research article -bernoulli, -euler, and -genocchi...

11
Research Article On a Class of -Bernoulli, -Euler, and -Genocchi Polynomials N. I. Mahmudov and M. Momenzadeh Eastern Mediterranean University, Gazimagusa, Northern Cyprus, Turkey Correspondence should be addressed to M. Momenzadeh; [email protected] Received 20 January 2014; Revised 3 April 2014; Accepted 3 April 2014; Published 28 April 2014 Academic Editor: So๏ฌya Ostrovska Copyright ยฉ 2014 N. I. Mahmudov and M. Momenzadeh. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e main purpose of this paper is to introduce and investigate a class of -Bernoulli, -Euler, and -Genocchi polynomials. e -analogues of well-known formulas are derived. In addition, the -analogue of the Srivastava-Pintยด er theorem is obtained. Some new identities, involving -polynomials, are proved. 1. Introduction roughout this paper, we always make use of the classical de๏ฌnition of quantum concepts as follows. e -shi๏ฌ…ed factorial is de๏ฌned by (; ) 0 = 1, (; ) = โˆ’1 โˆ =0 (1 โˆ’ ) , โˆˆ N, (; ) โˆž = โˆž โˆ =0 (1 โˆ’ ) , < 1, โˆˆ C. (1) It is known that (; ) = โˆ‘ =0 [ ] (1/2)(โˆ’1) (โˆ’1) . (2) e -numbers and -factorial are de๏ฌned by [] = 1โˆ’ 1โˆ’ , ( ฬธ =1, โˆˆ C); [0] ! = 1, [] ! = [] [ โˆ’ 1] !. (3) e -polynomial coe๏ฌƒcient is de๏ฌned by [ ] = (; ) (; ) โˆ’ (; ) , ( โฉฝ , , โˆˆ N). (4) In the standard approach to the -calculus two exponen- tial functions are used, these -exponential functions and improved type -exponential function (see [1]) are de๏ฌned as follows: () = โˆž โˆ‘ =0 [] ! = โˆž โˆ =0 1 (1 โˆ’ (1 โˆ’ ) ) , 0< < 1, || < 1 1โˆ’ , () = 1/ () = โˆž โˆ‘ =0 (1/2)(โˆ’1) [] ! = โˆž โˆ =0 (1 + (1 โˆ’ ) ) , 0< < 1, โˆˆ C, E () = ( 2 ) ( 2 )= โˆž โˆ‘ =0 (โˆ’1, ) 2 [] ! = โˆž โˆ =0 (1 + (1 โˆ’ ) (/2)) (1 โˆ’ (1 โˆ’ ) (/2)) , 0 < < 1, ||< 2 1โˆ’ . (5) Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 696454, 10 pages http://dx.doi.org/10.1155/2014/696454

Upload: others

Post on 21-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Research ArticleOn a Class of ๐‘ž-Bernoulli, ๐‘ž-Euler, and ๐‘ž-Genocchi Polynomials

    N. I. Mahmudov and M. Momenzadeh

    Eastern Mediterranean University, Gazimagusa, Northern Cyprus, Turkey

    Correspondence should be addressed to M. Momenzadeh; [email protected]

    Received 20 January 2014; Revised 3 April 2014; Accepted 3 April 2014; Published 28 April 2014

    Academic Editor: Sofiya Ostrovska

    Copyright ยฉ 2014 N. I. Mahmudov and M. Momenzadeh. This is an open access article distributed under the Creative CommonsAttribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work isproperly cited.

    The main purpose of this paper is to introduce and investigate a class of ๐‘ž-Bernoulli, ๐‘ž-Euler, and ๐‘ž-Genocchi polynomials. The๐‘ž-analogues of well-known formulas are derived. In addition, the ๐‘ž-analogue of the Srivastava-Pinteฬr theorem is obtained. Somenew identities, involving ๐‘ž-polynomials, are proved.

    1. Introduction

    Throughout this paper, we always make use of the classicaldefinition of quantum concepts as follows.

    The ๐‘ž-shifted factorial is defined by

    (๐‘Ž; ๐‘ž)0= 1, (๐‘Ž; ๐‘ž)

    ๐‘›=

    ๐‘›โˆ’1

    โˆ

    ๐‘—=0

    (1 โˆ’ ๐‘ž๐‘—๐‘Ž) , ๐‘› โˆˆ N,

    (๐‘Ž; ๐‘ž)โˆž=

    โˆž

    โˆ

    ๐‘—=0

    (1 โˆ’ ๐‘ž๐‘—๐‘Ž) ,

    ๐‘ž < 1, ๐‘Ž โˆˆ C.

    (1)

    It is known that

    (๐‘Ž; ๐‘ž)๐‘›=

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    ๐‘ž(1/2)๐‘˜(๐‘˜โˆ’1)

    (โˆ’1)๐‘˜๐‘Ž๐‘˜. (2)

    The ๐‘ž-numbers and ๐‘ž-factorial are defined by

    [๐‘Ž]๐‘ž =1 โˆ’ ๐‘ž๐‘Ž

    1 โˆ’ ๐‘ž, (๐‘ž ฬธ= 1, ๐‘Ž โˆˆ C) ;

    [0]๐‘ž! = 1, [๐‘›]๐‘ž! = [๐‘›]๐‘ž[๐‘› โˆ’ 1]๐‘ž!.

    (3)

    The ๐‘ž-polynomial coefficient is defined by

    [๐‘›

    ๐‘˜]

    ๐‘ž

    =(๐‘ž; ๐‘ž)๐‘›

    (๐‘ž; ๐‘ž)๐‘›โˆ’๐‘˜(๐‘ž; ๐‘ž)๐‘˜

    , (๐‘˜ โฉฝ ๐‘›, ๐‘˜, ๐‘› โˆˆ N) . (4)

    In the standard approach to the ๐‘ž-calculus two exponen-tial functions are used, these ๐‘ž-exponential functions andimproved type ๐‘ž-exponential function (see [1]) are defined asfollows:

    ๐‘’๐‘ž(๐‘ง) =

    โˆž

    โˆ‘

    ๐‘›=0

    ๐‘ง๐‘›

    [๐‘›]๐‘ž!=

    โˆž

    โˆ

    ๐‘˜=0

    1

    (1 โˆ’ (1 โˆ’ ๐‘ž) ๐‘ž๐‘˜๐‘ง),

    0 <๐‘ž < 1, |๐‘ง| <

    11 โˆ’ ๐‘ž

    ,

    ๐ธ๐‘ž (๐‘ง) = ๐‘’1/๐‘ž (๐‘ง) =

    โˆž

    โˆ‘

    ๐‘›=0

    ๐‘ž(1/2)๐‘›(๐‘›โˆ’1)

    ๐‘ง๐‘›

    [๐‘›]๐‘ž!

    =

    โˆž

    โˆ

    ๐‘˜=0

    (1 + (1 โˆ’ ๐‘ž) ๐‘ž๐‘˜๐‘ง) , 0 <

    ๐‘ž < 1, ๐‘ง โˆˆ C,

    E๐‘ž(๐‘ง) = ๐‘’

    ๐‘ž(๐‘ง

    2)๐ธ๐‘ž(๐‘ง

    2) =

    โˆž

    โˆ‘

    ๐‘›=0

    (โˆ’1, ๐‘ž)๐‘›

    2๐‘›

    ๐‘ง๐‘›

    [๐‘›]๐‘ž!

    =

    โˆž

    โˆ

    ๐‘˜=0

    (1 + (1 โˆ’ ๐‘ž) ๐‘ž๐‘˜(๐‘ง/2))

    (1 โˆ’ (1 โˆ’ ๐‘ž) ๐‘ž๐‘˜ (๐‘ง/2)), 0 < ๐‘ž < 1, |๐‘ง|<

    2

    1 โˆ’ ๐‘ž.

    (5)

    Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2014, Article ID 696454, 10 pageshttp://dx.doi.org/10.1155/2014/696454

  • 2 Abstract and Applied Analysis

    The form of improved type of ๐‘ž-exponential function E๐‘ž(๐‘ง)

    motivated us to define a new ๐‘ž-addition and ๐‘ž-subtraction as

    (๐‘ฅ โŠ•๐‘ž๐‘ฆ)๐‘›

    :=

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘˜(โˆ’1, ๐‘ž)

    ๐‘›โˆ’๐‘˜

    2๐‘›๐‘ฅ๐‘˜๐‘ฆ๐‘›โˆ’๐‘˜,

    ๐‘› = 0, 1, 2, . . . ,

    (๐‘ฅโŠ–๐‘ž๐‘ฆ)๐‘›

    :=

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘˜(โˆ’1, ๐‘ž)

    ๐‘›โˆ’๐‘˜

    2๐‘›๐‘ฅ๐‘˜(โˆ’๐‘ฆ)๐‘›โˆ’๐‘˜,

    ๐‘› = 0, 1, 2, . . . .

    (6)

    It follows that

    E๐‘ž (๐‘ก๐‘ฅ)E๐‘ž (๐‘ก๐‘ฆ) =

    โˆž

    โˆ‘

    ๐‘›=0

    (๐‘ฅ โŠ•๐‘ž๐‘ฆ)๐‘› ๐‘ก๐‘›

    [๐‘›]๐‘ž!. (7)

    The Bernoulli numbers {๐ต๐‘š}๐‘šโ‰ฅ0

    are rational numbers in asequence defined by the binomial recursion formula:

    ๐‘š

    โˆ‘

    ๐‘˜=0

    (๐‘š

    ๐‘˜)๐ต๐‘˜โˆ’ ๐ต๐‘š= {

    1, ๐‘š = 1,

    0, ๐‘š > 1,(8)

    or equivalently, the generating function

    โˆž

    โˆ‘

    ๐‘˜=0

    ๐ต๐‘˜

    ๐‘ก๐‘˜

    ๐‘˜!=

    ๐‘ก

    ๐‘’๐‘ก โˆ’ 1. (9)

    ๐‘ž-Analogues of the Bernoulli numbers were first studiedby Carlitz [2] in the middle of the last century when heintroduced a new sequence {๐›ฝ

    ๐‘š}๐‘šโฉพ0

    :

    ๐‘š

    โˆ‘

    ๐‘˜=0

    (๐‘š

    ๐‘˜)๐›ฝ๐‘˜๐‘ž๐‘˜+1

    โˆ’ ๐›ฝ๐‘š= {

    1, ๐‘š = 1,

    0, ๐‘š > 1.(10)

    Here and in the remainder of the paper, for the parameter ๐‘žwe make the assumption that |๐‘ž| < 1. Clearly we recover (8)if we let ๐‘ž โ†’ 1 in (10). The ๐‘ž-binomial formula is known as

    (1 โˆ’ ๐‘Ž)๐‘›

    ๐‘ž= (๐‘Ž; ๐‘ž)

    ๐‘›=

    ๐‘›โˆ’1

    โˆ

    ๐‘—=0

    (1 โˆ’ ๐‘ž๐‘—๐‘Ž)

    =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    ๐‘ž(1/2)๐‘˜(๐‘˜โˆ’1)

    (โˆ’1)๐‘˜๐‘Ž๐‘˜.

    (11)

    The above ๐‘ž-standard notation can be found in [3].Carlitz has introduced the ๐‘ž-Bernoulli numbers and poly-

    nomials in [2]. Srivastava and Pinteฬr proved some relationsand theorems between the Bernoulli polynomials and Eulerpolynomials in [4]. They also gave some generalizationsof these polynomials. In [4โ€“16], the authors investigatedsome properties of the ๐‘ž-Euler polynomials and ๐‘ž-Genocchipolynomials. They gave some recurrence relations. In [17],Cenkci et al. gave the ๐‘ž-extension of Genocchi numbers ina different manner. In [18], Kim gave a new concept for the๐‘ž-Genocchi numbers and polynomials. In [19], Simsek et al.investigated the ๐‘ž-Genocchi zeta function and ๐‘™-function by

    using generating functions andMellin transformation.Thereare numerous recent studies on this subject by, among manyother authors, Cigler [20], Cenkci et al. [17, 21], Choi et al.[22], Cheon [23], Luo and Srivastava [8โ€“10], Srivastava et al.[4, 24], Nalci and Pashaev [25] Gaboury and Kurt, [26], Kimet al. [27], and Kurt [28].

    We first give the definitions of the ๐‘ž-numbers and ๐‘ž-polynomials. It should be mentioned that the definition of ๐‘ž-Bernoulli numbers in Definition 1 can be found in [25].

    Definition 1. Let ๐‘ž โˆˆ C, 0 < |๐‘ž| < 1. The ๐‘ž-Bernoulli numbersb๐‘›,๐‘ž

    and polynomials B๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ) are defined by means of the

    generating functions:

    Bฬ‚ (๐‘ก) :=๐‘ก๐‘’๐‘ž(โˆ’๐‘ก/2)

    ๐‘’๐‘ž (๐‘ก/2) โˆ’ ๐‘’๐‘ž (โˆ’๐‘ก/2)

    =๐‘ก

    E๐‘ž (๐‘ก) โˆ’ 1

    =

    โˆž

    โˆ‘

    ๐‘›=0

    b๐‘›,๐‘ž

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!, |๐‘ก| < 2๐œ‹,

    ๐‘ก

    E๐‘ž (๐‘ก) โˆ’ 1

    E๐‘ž(๐‘ก๐‘ฅ)E

    ๐‘ž(๐‘ก๐‘ฆ)

    =

    โˆž

    โˆ‘

    ๐‘›=0

    B๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!, |๐‘ก| < 2๐œ‹.

    (12)

    Definition 2. Let ๐‘ž โˆˆ C, 0 < |๐‘ž| < 1. The ๐‘ž-Euler numberse๐‘›,๐‘ž

    and polynomials E๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ) are defined by means of the

    generating functions:

    Eฬ‚ (๐‘ก) :=2๐‘’๐‘ž(โˆ’๐‘ก/2)

    ๐‘’๐‘ž (๐‘ก/2) + ๐‘’๐‘ž (โˆ’๐‘ก/2)

    =2

    E๐‘ž (๐‘ก) + 1

    =

    โˆž

    โˆ‘

    ๐‘›=0

    e๐‘›,๐‘ž

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!, |๐‘ก| < ๐œ‹,

    2

    E๐‘ž(๐‘ก) + 1

    E๐‘ž(๐‘ก๐‘ฅ)E

    ๐‘ž(๐‘ก๐‘ฆ)

    =

    โˆž

    โˆ‘

    ๐‘›=0

    E๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!, |๐‘ก| < ๐œ‹.

    (13)

    Definition 3. Let ๐‘ž โˆˆ C, 0 < |๐‘ž| < 1.The ๐‘ž-Genocchi numbersg๐‘›,๐‘ž

    and polynomials G๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ) are defined by means of the

    generating functions:

    Gฬ‚ (๐‘ก) :=2๐‘ก๐‘’๐‘ž(โˆ’๐‘ก/2)

    ๐‘’๐‘ž(๐‘ก/2) + ๐‘’

    ๐‘ž(โˆ’๐‘ก/2)

    =2๐‘ก

    E๐‘ž(๐‘ก) + 1

    =

    โˆž

    โˆ‘

    ๐‘›=0

    g๐‘›,๐‘ž

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!, |๐‘ก| < ๐œ‹,

    2๐‘ก

    E๐‘ž(๐‘ก) + 1

    E๐‘ž (๐‘ก๐‘ฅ)E๐‘ž (๐‘ก๐‘ฆ)

    =

    โˆž

    โˆ‘

    ๐‘›=0

    G๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!, |๐‘ก| < ๐œ‹.

    (14)

  • Abstract and Applied Analysis 3

    Note that Cigler [20] defined ๐‘ž-Genocchi numbers as

    ๐‘ก๐‘’๐‘ž (๐‘ก) + ๐‘’๐‘ž (โˆ’๐‘ก)

    ๐‘’๐‘ž(๐‘ก) + ๐‘’

    ๐‘ž(โˆ’๐‘ก)

    =

    โˆž

    โˆ‘

    ๐‘›=0

    ๐‘”2๐‘›,๐‘ž

    (โˆ’1)๐‘›โˆ’1(โˆ’๐‘ž; ๐‘ž)

    2๐‘›โˆ’1๐‘ก2๐‘›

    [2๐‘›]๐‘ž!. (15)

    Then comparing g๐‘›,๐‘ž

    with ๐‘”๐‘›,๐‘ž, we see that

    (โˆ’1)๐‘›โˆ’122๐‘›+1

    g2๐‘›+2,๐‘ž

    = (โˆ’๐‘ž; ๐‘ž)2๐‘›+1

    ๐‘”2๐‘›+2,๐‘ž

    . (16)

    Definition 4. Let ๐‘ž โˆˆ C, 0 < |๐‘ž| < 1. The ๐‘ž-tangent numbersT๐‘›,๐‘ž

    are defined by means of the generating functions:

    tanh๐‘ž๐‘ก = โˆ’๐‘– tan

    ๐‘ž (๐‘–๐‘ก) =๐‘’๐‘ž (๐‘ก) โˆ’ ๐‘’๐‘ž (โˆ’๐‘ก)

    ๐‘’๐‘ž(๐‘ก) + ๐‘’

    ๐‘ž(โˆ’๐‘ก)

    =E๐‘ž (2๐‘ก) โˆ’ 1

    E๐‘ž(2๐‘ก) + 1

    =

    โˆž

    โˆ‘

    ๐‘›=1

    T2๐‘›+1,๐‘ž

    (โˆ’1)๐‘˜๐‘ก2๐‘›+1

    [2๐‘› + 1]๐‘ž!.

    (17)

    It is obvious that, by letting ๐‘ž tend to 1 from the left side,we lead to the classic definition of these polynomials:

    b๐‘›,๐‘ž:= B๐‘›,๐‘ž (0) , lim

    ๐‘žโ†’1โˆ’

    B๐‘›,๐‘ž (๐‘ฅ) = ๐ต๐‘› (๐‘ฅ) ,

    lim๐‘žโ†’1

    โˆ’

    B๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ) = ๐ต

    ๐‘›(๐‘ฅ + ๐‘ฆ) , lim

    ๐‘žโ†’1โˆ’

    b๐‘›,๐‘ž= ๐ต๐‘›,

    e๐‘›,๐‘ž:= E๐‘›,๐‘ž (0) , lim

    ๐‘žโ†’1โˆ’

    E๐‘›,๐‘ž (๐‘ฅ) = ๐ธ๐‘› (๐‘ฅ) ,

    lim๐‘žโ†’1

    โˆ’

    E๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ) = ๐ธ

    ๐‘›(๐‘ฅ + ๐‘ฆ) , lim

    ๐‘žโ†’1โˆ’

    e๐‘›,๐‘ž= ๐ธ๐‘›,

    g๐‘›,๐‘ž:= G๐‘›,๐‘ž(0) , lim

    ๐‘žโ†’1โˆ’

    G๐‘›,๐‘ž(๐‘ฅ) = ๐บ

    ๐‘›(๐‘ฅ) ,

    lim๐‘žโ†’1

    โˆ’

    G๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ) = ๐บ

    ๐‘›(๐‘ฅ + ๐‘ฆ) lim

    ๐‘žโ†’1โˆ’

    g๐‘›,๐‘ž= ๐บ๐‘›.

    (18)

    Here ๐ต๐‘›(๐‘ฅ), ๐ธ

    ๐‘›(๐‘ฅ), and ๐บ

    ๐‘›(๐‘ฅ) denote the classical Bernoulli,

    Euler, and Genocchi polynomials, respectively, which aredefined by

    ๐‘ก

    ๐‘’๐‘ก โˆ’ 1๐‘’๐‘ก๐‘ฅ=

    โˆž

    โˆ‘

    ๐‘›=0

    ๐ต๐‘›(๐‘ฅ)

    ๐‘ก๐‘›

    ๐‘›!,

    2

    ๐‘’๐‘ก + 1๐‘’๐‘ก๐‘ฅ=

    โˆž

    โˆ‘

    ๐‘›=0

    ๐ธ๐‘›(๐‘ฅ)

    ๐‘ก๐‘›

    ๐‘›!,

    2๐‘ก

    ๐‘’๐‘ก + 1๐‘’๐‘ก๐‘ฅ=

    โˆž

    โˆ‘

    ๐‘›=0

    ๐บ๐‘› (๐‘ฅ)

    ๐‘ก๐‘›

    ๐‘›!.

    (19)

    The aim of the present paper is to obtain some resultsfor the above newly defined ๐‘ž-polynomials. It should bementioned that ๐‘ž-Bernoulli and ๐‘ž-Euler polynomials in ourdefinitions are polynomials of ๐‘ฅ and ๐‘ฆ and when ๐‘ฆ = 0,they are polynomials of ๐‘ฅ. First advantage of this approach isthat for ๐‘ž โ†’ 1โˆ’, B

    ๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ) (E

    ๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ), G

    ๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)) becomes

    the classical BernoulliB๐‘›(๐‘ฅ + ๐‘ฆ) (EulerE

    ๐‘›(๐‘ฅ + ๐‘ฆ), Genocchi

    G๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)) polynomial and wemay obtain the ๐‘ž-analogues of

    well-known results, for example, Srivastava and Pinteฬr [11],Cheon [23], and so forth. Second advantage is that, similarto the classical case, odd numbered terms of the Bernoullinumbers b

    ๐‘˜,๐‘žand the Genocchi numbers g

    ๐‘˜,๐‘žare zero, and

    even numbered terms of the Euler numbers e๐‘›,๐‘ž

    are zero.

    2. Preliminary Results

    In this section we will provide some basic formulae for the๐‘ž-Bernoulli, ๐‘ž-Euler, and ๐‘ž-Genocchi numbers and polyno-mials in order to obtain the main results of this paper in thenext section.

    Lemma 5. The ๐‘ž-Bernoulli numbers b๐‘›,๐‘ž

    satisfy the following๐‘ž-binomial recurrence:

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜b๐‘˜,๐‘žโˆ’ b๐‘›,๐‘ž= {

    1, ๐‘› = 1,

    0, ๐‘› > 1.(20)

    Proof. By a simple multiplication of (8) we see that

    Bฬ‚ (๐‘ก)E๐‘ž(๐‘ก) = ๐‘ก + Bฬ‚ (๐‘ก) . (21)

    Soโˆž

    โˆ‘

    ๐‘›=0

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜b๐‘˜,๐‘ž

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!= ๐‘ก +

    โˆž

    โˆ‘

    ๐‘›=0

    b๐‘›,๐‘ž

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!. (22)

    The statement follows by comparing ๐‘ก๐‘š coefficients.

    We use this formula to calculate the first few b๐‘˜,๐‘ž:

    b0,๐‘ž= 1,

    b1,๐‘ž= โˆ’

    1

    2,

    b2,๐‘ž=1

    4

    ๐‘ž (๐‘ž + 1)

    ๐‘ž2 + ๐‘ž + 1=๐‘ž[2]๐‘ž

    4[3]๐‘ž

    ,

    b3,๐‘ž= 0.

    (23)

    The similar property can be proved for ๐‘ž-Euler numbers

    ๐‘š

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜e๐‘˜,๐‘ž+ e๐‘š,๐‘ž

    = {2, ๐‘š = 0,

    0, ๐‘š > 0.(24)

    and ๐‘ž-Genocchi numbers

    ๐‘š

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜g๐‘˜,๐‘ž+ g๐‘š,๐‘ž

    = {2, ๐‘š = 1,

    0, ๐‘š > 1.(25)

    Using the above recurrence formulae we calculate the firstfew e๐‘›,๐‘ž

    and g๐‘›,๐‘ž

    terms as well:

    e0,๐‘ž= 1, g

    0,๐‘ž= 0,

    e1,๐‘ž= โˆ’

    1

    2, g

    1,๐‘ž= 1,

    e2,๐‘ž= 0, g

    2,๐‘ž= โˆ’

    [2]๐‘ž

    2= โˆ’

    ๐‘ž + 1

    2,

    e3,๐‘ž=[3]๐‘ž[2]๐‘ž โˆ’ [4]๐‘ž

    8=๐‘ž (1 + ๐‘ž)

    8, g

    3,๐‘ž= 0.

    (26)

  • 4 Abstract and Applied Analysis

    Remark 6. The first advantage of the new ๐‘ž-numbersb๐‘˜,๐‘ž, e๐‘˜,๐‘ž, and g

    ๐‘˜,๐‘žis that similar to classical case odd num-

    bered terms of the Bernoulli numbers b๐‘˜,๐‘ž

    and the Genocchinumbers g

    ๐‘˜,๐‘žare zero, and even numbered terms of the Euler

    numbers e๐‘›,๐‘ž

    are zero.

    Next lemma gives the relationship between ๐‘ž-Genocchinumbers and ๐‘ž-Tangent numbers.

    Lemma 7. For any ๐‘› โˆˆ N, we have

    T2๐‘›+1,๐‘ž

    = g2๐‘›+2,๐‘ž

    (โˆ’1)๐‘˜โˆ’122๐‘›+1

    [2๐‘› + 2]๐‘ž

    . (27)

    Proof. First we recall the definition of ๐‘ž-trigonometric func-tions:

    cos๐‘ž๐‘ก =

    ๐‘’๐‘ž(๐‘–๐‘ก) + ๐‘’

    ๐‘ž(โˆ’๐‘–๐‘ก)

    2, sin

    ๐‘ž๐‘ก =

    ๐‘’๐‘ž(๐‘–๐‘ก) โˆ’ ๐‘’

    ๐‘ž(โˆ’๐‘–๐‘ก)

    2๐‘–,

    ๐‘– tan๐‘ž๐‘ก =

    ๐‘’๐‘ž(๐‘–๐‘ก) โˆ’ ๐‘’

    ๐‘ž(โˆ’๐‘–๐‘ก)

    ๐‘’๐‘ž (๐‘–๐‘ก) + ๐‘’๐‘ž (โˆ’๐‘–๐‘ก)

    , cot๐‘ž๐‘ก = ๐‘–

    ๐‘’๐‘ž(๐‘–๐‘ก) + ๐‘’

    ๐‘ž(โˆ’๐‘–๐‘ก)

    ๐‘’๐‘ž (๐‘–๐‘ก) โˆ’ ๐‘’๐‘ž (โˆ’๐‘–๐‘ก)

    .

    (28)

    Now by choosing ๐‘ง = 2๐‘–๐‘ก in Bฬ‚(๐‘ง), we get

    Bฬ‚ (2๐‘–๐‘ก) =2๐‘–๐‘ก

    E๐‘ž(2๐‘–๐‘ก) โˆ’ 1

    =๐‘ก๐‘’๐‘ž(โˆ’๐‘–๐‘ก)

    sin๐‘ž๐‘ก

    =

    โˆž

    โˆ‘

    ๐‘›=0

    b๐‘›,๐‘ž

    (2๐‘–๐‘ก)๐‘›

    [๐‘›]๐‘ž!. (29)

    It follows that

    Bฬ‚ (2๐‘–๐‘ก) =๐‘ก๐‘’๐‘ž(โˆ’๐‘–๐‘ก)

    sin๐‘ž๐‘ก

    =๐‘ก

    sin๐‘ž๐‘ก(cos๐‘ž๐‘ก โˆ’ ๐‘– sin

    ๐‘ž๐‘ก) = ๐‘ก cot

    ๐‘ž๐‘ก โˆ’ ๐‘–๐‘ก

    = b0,๐‘ž+ 2๐‘–๐‘กb

    1,๐‘ž+

    โˆž

    โˆ‘

    ๐‘›=2

    b๐‘›,๐‘ž

    (2๐‘–๐‘ก)๐‘›

    [๐‘›]๐‘ž!

    = 1 โˆ’ ๐‘–๐‘ก +

    โˆž

    โˆ‘

    ๐‘›=2

    b๐‘›,๐‘ž

    (2๐‘–๐‘ก)๐‘›

    [๐‘›]๐‘ž!.

    (30)

    Since the function ๐‘ก cot๐‘ž๐‘ก is even in the above sum odd

    coefficients b2๐‘˜+1,๐‘ž

    , ๐‘˜ = 1, 2, . . ., are zero, and we get

    ๐‘ก cot๐‘ž๐‘ก = 1 +

    โˆž

    โˆ‘

    ๐‘›=2

    b๐‘›,๐‘ž

    (2๐‘–๐‘ก)๐‘›

    [๐‘›]๐‘ž!= 1 +

    โˆž

    โˆ‘

    ๐‘›=1

    b๐‘›,๐‘ž

    (2๐‘–๐‘ก)2๐‘›

    [2๐‘›]๐‘ž!. (31)

    By choosing ๐‘ง = 2๐‘–๐‘ก in Gฬ‚(๐‘ง), we get

    Gฬ‚ (2๐‘–๐‘ก) =4๐‘–๐‘ก

    E๐‘ž(2๐‘–๐‘ก) + 1

    =2๐‘–๐‘ก๐‘’๐‘ž (โˆ’๐‘–๐‘ก)

    cos๐‘ž๐‘ก

    =

    โˆž

    โˆ‘

    ๐‘›=0

    g๐‘›,๐‘ž

    (2๐‘–๐‘ก)๐‘›

    [๐‘›]๐‘ž!,

    Gฬ‚ (2๐‘–๐‘ก) =4๐‘–๐‘ก

    E๐‘ž (2๐‘–๐‘ก) + 1

    =2๐‘–๐‘ก๐‘’๐‘ž (โˆ’๐‘–๐‘ก)

    cos๐‘ž๐‘ก

    =2๐‘–๐‘ก

    cos๐‘ž๐‘ก(cos๐‘ž๐‘ก โˆ’ ๐‘– sin

    ๐‘ž๐‘ก)

    = 2๐‘–๐‘ก + 2๐‘ก tan๐‘ž๐‘ก = g0,๐‘ž+ 2๐‘–๐‘กg

    1,๐‘ž+

    โˆž

    โˆ‘

    ๐‘›=2

    g๐‘›,๐‘ž

    (2๐‘–๐‘ก)๐‘›

    [๐‘›]๐‘ž!

    = 2๐‘–๐‘ก +

    โˆž

    โˆ‘

    ๐‘›=2

    g๐‘›,๐‘ž

    (2๐‘–๐‘ก)๐‘›

    [๐‘›]๐‘ž!.

    (32)

    It follows that

    2๐‘ก tan๐‘ž๐‘ก =

    โˆž

    โˆ‘

    ๐‘›=1

    g2๐‘›,๐‘ž

    (2๐‘–๐‘ก)2๐‘›

    [2๐‘›]๐‘ž!,

    tan๐‘ž๐‘ก =

    โˆž

    โˆ‘

    ๐‘›=1

    g2๐‘›,๐‘ž

    (โˆ’1)๐‘›(2๐‘ก)2๐‘›โˆ’1

    [2๐‘›]๐‘ž!,

    tanh๐‘ž๐‘ก = โˆ’๐‘– tan

    ๐‘ž(๐‘–๐‘ก) = โˆ’๐‘–

    โˆž

    โˆ‘

    ๐‘›=1

    g2๐‘›,๐‘ž

    (โˆ’1)๐‘›(2๐‘–๐‘ก)2๐‘›โˆ’1

    [2๐‘›]๐‘ž!

    = โˆ’

    โˆž

    โˆ‘

    ๐‘›=1

    g2๐‘›,๐‘ž

    (2๐‘ก)2๐‘›โˆ’1

    [2๐‘›]๐‘ž!= โˆ’

    โˆž

    โˆ‘

    ๐‘›=1

    g2๐‘›+2,๐‘ž

    (2๐‘ก)2๐‘›+1

    [2๐‘› + 2]๐‘ž!,

    (33)

    Thus

    tanh๐‘ž๐‘ก = โˆ’๐‘–tan

    ๐‘ž (๐‘–๐‘ก) =๐‘’๐‘ž(๐‘ก) โˆ’ ๐‘’

    ๐‘ž(โˆ’๐‘ก)

    ๐‘’๐‘ž(๐‘ก) + ๐‘’

    ๐‘ž(โˆ’๐‘ก)

    =E๐‘ž(2๐‘ก) โˆ’ 1

    E๐‘ž(2๐‘ก) + 1

    =

    โˆž

    โˆ‘

    ๐‘›=1

    T2๐‘›+1,๐‘ž

    (โˆ’1)๐‘˜๐‘ก2๐‘›+1

    [2๐‘› + 1]๐‘ž!,

    T2๐‘›+1,๐‘ž

    = g2๐‘›+2,๐‘ž

    (โˆ’1)๐‘˜โˆ’122๐‘›+1

    [2๐‘› + 2]๐‘ž

    .

    (34)

    The following result is a ๐‘ž-analogue of the additiontheorem, for the classical Bernoulli, Euler, and Genocchipolynomials.

    Lemma 8 (addition theorems). For all ๐‘ฅ, ๐‘ฆ โˆˆ C we have

    B๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ) =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    b๐‘˜,๐‘ž(๐‘ฅ โŠ•๐‘ž๐‘ฆ)๐‘›โˆ’๐‘˜

    ,

    B๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ) =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜B๐‘˜,๐‘ž (๐‘ฅ) ๐‘ฆ

    ๐‘›โˆ’๐‘˜,

  • Abstract and Applied Analysis 5

    E๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ) =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    e๐‘˜,๐‘ž(๐‘ฅ โŠ•๐‘ž๐‘ฆ)๐‘›โˆ’๐‘˜

    ,

    E๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ) =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜E๐‘˜,๐‘ž(๐‘ฅ) ๐‘ฆ๐‘›โˆ’๐‘˜,

    G๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ) =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    g๐‘˜,๐‘ž(๐‘ฅ โŠ•๐‘ž๐‘ฆ)๐‘›โˆ’๐‘˜

    ,

    G๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ) =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜G๐‘˜,๐‘ž(๐‘ฅ) ๐‘ฆ๐‘›โˆ’๐‘˜.

    (35)

    Proof. We prove only the first formula. It is a consequence ofthe following identity:

    โˆž

    โˆ‘

    ๐‘›=0

    B๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!=

    ๐‘ก

    E๐‘ž(๐‘ก) โˆ’ 1

    E๐‘ž(๐‘ก๐‘ฅ)E

    ๐‘ž(๐‘ก๐‘ฆ)

    =

    โˆž

    โˆ‘

    ๐‘›=0

    b๐‘›,๐‘ž

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    โˆž

    โˆ‘

    ๐‘›=0

    (๐‘ฅ โŠ•๐‘ž๐‘ฆ)๐‘› ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    =

    โˆž

    โˆ‘

    ๐‘›=0

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    b๐‘˜,๐‘ž(๐‘ฅ โŠ•๐‘ž๐‘ฆ)๐‘›โˆ’๐‘˜ ๐‘ก๐‘›

    [๐‘›]๐‘ž!.

    (36)

    In particular, setting ๐‘ฆ = 0 in (35), we get the followingformulae for ๐‘ž-Bernoulli, ๐‘ž-Euler and ๐‘ž-Genocchi polynomi-als, respectively:

    B๐‘›,๐‘ž(๐‘ฅ) =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜b๐‘˜,๐‘ž๐‘ฅ๐‘›โˆ’๐‘˜,

    E๐‘›,๐‘ž(๐‘ฅ) =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜e๐‘˜,๐‘ž๐‘ฅ๐‘›โˆ’๐‘˜,

    (37)

    G๐‘›,๐‘ž (๐‘ฅ) =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜g๐‘˜,๐‘ž๐‘ฅ๐‘›โˆ’๐‘˜. (38)

    Setting ๐‘ฆ = 1 in (35), we get

    B๐‘›,๐‘ž(๐‘ฅ, 1) =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜B๐‘˜,๐‘ž(๐‘ฅ) ,

    E๐‘›,๐‘ž(๐‘ฅ, 1) =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜E๐‘˜,๐‘ž(๐‘ฅ) ,

    G๐‘›,๐‘ž(๐‘ฅ, 1) =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜G๐‘˜,๐‘ž(๐‘ฅ) .

    (39)

    Clearly (39) is ๐‘ž-analogues of

    ๐ต๐‘› (๐‘ฅ + 1) =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    (๐‘›

    ๐‘˜)๐ต๐‘˜ (๐‘ฅ) ,

    ๐ธ๐‘›(๐‘ฅ + 1) =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    (๐‘›

    ๐‘˜)๐ธ๐‘˜(๐‘ฅ) ,

    ๐บ๐‘›(๐‘ฅ + 1) =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    (๐‘›

    ๐‘˜)๐บ๐‘˜(๐‘ฅ) ,

    (40)

    respectively.

    Lemma 9. The odd coefficients of the ๐‘ž-Bernoulli numbers,except the first one, are zero. That means b

    ๐‘›,๐‘ž= 0 where

    ๐‘› = 2๐‘Ÿ + 1 (๐‘Ÿ โˆˆ N).

    Proof. It follows from the fact that the function

    ๐‘“ (๐‘ก) =

    โˆž

    โˆ‘

    ๐‘›=0

    b๐‘›,๐‘ž

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!โˆ’ b1,๐‘ž๐‘ก

    =๐‘ก

    E๐‘ž (๐‘ก) โˆ’ 1

    +๐‘ก

    2=๐‘ก

    2(E๐‘ž (๐‘ก) + 1

    E๐‘ž (๐‘ก) โˆ’ 1

    ) ,

    (41)

    By using ๐‘ž-derivative we obtain the next lemma.

    Lemma 10. One has

    ๐ท๐‘ž,๐‘ฅB๐‘›,๐‘ž (๐‘ฅ) = [๐‘›]๐‘ž

    B๐‘›โˆ’1,๐‘ž (๐‘ฅ) +B๐‘›โˆ’1,๐‘ž (๐‘ž๐‘ฅ)

    2,

    ๐ท๐‘ž,๐‘ฅE๐‘›,๐‘ž(๐‘ฅ) = [๐‘›]๐‘ž

    E๐‘›โˆ’1,๐‘ž

    (๐‘ฅ) + E๐‘›โˆ’1,๐‘ž

    (๐‘ž๐‘ฅ)

    2,

    ๐ท๐‘ž,๐‘ฅG๐‘›,๐‘ž (๐‘ฅ) = [๐‘›]๐‘ž

    G๐‘›โˆ’1,๐‘ž

    (๐‘ฅ) +G๐‘›โˆ’1,๐‘ž

    (๐‘ž๐‘ฅ)

    2.

    (42)

    Lemma 11 (difference equations). One has

    B๐‘›,๐‘ž(๐‘ฅ, 1) โˆ’B

    ๐‘›,๐‘ž(๐‘ฅ) =

    (โˆ’1; ๐‘ž)๐‘›โˆ’1

    2๐‘›โˆ’1[๐‘›]๐‘ž๐‘ฅ๐‘›โˆ’1, ๐‘› โ‰ฅ 1, (43)

    E๐‘›,๐‘ž (๐‘ฅ, 1) + E๐‘›,๐‘ž (๐‘ฅ) = 2

    (โˆ’1; ๐‘ž)๐‘›

    2๐‘›๐‘ฅ๐‘›, ๐‘› โ‰ฅ 0, (44)

    G๐‘›,๐‘ž(๐‘ฅ, 1) +G

    ๐‘›,๐‘ž(๐‘ฅ) = 2

    (โˆ’1; ๐‘ž)๐‘›โˆ’1

    2๐‘›โˆ’1[๐‘›]๐‘ž๐‘ฅ๐‘›โˆ’1, ๐‘› โ‰ฅ 1. (45)

    Proof. Weprove the identity for the ๐‘ž-Bernoulli polynomials.From the identity

    ๐‘กE๐‘ž(๐‘ก)

    E๐‘ž(๐‘ก) โˆ’ 1

    E๐‘ž (๐‘ก๐‘ฅ) = ๐‘กE๐‘ž (๐‘ก๐‘ฅ) +

    ๐‘ก

    E๐‘ž(๐‘ก) โˆ’ 1

    E๐‘ž (๐‘ก๐‘ฅ) , (46)

    it follows thatโˆž

    โˆ‘

    ๐‘›=0

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜B๐‘˜,๐‘ž (๐‘ฅ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    =

    โˆž

    โˆ‘

    ๐‘›=0

    (โˆ’1, ๐‘ž)๐‘›

    2๐‘›๐‘ฅ๐‘› ๐‘ก๐‘›+1

    [๐‘›]๐‘ž!+

    โˆž

    โˆ‘

    ๐‘›=0

    B๐‘›,๐‘ž(๐‘ฅ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!.

    (47)

  • 6 Abstract and Applied Analysis

    From (43) and (37), (44) and (38), we obtain the followingformulae.

    Lemma 12. One has

    ๐‘ฅ๐‘›=

    2๐‘›

    (โˆ’1; ๐‘ž)๐‘›[๐‘›]๐‘ž

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘› + 1

    ๐‘˜]

    ๐‘ž

    (โˆ’1; ๐‘ž)๐‘›+1โˆ’๐‘˜

    2๐‘›+1โˆ’๐‘˜B๐‘˜,๐‘ž(๐‘ฅ) ,

    ๐‘ฅ๐‘›=

    2๐‘›โˆ’1

    (โˆ’1; ๐‘ž)๐‘›

    (

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1; ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜E๐‘˜,๐‘ž (๐‘ฅ) + E๐‘›,๐‘ž (๐‘ฅ)) ,

    ๐‘ฅ๐‘›=

    2๐‘›โˆ’1

    (โˆ’1; ๐‘ž)๐‘›[๐‘› + 1]๐‘ž

    ร— (

    ๐‘›+1

    โˆ‘

    ๐‘˜=0

    [๐‘› + 1

    ๐‘˜]

    ๐‘ž

    (โˆ’1; ๐‘ž)๐‘›+1โˆ’๐‘˜

    2๐‘›+1โˆ’๐‘˜G๐‘˜,๐‘ž(๐‘ฅ) +G

    ๐‘›+1,๐‘ž(๐‘ฅ)) .

    (48)

    The above formulae are ๐‘ž-analogues of the followingfamiliar expansions:

    ๐‘ฅ๐‘›=

    1

    ๐‘› + 1

    ๐‘›

    โˆ‘

    ๐‘˜=0

    (๐‘› + 1

    ๐‘˜)๐ต๐‘˜(๐‘ฅ) ,

    ๐‘ฅ๐‘›=1

    2[

    ๐‘›

    โˆ‘

    ๐‘˜=0

    (๐‘›

    ๐‘˜)๐ธ๐‘˜ (๐‘ฅ) + ๐ธ๐‘› (๐‘ฅ)] ,

    ๐‘ฅ๐‘›=

    1

    2 (๐‘› + 1)[

    ๐‘›+1

    โˆ‘

    ๐‘˜=0

    (๐‘› + 1

    ๐‘˜)๐ธ๐‘˜(๐‘ฅ) + ๐ธ

    ๐‘›+1(๐‘ฅ)] ,

    (49)

    respectively.

    Lemma 13. The following identities hold true:

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜B๐‘˜,๐‘ž(๐‘ฅ, ๐‘ฆ) โˆ’B

    ๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    = [๐‘›]๐‘ž(๐‘ฅ โŠ•๐‘ž ๐‘ฆ)๐‘›โˆ’1

    ,

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜E๐‘˜,๐‘ž(๐‘ฅ, ๐‘ฆ) + E

    ๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ) = 2(๐‘ฅ โŠ•

    ๐‘ž๐‘ฆ)๐‘›

    ,

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜G๐‘˜,๐‘ž(๐‘ฅ, ๐‘ฆ) +G

    ๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    = 2[๐‘›]๐‘ž(๐‘ฅ โŠ•๐‘ž ๐‘ฆ)๐‘›โˆ’1

    .

    (50)

    Proof. We prove the identity for the ๐‘ž-Bernoulli polynomi-als. From the identity

    ๐‘กE๐‘ž(๐‘ก)

    E๐‘ž(๐‘ก) โˆ’ 1

    E๐‘ž (๐‘ก๐‘ฅ)E๐‘ž (๐‘ก๐‘ฆ)

    = ๐‘กE๐‘ž(๐‘ก๐‘ฅ)E

    ๐‘ž(๐‘ก๐‘ฆ) +

    ๐‘ก

    E๐‘ž (๐‘ก) โˆ’ 1

    E๐‘ž(๐‘ก๐‘ฅ)E

    ๐‘ž(๐‘ก๐‘ฆ) ,

    (51)

    it follows thatโˆž

    โˆ‘

    ๐‘›=0

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜B๐‘˜,๐‘ž(๐‘ฅ, ๐‘ฆ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    =

    โˆž

    โˆ‘

    ๐‘›=0

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘˜(โˆ’1, ๐‘ž)

    ๐‘›โˆ’๐‘˜

    2๐‘›๐‘ฅ๐‘˜๐‘ฆ๐‘›โˆ’๐‘˜ ๐‘ก๐‘›+1

    [๐‘›]๐‘ž!

    +

    โˆž

    โˆ‘

    ๐‘›=0

    B๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!.

    (52)

    3. Some New Formulae

    The classical Cayley transformation ๐‘ง โ†’Cay(๐‘ง, ๐‘Ž) := (1 +๐‘Ž๐‘ง)/(1โˆ’๐‘Ž๐‘ง)motivated us to derive the formula forE

    ๐‘ž(๐‘ž๐‘ก). In

    addition, by substituting Cay(๐‘ง, (๐‘ž โˆ’ 1)/2) in the generatingformula we have

    Bฬ‚๐‘ž(๐‘ž๐‘ก) Bฬ‚

    ๐‘ž (๐‘ก) = (Bฬ‚q (๐‘ž๐‘ก) โˆ’ ๐‘žBฬ‚๐‘ž (๐‘ก) (1 + (1 โˆ’ ๐‘ž)๐‘ก

    2))

    ร—1

    1 โˆ’ ๐‘žร—

    2

    E๐‘ž (๐‘ก) + 1

    .

    (53)

    The right hand side can be presented by ๐‘ž-Euler numbers.Now equating coefficients of ๐‘ก๐‘› we get the following identity.In the case that ๐‘› = 0, we find the first improved ๐‘ž-Eulernumber which is exactly 1.

    Proposition 14. For all ๐‘› โ‰ฅ 1,๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    B๐‘˜,๐‘žB๐‘›โˆ’๐‘˜,๐‘ž

    ๐‘ž๐‘˜

    = โˆ’๐‘ž

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    2๐‘›โˆ’๐‘˜B๐‘˜,๐‘žE๐‘›โˆ’๐‘˜,๐‘ž[๐‘˜ โˆ’ 1]๐‘ž

    โˆ’๐‘ž

    2

    ๐‘›โˆ’1

    โˆ‘

    ๐‘˜=0

    [๐‘› โˆ’ 1

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜โˆ’1

    2๐‘›โˆ’๐‘˜โˆ’1B๐‘˜,๐‘žE๐‘›โˆ’๐‘˜โˆ’1,๐‘ž[๐‘›]๐‘ž.

    (54)

    Let us take a ๐‘ž-derivative from the generating function,after simplifying the equation, by knowing the quotient rulefor quantum derivative, and also using

    E๐‘ž(๐‘ž๐‘ก) =

    1 โˆ’ (1 โˆ’ ๐‘ž) (๐‘ก/2)

    1 + (1 โˆ’ ๐‘ž) (๐‘ก/2)E๐‘ž(๐‘ก) ,

    ๐ท๐‘ž(Eq (๐‘ก)) =

    E๐‘ž(๐‘ž๐‘ก) +E

    ๐‘ž (๐‘ก)

    2,

    (55)

    one has

    Bฬ‚๐‘ž(๐‘ž๐‘ก) Bฬ‚

    ๐‘ž(๐‘ก) =

    2 + (1 โˆ’ ๐‘ž) ๐‘ก

    2E๐‘ž (๐‘ก) (๐‘ž โˆ’ 1)

    (๐‘žBฬ‚๐‘ž(๐‘ก) โˆ’ Bฬ‚

    ๐‘ž(๐‘ž๐‘ก)) . (56)

    It is clear that Eโˆ’1๐‘ž(๐‘ก) = E

    ๐‘ž(โˆ’๐‘ก). Now, by equating

    coefficients of ๐‘ก๐‘› we obtain the following identity.

  • Abstract and Applied Analysis 7

    Proposition 15. For all ๐‘› โ‰ฅ 1,

    2๐‘›

    โˆ‘

    ๐‘˜=0

    [2๐‘›

    ๐‘˜]

    ๐‘ž

    B๐‘˜,๐‘žB2๐‘›โˆ’๐‘˜,๐‘ž

    ๐‘ž๐‘˜

    = โˆ’๐‘ž

    2๐‘›

    โˆ‘

    ๐‘˜=0

    [2๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)2๐‘›โˆ’๐‘˜

    22๐‘›โˆ’๐‘˜B๐‘˜,๐‘ž[๐‘˜ โˆ’ 1]๐‘ž(โˆ’1)

    ๐‘˜

    +๐‘ž (1 โˆ’ ๐‘ž)

    2

    2๐‘›โˆ’1

    โˆ‘

    ๐‘˜=0

    [2๐‘› โˆ’ 1

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)2๐‘›โˆ’1โˆ’๐‘˜

    22๐‘›โˆ’1โˆ’๐‘˜B๐‘˜,๐‘ž

    ร— [๐‘˜ โˆ’ 1]๐‘ž(โˆ’1)๐‘˜,

    2๐‘›+1

    โˆ‘

    ๐‘˜=0

    [2๐‘› + 1

    ๐‘˜]

    ๐‘ž

    B๐‘˜,๐‘žB2๐‘›โˆ’๐‘˜+1,๐‘ž

    ๐‘ž๐‘˜

    = ๐‘ž

    2๐‘›+1

    โˆ‘

    ๐‘˜=0

    [2๐‘› + 1

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)2๐‘›+1โˆ’๐‘˜

    22๐‘›+1โˆ’๐‘˜B๐‘˜,๐‘ž[๐‘˜ โˆ’ 1]๐‘ž(โˆ’1)

    ๐‘˜

    โˆ’๐‘ž (1 โˆ’ ๐‘ž)

    2

    2๐‘›

    โˆ‘

    ๐‘˜=0

    [2๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)2๐‘›โˆ’๐‘˜

    22๐‘›โˆ’๐‘˜B๐‘˜,๐‘ž[๐‘˜ โˆ’ 1]๐‘ž(โˆ’1)

    ๐‘˜.

    (57)

    We may also derive a differential equation for Bฬ‚๐‘ž(๐‘ก). If

    we differentiate both sides of the generating function withrespect to ๐‘ก, after a little calculation we find that

    ๐œ•

    ๐œ•๐‘กBฬ‚๐‘ž(๐‘ก)

    = Bฬ‚๐‘ž (๐‘ก) (

    1

    ๐‘กโˆ’(1 โˆ’ ๐‘ž)E

    ๐‘ž(๐‘ก)

    E๐‘ž(๐‘ก) โˆ’ 1

    (

    โˆž

    โˆ‘

    ๐‘˜=0

    4๐‘ž๐‘˜

    4 โˆ’ (1 โˆ’ ๐‘ž)2๐‘ž2๐‘˜

    )) .

    (58)

    If we differentiate Bฬ‚๐‘ž(๐‘ก) with respect to ๐‘ž, we obtain,

    instead,

    ๐œ•

    ๐œ•๐‘žBฬ‚๐‘ž(๐‘ก) = โˆ’Bฬ‚

    2

    ๐‘ž(๐‘ก)E๐‘ž(๐‘ก)

    โˆž

    โˆ‘

    ๐‘˜=0

    4๐‘ก (๐‘˜๐‘ž๐‘˜โˆ’1

    โˆ’ (๐‘˜ + 1) ๐‘ž๐‘˜)

    4 โˆ’ (1 โˆ’ ๐‘ž)2๐‘ž2๐‘˜

    . (59)

    Again, using the generating function and combining thiswith the derivative we get the partial differential equation.

    Proposition 16. Consider the following:

    ๐œ•

    ๐œ•๐‘กBฬ‚๐‘ž(๐‘ก) โˆ’

    ๐œ•

    ๐œ•๐‘žBฬ‚๐‘ž(๐‘ก)

    =Bฬ‚๐‘ž(๐‘ก)

    ๐‘ก+

    Bฬ‚2๐‘ž(๐‘ก)E๐‘ž(๐‘ก)

    ๐‘ก

    ร—

    โˆž

    โˆ‘

    ๐‘˜=0

    4๐‘ก (๐‘˜๐‘ž๐‘˜โˆ’1

    โˆ’ (๐‘˜ + 1) ๐‘ž๐‘˜) โˆ’ ๐‘ž๐‘˜(1 โˆ’ ๐‘ž)

    4 โˆ’ (1 โˆ’ ๐‘ž)2๐‘ž2๐‘˜

    .

    (60)

    4. Explicit Relationship between the๐‘ž-Bernoulli and ๐‘ž-Euler Polynomials

    In this section, we give some explicit relationship betweenthe ๐‘ž-Bernoulli and ๐‘ž-Euler polynomials.We also obtain newformulae and some special cases for them.These formulae areextensions of the formulae of Srivastava and Pinteฬr, Cheon,and others.

    We present natural ๐‘ž-extensions of themain results in thepapers [9, 11]; see Theorems 17 and 19.

    Theorem 17. For ๐‘› โˆˆ N0, the following relationships hold true:

    B๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    =1

    2

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    ๐‘š๐‘˜โˆ’๐‘› [

    [

    B๐‘˜,๐‘ž (๐‘ฅ) +

    ๐‘˜

    โˆ‘

    ๐‘—=0

    [๐‘›

    ๐‘—]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘˜โˆ’๐‘—

    B๐‘—,๐‘ž (๐‘ฅ)

    2๐‘˜โˆ’๐‘—๐‘š๐‘˜โˆ’๐‘—]

    ]

    ร— E๐‘›โˆ’๐‘˜,๐‘ž

    (๐‘š๐‘ฆ)

    =1

    2

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    ๐‘š๐‘˜โˆ’๐‘›

    [B๐‘˜,๐‘ž(๐‘ฅ) +B

    ๐‘˜,๐‘ž(๐‘ฅ,

    1

    ๐‘š)]E๐‘›โˆ’๐‘˜,๐‘ž

    (๐‘š๐‘ฆ) .

    (61)

    Proof. Using the following identity

    ๐‘ก

    E๐‘ž(๐‘ก) โˆ’ 1

    E๐‘ž(๐‘ก๐‘ฅ)E

    ๐‘ž(๐‘ก๐‘ฆ)

    =๐‘ก

    E๐‘ž(๐‘ก) โˆ’ 1

    E๐‘ž (๐‘ก๐‘ฅ)

    โ‹…E๐‘ž (๐‘ก/๐‘š) + 1

    2โ‹…

    2

    E๐‘ž(๐‘ก/๐‘š) + 1

    E๐‘ž(๐‘ก

    ๐‘š๐‘š๐‘ฆ)

    (62)

    we have

    โˆž

    โˆ‘

    ๐‘›=0

    B๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    =1

    2

    โˆž

    โˆ‘

    ๐‘›=0

    E๐‘›,๐‘ž(๐‘š๐‘ฆ)

    ๐‘ก๐‘›

    ๐‘š๐‘›[๐‘›]๐‘ž!

    โˆž

    โˆ‘

    ๐‘›=0

    (โˆ’1, ๐‘ž)๐‘›

    ๐‘š๐‘›2๐‘›

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    โˆž

    โˆ‘

    ๐‘›=0

    B๐‘›,๐‘ž(๐‘ฅ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    +1

    2

    โˆž

    โˆ‘

    ๐‘›=0

    E๐‘›,๐‘ž(๐‘š๐‘ฆ)

    ๐‘ก๐‘›

    ๐‘š๐‘›[๐‘›]๐‘ž!

    โˆž

    โˆ‘

    ๐‘›=0

    B๐‘›,๐‘ž (๐‘ฅ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    =: ๐ผ1+ ๐ผ2.

    (63)

    It is clear that

    ๐ผ2=1

    2

    โˆž

    โˆ‘

    ๐‘›=0

    E๐‘›,๐‘ž(๐‘š๐‘ฆ)

    ๐‘ก๐‘›

    ๐‘š๐‘›[๐‘›]๐‘ž!

    โˆž

    โˆ‘

    ๐‘›=0

    B๐‘›,๐‘ž(๐‘ฅ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    =1

    2

    โˆž

    โˆ‘

    ๐‘›=0

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘—]

    ๐‘ž

    ๐‘š๐‘˜โˆ’๐‘›

    B๐‘˜,๐‘ž (๐‘ฅ)E๐‘›โˆ’๐‘˜,๐‘ž (๐‘š๐‘ฆ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!.

    (64)

  • 8 Abstract and Applied Analysis

    On the other hand

    ๐ผ1=1

    2

    โˆž

    โˆ‘

    ๐‘›=0

    E๐‘›,๐‘ž(๐‘š๐‘ฆ)

    ๐‘ก๐‘›

    ๐‘š๐‘›[๐‘›]๐‘ž!

    ร—

    โˆž

    โˆ‘

    ๐‘›=0

    ๐‘›

    โˆ‘

    ๐‘—=0

    [๐‘›

    ๐‘—]

    ๐‘ž

    B๐‘—,๐‘ž (๐‘ฅ)

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘—

    ๐‘š๐‘›โˆ’๐‘—2๐‘›โˆ’๐‘—

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    =1

    2

    โˆž

    โˆ‘

    ๐‘›=0

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    E๐‘›โˆ’๐‘˜,๐‘ž

    (๐‘š๐‘ฆ)

    ร—

    ๐‘˜

    โˆ‘

    ๐‘—=0

    [๐‘›

    ๐‘—]

    ๐‘ž

    B๐‘—,๐‘ž(๐‘ฅ) (โˆ’1, ๐‘ž)

    ๐‘˜โˆ’๐‘—

    ๐‘š๐‘›โˆ’๐‘˜๐‘š๐‘˜โˆ’๐‘—2๐‘˜โˆ’๐‘—

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!.

    (65)

    Thereforeโˆž

    โˆ‘

    ๐‘›=0

    B๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    =1

    2

    โˆž

    โˆ‘

    ๐‘›=0

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    ๐‘š๐‘˜โˆ’๐‘›

    ร— [

    [

    B๐‘˜,๐‘ž (๐‘ฅ) +

    ๐‘˜

    โˆ‘

    ๐‘—=0

    [๐‘›

    ๐‘—]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘˜โˆ’๐‘—

    B๐‘—,๐‘ž(๐‘ฅ)

    2๐‘˜โˆ’๐‘—๐‘š๐‘˜โˆ’๐‘—]

    ]

    ร— E๐‘›โˆ’๐‘˜,๐‘ž

    (๐‘š๐‘ฆ)๐‘ก๐‘›

    [๐‘›]๐‘ž!.

    (66)

    It remains to equate the coefficients of ๐‘ก๐‘›.

    Next we discuss some special cases of Theorem 17.

    Corollary 18. For ๐‘› โˆˆ N0the following relationship holds true:

    B๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    =

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (B๐‘˜,๐‘ž (๐‘ฅ) +

    (โˆ’1; ๐‘ž)๐‘˜โˆ’1

    2๐‘˜[๐‘˜]๐‘ž๐‘ฅ๐‘˜โˆ’1)E๐‘›โˆ’๐‘˜,๐‘ž

    (๐‘ฆ) .

    (67)

    The formula (67) is a ๐‘ž-extension of the Cheonโ€™s mainresult [23].

    Theorem 19. For ๐‘› โˆˆ N0, the following relationships

    E๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    =1

    [๐‘› + 1]๐‘ž

    ร—

    ๐‘›+1

    โˆ‘

    ๐‘˜=0

    1

    ๐‘š๐‘›+1โˆ’๐‘˜[๐‘› + 1

    ๐‘˜]

    ๐‘ž

    ร— (

    ๐‘˜

    โˆ‘

    ๐‘—=0

    [๐‘˜

    ๐‘—]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘˜โˆ’๐‘—

    ๐‘š๐‘˜โˆ’๐‘—2๐‘˜โˆ’๐‘—E๐‘—,๐‘ž(๐‘ฆ) โˆ’ E

    ๐‘˜,๐‘ž(๐‘ฆ))

    ร—B๐‘›+1โˆ’๐‘˜,๐‘ž (๐‘š๐‘ฅ)

    (68)

    hold true between the ๐‘ž-Bernoulli polynomials and ๐‘ž-Eulerpolynomials.

    Proof. The proof is based on the following identity:2

    E๐‘ž(๐‘ก) + 1

    E๐‘ž (๐‘ก๐‘ฅ)E๐‘ž (๐‘ก๐‘ฆ)

    =2

    E๐‘ž (๐‘ก) + 1

    E๐‘ž(๐‘ก๐‘ฆ)

    โ‹…E๐‘ž(๐‘ก/๐‘š) โˆ’ 1

    ๐‘กโ‹…

    ๐‘ก

    E๐‘ž(๐‘ก/๐‘š) โˆ’ 1

    E๐‘ž(๐‘ก

    ๐‘š๐‘š๐‘ฅ) .

    (69)

    Indeedโˆž

    โˆ‘

    ๐‘›=0

    E๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    =

    โˆž

    โˆ‘

    ๐‘›=0

    E๐‘›,๐‘ž(๐‘ฆ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    โˆž

    โˆ‘

    ๐‘›=0

    (โˆ’1, ๐‘ž)๐‘›

    ๐‘š๐‘›2๐‘›

    ๐‘ก๐‘›โˆ’1

    [๐‘›]๐‘ž!

    ร—

    โˆž

    โˆ‘

    ๐‘›=0

    B๐‘›,๐‘ž(๐‘š๐‘ฅ)

    ๐‘ก๐‘›

    ๐‘š๐‘›[๐‘›]๐‘ž!

    โˆ’

    โˆž

    โˆ‘

    ๐‘›=0

    E๐‘›,๐‘ž(๐‘ฆ)

    ๐‘ก๐‘›โˆ’1

    [๐‘›]๐‘ž!

    โˆž

    โˆ‘

    ๐‘›=0

    B๐‘›,๐‘ž(๐‘š๐‘ฅ)

    ๐‘ก๐‘›

    ๐‘š๐‘›[๐‘›]๐‘ž!

    =: ๐ผ1โˆ’ ๐ผ2.

    (70)

    It follows that

    ๐ผ2=1

    ๐‘ก

    โˆž

    โˆ‘

    ๐‘›=0

    E๐‘›,๐‘ž(๐‘ฆ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    โˆž

    โˆ‘

    ๐‘›=0

    B๐‘›,๐‘ž(๐‘š๐‘ฅ)

    ๐‘ก๐‘›

    ๐‘š๐‘›[๐‘›]๐‘ž!

    =1

    ๐‘ก

    โˆž

    โˆ‘

    ๐‘›=0

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    1

    ๐‘š๐‘›โˆ’๐‘˜E๐‘˜,๐‘ž(๐‘ฆ)B

    ๐‘›โˆ’๐‘˜,๐‘ž (๐‘š๐‘ฅ)๐‘ก๐‘›

    [๐‘›]๐‘ž!

    =

    โˆž

    โˆ‘

    ๐‘›=0

    1

    [๐‘› + 1]๐‘ž

    ร—

    ๐‘›+1

    โˆ‘

    ๐‘˜=0

    [๐‘› + 1

    ๐‘˜]

    ๐‘ž

    1

    ๐‘š๐‘›+1โˆ’๐‘˜E๐‘˜,๐‘ž(๐‘ฆ)B

    ๐‘›+1โˆ’๐‘˜,๐‘ž (๐‘š๐‘ฅ)๐‘ก๐‘›

    [๐‘›]๐‘ž!,

    ๐ผ1=1

    ๐‘ก

    โˆž

    โˆ‘

    ๐‘›=0

    B๐‘›,๐‘ž(๐‘š๐‘ฅ)

    ๐‘ก๐‘›

    ๐‘š๐‘›[๐‘›]๐‘ž!

    ร—

    โˆž

    โˆ‘

    ๐‘›=0

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    ๐‘š๐‘›โˆ’๐‘˜2๐‘›โˆ’๐‘˜E๐‘˜,๐‘ž(๐‘ฆ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    =1

    ๐‘ก

    โˆž

    โˆ‘

    ๐‘›=0

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    1

    ๐‘š๐‘›โˆ’๐‘˜B๐‘›โˆ’๐‘˜,๐‘ž

    (๐‘š๐‘ฅ)

    ร—

    ๐‘˜

    โˆ‘

    ๐‘—=0

    [๐‘˜

    ๐‘—]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘˜โˆ’๐‘—

    ๐‘š๐‘˜โˆ’๐‘—2๐‘˜โˆ’๐‘—E๐‘—,๐‘ž(๐‘ฆ)

    ๐‘ก๐‘›โˆ’1

    [๐‘›]๐‘ž!.

    (71)

    Next we give an interesting relationship between the ๐‘ž-Genocchi polynomials and the ๐‘ž-Bernoulli polynomials.

  • Abstract and Applied Analysis 9

    Theorem 20. For ๐‘› โˆˆ N0, the following relationship

    G๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    =1

    [๐‘› + 1]๐‘ž

    ร—

    ๐‘›+1

    โˆ‘

    ๐‘˜=0

    1

    ๐‘š๐‘›โˆ’๐‘˜[๐‘› + 1

    ๐‘˜]

    ๐‘ž

    ร— (

    ๐‘˜

    โˆ‘

    ๐‘—=0

    [๐‘˜

    ๐‘—]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘˜โˆ’๐‘—

    ๐‘š๐‘˜โˆ’๐‘—2๐‘˜โˆ’๐‘—G๐‘—,๐‘ž(๐‘ฅ) โˆ’G

    ๐‘˜,๐‘ž(๐‘ฅ))

    ร—B๐‘›+1โˆ’๐‘˜,๐‘ž

    (๐‘š๐‘ฆ) ,

    B๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    =1

    2[๐‘› + 1]๐‘ž

    ร—

    ๐‘›+1

    โˆ‘

    ๐‘˜=0

    1

    ๐‘š๐‘›โˆ’๐‘˜[๐‘› + 1

    ๐‘˜]

    ๐‘ž

    ร— (

    ๐‘˜

    โˆ‘

    ๐‘—=0

    [๐‘˜

    ๐‘—]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘˜โˆ’๐‘—

    ๐‘š๐‘˜โˆ’๐‘—2๐‘˜โˆ’๐‘—B๐‘—,๐‘ž(๐‘ฅ) +B

    ๐‘˜,๐‘ž(๐‘ฅ))

    ร—G๐‘›+1โˆ’๐‘˜,๐‘ž

    (๐‘š๐‘ฆ)

    (72)

    holds true between the ๐‘ž-Genocchi and the ๐‘ž-Bernoulli polyno-mials.

    Proof. Using the following identity

    2๐‘ก

    E๐‘ž(๐‘ก) + 1

    E๐‘ž(๐‘ก๐‘ฅ)E

    ๐‘ž(๐‘ก๐‘ฆ)

    =2๐‘ก

    E๐‘ž (๐‘ก) + 1

    E๐‘ž(๐‘ก๐‘ฅ) โ‹… (E

    ๐‘ž(๐‘ก

    ๐‘š) โˆ’ 1)

    ๐‘š

    ๐‘ก

    โ‹…๐‘ก/๐‘š

    E๐‘ž(๐‘ก/๐‘š) โˆ’ 1

    โ‹…E๐‘ž(๐‘ก

    ๐‘š๐‘š๐‘ฆ)

    (73)

    we have

    โˆž

    โˆ‘

    ๐‘›=0

    G๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    =๐‘š

    ๐‘ก

    โˆž

    โˆ‘

    ๐‘›=0

    G๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    ร—

    โˆž

    โˆ‘

    ๐‘›=0

    (โˆ’1, ๐‘ž)๐‘›

    ๐‘š๐‘›2๐‘›

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    โˆž

    โˆ‘

    ๐‘›=0

    B๐‘›,๐‘ž(๐‘š๐‘ฆ)

    ๐‘ก๐‘›

    ๐‘š๐‘›[๐‘›]๐‘ž!

    โˆ’๐‘š

    ๐‘ก

    โˆž

    โˆ‘

    ๐‘›=0

    G๐‘›,๐‘ž(๐‘ฅ, ๐‘ฆ)

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    โˆž

    โˆ‘

    ๐‘›=0

    B๐‘›,๐‘ž(๐‘š๐‘ฆ)

    ๐‘ก๐‘›

    ๐‘š๐‘›[๐‘›]๐‘ž!

    =๐‘š

    ๐‘ก

    โˆž

    โˆ‘

    ๐‘›=0

    (

    ๐‘›

    โˆ‘

    ๐‘˜=0

    [๐‘›

    ๐‘˜]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘›โˆ’๐‘˜

    ๐‘š๐‘›โˆ’๐‘˜2๐‘›โˆ’๐‘˜G๐‘˜,๐‘ž (๐‘ฅ) โˆ’G๐‘›,๐‘ž (๐‘ฅ))

    ๐‘ก๐‘›

    [๐‘›]๐‘ž!

    ร—

    โˆž

    โˆ‘

    ๐‘›=0

    B๐‘›,๐‘ž(๐‘š๐‘ฆ)

    ๐‘ก๐‘›

    ๐‘š๐‘›[๐‘›]๐‘ž!

    =๐‘š

    ๐‘ก

    โˆž

    โˆ‘

    ๐‘›=0

    ๐‘›

    โˆ‘

    ๐‘˜=0

    1

    ๐‘š๐‘›โˆ’๐‘˜[๐‘›

    ๐‘˜]

    ๐‘ž

    ร— (

    ๐‘˜

    โˆ‘

    ๐‘—=0

    [๐‘˜

    ๐‘—]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘˜โˆ’๐‘—

    ๐‘š๐‘˜โˆ’๐‘—2๐‘˜โˆ’๐‘—G๐‘—,๐‘ž(๐‘ฅ) โˆ’G

    ๐‘˜,๐‘ž(๐‘ฅ))

    ร—B๐‘›โˆ’๐‘˜,๐‘ž

    (๐‘š๐‘ฆ)๐‘ก๐‘›

    [๐‘›]๐‘ž!

    =

    โˆž

    โˆ‘

    ๐‘›=0

    1

    [๐‘› + 1]๐‘ž

    ๐‘›+1

    โˆ‘

    ๐‘˜=0

    1

    ๐‘š๐‘›โˆ’๐‘˜[๐‘› + 1

    ๐‘˜]

    ๐‘ž

    ร— (

    ๐‘˜

    โˆ‘

    ๐‘—=0

    [๐‘˜

    ๐‘—]

    ๐‘ž

    (โˆ’1, ๐‘ž)๐‘˜โˆ’๐‘—

    ๐‘š๐‘˜โˆ’๐‘—2๐‘˜โˆ’๐‘—G๐‘—,๐‘ž(๐‘ฅ) โˆ’G

    ๐‘˜,๐‘ž(๐‘ฅ))

    ร—B๐‘›+1โˆ’๐‘˜,๐‘ž

    (๐‘š๐‘ฆ)๐‘ก๐‘›

    [๐‘›]๐‘ž!.

    (74)

    The second identity can be proved in a like manner.

    Conflict of Interests

    The authors declare that there is no conflict of interests withany commercial identities regarding the publication of thispaper.

    References

    [1] J. L. Ciesฬlinฬski, โ€œImproved ๐‘ž-exponential and ๐‘ž-trigonometricfunctions,โ€AppliedMathematics Letters, vol. 24, no. 12, pp. 2110โ€“2114, 2011.

    [2] L. Carlitz, โ€œ๐‘ž-Bernoulli numbers and polynomials,โ€DukeMath-ematical Journal, vol. 15, pp. 987โ€“1000, 1948.

    [3] G. E. Andrews, R. Askey, and R. Roy, Special Functions, vol. 71of Encyclopedia of Mathematics and Its Applications, CambridgeUniversity Press, Cambridge, Mass, USA, 1999.

    [4] H.M. Srivastava and Aฬ. Pinteฬr, โ€œRemarks on some relationshipsbetween the Bernoulli and Euler polynomials,โ€ Applied Mathe-matics Letters, vol. 17, no. 4, pp. 375โ€“380, 2004.

    [5] T. Kim, โ€œ๐‘ž-generalized Euler numbers and polynomials,โ€ Rus-sian Journal of Mathematical Physics, vol. 13, no. 3, pp. 293โ€“298,2006.

    [6] D. S. Kim, T. Kim, S. H. Lee, and J. J. Seo, โ€œA note on q-Frobenius-Euler numbers and polynomials,โ€ Advanced Studiesin Theoretical Physics, vol. 7, no. 18, pp. 881โ€“889, 2013.

    [7] B. A. Kupershmidt, โ€œReflection symmetries of ๐‘ž-Bernoullipolynomials,โ€ Journal of NonlinearMathematical Physics, vol. 12,supplement 1, pp. 412โ€“422, 2005.

    [8] Q.-M. Luo, โ€œSome results for the ๐‘ž-Bernoulli and ๐‘ž-Euler poly-nomials,โ€ Journal of Mathematical Analysis and Applications,vol. 363, no. 1, pp. 7โ€“18, 2010.

  • 10 Abstract and Applied Analysis

    [9] Q.-M. Luo and H. M. Srivastava, โ€œSome relationships betweenthe Apostol-Bernoulli and Apostol-Euler polynomials,โ€ Com-puters &Mathematics with Applications, vol. 51, no. 3-4, pp. 631โ€“642, 2006.

    [10] Q.-M. Luo andH.M. Srivastava, โ€œ๐‘ž-extensions of some relation-ships between the Bernoulli and Euler polynomials,โ€ TaiwaneseJournal of Mathematics, vol. 15, no. 1, pp. 241โ€“257, 2011.

    [11] H.M. Srivastava and Aฬ. Pinteฬr, โ€œRemarks on some relationshipsbetween the Bernoulli and Euler polynomials,โ€ Applied Mathe-matics Letters, vol. 17, no. 4, pp. 375โ€“380, 2004.

    [12] N. I. Mahmudov, โ€œ๐‘ž-analogues of the Bernoulli and Genocchipolynomials and the Srivastava-Pinteฬr addition theorems,โ€Discrete Dynamics in Nature and Society, vol. 2012, Article ID169348, 8 pages, 2012.

    [13] N. I. Mahmudov, โ€œOn a class of ๐‘ž-Bernoulli and ๐‘ž-Eulerpolynomials,โ€Advances inDifference Equations, vol. 2013, article108, 2013.

    [14] N. I.Mahmudov andM. E. Keleshteri, โ€œOn a class of generalized๐‘ž-Bernoulli and ๐‘ž-Euler polynomials,โ€ Advances in DifferenceEquations, vol. 2013, article 115, 2013.

    [15] T. Kim, โ€œOn the ๐‘ž-extension of Euler and Genocchi numbers,โ€Journal of Mathematical Analysis and Applications, vol. 326, no.2, pp. 1458โ€“1465, 2007.

    [16] T. Kim, โ€œNote on ๐‘ž-Genocchi numbers and polynomials,โ€Advanced Studies in Contemporary Mathematics (Kyungshang),vol. 17, no. 1, pp. 9โ€“15, 2008.

    [17] M. Cenkci, M. Can, and V. Kurt, โ€œ๐‘ž-extensions of Genocchinumbers,โ€ Journal of the Korean Mathematical Society, vol. 43,no. 1, pp. 183โ€“198, 2006.

    [18] T. Kim, โ€œA note on the ๐‘ž-Genocchi numbers and polynomials,โ€Journal of Inequalities and Applications, vol. 2007, Article ID071452, 8 pages, 2007.

    [19] Y. Simsek, I. N. Cangul, V. Kurt, and D. Kim, โ€œ๐‘ž-Genocchinumbers and polynomials associated with ๐‘ž-Genocchi-type ๐‘™-functions,โ€ Advances in Difference Equations, vol. 2008, ArticleID 815750, 12 pages, 2008.

    [20] J. Cigler, โ€œq-Chebyshev polynomials,โ€ http://arxiv.org/abs/1205.5383.

    [21] M. Cenkci, V. Kurt, S. H. Rim, and Y. Simsek, โ€œOn (๐‘–, ๐‘ž)Bernoulli and Euler numbers,โ€AppliedMathematics Letters, vol.21, no. 7, pp. 706โ€“711, 2008.

    [22] J. Choi, P. J. Anderson, and H. M. Srivastava, โ€œSome ๐‘ž-extensions of the Apostol-Bernoulli and the Apostol-Eulerpolynomials of order ๐‘›, and themultipleHurwitz zeta function,โ€Applied Mathematics and Computation, vol. 199, no. 2, pp. 723โ€“737, 2008.

    [23] G.-S. Cheon, โ€œA note on the Bernoulli and Euler polynomials,โ€Applied Mathematics Letters, vol. 16, no. 3, pp. 365โ€“368, 2003.

    [24] H. M. Srivastava and C. Vignat, โ€œProbabilistic proofs of somerelationships between the Bernoulli and Euler polynomials,โ€European Journal of Pure and Applied Mathematics, vol. 5, no.2, pp. 97โ€“107, 2012.

    [25] S. Nalci and O. K. Pashaev, โ€œq-Bernoulli numbers and zeros ofq-sine function,โ€ http://arxiv.org/abs/1202.2265v1.

    [26] S. Gaboury and B. Kurt, โ€œSome relations involving Hermite-based Apostol-Genocchi polynomials,โ€ Applied MathematicalSciences, vol. 6, no. 81โ€“84, pp. 4091โ€“4102, 2012.

    [27] D.Kim, B.Kurt, andV.Kurt, โ€œSome identities on the generalized๐‘ž-Bernoulli, ๐‘ž-Euler, and ๐‘ž-Genocchi polynomials,โ€ Abstractand Applied Analysis, vol. 2013, Article ID 293532, 6 pages, 2013.

    [28] V. Kurt, โ€œNew identities and relations derived from the gener-alized Bernoulli polynomials, Euler polynomials and Genocchipolynomials,โ€Advances inDifference Equations, vol. 2014, article5, 2014.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of