc l4 09 06 )pl)_l~PirC ti 5 l 42 Z l ___ l bull d lll middot~~- bull~~-

l rnu f hf -+--+=bull ittcagtICI middot ~ (I diamsdiamsbull -bullmiddot ~ POtC 4~~--- ~6 irc q ~ -~~-middot~ middot

I- N-~iiT ~E ~4tlllC l ~) 2 6-middot) 15b It 154 (lt l bull4f- lPhC diams (t4lt t~- t~gt-111 62_12_ ---~-lltmiddotbull--middot 01bulli___ yen$ia~_ lI~--- _57~ _ ______ --

deg ~ ACETYlffH ((JIJ~) 40 bull Jjl-C 395 bull 30d bull 373

PfflC ytlbull 806 790_ _l7 fJ____bullbullbullbull ------bullbullbull-bull----1t6 i TRtiS-7-BU_TUiF bullbull-amp oo oo yenbull oo middot~bull ~~middotmiddot oo pmicrolbullC yen~bull o_o ltcbull o_o _____________QJl___bull~-~--------obullo _________ --bull-----

I SOPcIITANE ~-90-~ 13 ~ l3 iU ~ ~~ l6 PP8C __ 65 ~~-~-_____ 6_5 ______~ _____a_v __ vbullbull~-- bullet __9o _____

C I-J-a1Jrrbull1- obullJ 00bull~bull middot~ oo ~middotmiddotmiddot oo middotmiddot~~ bull+bull~PPi3C ~c-~ ~o_ _______ oo ____ ----obullo - 00

N-PEl-ltTANE os o6 bullbullbullbull os bull 01 PPC t-6-bullo middotmiddot-middot 2_5___ ~-bull___ JQ___ bullbull~middot _2 2__ bullbullbull _0l __ ____]_5____ ----------

2l-0111 EThYL B1JT flff Vyen-(-9 -6 6 41(nr(c 122 bullbull(-II- 63 5 PPBC 1tOE-fl 460 Jl(I 4J3 -- ___1s -~bull- bullbullbull middot 3tll

z-~ET~YL e~Tc~E-2 oo 162 166 bull 24 oo bullbullbullbull

(9 7 bulliibull

PPBC____o_o___JU_Q__ijJ__Q______ __ _____120________)J)__ _gtlt__________

ACULCEt-tYOc bull9ic ric 9 Ii PPilC yenyenct -- ~~-middot- __~~bull_ middot-----middot-iiiyen___ ~~ ___ _______ -bull-middotmiddot--~---middot~middotmiddot PIJlICNALCEhYGE $$ bull4~ q bullbullbull 40 vbull bullbullbullbull ~bull 48

PPBC __ -- _ ---middot-bull _____l2J_Q __ L ----- __ lt~4____________ _

-_

--- ~~~~ -----_-~~-~--r----middot~--~ ----~-_____ ~0ltmiddot~bull_bull~~~cmiddotbull=-~~1~~rJ~~lt~~-~~~~yen-9 rr~~~~~~~~~~~~~~bull1~~~-Jf-it~~frac34WMP~~fUffM~~-~~~-~-middotmiddotmiddotmiddot1

bull-L)c~iJgt ~JJJI~ amp=-=-middot f-i~ aa-J-_e__jI micro-i~ismiddot --gtbull____- -=---- _ ~Jr i~~-( ____--__p_f I __rei -~~--1r---- l rbull~~h P~bullwii ~~iiI~

7 SLlt~4F 2pound3-U 177 ~~ ltgt

IJL1)~ C-oYjf-P

i-1 er 5

(LCV TJJ 1~ l~ 1~30 ___ J545 ____ l600____ 16l~ ___ H30_____ H4~---- 1700 ____171- ______ -------------ELAPSED Tl~fl~i~J liJv l95 210 225 240 255 270 285 300

_4CE rbull~ PPiC

--middot~~gt)_

icibullbull _(ot$

lI raquo-1c ----bull er lfrtJ11( yen

_360 ll4

-~-~------- ~~ bullbull deg

-bulliibullbull bullbullbull l(l

_i-HHYl ETHYL lttTC~~C pp_c

~icbull

yen(t )C --~~~ ____ii-------- _9_7_ ~-middot~ ~ 388

~--yen

middot~il$___18 --------------~ 728

--~----------- --- ------- -- - -

TtiE~IE P9rtC

109 763

yen-) ttgtlt-

(c~ laquoY bull 107

1fi - bull

(16JCtt

bullicebull iaibullmiddot bullic(t~

102 7lb

MET-4-Xllf E PPflC

__7 f l V

-middot~~- -- ~$ IF (n~v~

-----bull~~ 12-i ------------gt1lt______ 94_ --000 bullbull~bull bullbull~bull ~ 75L

L ry __ Cf 1 tYf rr~c

) ( ~yen

yen~0$

v(r

bulll- _ iV

~ --r1(

2 z 88

Jcentii

it) ~(

~ ~llf

gtii -2 6 lJ4

u-bull1Lor JffLiJ--uirt-lf PPpoundgtC

~ (I~

~ 330 330

( 1t-4

26 326

v~bull

_____ n2___ ------I) bullbull322 Hl 311

rr~t-L TCTAL

lfC -gt~ ~J~-Y

c iHl~E HC

jjJlt3 494middot3

middotbullbull13393

irbullilr

630 bull~ 34Jq _7_

l2 C5 5 tgtZil1 tilt~bull -- middotmiddot--middot-middot--- U------- __ 4713(___

11770 00 oo l5229 ___

TCTAL St~PC AT~ 49tdiamsbull 3 1330 3 830 ll lt60 455l l166 5 14128

middot---middotmiddotmiddot------

I- ~

~l~-~ ___gt-_____ bullA ___ _9~~--bull ______-~7~~~~tqt1f~~1_4_~tP-amp-i-~ffltW-iff~~~iitt~~laquoFifampoiijiM1l~trt~~ -_ Cl-iII~~~ --v-~ -middot ____ ~yen-

APPENDIX C

Plots of ln so2

vs time for

AGC Runs 216 through 222

bullf

lmiddot1

148

RGC-216-1-3 se2 DARK DECRY 2 RH PURE RIA

C) 1976 JUL 27-28 C) C)

p

I

0 C) _ - 0

ru (I) 0

C)

() ()

() Ce() () () -00197 plusmn 00003 hr

-1

() ()

() () C) ri)[J

~() I

~

C)~c CO(L Q_ CJO()

0CLc o--_(I)

_ (J

CJ I 0 0 (J)

o zo

en

_J~

0 =

I

()

f P1

0 Cl co -- 0I

4 8 TJME

12 CHA)

16 20

CJ 0 CJ

24deg

0 Cl LJ)bull

N -0

ll-

149

I

C)

0 ()

bull

AGC-217-1-2 SC2 LlGHT DECAY 151 RH PURE RIA

(r)0 1976 JUL 30-31 (I)0 (I) 0

0 I ti)

N 0

0 0 LI)

I o - C)E ~ a_ (Lo Oo_

CLo __ r- ru (J I 0

()El U1

0C) Lilzo

_J~ 0 I

D D CI

I

0 0 C) 0

~+------r---------------------------+~ltil0 50 100 150 200 250 30P

I TIME (HA)

150

RGC-218-1-3 se2 DARK DECAY 40 RH PURE AIR

0 tO

1976 RUG 4 O)

f I

c

I

C)

r C)

a N-

-1-00327 plusmn 00002 hr

(I

I

0

c co

bull

C) (Jr ~

0~ --L CL CL CLI o_g

(J

(J E

0 en en

0 co

zro CJ _J~ 0

a

~ ~ ~-i------------------------------------~-- o 2 4 s a 1o 12deg I TIME (HR)

151

RGC-218-7-9 se2 LT DECRY 401 RH PURE AIR

C) 1976 AUG 5 C)

CD

C) Cl Q-0 C)

0 (J

I

-00830 plusmn 00005 hr-l

CI (J I

~ (f1

Cl Cl CD (J

I

CJ 0 (I 0

a -(D

bull 0

oshyNE -a ca

-

(J

0 en

0 (I) 0 0

C) -

W O

-r---------------------r------------------~W 0

0 2 4 6 8 10 I TIME (HAl

152

r-

i]1

l _

middot

AGC 219-1-5 i 5~2 DARK DECAY 80 RH~1

PURE AIR 1976 AUG 16-17i 0

-middot 0

f 71 l

l ii gj

I

0- U)

CJ

I i I IC)

0

f II) i

r-- l I

~-- -~ o_ Oa_I ~ j(l g - r- I ~

- middot -00689 plusmn 00004 hr-l Ibull t 7 I (Ji ~ i

~] 0 l_ zo l~~

_J~ - iIu i _E I C

i 0 0

I I~- - I(J

I

-

() Ifr

I I

fl L

CJC)

~ 10bullq er [

C)

~------------------------------r------ N

I (j 4 8 12 16 20 24deg

TIME fHRl ~ Q

153

l

RGC-220-1-2 se2 DARK DECRY ijQ RH (jZCJNE-PRCPENE

ro0 1976 AUG 19 tO0 C) t

~~ r~I I

i (

c

-l a

0f

L 0 C

(J

-- ~I ()f c 7

~

()n

l c co

~ CI 0 C) () o

(j() () -poundo

Q_ Q_

(X)(1 I

( z (middot

(J_Jo (J0

=J ~h 0~ r (I)

()() (J -I 0ePgt~

()efJ(JJ 0 0 ~ (JLI)

- ~~()

~ () lt() lt()

0 ()yen ~ o ~ a

~-----------------r----------------~----~~-G 1 2 3 4 5 6deg

I TIME (HR)

154

AGC-22O 00-05 H~UA5 502 CPRk DECAY 401 RH C2l3r~E-PRCJPENE

0 197S AlJG 19 C)

0 bull 7

I I

l CD

I

~J r ~7 Q_

0 _

~I ru- J 81 en

z -1c

tO-c c ru

t =I

+--------------------6 00

I 0 10 020 030

TIME (H AJ

a tO (I)

bull 0

ti (I)

bull ti

--- 0

(j

0 cn

C)

Ol a CJ

0 lO

155 )

AGC-220 1 75-50 HQURSSD2 DARK DECAY 401 AH D2DNE-PR()PENE

r-0 1976 AUG 19 Lf)(P (I()

I ro 0 0 J

I

0 J N bull0 0J-J

c CL CL ~

0 tO

CJ r D ~ Cf) I Cl

0 -a z

CI-1o () CI (J[J

U) oO en-I

()()

middot~ c CD () ()1)

bull ~ ()-I 0~

(J0 CJ0

co eI -t 60 2LJO 320 400 480 560 6 4ij

I - 0TJME (HA)

156

RGC-221-1-2 5~2 DARK DECAY 40 RH ADD ~2~NE 080 HRS

co 1976 AUG 20 If)

(D r 0 0

I 0 D r 0

r CJ) Cl

I

0 D

I I

Qj I

-J 71

v 00 100 200 300 4 00 500

C)

rO

0 ~ (L

CL-

TJME fHASl

157 j

-

-003009 plusmn 000008 hr-l

~

RGC-222-1-7 rr

~ 1

l If

t f

t

l [

r l_

~ ti

1c l

L

Q

1 ~

a

[J ~ I

-

IL

S02 DARK DECRY_ 401 RH SURR(jGHTE-N(jX

00 1976 AUG 24-25 30 0 r

~1 iI

0

~1I

0 (J (tl

t 0 CI-I

-- -~ ~ o_ aa_g oO -r

(Jr - (J -I OCJ

0~ en(1

01 zc --deg-I

0 C) 0co -tO

I 0

Ul

-(

~1 -

(I 0 s 10 15 20 25 300 I TI ME (HRJ

158

PG f-2--Jc_~ __ Q _ --

se2 LIGHT OECHl 30Z AH SUAr-rCRTE-NQX

CI0 w 1976 AUG 25 r-r- -bull l

71 rol gj 0

-=f I I

()()

0

r ---= ~ oa_ a

(j

0

~ (1

1- bull middot-0

() tD

al

~~ i

~I j

1 ()

0 ZtP J~

I

I

-00574 plusmn 00007 hr-l

O ~ 0

~-t-------------------------------------~~~ ~o 1 2 3 4 s 6deg

TIME (HR)

159

I

Page 8: Report: 1977-05-00 (Part 2) Chemical Consequences of Air

rl

i

8 ~

ct il

Introduction

During the last six years the major role of the hydroxyl radical (OH) in atmospheric chemistry and photochemical air pollution has been recognized1-7 and kinetic data for the reshyaction of OH with both organic and inorganic species have increased substantially8 However there are currently no published rate constant determinations for the reaction of OH with ketones chloroethenes or any of the naturally occurring hydrocarbons such as the nionoterpenes Such rate constant data for the reaction of OH with these three classes of com-middot pounds would be useful in part because of their increasing importance for modeling the atmospheric processes occurring both in urban and rural atmospheres Specifically ketones and chlorinated hydrocarbons are components of commercial solvents910 Both tri- and tetrachloroethene have been obshyserved in the troposphere at part per trillion (ppt) concenshytrations of lt511 and 20 ppt1112 respectively while methyl ethyl ketone has been observed at concentrations of 1-6 parts per billion (ppb)13 Monoterpene hydrocarbons have been shown to be present in the atmosphere with source strengths of millions of tons annually14 Thus Rasmussen1516 and coshyworkers have estimated that on an individual basis such naturally occurring hydrocarbons have ambient concentrashytions in the low ppb range and are largely responsible for the blue haze occurring in certain forested areas 17

This paper describes an extension of our recent experiments in which an environmental chamber has been employed to obtain relative rate constants for the gas phase reaction of the hydroxyl radical with a series of hydrocarbons1819 In this case we report data for the reaction of OH with three ketones two chloroethenes and three monoterpene hydrocarbons using isobutene as a reference compound

bullExperimental Section

The experimental methods and procedures employed have been described in detail e1Rewhere1819 and are only briefly summarized here Irradiations of the hydrocarbon-NO_-air system were carried out in a Pyrex chamber20 of approxishymately 64001 volume equipped with externally mounted

tteprmteo _rrom me urna1 I tnys1ca1 ~em1suy liU 1_01_ l l~ m1f Copyright 1976 by the American Chemical Society and reprinted by perm1ss10n of the copyright owner

Relative Rate Constants for the Reaction of the Hydroxyl Radical with

Selected Ketones Chloroethenes and Monoterpene Hydrocarbons

Arthur M Winer Alan C Lloyd Karen R Darnall and James N Pitts Jrbull

Statewide Air Pollution Research Center University of California Riverside California 92502 (Received January 30 1976)

Publication costs assisted by the University of California Riverside

The relative rates of disappearance of three monoterpmiddotene hydrocarbons two chloroethenes and three alishyphatic ketones were measured in an environmental chamber under simulated atmospheric conditions at 305 middot plusmn 2 K The observed rates of disappearance were used to derive relative rates of reaction of these organic compounds with the hydroxyl radical (OH) on the previously validated basis that OH is the species domishynantly responsible for the hydrocarbon disappearance under the experimental conditions employed Absoshylute rate constants obtained from the relative values using the published rate constant for OH + isobutene (305 X 1010 M-1s-1) are (k X 10-10 M-1s-1) o-pinene 35 plusmn 05 B-pinene 41 plusmn 06 d-limonene 90 plusmn 14 methyl ethyl ketone 020 plusmn 006 methyl isobutyl ketone 09 plusmn 03 diisobutyl ketone 15 plusmn 05 trichloshyroethene 027 plusmn 008 tetrachloroethene 013 plusmn 004 No previous determinations of these rate constants have been found in the literature Rate constants for an additional nine monoterpene hydrocarbons have been derived from data recently published by Grimsrud Westberg and Rasmussen

Sylvania 40-BL fluorescent lamps whose spectral distribution has been reported elsewhere21 (photon flux at 300 nm is apshyproximately 1 of the photon flux maximum at 360 nm) The light intensity measured as the rate of NO2 photolysis in nishytrogen22 k1 was approximately 04 min-1bull All gaseous reacshytants were injected into pure matrix air23in the chamber using 100-ml precision bore syringes Mixtures of the liquid reacshytants were injected using micropipettes During irradiation the chamber temperature was maintained at 305 plusmn 2 K

Alkene terpene and ketone concentrations were measured by gas chromatography (GC) with flame ionization detection (FID) using the columns and techniques developed by Steshyphens and Burleson2425 The chloroethenes were also monishytored with GC(FID) using a 10 ft X frac34instainless steel column packed with 10 Carbowax 600 on C22 Firebrick (100110 mesh) Ozone26 was monitored by means of ultraviolet abshysorption (Dasibi Model 1003 analyzer) carbon monoxide by gas chromatography (Beckman 6800 air quality analyzer) and NO-NOrNO by the chemiluminescent reaction of NO with ozone (TECO Model 14B)

The initial concentrations of reactants are shown in Table I In addition to these compounds ethene (20-28 ppb) ethane (48-61 ppb) acetylene (25-37 ppb) propane (13-15 ppb) and variable concentrations of formaldehyde (16-134 ppb) acshyetaldehyde (0-7 ppb) and acetone (3-19 ppb) were present Initial concentrations in these experiments were 1200-2100 ppb C of total nonmethane hydrocarbons 058 ppm of NO (with an NOvNOx ratio of005-010) 5 ppm of CO and 2900 ppb of methane together with water vapor at 50 relative humidity Replicate experiments were carried out in which this mixture was irradiated for 2-3 h with continuous analysis of inorganic species analysis of hydrocarbons every 15 min and analysis of monoterpenes chloroethenes and ketones every middot30 min

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilution rate (12 per hour) from the observed hydrocarbon disappearance rate The HCNO and NONO2 ratios were chosen to delay the forshymation of ozone and ozone was not detected during the irra-

The Journal of Physical Chemistry Vol 80 No 14 1976

65

i

1636

TABLE I Rates of Disappearance and Rate Constantsa for Selected Ketones Chloroethenes and Monoterpene Hydrocarbons at 1 atm in Air at 305 plusmn 2 K

middot Relative Initial rate of concn disap- koH0 Mmiddot

Compound ppb pearance smiddotbull X 10middot10

C

A M Winer A_ C Lloyd K R Darnall and J N Pitts

100-------~-------r-------- _eo___J-__

--~bull middot METHYL ETHYL KETONE 60

~ r-----__ g 2o+---__ ~--------t5 -- __ middot METHYL ISOBUTYL KETONE

u bull --------8 - middot---- 0 10 -- DIISOBUTYL KETONE ~ a

~ 6 ~bull ISOBUTENE

0 05 10 15 20 HOURS OF IRRADIATION

Figure 1 Concentrations of ketones (plotted on a logarithmic scale) during 2-h photolysis of HC-NO mixture in air at 305 plusmn 2 Kand 1 atm

-60

-~ ~-- I - -~ 40bull __ middot---

~ ~ __ ------~ 2 ----_ middot-middot- ~20~ _____ ISOBUTENE

~ ----- middot---0 bull bull

~ bull -~ a-PINENE

z 10 ---8 8 bull --

~6 - --

ll d-LIMONENE e-PINENE (D

0 4~----__---_________J_~_ 0 2 3

HOURS OF IRRADIATION

Figure 2 Concentrations of monoterpene hydrocarbons (plotted on a logarithmic scale) during 3-h photolysis of HC-NO mixture in air at 305 plusmn 2 K and 1 atm

X 106 radicals cm-3 using the observed rates of isobutene disappearance (corrected for dilution) and the previously determined rate constant for OH + isobutene35These con-

centrations are of the same order as those observed directly 32 36 37in ambient air31

Results and Discussion

Typical rates of disappearance observed during a 2-h irrashydiation of the three ketones and 3-h irradiations of the three monoterpene hydrocarbons and the two chloroethenes are shown in Figures 1 2 and 3 respectively Isobutene was used as the reference compound (and is included in each figure) rather than n-butane which was used in our previous studshyies1819 because its reactivity was closer to that of the terpenes and its rate of decay could be measured more accurately in our system In addition the ratio of k0Hlk0a for isobutene is greater3235 than that for any of the other olefi ns studied thus minimizing any contribution to the disappearance rate due to reaction with ozone Table I gives the disappearance rates

66

lsobuene Prop-ne cis-2-Butene Methyl ethyl

ketore Methyl isobutyl

ktgttone Diisobutyl ketone o-Pinene 3-Pinene d-Limonene frichloroethene Tetrachloroethene

17-20 5-7 7-8

50-100

20-70

20-32 10-20 10-20 10-20 41-161 14-88

10 049 122 007

03

05 114 133 295 0088 0044

305 plusmn 031 149 plusmn 022 372 plusmn 056 020 plusmn 006

09 plusmn 03

15 plusmn 05

a Placed on an absolute basis using 305 X 10 0

OH isobutene from ref 35 b The indicated error limits are plusmn 15 except in the case of the chloroethenes and ketones for which they are plusmn 30 These represent the estimated overall error limits and include both experimental errors and uncertainties which may occur in assuming that hydroshycarbon disappearance is due solely to reaction with OH

diation period except in the case of one experiment for which a small correction for the loss of hydrocarbon due to reaction with ozone was applied to the alkene disappearance rates

In order to obtain additional data (at lower OH concen- trations) to correct for the concurrent photolysis of the ketones as discussed below irradiations of a mixture of ketones and isobotene were carried out In these experiments NO CO and other hydrocarbons were not added and under these conditions relatively low concentrations of OH ( lt5 X 105 radicals cm-3) were obtained

Hydroxyl Radical Source in this System As discussed previously19 the major sources of OH and its precursors in our experimental system are probably the reactions452728

NO + N02 + H20 plusmn 2HONO (1)

H02 + N02 - HONO + 02 (2)

HONO + hv (290-410 nm) - OH + NO (3)

H02+NO--OH+N02 (4)

The first reaction is now thought to occur slowly homogeshyneously29 but its rate is probably significantly faster when the reaction is catalyzed by surfaces Thus nitrous acid has been observed in a chamber study of simulated atmospheres carried out in our laboratory30 while direct evidence for formation of OH radicals in an environmental chamber has been proshy

32vided recently by Niki Weinstock and co-workers31

Reaction 4 of major importance provides a further source 34of the OH radical H02 can be formed in air33 by any

mechanism producing H atoms or formyl radicals (eg formaldehyde photolysis) via the reactions

H + 02+ M-H02 +M (5)

HCO + 02 - H02 + CO (6)

Thus any mechanism producing H02 in our system is also a means of furnishing OH radicals via reaction 4

The concentration of OH radicals present during these irshyradiated HC-NO experiments was calculated to be (14-35)

The Journal of Physical Chemistry Vol 80 No 14 1976

348 plusmn 052 406 plusmn 061 900 plusmn 135 027 plusmn 008 013 plusmn 004

M-1 s-bull for

OH Radical Reaction with Selected Hydrocarbons

50------------~----~--

-middot---middot TRICHLOROETHENE

bull TETRACHLOROETHENE ---middot

IOloz--------l--------l2-----1-3---

HOURS OF I RRAOIATION

Fgure 3 Concentrations of chloroethenes (plotted on a logarithmic scale) during 3-h photolysis of HC-NOx mixture in air at 305 plusmn 2 Kand 1 atm

l (corrected for dilution) for these reactants relative to that for isobutene based on data for the three separate experiments for monoterpenes and four separate experiments for methyl

t isobutyl and diisobutyl ketone and chloroethenes Methyll ethyl ketone was present in all experiments

Employing the fact that a range of OH concentrations (20 X 105-35 X 106 radicals cm-3) was observed in these experishy

[ ments corrections to the measured rates of disappearance of the ketones were made for the possible small contribution

middotfrom photolysis of these compounds These corrections were made in the following manner The observed rate of disapshypearance ofa ketone is given by

d ln (ketone]dt = kK[OH] + khv (7)

where kK and khv are the rate constants for reaction with OH and photolysis respectively The isobutene disappearance rate is controlled solely by reaction with OH hence

[OH] =d In [isobutene] (8)dt ks

where kB is the rate constant for reaction of OH with isobushytene Thus substituting for [OH] in eq 7

d In [ketone] _ kK d In [isobutene] dt - kiB dt + kh (9)

Based on eq 9 the relative rates of ketone disappearance were determined from the slopes of plots of d In [ketone]dt vs d ln [isobutene]dt The intercepts of these plots gave the rate constants for photolysis For methyl ethyl methyl isobutyl and diisobutyl ketone the ratios k Kfk iB were 007 03 and 05 respectively and the photolysis rate constants khv were 0007 0014 and 025 h-1 respectively

On the basis that the OH radical is the species dominantly responsible for the hydrocarbon depletion during the 2- or 3-h irradiations (as discussed in detail in our earliermiddotpapers)1819 absolute rate constants were derived from the relative rates of disappearance using Atkinson and Pitts35 value of (305 plusmn 031) X 1010 M-1s-1for the reaction of OH with isobutene These results are shown in Table I It should be noted that the ratio of rate constants (05 and 12 respectively) obtained here for propene and cis-2-butene relative to isobutene are in exshycellent agreement with the ratios obtained by Atkinson and Pitts (05 and 11 respectively)35

1637

Ketones To our knowledge the data presented here repshyresent the first experimental determination of rate constants for the reaction of the OH radical with any ketones in the gas phase The only literature value for ketones is an estimated rate constant of 21 X 109 M-1s-1for the reaction of OH with methyl ethyl ketone which was made by Demerjian Kerr and Calvert5 on a thermochemical basis This value is in remarkshyably good agreement with the experimental value obtained here (20 X 109 M-1 s-1) middot

The rate constants for the reaction of OH with the two other ketones reported here are significantly larger than that for methyl ethyl ketone Thus the rate constant for diisobutyl ketone is about the same as that for OH+ propeneB1935 The dominant mode of reaction of OH with ketones is expected to be one of hydrogen abstraction This is consistent with the increased rate constant in going from methyl ethyl ketone to diisobutyl ketone reflecting a weaker C-H bond strength in going to more highly substituted ketone

Acetone is relatively stable under conditions employed in our photooxidation studies and consequently the rate conshystant for OH + acetone was not measured Based on the fact that the C-H bond strength in acetone (98 kcal) is 6 kcal stronger than that for methyl ethyl ketone (92 kcal) one would e~pect OH to react significantly slower with acetone than with methyl ethyl ketone

Chloroethenes Rate constants for the gas phase reactions of OH with tri- and tetrachloroethene (C2HC3 and C2CI4

respectively) have not been reported previously The rat constants found in this study are 05 and 025 respectively of the rate constant for OH + C2Hi19 This difference in reshyactivity for the chloro-substituted ethenes and ethene is consistent with the results of Sanhueza and Heicklen38-40 who reported that the rates of reaction of 0(3P) with C2HC13and C2C4 were the same and were both a factor of 10 less than that for the reaction of 0(3P) with ethene

Our results show that trichloroethene is mor~ reactive with respect to attack by OH than tetrachloroethene This is in agreement with the results ofLissi41 for CH30 reactions and Franklin et al42 for CI atom reactions with these compounds These workers found relative rates for attack on C2HC3 and C2C4 of 22 and 26 for CH30 and Cl respectively compared to 20 for OH as found in the present study Gay et aI43 reshycently reported results from a photooxidation study of chloc roethenes which while not directly comparable to the present study due to the presence of substantial concentrations of ozone showed that C2HCI3 disappeared more rapidly than C2Cl4 (near the beginning of their irradiations when ozone concentrations were relatively low the ratio of the rates of disappearance was ~2)

Since addition is likely to be the primary reaction pathway for attack by OH the relative reactivity of C2H4 C2HCia and C2Cl4 should reflect the relative magnitudes of the ionization potentials of these molecules which are 1066 948 and 934 eV respectively Our results are consistent with this trend

Monoterpene Hydrocarbons The terpenes experimentally investigated were a-pinene (I) 1-pinene (II) and d-limonene (III) The detection limit for ozone in these experiments was

XI) xD -0-lt II III

~1 ppb and since no ozone was detected during irradiations of the terpenes an upper limit to the contribution due to reshyaction with ozone to the observed rates of terpene disap-

The Journal of Physical Chemistry Vol 80 No 14 1976

67

1638

TABLE II Reactivity of Selected Monoterpenes with O(P) 0

3 and OH

Rate constant M-1 s- 1

Compound O(P)l 03 OHe

o-Pinene 160 plusmn 006 20 X 105 b 35x10 0

X 10 0 10 X 105c 88 X l0~d

J-Pinene 151 ~ 006 22 X l0bulld 41 X 10 0

X 10 0

d-Limonene 650 plusmn 052 39 x 105 d 90 X 10 0

X 10 0

a Reference 49 b Reference 48 c Reference 45 d Referbull ence 16 e This work

pearance can be calculated Thus assuming an ozone conshycentration of 10 ppb and using published rate constants for the reaction of ozone with the terpenes1643-45 an upper limit of 7 of the overall disappearance rate is obtained for the case of d-limonene (the worst case) at the lowest OH concentration present in these experiments (14 X 106radicals cm-3)

l It is interesting to note that the rate constant 37 X 1010

M- 1 s-1 obtained in this study for OH + cis-2-butene a component in the hydrocarbon mix (Table I) used in this set of experiments is in good agreement with the values of 32 X

l 1010 and 37 X 1010 M-1 s-1 obtained by Atkinson and Pitts35 and Morris and Niki46 respectively although our value is somewhat higher than the value of 26 X 1010 M-1 s-1obtained by Fischer et al47 in these three studies the rate constant was r determined from elementary reaction measurements

Table I shows the absolute rate constant values obtained for the terpenes Clearly these natural hydrocarbons react very rapidly with OH For example a-pinene reacts about 3 X 105 times faster with OH than with ozone1648 Thus for an ozone concentration of 3 X 1012 molecules cm-3 (012 ppm) and an OH concentration of 107 radicals cm-3 the rates of disappearance of a-pinene due to reaction with 0 3 and OH respectively will be essentially equal A comparison of the rates of the three terpenes with O(3P) 0 3 and OH is given in Table 1116bull4546 Within the experimental errors for the rate constants for OH + a- and 6-pinene the trend observed for reaction with OH is the same as that observed for reaction with O(3P) and 03

Grimsrud Westberg and Rasmussen (GWR)16 have reshyported the relative rates of photooxidation of a series of monoterpene hydrocarbons using mixtures of 10 ppb of the monoterpene and 7 ppb of nitric oxide which were irradiated for periods ranging between 60 and 120 min Making the rsasonable assumption that as in the case of our studies OH is the major species depleting the hydrccarbon in their exshyperiments then a series of rate constants relative to isobutene (which was included in the GWR study) can be generated in the same manner as described above The data from GWR are given in T-able III relative to isobutene = 10

Considering the- uncertainties involved in this approach (including a lack of knowledge of the exact ozone concentrashytions formed in the experiments of GWR) the agreement between our results for the reaction of OH with a- and 6-pinene and d-limonene and those shown in the fourth column of Table III is quite good and except in the case of a-pinene well within the estimated experimental uncertainty for our determinations The fact that our value of OH + d-limonene is only slightly higher than GWR suggests that little or no 03 was formed in their experiments since there was less than 1 ppb formed during our irradiations

The Journal of Physical Chemistry Vol 80 No 14 1976

A M Winer A C Lloyd K A Darnall and J N Pitts

TABLE III Relative Reaction Rates of Monoterpene Hydrocarbons and Rate Constantsl for Their Reaction with the OH Radical Based on Data from Grimsrud Westberg and Rasmussen (Ref 16)

Rel koH M-bull Hydrocarbon Structure reactivity s-bull X 10-10

p-Menthane 013 040-0-lt p-Cymene 030 092 (078 -0-lt plusmn 016)b

Isobutene )= 10 305

~Pinene 13 40 (41 gtQ) plusmn 06)C

Isoprene 155 47 (46 ~ plusmn 0 9)d

o-Pinene 15s 47 (35 plusmn 05)C~

3-Carene 17 52-cl-~Phellandrene 23 70-0-lt Carvomenthene 25 76-0-lt d-Limonene 29 88 (90-0-lt plusmn 14)C

Dihydromyrcene 36 101~ Myrcene 45 137~ cis-Ocimene 63 192~

a Placed on an absolute basis using 305 x 10 0 M- 1 s-bull for OH+ isobutene from ref 35 b For p-ethyltoluene which is structurally similar (ref 19) c Present work (see Table II) d For 13-butadiene which is structurally similar (ref 19)

A further check on the validity of using the results of Grimsrud Westberg and Rasmussen16 to obtain OH rate constant data is provided by the values derived for the reacshytion of OH with p-cymene and isoprene p-Cymene is structurally very similar to p-ethyltoluene and hence the OH rate constants for these two compounds should be comparable In fact this is the case with the value for OH+ p-cymene of 91 X 109 M-1 s-1 derived from the data of GWR being very close to that obtained for OH+ p-ethyltoluene 78 X 109 M-1

s-1 in our previous study19 Likewise isoprene is structurally similar to 13-butadiene and the rate constant derived for isoprene of 47 X 1010 M-1 s-1 is consistent with that preshyviously measured19 for OH+ 13-butadiene of 46 X 1010 M-1

s-1 On the basis of these comparisons it appears valid to use the photooxidation data of Grimsrud Westberg and Rasshymussen16 to obtain OH rate constant data for the series of monoterpenes which they investigated

Conclusion

Relative rate constants have been experimentally detershymined for the reaction of OH with eight compounds and these rate constants have been placed on an absolute basis using the literature value for the rate constant for OH + isobutene35

In the same manner rate constants for the reaction of OH with nine additional compounds (monoterpene hydrocarbons) for

68

OH Radical Reaction with Selected Hydrocarbons

which no previous rate constants are available have been deshyrived from data recently published by Grimsrud Westberg and Rasmussen16

The comparatively large rate constants obtained for the ketones and monoterpene hydrocarbons indicate that they will be quite reactive in the troposphere The implications for photochemical oxidant control strategies of the chemical reshyactivity of the ketones chloroethenes and terpenes are disshycussed in detail elsewhere5051

Acknowledgments The authors gratefully acknowledge the helpful comments of Drs R Atkinson and E R Stephens during the preparation of this manuscript G Vogelaar and F Burleson for the gas chromatographic analyses and W D Long for valuable assistance in conducting the chamber exshyperiments

This work was supported in part by the California Air Reshysources Board (Contract No 5-385) and the National Science Foundation-RANN (Grant No AEN73-02904-A02) The contents do not necessarily reflect the views and policies of the California Air Resources Board or the National Science Foundation-RANN nor does mention of trade names or commercial products constitute endorsement or recommenshydation for use

References and Notes

(1) J Heicklen K Westberg and N Cohen Publication No 114-69 Center for Air Environmental Studies Pennsylvania State University University Park Pa 1969

(2) D H Stedman E D Morris Jr E E Daby H Niki and B Weinstock presented at the 160th National Meeting of the American Chemical Society Chicago Ill Sept 14-18 1970

(3) B Weinstock E E Daby and H Niki Discussion on Paper Presented by E R Stephens in Chemical Reactions in Urban Atmospheres C S Tuesday Ed Elsevier New York NY 1971 pp 54-55

(4) H Niki E E Daby and B Weinstock Adv Chem Ser No 113 16 (1972) (5) K L Demerjian J A Kerr and J G Calvert Advances in Environmental

Science and Technology Vol 4 Wiley-lntersclence New York NY 1974 p 1

(6) H Levy 11 Advances in Photochemistry Vol 9 Wiley-ln1erscience New York NY 1974 p 1

(7) S C Wofsy and M B McElroy Can J Chembull 52 1582 (1974) (8) R F Hampson Jr and D Garvin Ed Chemical Kinetic and Photoshy

chemical Data for Modeling Atmospheric Chemistry NBS Technical Note No 866 June 1975

(9) A Levy and S E Miller Final Technical Report on the Role of Solvents in Photochemical Smog Formation National Paint Varnish and Lacquer Association Washington DC 1970

( 10) M F Brunelle JE Dickinson and W J Hamming Effectiveness of Orshyganic Solvents in Photochemical Smog Formation Solvent Project Final Report County of Los Angeles Air Pollution Control District July 1966

(11) E P Grimsrud and R A Rasmussen Atmos Environ 9 1014 (1975) (12) J E Lovelock Nature (London) 252 292 (1974) (13) E R Stephens and F A Burleson private communication of unpublished

data (14) R A Rasmussen and F W Went Proc Natl Acad Sci USA 53215

(1965) R A Rasmussen J Air Polut Control Assoc 22537 (1972) (15) R A Rasmussen and M W Holdren Analysis of Cs to C 10 Hydrocarbons

in Rural Atmospheres J Air Pollut Control Assoc Paper no 72-19 presented at 65th Annual Meeting (June 1972)

(16) E P Grimsrud H H Westberg and R A Rasmussen Atmospheric Reshyactivity of Monoterpene Hydrocarbons NOx Photooxldation and Ozonolshyysls middot Proceedings of the Symposium on Chemical Kinetics Data for the

1639

Upper and Lower Atmosphere Warrenton Va Sept 15-18 1974 Int J Chem Kinet Symp No 1 183 (1975)

(17) F W Went Nature(London) 187641 (1960) bull (18) G J Doyle A C Lloyd K R Darnall A M Winer andJ N Pitts Jr Enshy

viron Sci Technol 9237 (1975) (19) A C Lloyd K R Darnall A M Winer and J N Pitts Jr J Phys Chem

80 789 (1976) (20) J N Pitts Jr P J Bekowies A M Winer G J Doyle JM McAfee and

K W Wilson The Design and Construction of an Environmental Chamber Facility for the Study of Photochemical Air Pollution Final Report Calishyfornia ARB Grant No 5-067-1 in preparation

(21) Sylvania Technical Bulletin No 0-306 Lighting Center Danvers Mass 01923 1967

(22) J R Holmes R J OBrien J H Crabtree T A Hecht and J H Seinfeld Environ Sci Technol 7 519 (1973)

(23) G J Doyle P J Bekowies A M Winer and J N Pitts Jr Environ Sci Technol accepted for publication

(24) E R Stephens Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973 NTIS No PB 230 993AS

(25) E R Stephens and F R Burleson J Air Pollut Control Assoc 17 147 (1967)

(26) Ozone measurement was based on calibration by the 2 neutral buffered Kl method and was subsequently corrected from spectroscopic calibration data [-see J N Pitts Jr J M McAfee W Long and A M Winer Environ Sci Technol in pressJ

(27) B Weinstock and T Y Chang Telus 26 108 (1974) (28) T A Hecht J H Seinfeld and M C Dodge Environ Sci Technol 8 327

(1974) (29) L Zafonte P L Rieger and J R Holmes Some Aspects of the Atmoshy

spheric Chemistry of Nitrous Acid presented at 1975 Pacific Conference on Chemistry and Spectroscopy Los Angeles Calif Oct 28-30 1975 W H Chan R J Nordstrum J G Calvert and J N Shaw Chem Phys Lett 37441 (1976)

(30) J M McAfee A M Winer and J N Pitts Jr unpublished results (31) C C Wang L I Davis Jr CH Wu S Japar H Niki and B Weinstock

Science 189 797 (1975) (32) H Niki and B Weinstock Environmental Protection Agency Seminar

Washington DC Feb 1975 (33) A C Lloyd Int J Chem Kinet 6 169 (1974) (34) J G Calvert J A Kerr K L Demerjian and R D McQuigg Science 175

751 (1972) (35) R Atkinson and J N Pitts Jr J Chem Phys 63 3591 (1975) (36) D Perner D H Ehhalt H W Patz U Platt E P Roth and A Volz OH

Radicals In the Lower Troposphere 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(37) D D Davis T McGee and W Heaps Direct Tropospheric OH Radical Measurements Via an Aircraft Platform Laser Induced Fluorescence 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(38) E Sanhueza and J Helcklen Can J Chem 52 3870 (1974) (39) E Sanhueza and J Helcklen Int J Chem Kinet 6 553 (1974) (40) E Sanhueza I C Hisatsune and J Heicklen Oxidation of Haloethylenes

Center for Air Environment Studies The Pennsylvania State University CAES Publication No 387-75 Jan 1975

(41) E A Lissi private communication to authors of ref 40 and quoted therein (42) J A Franklin G Huybrechts and C Cillien Trans Faraday Soc 65 2094

(1969) (43) B W Gay Jr P L Hans J J Bufalinl and R C Noonan Environ Sci

Technol 10 58 (1976) (44) R F Lake and H Thompson Proc R Soc London Ser A 315 323

(1970) (45) LA Ripperton and H E Jefferies Adv Chem Ser No 113 219 (1972) (46) E D Morris Jr and H Niki J Phys Chem 75 3640 (1971) (47) S Fischer R Schiff E Machado W Bollinger and D D Davis 169th

National Meeting of the American Chemical Society Philadelphia Pa April 6-11 1975

(48) S M Japar CH Wu and H Niki Environ Lett 7245 (1974) (49) J S Gaffney R Atkinson andJ N Pitts Jr J Am Chem Soc 97 5049

(1975) (50) K R Darnall A C Lloyd A M Winer and J N Pitts Jr Environ Sci

Technol in press (51) J N Pitts Jr A C Lloyd A M Winer K R Darnall and G J Doyle

Development and Application of a Hydrocarbon Reactivity Scale Based on Reaction with the Hydroxyl Radical to be presented at 69th Annual APCA Meeting Portland Oreg June 27-July 1 1976

The Journal of Physical Chemistry Vol 80 No 14 1978

69

l

Reactivity Scale for Atmospheric Hydrocarbons Based on Reaction with Hydroxyl Radical

Karen R Darnall Alan C Lloyd Arthur M Winer and James N Pitts Jrbull

Statewide Air Pollution Research Center University of California Riverside Calif 92502

Bv use of relative and absolute rate constants for the reshyactiltn of the hydroxyl radical (OH) with a number of alkanes alkenes aromatics and ketones a reactivity scale is formushylated based on the rate of removal of hydrocarbons and oxyshygenates by reaction with OH In this five-class scale each class spans an order of magnitude in reactivity relative to methane Thus assigned reactivities range from lt10 fo~ ~lass I (conshytaining oniv methane) togt104 for Class V cotammg te mo~t reactive compounds (eg d-limonene) This scale differs m several significant ways from those presently utilized by _air p(llution control agencies and various industrial laboratories For example in contrast to other scales based o~ s_eco~dar_y marifestations such as yields of ozone and eye 1rritat1on it focuses directlv on initial rates of photooxidation The proshyposed scale als~ provides a clearer understandin~ of the_imshyportance of alkanes in the generation of ozone durmg per10~s of prolonged irradiation The present ~cale can be readily extended to include additional orgamc compounds (eg natural and anthropogenic hydrocarbons oxygenates chloshyrinated solvents) once their rate of reaction with OH is known

It has been recognized for many years (1-21) that all hyshydrocarbons occurring in polluted atmospheres are not equally effective in producing photochemical oxidant and hence that the application of cost effective strategies for the control of hydrocarbons requires that more stringent emissions reducshytions be applied to the more reactive organic compounds (22-25) This in turn has led to a continuing requirement for a rational assessment of hydrocarbon reactivity as a basis for control decisions Such an assessment is particularly critical since attainment of the Federal air quality standard for phoshytochemical oxidant has been sought largely through the stringent control of hydrocarbon emissions (26-27)

The first effort to formulate and apply a practical hydroshycarbon reactivity scale was taken in 1966 with the impleshymentation by the Los Angeles Air Pollution Control District (LAAPCD) of a regulation known as Rule 66 to limit solvent organic emissions on the basis of their capacity for promoting photochemical smog formation (24-25) This rule an~ other conceptions of reactivity scales (28) represented a maJor adshyvance in the application of the information then available concerning the mechanisms of photochemical smog formation to the development of practical air pollutant emission control strategies

Not surprisingly however both in the past and present there have been significant differences in hydrocarbon reacshytivity scales proposed by local regional and national air pollution control agencies (23 29-31) as well as by industy (14 16) As shown in Table I this can lead to very large difshyferences in emission inventory estimates and in approaches to hydrocarbon control (29 32 33) In this case reactive hyshydrocarbon emission inventory levels calculated by Goeller et al (32) using hvdrocarbon reactivity definitions of the Envishyronmental Protection Agency (EPA) on tlie one hand and the California Air Resources Board (ARB) and LAAPCD on the other differed by factors of 3 to 4

A second problem common to virtually all previous reacbull tivity classifications has been their reliance on smog chamber data obtained for relatively short irradiation (~2-6 h) periods

Thus the recent concern over oxidant formation resulting from ionger irradiations during pollutant tr~sport ~o ~egio_ns downwind of urban sources introduces additional d1fficult1es both in defining what constitutes a reactive hydr~carbon and in categorizing degrees of reactivity For example a compound such as propane the major component in liquefied petroleum gas (LPG) and often cited as a clean fuel is now known (34-36) to contribute to the formation of photochemical oxishydants in the later stages of day-long irradiation periods However on the basis of data obtained during short-term ir- middot radiations propane has been classified as unreactive in a reactivity scale proposed (23) by B Dimitriades of the EPA (hereafter referred to as the EPA reactivity scale)

Altshuller ald Bufalini (9 17) have reviewed the various definitions of hydrocarbon reactivity ~nd summarized results of numerous studies up to 1970 The criteria used for evalushyating hydrocarbon reactivity include hydrocarbon conshysumption the conversion of nitric oxide to nitrogen dioxide ozone formation aerosol formation eye irritation and plant damage It is generally agreed that the criteria most suitable with respect to photochemical oxidant control strategies are ozone dosage or maximum ozone concentration (29) However establishing a definitive hydrocarbon reactivity scale to be applied specifically to the control of ozone formation requires an extensive and lengthy experimental program in which the ozone-forming capability of each individual hydrocarbon is determined under simulated atmospheric conditions inshycluding long-term irradiation (ie 12-14 h)

An alternative basis for assessing hydrocarbon reactivity which would appear to have considerable utility and a valid experimental foundation is the formulation of a reactivity scale based on the rate of disappearance of hydrocarbons due to reaction with the hydroxyl radical the key intermediate spcies in photochemical air pollution

Results and Discussion

It is only in the last six years that the critical role-of OH in photochemical smog formation has been generally recognized (37-40) and that appreciable rate constant data have become available for the reaction of OH with several classes of hyshydrocarbons The importance of OH as a reactive intermediate relative to species such as Oa 0(3P) and H02 has been shown previously (39-41) through computer modeling of smog chamber data For example Niki et al (39) showed that the reactivity of a number of hydrocarbons as measured by the rate of conversion of NO to N02 correlated significantly better with OH rate constants than with either 0(3P) or Oa rate constants

Table I Comparison of Reactive Hydrocarbon Inventory Levels for Fixed Sources Under Alternative Reactivity Assumptions (from Ref 32 Based on Pre-1973 Data)

Reactive hydrocarbons tonsday

Control Conslslenl ARB-

strat-iy EPA lAAPCD Rand Corp

1970 8760 2283 6363 1975 nominal 4273 1022 2399 1975 maximal 2906 577 1299

Reprinted from ENVIRONMENTAL SCIENCEamp TECHNOLOGY yo 10 Page 692 ~uly 1976 Copyright 1976 by the American Chemical Society an1 0eprinted by perm1ss1on of the copynght owner

The utility of a large environmental chamber in obtaining relative rate constants with an accuracy of plusmn20 for the reshyaction of the hydroxyl radical with a variety of hydrocarbons was demonstrated in an earlier study in this laboratory (41 ) This method has recently been extended to an investigation of more than a dozen additional hydrocarbons including seven compounds for which OH rate constants are not currently available The detailed kinetic data derived from this invesshytigation have been reported elsewhere (42) In these studies we determined the rPlative rates of disappearance of selected alkanes alkenes and aromatic hydrocarbons under simulated atmospheric conditions of temperature pressure concenshy

l

middottrations light intensity and other trace contaminants (NO CO hydrocarbons water) These relative rate constants were placed on an absolute basis using the published rate cons~ts for OH+ n-butane The assumption that OH was responsible for the hydrocarbon disappearance under the experimental conditions employed (41) was subsequently supported by the very good agreement between OH rate constants determined for the individual compounds using flash photolysis-resoshynance fluorescence techniques (43 44) and those obtained in

l the initial chamber study (41) The general validity of the chamber method for obtaining OH rate constants is illustrated in Figure 1 where the good correspondence between chamber values (41 42) and the available literature values [(45) and references in Table IV] is shown graphically

The importance of the chamber method for the purposes of formulating a reactivity scale is the simultaneous detershymination of valid rate constants for reactions of OH with a large number and wide variety of atmospherically important hydrocarbons This substantially expands the number of compounds which can be incorporated now and in the near future in the resulting reactivity scale In this regard we are currently extending (46) the chamber method to the detershymination of rate constants for reactions of OH with natural hydrocarbons such as terpenes and solvent hydrocarbons such as ketones and chloroethenes for which no data currently exist Preliminary kinetic data (46) for selected natural hyshydrocarbons and ketones are included in our proposed reacshytivity scale

Use of OH Rate Constants as a Reactivity Index From the successful correlation of OH rate constants with the rates of hydrocarbon disappearance observed in our chamber simulations we conclude that to a good approximation this

Ill 1-- 25 z

~~ a ii ~ lt 20 ux ow ~ f5 ~ ~ 15 u lt(0 c

()

~ ~ 10 14

~ tla z ILI lt(

~ 1i 5 I- w lt( Q __ Q

ILI lt(a Ill

i5 o 5 ~ ~ W ~ ~ ~ 40

PUBLISHED RATE CONSTANTS ( J mol-1sec-I x 10-9)

Figure 1 Comparison of relative rates of hydrocarbon disappearan~e determined by environmental chamber method (refs 41 a~d 42) with selected published rate constants (cited in Table IV) for reaction of those hydrocarbons with OH radicals Line shown represents one to one correspondence and has slope of ( 1 18) X 10-9 mol s 1- 1bull Compounds shown are 1 n-butane 2 isopentane 3 toluene 4 2-methylpentane 5 n-hexane 6 ethane 7 3-melhylpentane 8 p-xylene 9 erxylene 10-11 m-xylene 12 123-trimeth~lbenzene_ 13 propane 14 124--trimethylbenzene 15 135-trimethylbenzene 16 cs-2-butene

71

Table II Effect of 0 1 PPM Ozone on Calculated Lifetimes of Selected Alkenes Based on Reaction with OH Radicals (1 X 107 Radicalscm3 ) a at 300 K

OH rate constants b Hall-Ille c tor Hall-Ille d lor Alkenamp I mo1- 1 bull-1 [o3J=0 h (03) = 01 ppm h

Ethene 38 X 109 30 28

Propene 15 X 1010 076 067

cis-2- 32 X 1010 036 020 Butene

13-Buta- 46 X 1010 025 024 diene bull b bull

bull Concentration used in these calculations-see text See references on Table IV c t112 = 0693kOH[OH] under the assumption ol attack only by OH d t12 = 0693(kOH[OH] + ko(03]) ko3 taken from refs 45 and 59

correlation can be extr~polated to the atmosphere for alkenes in ambient air parcels during the early morning hours when ozone levels are generally quite low (5005 ppm) and for alshykanes and aromatics at essentially all times and locations The latter assumption namely that an OH rate constant is a good reactivity index for alkanes and aromatics throughout an irradiation day (or multiple irradiation days) rests upon the fact that the rates of reaction of these classes of hydrocarbons with species such as ozone 0(3P) atoms and hydroperoxyl radicals are several orders of magnitude slower than with OH (45 47-49) For example even at the highest ozone concenshytrations experienced in ambient atmospheres 03 will not contribute significantly to the photooxidation of alkanes and aromatics

This is in contrast to the case for alkenes which although the rate constants for reaction of Oa with alkenes are not particularly large (45) react rapidly with ozone at the average concentrations commonly encountered in polluted ambient air (---01-02 ppm) The approximate magnitude of the effect of ozone on the atmospheric lifetimes of alkenes is given in Table II From their OH rate constants (see Table IV) atshymospheric lifetimes for four alkenes were obtained by asshysuming an OH radical concentration in polluted atmospher~s of 107 radicals cm-3 which is a reasonable value on the bass of both model calculations (50) and recent atmospheric measurements (51-53) The half-life given in column 3 of Table II is defined as t 1 2 = 0693k(OH) and assumes deshypletion of the hydrocarbon solely by the hydroxyl radical When one assumes an average concentration of 010 ppm of 0 3 the more reactive alkenes show considerably shorter half-lives (column 4) For example the lifetime of cis-2-butene in the atmosphere is 036 h assuming only reaction with OH but this is reduced to 020 h when reaction with Oa at a conshycentration of 01 ppm is considered

Proposed Reactivity Scale Under the assumption that hydrocarbon depletion is due solely to attack by OH (with the qualification noted for alkenes) we propose a five-class reshyactivity scale based on hydrocarbon disappearance rates due to reaction with OH The ranges of reactivities for the five proposed classes each span an order of magnitude in reactivity relative to methane and are shown in Table III The hydroshycarbon half-lives as defined above are also shown for each reactivity range

Hydroxyl radical rate constant data for a wide ra~ge of atshymospheric hydrocarbons have been taken from the literature as well as from our own studies and are compiled and refshyerenced in Table IV The assignment of these compounds in the various classes of our proposed reactivity scale is shown in the last column of Table IV For interest carbon monoxide is included in this table since although it is not a hydrocarbon it is present in polluted urban atmospheres but is generally regarded as being unreactive in ambient air Thus carbon

Volume 10 Number 7 July 1976 693

l

monoxide appears as being somewhat reactive in Class 11 Cohen (o) and Glasson and Tuesday (8) was essentially the which also includes ethane and acetylene In our current same as that obtained from the studies of hydrocarbon conshycompilation of compounds methane is the only compound sumption carried out by Schuck and Doyle (1 ) Stephens and listed which appears in Class I and 2-methyl- and 23-dishy Scott (3) and Tuesday (5) We are currently investigating methyl-2-butene and d-limonene are the only compounds in methods of quantitatively relating hydrocarbon consumption Class V Several of the higher alkenes and 13-butadiene apshy to nitric oxide oxidation and ozone formation the parameter pear at the upper end of Class IV Data from our recent study of greatest interest in formulating control strategies for oxishyof monoterpeiie hydrocarbons ( 46) indicate that many of these dant reduction compounds will appear in Class V (54) As indicated above Rule 66 formulated by the LAAPCD

Comparison with Other Scales The ranking of reacshy in 1966 represented the first hydrocarbon control measure tivities for the aromatic hydrocarbons in our scale is essentially based on photochemical reactivity Although this regulation the same as that obtained by Altshuller et al (4) and by has been effective results from recent studies (34-36) indicate Kopczynski (7 17) Although our proposed scale is based that the 4-6 h irradiations (25) from which assignments of solely on hydrocarbon disappearance rates Altshuller and the degree of reactivity of hydrocarbons were made in forshyBufalini ( 17) have shown that this measure of reactivity is very mulating Rule 66 did not give sufficient recognition to the similar to the one based on nitric oxide oxidation rates They ozone-forming potential of slow reactors such as n-butane and showed that the ranking of reactivities of hydrocarbons from propane Consequently it is now realized that measures more the nitric oxide photooxidation studies of Altshuller and stringent than Rule 66 are necessary to achieve reductions in

ozone formation to levels approaching th(se mandated by the US Clean Air Act Amendments of 1970

Table Ill Reactivity Scale for Hydrocarbons Based on Recognition of such deficiencies in current hydrocarbon Rate of Disappearance of Hydrocarbon Due to control regulations has led to reexamination of present hyshyReaction with Hydroxyl Radicals drocarbon reactivity classifications The focus of these reshy

evaluations has been the five-class reactivity scale (see TableClasa Hall-Hiebull Reactivity rel to methane ( =1)

I gt99 days lt10 V) proposed by B Dimitriades at the EPA Solvent Reactivity II 24 h to 99 days 10-100 Conference in 1974 (23) Significant changes have been sugshy

gested for this reactivity classification by the California ARB (29 30) the LAAPCD (31) the EPA (55) and by industry

Ill 24-24 h 100-1000 IV 024-24 h 1000-10 000

However since no final conclusions have been reached by any V lt024 h gt10 000 t112 = 0693kOH[OH] of these agencies at this time we will restrict comparison of

our proposed scale to the 1974 EPA scale

r Table IV Proposed Reactivity Classification of Hydrocarbons and CO Based on Reaction with Hydroxyl Radicals

Compound koH + Cpd (I mo1- 1 s-1) X 10-9 Rat Reactivity rel to methane ProPQsad class see Table Ill

Methane 00048 (60) 1 I co 0084 (45) 18 II Acetylene 011 (45 61 66) 23 II Ethane 016 (62) 33 II Benzene 085 (43 44) 180 Ill Propane 13 (63) 270 Ill n-Butane 18 (41 42) 375 Ill lsopentane 20 (42) 420 Ill Methyl ethyl ketone 21 (46) 440 Ill 2-Methylpentane 32 (42) 670 Ill Toluene 36 (43 44) 750 Ill n-Propylbenzene 37 (42) 770 ill lsopropylbenzene 37 (42) 770 ill Ethane 38 (42 64-66) 790 Ill n-Hexane 38 (42) 790 Ill 3-Methylpentane 43 (42) 900 Ill Ethylbenzene 48 (42) 1000 Ill-IV P-Xylene 745 (41 43) 1530 IV p-Ethyltoluene 78 (42) 1625 IV o-Ethyltoluene 82 (42) 1710 IV o-Xylene 84 (41 43) 1750 IV Methyl isobutyl ketone 92 (46) 1920 IV m-Ethyltoluene 117 (42) 2420 IV m-Xylene 141 (4143) 2920 IV 123-Trimethylbenzene 149 (41 43) 3100 IV Propene 151 (67) 3150 IV 124-Trimethylbenzene 20 (41 43) 4170 IV 135-Trimethylbenzene 297 (41 43) 6190 IV cis-2-Butene 323 (67) 6730 IV 8-Pinene 42 (46) 8750 IV 13-Butadiene 464 (42) 9670 IV-V 2-Methyl-2-butene 48 (68) 10 000 V 23-Dimethyl-2-butene 67 (69) 14 000 V d-Limonene 90 (46) 18800 V

bull Where more than one reference is cited an average value is given for the rate constant

694 Environmental Science amp Technology 72

i

Table V Proposed EPA Reactivity Classification of Organics (from Ref 23 1974) Claul Class II Class Ill Class IV Class V

nonreactive reactive reactive reactlVe reactive

C-C3 paraffins Mono-tertiary- CH paraffins Primary and secondary Aliphatic olefins

Acetylene Cycloparaffins a-Methyl styrene alkyl benzeries alkyl benzenes

Cyclic ketones Dialkyl benzenes

Benzaldehyde Tertiary-alkyl n-Alkyl ketones Branched alkyl Tri- and tetra-alkyl acetates ketones

Benzene Styrene Aliphatic aldehydes

benzenes 2-Nitropropane Primary and secondary

Acetone Primary and secondary alkyl acetates Unsaturated ketones Methanol alkyl alcohols N-methyl pyrrolidone Diacetone alcohol Tertiary-alkyl Cellosolve acetate

3lcohols NN-dimethyl Ethers ace tam Ide Partially halogenated

Phenyl acetate CellosolvesolefinsPartially halogenated paraffins Methyl benzoate

Partially halogenated Ethyl amines paraffins

Dimethyl formamlde

Perhalogenated hydrocarbons

Reactivity rating 10 35 65 97 143

Briefly the EPA has proposed on the basis of previous experimental studies that methane ethane acetylene proshypane and benzene are essentially nonreactive for typical urban ambient hydrocarbon-NOx ratios (23) and these compounds are placed in Class I on their scale Three other classes have been proposed for mobile source hydrocarbon emissions (56)-Class III (C4 and higher alkanes) Class IV (aromatics less benzene) and Class V (alkenes) When stashytionary source hydrocarbons including solvents (Class II) are added to the list five classes are suggested as shown in Table V

Thmiddot reactivity classification proposed here (Tables III and IV) can be compared with that suggested by the EPA (Table V) It is evident that several significant differences emerge

bull The C1-C3 alkanes are given equal weighting in the EPA scale and all are designated unreactive whereas our scale clearly differentiates among the three compounds from methane in Class I and ethane in Class II to the more reactive propane in Class III

bull According to our proposed classification benzene and n-butane are of similar reactivity whereas the EPA scale places them in Class I and III respectively

bull All the alkenes are placed in Class V of the EPA scale whereas our proposed scale shows a differentiation in reacshytivity from ethene in Class III to 23-dimethyl-2sbutene in Class V

bull Our scale g1ves recognition to the high reactivity of natshyural hydrocarbons such as 3-pinene and d-limonene placing these in Class IV and V respectively The present published EPA scale does not give a classification for natural hydroshycarbons although they could be loosely categorized as subshystituted alkenes in Class V

In addition to noting these differences some similarities exist between the two scales For example our scale shows that 13-butadiene is highly reactive which is consistent with preshyvious studies indicating it to be a facile precursor of eye irrishytants (17) and highly effective in producing oxidant during irradiation of HC-NOx mixtures (57) Also methanol would appear in the low half of Class II in our scale based on a recent dstermination of the rate constant for OH attack on methanol (58) The value found was k(OH+CH30H)lkltOH+CO) = 063 at 298 K This reduces to 53 X 107 1 mo1-1 s-1 based on k(oH+CO) = 84 X 107 1 mo1-1s-1 (45) Hence both our scale and the EPAs show methanol to be relatively unreactive

It should be emphasized that the classification proposed in our scale is not strictly applicable to compounds which

73

undergo significant photodissociation in the atmosphere for example aliphatic aldehydes In such cases the compound will be more reactive than predicted from a scale based on hydrocarbon depletion due solely to OH attack However our proposed classification emphasizes that most compounds react in polluted atmospheres and suggests that thf Class I scale be reserved only for the few compounds which have half-lives greater than about 10 days

Conclusion

Our proposed reactivity scale based on the depletion of hydrocarbons by reaction with the OH radical has utility in assessing hydrocarbon chemical behavior in polluted ambient air Since only those organic compounds which participate in atmospheric reactions are of consequence in the chemical transformations in ambient air their relative reactivity toward OH is a useful and directly measurable index of their potential importance in the production of secondary pollutants

Ohe advantage of the proposed scale is that because it is based on the individual rate constants for hydrocarbon reacshytion with OH any degree of gradation in reactivity may be used to formulate any desired number of classes-from relashytively few to a large number of classes or even an ordered ranking of compounds A second strength of the present scale is that it can be readily extended to include additional organic compounds once their rate of reaction with OH is known Fishynally the proposed scale gives greater weight than previous reactivity scales to the alkanes and a number of aromatic hydrocarbons which require a longer period of time to react but can contribute significantly to ozone formation during longer irradiation periods eg during their transport downshywind from urban centers-a phenomenon of increasing conshycern to air pollution control agencies

Acknowledgment

We gratefully acknowledge helpful discussions with R Atkinson G J Doyle D M Grosjean and E R Stephens

Literature Cited

(1) Schuck E A Doyle G bull J Photooxidation of Hydrocarbons in Mixtures Containing Oxides of Nitrogen and Sulfur Dioxide Rept No 29 Air Pollution Foundation San Marino Calif 1959

(2) Leighton PA Photochemistry of Air Pollution Academic Press New York NY 1961

(3) Stephens E R Scott W E Proc Am Pet Inst 42 (111)665 (1962)

Volume 10 Number 7 July 1976 695

l

1 I l

(4) Altshuller A P Cohen I R Sleva S F Kopczynski S L Sciena 135442 (1962)

(5) Tuesday C S Arch Emmiddotiron Health 7 188 (1963) (6) Altshuller A P Cohen I R Int J Air Water Pollut 7 787

(19631 (7) Kopczynski S L ibid 8 107 (1964) (8) Glasson W A Tuesday C S paper presented at the 150th

National Meeting ACS Atlantic City NJ September 1965 (9) Altshuller A P Bufalini J J J Photochem Photobiol 4 97

(J96fi (10) Heuss JM Glasson W A Environ Sci Technol 2 1109

(19681 (11) Altshuller A P Kopczynski S L Wilson D Lonneman W

Sutterfield F D J Air Pollut Control Assoc 19 787 (1969) (12) Altshuller A P Kopczynski S L Wilson D Lonneman W

Sutterfield F D ibid p 791 (13) Dimitriades B Eccleston B H Hurn R W ibid 20 150

(19701 (14) Levy A Miller S E Final Technical Report on the Role of

Solvents in Photochemical Smog Formation National Paint Varnish and Lacquer Assoc Washington DC 1970

(15) Wilson K W Doyle G J Investigation of Photochemical Reactimiddotities of Organic Solvents Final Report SRI Project PSU-8029 Stanford Research Institute Irvine Calif September 1970

(16) Glasson W A Tuesday C S J Air Pollut Control Assoc 20 239 (1970)

(17) Altshuller A P Bufalini J J Environ Sci Technol 5 39 (1971)

(18) Glasson W A Tuesday C S ibid p 153 (19) Stephens E R in Chemical Reactions in Urban Atmospheres

pp 45-54 C Tuesday Ed American Elsevier New York NY 1971

(20) Stephens E R Hydrocarbons in Polluted Air Summary Report CRC Project CAPA-5-68 June 1973

(21) Kopczynski S L Kuntz R L Bufalini J J Environ Sci Technol 9608 (1975)

(22) Control Techniques for Hydrocarbon and Organic Solvent Emissions from Stationary Sources Nat Air Pollut Control Admin Publication AP-68 March 1970

(23) Proceedings of the Solvent Reactivity Conference US Enshyvironmental Protection Agency Research Triangle Park NC EPA-6503-74-010 November 1974

(24) Hamming W J SAE Trans 76 159 (1968) (25) Brunelle M F Dickinson JE Hamming W J Effectiveness

of Orga1ic Solvents in Photochemical Smog Formation Solvent Project Final Report Los Angeles County Air Pollution Control District July 1966

(26) Emironmental Protection Agency Region IX Technical Support Document January 15 1973

(27) Feldstein J J Air Polut Control Assoc 24469 (1974) (28) Altshuller A P ibid 16257 (1966) (29) California Air Resources Board Informational Report Progress

Report on Hydrocarbon Reactivity Study June 1975 (30) Organic Compound Reactivity System for Assessing Emission

Control Strategies ARB Staff Report No 75-17-4 September 29 1975

(31) Los Angeles County APCD Proposed Reactivity Classification of Organic Compounds with Respect to Photochemical Oxidant Formation Los Angeles County Air Pollution Control Departshyment July 21 1975

(32) Goeller B F Bigelow J H DeHaven JC Mikolowsky W T Petruschell R L Woodfill B M Strategy Alternatives for Oxidant Control in the Los Angeles Region R-1368-EPA Rand Corp Santa Monica Calif December 1973

(33) Impact of Reactivity Criteria on Organic Emission Control Strategies in the Metropolitan Los Angeles AQCR TRW Interim Report March 1975

(34) Holmes J California Air Resources Board private communishycation 1975

(35) Pitts J N Jr Winer A M Darnall K R Doyle G J McAfee JM Chemical Consequences of Air Quality Standards an~ of Control Implementation Programs Roles of Hydrocarbons Oxides of Nitrogen and Aged Smog in the Production of Photoshychemical Oxidant Final Report California Air Resources Board Contract No 3-017 July 1975

(36) Altshuller A P in Proceedings of the Solvent Reactivity Conference US Environmental Protection Agency Research Triangle Park NC EPA-6503-74-010 pp 2-5 November 1974

(37) Heicklen J Westberg K Cohen N Puhl 115-69 Center for Air Environmental Studies University Park Pa 1961

(38) Weinstock R Daby E E Niki H Discussion on Paper Presented by E R Stephens in Chemical Reactions in Urban Atmospheres pp 54-55 C S Tuesday Ed Elsevier New York NY 1971

(39) Niki H Daby E E Weinstock B AdLbull Chem Ser 113 16 (197)

(40) Demerjian K L Kerr J A Calvert J G Adv Environ Sci Technol 4 1 (1974)

(41) Doyle G J Lloyd A C Darnall K R Winer A M Pitts J N Jr Environ Sci Technol 9237 (1975)

(42) Lloyd A C Darnall K R Winer A M Pitts J N Jr J Phys Chem 80 789 (1976)

(43) Hansen D A Atkinson R Pitts J N Jr ibid 79 1763 (1975) (44) Davis D D Bollinger W Fischer S ibid p 293 (45) Chemical Kinetic and Photochemical Data for Modeling Atshy

mospheric Chemistry NBS Technical Note 866 R F Hampson Jr llQJJQarvin Eds Ju_ne 1975_____~ middot middot

(46)rloyd A C~arnliltKR-XWiner A JI_) Pitts J N Jr J Phys Chem 80 lflgti (1976)

(47) Pate C T Atkmiddot ori R Pitts J N Jr J Environ Sci Health All 1 (1976)

(48) Atkinson R Pitts J N Jr J Phys Chem 78 1780 (1974) (49) Stedman D H Niki H Environ Lett 4303 (1973) (50) Calvert J McQuigg R Proceedings of the Symposium on

Chemical Kinetics Data for the Upper and Lower Atmosphere Warrenton Va September 15-18 1974 Int J Chem Kinet Symposium No 1 113 (1975)

(51) Wang C C Davis L I Jr Wu CH Japar S Niki H Weinstock B Science 189 797 (1975)

(52) Perner D Ehhalt D H Patz H W Platt U Roth E P Volz A OH Radicals in the Lower Troposphere 12th International Symposium on Free Radicals Laguna Beach Calif Jan 4-9 1976

(53) Davis D D McGee T Heaps W Direct Tropospheric OH Radical Measurements via an Aircraft Platform Laser Induced Fluorescence ibid

(54) Pitts J N Jr Lloyd A C Winer A M Darnall K R Doyle G J Development and Application of a Hydrocarbon Reactivity Scale Based on Reaction with the Hydroxyl Radical to be preshysented at 69th Annual APCA Meeting Portland Ore June 27-July 1 1976

(55) Informal EPA meeting Philadelphia Pa July 30-31 1975 (56) Black M High L E Sigsby JE Methodology for Assignshy

ment of a Hydrocarbon Photochemical Reactivity Index for Emissions from Mobile Sources US Environmental Protection Agency Research Triangle Park NC EPA-6502-75-025 March 1975

(57) Haagen-Smit A J Fox M M Ind Eng Chem 48 1484 (1956)

(58) Osif T L Simonaitis R Heicklen J J Photochem 4 233 (1975)

(59) Japar S M Wu CH Niki H J Phys Chem 78 2318 (1974) (60) Davis D D Fischer S Schiff R J Chem Phys 61 2213

(1974) (61) Pastrana A Carr R W Jr Int J Chem Kinet 6587 (1974) (62) Overend R Paraskevopoulos G Cvetanovic R J Hydroxyl

Radical Rate Measurement for Simple Species by Flash Photolysis Kinetic Spectroscopy Eleventh Informal Conference on Photoshychemistry Vanderbilt University Nashville Tenn June 1974

(63) Gorse R A Volman D HJ Photochem 3115 (1974) (64) Greiner N R J Chem Phys 53 1284 (1970) (65) Smith I W M Zellner R J Chem Soc Faraday Trans II

69 1617 (1973) (66) Davis D D Fischer S Schiff R Watson R T Bollinger W

J Chem Phys 63 1707 (1975) (67) Atkinson R Pitts J N Jr ibid p 3591 (68) Atkinson R Perry R A Pitts J N Jr Chem Phys Lett

38607 (1976) (69) Atkinson R Perry R A Pitts J N Jr unpublished results

1975 Received for review November 3 1975 Accepted January 30 1976 Work supported by the California Air Resources Board (Contract No 4-214) and the National Science Foundation-RANN (Grant No AEN73-02904 A02) The contents do not necessarily reflect the vieumiddots and policies of the California Air Resources Board or the National Science Foundation-RANN nor does mention of trade names or commercial products constitute endorsement or recommendation for use

696 Environmental Science amp Technology 74

Ii

rl

I r I

G

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE

BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Statewide Air Pollution Research Center University of California

Riverside CA 92521

Paper No 76-311

Presented at the 69th Annual Air Pollution Control Association Meeting

Portland Oregon

June 27 - July 1 1976

75

76-311 rII 2

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Statewide Air Pollution Research Center University of California

Riverside CA 92502

Abstract

Measurements of the relative rate constants for the reaction of the hydroxyl radical (OH) with some 35 atmospherically important hydrocarbons have been made in the SAPRC 6400 i glass irradiation chamber These rate constants were placed on an absolute basis using literature values for either n-butane or isobutene and have been augmented with OH rate data obtained by elementary reaction measurements and other appropriate data such as that from photoshy

l oxidation studies from which relative and absolute OH rate constants could be calculated

l Utilizing these data a reactivity scale for some 80 compounds including alkenes alkanes aromatics oxygenates and naturally occurring hydrocarbons has been formulated based on the removal of the hydrocarbons by reaction with OH The resulting scale is an ordering of the reactivities of the hydrocarbons relative to methane The scale can be divided into an arbitrary number of classes for purposes of application to control strategies or comparison with other reactivity scales

Some comparisons of the present scale with proposed EPA and ARB reactivity scales are made and the implications of the present scale for the role of alkanes and a number of aromatic hydrocarbons in the formation of ozone in regions downwind of urban centers is analyzed

76

r I

I D

-I

f

76-311 3

DEVELOPMENT AND APPLICATION OF A HYDROCARBON REACTIVITY SCALE BASED ON REACTION WITH THE HYDROXYL RADICAL

by

James N Pitts Jr Alan C Lloyd Arthur M Winer Karen R Darnall and George J Doyle

Introduction

1A major result of the photooxidation studies of the past 20 years - 26 has been the recognition that atmospherically important hydrocarbons do not all contribute equally to the production of photochemical oxidant and hence that the application of cost effective strategies for the control of hydrocarbons requires that more stringent emissions reductions be applied to the more reactive organic compounds 10lll9 26 This in turn has led to a continuing requirement for a rational assessment of hydrocarbon reactivity as a basis for control decisions Such an assessment is particularly critical since attainshyment of the Federal air quality standard for photochemical oxidant has been sought largely through the stringent control of hydrocarbon emissions2728

The first effort to formulate and apply a practical hydrocarbon reactivity scale was taken in 1966 with the implementation by the Los Angeles Air Pollution Control Districtmiddot (LAAPCD) of a regulation known as Rule 66 to limit solvent organic emissions on the basis of their capacity for promoting photoshychemical smog formation 10ll This rule and other conceptions of reactivity scales29 represented a major advance in the application of the information then available concerning the mechanisms of photochemical smog formation to the development of practical air pollutant emission control strategies Thus the basic concept of selective control of emissions based on their reactivity is now widely established

Not surprisingly however there have been significant differences in hydrocarbon reactivity scales proposed by local regional and national air pollution control agencies2530-34 as well as by industry161823 This in turn can lead to quite large differences in emission inventory estimates and in approaches to hydrocarbon control303536

Most although not all previous reactivity classifications have relied primarily on smog chamber data obtained for relatively short irradiation (~ 6 hrs) periods Thus the recent concern over oxidant formation resulting from longer irradiations during pollutant transport to regions downwind of urban sources introduces additional difficulties both in defining what constishytutes a reactive hydrocarbon and in categorizing degrees of reactivity For example a compound such as propane the major component in liquified petroleum gas (LPG) and often cited as a clean fuel is now known37-39 to contribute to the formation of photochemical oxidants in the later stages of day-long irradiation periods However on the basis of data obtained during short-term irradiations propane has been classified as unreactive in a reactivity scale

77

76-311

[

r I l

J

I

4

proposed25 in 1974 by B Dimitriades of the EPA (hereafter referred to as the EPA reactivity scale)

A third difficulty with reactivity scales which are based on previous smog chamber data concerns their reliance on measurements of smog manifestations such as maximum ozone concentrations Observed values of such secondary properties of a photooxidation system can be significantly affected by the particular chamber materials light source purity of matrix air and other aspects of the chamber methodology employed This fact can account in large measure for the significant number of discrepancies which arise from comparison of the specific ranking of hydrocarbons in reactivity scales formulated on the basis of different sets of chamber data

Altshuller and Bufalini9 zo have reviewed the various definitions of hydroshycarbon reactivity and summarized results of numerous studies up to 1970 The criteria used for evaluating hydrocarbon reactivity include hydrocarbon conshysumption the conversion of nitric oxide to nitrogen dioxide ozone formation aerosol formation eye irritation and plant damage It is generally agreed that the criteria most suitable with respect to photochemical oxidant control strategies are ozone dosage or maximum ozone concentration30 However establishing a definitive hydrocarbon reactivity scale to be applied specifishycally to the control of ozone formation requires an extensive and lengthy experimental program in which the ozone-forming capability of each individual hydrocarbon is determined under simulated atmospheric conditions including long-term irradiation (ie 10-12 hrs)

An alternative and perhaps supplementary basis for assessing hydrocarbon reactivity which appears to have considerable utility and a valid experimental foundation is the formulation of a reactivity scale based on the rate of disshyappearance of hydrocarbons due to their reaction with the hydroxyl radical the key intermediate species in photochemical air pollution

Results and Discussion

It is only comparatively recently that the critical role of OH in photoshychemical smog formation has been generally recognized40-44 and that appreciable rate constant data have become available for the reaction of OH with several classes of hydrocarbons The importance of OH as a reactive intermediatz

46relative to species such as o3 o(3P) and H02 has been shown previously 3-through computer modeling of smog chamber data For example Niki Daby and Weinstock43 showed that the reactivity of a number of hydrocarbons as measured by the rate of conversion of NO to NOz correlated significantly betterwith OH rate constants than with either 0(3P) or 03 rate constants

The utility of a large environmental chamber in obtaining relative rate constants with an accuracy of plusmn20 for the reaction of the hydroxyl radical with a variety of hydrocarbons has been demonstrated in a number of recent studies both in this45-48 and other laboratories49 To date we have measured relative rates for the reaction of OH with some 35 organic compounds The

78

l l t

l

r L

76-31 1 5

detailed kinetic data derived from these investigations have been reported48elsewhere 45 - In these studies we determined the relative rates of disshy

appearance of selected alkanes alkenes and aromatic hydrocarbons under simushylated atmospheric conditions of temperature pressure concentrations light intensity and other trace contaminants (NOx CO hydrocarbons water) These relative rate constants were placed on an absolute basis using the published rate constants for OH+ n-butane or isobutene The assumption that OH was responsible for the hydrocarbon disappearance under the experimental conditions employed was subsequently supported by the very good agreement between OH rate constants determined for the individual compounds using flash photolysisshyresonance fluorescence techniquesS051 and those obtained in our initial chamber experiments4546

The importance of the chamber method for the purposes of formulating a reactivity scale is that it permits the simultaneous determination of valid rate constants for reactions of OH with a large number and wide variety of atmospherically important hydrocarbons This substantially expands the number of compounds which can be incorporated now and in the near future in the resulting reactivity scale

Use of OH Rate Constants as a Reactivity Index

From the successful correlation of OH rate constants with the rates of hydrocarbon disappearance observed in chamber simulations at the SAPRc45-48 and Ford49 laboratories we conclude that to a good approximation this correlation can be extrapolated to the atmosphere (a) for alkenes in ambient air parcels during the early morning hours when ozone levels are generally quite low (~005 ppm) and (b) for alkanes and aromatics at essentially all times and locations The latter assumption namely that an OH rate constant is a good reactivity index for alkanes and aromatics throughout an irradiation day (or multiple irradiation days) rests upon the fact that the rates of reaction of these classes of hydrocarbons with species such as ozone 0(3P) atoms and the hydroperoxyl radical are several orders of magnitude slower than

52- 54with OH 8 For example even at the highest ozone concentrations experienced in ambient atmospheres 03 will not contribute significantly to the photooxidation of alkanes and aromatics This is in contrast to the case for alkenes which although the rate constants for reaction of 03 with alkenes are not particularly large55-57 react rapidly with ozone at the average concenshytrations connnonly encountered in polluted ambient air (~01-02 ppm)

Proposed Reactivity Scale

Under the assumption that hydrocarbon depletion is due solely to attack by OH (with the qualification noted for alkenes) we propose a five-class reacshytivity scale based on hydrocarbon disappearance rates due to reaction with OH The ranges of reactivities for the five proposed classes each span an order of magnitude in reactivity rel~tive to methane and are shown in Table I Although a scale based on OH rate constants can be divided into an arbitrary number of classes we have found it convenient and useful (particularly for purposes of

79

l r f

1

76-311 6

comparison with other scales) to employ the order of magnitude divisions which lead to a five-class scale

The hydrocarbon half-lives (defined as t12 ~ 0693k[OH]) corresponding to each class are also shown in Table I These half-lives were calculated assuming depletion of the hydrocarbon solely due to reaction with the hydroxyl radical and assuming an OH radical concentration in polluted atmospheres of 107 radicals cm-3 a reasonable value on the basis of both model calculations58 and recent atmospheric measurements59-61

Table II shows the compounds for which OH rate constants have been found or calculated distributed among the five classes of our proposed reactivity scale in the order of increasing rates of reaction within each class Employing OH rate constants obtained from hydrocarbon disappearance rates measured in photooxidation studies62 63 as well as those from elementary rate determinations and our chamber studies has permitted tabulation of OH rate constant data for 80 hydrocarbons These 80 hydrocarbons are incorporated in Table II

For interest carbon monoxide although not a hydrocarbon is included in Table II since it is present in polluted urban atmospheres Although CO is generally regarded as being unreactive in ambient air in our scale it appears in Class II which also includes ethane and acetylene

In our current compilation of compounds methane is the only compound listed which appears in Class I although the recent work of Chameides and Stedman has shown that even methane will react given sufficient time64 Most of the straight chain alkenes appear in Class IV with the substituted alkenes occurring in the upper half of Class IV and in Class V The alcohols fall into Class III while the monoterpene hydrocarbons are highly reactive and most of them appear in Class V with a- and $-pinene occurring in the upper half of Class IV The reactivity classification shown in Table II is similar to an earlier one we have formulated65 but many more compounds have now been included

Comparison with Other Scales

The ranking of reactivities for the aromatic hydrocarbons in our scale is essentially the same as that obtained by Altshuller et al4 and by Kopczynski 7 66 Although our proposed scale is based solely on hydrocarbon disappearance rates Altshuller and Bufalini20 have shown that this measure of reactivity is very similar to the one based on nitric oxide oxidation rates They showed that the ranking of reactivities of hydrocarbons from the nitric oxide photooxidation studies of Altshuller and Cohen6 and Glasson and Tuesdays was essentially the same as that obtained from the studies of hydrocarbon conshysuinption carried out by Schuck and Doyle 2 Stephens and Scott3 and Tuesday 5

As indicated above Rule 66 formulated by the LAAPCD in 1966 represented the first hydrocarbon control measure based on photochemical reactivity Although this and similar regulations have been effective results from recent

80

T

I I t

I Ii

76-31 1 7

d 37-39 d h h ffmiddot hstu ies in icate tat t ey give insu icient recognition tote ozone-forming potential of slow reactors such as g_-butane and propane under longshyterm irradiation conditions Consequently it is now realized that measures more stringent than Rule 66 are necessary to achieve reductions in ozone formation to levels approaching those mandated by the U S Clean Air Act Amendments of 1970

Recognition of such deficiencies in current hydrocarbon control regulations has led to re-examination of present hydrocarbon reactivity classifications The focus of these re-evaluations has been the five-class reactivity scale (see Table III) proposed by B Dimitriades at the EPA Solvent Reactivity Conference in 1974 25 Significant changes have been suggested for this reactivity classishyfication by the California ARB30-33 the LAAPCn34 the EPA67 and by industry The EPA is currently examining this question and since no final conclusions have been reached at this time we will restrict comparison of our proposed sci=Lle to the scale proposed in 1974 by Dimitriades of the EPA In addition we will discuss our proposed scale in the context of the three-class system r~cently approved32 by the ARB for application to hydrocarbon pollutant invenshytories and for planning future control strategies

Briefly the EPA has proposed on the basis of previous experimental studies that methane ethane acetylene propane and benzene are essentially non-reactive for typical urban ambient hydrocarbon-NOx ratios25 and these compounds are placed in Class I on their scale Three other classes have been proposed for mobile source hydrocarbon ernissions68__Class III (C4 and higher alkanes) Class IV (aromatics less benzene) and Class V (alkenes) When stationary source hydrocarbons including solvents (Class II) are added to the list five classes are suggested as shown in Table III

The reactivity classification proposed here (Tables I II) can be compared with that suggested by the EPA (Table III) It is evident that several signifishycant differences emerge

(1) The C1-C3 alkanes are given equal weighting in the EPA scale and all are designated unreactive while our scale clearly differentiates between the three compounds methane ethane and propane in Classes I II and III respectively

(2) According to our proposed classification benzene and n-butane are of similar reactivity while the EPA scale places them in Class I and III respectively

(3) All the alkenes are placed in Class V of the EPA scale while our proposed scale shows a differentiation in reactivity from ethene in Class III to 23-dimethyl-2-butene in Class V

(4) Our scale gives recognition to the high reactivity of natural hydroshycarbons such as the pinenes_and i-limonene placing these in Class IV and V respectively The present published EPA scale does not give a classification for natural hydrocarbons although they could be loosely categorized as substituted alkenes in Class V

81

l l

i

l

76-311 8

In addition to noting these differences some similarities exist between the two scales For example our scale shows that 13-butadiene ts highly reactive which is consistent with previous studies indicating it to be a facile precursor of eye irritants20 and highly effective in producing oxidant during irradiation of HC-NOx mixtures1 Both our scale and the EPAs show methanol to be relatively unreactive with a greater reactivity exhibited by the higher alcohols although our sc-ale predicts a lower overall reactivity than that of the EPA

The three-class system recently approved by the ARB is shown in Table IV and is similar to one being considered by the EPA30 According to the ARB 32

Class I would include low reactivity organic compounds yielding little if any ozone under urban conditions Class II would consist of moderately reactive organic compounds which give an intermediate yield of ozone within the first day of solar irradiation Class III would be limited to highly reactive organic compounds which give very high yields of ozone within a few hours of irradiation

In general the three-class ARB scale is in line with the scale presented here based on OH rate constants with only minor exceptions For example the ARB scale shows the primary and secondary Cz+ alcohols to be highly reactive in Class III while our scale shows them to be of moderate reactivity

Finally we wish to note two limitations of the reactivity scale proposed here One limitation of our scale is that it is not strictly applicable to compounds which undergo significant photodissociation in the atmosphere and aldehydes have been omitted for this reason In such cases the compound will be more reactive than predicted from a scale based on hydrocarbon depletion due solely to reaction with OH A second limitation in the application of our scale concerns the inherent problem arising from uncertainties in the identity and fates of subsequent products33

Conclusion middot

Our proposed reactivity scale based on the depletion of hydrocarbons by reaction with the OH radical has utility in assessing hydrocarbon chemical behavior in polluted ambient air Since only those organic compounds which participate in atmospheric reactions are of consequence in the chemical transshyformations in ambient air their relative reactivity towards OH is a useful and directly measurable index of their potential importance in the production of secondary pollutants

One advantage of the proposed scale is that because it is based on the individual rate constants for hydrocarbon reaction with OH any degree of gradation in reactivity may be used to formulate any desired number of classes-shyfrom relatively few to a large number of classes or even an ordered ranking of compounds A second strength of the present scale is that it can be readily extended to include additional organic compounds once their rate of reaction

82

76-311 9

~

l

I

with OH is known Finally the proposed scale gives adequate weight to alkanes and a number of aromatic hydrocarbons which require a significant period of time to react but can contribute substantially to ozone formation during longer irradiation periods eg during their transport downwind from urban centers-shya phenomenon of increasing concern to air pollution control agencies

Acknowledgement

We gratefully acknowledge access to the final report of the ARB Reactivity Committee prior to official release

This work was supported by the California Air Resources Board (ARB Contract No 5-385) and the National Science Foundation-Research Applied to National Needs (NSF-RANN Grant No ENV73-02904-A03) The contents do not necessarily reflect the views and policies of the ARB or the NSF-RANN nor does mention of trade names or commercial products constitute endorsement or recomshymendation for use

References

1 A J Haagen-Smit and M M Fox Ozone formation in photochemical oxidashytion of organic substances Ind Eng Chem 48 1484 (1956)

2 E A Schuck and G J Doyle Photooxidation of hydrocarbons in mixtures containing oxides of nitrogen and sulfur dioxide Rept No 29 Air Pollution Foundation San Marino California 1959

3 E R Stephens and W E Scott Relative reactivity of various hydrocarbons in polluted atmospheres 11 Proc Amer Petrol Inst 42 (III) 665 (1962)

4 A P Altshuller I R Cohen S F Sleva and S L Kopczynski Air pollutionphotooxidation of aromatic hydrocarbons Science 138 442 (1962)

5 C S Tuesday Atmospheric photooxidation of olefins Effect of nitrogen oxides Arch Environ Health l 188 (1963)

6 A P Altshuller and I R Cohen Structural effects on the rate of nitrogen dioxide formation in the photooxidation of organic compound-nitric oxide mixtures in air Int J Air Water Pollut l 787 (1963)

7 s L Kopczynski Photooxidation of alkylbenzene-nitrogen dioxide mixtures in air Int J Air Water Pollut _ 107 (1964)

B W A Glasson and C S Tuesday paper presented at the 150th National Meeting ACS Atlantic City N J September 1965

9 A P Altshuller and J J Bufalini Photochemical aspects of air pollution a review J Photochem Photobiol _ 97 (1965)

10 M F Brunelle JE Dickinson and W J Hannning Effectiveness of organic solvents in photochemical smog formation Solvent Project Final Report Los Angeles County Air Pollution Control District July 1966

11 W J Hamming Photochemical reactivity of solvents SAE Transactions Ji 159 (1968)

83

10 76-311

12 JM Reuss and W A Glasson Hydrocarbon reactivity and eye irritation Environ Sci Technol I 1109 (1968)

13 A P Altshuller S L Kopczynski D Wilson W Lonneman and F D Sutterfield Photochemical reactivities of n-butane and other paraffinic hydrocarbons J Air Pollut Contr Assoc 19 787 (1969)

14 A P Altshuller S L Kopczynski D Wilson W Lonneman and F D Sutterfield Photochemical reactivities of paraffinic hydrocarbonshynitrogen oxides mixtures upon addition of propylene or toluene J Air Pollut Contr Assoc 19 791 (1969)

15 B Dimitriades B H Eccleston and R W Hurn An evaluation of the fuel factor through direct measurement of photochemical reactivity of

l emissions J Air Pollut Contr Assoc 20 150 (1970)

l 16 A Levy and S E Miller Final technical report on the role of solvents

in photochemical smog formation National Paint Varnish and Lacquer Association Washington DC April 1970

17 K W Wilson and G J Doyle Investigation of photochemical reactivities organic solvents Final Report SRI Project PSU-8029 Stanford Research Institute Irvine California September 1970

18 W A Glasson and C S Tuesday Hydrocarbon reactivity and the kinetics of the atmospheric photooxidation of nitric oxide J Air Pollut Contrl

t Assoc 20 239 (1970)

19 Control Techniques for hydrocarbon and organic solvent emissions from stationary sources Nat Air Pollut Contr Admin Publication IIAP-68 March 1970

20 A P Altshuller and J J Bufalini Photochemical aspects of air pollution a review Environ Sci Technol i 39 (1971)

21 W A Glasson and C S Tuesday Reactivity relationships of hydrocarbon c mixtures in atmospheric photooxidation Environ Sci Technol 5 151 I (1971) -

22 E R Stephens Hydrocarbon reactivities and nitric oxide conversion in real atmospheres in Chemical Reactions in Urban Atmospheres C S Tuesday Ed American Elsevier Inc N Y 1971 pp 45-54

23 Solvents Theory and Practice R W Tess Ed Adv Chem Series 124 (1973)

24 E R Stephens Hydrocarbons in polluted air Sunnnary Report CRC Project CAPA-5-68 June 1973 NTIS No PB 230 993AS

25 Proceedings of the solvent reactivity conference U S Environmental Protection Agency Research Triangle Park N C EPA-6503-74-010 November 1974

26 S L Kopczynski R L Kuntz and J J Bufalini Reactivities of complex hydrocarbon mbtures Environ Sci Technol 2_ 648 (1975)

ltL

27 Environmental Protection Agency Region IX Technical Support Document January 15 1973

28 M Feldstein A critical review of regulations for the control of hydroshycarbon emissions from stationary sources J Air Pollut Contr Assoc 24 469 (1974)

84

l l f [

l

middot-i~ I~ ~ 4 -

11 76-311

29 A P Altshuller An evaluation of techniques for the determination of the photochemical reactivity of organic emissions J Air Pollut Contr Assoc 16 257 (1966)

30 Progress report on hydrocarbon reactivity study California Air Resources Board Informational Report No 72-12-10 June 12 1975_

31 Organic compound reactivity system for assessing emission control strageshygies California Air Resources Board Staff Report No 75-17-4 September 29 1975

32 Board approves reactivity classification California Air Resources Board Bulletin March 1976 p 4

33 Tinalreport of the committee on photochemical reactivity to the Air Resources Board of the State of California Draft April 1976

34 Los Angeles County APCD proposed reactivity classification of organic compounds with respect to photochemical oxidant formation Los Angeles County Air Pollution Control Department July 21 1975

35 B F Goeller J H Bigelow J C DeHaven W T Mikolowsky R L Petruschell and B M Woodfill Strategy alternatives for oxidant control in the Los Angeles region The RAND Corporation Santa Monica California R-1368-EPA December 1973

36 J C Trijonis and K W Arledge Utility of reactivity criteria in organic emission control strategies for Los Angeles TRW Environmental Services Redondo Beach California December 1975

37 J Holmes California Air Resources Board private communication 1975

38 J N Pitts Jr A M Winer K R Darnall G J Doyle and JM McAfee Chemical consequences of air quality standards and of control implementation programs roles of hydrocarbons oxides of nitrogen and aged smog in the production of photochemical oxidant Final Report California Air Resources Board Contract No 3-017 July 1975

39 A P Altshuller in reference 25 pp 2-5

40 N R Greiner Hydroxyl-radical kinetics by kinetic spectroscopy II Reactions with c H6 c H8 and iso-c H at 300 K J Chern Phys 462 3 4 103389 (1967)

41 K Westberg and N Cohen The chemical kinetics of photochemical smog as analyzed by computer The Aerospace Corporation El Segundo California ATR-70(8107)-1 December 30 1969

42 B Weinstock E E Daby and H Niki Discussion on paper presented by E R Stephens in Chemical Reactions in Urban Atmospheres C S Tuesday Ed Elsevier N Y 1971 pp 54-55

43 H Niki E E Daby and B Weinstock Mechanisms of smog reactions Adv Chem Series 113 16 (1972)

44 K L Demerjian J A Kerr and J G Calvert The mechanism of photoshychemical smog formation Adv Environ Sci Technol ~ 1 (1974)

45 G J Doyle A C Lloyd K R Darnall A M Winer and J N Pitts Jr Gas phase kinetic study of relative rates of reaction of selected aromatic compounds with hydroxyl radicals in an environmental chamber Environ Sci Technol 2_ 237 (1975)

85

12 76-311

46 A C Lloyd K R Darnall A M Winer and J N Pitts Jr Relative rate constants forreaction of the hydroxyl radical with a series of alkanes alkenes and aromatic hydrocarbons J Phys Chem 80 789 (1976)

47 A M Winer A C Lloyd K R Darnall and J N Pitts Jr Relative rate constants for the reaction of the hydroxyl radical with selected ketones chloroethenes and monoterpene hydrocarbons J Phys Chem 80 1635 (1976) -

48 A C Lloyd K R Darnall A M Winer and J N Pitts Jr Relative rate constants for the reactions of OH radicals with isopropyl alcohol diethyl and di-n-propyl ether at 305 plusmn 2 K Chem Phys Lett~ 405 (1976)

49 CH Wu S M Japar and H Niki Relative reactivities of HO-hydrocarbon reactions from smog reactor studies J Environ Sci Health All 191 (1976)

i 50 D A Hansen R Atkinson and J N Pitts Jr Rate constants for the reaction of OH radicals with a series of aromatic hydrocarbons J Phys Chern JJ 1763 (1975)

51 D D Davis W Bollinger S Fischer A kinetics study of the reaction of the OH free radical with aromatic compounds I Absolute rate constants for reaction with benzene and toluene at 300degK J Phys Chem J_J_ 293 (1975)

f 52 C T Pate R Atkinson and J N Pitts Jr The gas phase reaction ofi 03 with a series of aromatic hydrocarbonsmiddot J Environ Sci Health All

1 (1976)

53 R Atkinson and J N Pitts Jr Absolute rate constants for the reaction of o(3P) atoms with selected alkanes alkenes and aromatics as determined by a modulation technique J Phys Chem 78 1780 (1974)

54 D H Stedman and H Niki Ozonolysis rates of some atmospheric gases Environ Lett_ 303 (1973)

55 Chemical kinetic and photochemical data for modeling atmospheric chemistry R F Hampson Jr and D Garvin Eds NBS Technical Note 866 June 1975

56 D H Stedman CH Wu and Hbull Niki Kinetics of gas phase reactions of ozone with some olefins J Phys Chem ]J_ 2511 (1973)

57 S M Japar CH Wu and H Niki Rate constants for the reaction of ozone with olefins in the gas phase J Phys Chem 78 2318 (1974)

58 J G Calvert and R D McQuigg The computer simulation of the rates and mechanisms of photochemical smog formation Int J Chem Kinetics Symposium No 1 113 (1975)

59 C C Wang L I Davis Jr CH Wu S Japar H Niki and B Weinstock Hydroxyl radical concentrations measured in ambient air Science 189 797 (1975)

60 D Perner D H Ehhalt H W Patz U Platt E P Roth and A Volz OH radicals in the lower troposphere 12th International Symposium on Free Radicals Laguna Beach California January 4-9 1976

61 D D Davis T McGee and W Heaps Direct tropospheric OH radical measurements via an aircraft platform laser induced fluorescence 12th International Symposium on Free Radicals Laguna Beach California January 4-9 1976

86

13 76-311

62 J L Laity I G Burstain and B R Appel Photochemical smog and the atmospheric reactions of solvents in Reference 23 p 95

63 E P Grimsrud H H Westberg and R A Rasmussen Atmospheric reactivity of monoterpene hydrocarbons NOx photooxidation and ozonolysis Int J Chem Kinetics Symposium No 1 183 (1975)

64 W L Chameides and D H Stedman Ozone formation from NOx in clean air Environ Sci Technol 10 150 (1976)

65 K R Darnall A C Lloyd A M Winer and J N Pitts Jr A reactivity scale for atmospheric hydrocarbons based on reaction with the hydroxyl radical Environ Sci Technol 10692 (1976)

66 S L Kopczynski quoted in Reference 20

67 Informal EPA meeting Philadelphia Pennsylvania July 30-31 1975 l 68 M Black L E High and JE Sigsby Methodology for assignment of al hydrocarbon photochemical reactivity index for emissions from mobile

soucres EPA-6502-75-025 U S Environmental Protection Agency Research Triangle Park North Carolina March 1975

J i

J

s

87

ii

1

14 76-311

Table I R~activity Scale fer Hydrocarbons Based on Rate of Disappearance

of the Hydrocarbon due to Reaction wih the Hydroxyl Radical

Reactivity Relative Class Half-lifea (days) to Methane(== 1)

I gt 10 ~ 10

II 1 - 10 10 - 100

III 01 - 1 100 - 1000

IV 001 - 01 1000 - 10000

V 001 ~ 10000

a 7 -3[OR] is assumed to be 10 radicals cm

88

-- _1---c=r- FFIT~ Ja--~uli -~4 P-iJJia-degR j_--CL[Jl_j i---i_ 0-1 j-____-~ ~ -Ji=-ej ~~~ ~~- I -middot~1--c--aC-

Table II Proposed Reactivity Classification of Hydrocarbons and CO Based on Reaction with the Hydroxyl Radical

CLASS I CLASS II CLASS III CLASS IV CLASS V (S48 x107a (48 X 107 - 48 X lQB)a (48 X 108- 48 X 109) 8 (48 x 109 - 48 x 10lO)a 4 8 X 1Ql0) a

Methane Methanol Neopentane n-Octane 2-Mcthyl-2-butene Carbon monoxide Cyclobutane Diethyl ether 3-Carene Acetylene 2233-Tetramethylbutane pXylene 23-Dirnethyl-2-butene Ethane Benzene p-Ethyltoluene 13-Phellandrene

Ethyl acetate o-Ethyltoluene Carvomenthene Isobutane o-Xylene d-LimoneneshyPropane p-Cymene Dihydromyrcene Diethyl ketone Methyl isobutyl ketone Myrcene Isopropyl acetate Di-n-propyl ether cis-Ocimene n_Butane m-Ethyltoluene n-Butyl acetate m-Xyle~e Ethanol 123-Trimethylbenzene Methylethyl ketone Propene Isopentane 1-Butene 1-Propanol 33-Dimethyl-1-butene 224-Trimethylbutane 1-Pentene V

23-Dimethylbutane 1-Hexene co 223-Trimethylbutane 124-Trimethylbenzene0

Tetrahydrofuran Isobutene 2-Methylpentane 135-Trimethylbenzene Toluene cis-2-Butene Cyclopentane Diisobutyl ketone n-Propylbenzene 2-Methyl-1-butene Isopropylbenzene a-Pinene Ethene Cyclohexene n-Hexane cis-2-Pentene Cyclohexane trans-2-Butene n-Pentane 13-Pinene p-Menthane 13-Butadiene 1-Butanol Isoprene Isopropyl alcohol 4-Methyl-2-pentanol 3-Methylpentane Ethylbenzene

--J 0 a -1 -1Range of values (in liter mole sec ) for the rate constant for reaction of the OH radical with the listed w

compounds

I

------t-L ~- ~ J---1 bull middotmiddott1- lTLJ_J 1--___r _ ~II ~Ai ~-_c11 )----_-J1bull~

Table III Proposed EPA Reactivity Classification of Organics (from reference 25 1974)

CLASS I CLASS II CLASS III CLASS IV CLASS V ~Nonreactive~ (Reactive) (Reactive) (Reactive) (Reactive)

c1-c paraffins3

Acetylene

Benzene

Benzaldehyde

Acetone

Methanol

Tertiary-alkyl alcohols

Phenyl acetate

Methyl benzoate

Ethyl amines

Dimethyl formamide

IO Perhalogenated 0 hydrocarbons

RFACTIVITY RATING 10

Mono-tertiary-alkyl benzenes

Cyclic ketones

Tertiary-alkyl acetates

2-nitropropane

35

c4+ paraffins

Cycloparaffins

Styrene

n-Alkyl ketones

Primary amp Secondary alkyl acetates

N-methyl pyrrolidone

NN-dimethyl acetamide

Partially halogenated paraffins

6S

Primary amp Secondary alkyl benzenes

Dialkyl benzenes

Branched alkyl ketones

Primary amp Secondary alkyl alcohols

Cellosolve acetate

Partially halogenated olefins

97

Aliphatic olefins

a-Methyl styrene

Aliphatic aldehydes

Tri- amp tetra-alkyl benzenes

Unsaturated ketones

Diacetone alcohol

Ethers

Cellosolves

deg

143

-J OI

I) I-

I

17 76-311

Table IV California Air Resources Board (ARB) Reactivity Classification of Org_a1ic Compounds 32

Class I Class II Class III (Low Reactivity (Moderate Reactivity) (High Reaccivity)

c1-c Paraffins2 Acetylene

l

l B2nz2ne

Benzaldehyde

Acetone

Methanol

Tert-alkyl alcohols

Phenyl acetate

Methyl benzoate

Ethyl Amin-lts

Dim2thyl fcr-amide

Perhalogenated Hydrocarbons

Partially halogenated paraffins

Phthalic Anhydride

Phthalic Acids

Acetonitrile

Acetic Acid

Aromatic Amines

Hydroxyl Amines

Naphthalene

Chlorobenzenas

Nitrobenzenes

Phenol 1

Hono-tert-alkyl-benzenes

Cyclic Ketones

Alkyl acetates

2-Nitropropane

c + Paraffins3

Cycloparaffins

n-alkyl Ketones

N-Methyl pynolidone

NN-dimethyl acetamide

Alkyl Phenols

Methyl phthalates

All other aromatic hydroshycarbons

All Olefinic hydrocarbons (including partially haloshygenated)

Aliphatic aldehydes

Branched alkyl Ketones

Cellosolve acetate

Unsaturated Ketones

Primary amp Secondary c + alcohols

2 Diacetone alcohol

Ethers

Cellosolves

Glycols

c + Alkyl phthalates2

Other Esters

Alcohol Amines

c + Organic acids+ di acid3

c + di acid anhydrides3

Fannin Hexa methylene-tetramine)

Terpenic hydrocarbons

Olefin oxides

Reactivity data are either non-existent or inconclusive but conclusive data from similar compounds are available therefore rating is uncertain but reasonable

Reactivity data are uncertain

91

r1_

l

Volume 42 number 2 CHEMICAL PHYSICS LETTERS 1 September 1976

RELATIVE RATE CONST ANTS FOR THE REACTIONS OF OH RADICALS

WITH ISOPROPYL ALCOHOL DIETHYL AND DI-11-PROPYL ETHER AT 305 plusmn 2 K

Alan C LLOYD Karen R DARNALL Arthur M WINER and James N PITTS Jr Statewide Air Pollution Research Center University ofCalifornia Riverside California 92502 USA middot

Received 27 April 1976

Relative rate constants have been obtained for the reaction of the hydroxyl radical (OH) with isopropyl alcohol and diethyl and di-n-propyl ether in environmental chamber photooxidation studies employing hydrocarbon-NOx mixtures in air it 1 atmosphere and 305 plusmn 2 K These results were obtained from measurements of the relative rates of disappearance of these compounds on the previously validated basis that OH radicals are dominantly responsible for their disappearance in the initial stages of reaction under the experimental conditions employed Absolute rate constants obtained by using the published rate constant for OH+ isobutcne of 305 X 1010 Q mole-1 s-1 are (k X 10-9 I mole-1 s-1) isopropyl alcohol 43 plusmn 13 diethyl ether 56 plusmn II and di-nbullpropyl ether 104 plusmn 21 No previous determinations of these rate constants have been reported

1 Introduction 2 Experimental

The hydroxyl radical plays a fundamental role in The technique used to determine relative OH rate chemical transformations in photochemical air pollushy constants in this study has been previously employed tion [ l -7] With the realization of the importance of to obtain kinetic data for reactions of OH with alkanes OH has come an extensive experimental effort to [14 15] alkenes [ l 115) ketones [ l l] aromatics determine rate constants for the reaction of OH with a [1415] and halogenated [I 116) and natural hydroshylarge number of organic compounds These studies carbons [I l] Briefly irradiations of the hydrocarbonshyhave been documented in recent reviews [7] and in a NOx-air system were carried out in a Pyrex chamber critical compilation [8] of approximately 6400-liter volume at a light intensity

To date however comparatively few data have been measured as the rate of N02 photolysis in nitrogen obtained for the gas phase reactions of OH with oxyshy (k1) of 04 min- 1 All gaseous reactants were injected genated hydrocarbons [9-1 l] In this work rate conbull into pure matrix air [ 17] in the chamber using l 00-ml stants are reported for the reaction of OH with three precision bore syringes Liquid reactants were injected ingredients of commercial solvents [1213] - isoshy with micropipettes During irradiation the chamber propyl alcohol and diethyl and di-n-propyl ether temperature was maintained at 305 plusmn 2 K Such data are of fundamental importance in assessing The alcohol and ether concentrations were monitored the role of these oxygenated hydrocarbons in atmosshy with gas chromatography (FID) using a 5-ft X I 8-in pheric chemistry particularly since as controls on stainless steel column packed with Poropak Q (80-

automobiles reduce the contribution of hydrocarbons 100 mesh) operated at 393 and 423 K respectively from mobile sources emissions of such oxygenates Ozone was monitored by means of ultraviolet absorpbull from stationary sources become increasingly of tion CO by gas chromatography and NO-NO2-NOx greater concern by the chemiluminescent reaction of NO with ozone

92

205

Volume 42 number 2 CHEMICAL PHYSICS LETTERS I September 1976

i l

l

The initial concentrations of reactant were isoproshypyl alcohol 60 ppb ( 1 ppb in air= 40 X I o- 11 mole liter - I at 305 K and I atmosphere) diethyl ether 20 ppb and di-11-propyl ether 55 ppb In addition to these compounds traces of several alkanes alkenes and oxygenates were present [I 115) Initial concenshytrations in these experiments were 800-1500 ppbC of total non-methane hydrocarbons 060 ppm of NOx (with an NO2 NOx ratio of 003-008) 6 ppm of CO and 3000 ppb of methane together with warer vapor at 50 relative humidity Replicate 3-hour irradiations vere carried out with continuous analysis of inorganic species analysis of hydrocarbons every 15 minutes and analysis of isopropyl alcohol and the ethers every 30 minutes

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilushytion rate (12-l6 per hour) from the observed hydrocarbon disappearance rate The HCNOx and NON02 ratios were chosen to delay the formation of ozone and ozone was not detected during the irrashydiation period [11 14]

As discussed in detail previously [1115] the major sources of OH in our experimental system are probably the photolysis of HONO and the reaction of H02 with NO [561819]

NO+ N02 + H20-= 2 HONO (l)

H02 + N02 HONO + P2 (2)

HONO + hv(290-410 nm) OH+ NO (3)

l-102 +NO OH+N02 (4)

The first reaction is thought to occur relatively slowly homogeneously [2021] but its rate is probably sigshynificantly faster when the reaction is catalyzed by surfaces Thus nitrous acid has been observed in a chamber study of simulated atmospheres carried out in our laboratory (22] while direct evidence for formation of OH radicals in an environmental chamber hasbeen provided recently by Niki Weinstock and co-workers [2324]

The concentration of OH radicals present during these irradiation experiments was calculated to range from 14 to 35 X 106 radicals cm-3 depending upon the conditions of the specific experiment The calculashytions employed the observed rates of isobutene dis-

206

appearance ( corrected for dilution) and the previously determined rate constant for OH+ isobutene [25] These concentrations are the same order as those calshyculated [182627] and observed directly 232428 29] by other workers

3 Results and discussion

Typical rates of disappearance observed during the irradiations of isopropyl alcohol and of the two ethers are shown in figs I and 2 respectively lsobutene wJs

used as the reference compound and is included in the figures From these pseudo-first-order rates of disshyappearance of the hydrocarbons rate constants reshylative to that of isobutene were obtained for the reshyaction of the PH radical with isopropyl alcohol and diethyl and di-n-propyl ether These were placed on an absolute basis using a value of 305 X 1010 Q

mole- 1 s-1 for the reaction of OH with isobutene [25] These results are presented in table I

There are no rate constants currently available for the reaction of OH radicals with ethers Assuming that hydrogen abstraction is the major reaction pathway one would expect these rate constants to be larger than

z 0

~ a 5 z w lt) z 0 u

0 w gta w ()

ID

ISOPROPYLALCOHOL

0

3 ______________________

omiddot 05 10 15 20 HOURS OF IRRADIATION

Fig 1 Concentrations of isopropyl alcohol and isobu tene plotted on a logarithmic scale) during photolysis of HC-NOx mixture in air at 305 plusmn 2 K and I atm

93

l

Volume 42 number 2 CHEMICAL PHYSICS LETTERS 1 September 1976

50

Fig 2 Concentrations of diethyl and di-n-propyl ether and isobutene (plotted on a logarithmic scale) during -photolysis of HC-NOx mixture in air at 305 plusmn 2 Kand 1 atm

those for the corresponding alkane since the C-H bond strengths in the ethers are at least several kiloshycalories weaker [30] Thus our rate constants ( at 305 K) for diethyl and di-n-propyl ethers of 56 and 104 X 109 Q mole-1 s-1 respectively compare with values for the corresponding alkanes n-butane and n-hexane (at 298 K) of 16 and 29 X 109 Q mole-I s- 1 respectively calculated from the formula of Greiner [31]

Two recent measurements of the rate constants for the gas phase reaction of OH radicals with alcohols

Table 1

iftltt a z w ~ 10 0 u

0 gta S 5

0 05

a DIETHYL ETHER

--0--

10 15 20 25 HOURS OF IRRADIATION

have been reported Osif et al [9) obtained a value of 53 X 107 Q mole- 1 smiddot- 1 for OH+ methanol using a value of 84 X 107

Q moiemiddotmiddot 1 s- 1 for OH reaction with CO [8] Recently Campbell et al [IO] have carried out studies of the reaction of OH With a series of alcohols-shymethanol ethanol 1-propanol and 1-butanol Our value for OH+ isopropyl alcohol of (43 plusmn 13) X 109 Q mole- 1

s-1 at 305 K is consistent with the value of (2 3 plusmn 02) X lQ9Q moie- 1 s-1reported for 1-propanol by Campbell et ai (10) at 292 K middot Although as mentioned no literature data are availshyable for the reaction of OH with ethers it is interesting to examine the data for solvent photooxidations obshytained by Laity et al [32] in chamber studies These workers irradiated separate solvent-NOx-air mixshytures in a stainless steel chamber at 305 K and reshyported t_he maximum rate of hydrocarbon disappearshyance observed in these experiments relative to toluene If this disappearance is assumed to be predominantly duemiddotto attack by OH then absolute rate constants may be derived from these data using a value of 36 X 109 Q moie- 1 s-1 for the reaction of OH+ toluene [3334] Values for OH+ isopropyl alcohol and OH+ diethyl ether are 31 X 109 and 54 X 109 Q mole-1 s-1 respectively compared to our results of 43 and 56 X 109 Q moie-1 s-1 Considering the differences in experimental methods and apparatus as well as the uncertainties involved in such an interpretation of the data of Laity et al [32] the agreement obtained for isopropyl alcohol and diethyl ether is quite satisshyfactory Similar treatment of their chamber data for other compounds for which the OH rate constants are known yields results (35] in fair agreement with literature values

Relative and absolute rate constants for the reaction of OH with selected hydrocarbons

Compound Relative rate of k(ll mole-1 s-1 X 10-9 )

disappearance this work a) literature

isobutene 1 305 isopropyl alcohol 014 43 31b) diethyl ether 0185 56 54 b) di-ndegpropyl ether 034 104

a) Using a literature value of 305 X 1010 ll mole- I s-1 for OH+ isobutene (25] b) Using the data of Laity et al [32] and attributing the HC loss solely to reaction with OH results placed on an absolute basis

using a value of 36 X 109 ll mole-1 s-1 for OH+ toluene (see text) middot

94

207

Volume 42 number 2 CHEMICAL PHYSICS LETTERS I September 1976

r

I l i l l r il

l11e atmospheric half lives tl2 = 0693kou +RH

X [01-1] for isoprupyl alcohol and diethyl and di-11-propyl ether are akubted to be 5 4 41 and 22 hours respectivdy using an ambient OH concentrashytion of 5 X 106 radicals cm-3 [18232426-29] and our rate constants Thus these compounds react with OH at rates similar to ethene c6 - c7 alkanes and mono-alkyl substituted benzenes [36] The relative importance of alcohols ethers and other oxygenated hydrocarbons in photochemical smog formation are discussed in detail elsewhere [35-37]

Acknowledgement

The authors gratefully acknowledge the assistance of FR Burleson in carrying out the gas chromatoshygraphic analyses WD Long for valuable assistance in conducting the chamber experiments and Dr R Atkinson for useful comments concerning this manushyscript This work was supported in part by the California Air Resourses Board (Contract No ARB 5-385) and the National Science Foundation-Research Applied to National Needs (NSF~RANN Grant No AEN73-02904-A02)

References

[I] NR Greiner J Chem Phys 46 (1967) 3389 [2] J 1-Ieicklen K Westberg and N Cohen Center for Air

Environmental Studies Pennsylvania State University University Park PA Pub 114-69 (1969)

[3] DH Stedman EE Morris Jr EE Daby H Niki and B Weinstock 160th Natl Meeting American Chemical Society Chicago September 14-18 1970

(4] B Weinstock EE Daby and H Niki Discussion on paper presented by ER Stepens in Chemical reactions in urban atmospheres ed CS Tuesday (Elsevier Amsterdam 1971) pp 5455

(51 H Niki EE Daby and B Weinstock in Advances in Chemistry Series No 113 (American Chemical Society Washington 1972) p 16

(6) KL Demerjian JA Kerr and JG Calvert Advances in environmental science and technology Vol 4 eds JN Pitts Jr and RL Metcalf (Wiley-lnterscience New York 1974) p 1

(7) JN Pitts Jr and BJ Finlayson Angew Chem Intern Ed 14 (1975) l BJ Finlayson and JN Pitts Jr Science 191 _(1976) 111

(8) RF Hampson Jr and D Garvin eds Chemical kinetic and

208

photochemical data for modeling atmospheric d1cmi~try NBS Tbullchnk11 Note 866 ltJune 1975)

[9] TL Osif R Sinrnnaitis and J lkicklcn J Photod1cm 4 (1975) 233

[10] JM Campbell DF McLaughlin and BJ Handy Ch~m Phys Letters 38 ( 1976) 362

[11] AM Winer AC Lloyd KR Darnall and JN Pitts Jr J Phys Chem 80 (I 976) to be published

( 12] KW Wilson and GJ Doyle Investigation of photocmiddothemishycal reactivities of organic solvents Stanford Research Inmiddot stitute Repor EPA Contract IICPA 22-9-125 (September 1970)

(13) Solvents theory and practice Advances in Chemistry Series No 124 (American Chemical Society W1hingtrn 1973)

[14] GJ Doyle AC Lloyd K Darnall AM Winer and JN Pitts Jr Environ Sci Technol 9 (1975) 237

[ 15) AC Lloyd KR Darnall AM Viner and J N Pitts Jr J Phys Chem 80 (1976) 789

(16) R Atkinson KR Darnall AM Winer and JN Pitts Jr Environ Sci Technol (1976) submitted for publication

(17) GJ Doyle PJ Bekowics AM Winer and JN Pitts Jr A charcoal-adsorption air purification system for clrnmshyber studies investigating atmospheric photochemistry Environ Sci Technol (1976) to be published

(18] B Weinstock and TY Chang Tellus 26 (1974) 108 [19] TA Hecht IH Seinfeld and MC Dodge Environ

Sci Technol 8 (1974) 327 (20] R Graham and BJ Tyler J Chem Soc Faraday Trans

I 68 (1972) 683 [21) WH Chan RJ Nordstrom JG Calvert and JN Shaw

Chem Phys Letters 37 (1976) 441 (22] JM McAfee AM Winer and JN Pitts Jr unpublished

results (1974) (23] CC Wang LI Davis Jr CH Wu S Japar H Niki and

B Weinstock Science 189 (1975) 797 (24) H Niki and B Weinstock Environmental Protection

Agency Seminar Washington (February 1975) [25] R Atkinson and JN Pitts Jr J Chem Phys 63 (1975)

3591 (26) H Levy II Advan Photochem 9 (1974) 369 [27) J G Calvert Environ Sci Technol 10 (1976) 256 (28) D Perner DH Ehhalt HW Patz U Platt EP Roth

and A Volz OH radicals in the lower troPosphere 12th International Symposium on Free Radicals Laguna Beach CA January 4-9 1976

(29) DD Davis T McGee and W Heaps Direct tropospheric OH radical measurements via an aircraft platform laser induced fluorescence 12th International Symposium on Free Radicals Laguna Beach CA January 4-9 1976

(30] JA Kerr and AF Trotman-Dickenson in Handbook of chemistry and physics 57th Ed (The Chemical Rubber Company Cleveland 197677)

[31] NR Greiner J Chem Phys 53 (1970) 1070 [32] JL Laity IG Burstein and BR Appel Solvents

theory and practice Advances in Chemistry Series No 124 (American Chemical Society Washington1973) p 95

95

Volume 42 number 2 CIIEMICAL PHYSICS LETTERS 1 September 1976

[33] DA Hansen R Atkinson and JN Pitts Jr J Phys Chem 79 ( 1975) 1763

[ 34 I DD Davis Bollinger and S Fischer J Phys Chem 79 (I 975) 293

[35 I JN Pitts Jr AC Lloyd AM Winer KR DamaII and GJ Doyle Demiddotelopment and application of a hydroshycarbon rlactivity scale based on reaction with the hydroxyl radical presented at the 69th Annual APCA Meeting Portland OR June 27-July I 1976

l

f I

If

i )

(36] KR Darnall AC Lloyd AM Winer and JN Pitts Jr Environ Sci Technol 10 (1976) to bl published

(37] JN Pitts Jr AM Winer KR Darnall AC Lloyd and GJ Doyle Smog chamber studies concerning hydrocarbon reactivity and the role of hydrocarbons oxides of nitrogen and aged smog in the production of photochemical oxidants to be presented at the In-tershynational Conference on Photochemical Oxidant Pollushytion and Its Control Research Triangle Park NC September I2-17 I 976

96

209

Volume 44 number 3 CHEMICAL PHYSICS LETTERS 15 December 1976

I

l

i

RELATIVE RATE CONST ANTS FOR THE REACTION OF OH RADICALS

WITH SELECTED C6 AND C7 ALKANES AND ALKENES AT 305 plusmn 2 K

Karen R DARNALL Arthur M WINER Alan C LLOYD and James N PITTS Jr Statewide Air Pollution Research Celter University of California Riverside California 92502 USA

Received 16 August 1976

Measurements of the rates of disappearance of three alkenes and two alkanes relative to isobutene in environmental chamber photooxidation studies employing hydrocarbon-NOx mixtures in air at 1 atmosphere have been used to obtain relative rate constants for the reaction of these compounds with the hydroxyl radical Absolute rate constants at 305

1plusmn 2 K obtained using a published rate constant for OH+ isobutene of 305 X 1010 l2 mole-1 s- are (k X 10-9 Q mole-I

s- 1) cyclohexene 47 plusmn 9 1-methylcyclohexene 58 plusmn 12 1-heptene 22 plusmn 5 23-dimethylbutane 31 plusmn 05 223-trishymethylbutane 23 plusmn 05 No previous determinations of OH rate constants have been reported for 1-heptene and 1-methylshycyclohexene For the remaining compounds these results are shown to be in good agreement with literature values reported for elementary or relative rate constant determinations

I Introduction

Recently we have reported rate constant determinashytions for the reaction of OH with alkanes [l 2] alshykenes [2 3] aromatic hydrocarbons_ [I 2) monoshyterpene hydrocarbons [3) halogenated hydrocarbons [3 4 J ketones [3] and ethers and isopropyl alcohol [5] These rate constants were obtained by measuring the relative rates of disappearance of hydrocarbons in a hydrocarbon-NOx mixture in air at 1 atmosphere and at 305 plusmn 2 K Absolute rate constants were obshytained [1--3 5] by using literature values for OH+ nshybutane andor isobutene at least one of which was employed as a reference compound in each study A similar technique has recently been employed by Niki and co-workers [6] Results obtained from these relative rate studies have uniformly been in very good agreement with literature values reported for elemenshytary rate constant determinations [7]

Here we report rate constant data at 305 plusmn 2 K for the reaction of OH with 1-heptene 1-methylcycloshyhexene cyclohexene and two substituted alkanes -2 3-dimethylbutane and 2 2 3-trimethylbutane These long-chain alkanes and cyclic alkenes have been suggested to play a major role in the formation of the organic portion of aerosols found in polluted ambient air (89)

2 Experimental

The experimental technique used to determine relashytive OH rate constants in this study has been described in detail previously [1-3) Briefly irradiations of the hydrocarbon-NOx-air system were carried out in a Pyrex chamber of approximately 6400-liter volume at a light intensity measured as the rate of NO2 photoshylysis in nitrogen (k1) of 04 min- 1bull During irradiation the chamber temperature was maintained at 305 plusmn 2 K

The alkane and alkene concentrations were monishytored with gas chromatography (FID) using a 5 X 18 SS of Poropak Q (80-100 mesh) column and a 36 X 18 SS column of 10 dimethylsulfolane on AW C-22 Firebrick (60-80 mesh) followed by 18 X 18 SS column of 10 Carbowax 600 operated at 433 and 273 K respectively Ozone was monitored by means of ultraviolet absorption CO by gas chroshymatography and NO-NO2-NOx by the chemiluminesshycent reaction of NO with ozone

The initial concentrations of reactants were 2 3-dimethylbutane 7 ppb (I ppb in air= 40 X 10-11

mole liter-I at 305 Kand 1 atmosphere) 223-trishymethylbutane 14 ppb cyclohexene 10 ppb I meshythylcyclohexene 21 ppb and 1-heptene 14 ppb In addition to these compounds traces of several alkanes alkenes and oxygenates were present [2 3] Initial

97

415

Vol um~ 44 number 3 CHEMICAL PHYSICS LETTERS 15 December 1976

i l

l

concentrations in these experiments were 700-800 ppbC of total non-methane hydrocarbons 061 ppm of NOx (with an NO2NOx ratio of 004-005) 6 ppm of CO and 2900 ppb of methane together with water vapor at 50 relative humidity Replicate three-hour irradiations were carried out with continshyuous analysis of inorganic species and analysis of hydrocarbons eve~y 30 minutes

All data were corrected for losses due to sampling from the chamber by subtraction of the average dilushytion rate (16 per hour) from the observed hydrocarshybon disappearance rate The HCNOx and NON02 ratios were chosen to delay the formation of ozone and ozone was not detected during the irradiation peshyriod [13)

As discussed in detail previously [23) the major sources of OH in our experimental system are probably the photolysis of HONO and the reaction of HO2 with NO [10-13)

NO+ NO2 + H2O ~ 2 HONO (1)

HONO + hv (290-410 nm) OH+ NO (2)

HO2 + NO OH + NO2 (3)

The first reaction is thought to occur relatively slowly homogeneously [14-16) but its rate is probably sigshynificantly faster when the reaction is catalyzed by surshyfaces Thus nitrous acid has been observed in a chamshyber study of simulated atmospheres carried out in our laboratory [ 17] while direct evidence for formation of OH radicals in an environmental chamber has been provided recently by Niki Weinstock and co-workers [6 18 19] The reaction of HO2 with NO2 has also been proposed a~ a source

(4)

of nitrous acid [20 21] but recent results [22 23) suggest that peroxynitric acid is the major product of reaction (4)

(5)

The peroxynitric acid may decompose back to HO2 and NO2 or possibly give HONO but this is currently uncertain [22 23]

The concentration of OH radicals present during these irradiation experiments was calculated to range

416

from (25-50) X 06 radicals cm- 3 depending upon the conditions of the specific experiment The calculashytions of OH concentrations employed the o~served rates of isobutene disappearance ( corrected for dilushytion) and the previously determined rate constant for OH + isobutene [24] These concentrations are the same order as those calculated [12 25 26) and obshyserved directly [I 8 27 28) by other workers

3 Results and discussion

lsobutene was used as the reference compound in this series of experiments From the pseudo-first-order rates of disappearance of the hydrocarbons rate conshystants relative to that of isobutene were obtained for the reaction of the OH radical with 2 3-dimethylbushytane 2 2 3-trimethylbutane cyclohexene 1-methylshycyclohexene and 1-heptene These were placed on an absolute basis using a value of 305 X 1010 Q mole-ls-I for the reaction of OH with isobutene [24] These reshysults are presented in table 1 together with the availshyable literature data

Within the estimated 20 uncertainty in our rate constant values the agreement among our data and the literature values is good For example our value of (31 plusmn 06) X 109 Q mole- 1s-1 for 2 3-dimethylbutane agrees within experimental uncertainty with that of (26 plusmn 03) X 109 Qmole-1s- 1 recentlY determined in a separate study in this laboratory by Atkinson et al [4] This latter value was derived from the relative

1

rates of disappearance of 2 3-dimethylbutane and ethane during a 216-hour irradiation in the Pyrex chamber Both of these values are significantly lower than the value directly determined by Greiner [29] at 300 K of (516 plusmn 013) X 109 However it is expected [28) that the rate constant for the reaction of OH radicals with 2 3-bulldimethylbutane would be less than twice as fast as with isobutane on the basis of the numshybers of primary and tertiary hydrogen atoms in these two alkanes The absolute rate constant for the reaction of OH radicals with isobutane has been determined to be 15 X 109 Qmole-1s-1 at 304 K [29) and hence the OH rate constant for 23-dimethylbutane is exshypected to belt 3 X 109 Q mole-1 s-1 which is in agreement with both the determination of Atkinson et al [4) and with the present work

Similarly our value of (23 plusmn 05) X 109 Qmole-I

98

Volume 44 number 3 CIIEIICAL PHYSICS LETTERS 15 December 1976

Table l Pclativc and absolute rate constants for the reaction of OH anltl 0(3P) with selected hydrocarbons

---middot-middot--------

ko11 + compound at 305 K Compourd Relative rdte ko(3P) + compound

of disappearance this work a) literature at 298 K

------ -middot-middotmiddotmiddotmiddotmiddotmiddotbull-middot-middot----------------------isobutene 1 305 L2 e)

2 3-dimethylbutane 010 031 plusmn 006 045 b) 026 plusmn Oo3 c) 0012 e)

2 2 3-trimethylbutane 0074 023 plusmn 005 029 b) 1-pentene 18 plusmn 02 d) 028 e)

1-hexene 19 plusmn 02 d) 031 e) 1-heptenc 073 22 plusmn 05 cyclohexene 153 47 plusmn 09 38 plusmn 04 d) 13 e)

f 1-mcthylcyclohexene 191 58 12 49 plusmn 02 f)

a) Using a literature value of 305 X 1010 Q mole-1 s-~ for OH+ isobutene (24 ] b) Ref [29) T= 298 K c) Ref [4] T= 305 K d) Ref (16) using a literature value of 31 X 1010 Q mole-1 s-1 at 303 K for OH + cis-2-butene [24 ] e) Rcf(32] ORef(31) bull

s-1 for 22 3-trimethylbutane is in reasonable agreeshy addition reaction of 03P) atoms with cyclohexene l ment with the value of 29 plusmn 01) X 109 Q mole-1 s-1 and 1-methylcyclohexene (091 and 421 relative to obtai_ned by Greiner at 303 K (29] In addition the O (3P) + cyclopentene) (31] decrease in rate constant in going from 2 3-dimethylshy Table 1 shows a comparison of the reactivity of butane to the larger molecule 2 2 3-trimethylbutane 0(3P) atoms (31 32] as well as OH radicals towards is consistent with a decrease from two to one in the the compounds studied here and other selected comshynumber of tertiary hydrogen atoms [29] These atoms pounds Since both 0(3P) and OH are expected to are the most easily abstracted since the C-H bond primarily undergo addition to the alkenes one would strength for tertiary hydrogens is 3 kcal mole-1 and expect the same trend in going from 1-pentene to cyshy6 kcal mole- 1 weaker than that for secondary and clohexene and this is in fact observed In addition primary hydrogens respectively [30) the value of 18 X 1010 Qmole-1 s-1 obtained for

Recently Wu et al (6] us~d a technique similar 1-hexene by Wu et al [6] and our value of to the one employed here namely the photooxidation 22 X 1010 Q mole-1 s-1 for 1-heptene both obtained of hydrocarbons in the presence of NOx in air at 1 atshy by similar methods are consistent with the trend obshymosphere and 303 K middotunder the assumption that OH served by Wu et al (6] of an increase in rate constant was the principal species depleting the hydrocarbon with the larger molecular size of the alkene they obtained rate constants relative to cis-2-butene As mentioned above the higher straight chain and for several of the higher alkenes Using a value of cyclic alkenes are assumed to be important precursors 31 X 1010 Qmole-I s-1 for OH+ ds-2-butene at of the organic content of ambient aerosols found in 303 K [24] one obtains a value of 38 X 1010 mole-I polluted air [9 10] The rapid rate of reaction of OH s- 1 for cyclohexene at 303 K from the data of Wu et with these species ensures that in addition to 0 3-al [6] This value is in reasonable agreement with our alkene reactions OH attack will be an important reacshyvalue of (47 plusmn 09) X 1010 Qmole-I s-1 at 305 K tion pathway in real and simulated atmospheres posshy

Substitution of a methyl group for one of the hyshy sibly yielding multifunctional oxygenated species in drogen atoms in cyclohexene increases the rate conshy the aerosol phase (9 33] stant slightly since we obtain a value of Assuming an ambient OH concentration of 5 X 106 (58 plusmn 12) X 1010 Q mole-1 s-1 for 1-methylcycloshy radicals cm-3 (18 2728] the atmospheric halfclives hexene This is expected by analogy with the similar t112 =middot0693koH+RH [OH] based solely on reaction

middot 417

99

l

Volume 44 number 3 CHEIICAL PHYSICS LETTERS 15 December 1976

[

with OH are (in hours) 2 3-dimethylbutane 75 2 2 3-crimcthylbutanc 100 cyclohexcne 049 1-methylcyclohexcne 039 and 1-heptene 10 In the case of the alkenes the actual half-lives in the atmosshyphere are expected to be significantly less since 0 3 reacts with the alkenes at significant rates [934]

Acknowledgement

The authors gratefully acknowledge the assistance of FR Burleson in carrying out the gas chromato-

graphic analyses WD Long for valuable assistance in conducting the chamber experiments and Dr R Atkinson for helpful comments concerning this manushyscript This work was supported in part by the California Air Resources Board (ARB Contract No 5-385)

References

[ l] GJ Doyle AC Lloyd KR Darnall AM Winer and JN Pitts Jr Environ Sci Technol 9 (1975) 237

[2] AC Lloyd KR Darnall AM Winer and JN Pitts Jr J Phys Chem 80 (1976) 789

(3) AM Winer AC Lloyd KR Darnall and JN Pitts Jr J Phys Chem 80 (1976) 1635

[4 J R Atkinson KR Darnall AM Winer and JN Pitts Jr Tropospheric Reactivity of Halocarbons Final Report to EI DuPont de Nemours amp Co Inc February l 1976

[5] AC Lloyd KR Darnall AM Winer and JN Pitts Jr Chem Phys Letters 42 ( 1976) 205

[6] CH Wu SM Japar and II Niki J Environ Sci HealthshyEnviron Sci Eng A11 (1976) 19 l

(7] R Atkinson KR Darnall AC Lloyd AM Winer and JN Pitts Jr Accounts Chem Res submitted for publication (1976)

[8] D Grosjean National Academy of Sciences Report (1976)

(9] WE Schwartz PW Jones CJ Riggle and DF Miller Chemical Characterization of Model Aerosols Office of Research and Development US Environmental Proshytection Agency EPA-6503-74-011 August 1974

(10] H Niki EE Daby and B Weinstock Photochemical Smog and Ozone Reactions Advances in Chemistry Series No 113 (American Chemical Society Washington 1972) p 16

I11] KL Demerjian JA Kerr and J G Calvert in Advances in enviromi1ental science and technology Vol 4 eds JN Pitts Jr and RL Metcalr(Wiley-lnterscience New York 1974) p 1

418

[12] B Weinstock and TY Chang Tcllus 26 (1974) 108 [13) TA Hecht JH Seinfeld and MC Dodge Environ Sci

Technol 8 (1974) 327 [14] R Graham and BJ Tyler J Chem Soc Faraday Trans

I 68 (1972) 683 (15] WH Chan RJ Nordscrom JG Calvert and JN Shaw

Chem Phys Letters 37 (1976) 441 Environ Sci Techshynol 10 (1976) 674

(16) L Zafontc PL Rieger and JR Holmes Some Aspects of the Atmospheric Chemistry of Nitrous Acid presented at the 1975 Pacific Conference on Chemistry and pecshytroscopy Los Angeles CA October 28-30 1975

(17] JM McAfce AM Winer and JN Pitts Jr unpublished results (1974)

(18] CC Wang LI Davis Jr C11 Wu S Japar II Niki and B Weinstock Science 189 (1975) 797

(19) H Niki and B Weinstock Environmental Protection Agency Seminar Washington DC February 1975

[20] R Simonaitis and J Heicklen J Phys Chem 78 ( 1974) 653 80 (1976) 1

(21) RA Cox and RG Derwent J Photochem 4 (1975) 139 (22] H Niki P Meker C Savage and L Breitenbach 12th

Informal Photochemistry Conference National Bureau of Standards Gaithersburg MD June 28-July 2 1976

(23) J Heicklen 12th Informal Photochemistry Conference National Bureau of Standards Gaithersburg MD June 28-July 2 1976

[24) R Atkinson and JN Pitts Jr J Chem Phys 63 (1975) 3591

(25) H Levy 11 in Advances in photochemistry Vol 9 eds JN Pitts Jr GS Hammond and K Gollnick (VileyshyInterscience New York 1974) p 1

[26] JG Calvert Environ Sci Technol 10 (1976) 256 [27] D Perner DH Ehhalt HW Patz U Platt EP Roth

and A Volz OH Radicals in the Lower Troposphere 12th International Symposium on Free Radicals Laguna BeachCAJanuary 4-9 1976

[28] DD Davis T McGee and W Heaps Direct Tropospheric OH Radical Measurements Via an Aircraft Platform Laser Induced Fluorescence 12th International Symposhysium on Free Radicals Laguna Beach CA January 4-9 1976

(29] NR Greiner J Chem Phys 53 (1970) 1070 (30] JA Kerr and AF Trotman-Dickenson in Handbook

of Chemistry and Physics 57th Ed (The Chemical Rubber Company Cleveland 1976)

(31] JS Gaffney R Atkinson and JN Pitts Jr J Arn Chem Soc 97 (l 975) 5049

(32) JT Herron and RE Huie J Phys Chem Ref Data 2 (1973) 467

[33] WPL Carter KR Darnall AC Lloyd AM Winer and JN Pitts Jr 12th Informal Photochemistry Confershyence Gaithersburg MD June 28-July 2 1976

(34] JN Pitts Jr and BJ Finlayson Angew Chem Intern Ed14 (1975) 1 BJ Finlayson and JN Pitts Jr Science 191 (1976) 111

100

APPENDIX B

i Inorganic and Hydrocarbon Data for

AGC Runs 216 through 223

l Jl

[

l

101

AGC-216-l S02 CRY C GLASS CHA~SER

1976 JUL 27

OiRK FROM 1200 TO 1545 HIE TE~PERATURES ~ERE TAiltE~ FRC~ IHE LCG __ MOK__ FROM 16QQ__ Cgt ---middot-middotmiddotmiddotmiddotmiddot----middot- ---------middotmiddotmiddotmiddot-middotmiddotbull- TH~ TEMPERATURE~ WE~E TAK~N )R6MTHE iOMPUTER REicoui TECO ~3 SAMPLING RATE 1161 HLMlN

ClCCtlt __ ELMSpound0 ___ TSL _Rl HUI _____ SC2 ----middot--bullmiddot-middot ----middotmiddotmiddot-----middot-middotmiddotmiddotmiddotmiddot-------middot-middot-------middot-middot-middotmiddotmiddot-middot-middotmiddot-middot--middot TIME TIMEl~lNI IOEG Cl 11 (~PHI

bull1200 bullbullo 29-4bullbull bull---bullbullbull1bullo---middotbullo3bull59middot--bull bullbull-- bullbull--bullbullbull --bullbull-bull----bull-middotbull---- bullbullbullbull-bull------bullbullbullbullbullmiddot------ -bullbull bullbullbull-bull-bullbull-bullbullbullbull bull bull bull-bullbullORbullbullbullbullbull-bullbullbullbullbullbull~bullbullbull bullO O O bullbull-

1215 15 294 00 C353 _____ 1230 _______30_ ___22r__ aa ___ c~s_9 ____bull ________________________________________________________ _

124s 45 2ltJ6 Jo aJss 1300 60 296 2s c355 1315 75 29 ~--- _________2_o _C ~ 344 ---middot--- ______________________ __________ - middot-middotbull--middot ---------middot------middot--middot - --middot-middotmiddot - middot--middotmiddot 1330 JO 294 20 C357 1345 105 296 20 0344

____ 14_0_0 _____ 1o ____ J9 bull 7 __z_o ___ o_342__________________________ __________________________________________ ______ __ 1415 135 297 15 C344 1430 1sc 297 1s c34q

-- _ --~_lt45__ middot--- J6_5_ _______29_7_ --middotbull-middotmiddot2bull Q_______QU5____ middotmiddotmiddotmiddotmiddotmiddot---1500 160 297 1S C330 1515 195 299 15 C338

_______1530 ____ 210 ______3c bullo _1s____c_32g middot-----middotmiddotmiddotmiddot-1s4 22s 267 15 c331 1600 240 middotmiddotmiddotmiddotmiddot~ bullbullbullbullbullbullbullbullbullbullbullbull

l615______ 255___ _ _bullo~~__________

NO DATA TAKE~ ---- CATA OISCARCED QUESTIONABLE QATA

____________________ __ __ -middot

102

AGC-216-2 SC2 CRY GLASS CHA~eER 1976 JUL 27-2~

CLCCK El~PSfC TSl REL rUM S02 1111pound middotT111emiddot(M1~middotmiddot1oec cT (g (PPII

middoti63amiddotmiddot- -210 -middot33~middot4middot--middot--1--smiddot c3f3-middotmiddot---middot-- - middot 1646 286bull 334 15 C315

--middotmiddotmiddot- po1 middot--middot-middot301_ ____ 334 middotmiddotmiddotmiddotmiddotmiddotmiddot--middotl bull5 middot-middot (320 ___ middot----- _ middotmiddot--middot---- ----middot--bull-middotmiddot----middot-middot-middot middotmiddotbullbullmiddotmiddotmiddot-middot--middot-------middot--l7l6 316 335 15 C10 1731 331 335 l5 C315

-middotmiddot middot- _1746 346 _ 3~_5_ --middotmiddot 15C 3l4___ -------middot---middotmiddotmiddot---- _____ __ 1800 360 337 15 C321 1a1s 375 335 1s 0313

_ JSJO __ 390_335___1_5 C03______ middotmiddot-----------1845 405 335 15 C303

bull1900 420 334 20 0305 _______ middot1915___ middot-- 4 3_5bull middot-middot 3 3 2 ---middot- 2 o __ Cbull 309 -----middot----middotmiddotmiddotmiddot

193C 450bull 33 2 20 C299 1945 465 331 20 0297 2000 480 332 20 C300

- middot 2015- --middotmiddot45middotmiddotmiddotmiddot-- 334 - - 20 C 310 2030 510 335 20 0296 2045 525 337 20 C3072ico middot 540 middot3jmiddot----i~o-middotmiddotc299-middot-middot----bullmiddot-211s 555 338 20 0294

__ 21Jo ____ 5_7c_ __ 33 1 20 _o 300________

~~

il middot 2145 585 338 middot 20 0296J 1middot 2200 600 337 20 0296 2215 615 33 7 20 0296

~-middot 223c 630- middot 33 1 2 o a294 middot 1 C 2245 645 337 20 0294

2300 660 337 20 C291_____middot1 -------middot--------------middotmiddot------middot 2315 675 337 20 0237

C 2330 690 337 20 0293 2345 705 33~~middot-middot 20 0291 --------middotmiddot-middot-----------------middot-middot ---middot---- --- middot- middotmiddot o 120 334 2 a o2as

( 15 735 334 20 0268

(

103

t bull middotmiddotmiddotmiddot--

AGC-216-3 S02 CRY L GLASS CHAMlgtER

1976 JUL 2E

c1oc_~ ELAPSEC rs1 l=L HU S02 Tl~E Tl~~ibull~l IDEG Cl Ii) (PPMI

30 750 339 20 C287 45 765 346 zo 0278

- _lOQ_ middot- _]so ~sr 2 O C ~Obull middot-middot-middot-bullmiddot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot----middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middot-middotmiddot-middot-middotmiddotmiddotmiddot-middot---- middot-middot-middot- middotmiddot-middotmiddot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot------115 7~5 354 15 C276 130 810 354 l 5 C2ol

J45 sect25 35bull1_ 1 _CZJ7 middotmiddot--middotmiddotmiddot -middot--bullmiddotmiddot-middotmiddotmiddotmiddotmiddot-bullmiddotmiddot---middotmiddot-bull---middotmiddotmiddot--middot -middotmiddotmiddotmiddotmiddot --------- --bullmiddotmiddot--- middot-200 840 354 15 C277

l 215 855 356 15 C277 ___ _230 870 _356 _ l5 _C bull ZH ---middotmiddot-middotmiddotmiddotmiddotmiddot---- ----middotmiddot-------------middot--

245 8S5 354 15 C275f 300 900 356 15 C27J

_ 315 915 bullbull~5bull4 bullmiddotbull-middotmiddotmiddotmiddot-middots middotmiddotmiddot- cZ69____---middotmiddotmiddotmiddot-middot-middotmiddot -------- --middotmiddot--middotmiddot--middot----- -middotmiddotmiddot-330 93() 356 15 C271 345 945 354 zo 0271

_ 400 __96Q___ 3_j4 --middotmiddot--bulll5 C2l_________________________________ 415 975 354 20 C250 430 990 354 20 C264 445 1005 353 20 C264 500 1020-~ 354 20 C260 515 1035 353 20 C250 530 1050 353 20 0254 -----middotmiddot--------middot-middot------middot ------middot-middot-middot-545 1065 354 20 C250 6~C 1080 35l 20 0252 615 lOC5 bull350 20 C49 middotmiddot-middot-middot-- middotmiddotmiddot-middotmiddot-middotmiddotmiddotmiddot-_ 630 1110 350 20 0248

C 645 1125 350 zo 0249 ____100 1140 bull_3s o middot--middotmiddotmiddotmiddotmiddot zo__o 2t9 middot-bull-bullmiddotmiddot--middotmiddot--------middotmiddot------------middot----middot---middotmiddotmiddotmiddotmiddot ______

715 1155 350 20 0243 C 730 1170 350 20 024

745 118S 350 25 C239 800 1200 middotmiddot37 25 C233

C 815 1215 347 25 0238

830 l 23() middot- 34 5 _ 2 5 middot-middotmiddot 0 236 ----middot--middot----middot 845 124) 345 25 C241

( 930 1260 347 25 C237 9J5 1275 4 bull7 2bull ~23) 930 129J 347 25 0236

( 945 13C5 347 25 C231 middotmiddotmiddot-~middotmiddotmiddotmiddot l Obull C l 3 0 bull 3 4 7 2 5 C 23 3 middotmiddot- middotmiddot-middot- __ middot-middotmiddotmiddotmiddot-middot- middotmiddot- -middotmiddot bull middot-bullmiddot---bull middot-middot--middot middotmiddot bull _____ -middot middot-middotmiddotmiddotmiddot-- -middot _ _ -

1015 1335 34 7 25 C232 1030 us 34 1 2s c221 1045 131gt5 34 7 2bull~ C225 1100 13eo 349 2s c221 lllS 1395 349 2s c22c

--middotmiddotmiddotmiddotmiddotU30 ltLO 349 z- _C2l6 1145 1475 347 25 C215

1

104

AGC-217-1 S02 LIGHT ORY7 GLASS CtlAHBER

1976 JUL 30 CONTINUATION Of AGC-216 LIGHTLIGHTS ON JUL 29 AT COO ~TENSITY 1ooi OATA FOR 216-LIGHT USELESS DUE TO FAULTY OACS CHANNEL S02 STRIP CHiRT DATA USEO FOR THIS RUN 25 HL CF S02 INJECTED HITH 90 ML Of NZ ON JULY 30 AT 1003 OASIBI 1212 ON CHAMBER AT ABOUT 1534 TO 1537 ON JULY 30 ANO FROM 1201 TO

1230 CN JULY 31 SAMPLING RATES tHLHINI TECO 43 - 1161 DASIBI 1212 - 600

middot~ CLOCK ELAPSED OZCNE TSl REL HUH SC2 ~

ii TIME TIHEIMINI tPPH) IOEG Cl Ill (PPM)

l 1130 -15 bullbullbullbullbullbull bullbullbullbullbullbull o3ze 1145 o bullbullbullbullbullbull 346 220 0321 1200 15 351 215 0315 1215 30 354 195 C310

l 1230 45 bullbullbullbullbullbull 356 18J 0307 1245 60 bullbullbullbullbullbull 357 17Q 0305 1300 75 bullbullbullbullbullbull 360 165 0301 1315 90 bullbullbullbullbullbull 360 155 0296

l 1330 lC5 bull bullbullbullbullbullbull- 36l 145 0 292 1345 120 bullbullbullbullbullbull 364 130 C290 1400 135 bullbullbullbullbullbull 366 110 0286

1415 150 366 _ll5 0282 1430 165 bullbullbullbullbullbull 365 115 027~ 1445 180 bullbullbullbullbullbull 365 110 021 1500 195 362 11C 0273 1515 210 36l 130 0269 1530 225 0519 360 140 0265

~[ ~~ i~~-- ~~ ~ ~~ - middotmiddotmiddotmiddot-- -middotmiddotmiddotmiddot- --middot - -middot middotmiddotmiddot-middot--------middot

sect ~ 1615 270 bullbullbullbullbullbull 357 160 0255

l ____1630 _______2s5 --bullbullbull _____ 35 bull7__Jo 5middot-middot--middotmiddot-cmiddot253middotmiddotmiddotmiddotmiddotmiddotmiddot--middot

1645 300 bullbullbullbullbullbull 357 110 025C l7CO 315 357 170 025C

___ 111s___330 __ bullbullbullbullbullbull __35 bull 7 -middot--- 1a bullomiddotmiddot--middotmiddotmiddotmiddot0241 middotmiddot--middot--middotmiddotmiddot----middot---middot-middot--middotbullmiddotmiddotmiddotmiddot-middot-middot middot-------------1130 345 357 190 0245 1745 360 bullbullbullbullbullbull 356 20c 0242

___a_oo_~--middotmiddot--3_15_ __bull___S_bullt____ 21 o -bullmiddot _o 24c middot-middot--middotmiddotmiddotmiddotmiddot--------middotmiddot----------------I 1815 390 bullbullbullbullbullbull 354 225 0231 1 1830 4C5 357 21~ 0236

___J_B4~ middot- ____420-~bullbull middot---middot _3l bull l___19 0 0 235 1900 435 bullbullbullbullbullbull 364 170 0233

) 1915 450 bullbullbullbullbullbull 365 160 0230

i 1 _ ____19 3 0 __ ---middotmiddotmiddot 465 bull bull bull middotmiddotmiddotmiddot--- 3 6 bull 6 -middot--1 5 bull 5 _ C bull 2 2 7 middotmiddot-middot-middot--- --middotmiddotmiddot --middot -middot - ------

1~45 480 366 145 C225 2000 495 366 150 0222

____2015 ___middot _i 10__ bullbull_____36o6_- JS_ Q_middotmiddotmiddot 0 220 2030 525 bullbullbull$bullbull 366 155 021ar 2045 540 366 155 0216 ___2100________ssbull_____ ---middot6J__ __1 s s _o 213 2115 570 bullbullbullbullbullbull 3os 165 c211 2130 585 bullbullbullbullbullbull 365 110 c210 2145 600 bull 365 175 0208

J --middotmiddot-middot2200 middotmiddotmiddot-middot--615middot-middotmiddotmiddotbullbullbull bull--middotmiddot--middotmiddot-364----middotmiddot iso middot o206

middotI 2215 630 bullbullbullbullbullbull 364 180 0204 _ -middotmiddot----middotmiddot2230 645__bullbullmiddotmiddotbullmiddotmiddot-middot--middotmiddotmiddot 31i bull 2_ 19 0203

2245 660 bullbullbullbullbullbull 364 195 c200

i1

zjo_ci ___---1s bullbullbullbull 362---middotmiddotiomiddotmiddotomiddotmiddotmiddot omiddot196 -r l 2315 690 bullbullbullbullbullbullbull 362 205 0195middotbull 2330 705 bullbullbullbullbullbullbull 36l 215 0193g 2345middot 720 bullbullbull ~ bullbullbull 36l 225 0190l

bullbullbullbullbullbull NO DATA TAKEN ---- DATA OISCARO~D QUESTlONAuLE DATA r ~ 1~

IT Q

~

105 F

AGC-217-2 S02 LIGHT DRY GLASS CHAMBER 1976 JUL 31

CLOCK ELAPSED OlONE TSl REL HUM S02 Tl~E TIMEIMNl IPPMI IDEG Cl 11 IPPMI

1 0 735 3bO 22C 0188 15 750 3bO 220 C185

_ 30 ---middot-middotmiddot--765__ 358 -middot-middotmiddot 220 0183 45 780 358 220 o1a1[ 100 795 bullbullbullbullbullbull 358 225 0180

115 810_bull___-middotmiddotmiddot-middotmiddot-middot 35 bull8 middot-middot-middot-middot225 0177

l 130 825 bullbullbullbullbullbull 357 225 0175

( 145 840 357 225 0112 200 855 bull _357_ ___ zzs c111

215 870 356 225 0169

f

I ( 230 885 35b 230 0168

245 coobull 356 230 c166 middot300 915 356 230 0163

C 315 930 356 230 C160 330 945 35bull6 230 C160 345 960 bullbullbullbullbullbull 356 230 0158 400 975 bullbullbullbullbullbull 354 230 0156

_415 _990 ~5~6 230 0154 430 10C5 356 235 0152 445 1020 354 235 C150

L -middot----middot-middot500__1035 __ -middotmiddot 354_ _ ___ 23 5 0148 515 1050 354 235 C147

( 530 1065 bullbullbullbullbullbull 354 235 0145 545 1000 354 235 0144 600 10lt5 354 235 C142 615 1110 354 235 0140

___630 ____ 1125 bull - ___ 35bull 4_ ___ 24o013lt 645 1140 354 240 0137 100 1155 bullbullbullbullbullbull 354 24o 0135

--- _715 1170bull 35 24-0 0134 730 1185 354 240 0133

l 745 1200 354 240 0131 800 121~bull -middot-middot____35~---middotmiddotmiddotmiddot24bull C_ _O 129 815 1230 354 240 0128 830 1245 354 245 0121

-middotmiddot----845 1260~ 34 245 0-126 9CO 1275 354 245 0124

( 915 1290 354 245 0122 -middot--middot_930___1305_ -middotmiddotmiddot)54___ 245 c120

945 1320 bullbullbullbullbullbull 354 245 011a ( 1000 1335 354 245 0116

________1015_ __ _1350 354 240 0115 1030 1365 middot-middot--356 240 0113 1045 13130 354 24C 0112 1100 1395 354 240 0111 1115 1410 354 240 0109

- middotmiddot--middot-~--- middotmiddotmiddotmiddotmiddotmiddot-middot--middotmiddot-lDO 1425 354 240 0 107

l 1145 1440 356 240 0 bull 106bullbull12cc 14gt5 bull bullbullbullbullbullbull 3gt6 40 0105 1215 14 70 0504 354 240 0 103

middotmiddotmiddotmiddot-middot- middot---middot-------middot--middotmiddotmiddot --middot middotmiddot-middotmiddot middot-middotmiddotmiddot-middotmiddotmiddot

__ middotmiddot-middot---------middotmiddotmiddotmiddot_ - ___ middotmiddotmiddotmiddotmiddot

----------middot--middot--middot- middot--middotmiddotmiddot--middotmiddotmiddotmiddotmiddotmiddot-middotmiddot -middot---

middotmiddotmiddot--middot middotmiddotmiddot-middotmiddot-middot--middotmiddotmiddotmiddotmiddot-middotmiddot-----

bullbullbullbullbullbull NO OATA TAKEN ---- DATA DISCARDED QU~STIUNABLE UATA

106

AGC-218-1 S02 40t RH GL~SS CHAMBER 1976 AUG 4

DARK AT 0850 FC-12 ANO S02 WERE INJECTED INTQ THE CH4~8ER THE OASIBI 1212 WAS CN THE CHA~~ER F~OM 1651 TO l65S BRADY 1296 CALISAATION 1Q7~ JUL 16 SAMPLING RATES IMLMINI TECO 43 - 1~33 CASIS 1212 - 600

CLCC~ ELAJSEO czc~~ TSl R~L HU~ 50 Tin TIMEl~Nl (P~gtI DEG Cl a1 PPM)

1100 c bull~~ 334 4J ~-377 1105 5 ~ 334 485 l3Sl 1110 10 bullbullbullbullbullbull ~34 485 C3BJ 1115 15 middotmiddotbullcent 334 460 0379 1120 C bullbullbull 334 475 0374 1125 2~ bullbullbullbullbullbull 33S ~70 0375 1130 30 middotmiddot-~middotmiddot 332 475 0371 1135 35 334 47o o372 1140 40 bull bullbullbullbullbullbull 334 65 C370r J 1145 45 bullbullbullbullbullbull 334 4~c 0111l i 1150 50 middotbull 334 465 03t9 1155 55 334 16 5 0364 1200 60 - 334 45 5 0366 1205 65 bull 335 450 036rl ~ 1210 70 ~bull~ ~)5 ~5J_ 035~

1215 7~~ bullbullbull 335 450 C162 1220 so bullbullbullbullbullbull 334 450 o~

di 1225 85 334 440 0362

iz3d o ~~bullbull 3J4 44o o3e2 1235 95 334 445 C355 1240 100 332 45 0355 middot--middot-middot---middot--middotbull- middotmiddotmiddot-middot --middot - _____ _ f24middot5middot 10smiddot~middot Jl 332 4middot4~ 6 middoto-353-middot

~ i C 12so 110 332 4~o o353 125 5 115 i__ 4 ) _ 0 bull 352_ _--bull-middot __ ----middotmiddot-middot __ middot-- _____ - _ ___13()0 __ 120-middot-- 332 435 0354

J 1305 125 334 430 0351i I J31 o __ _ uo __ ~bull-- u-~--middot middot-middot-42 bull0 o- 1ssmiddot--middotmiddot-middot-middot- ----________----middot- ---middot __

1315 135 334 420 0348 bull ( 1320 140 334 420 0348i l32S 145 -middot_ _3 bull~--4t5 Q352

1330 150 334 41middot) 037 1335 155 335 420 0344

1340 160 335 420 0344 middot 1345 -165 uu 3ibull 4 - middot41smiddot cl44

C 1350 170 ~bull 335 415 0343 1355 175 335 420 C343 1400 180 335 415 C341 1405 185 337 405 0341 1410 190 33 bull 5 400 0343 1415 liS bullbullbullbullbullbull 335 41C 0340 1420 2cc bullbullbullbullbullbull 337 41o 0331 1425 2cs bullbullbullbullbullbull 337 405 oJe 1430 210 bullbullbullbullbullbull 334 410 o33e 1435 215 33l 42v 0336 1440 220 bullbullbullbullbullbull 317 415 C]36 1445 225 middotmiddotmiddotmiddotmiddot~ 335 45 0332

ti~tmiddot -g 1450 230 bt~ 337 41 5 c~32

1455 2 35 33 7 bullbull 0 o 13cmiddotmiddotmiddotmiddot~ ~ 1500 240 33 7 42) 0330

$C t-kOt~ ~ 1505 745 H 7 42 D 0330

bull~ 11C f ~ () D~ TJ T ~r EI ---- ChT~ orsrA~ncn 0UST l1~111c [)TA ~ 4

J 1(

i[ i l bull1

~ ~ Imiddot

middoti_ ~

107

I

il ~ ij

1 i ii l

Ir

~ 11

ij

Ibull ~

J ~ l

j (

) AtC-21S-2 502 401 RHT CLASS CHAMBER

1976 AUG 4

i i

CLOCK ~LAP$) JlC TS l EL rIJ~ S72 Tl bullE TlEPlll I I P1 l lDEG CI (1) I PP~ I

1510 250 middot~ 337 415 o 32~ 1515 255 cie-(wt 337 t~ 0 032S 1520 2t) 337 420 0PI 152 5 265 bulltI 3l 7 42 1 I~bull)~ 1530 2 7 C=it~bull 334 41 5 0327

bull 1-tit~o

middot~

1535 27 D5 420 bulll 324 1540 middot2cu 335 42 C32C 1545 285 middot=~ 334 430 C322 155C 29J t rLI 334 430 0122 1555 295 o CJ3 334 4t 5 c 320 1600 3CO bull Iii- 334 420 0322 1605 3C5 emiddotbull= 334 42o J3lfl 1610 310 wc 33 4 425 0319 1615 315 ti 332 420 0316 160 32C 334 Z5 0 bull 114 deg 1625 325 -0laquot 33 t 430 0315 1630 330 335 430 ons~ li35 335 cent 33 5 435 0310 middotmiddot-- ____ -- 1640 340 $Qt 335 44) 0313

( 1645 345 33 5 435 o 311 1650 335 440 0309--~-- ~~~~-----middot~-~~-~-~-~--- ---middotmiddotmiddotmiddotmiddotmiddot-middotmiddotbullmiddot-- middotmiddotmiddot--middotmiddotmiddotmiddot--middot-middotmiddotmiddot-middotmiddotmiddotmiddotmiddotmiddot --- middot-middot-- middotmiddotmiddotmiddot--bullmiddot--middotmiddot-middot--middot middot-bull------middotmiddotmiddotmiddotmiddot-- ---middot-middotmiddotmiddotmiddotfo55 355 bull-c-t-t-it 33 r 43 5 C313 1700 360 $0~IZ 335 45 C305 l705 365 338 4 5 0308bullbull ---- middot-- middotmiddotbull---middot-middotmiddotmiddotmiddotmiddot--middot-- l7l0 370 ~~emiddot i8 440 CJC8 1715 3 75 bull-tt~iU 337 44J C310 1720_ 380 bull ie~~bull -~3 8 35 J303 - middotmiddotmiddotmiddotmiddotmiddotmiddotbull-middot-middotmiddotmiddotmiddotmiddot middotmiddot-middot- middotbullmiddotmiddotmiddot-middotmiddotmiddotmiddotmiddotmiddot-middotmiddot1725 385 -tttr~ 33a 440 0308 1730 39J ~cent n a 440 0303 1735 395 izc 338 440 0 3)2 middot--middotmiddotmiddot middotmiddotmiddot- 1740 co VIOct- lt= 338 430 o 30 1745 40J (rfl$~bull 338 430 0302

OJei1()01750 410 33 I 430 029d middotmiddot--middotmiddot---middotmiddotmiddotmiddotmiddot--middotmiddotmiddot-middot-middot 1755 415 t 338 44) 0299

1800 420 bullti-it 333 43 5 0296 1805 425 i-t-7Icent 33 8 430 0299 middotgt l8U 4 3 I cent46 317 3 0 029 l Bl 6 436 c-oilaquo4t 337 430 0298 lil21 441 33 7 43 5 ( ~9 7

~tf(p ~

middotmiddotmiddot--middot-middotmiddotmiddot--middotmiddotmiddot--middot middotmiddot----middotmiddotmiddotmiddot----I B26 4d plusmn~ 337 430 o 2-7 1831 451 (-tilll- 337 415 0296 1836 456 tdcmiddotC n13 430 C291 --middot - -- 1341 461 t(I~ 33 7 435 0292 le46 466 bullt~tci 33e 435 o 292 1851 4 71 33_ 3 425 Oll Hi56 4 76 337 425 0291

1901 4 il I it-Otcbull 33 43C bull)2Rq1906 96 t~illtt 338 475 J217

_Clt-~4t1911 t91 l3 7 42) middot t~HJ 1916 bull c( bull ie--iJtll)ill6 4l1) 0187n ___ iil 111 [t 1 T el rbullNJ Crf fISCAP[E) QU~ 5 T t 1Jt-bl E 1)1 TA

108

AGC-218-3 SOZ 40l RH 7 GLASS CHAMSER

__1976_ AU( 4

CLOCK ElAPSED oz~~~ TSl qEL HUM S02 TIME TfME (lfrjf- I PP~I oeG c- -ii --middotmiddotcigtTmiddot----

(

1lt121 sci-middot umiddotbullmiddotmiddotmiddotmiddotmiddotmiddot-- 3fmiddots~ 425 o~io6 1926 5~6 bullbullmiddot 338 42-0 0285

______1931_____511 ~-~- 33 1_ 41 s o_2s5___ 1936 516 337 425 ozss

( 1941 521 337 415 021a 1946 526 337 415 0282 19si ~31 bullbullbullbullbullbull 33i middotmiddot425 021a 1956 536 337 420 0278 2001 541 335 420 0283 200middot6 5t6 -middotubullu-middot----33s- 12s -0211 - middot middotmiddotmiddot middot ----------

( 2011 551 bullbullbullbullbullbull 335 420 0278 2016 556 334 415 0277 2021 561 334 425 0277

( 2026 566 bullbullbullbullbullbull 334 425 0276 2031 571 bullbullbullbullbullbull 33~-- 420 0278

middot-middotmiddot- 2036 576~ UU 334 425 0275 ( 2041 581 middotmiddotmiddotmiddotmiddot~ 335 420 0274

2046 586 335 420 0275 205( 591 337 430 0211

C 2056 596 335 425 0211 2101 601 337 --~2s 0210 2106 606- -middot~bullbulli 3~s 430 0211

C 2111 611- 337 425 0269 2116 616__ = 337 425 0270rmiddotmiddot- 2121 621 ibullbullbullibull 33~7 436 0210

C 2126 626 c 337 420 0270 -l 2131 631 ~ 337 __ 430 0210

2136 636 337 425 0267 C 2141 middot 641 bull 337- 425 0266

2146 646 337 430 0265 2151 651 337 425 0265

C 2156 656 middotmiddotmiddot~middotmiddot 335 425 0269 2201 661 33J__ 431) 0266 2206 666 335 425 0263

( 2211 671 335 425 0265 2216 676 337 430 264 2221 681 335 425 C261

( 2226 686 33S 435 0263 2231 691 bull h 335 430 Q2(3 2236 696 335 425 0259

( 2241 701 335 430 0256 2246 706 335 425 0258 2251 711 335 425 0255 2256 716 335 430 0256

OU~STICNA6LE DATA

109

AGC-ZIR-~ ~02 401 RH GLASS CHA~t1Fl-1976 AllG 4-5

AOO 660 MIN TO ELAPSEO llM

CLCCK fL~PSEe TS l l~L HJ~ Si~bull- T -IF Tl~cllO ING CI (o (r~M)

22C6 6 33S 4l5 C263 22tl 11 335 425 C265 2216 16 ~37 43i) i)264 2221 21 335 12 5 Obl 2226 71 D5 435 C26~ 2211 31 ns 430 0263 2236 36 335 425 i)5G 241 41 335 430 C256 24( 46 335 2 _5 middot 253 51 51 33 5 42S C 25 256 56 -3 ~ 43(1 0256 230 t 61 335 425 C254 2306 66 35 42 C25S 2311 71 33 5 430 C 50 2316 76 337 425 CZSv 231 81 33S 43) C 5) 2326 86 33gt 43J 0252 2331 91 334 420 0249 233b 96 335 430 C z5J

middotI 2341 1C1 ~35 425 C252 2_34~ 1C6 335 420 obull45 2351 111 33 middot-middotmiddot 42 5 G248 2356 116 334 420 0248

1 l21 334 425 0247 6 126 334 42~5 C~250

11 131 334 420 0244 16 l36 334 __ 425 c 245 21 141 334 42middoto 0244

26 146 334 420 0244 31 151 332 42o 0242 36 156 334 415 0242 41 161 334 425 0241

i 46 161 132 42 o G2391i 51 171 334 430 ~ 239-~

i 5b 176 332 430 oz3gmiddot 10 l lBt i 2 425 023ltgtt 106 186 332 435 C236

I -~ -~ 111 l SI 332 431) 0238 ~ ~ 116 l c6 33l 431) IJ2 1l 201 332 435 C23gt

126 2C6 332 430 a 233 I 131 211 3 2 435 0232

f 136 216 3 3 2 430 0233 p 14 l 221 3) 425 0233 I 146 226- 312 435 C233

I 151 23i 33 l 425 c22s

C (

~ ti

) ~ I ~i 6 236 332 4)5 cna 201 bull1 3 3 I 430 C bull J )

f 20lt 246 33 l 4 s C2 n E 211 251 3 3 l 4gt0 0231)]

Iimiddot~- ~ll QtTh TAK f1 fl AT

~ -- 1 l middotmiddot1

I 1

middotmiddotmiddotmiddot--middot-middotmiddotmiddotmiddotmiddotmiddotmiddot --middot-middotmiddot--middot-middot ----

_ - middot- --middot---- middotmiddot-middot-middotbullbullmiddotmiddot-middot -middot--- ---

--middot bullbullbullbullmiddot bull-bullbullbullbullbullbullbull M bull-bull 0 middot---middot-middotmiddot middotmiddot----middotmiddot - -

- --middot---middot- -- -~middotmiddotmiddotmiddot-middot--middot-middot middotmiddot--middot

____ ___ --- middotmiddotmiddotbullbullmiddotmiddot----- __ middotmiddotmiddot-middotmiddotmiddot -~ ~-

n1 s1or~o

110

AGC-218-5 S02 4Ct RH Gl ASS CHA~lrn lH6 lllJG 5

AOO 6amp0 HIN TO ELAPSED TtME

ClCCK l~llSFt 1$1 REL HiPl SO TIME TIMEl~lNl ID~G Cl Ill IPPM1

216 256 331 430 0211 221 u1 331 4-L~ c2n 226 ~66 33o 43~ C27 231 211 JJo 44o 022s 23~ 276 3l0 44S C28 241 281 330 435 C26 246 266 330 44 5 C2Z5 251 291middot 330 43s o22~ 256 296 33o 415 c23

middot301 301 bull3middot3omiddotmiddot---middot40 022s 3C6 306 328 435 0225 311 311 328 445 C226 316 316 32 1middotmiddot middot -4middot3smiddot c222

( 321 321 32S 440 C222 326_______ 36 32_ a______ 43 bull s__ c 221 middotmiddot---middot--bullmiddot-middotmiddotmiddot ___ __________ ----------middot-middotmiddotmiddot-middot 331 331 328 430 023 336 336 32S 435 C220

34134-1 e a~middotbull~- fl 9 0 211 346 346 3Z8 440 0220 351 351 32s 435 c220

1 ~t t---ttt-middot -t~g ____ --middotmiddotmiddot -middot-middot-middot-middot middotmiddot- middotmiddotmiddotmiddotmiddotmiddotmiddot--middot middotmiddotmiddotmiddotmiddot-middot--middot---middot middot--middotmiddotmiddot-middot- ---middot-bullbull _ 406 366 327 440 0216 411 311 n1 445 o_215 __ __ --------middot- middot--middot--- 416 376 326-middotmiddotmiddotmiddotmiddotmiddot43s-middot C211

( 421 381 327 445 C215 421 3~6 _32 bull6___~i1Lcn middot- ______ middotmiddotmiddot--middot--middotmiddot middot-middot--middotmiddot 4Jl 391 326 445 C211 436 396 32s 44o 0211 4 1l 401 326 450 0210 446 ~06 324 44o u211 451 411 34 45o 0213

_456_ 416 324 445 _C210 501 middotmiddot21 323 455 c211 506 426 323 445 c210 511 431 323 55 0204 516 436 323 44S 0209 s21 441 323 455 c210 526 _446 33 445 C208 531 451 3 3 455 003 536 456 323 445 0204 541 461 322 4S5 c20~ 546 466 322 445 C215 551 471 322 450 0206 556 476 316 4o 0210 601 481 316 450 020gt

C

606 4fl6 31 6 455 C zomiddotJ 611 491 316 5 ~ c2n 616 496 316 4tC on 621 501 316 455 C2J2

bullbull bullbull NO OAH T6KFN ---- ll 11T VJ ScAmiddot~~~u

111

AGC-218-6 S02 40l RH GLASS CHAIBER 1976 AUG 5

ADO 660 HIN TO ELAPSED TIME

CLCCK ELAPSED TSl REL HUM S02 TIME TIMEIM~) IOEG ti Ill (PPII

626 5C6 middot3f~6middot 46ci 0200 ( 631 s11 316 455 c2ao

636 516 316 45s c200 641 521 31~imiddot 4ampomiddot 019

( 646 526 315 45o 0199 651 531 316 455 0199 656 536 315middotmiddotmiddot 45S 0195

C 701 541 31a 45o 0191 706 546 319 45~5 C197 711 551 319 455 C115 716 556 320 45~ 0199 721 561 322 460 C197

566 323middotmiddotmiddotmiddotmiddotmiddot 45~5 C195- -middotmiddot - --middotmiddot--middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot- ---- middotmiddot-middotmiddot-middot middot-middot-middotmiddotmiddot middot--726 ( 731 571 324 460 0194

736 5 76___32 bull middot-middot --4~-~~---middotmiddotmiddotc ~q_5 ______________ middot------middot-middotmiddot-middot--middot-middot-middot-- -- middotmiddotmiddotmiddotmiddotmiddot-middotmiddot-middotmiddot~--middotmiddotmiddot-~-middot-middotmiddot----- middotmiddotmiddot--- middotmiddotmiddot-----bullbulln-bullbull-middotmiddotmiddot -------middot-middot 741 581 3t4 455 0193

746 586 326 45o 012 751 591 327 455 0194 756 middotmiddot- middotmiddot-s96~-middot -- 32-amiddot- middotmiddot4smiddots middotmiddot middotc194 801 601 330 455 C193 806 606 33l 460 C191811 ------middotmiddotmiddot-middotmiddotmiddot-middotmiddot--middot----middotmiddot------middotmiddotmiddotmiddot-middot-middotmiddot----------middot- 611 33l 45bull 0 0171 ------middot-- middotmiddotmiddot-middot----------816 616 332 460 0191 821 621 332 455 0192

826 626 33--middot 460 o 183 C 831 631 334 455 C188

836 636 334 ____4S_o___Cl36 --middotmiddotbull---------841 641 -middotmiddot-middot-middot33 5 45 o o1ss

( 846 646 335 46 C137 851 651 335 455 CS6 856 656 335 40 0184

(

l

a ~ -

112

AGC-2ld-i s02 -~ r~ iliS5 (I--A~tl[f-

196 AUC ~

libulloHTS Cl 01CC 1nSlY lmiddotJOt lJ~ OA~JJI_ 12L r c~~ itmiddotE (Hit~t t~uG~j cic6 10 tll f-RC~ 1 Mi TJ S lf ftf-lt

Tt~ ~Ol~ fbull~0~ 1C~0 T2 l~Ji ~~~J TJ 113( ~2~1-~~C~ AU~ t VlOT--0110 s~tY 12s6 CAlt1 ~i11u- 1-h vl imiddot StPLllG RATES OL11) TcCU ~ -middot 123bull C~Slfl 12l - t()(

ccci- fL 0 )~middot) i Sl i l ht ~-it t-bullc r l -pound ( l 1imiddotc Cl 1 ~ ~~(

1 tti ~ C i t ( bull t ~ 1i1t ~) ~i cu

--bull-- -~ll __11 middot-- middot ~~) 5 ) -bull ~ __ S bull lmiddot~ __ _ gt le 1~J yen ~ ~s ~ss 1~1s~ 92l 21 ~bull~ 46C c11middotgt)c~~

S2C ~tbull 1 ~ ~ ~4 bull_ bull l ))(~-~

middot93 l 31 1 ~ _j_l bull bulltC Cl-bull 936 ~l 01 L

--------~ -~ ___ ______ 4_1 -1=i 1 5 0 l i 4t 41 tit~ 4 middot1 middotmiddot3 C -_ bull 1 i~l

( 951 roc -i 5~L 3 1 42 bull G ct 51 ~( - 3 f gt 41 i 0 1(_bull(

1)0 l c 1 ~centelaquo 4middot1 5 01X lOUc cc 15 ClL~ [011 7 l ~d~bullt~(c 3lt bull 7 41 bull -J16-t lOlt 76 it20 OltG t~~01gtt j4 9

102 l 81 (-ttI centicx 3i ~gt 01~2 iOU 8t i-uc~ ~2) C l 5t1oii -middot middotsf~- middotmiddot~~-~~- -----~-~ ~

)~bull- ~ l () middoto i5t1middot i03amp ~6 ~~ 4C bull i C lJ6 041 10 1 middot~bull-p(t 1t _ ----~ bull~-----~ ~+- ~ middottC46 [Ct bulllaquo 4 7 4 bull U r bull l bullmiddot

1051 111 ~~-~~ tCi ~gt 0 l i0~6 J1~- ~ 347 41u 01~ llOl 121 -middot--bullomiddot- -middot 41 c (i1smiddot1

C 1106 126 4s ) 153 llll l31 ~middot~ 34 5 4rJC middotO 140 lll6 136 bullbull~bull~ 3lt bull j =~- --~ O l4

( ~121 l~l $enyen 34 o 3i G 14ltgt i12o 146 ~~ 34Q Jl0 011

--i131 -middot-- 1s1middotmiddot middot_ __ middotf 3 ~ ---143 middot-- C 136 1f 3C 0112

~14_1 -middotmiddot--middotmiddotmiddot16_1 -e-~ )-t _ b5 1~2 qri middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot3middot4--_middot- Ji ~ C bull 1 j S bullmiddotmiddotmiddot - middotmiddot---middotmiddot-middotmiddot -middot middot-lee

( H51 171 3-1-ti ~ 7 5 013S 11~6 I 76 )) 3 1r ~ 37 0 0 1+C 220 l -- 1cimiddot1 x middot3middot- i~ bullmiddot 3( I Olle i06 d6 J ~ C6 34h 330 01n 21 I I l 31-9 middots o 0 131

l21 t I S6 - l(~q~cent 5middot ~middot0 ~4middot-~middot--middot-- bull i l2 ( 122 l 2Jl J~1 34 1 C l J

1226 2c1 c~bull~ 34~ 34C n 12s Tiit 2ll _(Ybullbull~- bull~bull~- i j~bull ~j cbull1it1 l23l 2 ll ~~UCO ~4a ~c Oi3~ i24l 221 bull~bull~ ~~-~ 3~~ Cll~

middot 124c 22~ v~-y 34~ 34i cmiddot ld

1251 iil laquoriribullmiddot ~middotmiddott o ~) 12middotmiddot 12~0 2 j() - bullrl-1- 3 ~ ~ ( 1bull~ 3C l -~ middot ~ ) J di ~ ~ l (l

113

AGC-2lS-8 S02 40l RH GLASS CHAMBfR l976 AUG 5

CtrCK TIME

EL AP SEO TlIOIMINI

Clf~C (PPM

TS l IOEG Cl

~FL HUf n1

SJZ C PPI I

1311 251 -$ H5 33middotbull 0125 l3lb 256 (centcent 345 n 5 0 129 1321 261 ltirtQlaquo- 34bull ~ 325 0 12 3

C 1321gt t31

266 27l

(~~laquo~ q~t~laquo

~4-7 3 9

335 340

0 12 S o 122

1336 1341

276 281

__ t

347 34 7

34J 31 5

0 122 0123

( 1346 286 1(11) 347 345 c120 1351 291 t l ~4-7 360 0-1 zo

( 1356 1401

296 301

346 346

36C 35S

0118 0117

140(gt 3C6 o 254 346 355 0 118

1411 1416 1421 146 1431

311 316 321 326 3 31

~YJJ

bullbullicent lCbullmiddot (11Ctlaquo

346 350 35l 35l 35o

34J 355 360 35 5 335

0118 0 118 0117 o ll amp o 114

1436 336 $$) 354 350 0 114 141 l 31 354 35S 0111 1446 1451

346 351

t(c=~

tit 354 353

355 350

C 112 0110

1456 1501

356 361

bull~

35 l 35l

360 34 5

o 111 0110

1506 1511

366 371

0287 $

35_o 1so

345 345

o1oq 0 lOl

1516 1521 1526

3 76 3A I 386

ICi -C ~IX$

349 347 347

340 340 355

0 109 0 109

0107 1531 391 tamp 347 36C D107 1536 396 346 365 010 1

1541 4 01 Or 346 36C 0106 1546

1551 406 4 l l

Cittcent

346 34o

36 5 365

010 0104

-15~6 416 6~ 346 365 0104 1601 421 ~( 345 365 0103 1606 426 c 302 346 36 C o 103 1611 1616

4 3 l 436

lJ rit II

~ 345 3 5

365 37 5

ClOJ 0100

1621 441 ltftt11 345 37 0 0100 1626 1631

446 451

~ 1tcent bull1Cc

345 345

36 C 36 0

0098 OCll

1636 456 tC06J 345 36 5 o 098 1641 1646

461 466

(Ittbullittbull

345 3 5

-c 365

o )Ya 0094

1651 1656

4 71 4 71

11)fI)

$$(1Jfbull 345 345

310 3 7 0

0 ))4 0 Oi4

middot7 1701 1706

4 81 48b o 315

3 s 34gt

0 3t 0

oogs o 094

1711 I 716

491 49amp

bulltttoJt--r

ittt t 345 345

355 H bull5

0014 oon

bullbullbullbull ijir mJ DU4 Tf~ fl -- middotmiddotmiddot- l)f TA 01 $ChIHG I OUET rorAILE tJIH

114

AGC-218~9 S02 401 RH GLASS CHA18ER 1976 AUG 5

AT 2059 PROPE~f (64 ML) ANO FC-12 1580 MLI WERE INJECTED

f (r CLOCllt El ~PSEO QZCNt___ J51 TIME TIME(~I~) 111 (DEG Cl

(

i7ii soi ~ 34~middot5middotmiddotmiddotmiddotmiddotbull-middotmiddotj4_Q 0092 bullmiddotmiddotmiddotmiddot----middot-middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot--~------middot----middot-middotmiddotmiddotmiddot----------middot-middotmiddotmiddot

C 1726 50~ 345 340 OC92 ll3 l_ middot--middot51 l ~~~~---3~--~middot-middotmiddotmiddotmiddot-3t i____QJJ12

1736 516 343 350 OC89 1741 521 bull 343 335 OC89

_1746 -middotmiddot ---526 u _ )45 _J3 O_ 0 bull C$8 __ _____ 1751 531 346 310 OJS7

C 1756 536 bull 350 305 035 1801 541 351 _no__ 0 bull0es___ _____ ______middot-middot-------middotmiddot 1806 ~4i~ 0313 3D~ 330 OC84

( 1811 551 358 320 0085 1816 559 ~-~-middot--middotmiddotmiddotmiddotmiddot~-58 32middotJ OC81 _____ -middotmiddot--bullmiddotmiddotmiddotmiddot-----middot---middotmiddot ----- 1s21 561 358 320 oc33 1826 566 360 315 0083 1831 571 36J 315 0083 1S36 ___ 576- 36o 320 oca1 1841 581 ~ 380 315 0078 1846 586 middot---middotmiddot 38 bull0_ 320 0081 1851 591 379 ~jo---6019

C 1856 596 377 335 007S 1901 60Jbull UUbull 376 330 0078 1906 606 0328 375 340 Q078 1911 611 375 335 0078 1916 616 376 330 0076 1921 middot621 376 33o middotocn

C 1926 626 376 335 0077 1931 631 376 34 0 OC7t 1936 636 bull 375 345 0070

C 1941 641 372 345 0074 1946 646 372 340 0074

0

1951 651 37~ 340 0074 ( 1956 656 37l 345 0073

2001 661 370 350 0071 2006 666~ 370 350 0072

( 2011 671 369 355 ocn 2016 676 36I 35 5 0068 2021 681 36l 36 0 OC68

( 2026 686 349 365 )069 2031 691 0 349 365 J070middot 203~ 696 349 370 OC6i 2041 701 350 370 0066 2046 706 349 3~o ooes 2osi 111 o341 35o 3Bo 0001

( 2056 116 0341 35o 38s o066 2101 121 0343 337 385 0066

115

r I

I~

) I I

H l

Ji

I

~ I

l _

I1 i

~ t 1 t

I r ~ ~

f ~bull1

1

1 r i

AGC-21S-IO 502 401 RH GLASS CHA~tHR 1976 AtlG 5-6

ADD 720 MIN TO ELAPSED TIME AT 2059 PR~~ENE 164 ML) AND FC-1 (590 Mll WE~E l~JECTED AT 2217 IO ML OF S82 WAS INJECTED

CLOC~ ELiDSEJ ri~~bull TSL ~fl HJ~ 5~~ TIM~ TIMEl~INI (PPM) (nEG Cl Ill (PP~)

2106 6 0 32l 345 390 2111 11 0314 34 bull 0 Crmiddot 2110 lf 0300 34 q_ 390 OJtO 211 21 () 2lJ 3bullbull 9 390 0057 2126 26 0231 350 ~9 0 JC56 2131 31 ()282 35Q 39bull 0 OC55 213b 36 tic 350 39 () or56

2141 41 O~ 35Q ~9J 0C54 2146 46 (~-ti 35bull Q 390 )054 2151 51 iei 350 390 0051 2156 56 ~laquo 35o 390 0053 2201 bl 35o 395 0053 2206 66 0241 35o 39S o)51 2211 71 35) 390 0051 2216 U 350 39S C85l - -middot--middot---- middot---middotmiddotmiddot39middotmiddot3middot -- - o middot2 ti -middotmiddot - --middot--middotmiddot-~---middot-middot-middot --- -middot middotbull-- ___________ ~middot-middotmiddotmiddot middot2 221 81 u-- 33 8 2226 34 7 395 0222

91 c2222231 middot 349 39s 2deg236 96 laquo 34middot9middot 390 0221 224 l l 01 =bulltll~ 350 390 0217 2246 bullioi ----- 34 9 _____ 38bull 5 __bull Gbull 22Q-middot-middotmiddot--bull-----middot-middot-middot---- middot_ _ --middotmiddot-middot - _ middot---middotmiddotmiddot -middot--middot--2is1 lll 39) 0220 349 2256 116 350 390 0219 2301 12 l cent 349 3llJ 0216 2306 126 349 8 15 0214 2311 131 t 349 385 0213

- -2316 136 t J(I~ 349 39) 0211 middotmiddotmiddotmiddot----141 2321 t~ 31 7 390middot 0209

2326 146 --Ccent0= 347 39o czoc 2331 151 4te 34 7 3Bs o2J1 2336 156 l) 347 390 0206 2341 lo fc 34 7 39) 0204 2346 166 -e~ 34 7 39 bull0 02l5

~obullicent-V235[ 1 71 347 385 0204 2~56 176 ~~ 34 7 385 02)3

1 l 81 ~ 346 390 0193 6 186 =1centCt 341 3 019

11 191 ~(r 345 390 0200 16 1S6 taici 345 ~85 0 19B middotmiddot- middot- -- --~ 21 201 Cdeg trtrbull) 345 38 ) 0195 26 206 345 39 G 0195 31 211 ltclI 345 3l() ~ 1 g1 36 2i6 V4-tiq 345 39 0 0 14 41 221 iocent 343 38 5 191 46 226 $ 345 rn s Clql 51 231 (r(c 343 ll 0 O lJ2

56 236 ~bullt~ 34~ ~9 ( J137 101 2 1l ftfilt 31-t 3 3e 5 c 188

0itW~106 246 34 3 JAS 0 1~9 11 l 251 4)QJ~4 Jlt bull j 3fl 5 C bull l 4

ibull1 DATA T~K rn ---- D~U DSCA~JEC 1 QIJ[ST tSbull~flLE DAT~

116

AGC-21d-11 S01 40t RH GLASS CHAltt8ER 1976 AUG 6

AOO 720 MIN TO ELAPSED TlE

CLOCK ELjPSED ozc~~ TSl ~~L HUM scz Tl~E T[MEt~l~l (PP~) IJEG Cl Ill l lP I

i16 121 176 131 136

256 261 266 271 276

bull ~bullbull bullbull~

343 343 343 342 342

365 e5 38C ~85 385

0183 01S4 0 I S2 0lSl 01s2

14 l 291 bullbullbullbullbullbull 342 8C 0 lilbullJ

( 140 151

236 291

-bullbull

342 342

360 3tiC

0 177 o 176

(

156 201 206

296 301 306

~~~~

342 342 342

385 330 8C

o fn0 176 0 l 75

211 3ll ~~~~ 342 38C o 172 216 22 l 226 231

316 32 326 331

bullbullbullbull middotmiddot

342 342 341 3 11

385 )35

85 3d5

0 173 0 171 0 161 0169

236 middot241

- 246

33~ 341 346

$ uuu

339 3go 339 3U533~9middot-- 355

J H5 C l 70

0 1 7J 251

middotmiddotmiddotmiddotmiddotmiddot--middotmiddot256 301

351 middotmiddot~middotmiddotmiddot ~5~--middotmiddot--- 361 bull-

339 33 9 339

385 39 0 ~ss

0165 0 167 o 166--

306 366 339 335 Q 164 311 316 321 326 331 336

311 376 361

_386 391 396

bullbullbullbullbullbull bullbullmiddotmiddot

339 339 339 338 338 338

3as 385 380 38Q 385 385

0161 C161 016) 0 161 0161 C 158

341 -346 401406

middotiimiddot-

33S 338

3BO335

0 159 0156

351 411 338 385 Q156 356

4151middot 406

- 411 - 416

421 426 431 436 441

416 421 426 431436~middotmiddotmiddot 441 446 451 456 461

~bullbull~ bullbullbull=bullmiddotmiddot OU

~~bull7

338 33S 33d 336 middot3)i3

338 33S 33S 33~8 337

320 385 385 390 a) 3B5 3dO 380 3d5 335

0 156 C151 J153 0153 0 15) -o l51 0 149 middot oi5o 0145 0149

middot middot middot middot

446 466 bullbullbullbullbullbull 33~B 365 0 14 3 451 456 middotsol

471 4t6 461

=~~~ ~bull

337 338 337

90 0ia ~~- 5

0 145 0 144 0148

J

506 $11 516 521

486 4l 496 5Cl

t fr(laquo ti~ lt0lf11

middot~ tI

33 IJ 337 3 3 3 3J a

R 5 ~f

~bulls lJ 3o o

0143 C14J D 142 0 1~ 1

bullobullbullbullbull NO fMTA TA~ fj ---- iHt Dl SCA 0 i)E0 OU Sr I~-bull ~-1 ~ ()A TA

117

l

u I

AGC-llS-12 SJl 4Jt ~H CLSS Crbullt~tH-~ 197 ~JC

bullco 720 ~IN JC ELAPSED JIME

__(_l CC -~-----EL I~bull-~ ___ )Jgtl________ T_~J Bf_t t1l~ smiddotmiddot-~ ~ TlMt TiMtlil l p- ( UCG ( l ( t) I Pi l

jIL szc gtt~ ~ ))~ti ~-3J 5~middotJ c1--

5ol Sl 336 3S ClgtC

-~-4 ~- t_ bull bullbull - t1-- ---~ ) bull ~ ___ _-bullbull__G_ Y~ l_~ l --middotmiddot- middotmiddotmiddotmiddotmiddot-middotmiddot middot--middot-middot-middotmiddotmiddotmiddotmiddotmiddot middot--------middot-middot-middotmiddotmiddot ---middotmiddotmiddotmiddot _ 541 521 ~~~~ 33H 75 CJ~7

( S4~ 52t _~ 33CI 370 01tti

ss1 31 _JJ1_ nc middotJ13bull 55~ 53~ middotmiddotbull ]31 7~ ~-1bull~

( 6~1 541 bullbullbullbullbullbull 331 ~7C Oi3J CC i 5 t l ~ i i_ 3_ gt bull imiddot-middot 1lt- bull bull_ Cbull _ 1 i 1 I 5~ j bullbullbullmiddotmiddotmiddot ~-~--~middot-middot- 3 3 bull ~ jt C l t - _______

616 gt~6 )__Q1bull 337 36i i l3i t i 1 lt 1 ~- -middot bull ( 3 ~ ii c C l _l- _

middot-626 G ~iu JJd J7G Qii

i 631 571bull bullbullbullabullbull 331 37C Ol~I 636 j76 ~=~~~ 335 ~7C 0t~S 6il 5ilbull (middot~vrr s1 31L Llmiddoti

64i Scit =~~bull~ 337 370 C126 t~ gt~1 bull to~-c~t i 7 3C 017 65c 5Stmiddot middotmiddottimiddotmiddotraquo=ii~middotti 3i 2lbull C lit 7Gl 6Cl bullbullbullbullbull 337 370 0127 7C6 lJ6 bullbullbullbullbullbull 33 J70 01257 11 611 -J 343 - ) 3 7 37 C ~ ~ 12 5 middot-middot-- middot-middot---middotmiddot-middotmiddot--middot- -----middot-----middotmiddot--middot-middot--middot-middot--middot--middot - middotmiddot-middotmiddot- middotmiddotmiddotmiddot-middotmiddot--middotmiddot

7lb 616 ~middot 33l 375 CJZl 721 62Jo HmiddotgtU 3)8 37a___ pU3_ _

middot-iii l2e middot bullbull --middot- 3i~imiddot 3c c c in l ( 731 631 bullbullbullbullbullbull J37 37s c121 I middotmiddotmiddot--- ]3l ________ l t_ 1 c~~_middot=_ ___ ____ 33 7 6 gt C bull l _~middot--middotmiddot bullbull middot---- ____

7itl 041 ~yen~~ 331 3~ C12 ( 74t 646 bullbullbullbullbull 331 385 c120

751 ~51 bull 3JI 3S0 C12~ _7 smiddotmiddotmiddotmiddot-- 6 56 ~ ~n-1~ 3 j rmiddotmiddotmiddotmiddotmiddot 3 bull~ j i r~ 8Cl 661 bull~bull 33B ~a OllE 80amp 666 yen~~___ 33 ~middot-middot---middot-middotmiddot ~9 5 ~middot-middot ~f--~

middot middota11 67i- tl~~ibull( ~ middotscmiddot e1 ~16 676 ~~~~ ~3b 36C C117

__s21_______ ~ci~ ~ 1r-t 3--z _bull J111 ti26 66 1-r~~~ middot3middotmiddotimiddot-middot middotH5 cflG-

( Sil c~jl centr(tiri 3-i2 1~bull t11 1

118

i I J I I j

l I

j

I AGC-218-ll 502 40t RHmiddotmiddot1 GLASS CHA~8E~

bullS 1970 AUG 6 t J

ACO 1410 MIN TO ELAPSED TtIEmiddot~ I l

t l I

~

CLOCK ELaPsrn ClCbullE TSI R~L HUM sn Tl ME TIMEPPil ( PP11 lo~ cY 01 IPPMI

l ~I l

829 -I ~ 342 390 0114abull

( 836 ( bullbull~bull 33CJ 19 0 aus middot

841 11 bullJ$rfll(cent 339 39S 0 l l 4 -- ~ _ __ _________ Il --middotmiddotmiddotmiddot-middot--middotbull- -- 846 16 nsmiddotmiddot 40) gt bull 112 ~- ( 851 21 Cit-o 337 4CO 0 116middotf 856 26 (I 337 c 0 0112

f I

901 31 ~ 337 nmiddoto 0112 i 1

~

- 906 36 =-= 338 380 c110 911 41 tt~ 34l 370 o 109 --middotmiddot ____ -middot-- __ ~ -- middot-middot--bull-middotmiddotmiddot middot- -middot lti16 4( =~ 3 3 370 o1oi middot 921 51 -tCio 35 365 c 11)6 926 56 tOO 3+7 3o5 c1-~r I

I

i

l

l

[ I

j

middot-

1~

931 61 3-7 38 0 C-104~ lt 936 11 H5 38 5 0 l) 3 middott 941 71 3t5 Jd5 0104 946 76 343 ]8 5 0105 ( 951 Sl laquo1tbull 342 385 I 104

950 86 34l 385 0103 middotbullmiddot1001 91 middot=+ 339 38 0 0103

1006 339 37 5 o 105 1011 101 339 375 C 10 l __

I - --middotmiddotmiddotmiddotmiddot-middot 1016 106 339 380 0C99 f

1021 ltl laquoO 339 380 c 099 1026 116 C10$C 339 370 0101 1031 121 Ct 33lt~ 37 0 0096 1036 126 buller 339 370 0096 1041 131 (e 339 375 0 99 l046 136 lit 34l 37 5 o middot]98 1051 141 t 339 no CJ98 1056 146 C~bull 339 370 0G95 110 1 15 l ~IIX$centU 3- l 3 7 5 00-~1 1106 156 bull )~t-C(t 342 37 C oc9s

~Q(~cent 1111 lbl 342 37C O C9 3o C1116 166 Ccent~~ 342 0 ]96

1121 171 bull4- 3 36 C 0093 1126 176 ilc(tOC~cent 342 009436 5 l I 31 161 tiOt(i$cent 3 1 2 36 5 C0)4middot 1136 middot l e6 t-r-oebullbullgtt 3- 2 36 C 0090 1141 Illbull 3 5 0 0094lrmiddot0-J(J 31 3 1146 l lt6 -C 343 35C ono

I 1151 201 e 343 340 0 CtJG 1156 2u iC111 3 3 340 0089

( 120 l 211 middot~ 34 3 33 5 ocn nliittiraodc1206 2H 343 ~o OCl7

1211 221 -~bull-1fJlic H5 330 O CH9 1216 226 -yen 345 320 0 Cl9

1221 2 31 (1$11r 3diams 5 3middot2s or~ 1226 736 bullcqtcentbull 345 3l 5 COil 7 1231 741 bullt-laquobullbullmiddot 3 5 11n middotJ J9bull l 236 24amp 3 6 30 0 i~lbull 4

(ATA ~-~middotbullbull TAtH[

119

rmiddot 11

AGC-213-14 S02 40yen RH GLASS CHAlfER 1976 AUG 6

ADO 1410 tN TO ELAPSED TIME AT 1424 1 Ml CF S02 AND l6 Ml OF PRCPENE WERE INJCTED CLIMET AND WHTSY WERE 0~ THE CHAMBER FRON 1313 TO 1645 DASIBI 1212 WAS ON THE CHAMBER FROM 1634 TO 1638

CLOCK LiPSED Ol0N~ TS REL H~~ Sl2 TIME Tl~~(~l~Imiddot IPP~I lb~G ti (Cl (PgtI)

middotmiddot-middotn41 middot -middotzsi~-- middotmiddot$~I middotj~t q 3zo ocas 1246 256 bulltbullbullbullcent 349 32J 0 C8 1+

-middotmiddotbullmiddotmiddot -- - middot---middotmiddotmiddotmiddotmiddot bull_ 34bull ~----1251 261 0lrU 31~ 9 Q_~_7_i 256 266 347 325 on2bullIt 1301 271 =to~ 34 7 325 oJS3 130 276 346 315 0083 ---middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot- 13 I 1 28 l O-ht~(I 346 Jl5 CJ83 1316 286 O 346 31C middotOOi33 132 r 2lt1 ~tc1 346 305 o_C81_ middot-middot-middot

i326 2ltJ6 - middotmiddot34~5 31 5 008 1331 3Gl 34 5 3 l 5 0082 1336 3C6 345 31 5 0C7t 1341 311 3bullbull 6 29 5 0078 1346 316 b~ 346 ZltJ5 OJ77 1351 321 --- _3_45 30 J ---- -1356 middotbull~ 0 j73 _ middotmiddot-middot--middotmiddot-middotmiddotbullmiddot middotmiddot-------middot--middotmiddotmiddotmiddot middot-middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotbullmiddotmiddot- middotmiddot-bull 326 345 ZltJO Q)71 1401 33 l 346 290 0)73

1406 336 middotlaquo 3 6 gtltJ bull S 0073gt 1411 341 34~6 30 C 0072It~- 1416 346 347 305 0071 ~ 1421 351 34 6 310 OJ73

~~ 1426 --middot middotmiddot--jsamp~ __ 33i middot--3middot1o C 13 $ middotmiddotmiddot-- --middotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddot- ____ middot--middot-----bullmiddotmiddotmiddotmiddotmiddot-middotmiddot-middot~---~~middot-middot

1431 361 343 310 0221 1436 366 ~ 345 2 0 0232

-middot-middotmiddotmiddot--middot-middot34 6 middotmiddotmiddota 231 middot ----middot-- --middot middotmiddot- middot-middot--middot-middotmiddotmiddotmiddot-middotmiddot-middot--middot-middot- middotmiddotmiddot--middot middot middotmiddot--middot--i441 3 71 33middot 5 1446 376 o 346 335 o 22a 1451 391 34 7 34l~~= 0 226 middot-middot- -middotmiddotmiddot------middot- middotmiddotmiddotmiddotbull -- --middotmiddot---middot--middotmiddot-middotmiddotmiddot- middotmiddotmiddot-middotmiddot --middotmiddotmiddot-middot----1456 336 ~ 34 i 340 0 223 1501 3lt 1 -ti~~ 347 345 0222 1506 396 347 345 0221 1511 401 ~ 347 350 0217 1516 406 347 35) 0214 1521 411 X 347 350 0211 1526 416 )$ 349 340 0209

( 1531 421 Ji 349 335 0206 153gt 426 Clltf 349 335 0202 1541 431 ~ 3t 9 33J 0 bull fJ2 1546 436 t=Cilc 349 325 0202 1551 441 ~=gt4 350 3 lj 0198

4461556 JO ~49 32G 0 195 1601 451 Jlrltlf~Tc 350 31 $ 0192

Vcent~~raquo1606 456 350 J 1 0 0 l llt 1611 461 lttlO-t 350 3J 1 fJ ll l 1616 466 ~~ 350 29 5 0186 1621 471 350 zq s C1A4middotmiddot 1626 476 350 31 C 018 1bull

~ ~ ~ 1631 481 1119$~rc 3o 31 5 0181 ~ ~~ 1636 4a6 0)7 351 2 5 c 161)

1641 49 l llir-4-it 35Q 32 0 Ol77L - (

166 496 middotbullbulltbulltr 35 l 34 s 0 IIH

middotbullbull-tiort ~ si bullmmiddot DATA TAK[i ---- OATA 01 $~APi)euroC QIJ ST 1(lLE LmiddotbullTA

~ - l f

r

120

i

1 --~middot---- ~- Ac-middot21q~f-sri~ middots~ ~H middot ~

q l r GLASS CHA~dER 197b AUG lo

--middot0middoti11t1 middotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddot-------- middot-middotmiddotmiddotmiddot--middotmiddot middotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddot bull AT 1545 FC-12 ~~S INJSCTEO INTJ TH CH~M~~R AT 1646 S02 WAS INJtCTEC INTJ THE C~AN~E~

-middotmiddot1ECC 43 SP~NNrn ll6SfC o-middotcHA-lEft trJtCTl)~ideg-------------middot------middot-middot-TECO 43 SANPLI~~ ~ATE 1213 ~LNlN SRACV ll9b CALIS~ATU~ 1976 JUL lb

-----middot soz COiRECTIGII o11s4 PigtM middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot-middotmiddotmiddot-middot-middotmiddot middotmiddotmiddotmiddot-middotmiddot----middotmiddot- --middot--middot- --middot--middotmiddotmiddotmiddotbull--middotmiddotmiddotmiddotmiddotmiddotmiddot

---r7JI 3 bullbullbullbullbull middot bull- 1735 5 3Zb 815 0237

1740 10 326 ot5 C29-J ------------------------------------r1-- 1s --32e air-middotmiddotc2middot- 1150 20 326 815 C297

1755 25 326 815 0302 -- lBOJ middotmiddot--3r-middotmiddot 32 7--olO -middoto ~ 3-)=o-----------------

C 1805 35 32T 80 0303 l 810 40 2 7 8~0 03J7_-----------------------~-------shy

--faf5 45---rz3 s1o o--io3 C 1a20 50 321 s1o o3C~

l 825 55 32 7 81 J J bull 3C~ middot-------------middot----------------------[830 60 na-middot~os--(rr-or 1835 65 328 SJ5 0302

middot l 84l 70 32 7 805 C 302________________________________ --1a-5 5 33~aoj -029~

1asc ao ]27 eos c303 1655 85 327 SJ5 C297

--r9li0--90-fzmiddot a ss o-middot211----------------------------------1905 95 3~2 aos 0292 1910 100 3 3 bull-2_ _middotg~-J~bull5_C=2~-92--~----------middot-------------------------~--nTs 1cs----3rL t105 02n 1920 110 33t ao5 c290 1925 115 331 aos c2a1

--1~Jo---uil------rr-ar--~-2-rmiddot3-------------------------------1935 125 331 ao5 o2ss 1940 130 33l 8J5 C233

--middot1945 135 330 d05 C282 1950 140 330 SJS 0281 1955 145 330 aos c201

--2000 150~2S 8JS C232 ( 2005 1ss 33o aos c200

2010 160 330 aos c216

C

--ni5 - 165 32a aJs a21~-----( 2020 110 328 ao5 c21i

2025 175 330 sos 06~6______ zoo-- ldegamiddoto middotmiddot-32s- eos tmiddot--n2 2035 185 334 79~5 C263C 2040 190 bull 33 S 790 0 bull 2b9________- ___________________

--2045 1ss middot335 785 o2s9 ( 2oso 200 33a 110 o2sa

2055 zos 33e 110 ozampo middotmiddot-- -------middot---------middotmiddot2lo)- 21c ----middot33s -middot--16s--middot-cmiddoti4 (_ 2105 215 339 7amp5 C259

2110 220 339 7os o1s1 --2115 ---22~ --middot-middot339 765 c2sa-middot

C ------ --middot- ----- --------------- ---------middot-----------~middotmiddot-bullmiddot--middotmiddotmiddot-middotmiddot----

j1 ---------------- -----middot---- 2120 236 342 76C C253

212s 235 347 7ampo o2so 2130 240 34l 760 OZSO

middot- n ---- 2135 middot - middotmiddot-z~-middotmiddot - imiddot-1-middotmiddot-middotgomiddot middotmiddot- o i4-1

-

l

1-~iI

_middotbull

1 ~ l

i

121

~

i

I~

I l I

middot1

------ --AGC-219middot2 S02 e 1~---middotmiddot -middotmiddot- - middot- --- -------GLASS C~Amiddot~~H 1916 AUG 16-17

-i C -- - - middot-middot-- --middot---- middotmiddotmiddotmiddot-------middotmiddotmiddotmiddotmiddotmiddot--middot-----middot -- - bullbullmiddot-middotmiddotmiddot---- - - -middot --- __ -------middot bull

-il _

-l ~ I

middot l

l CLCCK ELAPSED TSl qL ~U~ 502

--Me--TTfn Iff-middotccn------n1--rp-r~ -----------middot

I -~1

~ --71rcr------2cr~-z---7smiddot--c72o-4 2145 255 339 7ampJ 0247

2150 260 338 7bO 0244--middotzr5--middotzrs---n--s--middot16-0---y-2middot~----- -------

( 2200 middot 270 339 755 02J9 2205 275 J)$ 755 0247t I

A ----zz-r~1o--------yr----73-~~-u-r-r~ti ( 2215 2~5 339 7~5 C241 J 2220 2~~ 33 8 75S 0241---izz---2s~--3T7--s--o-ZTImiddot---------middot----------middot----middot-------f ( 2230 300 33~lt 755 023-

l 2235 3C5 338 75S 0235 ---z2-0---TIU--~3 -7 middot---s-u23c---------

224 S 315 339 755 C235~ f 2250 320 337 75_~5_ __o~2~3~~__-----------------~----------~---- l ~ ~ JlS--middot 33 bull 7 75 ~ bull ~

I 2300 330 33S 755 C231 2305 335 7 75 5 Czz_a__________________________________33 4 --middot--2n-~4middot07 J3 7 7575----U--ZZ ~middot 2315 345 337 755 0 224 l 2320 3 50 33 5 75 5 C22_1~------------------ ________________2325 355 33S sgt--e~z-2330 360 337- 755 0226--~ 2335 middot 365 33 s 75s c22o--____________________________

--i140 nc---3-i~1s--o--1 2345 375 33S 755 C224

~ J C

2350 3JO 334 755 0221middotf --n-sr--middot3r~~--~r---r5-c~2-i-20------------------------------

3 t 0 390 335 75 0213 1 ~~

___rs~ 3q5 334 1ss c21~6---------------------------- _______lO 400------rrz---nQ-zi l

~

C 15 405 334 755 0213 20 410 334 755 c211

---25 4 I 5---j3-7----gmiddot5---o2l____i ( 30 420 334 755 C209~

35 425 33 2 755 C214d l j I o 43b 33l 7~s 0211 45 435 332 755 C206l C _____________j50 440 332 755 C206

-middot----s-s 44-s---33-~---1-s-middot-o-zo~s----I

( 10c 450 332 755 C204 I -r ~ 105 455 B1 75 C204 l i HO 46C_ ]Lr ts C2)J bull -------------------1 Ii ( 115 465 332 75S 0197

I ~ 120 47C 33l 75i 0191 middoti

-- 12gt 33 l- Vi5 -----------------------middot7475 C20C

t_ bull

fi I

( I

middot---middot ______J--- ----- ------------------- --------middot----- ---------------

ad ----- middotmiddotmiddotmiddotmiddot----------- ________jrl -middot- llO --- 4-middot 311 0 20273 5 ~ i n 135 4F~ 330 155 C 1bull15

140 4S~ 33 1 7gt5 CIHf -----middot l4Sdeg- --- 45------ 33 l - --- middot-middot -- -- iI

755 QlHbullJ

~ 1 j 1

1 t

ibull1 l I 122lI middot1 I

1

----------

--------------

r ------ACC-219-3 s02middot soimiddot RH --middotmiddot---middot---middot--middotmiddot----- - middot--- middotmiddotmiddot---~--------------middot------ ------------

GLASS CtiA4t3ER

l~_7t AUG __17____middotr-- middot-middotmiddotmiddotmiddotmiddot-----------------middot middot---------middot----middot---middotmiddot-middot-----------middotmiddot--middot-

---------middot------------------------------------I (

---rso -middot-soo - ~3T___ 75bull middotci_94 ( 155 505 33~1 7~s c1s2

200 510 33l 75~ C~bull~l9~l_____ ---20gt 51s fJo iss--o 1a1

210 520 330 755 C192 215 525 331 755 C184

--- 220 ___ 530 middot iza 755 cc1s~o-------------- 22s 535 33~0 75o o1a1

230 540 3l 750 0137 --Z3s___545 328 755 J182-----

( 24C 550 328 750 Old3

215 555 33 o 75 o o tn-=--------------------------------- f50 -- 51o- 32a ---iTo - 1so 255 565 328 750 C179 300 570 328 750 01B0

---3tf5___575 3 l 1 1middot5o--odeg17le-------310 5SO 32 7 7iO 0176 315 5e5 3o 75o 0115

middot--320 5co 32 1 1o o 112 325 5S5 327 75Q 0173 330 6CC 328 750 0172 middot

-----3i5 6C5 327 10 011s 340 610 327 750 0171 345 615 32s 75o 0110

~5c 62c1~middot2-t-----ro--o-r6middot~------~---------------------( 355 625 321 middot 75o 0161

400 630 n a 75o ~ 165______________________________ --middot--cs 635 321 15o o i6s

( 410 640 ~27 7a 0lol

415 645 2 d 75 a O 102~---------------------------------middot-420middot-- b50-middot327 74S Cl~J ( 425 655 327 745 C158

430 660 3l8 745 C15~ middot 435 665 327 745 C15------------

( 440 67J 32 7 745 0155 445 675 32a 75o 1ss______ ----------middot--middot 4~b 680 327 745 C153

( 455 685 327 745 C153 500 610 32 7 74 5 C t S-igt_______________________---middot----middot----

--middot-50middot~---6lti5 2 1 145-middot-TT~l SIC 700 327 745 C55

____ 515 105___ 32_1 ____ 745__ c1s______________________

bullbullbullbullbullbull NO DAT4 TAKEN --- OAT4 DISCA~DED 1 QUE~TIONl~LE D4T4 --------------middot------------

---~~-----middot-----__________ -------------middotmiddot-------_-middot ---~--middot-middotmiddot -middot-

123

cl

I I

i

AGC-219-4 soi so ~H CLASS CHA~ilER 1916 AUG 17

l ACO 710 ~IN TO ELAPSED TINE

j

r 1bull

~ i_ CLCCK ELAPSED TSL qEl HU~ 502-1 Tl~= TIMEl~l~I l0EG Cl ltl (PPMI

I j (i

l

So O 326 745 C149 525 5 326 74S Cl5J

iJ 530 ________ 10~---middot-bullmiddot32bullT_____74_5___ _ Cbull11tt_____ middot---~--- ___ --middot-middotmiddot---- middot--middot----- --------- --middot- middotmiddot---- _ - -----middot--------~--------middotmiddot middoti 535 15 36 745 C148 C 540 20 326 745 C147

545 25 _32_____ 745 0143l 1 550 30 324 745 C144

~ C 555 35bull 3Z6 74s oi4l too 40 __ ~6 l45o 147_________________________________________ ---- _______ ----middot-middot ________ -----605 45 324 745 0138r l 610 50 324 745 C133

615 55 ~27 741 0139 620 60 32-4 745 0142

C 625 65 324 745 C136 d

f fi 631J 70 3gt 745 __C134 --middot-middot----------------- middot-----------------635 75 )4 745 0133 64C 80 324 740 0136l j C

-~ 645 85 324 740 0132 650 90 324 740 0131

4 C 655 c5 324 74o 0131

l 700 ____ 1JO_ 326 740 __O l31 ____ 7C5 105 324 740 0127

C 710 110 324 740 012Bii 715 middot 115 326 740 0127 ~ --middot----120---middotmiddot120 --middotnsmiddot-----nsmiddot c126 - middot--

725 125 no no 0121~ C --- 730__ 130 bull ___ 33 2 _ 72 5 QJ28_________________________________i 1 735 135 332 720 0121

l C 740 140 334 720 C125j 745_______ 145___ 31 5_____ 71 5_ 0 bull 122 ------middot--middot-middotmiddot-- ---------------------- --------- -------middot----i 750 150- 334 715 0121

C 755 155 334 715 0122 ----middot JQ 160o _______3)bull _ 7l o5 __ 0_122 L_--------middot-middot---~----middotmiddotmiddot--middot------middot-middot---------

eOS -------i65 332 720 0121 A 810 170 33I 720 0119

~ C I 815 175 33-0 720 0119 -------------------------------------------------middot--middotmiddot --------middot ------middotmiddot---1 i 820 180 3Jdeg-middoto _iz omiddot _ omiddot122 --middot--middot-middot- -middotmiddotmiddot-I C 825 185 330 720 C~ll9 ~ __ e30 1co 30______12o_____o 11 s ____________________________________________1

8)5 195 328 720 0120 I1 C 840 200 328 720 0112

845 205 32a 120 0119 i 850 210 3za 72omiddot oui

855 215 328 120 0114bull_ Cil o 220 3~Q __72_0 0bull llO __ ---------------- ~ 905 225 32~8 720 0112 middot-~ -(

~

JI middot (_

1 9lJ 230 328 721 C1)91r ( 915 235 32S 730 010ai ltO 240 327 735 C1J l J 925 245 32 1 7l5 () 10

(-1 bullbullbullbullbullbull NO DATA TAKf~4 ---- OATamp DISCAPO~G 1 OUESTin~ABLE CATA

~ l ~

t ~

I

ii l iJ

124

AGC-219-5 S02 SOC RH GLASS CHABER 976 AUG 17

AOO 710 MIN TO ELAPSD TIMeuro

CLCCt ELIIPSED TSl Rl HU~ soz TIME TIME IHlN) (DEG Cl lampI IP~l

930 250 3~$ 740 0Cl3 ( 935 255 32 7 740 Q)4

940 260 bull 327 110 O 04 945 265 32 8 741) o leamp

( 950 270 32 7 735 C108 955 275 na -middot 730 o 105

1000 280 32 7 730 0106

~-_CAT AbullDISCAROEO -middot- _1 QUSTOIIIABLE OATA

(

(

C

(

--middot-middot----middot ----middot--middot--middot------ -------(

--~-----------middot-----------------middot-middot------------ ---middotmiddot-------middotmiddot------middotmiddot----bull-bull------ -------------_______ ________ ----

-middot-middot - ___ ______________________________---------middot---middot------------

-- -middotmiddotmiddotmiddotmiddot---middot-----------middot---middot---middot--middot--middot-middot--------middot-middot ------middot middot-middot------middot ---- --middot

125

( I

rmiddot

l i

j

j J

j )

j j AGC-2~0-1 S02-03 PROPENE middot GLASS CnA18ER

1lt176 ~UG 19

bullj OA~K

S02 AND FC-12 INJfCTEO AT 1115 OZONE ADDED AT 1149 PRCPENE AT 1155 BRADY 1296 CALIBRATIJN lS7b JULY 16

CLCCK EtiPSED ~ZCfrac34E TSl ~~L HU~ S~2 P~CPfN lF lMEl~Nl (PPlt) lEG C) 11) (PPI-IJ (igtiI)

1200 o o~4 327 41 0 0363 1014 120 5 5 06)6 328 410 0344 middot 1211 11 0557 12s 410 middot~ $f r~middot 3t1216 16 0511 328 10 0318 0 BCl 1221 21 0 4 74 32 7 4 I 0 0304 0cent3-ii

1226 21 C4-+0 32 7 410 02l7 (q~cent-0(I

12 30 30 o 40 328 4ltJ 0291 0 (83 135 35 003 32 7 410 0283 ~4 1240 40 c~11 3 8 410 0 bull 776 1)lcent1 ltlaquo 1245 45 C bull 3i2 328 41C 0211 0~9J 1250 so o 335 328 410 026( deg6 12 15 55 0 318 330 405 0206 bullii t~ 1300 oO D3J3 no 405 0260 0522

C l 3C 5 65 l2 56 32S 40S 0258 -c11ie 1310 7J 0 24 32s 405 0254 itbullit ---------------- middot-middot-middotmiddot- ------- 1315 75 C 251 na 405 czso bull1320 sc o 29 32 d 405 024S bulllilCe 132 5 65 0231 32a 405 0249 -------middotmiddotmiddotmiddot-middotmiddotmiddotmiddot-133l 91 C2~) 328 400 0247 043 1336 t C 22 32 8 400 0244 ~ tP+l l 01 o 213 3 S 40 bull0 0 22 ________ __________ bull -middot middotmiddotmiddotmiddotmiddot-middot-middot middot--middotmiddot-middotmiddotmiddot middot- -middotmiddotmiddot middotmiddot- -----middot--middot---middot1316 l C6 ozos 328 400 0238 JOcentht

C 1350 110 on0 328 400 0239 bullc 1355 115 0191 328 400 0239 gt~ middotmiddotmiddotmiddotmiddot- ___ ________ __ middotmiddot---middot- -middotmiddotmiddotmiddot-middot ___ ----- ------ middot--1400 120 o ta6 33 omiddot- middotmiddot 395 o23i o 3 76

( 1405 125 C178 32amp 39S 0236 1410 130 D I 76___ 32bull 8 39 bull 5 02~---U bullbull --bullbullbull---bull -bull-bullbullbullbullbulln___ bull -bullbullbullbullbull bullbull bull---bull---bull-bull bull-bull--bullbull -bull-i415 135 0 lb6 326 395 0231 tlllllc bullitbull 140 140 o l SI 32 8 395 0232 cu~ Ji 142 5 145 0 159 32 bull 8 395 0230 16CC- --- ---middot-middot -middotmiddot __ --1430 150 I 151 32 S 3c5 0230 0336

( 1435 155 0147 33C 39 5 C226 (laquo 1440 160 C bull142 328 395 0225 gtccent( _____ middot-bullmiddot--middot ___ middotmiddot-middot--middot-middotmiddotmiddot-middot--- middotmiddotmiddotmiddot---middot-1445 165 J 1 39 331) 395 0225 ~ ( 14Sl 171 0 134 328 3-i5 C223 1456 1 76 012 middot 32 8 3) 5 0223 ~b 1501 181 0 0 I 21 328 3lt bull) 0222 0311 1506 l 56 o 122 32a 39) 0225 ctcr 1510 l SO c122 330 390 0221 bull~ _middot middotmiddot-151~ lltS Cld 32B 390 0221 I~ 150 2 co 0115 3ZR 390 0220 tTt 1525 2 cs C I lO 328 3SO 0220 bull15~0 210 C 11] 330 390 0221 0289

( 1535 21s C l middot~) ~20 390 0216 +rrmiddot 1540 220 tt~ 12Y 390 016 XlC-$1(1

1545 zc~ (lt(I~ 328 3()0 015 Cr4Ccent

1550 23-Cmiddot bull fl 328 39C o 715 tCit q

15~5 235 330 39 0 0215 lCi9bullbull 1(cot

160() 4C ~l)l-fl 130 390 o 13 0274 161)5 2 4 ~- _ bull C1~ ~ 328 390 0211 (rj

t1ilI ~~G DA Tf Ttt Li ---- DAT A Ol~rA~fJEO 7 OU Sr Pit tll I OIITt

126

r

middot1

AGC-220-2 $02-03 PROPENE GLASS CHAMBER 1976 AUG 19

t (

CLCCK ELAPSED ozmiddot-E TSl REL rlUI S02 PPCP EtliE TIME TME I Mll l I PPI J (DEG Cl 11 I DP-1 l I PPFgtI

(

1611 251 0085 3o 3t5 o 21-4 ~~lJltf ( 1616 256 C090 328 385 0211 middotmiddotmiddot 1621 261 0085 33o 3S5 c 211 (ercent

1626 261 QCd3 330 33 5 C208 = ( 1630 270 ocn 33o 5 0209 0254 1635 275 OCdl 330 35 0208 ~ 1640 280 0078 33 O 335 D209 bull~tbullitt

( 1645 285 0011 33l 3amp 5 0205 bullcentt41A

1650 290 0076 330 3B5 0 2J5 bulltcbull 1655 2cs 0076 330 385 0206 middot~

C 1700 300 (1071 33a o5 C205 024S

NO DATA TAKEN ---- DATA DSCARDO QUEST ON ABLE CATA ( middot-- -----middot-middot-middotbull ----- bull - middot-- -

(_

C

C

(

(

(

(

r 127 I

AGC--1 502-03 GLAaS (HAliH 1976 IIUC 20

DAIK BRADY 1296 C~LIBRAT[O~ 1976 JULY 16 ril NE WAS INJECTED AT 0933

CUXK fl ~rsrn Ol(lr lS l il El HUbullI smiddot 2 l I MF TJbullE ( NI ( r1) lCEG C) ()l ( PP I

I

845 o oc 32 7 440 0379 850 5 oo 330 435 C360 855 10 oo 330 435 C377 900 15 oc 331 435 C376 905 20 oo 33o 435 c J 76 110 25 oo 33Q 43 5 C370 915 30 oo J3l 430 0370 920 35 oc 330 430 0369 925 40 oo 33l 430 03amp9 930 4) oo 330 430 036 935 5C o~gtt2 324 425 0360 940 55 0576 330 425 035$ 946 61 0572 330 42 5 03~7 951 66 o 5 7 330 425 03~S 956 71 0569 33p 425 0352

1000 75 0567 330 425 o 3$2 1005 80 o 567- 330 425 0349 1010 e5middot 0562 30 425 C349 1015 ltO Cmiddot 551 330 420 C 34 7 1020 95 0557 330 42 0 a 34 7 1025 1 co 0554 33 l 420 0344 1030 105 o 552 330 420 c 34 1035 110 0552 33Q 42C o 342 1040 115 middot 550 330 420 o 34) 1045 120 0545 330 420 0342 1050 125 o 542 33l 420 middotO 340 1055 130 o 542 33 I 415 o 30 1100 135 o 540 331 4 l 5 C340 1106 141 0537 330 41~5 0336 1111 146 0537 33I 415 0335 1116 151 0532 330 415 0333 1120 155 o 5 32 33l il 5 035 1125 160 0530 33l 415 o 333 1130 165 C530 331 410 0332 1135 170 0528 330 410 033 1140 175 0528 330 41 () 0330 1145 1eo 0523 330 410 0 bull 325II

r 1150 185 0520 330 410 o 326

1155 190 05) 330 410 0325 1200 195 0515 130 41 0 0321 120~ 200 c~1e 311 4()5 034 1210 205 o13 330 45 O 32 l

ft 1215 2 LO I) 511 330 405 0311 1220 21 s f~ ec gtlC 33 I 405 c20~

i_ 1226 221 0503 330 405 0319 1231 226 osoa 331 40~ 0 bull 319

~ 1l J ii

1236 23 05ll l30 405 0119 1240 235 OiOl 330 40S 0318 1215 240 051)1 l3 o 4GO o~1s

f Ij

1250 24 04H1 BO 400 0 314~ I

middotbullbullyen ll() r11u TKEI DATA or ~c11ourc iIJl l)NeLE DATA f

f

~-

~ 1

f -~ 1l 1

~t 1 128 l

IJ 1

~-

1 1

bull

t-~ I

lIT 1 l

middot(I

11

AGC-221~2 S02-03 GLASS CHlMSER 1976 AUG 20

t J

middot

t

rr

a ~

bullmiddot ~

(

--1255 --middot- 250middot 049smiddotmiddotmiddotmiddotmiddot- 330 40omiddot---middotomiddot~jfi middot-middotmiddot-middotmiddot--------middot----middotmiddotmiddot-middot---~middot-middot--middotmiddot- middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

i l3b0 255 0493 331 40C 0313 ~ 1 1305 26J q 493 33 o 40 O C_309_____ middotmiddotmiddotmiddot--middot-middotmiddot-middotmiddotmiddotmiddot--middotmiddotmiddotmiddot------middotmiddot--middot -middotbull-middotmiddot-middotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot middotmiddotmiddot--middot-middot-

1310 265 o411 n 39s o3oa middot C 1315 270 0491 332 395 C308

1320 275 0489 331 39S C310 - --bullmiddot-middotmiddot- middotmiddot--bull-middotmiddot middotmiddotmiddot-middot-middotmiddot- _ middot--- -middotmiddotmiddot bull-middot

a tlmiddot

)

13zs-middotmiddotmiddotmiddot2ao~middotmiddotmiddot-omiddot4a9 33middoti--middotmiddotmiddot-ji~cmiddot middotmiddot 0309 C 1330 285 04114 332 39C 0307

1335 290 0484 332 39C 0308----middot13o middotmiddot 29s middotmiddotmiddotmiddotmiddot0middot4s1middotmiddot middot ir~middotxmiddotmiddot -middot59 c 0~middot3ci4 --middot bull--middot------ - middot--middot--------middotmiddot-middotbullmiddotmiddotbullmiddotmiddot- ---middotmiddotmiddotmiddot-----middotmiddotmiddot -C 1346 301- 0481 332 385 0303

1351 306 0479 33l 39C 0~304

H c

1356 middotmiddotmiddot311 middotmiddotmiddotmiddotmiddot-0middot~middot419middotmiddot middotbull middotmiddot33~1 39 omiddot o 303 1400 315 o476 33t 390 o302 14C5 320 C476 33l 390 0299

-1410middotmiddot -- 35 middoto474 33l 390 0298 1415 330 Q474 33l 385 0298 1420 335 0471 33l 385 o296

a i425 middotbullmiddot-340- 0~469middotmiddotmiddot 33 385 0294

1430 345 0457 332 385 0296 i

f J

ffi C ~

1[ C 1middot11

lf~middot i$~ C

(

(

(

(

(

129

i I i

-

j i iI

l j

l i i 1

ampGC-222-1 SJ2-N X-SURR-U GCASS CHAll~fi 1976 AUG H

O~RK CO FACTOR lq122 eR~OV 129~ 21 ~l ~ox INJECTED AT 0920 HJURS AT T=o ~c~-METH~~E ~ bull 1740 PSC MTHAN~ bull 32CO PPB

CLJClo ELAPSED 0ONE CJ TSl ctEL HUll SmiddotZ ---middotmiddotmiddotun TlM~(M1-ifmiddotmiddot-PPM)middot--(p y ID~G Cl - u IPP~I

q4~- middot-middotmiddot-middotomiddot oo 53 n2 465 o--j~ middot-------middot--middotmiddot-middot---------950 5 oo 56j 33l 465 034~ 955 10 0 002 5 65 n l 46 5 0344

1000 15 oo 561 HO 465 0344 ~ 1005 20 oo 560 ]30 465 0340

1010 25 bullbullmiddotbull bullbullbullbullbullbull bullbull~middotbullmiddot bullbullbullmiddotmiddot middot~middot~bullmiddot------bullri1s 30 oo middot 563 33o 465 o1Ja 1020 35 oo 564 330 465 0)38 1025 40 oo 5ss 330 465 0337 middot----103) 45 o bull i 556 330 4amp5 o333 1035 so oo 5-~6 130 465 0335 1040 55 00 556 330 460 0332______ -----middot---middotmiddotmiddot- --------------middot i 1045 60 00 551 330 4bO 0332 1050 65 OJ 552 330 4bO 0333 1055 70 oo 54il 330 460 0329_---------------------1100 75 co 548 330 455 0329 1105 so oo 548 330 455 Q327 1110 85 00 547 33l 455 03_6_______ middot-----middot--middot---- ------middotmiddotmiddot-middot 1115 90 OO 550 33l 455 Ollb 1120 S5 00 548 33l 455 0325 1125 lCO OO 55 33l 455 0324~------------------------(130 ____ 105-middot-middotmiddoto002__ 542-middot 330 -- 45o 0322 1135 110 oo 540 330 450 0319 1140 115 0002 542 330 450 0320---1145 middot -middot--120 0002 5ia 33o___45o omiddot319____________ middot------bullmiddot--middot 1150 125 oo 540 330 middot 450 0318 1151 0 o 541 330 45 0 03_1_8_________________________131

1200 135 OC 532 330 45C 0314 1205 140 0010 539 330 450 0311 1210 145 oo 535 330 450 0314 1215 15bull) oo 534 328 450 0313 1220 155 00 533 330 445 0310 122s 100 oo 534 33o 445 0313 1230 165bull 00 52b 330 445- 0313 1235 170 oo 531 330 445 0310

1240 175 00 53()___ 332 44C 0 0_3C________________________middot-middotmiddot-middotmiddotmiddotmiddot--middotmiddotmiddot-middotmiddotmiddotmiddotbullmiddot-middot--middot----- -middotmiddotmiddotmiddot--1245 180 00 526 33 l 440 0303 1250 1s5 oo sza 332 44c oJn 1255 190middot oo 529 332 435 0304~--~- -----------middotmiddotmiddotmiddot-----middot-----------1300 195 oo sn n2 435 aJes 1305 200 OO 52b ]32 435 03l4 1310 205 oo 524 332 435 0304 1315 210 oc-62 s24___ -~3i -middot--middot43s o302middotmiddot--middot------ middot- middot ----------------~-- -1370 215 00 523 332 435 0300 1325 220 oo 5 lil 332 43c ono 1330 225middot middot-oo middotmiddotmiddot-middot--s -19middot --middot~j~z--middot3if-middot 0300 ----middot--middotmiddot----middotmiddotmiddotmiddotmiddot-middot middot-- -middot--middotmiddot -----middot

r BH 230 oo 519 33l 43 G 03iO 1341 236 oon 5 IIgt 33 1 -3 0 in1

1345 240 oo 5 15 H l 430 J297 1350 245 oo 5 13 3l2 43C 01~

bullbullbullbullbullbull NO nTA TAKE~ ---- 0lTA 01 SCAPgtFl

130

AGC-222 2 S02-NOlt-SbulljRR-U CLASS CHAMBER 1976 AUG __ 24

0

----------middotmiddot-----

-- 1355 ____ 250middot-middotoo s13 332 41c 02 middot -----middotmiddotmiddot-------------( 1400 255 oo 5lZ 332 43C 0294

___1405__ 260 oo 5 ll __ H2__ 3t3C 0_293________ 1410 265 oo 512 330 43= 0291

1415 270 00 50ltgt 330 430 02ll 120 215 co 501 32s 43o o2bulln ___________________ ---- -------middot -middot--1425 280 00 503 328 43C 0211

C 430 285 oo 578 328 425 0291 143 s 290 o o s 04 32 s 42 5 o z_a_________________________--_

--To---i9middots oo 504--fj-middoto- 1t25 middoto-zag C l4t5 300 CO 502 330 425 0283

1450 305 oo 5oz 33o 425 ozss___________________________ lt55 310 00 497 330 420 0283

middot 1500 315 OO 499 330 _42C 0285 1505 320 00 496 330 42C 0285----------------

--Tsio 325 o-o---soo 33o 4z-o--ozas 1515 330 00 501 330 42C 0285 1520 335 0002 493 33o 415 o2a______

----1526___341 oomiddot---4~-33l 415 0281 1530 345 oo 493 334 415 0280

__J2~1__3j____~g_ 492 332 415 Q__1_80_________________________ 1540 355 0002 491 33t 415 0273 1545 360 0002 492 330 415 0280 1550 365 G0 4 93 32 8 41 5 0276--------------------------1555 370 oo 489 328 415 0276

C 1600 375 00 489 328 415 0275 1605 380 o o 4 88 33 o 41 s o__2_1-=1--------------------------c-------H io 3a~-middot002 490--ffa 410 f21-

( 1615 390 0002 483 330 410 0212 1620 3c5 oo 487 330 410 0211_______________ 1625 400 co 481 330 410 0274

C 1630 405 0002 481 330 410 0270 1635 410 0~002 487 330 410 027-=)---------------------------1640 415 oo 480 330 405 0270

( 1645 420 0002 4i5 330 4C5 0269 1650 425 0002 481 330 405 0210 ---- -----middot-- ----middotmiddot-middotmiddotmiddot -------------------1655 430 00 463 330 405 026b 1700 435- oo 484 330 405 0265

--~70115 ______ 440 _____ oo 482____330 405 _026_6_____ 446 oo 482 331 405 0266

1715 450 oo 4 77 332 40c o2u 1720 455 oo 4 74 332 40C 02E4 1125 460middot--middotmiddotoo middot 479 n2 40c 0265

1bull 1730 465 00 479 332 40C 02(5 1735 470 00 480 33l 400 02t4_____

--f140 475 co 4 75 n2 4oc 020

middotmiddot-middotmiddotmiddotmiddotmiddot-middotmiddotmiddotmiddot-middotmiddot ----middot-------middotmiddot---middot-------------middotmiddot---------middot-middot--middot--middotmiddot---middot------ --middot----middotmiddot

----------------C

bullbullbullbullbullbull NO OITA TAKE~ _1 QU~STlnNIHL~_CATA

r

131

0 AGC-Zll-3 smiddotczNOX-SUR~u CLASS CHAISER 1976_ AUG 24 -middot-middot middotmiddotmiddot-middot -middot

_CLOCI( _ELASEC ___ OZCNE_ CO ______T_Sl REL HU _ SC2 TlHE TIMEl~INJ IPPI (PPMI (DEG Cl (II IPPMI

-- 1805 -- 500 -- oo --2--331 395 02cl ( 1s10 so oo 472 332 395 ozs6

1815 middot 510 oo 4 70 339 395 0259___________________~----1820- 515 omiddotc middot 69 34 1 39 5 0-~lsi

( 1825 520 oo 469 34l 3gt5 0256 ___1830______ 525i __oo___46S__ 34t t9_5___ o2ss _________________________

1835 530 oo 467 34l 395 0256 ( 1840 535 oo 466 342 395 0254

1845 540 oo 469 342 3S5 0254_________________________ --irngt----5s oo 461 342 iis_____o--fsi

( 1856 551 oo 466 343 395 0255 1900 555 oc 4-oo 341 395 o254~---------1905 560 oo 470 34l 395 0254 1910 565 oo 465 341 395 0252 l 915 570 0 0 4 51 34 bull 1 39bull=5__0ebullc2-5-2__________________________ 1920 575 oo 464 341 395 0249 1925 580 oo 458 34 l 390 0 249

1930 585 oo 45a 341 39o o241____~------------~-------1935 590 oo 465 341 395 0249 1940 595bull middot oo 460 339 390 0~245 1945 600 oo 4ss 339 390 o~2~45__________________________

--C95(---6C5~--o~o 458 34l 39~0middotmiddot-0247 1955 610 oo 461 338 390 0244 2000 615 oo 460 338 390 0-2~4~5_____________________-----

2005 620 00 456 339 39C 0244 ( 2010 625 oo 454 339 390 0245

201 s 630 o 002 4 59 33 9 39 c__o-_=2_4J--------------------------2020 635 00 456 339 39C C245

( 2025 640 0002 453 339 390 0241 2030 645 middot oo 455 339 39o 0241 2015______ 650 ----middoto~--middotmiddot--453 - 33 9middot-middotmiddot 39omiddot o239=------------

C 2041 656 0002 459 339 390 0239 2045 660 0002 459 336 3B5 0238

--2050 - - - 665 -0002 45z -i3~B--3as middot 0231middot-----------( 2055 670 oo 451 339 3ii5 0237

2100 675 oo 451 339 385 0237--2105 680 --oo 44smiddot-----33-9---middot3s-smiddot--o237-- -------middotmiddot-middot--------- - -----

C 2110 685 oo 453 339 365 023 2115 6~o co 44a 339 3as o23~6___ 2120 695 oo 44) 33C 365 0236 ----middot----middotmiddot----

( 2125 700 oo 455 339 335 0232 2130 7os _____oo ______449 ______33 bull ____ 3-a 5 ____ 02 J4_____________________ middot------middotmiddot-----

bullbullbullbullbullbull NO DATA TA~EN ---- DATA DISCARDED 1 0UcSTIONASLE DATA

--------middot-middotmiddot---- middot--middot--middot---------middotmiddotmiddot-middotmiddotmiddot middot-middotmiddotmiddot------ middotmiddot- _________ middot------

132

l [

f

l i

t ~ C- 2 2 -middot 2 - bullj tmiddot- $ VXA- _ Gl~SS C 1~gt ti 1976 H Z -h

lC~ 710 ~IN TO ELAPSfC TIM~

CtCCk tlh~~~e middot_lC1Ji ~l T P f ll ~ Pi l p bull n I ) ( E Cl

middot13s middotc oo middotmiddot s i9 middot 21~0 JQ bull 51 3 C 2145 Le 1c bull 1~- J_a 2 l ~C cc 4 f 21~5 oo ~ ~ ~I~

22middot)0 2 CG 3 middotn0imiddot- middot3middot1 j ~~3 -cc

35 ~c 3 ~- 9 i) C t 3 l~

bc ~ bull ll middot3 - ( 222c 5 l ( c bull 4 2230 55 bullbullbull 1 ~ ~1 2235 middotc middotc ~ QC ~ ~ 1 I 224G C 5 C itbull 3 ~ 7 2~ 5 70 oc ~ 3 I 3L 8

2~5 1smiddotmiddotmiddot oc middotbullbull-i -~ 7 215 FC oc 230C CS 33 S 205 sc 3i 5 231C ~5 CO 440 ~3~4 2315 lCQ 0c____ l)~-__ i~middotzc------imiddotsmiddot~ - u c ibull ~s 2325 l l O oc ~ 4C

2BC ~-9 _____ 41 _ 235 u 3(61

2340 liS bull C C t 34 235 19 Cc middotmiddot------~middot])2350 1 5 bull 0 C bull 3 3 1

2355 l-8bull cc i3lt 33 1 0 l~ ov 43 )31

--middot-s middot-- iSv oomiddot ~31 331 ll 15 6 Oc ~-27 3i~C

C _)-(1 20 -middot iljmiddot oc I 2 2 d 25 17C J i2 32 B 30 _J 1 5 ___9 c_ ~7 G35middot-- 24 3 8 4C 125 oc bull 2i 3225 lCbull __QC 4 2~ - bull n 50 15 middot 3l55 2c i 2 5

l co_ _2 ~ ~21 10 ~ 21c oc bull z I lt1 11 J 21 r bull 4 bull ~middot 6 u______ -middotmiddot_ac o~ _____ it bull ( 120 2~ o~ ~2

15 130 j

middot I 7 tbull 1 J t 1

- --- - 1 1 r -

~-1 1~- SC_ l P)~)

c ~ ~7middot

~3T middotis4middotmiddotmiddot

3 bull 3 ~ ~

3 ~$ )

)

J8

3 J middot

3-3shyJS~ -

3G 3BJ i $

Id i c 3 j

3 3 5

3SC 3 middot-~c bull C _ bull C 3 (~ 3j imiddotbull 3

~ r middot i c

0220 1) 2 H ) bull ( 7

c~J ~ _ 7 G -- 0 u 2 2 gt J22o J2D imiddot

G bull (2 ) 2 ~2 c21 -21 bull 2 l cn Cl2t C 22l middot~ 2 3 7 2 G L t(t ( 2 l middot1 C1219 G~O 16 ) bull 216 0 216 cdmiddot i) bull 15 ~214 ) bull2 t 7 C ll 3 ) bull 13 bull 2l 1 )2 h

( 11 G bull 2 01

133

T

AGC-2l-S SC2-1x~~ltR~-LJ GUSS CHMmiddotWE

J l176 AJG l~ l

ACU 71C MIN 10 ELArsro Il~E

CLrCK EL~PStC CZ~NE cc 1 S l f L i Lbull S1 2 THit rmiddoti ME ( lbulll jmiddotJ ( po11 middot1 ppl(J iCtf~ (~I lPr-q

1 s middot-2smiddotc- 00 middot 4-~ middot 3middot C2CJ 150 255 U C 1-t~l ~L0 155 261 cc 421 32 3 - 200 26~ 4 b 3 _ s --~ l 205CbullC

20 5 2 7 C li bull ~ 4 bull t 2 3 ~~ i C i ~J bull C ~10 ~J_ ObullQ middotmiddot-bull~ rt ) 2bull~2 Jis-middotmiddot 2euro0 0Lo 1ll ~~~bull J 2(

220 2~middot oo 119 j 02c 225 2S0 0 bull1 Ui 3 3 bull 2C 2H i9smiddot cbullmiddotmiddot 4middot11 - l c) 235 JC C~ 46 ]2~~ ~- ( bull r G ~

2o 305 cc 1 _2l 3 020 middotmiddot 2smiddot------ middot 31c oo middot4middot2t 12 bull i 2~-

250 315 CO 416 3l5 C2Qj 255 32J o 4ll ____1~ 3S 5 lbull 2fJ2 3JO 35 OC 407 I i L bull 02 3C5 330 CC 414 3l~3 3S J l bull 2Cmiddot 310 33 cc 4 1J 31i 3 I~ 5 CtCl 31s middot30 cmiddotc middot--middotmiddotmiddot13 313 3S C Si) 20 345 o~ 414 31J 3middot ~) C2C) 325 350 oc 4Js 313 3 0196

330 3jJ -middotcc 410 31i 3( 5 J 14 7 335 360 uC 410 3l2 3 s gt i 1 S6 341 366 00 4C4 312 3 s_ C l_Y 7 3~5 370 GC 4d 3l2 3 - bull s ) 19 I 350 375 oo -t)8 312 S bull 3 L 1 e 355 38C OJ 401 312 _y~ C I l~ 400 3i~ oc middot 4~2 312 3S5 C195 ADS 390 OC 4J 311 ClSi

______41 c ______ ys______ n ~----- ____4c4 _______J_1 3 middots 5 01lt7 415 -tCO CQ 117 311 35 0 i 2 420 4C5 OC 4C 311 ymiddot J] 4 2 5 __________ 4 lO 0 ~ 4 ~_ -~ l I C I~ 43C 415 0bullJ 3S9 31 l 3 bull 5 (ts) 435 420 CC 47 JiI 3 middot - bull ls l

____40 4 __c_ __________ __2___ 31bull i - bull 8~ 445 430 )C 3S3 311 3 middot v1c1middot1 450 435 O~ 3middot3 31 l 3 middotbull n 1 c)

_4_)5 _____ 44~ 0 bull ~ It~_-) bull J 3 middot ~ bull 1 d 500 445 oo 4tl 30c 3 middot C lk ~cs 45G o ~ ~o zc~ 3~ 5 u te 510 1 j j 1 8 middot 55 460 0( 3 C middot ] ) 1_ s2O 405 0c 3 middot I 30 C j gt C l 8

52igt_____~1l __ ) c__________ i bull ~J___j middotmiddot-middotmiddotmiddot- -~ Gbull d J l 7 530 475 Ot 4l 3Ci bull S

4eo J

_middot 3-bull I 3 -d jJ -~ V I H

134

I J

A~C-2l2-6 5ji-NOK~S0KR-U GLASS Cf_cofJ 1976 AUG 25

ADO 710 MIN TO ELAPSED TIME

CLCCK EL1~SED middotrbull C i TS l t rl _ ~ t D c ~ ) (fI)TlH THfPbullIH I )G Cl l-l

55 500 oo 3C 7 I) 5 ) bull ~4 600 507i 3 93 3middot) I 3 middot) ~ J bullbull middot)2

605 51() ) bull 9~ 30 610 15 3 1S 3J 7 r~ ) ~ i 615 520 00 396 30 7 n5 -) bull l 6 620 ~) 5 ~ 0 bull]7 3( 7 -) ~

625 53C t- ~ 0 5gt~2 3iJ 7 ~ gt 630 5~5 oc 69 3~5 )13030 65 5) )0 3 - 3) 7 _ i ~ bull ~l

640 middoto os2-middot - 3 Ji o 7 j ~S -Jmiddot1middot7d 5 1t5 i 645 5~0 oo 391 305 ~ J131middot 650 555 oo ~dd 3G5

655 middotmiddotillf Cmiddot o 3 9J io ~ 7JO scs co 3 sc 3C 705 570 o ---middot-middotmiddotmiddot-nrmiddot middot - -- cmiddot o middot 715 seo Ii GJ2 middot1 middot 5 J l 76

57c 0 s 720 555 C 31 5 ol v J l 73

-- -725 sso o u ~ rmiddot-middot-- 3bull) 5 ~ ( -middot----y~rrr----- middot middotmiddot 730 gtlt3 o Cl2 lt 3C 39G J-l 71

735 6C-O oJn 382 3C5 ~--J bullJ i17o 746 - -ij~ c-002 3 37 3middott1 3middotmiddot~middotT- )itb

( 745 ~10 Omiddot) ll 30~ 3 ~ J Jl3 7$0 615 CJ 3 H l 3J I ------- -75 ~ - middot-- 62 --- o Jo2 ------middot Jaf -il (

( 800 625 Ci J 3 8 l 3 l 3 3 C ]72 805 6~~ G 3 3-t Higt 3 7 C J l 72 810 i 3 5 i iJ ] 1 3middot ) middotmiddotmiddotmiddot middotmiddot1 fj-middotmiddot --

( P15 610 ~ 3) J) - bull 73 20 6t _ c2 32 J bull 1 7 ~2 s 6) 0 bullbull ) i l l 3d l 3 ~I bullO ~ J (1 i

( 830 65 oo 3 l~6 3t3 3- 5 ~j -i1 i)

835 UC vo 3 77 3) 3 i bull 1 7) middota4Cl- bl C bull ) 3 31) 32 middot1- ) s -~ 1C)

a4 s 6n 76 middot 3 i) 3middot ) )ll ao o7 (i0 j gri 32 7 34 ~ a19

middotmiddotmiddotas1 middot---middot middoti8i omiddotmiddoto j o middotmiddotmiddot32ibull ~ t-~--cmiddot middotmiddot i ~middotmiddot 900 6 0 ) 7) ~ 2 l ~ 1- 7 ltJS 6Jj C 0 3 __bull -~ 32 bull 1 ~

-910 ftJ 00 L ~-~bulli

(

f 135

I

r

j I

AGC-222-l S(12-N]~1-St 11~-U GLASS (bull-Ufis 197( Au 25

ADO 710 HIN TO ELAPSEC TIME

CLOC~ fLlr5~J oz~-J~ CJ _TSl P~l 1U-~ _5J2 TIMf TPHlNJ (iPMJ (fgtbull-1 [IJEG Cl [) crPl

915 92~middot

7~ Jmiddot iCS

0 0 OOJ2

- bull lbull) 377

32 i 32

3 C~ --loz- iimiddot1-V O c 169

_925 7 ) 0 o 3 79 37 0 l c- 93) 715 00 3 79 32 7 0 l 6 935 7~C C0 n 32 7 0 l 64 940

i45 75 )

0) 0 0

~ 7_7 3 79

32 bull 8 3 3

middot3 ~ 33

0 Jc~ C lomiddotbull

75 oo 3 7l 32 raquo 330 O l l2 955 7~middotJ GO 3 79 32 a 33 0 0 16-t

middot1000 71 omiddoto bull middot1 33~ 3L 0 o 162 lmiddotl05 7middotC- oo 3 7S 3 bull3 33D O l 62 1010 1015

75 f-Jmiddot

uo 0 o

3 7o 3 7z

3) ~ 3) J

33 c 325

0 l 61 O l cD

1020 7c5 0(1 3 73 33 ltI 325 OHl 1025

-middot-1030 --770 7i5

oomiddotcomiddot

375 3middot middot1a

~-~- i 33 e

325 v _1593_i_-middot 0 bull I Sc 1035 co CG02 3 7) 3] ~ 32 ~ bull l 5j 1041 1045

7 7 0middot~

OD ( o 37S middot3middot~ f

13~ 33 7

3l~middot-z~middot ~- middotmiddotmiddot

Vlt~l c middot 1middot~~8

1050 7lt5 0 bull) 3 71gt 33 7 325 v158 1055 Smiddotjbull oo 3 75 336 3 2 5_ gt-t~-- _

~UES1l~NA8LE DAlA

136

l

Jbull j

---ACC-2~2-emiddotmiddot~c2-NC~-sugttl-1J _______________ --- -middot GLASS CHA-l~EQ 1middot91J liJC 25

-middott tc1-1rsmiddot O- 1100 -lH1STY 1Jf middotmiddot----- bullmiddot-middot -- --middotmiddotmiddotmiddot-- middotmiddotmiddotmiddot------middot-middot-middotmiddot middot- ---- -middotmiddotmiddot -- - bull middot- middot-------middot--middot- -middot co FACTuR l91Z e~ACY 1~1 TECO 14D ~IS ON TH CHl~OE~ FRO~ 11J5 TO 1111 1200 TO l2J5 1~00 TO 1305 1400

----middotmiddotmiddotro-1405middot lgtCJ TC 15J5 11 l01610 ANl lb55 TO 11Cv middotbullbullmiddot-bullmiddotmiddotmiddot- middot------middotmiddotmiddot TECO 140 s~raquoPLlG UTE 112a ILMIN PAN NOT ~EiSURED ~02 AND N~a VALUES NDT C0ARECTEO

---ATT=l5 MP NOS--ffVIE i-C =middotmiddot1130middot PP3C middotmiddot ~=TH~~E middotmiddot-middot29oc middotpamiddotmiddot ------ middot- ---middot-middotmiddotmiddot-middotmiddotmiddotmiddot---middot---middot-middotmiddotmiddotmiddotmiddotmiddot

CLQCK EUSED OZC~ J iJ2-P~N bull1-P~r ca TSl ~El llH Sl2 -T1~-e--1Mtnbull1Nrmiddotmiddotmiddotmiddotr11-r- - HbullJfr-middot middotmiddotr~- --- nirr-TPgt)n- middottoEG middotmiddotci--- ni middotmiddot-middotmiddot middot 1gtsi-1-middot--------------- ------- middotmiddotmiddot----

--middot-ruo c---rv----~i ~if----~----~-i---1middot-n-~1 o 32 lmiddot-middot -rrs 1105 5 OC27 ebullbullbullbull bullbullbullbullbull~ bullbullbullbull~bull l74 3Ja ~iO 0154 1110 10 oc54 a~3a csoa csJc 37bull 3~1 31s o153

---n 15 15middotmiddot--r-T~--t~bullJgtT--az-m------Ti-~-- bull 32 o middotmiddotoT~---------------l 12J 20 ~095 ~bullbullbull ~bullbullbullbullbull bullbullbullbull 373 34l 325 0149 1125 25 o11~ bullbullbullbull bull-bullbullbull H-u- 373 34l 35 014S middot

---rr3middot--middot-middot-middotmiddot3u---rzz-middotnH-----ymiddoti--nmiddotmiddot~---middot-rn-----r--n-smiddot-or~-----( 113s 35 0132 bullbullbullbullbullbull bullbullbullbullbullbull bull~bullbullbullbull 37ti 34l 325 014S

1140 40 0142 bullbullbull--bullbull bullbullbullbullbullbull bullbullubull 373 34l 325 0147-middot----x-Ps- middot----middots--middot -middot middotmiddotJI-z---middot-~i- middot --middoteimiddotn -- flyen----middot- 3-middot--J z----7)___ middotefv-2 ( 11so middotsc 0164 bullbullbullbullbullbull bullbullbullbull~bull bullbullbullbullbullbull J73 343 320 0143

1155 55 0176 bullmiddot 37 334 31-5 014312CO 5u---n1-middotomiddot1gt~-n-nmiddotmiddotmiddotbull--middot_bullmiddot~amiddot-~--nmiddot~--5- --v-1~4-----1205 65 0138 0~21 44~ 0468 371 33 31S 0140 1210 70 0198 middotmiddotmiddot~middotmiddot middot~bull 373 3)5 31J 014012(5 15 20d omiddotn n ~-n- 36l 3~ I 31V--lr~~--------------1220 80 0211 middotmiddotbullbulltbull middotmiddot~middotmiddotmiddot 372 337 310 0138 1226 86 0225 bullbull~bullbullbull bullbullbullbullbull~ bullbullbullbullbullbull 371 ~3S 305 0138

---rz3middotcr----middot- u--middot-rz-zr--nmiddot~bull-bullmiddotbulln--middoti-1f 3 1r--TS-e--rcmiddot~5-middotmiddoto-r3-1235 95 C234 bullbullbullbullbullbull 373 33~ 305 0138 1240 100 0244 u- 3 74 33S 30S 013b_______________

--r-245 105 o~middotmiddotn-~n---~nbull 3lamp-33 l~o7no 12somiddot 110 o2s bullbullbull bullbull 3 10 339 3co 0131 1255 115 021gt bullbullbullbullbullbull bullbullbullbullbullbull bullbullbullbullbullbull 369 33 30C 0136

--ncHr----zu-----zb-middot--tmiddotbullmiddot~-----middotpoundn----i-nu 3 11 - 34 l 30-imiddotmiddot-r-rn~----- ---------~ ( 1305 125 0263 OQZO C370 C390 362 34l 29S 0134

1310 130 0286 366 343 -295 0133--n-rr--rn---rz-middotr~- bullbullbullu 31- 3--z 2s 0133_______________

( 1320 140 0303 bullbullbullbullbullbull 367 343 295 0131 1325 145 0313 bullbullmiddot 310 35~ 295 0132

-----nomiddot----5u----o---Jr~nmiddot-----$--bull bull bull 3cs-middotmiddot-3middot5~ro--onmiddot9~---( 133 s 155 0325 bullbullmiddot ~ 367 345 290 0129

1340 middot 160 0332 bull 370 35b 29() 0129 -------r-s---n-TlT---Thh Ohu hmiddot 3b9 356 29J---omiddot129_---------------

( 1350 170 0144 middotbull~~-middot $ 360 356 235 0129 135S 175 0352 bullbullbull~bullbull bullbull~bullbullbull 36amp 351 2a5 0129

-middot-middot1400middot--middot--1middotpound0middot-----0---i-srmiddotmiddotbull~-yen----middot-middot-r-bull ------y-fi~---7-S-t---za--s-- (fTzz----------------( 1405 185 03b2 OJZ5 C31C 0335 367 357 285 0127

1411 -Ill 0371 364 357 28l 0125--ras-15---middot 0376 ~Tlaquo middotmiddotmiddotmiddotmiddotmiddotmiddot-bull J64 middotmiddotmiddot351 2lt1s o--lZ5~-------------

( l420 zco o3a3 bullbullbullbullbull bullbullbullbullbull bullbullbullbullbullbull 36- 357 zao o1z3 1425 2C5 0-391 bullbullbull bullbullbullbullbullbull bull~ 36 358 250 0125

--middotmiddot-1130 middot-middot-middot2lo oJmiddotu--- --- bullbull middotbull~bullbullbullbull - 3sd--JJ - zaJ middotmiddotmiddot 0-125 ---------( 1435 215 04Jl bull bullbullbullbullbullbull 362 36G 28J 0122

1440 220 0410 middotbullbullabullbull bullbullbullbullbullbull 362 34~ zsJ 0122 middot 145 - 225_ o413- bullbullbullbull --- -middotbullbullbull 362-middotmiddot- ~~-c-middotzao middot 0122=-------------

-----middot-middot--------middot- middot-------------------------

--middotr-so 230 D42~ bullbullbullbullbullbull bullbullbullbullbullbull bullbullbull~bullbull 3~~ 35~ 1= o_120

middotmiddotmiddotmiddotbull middotmiddotbull~~-1455 23~ 042~ bullbullbullbullbull ~ 36t 35ry z1s C 12 I 1500 240 04Z7 bullbullbullbullbullbull bullbullbullbullbull~ bullbullbullbullbull 3bJ J~l 27) o liO

1505 middot middotmiddot-z smiddot-middotmiddotmiddotmiddotmiddotmiddot o 43-s middotmiddotmiddot middot-- middot fy-middot-il6 t -- o Ao ______ 1~ s~ middot l5 Z 7~ ~-- middot- c-11c1

OlJI~ C) ~c f l l() 41JJ Pgt~-tI-i2

OLGlE CJ G S C10 41~ 12 o middot~r1 ~~2-PA~ CC A~ ~rmiddotmiddott~21 Jbull bulli-1 middotpi-~-middotmiddotqN

137 )

_j

j

I ___~ -Irr-=rgt--~ fi -~pJ13 microc w--7 Fria---+ a-bull---middot--=-r ---rc=u- r ~~1-- r-=~l ~~ _ _ ~l~ ~~- _j =middot1 - --1 middot~----=---i ~-~

i 97 7 -- ~

~- bull -_bullbull _ -

-~ middot o- l ~ middot_ _ --c 5

-_

- ~ __ -i1---)

-bullmiddotJ _ deg _~Li--lt Cttf~middot -~J_J Tl Slr-Y~ --- cbull T[C-T~ - l c 7f t C i_ I---lt

l bull - ~ ~ --~ - - _ _-- ---

~i~ gt bull Tftf- iJbull-~_ jl ~~SiF= middot middot1F ~1 _1~-CLD_

SY~ l-~l1~ 24-5-f o --tY VJL c C ~-~PL[ PCRT

--~ __ _] 5 bull1 - ltmiddot_-_middotbull bull --~ ~---r_ r~ -t imiddot c1-~-middot rrc-i c---middot--u1 1Nr =ii - ~ L _ middot L ~ -bullbull bull bull bull l ~ middot~-l_~ st lmiddot ~ ~--t1 iC cbullmiddotbull-_fCT LEil

_-- - __middott_i middot-middot LAT r= ~ ~- T ) r middotmiddot-1 r-- ~ - _- ~ ~- ~ - bull i I 1J 1 middot- 1 ~ j_ t __~i~ r-lbull bullbullXtL-JC nt1

middot -1-bull Ci--1-r bull

_ bull ~ middoti ~ - i) rtJ rmiddot

_J 1rmiddott

1_() l t ~ ) )20

i -~ bull middotmiddotmiddot- ti0

i middot - ___ --~bullrJ

l 111 i 300_

lbull~ 36)

lbtt5 _420 _

l l bull 1t50

2J ~ ~j

63G lJ-i)

vv Cl lgt

n-9C

L~middot--~TICf~S iPPl-1

~-~~--~-~--

c bulln

i t~ -t -~

_middot bull ~

)l J) J

i 3 1 3-J

) l tJ imiddottJ

middot 7 H middot)

-pbullJO 3-JltJ)

11 ri~J )100

il 1-1 3110

ai

9= (( ~ ~ -laquoiry

)- ~ (I

-- bulllt~

yenyen~11

) bull )bull 1)

3gt0

--bull- l -gt 1

bull1 bull 7 il)

3 7 2 1 J

396 Ibullbull 3

1 2 l bull

39 bull -gt

ld d 310 fu l

3d 1t

70 ii 36ltJ nJ

-

( tic

-0~i

iu~

~-

raquoyen) ~

j_-4

i q

I- w

_ ~ I i-1

i ~ bullj J bull j

)_)

ur fj

iJ (bullmiddot1 -)

~ (~ ~ 6 _

l 2 v2 u

126 o t~

t ~ 6 ~ --)bull-1

ltbull ~ -lt

rt gtltljcent-C

~gtltO~

it-~_~ L-J bull 3 12 l

0 - ~middot- imiddot ~- ~ - _ =~ i 1t f 2 3lt -1 bull 451 ~2J 42l l 0 478 ~ ~Jf(l yengtiO ~ 3middotbull 5 t r bull~ ~ i-1 i8 bull U15 6 JJ bull l 356 o~3 fi o 9i5 (ltti v1qgti c-c lltoi1 -11 l

- l - loz-__

i bull bull 5

l ~~ bull - ~ 7

l j bull 3 3- )

lJ bull lt 1 l C

l -t 1 1t 3

14 I t2 bull

lmiddot J 41

1 frac14 3 1t3 0

14 l 423

l iS 46 amp

~ middot~ 45-S

s s

pound 1 5 9

~J ~ ~

- 7

11 flgt~bull-

1- 11

lG _ l bullJ

l l bull f ) 1t t

lbull1 q s~ 6

l J 7 5 2

l O o Jl

tG 5 Jl lt1

11 ~ q6

10 l 303

)9 296

1-)0 323

62 lB e

(I 2 loo

(1 l cl 0

~ -_ l bull) middot ~-

_ 0gt i 1

Jr

rmiddot1 ctmiddottf-

aigt_ti

lUO r - l

loll (11J

1( hlH

l57 (110

~

160l

15lt t l_t

917 )(J -

91 l _-_

d7 3 i

c ~ middotmiddot ~ bullf ~rgt_(

1 Ibullbull 1t 1

1til 103

r 1i 92 lt

- 7 l9 t

3l) H 1middot1 6

4 02 b0 1t

402 804

40 t al l

6lttgto(t

(clE

4 l u 937

4l - 85 3

n4 41gt8

LJd 41o

ijO

9

r -- -- J

i~ middot- --

j _i bull 7 a

bull middot1

r 5 _fj

0 j 2l

0 j

L bull Ob 2

)6

middotbull ) bull 5

2 bull CH J bull i

07 l il

05 t9

o bull l~

0 1 t

_ f - I

PP C tJ

bullJ ~ C j_ 6 )~ 3

L 2 bull 50 5

P2 487

124 ti 3

t 49 o

liS 5JO

12 I 50 8

t2 t9 a

I 2 8 51 4

Ui 31 t

75 ltgt9

76 30 bull

78 H l

------ - -L )-middot _HmiddotrmiddotL r-__7bull=

Vimiddot~~c i-c~

1Y1ffbull

-t 6 7 ~~ g)

4J _ iJ

ltf 3 tt l d

ttfl -2 It

1t6 2 nr

1) 1 l l

middot15 6 274

4 -3

266 tlt

276 16 1

2 7o ll6

160 2( tl

lvi f2

2i6

L-i~bull-L ~~_pound_-- -bull~

-1_ bullbull 1

-Cbullli-

3 7 i l 7

383 d j

1 7 ltl

30 I 2 7o

39 1J

3o7 77

383 72

358 7 _

362 12

35B 4 3

21 7

221 7 l

3_4

~bullyen-- ----bull middot ~-- ~--~-- ~-Ibull_-bull_middot-(~~centbull f f _bull-_-bull ~-~~ --=middot-_- -~-tI ~~--~ middota1rbullbull middot _r~ -lt~lt-bull -_~ - middotbull bulli--e- -~- _ middotmiddotlr---bull

rmiddot=1=- r-~=bull1 l--Jfil1middot--1 rur=-=i -f~w-_a1 ~ _r~- r--ra-c=~ ~ f-1-tliiilllllit ~~ ~~~j bull~~-r--

l-i77 ~~~ 21 --- J- -

) ~ ---

L~~ T9~ _~-~i-J ri~rt~

bullmiddot_

- bull~ ~ l~ 1 101s

Jj 104-=i

(J

115 lcO

l 2t5 1 ~HJ

1345 240

l bull -~ 5 300

l )It 5 360

l t4 5 lt20

17 5 45C

2Cl5 t30

lJ4S ltgtov

ell i omiddotc

middot---middotmiddot rtC _t c

) 0 J 1)

(__ _

C5 l ~j bull bull__

( - bullt-eL

__ ) ftc_

middot- -) 3 15 l

lt)_o j 3

87 o06

~-ii-lt

$igt~((

~~n ~t-gti

e diams U

Gt1

~-q ti 6 ~J3

--~ r-

p C middot_7c _3 l _

bull ~7 3 3_-J - 2f1f

3 i 6_ 753

3l 9 2j

(

laquo 30_ 4 4 1

2$ _5____ ~-~ ~middot (t~

22 3 degdnt

UC

I ~ix

~bull r12

ff4yen

2 r 9u ~middot -~-- -bull 1middot- ~ ---~i 2bullmiddotJ

bull I ~middot 21

bull 2ltZ -

29t 1bull1

_20 ~ ~ nti

268 1a1

2H Bl

298 ~ bulli J

2~3 2~1

ilC J IC

l 72 l 1

75 [

middotbull -

~

middot middot

i ~ (J

bull-~J

~-- 01

1~middot1 lle-1 10j

tlgt~~ gt 111 middot)_middot3-~~middotlc 6(J3 1t 1J 0middothmiddot~

middotLgt7~ li-J3 ltbull=-

middot7lt1o i-_middotJ ~-rt_

S04H bull - j((bull)bullt

tlt~o

-JJ6 )JQf 1cLJJ

ll703 1101

) 1164~ llbfJ

~oc - imiddottI 0~middot1

V _deg J-44 l--r-

rt1 J bull 1 2- ) 12iJJ

f-- i

0

~ -~ _- -K_---middot~-~- --(middotmiddot -middot -middot---=-middot-)~7-- l(~f-~~ _-~- ~~middotgtamp--~ ~ _-1--gt ~ ~--~~~---~bull middot--bullmiddott~~ ____ ~~ J-P~---yen-4middotbullbull--middotmiddot-middot

i UO bullt _ Od_ (middot JJ ~ c C ltgt lj (l bull- N

rmiddot -1middot - bull~ ) l

bullI

I) middotd (middotJ J -~ - ~ middot JI 4 ) 0

~ bullJ ~ Jbull ~ 1 r M

i- t---

I

1 I00 bull lt CC NN 0 -0

lt)1l

middot)

-~ - -300 NN middotbull Cmiddot ii NN S (1- O 0-- ~ r- -

I I

~- rmiddotcshy -1 NJ bull1---1-

J middotshy

ltbull 0 s- bull middotl _ _ middotc o

0 -- j r-I-j r-- _

ru middot

0

~ rmiddotmiddot - lj a)

-J O

I lJ(_ - r- -

~ middot~~- _

r

_ (bull - ~J middot-- -

~ -j

middot -

I

middotmiddotmiddotbullbull I middotbull bull bull

-shyJ middotmiddotbullbull I JI -bull r ) 1 ~- I -

C bullmiddot -bull _ 11

i ) ) )

141

- ~

_

ij (Y

1

l

j t ~

1 l

l i

r t

1 i I

i I

I

i e clf ~~j

i Ii

J --1 c--c- r-middot rJ

llJmiddot t middot C C r-bull

- )

middotmiddot

1J middot

-~ CJ-- bullS- bullbull

middotC - lt ()~--

tJ~-r ~- r bull J)

-r--middot J 1 I ~ ~ - -~ _ _

~

~ middotbull1 r~1 J

middotr

I ~-1bull11 J

)bull ~ --

142

bullbullbullbullbullbull

__

SURROGATE RUN 223-U CLASS CHAMSER 1976 OCT 5

LIGHTS ON 1215 INTENSITY IOOt OF MAXIHU~ 39 CC SAMPLES TAKEN CO FACTJR l9lOl PA~ CALIBq 9 6~ADV 1296 1215 PAN SAMPLE WAS TAKEN AT TbullO TOTAL NON-METHANE

CLOCK ELAPSED TJ~e nx2uaN)

1215 middotomiddot ( 1230 15

124s 30_~ t3bo 45

( 1315 60 1330 75 1345 90

( 1400 1~5 1415 120 143()-middotmiddot 135

C 1445 150 1500 165isismiddot-middot-middot--middotiso 1530 195

1615 1630

---i645 1700 1715

--1730 1745 1800

OZCNC ltPPmiddot~middotmiddot

omiddotmiddoto 0020 q04 0011 00~8

5139 0159 C181

AT 1221 HCbull 2346 PPSC METHANE= 2950 PPB

middotmiddotc~J3middotmiddotmiddotmiddotmiddotmiddotmiddot~J24deg 0222 0)12 0242 011

~1 t 0 M1

O 150 oJ94 005s oo3s OJ28 oJ23 oJ20 0)17 1))15

- omiddot2sgmiddotbullbullo1middot0middotmiddotmiddot 0147 o154 5~53 0022 0081 0276 OJO 0140 0145 546 bullbullbullbullbullbull

N02-PAN ~OX-PAN er PAN _ H(fO 1orM1 11gtPM1 tPPll (PPrl IPPHI

0143 cz1H 5S~ OOCl OC40 o1s1 0212 s75 bullbullbullbullbullbull bullbullbullbullbullbull c200 o2s1 s 15 __ 0000 llt~bull ozca 0237 s12 bullbullbullbullbullbull bullbullbullbullbull C2)0 0214 572 OJll 0063 o194 0214 510 bull~bullbullbullbull o1ss 020s 563 o~14 bullbullbullbullbull~ 0181 0194 561 bullbullbullbullbullbullbullbullbullbullbullbull

cgtbull11) 0195 ~5_7____ 0_1)_15 _______009~ 0157 0176 ~56 M~deg 0161 C16g 552 0021 bull~bullbullbullbull oJ53 ()160 s51

~~~-- -middot -JJtmiddot-middotmiddotmiddotmiddotmiddottfrac12H----middot1middot-middotbullgffr-bull-g ilb----middot-middotmiddot11~------~-~-middotzmiddot

iii5middotmiddotmiddot-- 360 middot middot omiddoti19 oco2middotmiddot c068 middot o069 middot53i 0039 C

-- DATA DISCARDED

OZONE CJSAGE GT OlJ 5~53 PP-IIN OZONE DJSAre GT )gt~ 6466 PPl-N

N02-PAN CJSIGE GT 025 J0 gtPbull-MN

C

(

middot1-bull

(middot middot middot

(

143

240 0337 0012 0124 0131 539 0027 0024 255 0354 OJJ7 0114 0116 543 bullbullbullbullbullbull

middotmiddot210~---middot-middot0middot37-middotmiddot -oSoimiddot--middot-middoto10s o 10g middotsmiddotimiddot - 0~03fmiddot bullbull 265 0393 OJ~5 0099 0101 536 bullbullbullbullbullbull 3JO 041() 0l05 Cl93 0095 5~z -U_9Q11

_____ 3l5 0427 0()05 oomiddotsamiddotmiddot--middotomiddot8f-middots~~-B 330 0445 oaos C081 OORl 535 bullbullbullbullbullbull 345 0462 0007 C074 0075 539 bulllaquobullbullbullbull

TSl REL HUM IOEG Cl Ill

31 610 33I 630 338 630 336 625 336 620 336 61 5 337 610 33il 60 5

_y_o _____ 59 ~ 341 590 34 o 58 5 t bull 2 58 5 343 575 345 575

3t 5_______ 57 0 34 6 56 5 347 SbO 34 s 56 0 349 555 34 9 55 5 34 8 ------- 55 bullo 34I 550

lt 550bullmiddot 54534 55 0

middott--1_r_-0- ~-ur1~_1 ~-m1=-middot cacalJ-aej qr-middot_~=~ f 1r~bull~1 ~ ii~ ~~-lt a -~ -bull-I ------ ----bull----- -- -middot-- --- ------middot-----------

middot-------- ------ - -- -- ----l lt T 1 I~ l ~

LwO(~ATE 223-U-1

USS (i-A3cK lS76 CT 5

----middotmiddotmiddot--------- ------------ ------------------fgtCCP ne1PRATuRE STA3li TY ori POROiiiK-~I-T1isrRuMENT 134~- u~ SA~rLE lJ~fC if~ POOPA~ II 4UP GEHrJF iRCPIC-LCftbullYDE ACETONE _lltJTYAlPEt-YDE ANDMl1Cf8011 C-600 _____

T LUEhE A~J ~-iYL2NE fRCM 3P

cirrr T J tltI 10 l 5 l 112 1215 1230 ll 1t5 1 middotmo 1315 1no lJ45 l 4DO lbull I~ l 3J l bullttgt LJOELLco r [ME tMl -) -12c -43 0 1~ 30 45 oomiddot 75 90 105 120 lJ5 ljj 165

-------middot-------------- ---~--------bull------------ -middot---- ---bull- -- --CONCENTRATIONS IPPB

MfTt-~ ll20 29Su_ _1QI ---- - ____ 2920 middotmiddot---1~L- t 2060 bull t bullbull $V- +- 0

-0fJlfljlP~UC lllO 29~0 )~$ yen 2920 ti -( bullbullbullbull 2B 80 lti

1Tt--f bull~ ld 4b11) bulltn)it middot(c middot~IQmiddot middotmiddot 3u I 21 5 yen_ ~yen -ilgt11$

Pb[ 2b 61 4 550 yen ~~ ~middot ~

bullE Tbulltbull~ _bull~ i middotmiddot--- ~v ~--~~-----~-~~~----___ __~--~_ _~~---~~__at bull9 ____-q~~ ______ a10 ~middot-I~ -gt-~bull $

Cr)(tl((PP8C 34 ~ yen4 17J )) 162 bullbullov lj[ middot ltCETfl~-E ( SPCJPM li 24 ~-~ ~IX $ O icbullbull 423 I)middotmiddot 38i

Pl1 BC 48 ~Ct bull(I bull bullbullbull bullbullbullbull bullierbull~ bullbullbullbull 846 112 bullbullbullbull bullbullyen t

bull QJ~~~tE _____ 4_J___________2_0 _Q~__-~___l)_6____l_o_---18_L_o__L____lt__---_-_~__iJ8 _ _bull_e____laquo_middotmiddot-middot---lo 2_________________ -middotmiddot-

I- P8C 129 bull~bullbull 600 586 567 564 bull gt4b ~

Igt)~gt)~ p~ -P~~E 07 _12 9 12q )iJ~--middot amp~1___-_J4 _____ ~s ~--~-middot~~ ___c_U_-0~ 4C O-ilt bull f igtPBC 21 38 7 387 2bt 195 120 IC fd-- middotmiddotmiddot-l _ I_SJ81JTAIE________________QL_ bullbullbullbull - __ --- middot-~-- -- bullbull ___________ _bull PPBC 04 bullbullbullbull bull bullbull~bull bull bull~~ ~ -bull~bull bullbullbull~ bull9bullbull bullbullbull

Nmiddot-Bur i1E -- 1 5____ 196 l ____ middot--middot-middotmiddot l8lt_____ _____deg _ - ______ 171 ~ 164bullshyPPBC 1 10 790 784 744 bull bullbullbullbull bull b64 bull+bullbull middotbullbull=bull o5

__A_ CETYL~iE__j QI I ____________25__4_~___425___gt1lt-bull__t25 ____bull__lt25_-13lt____i-~L__bull----___l __iof_lt____-----1~2 --- -- --middot --middotmiddot PttC 5o uco aso ~bull 85O aso bull~ bull~bullbullmiddot 02e bullbullbullbull yen~ 1a4

TP~ rs-2-aur c bullE oo C_i _____() 0 _ ____03 -middot---deg-degmiddot----middotQbullO --- _ oo bull bullbull -bulloishy va ~middot~middotshyPPtC oo 32 32 12 oo bull oo bullyenbull 00

-- i S0PENTAIJE____ ---middot-middot --- ___o_ L ____c_J ___ 0_2____gt1lt_bull__-1o_____(lt_______l_bull L__________o____ ~-bullbull___J_l____gtlltbull____U~-----1-L__ PPBC 15 35 4i bullbullbullbull 50 55- middotgtjlmiddot~ bullobull bOiS bull-ttlll

CIS-2-SUTEIE _ JJ__ _ 14 6 ___ __ 14 o ___ _-yen~~~------5 2middot-----~--~ ____l 7-----~bull-~~- bull-laquo~ ~ -- o o ---middot~U----~bullbull - v c PPac oo 592 584 bullbullbullbull 208 68 00 bull oo

_ fi-gtE~TANE ____ _________o D C L_O_bullL_~gttlt______o_l__llt~tt___Q 5---~~---middotmiddotmiddotjlt________-D5 -~----bullbullfltltgtl___lflt__ ______________ -PPBC OO lO 15 15 bullbullbullbull Z5 bull 25 bullbulloi bull bullbullbullbull

2 3-0 iMET_Hll ilU_TAIJ~ ____Q_Q ____ _0_9_____1 lQ_ bull-~-bull- 99 5-~___9JJ____~bull~-bull-middotmiddot-middotmiddot~--- ~-~ __ 84bull 6 --bull~bull----- __ Zt5 __ PPBC OO 652 658 bullbullbullbull 597 559 bullbullbullbull bullbullbullbull bullbullbull 509 gt77

__z_- ETHYI __SJ TE gt E~-- _______Q__Q____l6__2___16 bull 6_bull~---middotlldeg___-1lQ__5gtI-- -------2- ___i)C___tl deg-_JtlltbullL ___JlQ _____________

- _ -~--- bull-------__ _____ __ -----~~ - -_--~--------bull~bullr- t-=~~t~~= _~f~~~~~~~1bull~~~~~frac34lf-~~m~~bull~r~-~-fq~l~-~~~~----~-~~~~r-fltbullbullmiddot -r-middot ~ middotmiddot--bull----~-

bullbull

--

---- -_micro__middot1 _---j--- _- irr I-- ---1~ f~i=lbullaj i---r-J-p---1 --or __ ~ 0 I -lt-cc--l~~f1- ~~middot

1971 lltAR 18 i J Sl~~OGATE 223-li

GlhSS CrA-CR l-76 CCT 5

CL~CK TllE 1015 1132 l~ lL l230 _l245____ DOO____ JHgt l3JO _ lH5 l 400 _ l415 lo30 - llttlttgt l00 fLAPStD TtMEIMl~i -120 -43 0 l 5 30 45 60 75 90 105 120 135 ljO 165

PlllC ____(l(L__i lQ__l)l o____5_____ t2 bull0__~_jltjlt__i)_~~-4___ ___ OO _middot- __gt-yen ____ v C

j(ETALCEhYOE 28 ~~ qbull bullbullbullbull bullbull bull

_ PBC _5_ b___ _ 4~ middot-middot-~ -- bullbull~~ - bullc t _itoo -- ~-- middot - --- bullbullbullbull middotmiddotmiddot -~-- bull -- bullbullbullbull PllJlNALCEHYOF 02 03 bull~ $lt-))(l bulltctll yen bullbullbullbull 26 bullbullbullbull ia ~middotmiddotmiddot middot~llillP_lly

( -~-- (t~---middot Ci _9___ nill-1) -_ ~ ---middot _____ __ middotmiddotmiddot- 7B ~ bullClfc~

ACiTCI-E 07 79lit O bull~middotmiddot ~~ 366 ~ ~9 bull~~-PH 1 (tV~_ 2)bullJ --bull--bull bullmiddot-- --middot~bull---middot-bullbulllaquobull ~bullbullbull___ t(- _____l_l_O __ _--~bull~ __ bull 9 --~-- ltill diams 11 bullbullmiddotmiddotmiddotmiddot--

METHYL ETHYL KETONE 03 1a 82 yen$t9 ljllf-bulliimiddotbull~ bull~middot yenbullbull middot~ bullbullbull middot~middotmiddot ~ Ibullmiddot bullrPc_ i 2 Amiddot 7_2__ ~___ -~_ -~J__~~~ - -bull~----middotmiddot Imiddot----~ yen 32o lClO~ -0

T CltJEN 02 155 16l middotbullCt 144 135 126 bullbullbull deg PPHC l _(____ 1()8 bullyenljlCl lJ 3 ~bulletbull 101_ __--- 94bull L ___ --middot-- 111 87 J _J~~

4ET4-HLENE oo 523 53 l -4t 3fl ~ 219 4(Uit4 rcit U3 -bullljl flt PPBC 0() 418 _4_25 11_ 297 bull~ 23i t l 78 1)jff laquolI ~middotmiddot iHryRtLCEHYlc Ol Ol middot~bullmiddot bullbullbullbull bull yen0~ middot~bull 10 +9~ bullbull

-------middotmiddot-middot-middot--------middot---- PPDC 04 04 ---~- ____ ilit middotmiddot~middot _-I -- 40_ __cent~___ $~ bullbull ~iarabullbull

0 ICHLCHltO UI I-UJbullllgt01f TlbullMJpound oo 3S~ 351 347 J39 iyen0c 1jl$~middot jl7I- QI middotmiddot~ - bull q 3H

ishy _Poec O~Q 355 3_51 347 middotmiddot- ___ 339 ~ --bull~~- -- middot~bull--middot- 3 37 lit~yen j ~ 7 middot--middot -- ICr TCfAL HC PPBC

v ll7ij3 bullbullbull 56471 43268 52043 bullbullbull~ bull~bull~ bullbullbull

__TAL 101-ETHPE _t_C____ _ 583 l24l5 2345Q 00 19495 00 1068l 00 3158 QO l9872 middot 00 oo lldJZ TCfAl SU~fltJGATE 46-~5 zz37 middotomiddot 2307 i-------19-4degici---- i060~- imiddot----- -315 ~a----bullbull --- 1624amiddot ---- ---- i 21- 2

--~---middot-----middotmiddotmiddot------bull middot--middotmiddot------ middot----middotmiddot---middotmiddot-----middot--middot-middot----

bull-bull-bullbull bull-----bull---bull-bull ---r--~ --bull--bull----~bullbull-

- - - - - - - ------ -- ----------middot-bull------middot-middot------middotmiddot-- --

------------------middot-middot-middotmiddot- middot- ----

--------- --------middot-middot - middot----middot - ---- - - -- - - ---- -

-~lf4~--bull_~ ~~~~-~-~_-~~-~ -__~~bull- fF-~~~~~-g-~lT~~~~~~~pound~~etflitlilJ _~~~~flf-middot-bulltrmiddot--middot~- -middot-v--~--~-middot--~~ bull--bull~ ( s-~V __- -- bull bull bull

-~sgtlt-bull=ns-~ 1=_1i l-mc-a-1 __~bullmiddotloii1 ~bullbullcai=r J_t-~~ip7 -= __tJ~ ~ -__ __ j-Diii~I ~ ~~ ~_J IJcSi~~-~ J -=- -

1977 gt1~ ci Si~~C~~7E 223-0 ll~r (~middothPJ~ 1~76 CCT ~

(

CLCCie TJ~E l5l5 150 15 5 1600 1615 __1630 _l 6 4 5 ____ l 7 00 _ 1715 _______ --------middot middot- middot- --------[LAPSEC TMti~l~I 180 (95 2 l ) 225 240 255 270 285 300

CONCENTRATICNS_ PP6)

ME T-it rti 2900 bull bullbullbullbull bull 2Hl0 2880 pcgt~C 21 )J -------____2_810 - _ ___2_880 ________________ ---- -------------------------------

Tipound yen4l231 f~ ~ 203 ~~~ ~~~~ ~ 16 fJP~C 4 7 ir ~dbullflcent ~~$~ 40( 32 2bull~~ ~bull

E Tbullbull4E 78amp middot~lll ~ middotbull~-t 780 4el(( 749 PPH( l i r yenltI~ bull~ bull 7 9 _____ lJU_ ~-~e-~----2_~-~---middot-~tlt_~---middot ~----- -middot------------middot------- middot-- middot------- middotmiddot- -

A(middotfyi_t~~C (PfJPlbullr ) 35tJ 4 bullJ) Jqu~ J~7 ~4bull 3( iJii _ic 7 6 ) ~q (Jc 71 bull Cc~ ~-ii 7(

prmiddotPPE 184 ~ tnmiddoto 10a bullbull bullbull 116 1-~fiC ------- 552____ bull~ _ 540 ___ _itL__ -~---528

PJltbull)micro( bull-s -O l bull 7 tc l4 09 06 )pl)_l~PirC ti 5 l 42 Z l ___ l bull d lll middot~~- bull~~-

l rnu f hf -+--+=bull ittcagtICI middot ~ (I diamsdiamsbull -bullmiddot ~ POtC 4~~--- ~6 irc q ~ -~~-middot~ middot

I- N-~iiT ~E ~4tlllC l ~) 2 6-middot) 15b It 154 (lt l bull4f- lPhC diams (t4lt t~- t~gt-111 62_12_ ---~-lltmiddotbull--middot 01bulli___ yen$ia~_ lI~--- _57~ _ ______ --

deg ~ ACETYlffH ((JIJ~) 40 bull Jjl-C 395 bull 30d bull 373

PfflC ytlbull 806 790_ _l7 fJ____bullbullbullbull ------bullbullbull-bull----1t6 i TRtiS-7-BU_TUiF bullbull-amp oo oo yenbull oo middot~bull ~~middotmiddot oo pmicrolbullC yen~bull o_o ltcbull o_o _____________QJl___bull~-~--------obullo _________ --bull-----

I SOPcIITANE ~-90-~ 13 ~ l3 iU ~ ~~ l6 PP8C __ 65 ~~-~-_____ 6_5 ______~ _____a_v __ vbullbull~-- bullet __9o _____

C I-J-a1Jrrbull1- obullJ 00bull~bull middot~ oo ~middotmiddotmiddot oo middotmiddot~~ bull+bull~PPi3C ~c-~ ~o_ _______ oo ____ ----obullo - 00

N-PEl-ltTANE os o6 bullbullbullbull os bull 01 PPC t-6-bullo middotmiddot-middot 2_5___ ~-bull___ JQ___ bullbull~middot _2 2__ bullbullbull _0l __ ____]_5____ ----------

2l-0111 EThYL B1JT flff Vyen-(-9 -6 6 41(nr(c 122 bullbull(-II- 63 5 PPBC 1tOE-fl 460 Jl(I 4J3 -- ___1s -~bull- bullbullbull middot 3tll

z-~ET~YL e~Tc~E-2 oo 162 166 bull 24 oo bullbullbullbull

(9 7 bulliibull

PPBC____o_o___JU_Q__ijJ__Q______ __ _____120________)J)__ _gtlt__________

ACULCEt-tYOc bull9ic ric 9 Ii PPilC yenyenct -- ~~-middot- __~~bull_ middot-----middot-iiiyen___ ~~ ___ _______ -bull-middotmiddot--~---middot~middotmiddot PIJlICNALCEhYGE $$ bull4~ q bullbullbull 40 vbull bullbullbullbull ~bull 48

PPBC __ -- _ ---middot-bull _____l2J_Q __ L ----- __ lt~4____________ _

-_

--- ~~~~ -----_-~~-~--r----middot~--~ ----~-_____ ~0ltmiddot~bull_bull~~~cmiddotbull=-~~1~~rJ~~lt~~-~~~~yen-9 rr~~~~~~~~~~~~~~bull1~~~-Jf-it~~frac34WMP~~fUffM~~-~~~-~-middotmiddotmiddotmiddot1

bull-L)c~iJgt ~JJJI~ amp=-=-middot f-i~ aa-J-_e__jI micro-i~ismiddot --gtbull____- -=---- _ ~Jr i~~-( ____--__p_f I __rei -~~--1r---- l rbull~~h P~bullwii ~~iiI~

7 SLlt~4F 2pound3-U 177 ~~ ltgt

IJL1)~ C-oYjf-P

i-1 er 5

(LCV TJJ 1~ l~ 1~30 ___ J545 ____ l600____ 16l~ ___ H30_____ H4~---- 1700 ____171- ______ -------------ELAPSED Tl~fl~i~J liJv l95 210 225 240 255 270 285 300

_4CE rbull~ PPiC

--middot~~gt)_

icibullbull _(ot$

lI raquo-1c ----bull er lfrtJ11( yen

_360 ll4

-~-~------- ~~ bullbull deg

-bulliibullbull bullbullbull l(l

_i-HHYl ETHYL lttTC~~C pp_c

~icbull

yen(t )C --~~~ ____ii-------- _9_7_ ~-middot~ ~ 388

~--yen

middot~il$___18 --------------~ 728

--~----------- --- ------- -- - -

TtiE~IE P9rtC

109 763

yen-) ttgtlt-

(c~ laquoY bull 107

1fi - bull

(16JCtt

bullicebull iaibullmiddot bullic(t~

102 7lb

MET-4-Xllf E PPflC

__7 f l V

-middot~~- -- ~$ IF (n~v~

-----bull~~ 12-i ------------gt1lt______ 94_ --000 bullbull~bull bullbull~bull ~ 75L

L ry __ Cf 1 tYf rr~c

) ( ~yen

yen~0$

v(r

bulll- _ iV

~ --r1(

2 z 88

Jcentii

it) ~(

~ ~llf

gtii -2 6 lJ4

u-bull1Lor JffLiJ--uirt-lf PPpoundgtC

~ (I~

~ 330 330

( 1t-4

26 326

v~bull

_____ n2___ ------I) bullbull322 Hl 311

rr~t-L TCTAL

lfC -gt~ ~J~-Y

c iHl~E HC

jjJlt3 494middot3

middotbullbull13393

irbullilr

630 bull~ 34Jq _7_

l2 C5 5 tgtZil1 tilt~bull -- middotmiddot--middot-middot--- U------- __ 4713(___

11770 00 oo l5229 ___

TCTAL St~PC AT~ 49tdiamsbull 3 1330 3 830 ll lt60 455l l166 5 14128

middot---middotmiddotmiddot------

I- ~

~l~-~ ___gt-_____ bullA ___ _9~~--bull ______-~7~~~~tqt1f~~1_4_~tP-amp-i-~ffltW-iff~~~iitt~~laquoFifampoiijiM1l~trt~~ -_ Cl-iII~~~ --v-~ -middot ____ ~yen-

APPENDIX C

Plots of ln so2

vs time for

AGC Runs 216 through 222

bullf

lmiddot1

148

RGC-216-1-3 se2 DARK DECRY 2 RH PURE RIA

C) 1976 JUL 27-28 C) C)

p

I

0 C) _ - 0

ru (I) 0

C)

() ()

() Ce() () () -00197 plusmn 00003 hr

-1

() ()

() () C) ri)[J

~() I

~

C)~c CO(L Q_ CJO()

0CLc o--_(I)

_ (J

CJ I 0 0 (J)

o zo

en

_J~

0 =

I

()

f P1

0 Cl co -- 0I

4 8 TJME

12 CHA)

16 20

CJ 0 CJ

24deg

0 Cl LJ)bull

N -0

ll-

149

I

C)

0 ()

bull

AGC-217-1-2 SC2 LlGHT DECAY 151 RH PURE RIA

(r)0 1976 JUL 30-31 (I)0 (I) 0

0 I ti)

N 0

0 0 LI)

I o - C)E ~ a_ (Lo Oo_

CLo __ r- ru (J I 0

()El U1

0C) Lilzo

_J~ 0 I

D D CI

I

0 0 C) 0

~+------r---------------------------+~ltil0 50 100 150 200 250 30P

I TIME (HA)

150

RGC-218-1-3 se2 DARK DECAY 40 RH PURE AIR

0 tO

1976 RUG 4 O)

f I

c

I

C)

r C)

a N-

-1-00327 plusmn 00002 hr

(I

I

0

c co

bull

C) (Jr ~

0~ --L CL CL CLI o_g

(J

(J E

0 en en

0 co

zro CJ _J~ 0

a

~ ~ ~-i------------------------------------~-- o 2 4 s a 1o 12deg I TIME (HR)

151

RGC-218-7-9 se2 LT DECRY 401 RH PURE AIR

C) 1976 AUG 5 C)

CD

C) Cl Q-0 C)

0 (J

I

-00830 plusmn 00005 hr-l

CI (J I

~ (f1

Cl Cl CD (J

I

CJ 0 (I 0

a -(D

bull 0

oshyNE -a ca

-

(J

0 en

0 (I) 0 0

C) -

W O

-r---------------------r------------------~W 0

0 2 4 6 8 10 I TIME (HAl

152

r-

i]1

l _

middot

AGC 219-1-5 i 5~2 DARK DECAY 80 RH~1

PURE AIR 1976 AUG 16-17i 0

-middot 0

f 71 l

l ii gj

I

0- U)

CJ

I i I IC)

0

f II) i

r-- l I

~-- -~ o_ Oa_I ~ j(l g - r- I ~

- middot -00689 plusmn 00004 hr-l Ibull t 7 I (Ji ~ i

~] 0 l_ zo l~~

_J~ - iIu i _E I C

i 0 0

I I~- - I(J

I

-

() Ifr

I I

fl L

CJC)

~ 10bullq er [

C)

~------------------------------r------ N

I (j 4 8 12 16 20 24deg

TIME fHRl ~ Q

153

l

RGC-220-1-2 se2 DARK DECRY ijQ RH (jZCJNE-PRCPENE

ro0 1976 AUG 19 tO0 C) t

~~ r~I I

i (

c

-l a

0f

L 0 C

(J

-- ~I ()f c 7

~

()n

l c co

~ CI 0 C) () o

(j() () -poundo

Q_ Q_

(X)(1 I

( z (middot

(J_Jo (J0

=J ~h 0~ r (I)

()() (J -I 0ePgt~

()efJ(JJ 0 0 ~ (JLI)

- ~~()

~ () lt() lt()

0 ()yen ~ o ~ a

~-----------------r----------------~----~~-G 1 2 3 4 5 6deg

I TIME (HR)

154

AGC-22O 00-05 H~UA5 502 CPRk DECAY 401 RH C2l3r~E-PRCJPENE

0 197S AlJG 19 C)

0 bull 7

I I

l CD

I

~J r ~7 Q_

0 _

~I ru- J 81 en

z -1c

tO-c c ru

t =I

+--------------------6 00

I 0 10 020 030

TIME (H AJ

a tO (I)

bull 0

ti (I)

bull ti

--- 0

(j

0 cn

C)

Ol a CJ

0 lO

155 )

AGC-220 1 75-50 HQURSSD2 DARK DECAY 401 AH D2DNE-PR()PENE

r-0 1976 AUG 19 Lf)(P (I()

I ro 0 0 J

I

0 J N bull0 0J-J

c CL CL ~

0 tO

CJ r D ~ Cf) I Cl

0 -a z

CI-1o () CI (J[J

U) oO en-I

()()

middot~ c CD () ()1)

bull ~ ()-I 0~

(J0 CJ0

co eI -t 60 2LJO 320 400 480 560 6 4ij

I - 0TJME (HA)

156

RGC-221-1-2 5~2 DARK DECAY 40 RH ADD ~2~NE 080 HRS

co 1976 AUG 20 If)

(D r 0 0

I 0 D r 0

r CJ) Cl

I

0 D

I I

Qj I

-J 71

v 00 100 200 300 4 00 500

C)

rO

0 ~ (L

CL-

TJME fHASl

157 j

-

-003009 plusmn 000008 hr-l

~

RGC-222-1-7 rr

~ 1

l If

t f

t

l [

r l_

~ ti

1c l

L

Q

1 ~

a

[J ~ I

-

IL

S02 DARK DECRY_ 401 RH SURR(jGHTE-N(jX

00 1976 AUG 24-25 30 0 r

~1 iI

0

~1I

0 (J (tl

t 0 CI-I

-- -~ ~ o_ aa_g oO -r

(Jr - (J -I OCJ

0~ en(1

01 zc --deg-I

0 C) 0co -tO

I 0

Ul

-(

~1 -

(I 0 s 10 15 20 25 300 I TI ME (HRJ

158

PG f-2--Jc_~ __ Q _ --

se2 LIGHT OECHl 30Z AH SUAr-rCRTE-NQX

CI0 w 1976 AUG 25 r-r- -bull l

71 rol gj 0

-=f I I

()()

0

r ---= ~ oa_ a

(j

0

~ (1

1- bull middot-0

() tD

al

~~ i

~I j

1 ()

0 ZtP J~

I

I

-00574 plusmn 00007 hr-l

O ~ 0

~-t-------------------------------------~~~ ~o 1 2 3 4 s 6deg

TIME (HR)

159

I

Page 9: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 10: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 11: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 12: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 13: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 14: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 15: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 16: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 17: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 18: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 19: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 20: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 21: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 22: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 23: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 24: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 25: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 26: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 27: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 28: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 29: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 30: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 31: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 32: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 33: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 34: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 35: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 36: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 37: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 38: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 39: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 40: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 41: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 42: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 43: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 44: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 45: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 46: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 47: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 48: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 49: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 50: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 51: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 52: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 53: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 54: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 55: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 56: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 57: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 58: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 59: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 60: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 61: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 62: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 63: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 64: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 65: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 66: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 67: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 68: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 69: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 70: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 71: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 72: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 73: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 74: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 75: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 76: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 77: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 78: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 79: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 80: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 81: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 82: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 83: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 84: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 85: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 86: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 87: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 88: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 89: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 90: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 91: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 92: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 93: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 94: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 95: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 96: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 97: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 98: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 99: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 100: Report: 1977-05-00 (Part 2) Chemical Consequences of Air
Page 101: Report: 1977-05-00 (Part 2) Chemical Consequences of Air