research article hardy-littlewood-sobolev inequalities on ...hardy-littlewood-sobolev inequalities...

8
Research Article Hardy-Littlewood-Sobolev Inequalities on -Adic Central Morrey Spaces Qing Yan Wu and Zun Wei Fu Department of Mathematics, Linyi University, Linyi, Shandong 276005, China Correspondence should be addressed to Zun Wei Fu; [email protected] Received 21 October 2014; Accepted 15 December 2014 Academic Editor: Yoshihiro Sawano Copyright ยฉ 2015 Q. Y. Wu and Z. W. Fu. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We establish the Hardy-Littlewood-Sobolev inequalities on -adic central Morrey spaces. Furthermore, we obtain the -central BMO estimates for commutators of -adic Riesz potential on -adic central Morrey spaces. 1. Introduction Let 0<<. e Riesz potential operator is de๏ฌned by setting, for all locally integrable functions on R , () = 1 () โˆซ R () โˆ’ โˆ’ , (1) where () = /2 2 ฮ“(/2)/ฮ“(( โˆ’ )/2). It is closely related to the Laplacian operator of fractional degree. When >2 and =2, is a solution of Poisson equation โˆ’ฮ” = . e importance of Riesz potentials is owing to the fact that they are smooth operators and have been extensively used in various areas such as potential analysis, harmonic analysis, and partial di๏ฌ€erential equations. For more details about Riesz potentials one can refer to [1]. is paper focuses on the Riesz potentials on -adic ๏ฌeld. In the last 20 years, the ๏ฌeld of -adic numbers Q has been intensively used in theoretical and mathematical physics (cf. [2โ€“12]). And it has already penetrated intensively into several areas of mathematics and its applications, among which harmonic analysis on -adic ๏ฌeld has been drawing more and more concern (see [13โ€“22] and references therein). For a prime number , the ๏ฌeld of -adic numbers Q is de๏ฌned as the completion of the ๏ฌeld of rational numbers Q with respect to the non-Archimedean -adic norm |โ‹…| , which satis๏ฌes || = 0 if and only if = 0; || = || || ; | + | โ‰ค max{|| , || }. Moreover, if || ฬธ = || , then | ยฑ | = max{|| , || }. It is well-known that Q is a typical model of non-Archimedean local ๏ฌelds. If any nonzero rational number is represented as = (/), where = () โˆˆ Z and integers , are indivisible by , then || = โˆ’ . e space Q = Q ร— Q ร—โ‹…โ‹…โ‹…ร— Q consists of points = ( 1 , 2 ,..., ), where โˆˆ Q , = 1,2,...,. e - adic norm on Q is || := max 1โ‰คโ‰ค , โˆˆ Q . (2) Denote by () = { โˆˆ Q : | โˆ’ | โ‰ค } (3) the ball of radius with center at โˆˆ Q and by () = () \ โˆ’1 () = { โˆˆ Q : | โˆ’ | = } (4) the sphere of radius with center at โˆˆ Q , where โˆˆ Z. It is clear that () = โ‹ƒ โ‰ค () . (5) It is well-known that Q is a classical kind of locally compact Vilenkin groups. A locally compact Vilenkin group is a locally compact Abelian group containing a strictly decreasing sequence of compact open subgroups { } โˆž =โˆ’โˆž Hindawi Publishing Corporation Journal of Function Spaces Volume 2015, Article ID 419532, 7 pages http://dx.doi.org/10.1155/2015/419532

Upload: others

Post on 27-Jan-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

  • Research ArticleHardy-Littlewood-Sobolev Inequalities on ๐‘-Adic CentralMorrey Spaces

    Qing Yan Wu and Zun Wei Fu

    Department of Mathematics, Linyi University, Linyi, Shandong 276005, China

    Correspondence should be addressed to Zun Wei Fu; [email protected]

    Received 21 October 2014; Accepted 15 December 2014

    Academic Editor: Yoshihiro Sawano

    Copyright ยฉ 2015 Q. Y. Wu and Z. W. Fu. This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properlycited.

    We establish the Hardy-Littlewood-Sobolev inequalities on ๐‘-adic central Morrey spaces. Furthermore, we obtain the ๐œ†-centralBMO estimates for commutators of ๐‘-adic Riesz potential on ๐‘-adic central Morrey spaces.

    1. Introduction

    Let 0 < ๐›ผ < ๐‘›. The Riesz potential operator ๐ผ๐›ผis defined by

    setting, for all locally integrable functions ๐‘“ on R๐‘›,

    ๐ผ๐›ผ๐‘“ (๐‘ฅ) =

    1

    ๐›พ๐‘›(๐›ผ)

    โˆซR๐‘›

    ๐‘“ (๐‘ฆ)

    ๐‘ฅ โˆ’ ๐‘ฆ๐‘›โˆ’๐›ผ๐‘‘๐‘ฆ, (1)

    where ๐›พ๐‘›(๐›ผ) = ๐œ‹

    ๐‘›/2

    2๐›ผ

    ฮ“(๐›ผ/2)/ฮ“((๐‘› โˆ’ ๐›ผ)/2). It is closely relatedto the Laplacian operator of fractional degree. When ๐‘› > 2and ๐›ผ = 2, ๐ผ

    ๐›ผ๐‘“ is a solution of Poisson equation โˆ’ฮ”๐‘ข =

    ๐‘“. The importance of Riesz potentials is owing to the factthat they are smooth operators and have been extensivelyused in various areas such as potential analysis, harmonicanalysis, and partial differential equations. For more detailsabout Riesz potentials one can refer to [1].

    This paper focuses on the Riesz potentials on ๐‘-adicfield. In the last 20 years, the field of ๐‘-adic numbers Q

    ๐‘

    has been intensively used in theoretical and mathematicalphysics (cf. [2โ€“12]). And it has already penetrated intensivelyinto several areas of mathematics and its applications, amongwhich harmonic analysis on ๐‘-adic field has been drawingmore and more concern (see [13โ€“22] and references therein).

    For a prime number ๐‘, the field of ๐‘-adic numbers Q๐‘

    is defined as the completion of the field of rational numbersQ with respect to the non-Archimedean ๐‘-adic norm | โ‹… |

    ๐‘,

    which satisfies |๐‘ฅ|๐‘= 0 if and only if ๐‘ฅ = 0; |๐‘ฅ๐‘ฆ|

    ๐‘=

    |๐‘ฅ|๐‘|๐‘ฆ|๐‘; |๐‘ฅ + ๐‘ฆ|

    ๐‘โ‰ค max{|๐‘ฅ|

    ๐‘, |๐‘ฆ|๐‘}. Moreover, if |๐‘ฅ|

    ๐‘ฬธ= |๐‘ฆ|๐‘,

    then |๐‘ฅ ยฑ ๐‘ฆ|๐‘= max{|๐‘ฅ|

    ๐‘, |๐‘ฆ|๐‘}. It is well-known that Q

    ๐‘

    is a typical model of non-Archimedean local fields. If anynonzero rational number ๐‘ฅ is represented as ๐‘ฅ = ๐‘๐›พ(๐‘š/๐‘›),where ๐›พ = ๐›พ(๐‘ฅ) โˆˆ Z and integers ๐‘š, ๐‘› are indivisible by ๐‘,then |๐‘ฅ|

    ๐‘= ๐‘โˆ’๐›พ.

    The space Q๐‘›๐‘= Q๐‘ร— Q๐‘ร— โ‹… โ‹… โ‹… ร— Q

    ๐‘consists of points

    ๐‘ฅ = (๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ

    ๐‘›), where ๐‘ฅ

    ๐‘—โˆˆ Q๐‘, ๐‘— = 1, 2, . . . , ๐‘›. The ๐‘-

    adic norm onQ๐‘›๐‘is

    |๐‘ฅ|๐‘:= max1โ‰ค๐‘—โ‰ค๐‘›

    ๐‘ฅ๐‘—

    ๐‘, ๐‘ฅ โˆˆ Q

    ๐‘›

    ๐‘. (2)

    Denote by

    ๐ต๐›พ(๐‘Ž) = {๐‘ฅ โˆˆ Q

    ๐‘›

    ๐‘: |๐‘ฅ โˆ’ ๐‘Ž|

    ๐‘โ‰ค ๐‘๐›พ

    } (3)

    the ball of radius ๐‘๐›พ with center at ๐‘Ž โˆˆ Q๐‘›๐‘and by

    ๐‘†๐›พ(๐‘Ž) = ๐ต

    ๐›พ(๐‘Ž) \ ๐ต

    ๐›พโˆ’1(๐‘Ž) = {๐‘ฅ โˆˆ Q

    ๐‘›

    ๐‘: |๐‘ฅ โˆ’ ๐‘Ž|

    ๐‘= ๐‘๐›พ

    } (4)

    the sphere of radius ๐‘๐›พ with center at ๐‘Ž โˆˆ Q๐‘›๐‘, where ๐›พ โˆˆ Z. It

    is clear that

    ๐ต๐›พ(๐‘Ž) = โ‹ƒ

    ๐‘˜โ‰ค๐›พ

    ๐‘†๐‘˜(๐‘Ž) . (5)

    It is well-known that Q๐‘›๐‘is a classical kind of locally

    compact Vilenkin groups. A locally compact Vilenkin group๐บ is a locally compact Abelian group containing a strictlydecreasing sequence of compact open subgroups {๐บ

    ๐‘›}โˆž

    ๐‘›=โˆ’โˆž

    Hindawi Publishing CorporationJournal of Function SpacesVolume 2015, Article ID 419532, 7 pageshttp://dx.doi.org/10.1155/2015/419532

  • 2 Journal of Function Spaces

    such that (1) โˆชโˆž๐‘›=โˆ’โˆž

    ๐บ๐‘›= ๐บ and โˆฉโˆž

    ๐‘›=โˆ’โˆž๐บ๐‘›= 0 and (2)

    sup{order(๐บ๐‘›/๐บ๐‘›+1

    : ๐‘› โˆˆ Z)} < โˆž. For several decades,parallel to the ๐‘-adic harmonic analysis, a development wasunder way of the harmonic analysis on locally compactVilenkin groups (cf. [23โ€“25] and references therein).

    Since Q๐‘›๐‘is a locally compact commutative group under

    addition, it follows from the standard analysis that there existsa Haar measure ๐‘‘๐‘ฅ on Q๐‘›

    ๐‘, which is unique up to a positive

    constant factor and is translation invariant.We normalize themeasure ๐‘‘๐‘ฅ by the equality

    โˆซ๐ต0(0)

    ๐‘‘๐‘ฅ =๐ต0 (0)

    ๐ป = 1, (6)

    where |๐ธ|๐ปdenotes the Haar measure of a measurable subset

    ๐ธ ofQ๐‘›๐‘. By simple calculation, we can obtain that

    ๐ต๐›พ(๐‘Ž)๐ป= ๐‘๐›พ๐‘›

    ,

    ๐‘†๐›พ(๐‘Ž)๐ป= ๐‘๐›พ๐‘›

    (1 โˆ’ ๐‘โˆ’๐‘›

    )

    (7)

    for any ๐‘Ž โˆˆ Q๐‘›๐‘. We should mention that the Haar measure

    takes value in R; there also exist ๐‘-adic valued measures (cf.[26, 27]). For a more complete introduction to the ๐‘-adicfield, one can refer to [22] or [10].

    On ๐‘-adic field, the ๐‘-adic Riesz potential ๐ผ๐‘๐›ผ[22] is

    defined by

    ๐ผ๐‘

    ๐›ผ๐‘“ (๐‘ฅ) =

    1

    ฮ“๐‘›(๐›ผ)

    โˆซQ๐‘›๐‘

    ๐‘“ (๐‘ฆ)

    ๐‘ฅ โˆ’ ๐‘ฆ๐‘›โˆ’๐›ผ

    ๐‘

    ๐‘‘๐‘ฆ, (8)

    where ฮ“๐‘›(๐›ผ) = (1 โˆ’ ๐‘

    ๐›ผโˆ’๐‘›

    )/(1 โˆ’ ๐‘โˆ’๐›ผ

    ), ๐›ผ โˆˆ C, ๐›ผ ฬธ= 0. When๐‘› = 1, Haran [4, 28] obtained the explicit formula of Rieszpotentials onQ

    ๐‘and developed analytical potential theory on

    Q๐‘. Taibleson [22] gave the fundamental analytic properties

    of the Riesz potentials on local fields including Q๐‘›๐‘, as well

    as the classical Hardy-Littlewood-Sobolev inequalities. Kim[18] gave a simple proof of these inequalities by using the๐‘-adic version of the Calderoฬn-Zygmund decompositiontechnique. Volosivets [29] investigated the boundedness forRiesz potentials on generalized Morrey spaces. Like onEuclidean spaces, using the Riesz potential with ๐‘› > 2 and๐›ผ = 2, one can introduce the ๐‘-adic Laplacians [13].

    In this paper, we will consider the Riesz potentials andtheir commutators with ๐‘-adic central BMO functions on ๐‘-adic central Morrey spaces. Alvarez et al. [30] studied therelationship between central BMO spaces andMorrey spaces.Furthermore, they introduced ๐œ†-central BMO spaces andcentralMorrey spaces, respectively. In [31], we introduce their๐‘-adic versions.

    Definition 1. Let ๐œ† โˆˆ R and 1 < ๐‘ž < โˆž. The ๐‘-adic centralMorrey space ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›

    ๐‘) is defined by

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›

    ๐‘):= sup๐›พโˆˆZ

    (1

    ๐ต๐›พ

    1+๐œ†๐‘ž

    ๐ป

    โˆซ๐ต๐›พ

    ๐‘“ (๐‘ฅ)๐‘ž

    ๐‘‘๐‘ฅ)

    1/๐‘ž

    < โˆž, (9)

    where ๐ต๐›พ= ๐ต๐›พ(0).

    Remark 2. It is clear that

    ๐ฟ๐‘ž,๐œ†

    (Q๐‘›

    ๐‘) โŠ‚ ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†

    (Q๐‘›

    ๐‘) ,

    ๏ฟฝฬ‡๏ฟฝ๐‘ž,โˆ’1/๐‘ž

    (Q๐‘›

    ๐‘) = ๐ฟ๐‘ž

    (Q๐‘›

    ๐‘) .

    (10)

    When ๐œ† < โˆ’1/๐‘ž, the space ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›๐‘) reduces to {0}; therefore,

    we can only consider the case ๐œ† โ‰ฅ โˆ’1/๐‘ž. If 1 โ‰ค ๐‘ž1< ๐‘ž2< โˆž,

    by Hoฬˆlderโ€™s inequality,

    ๏ฟฝฬ‡๏ฟฝ๐‘ž2,๐œ†

    (Q๐‘›

    ๐‘) โŠ‚ ๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†

    (Q๐‘›

    ๐‘) (11)

    for ๐œ† โˆˆ R.

    Definition 3. Let ๐œ† < 1/๐‘› and 1 < ๐‘ž < โˆž. The spaceCBMO๐‘ž,๐œ†(Q๐‘›

    ๐‘) is defined by the condition

    ๐‘“CBMO๐‘ž,๐œ†(Q๐‘›

    ๐‘)

    := sup๐›พโˆˆZ

    (1

    ๐ต๐›พ

    1+๐œ†๐‘ž

    ๐ป

    โˆซ๐ต๐›พ

    ๐‘“ (๐‘ฅ) โˆ’ ๐‘“

    ๐ต๐›พ

    ๐‘ž

    ๐‘‘๐‘ฅ)

    1/๐‘ž

    < โˆž.

    (12)

    Remark 4. When ๐œ† = 0, the space CBMO๐‘ž,๐œ†(Q๐‘›๐‘) is just

    CBMO๐‘ž(Q๐‘›๐‘), which is defined in [32]. If 1 โ‰ค ๐‘ž

    1< ๐‘ž2< โˆž,

    by Hoฬˆlderโ€™s inequality,

    CBMO๐‘ž2 ,๐œ† (Q๐‘›๐‘) โŠ‚ CBMO๐‘ž1,๐œ† (Q๐‘›

    ๐‘) (13)

    for ๐œ† โˆˆ R. By the standard proof as that inR๐‘›, we can see that๐‘“CBMO๐‘ž,๐œ†(Q๐‘›

    ๐‘)

    โˆผ sup๐›พโˆˆZ

    inf๐‘โˆˆC(

    1

    ๐ต๐›พ

    1+๐œ†๐‘ž

    ๐ป

    โˆซ๐ต๐›พ

    ๐‘“ (๐‘ฅ) โˆ’ ๐‘๐‘ž

    ๐‘‘๐‘ฅ)

    1/๐‘ž

    .

    (14)

    Remark 5. Formulas (9) and (12) yield that ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›๐‘) is a

    Banach space continuously included in CBMO๐‘ž,๐œ†(Q๐‘›๐‘).

    Herewe introduce the๐‘-adicweak centralMorrey spaces.

    Definition 6. Let ๐œ† โˆˆ R and 1 < ๐‘ž < โˆž. The ๐‘-adic weakcentral Morrey space๐‘Š๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›

    ๐‘) is defined by

    ๐‘“๐‘Š๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›

    ๐‘)

    := sup๐›พโˆˆZ

    (sup๐‘ก>0๐‘ก๐‘ž{๐‘ฅ โˆˆ ๐ต

    ๐›พ:๐‘“ (๐‘ฅ)

    > ๐‘ก}๐ป

    ๐ต๐›พ

    1+๐œ†๐‘ž

    ๐ป

    )

    1/๐‘ž

    < โˆž,

    (15)

    where ๐ต๐›พ= ๐ต๐›พ(0).

    In Section 2, we will get the Hardy-Littlewood-Sobolevinequalities on ๐‘-adic central Morrey spaces. Namely, under

  • Journal of Function Spaces 3

    some conditions for indexes, ๐ผ๐‘๐›ผis bounded from ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›

    ๐‘) to

    ๏ฟฝฬ‡๏ฟฝ๐‘Ÿ,๐œ‡

    (Q๐‘›๐‘) and is also bounded from ๏ฟฝฬ‡๏ฟฝ1,๐œ†(Q๐‘›

    ๐‘) to ๐‘Š๏ฟฝฬ‡๏ฟฝ๐‘Ÿ,๐œ‡(Q๐‘›

    ๐‘).

    In Section 3, we establish the boundedness for commutatorsgenerated by ๐ผ๐‘

    ๐›ผand ๐œ†-central BMO functions on ๐‘-adic

    central Morrey spaces.Throughout this paper the letter ๐ถ will be used to denote

    various constants, and the various uses of the letter do not,however, denote the same constant.

    2. Hardy-Littlewood-Sobolev Inequalities

    We get the following Hardy-Littlewood-Sobolev inequalitieson ๐‘-adic central Morrey spaces.

    Theorem7. Let๐›ผ be a complex numberwith 0 < Re๐›ผ < ๐‘› andlet 1 โ‰ค ๐‘ž < ๐‘›/Re๐›ผ, 0 < 1/๐‘Ÿ = 1/๐‘ž โˆ’ Re๐›ผ/๐‘›, ๐œ† < โˆ’Re๐›ผ/๐‘›,and ๐œ‡ = ๐œ† + Re๐›ผ/๐‘›.

    (i) If ๐‘ž > 1, then ๐ผ๐‘๐›ผis bounded from ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›

    ๐‘) to ๏ฟฝฬ‡๏ฟฝ๐‘Ÿ,๐œ‡(Q๐‘›

    ๐‘).

    (ii) If ๐‘ž = 1, then ๐ผ๐‘๐›ผ

    is bounded from ๏ฟฝฬ‡๏ฟฝ1,๐œ†(Q๐‘›๐‘) to

    ๐‘Š๏ฟฝฬ‡๏ฟฝ๐‘Ÿ,๐œ‡

    (Q๐‘›๐‘).

    In order to give the proof of this theorem, we need thefollowing result.

    Lemma 8 (see [22]). Let ๐›ผ be a complex number with 0 <Re๐›ผ < ๐‘› and let 1 โ‰ค ๐‘ž < ๐‘Ÿ < โˆž satisfy 1/๐‘Ÿ = 1/๐‘ž โˆ’ Re๐›ผ/๐‘›.

    (i) If ๐‘“ โˆˆ ๐ฟ๐‘ž(Q๐‘›๐‘), ๐‘ž > 1, then

    ๐ผ๐‘

    ๐›ผ๐‘“๐ฟ๐‘Ÿ(Q๐‘›

    ๐‘)โ‰ค ๐ด๐‘ž๐‘Ÿ

    ๐‘“๐ฟ๐‘ž(Q๐‘›

    ๐‘), (16)

    where ๐ด๐‘ž๐‘Ÿis independent of ๐‘“.

    (ii) If ๐‘“ โˆˆ ๐ฟ1(Q๐‘›๐‘), ๐‘  > 0, then

    {๐‘ฅ โˆˆ Q

    ๐‘›

    ๐‘:๐ผ๐‘

    ๐›ผ๐‘“ (๐‘ฅ)

    > ๐‘ }๐ปโ‰ค (๐ด

    ๐‘Ÿ

    ๐‘“๐ฟ1(Q๐‘›

    ๐‘)

    ๐‘ )

    ๐‘Ÿ

    , (17)

    where ๐ด๐‘Ÿ> 0 is independent of ๐‘“.

    Proof ofTheorem 7. Let ๐‘“ be a function in ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›๐‘). For fixed

    ๐›พ โˆˆ Z, denote ๐ต๐›พ(0) by ๐ต

    ๐›พ.

    (i) If ๐‘ž > 1, write

    (1

    ๐ต๐›พ

    1+๐œ‡๐‘Ÿ

    ๐ป

    โˆซ๐ต๐›พ

    ๐ผ๐‘

    ๐›ผ๐‘“ (๐‘ฅ)

    ๐‘Ÿ

    ๐‘‘๐‘ฅ)

    1/๐‘Ÿ

    โ‰ค (1

    ๐ต๐›พ

    1+๐œ‡๐‘Ÿ

    ๐ป

    โˆซ๐ต๐›พ

    ๐ผ๐‘

    ๐›ผ(๐‘“๐œ’๐ต๐›พ

    ) (๐‘ฅ)

    ๐‘Ÿ

    ๐‘‘๐‘ฅ)

    1/๐‘Ÿ

    + (1

    ๐ต๐›พ

    1+๐œ‡๐‘Ÿ

    ๐ป

    โˆซ๐ต๐›พ

    ๐ผ๐‘

    ๐›ผ(๐‘“๐œ’๐ต๐‘

    ๐›พ

    ) (๐‘ฅ)

    ๐‘Ÿ

    ๐‘‘๐‘ฅ)

    1/๐‘Ÿ

    := ๐ผ + ๐ผ๐ผ.

    (18)

    For ๐ผ, since 1/๐‘Ÿ = 1/๐‘ž โˆ’ Re๐›ผ/๐‘› and ๐œ‡ = ๐œ† + Re๐›ผ/๐‘›, byLemma 8,

    ๐ผ = (1

    ๐ต๐›พ

    1+๐œ‡๐‘Ÿ

    ๐ป

    โˆซ๐ต๐›พ

    ๐ผ๐‘

    ๐›ผ(๐‘“๐œ’๐ต๐›พ

    ) (๐‘ฅ)

    ๐‘Ÿ

    ๐‘‘๐‘ฅ)

    1/๐‘Ÿ

    โ‰ค๐ต๐›พ

    โˆ’1/๐‘Ÿโˆ’๐œ‡

    ๐ป

    (โˆซ๐ต๐›พ

    ๐‘“๐œ’๐ต๐›พ

    (๐‘ฅ)

    ๐‘ž

    ๐‘‘๐‘ฅ)

    1/๐‘ž

    โ‰ค๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›

    ๐‘).

    (19)

    For ๐ผ๐ผ, we firstly give the following estimate. For ๐‘ฅ โˆˆ ๐ต๐›พ,

    by Hoฬˆlderโ€™s inequality, we have

    ๐ผ๐‘

    ๐›ผ(๐‘“๐œ’๐ต๐‘

    ๐›พ

    ) (๐‘ฅ)

    =

    1

    ฮ“๐‘›(๐›ผ)

    โˆซ๐ต๐‘

    ๐›พ

    ๐‘“ (๐‘ฆ)

    ๐‘ฅ โˆ’ ๐‘ฆ๐‘›โˆ’๐›ผ

    ๐‘

    ๐‘‘๐‘ฆ

    โ‰ค1

    ฮ“๐‘›(๐›ผ)

    โˆซ๐ต๐‘

    ๐›พ

    ๐‘“ (๐‘ฆ)

    ๐‘ฅ โˆ’ ๐‘ฆ๐‘›โˆ’Re๐›ผ๐‘

    ๐‘‘๐‘ฆ

    =1

    ฮ“๐‘›(๐›ผ)

    โˆž

    โˆ‘

    ๐‘˜=๐›พ+1

    โˆซ๐‘†๐‘˜

    ๐‘“ (๐‘ฆ)

    ๐‘ฅ โˆ’ ๐‘ฆ๐‘›โˆ’Re๐›ผ๐‘

    ๐‘‘๐‘ฆ

    =1

    ฮ“๐‘›(๐›ผ)

    โˆž

    โˆ‘

    ๐‘˜=๐›พ+1

    โˆซ๐‘†๐‘˜

    ๐‘โˆ’๐‘˜(๐‘›โˆ’Re๐›ผ) ๐‘“ (๐‘ฆ)

    ๐‘‘๐‘ฆ

    โ‰ค1

    ฮ“๐‘›(๐›ผ)

    โˆž

    โˆ‘

    ๐‘˜=๐›พ+1

    ๐‘โˆ’๐‘˜(๐‘›โˆ’Re๐›ผ)

    (โˆซ๐ต๐‘˜

    ๐‘“ (๐‘ฆ)๐‘ž

    ๐‘‘๐‘ฆ)

    1/๐‘ž

    ๐ต๐‘˜1โˆ’1/๐‘ž

    ๐ป

    โ‰ค1

    ฮ“๐‘›(๐›ผ)

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›

    ๐‘)

    โˆž

    โˆ‘

    ๐‘˜=๐›พ+1

    ๐‘โˆ’๐‘˜(๐‘›โˆ’Re๐›ผ) ๐ต๐‘˜

    1+๐œ†

    ๐ป

    โ‰ค ๐ถ๐ต๐›พ

    ๐œ‡

    ๐ป

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›

    ๐‘).

    (20)

    The last inequality is due to the fact that ๐œ† < โˆ’Re๐›ผ/๐‘›.Consequently,

    ๐ผ๐ผ = (1

    ๐ต๐›พ

    1+๐œ‡๐‘Ÿ

    ๐ป

    โˆซ๐ต๐›พ

    ๐ผ๐‘

    ๐›ผ(๐‘“๐œ’๐ต๐‘

    ๐›พ

    ) (๐‘ฅ)

    ๐‘Ÿ

    ๐‘‘๐‘ฅ)

    1/๐‘Ÿ

    โ‰ค ๐ถ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›

    ๐‘).

    (21)

    The above estimates imply that

    ๐ผ๐‘

    ๐›ผ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘Ÿ,๐œ‡(Q๐‘›

    ๐‘)โ‰ค ๐ถ

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›

    ๐‘). (22)

  • 4 Journal of Function Spaces

    (ii) If ๐‘ž = 1, set ๐‘“1= ๐‘“๐œ’๐ต๐›พ

    and ๐‘“2= ๐‘“ โˆ’ ๐‘“

    1; by Lemma 8,

    we have{๐‘ฅ โˆˆ ๐ต

    ๐›พ:๐ผ๐‘

    ๐›ผ๐‘“1(๐‘ฅ) > ๐‘ก}

    ๐ป

    โ‰ค ๐ถ(

    ๐‘“1๐ฟ1(Q๐‘›

    ๐‘)

    ๐‘ก)

    ๐‘Ÿ

    = ๐ถ๐‘กโˆ’๐‘Ÿ

    (โˆซ๐ต๐›พ

    ๐‘“ (๐‘ฅ) ๐‘‘๐‘ฅ)

    ๐‘Ÿ

    โ‰ค ๐ถ๐‘กโˆ’๐‘Ÿ๐ต๐›พ

    (1+๐œ†)๐‘Ÿ

    ๐ป

    ๐‘“๐‘Ÿ

    ๏ฟฝฬ‡๏ฟฝ1,๐œ†(Q๐‘›๐‘)

    = ๐ถ๐‘กโˆ’๐‘Ÿ๐ต๐›พ

    1+๐œ‡๐‘Ÿ

    ๐ป

    ๐‘“๐‘Ÿ

    ๏ฟฝฬ‡๏ฟฝ1,๐œ†(Q๐‘›๐‘).

    (23)

    On the other hand, by the same estimate as (30), we have

    ๐ผ๐‘

    ๐›ผ๐‘“2(๐‘ฅ) โ‰ค ๐ถ

    ๐ต๐›พ

    ๐œ‡

    ๐ป

    ๐‘“2๏ฟฝฬ‡๏ฟฝ1,๐œ†(Q๐‘›

    ๐‘). (24)

    Then using Chebyshevโ€™s inequality, we obtain

    {๐‘ฅ โˆˆ ๐ต

    ๐›พ:๐ผ๐‘

    ๐›ผ๐‘“2(๐‘ฅ) > ๐‘ก}

    ๐ปโ‰ค ๐‘กโˆ’๐‘Ÿ

    โˆซ๐ต๐›พ

    ๐ผ๐‘

    ๐›ผ๐‘“2(๐‘ฅ)๐‘Ÿ

    ๐‘‘๐‘ฅ

    โ‰ค ๐ถ๐‘กโˆ’๐‘Ÿ๐ต๐›พ

    1+๐œ‡๐‘Ÿ

    ๐ป

    ๐‘“2๐‘Ÿ

    ๏ฟฝฬ‡๏ฟฝ1,๐œ†(Q๐‘›๐‘)

    โ‰ค ๐ถ๐‘กโˆ’๐‘Ÿ๐ต๐›พ

    1+๐œ‡๐‘Ÿ

    ๐ป

    ๐‘“๐‘Ÿ

    ๏ฟฝฬ‡๏ฟฝ1,๐œ†(Q๐‘›๐‘).

    (25)

    Since๐ผ๐‘

    ๐›ผ๐‘“ (๐‘ฅ)

    โ‰ค๐ผ๐‘

    ๐›ผ๐‘“1(๐‘ฅ) +๐ผ๐‘

    ๐›ผ๐‘“2(๐‘ฅ) , (26)

    we get

    {๐‘ฅ โˆˆ ๐ต

    ๐›พ:๐ผ๐‘

    ๐›ผ๐‘“ (๐‘ฅ)

    > ๐‘ก}๐ปโ‰ค{๐‘ฅ โˆˆ ๐ต

    ๐›พ:๐ผ๐‘

    ๐›ผ๐‘“1(๐‘ฅ) >

    ๐‘ก

    2}๐ป

    +{๐‘ฅ โˆˆ ๐ต

    ๐›พ:๐ผ๐‘

    ๐›ผ๐‘“2(๐‘ฅ) >

    ๐‘ก

    2}๐ป

    โ‰ค ๐ถ๐‘กโˆ’๐‘Ÿ๐ต๐›พ

    1+๐œ‡๐‘Ÿ

    ๐ป

    ๐‘“๐‘Ÿ

    ๏ฟฝฬ‡๏ฟฝ1,๐œ†(Q๐‘›๐‘).

    (27)

    Therefore,

    (๐‘ก๐‘Ÿ{๐‘ฅ โˆˆ ๐ต

    ๐›พ:๐ผ๐‘

    ๐›ผ๐‘“ (๐‘ฅ)

    > ๐‘ก}๐ป

    ๐ต๐›พ

    1+๐œ‡๐‘Ÿ

    ๐ป

    )

    1/๐‘Ÿ

    โ‰ค ๐ถ๐‘“๏ฟฝฬ‡๏ฟฝ1,๐œ†(Q๐‘›

    ๐‘), (28)

    for any ๐‘ก > 0 and ๐›พ โˆˆ Z. This completes the proof.

    For application, we now introduce a pseudo-differentialoperator๐ท๐›ผ defined by Vladimirov in [33].

    The operator ๐ท๐›ผ : ๐œ“ โ†’ ๐ท๐›ผ๐œ“ is defined as convolutionof generalized functions ๐‘“

    โˆ’๐›ผand ๐œ“:

    ๐ท๐›ผ

    ๐œ“ = ๐‘“โˆ’๐›ผโˆ— ๐œ“, ๐›ผ ฬธ= โˆ’1, (29)

    where ๐‘“๐›ผ= |๐‘ฅ|๐›ผโˆ’1

    ๐‘/ฮ“(๐›ผ) and ฮ“(๐›ผ) = (1 โˆ’ ๐‘๐›ผโˆ’1)/(1 โˆ’ ๐‘โˆ’๐›ผ).

    Let us consider the equation

    ๐ท๐›ผ

    ๐œ“ = ๐‘”, ๐‘” โˆˆ E

    , (30)

    where E is the space of linear continuous functionals on Eand here E denotes the set of locally constant functions onQ๐‘. A complex-valued function ๐‘“(๐‘ฅ) defined onQ

    ๐‘is called

    locally constant if for any point ๐‘ฅ โˆˆ Q๐‘there exists an integer

    ๐‘™(๐‘ฅ) โˆˆ Z such that

    ๐‘“ (๐‘ฅ + ๐‘ฅ

    ) = ๐‘“ (๐‘ฅ) ,

    ๐‘ฅ๐‘โ‰ค ๐‘๐‘™(๐‘ฅ)

    .

    (31)

    The following lemma (page 154 in [10]) gives solutions of(30).

    Lemma 9. For ๐›ผ > 0 any solution of (30) is expressed by theformula

    ๐œ“ = ๐ทโˆ’๐›ผ

    ๐‘” + ๐ถ, (32)

    where ๐ถ is an arbitrary constant; for ๐›ผ < 0 a solution of (30) isunique and it is expressed by formula (32) for ๐ถ = 0.

    Combining with Theorem 7, we obtain the followingregular property of the solution.

    Corollary 10. Let 0 < ๐›ผ < 1 and let 1 โ‰ค ๐‘ž < 1/๐›ผ, 0 < 1/๐‘Ÿ =1/๐‘ž โˆ’ ๐›ผ, ๐œ† < โˆ’๐›ผ, and ๐œ‡ = ๐œ† + ๐›ผ. If ๐‘” โˆˆ E โˆฉ ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›

    ๐‘), then

    (i) when ๐‘ž > 1, (30) has a solution in ๏ฟฝฬ‡๏ฟฝ๐‘Ÿ,๐œ‡(Q๐‘›๐‘),

    (ii) when ๐‘ž = 1, (30) has a solution in๐‘Š๏ฟฝฬ‡๏ฟฝ๐‘Ÿ,๐œ‡(Q๐‘›๐‘).

    3. Commutators of ๐‘-Adic Riesz Potential

    In this section, we will establish the ๐œ†-central BMO estimatesfor commutators ๐ผ๐‘,๐‘

    ๐›ผof ๐‘-adic Riesz potential which is

    defined by

    ๐ผ๐‘,๐‘

    ๐›ผ๐‘“ = ๐‘๐ผ

    ๐‘

    ๐›ผ๐‘“ โˆ’ ๐ผ๐‘

    ๐›ผ(๐‘๐‘“) , (33)

    for some suitable functions ๐‘“.

    Theorem 11. Suppose 0 < Re๐›ผ < ๐‘›, 1 < ๐‘ž1< ๐‘›/Re๐›ผ, ๐‘ž

    1<

    ๐‘ž2< โˆž, and 1/๐‘ž = 1/๐‘ž

    1+ 1/๐‘ž2โˆ’ Re๐›ผ/๐‘›. Let 0 โ‰ค ๐œ†

    2< 1/๐‘›,

    ๐œ†1satisfies ๐œ†

    1< โˆ’๐œ†2โˆ’ Re๐›ผ/๐‘›, and ๐œ† = ๐œ†

    1+ ๐œ†2+ Re๐›ผ/๐‘›. If

    ๐‘ โˆˆ ๐ถ๐ต๐‘€๐‘‚๐‘ž2,๐œ†2(Q๐‘›๐‘), then ๐ผ๐‘,๐‘

    ๐›ผis bounded from ๏ฟฝฬ‡๏ฟฝ๐‘ž1 ,๐œ†1(Q๐‘›

    ๐‘) to

    ๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†

    (Q๐‘›๐‘), and the following inequality holds:

    ๐ผ๐‘,๐‘

    ๐›ผ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›

    ๐‘)

    โ‰ค ๐ถ โ€–๐‘โ€–๐ถ๐ต๐‘€๐‘‚

    ๐‘ž2,๐œ†2 (Q๐‘›๐‘)

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘). (34)

    Before proving this theorem,we need the following result.

    Lemma 12 (see [31]). Suppose that ๐‘ โˆˆ ๐ถ๐ต๐‘€๐‘‚๐‘ž,๐œ†(Q๐‘›๐‘) and

    ๐‘—, ๐‘˜ โˆˆ Z, ๐œ† โ‰ฅ 0. Then๐‘๐ต๐‘—

    โˆ’ ๐‘๐ต๐‘˜

    โ‰ค ๐‘๐‘› ๐‘— โˆ’ ๐‘˜

    โ€–๐‘โ€–๐ถ๐ต๐‘€๐‘‚๐‘ž,๐œ†(Q๐‘›๐‘)max {๐ต๐‘—

    ๐œ†

    ๐ป

    ,๐ต๐‘˜๐œ†

    ๐ป} .

    (35)

  • Journal of Function Spaces 5

    Proof of Theorem 11. Suppose that ๐‘“ is a function in๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1(Q๐‘›๐‘). For fixed ๐›พ โˆˆ Z, denote ๐ต

    ๐›พ(0) by ๐ต

    ๐›พ. We write

    (1

    ๐ต๐›พ

    ๐ป

    โˆซ๐ต๐›พ

    ๐ผ๐‘,๐‘

    ๐›ผ๐‘“ (๐‘ฅ)

    ๐‘ž

    ๐‘‘๐‘ฅ)

    1/๐‘ž

    โ‰ค (1

    ๐ต๐›พ

    ๐ป

    โˆซ๐ต๐›พ

    (๐‘ (๐‘ฅ) โˆ’ ๐‘

    ๐ต๐›พ

    ) (๐ผ๐‘

    ๐›ผ๐‘“๐œ’๐ต๐›พ

    ) (๐‘ฅ)

    ๐‘ž

    ๐‘‘๐‘ฅ)

    1/๐‘ž

    + (1

    ๐ต๐›พ

    ๐ป

    โˆซ๐ต๐›พ

    (๐‘ (๐‘ฅ) โˆ’ ๐‘

    ๐ต๐›พ

    ) (๐ผ๐‘

    ๐›ผ๐‘“๐œ’๐ต๐‘

    ๐›พ

    ) (๐‘ฅ)

    ๐‘ž

    ๐‘‘๐‘ฅ)

    1/๐‘ž

    + (1

    ๐ต๐›พ

    ๐ป

    โˆซ๐ต๐›พ

    ๐ผ๐‘

    ๐›ผ((๐‘ โˆ’ ๐‘

    ๐ต๐›พ

    )๐‘“๐œ’๐ต๐›พ

    ) (๐‘ฅ)

    ๐‘ž

    ๐‘‘๐‘ฅ)

    1/๐‘ž

    + (1

    ๐ต๐›พ

    ๐ป

    โˆซ๐ต๐›พ

    ๐ผ๐‘

    ๐›ผ((๐‘ โˆ’ ๐‘

    ๐ต๐›พ

    )๐‘“๐œ’๐ต๐‘

    ๐›พ

    ) (๐‘ฅ)

    ๐‘ž

    ๐‘‘๐‘ฅ)

    1/๐‘ž

    := ๐ฝ1+ ๐ฝ2+ ๐ฝ3+ ๐ฝ4.

    (36)

    Set 1/๐‘Ÿ = 1/๐‘ž1โˆ’ Re๐›ผ/๐‘›; then 1/๐‘ž = 1/๐‘ž

    2+ 1/๐‘Ÿ; by

    Lemma 8 and Hoฬˆlderโ€™s inequality, we have

    ๐ฝ1= (

    1๐ต๐›พ

    ๐ป

    โˆซ๐ต๐›พ

    (๐‘ (๐‘ฅ) โˆ’ ๐‘

    ๐ต๐›พ

    ) (๐ผ๐‘

    ๐›ผ๐‘“๐œ’๐ต๐›พ

    ) (๐‘ฅ)

    ๐‘ž

    ๐‘‘๐‘ฅ)

    1/๐‘ž

    โ‰ค๐ต๐›พ

    โˆ’1/๐‘ž

    ๐ป

    (โˆซ๐ต๐›พ

    ๐‘ (๐‘ฅ) โˆ’ ๐‘

    ๐ต๐›พ

    ๐‘ž2

    ๐‘‘๐‘ฅ)

    1/๐‘ž2

    โ‹… (โˆซ๐ต๐›พ

    ๐ผ๐‘

    ๐›ผ(๐‘“๐œ’๐ต๐›พ

    ) (๐‘ฅ)

    ๐‘Ÿ

    ๐‘‘๐‘ฅ)

    1/๐‘Ÿ

    โ‰ค ๐ถ๐ต๐›พ

    โˆ’1/๐‘Ÿ+๐œ†2

    ๐ป

    โ€–๐‘โ€–CBMO๐‘ž2,๐œ†2 (Q๐‘›๐‘)

    โ‹… (โˆซ๐ต๐›พ

    ๐‘“๐œ’๐ต๐›พ

    (๐‘ฅ)

    ๐‘ž1

    ๐‘‘๐‘ฅ)

    1/๐‘ž1

    โ‰ค ๐ถ๐ต๐›พ

    ๐œ†

    ๐ป

    โ€–๐‘โ€–CBMO๐‘ž2,๐œ†2 (Q๐‘›๐‘)

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘).

    (37)

    Similarly, denote 1/๐‘™ = 1/๐‘ž1+ 1/๐‘ž

    2; then 1/๐‘ž = 1/๐‘™ โˆ’

    Re๐›ผ/๐‘›, and by Hoฬˆlderโ€™s inequality and Lemma 8, we get

    ๐ฝ3= (

    1๐ต๐›พ

    ๐ป

    โˆซ๐ต๐›พ

    ๐ผ๐‘

    ๐›ผ((๐‘ โˆ’ ๐‘

    ๐ต๐›พ

    )๐‘“๐œ’๐ต๐›พ

    ) (๐‘ฅ)

    ๐‘ž

    ๐‘‘๐‘ฅ)

    1/๐‘ž

    โ‰ค ๐ถ๐ต๐›พ

    โˆ’1/๐‘ž

    ๐ป

    (โˆซ๐ต๐›พ

    (๐‘ (๐‘ฅ) โˆ’ ๐‘

    ๐ต๐›พ

    )๐‘“ (๐‘ฅ)

    ๐‘™

    ๐‘‘๐‘ฅ)

    1/๐‘™

    โ‰ค ๐ถ๐ต๐›พ

    โˆ’1/๐‘ž

    ๐ป

    (โˆซ๐ต๐›พ

    ๐‘ (๐‘ฅ) โˆ’ ๐‘

    ๐ต๐›พ

    ๐‘ž2

    ๐‘‘๐‘ฅ)

    1/๐‘ž2

    โ‹… (โˆซ๐ต๐›พ

    ๐‘“ (๐‘ฅ)๐‘ž1

    ๐‘‘๐‘ฅ)

    1/๐‘ž1

    โ‰ค ๐ถ๐ต๐›พ

    ๐œ†

    ๐ป

    โ€–๐‘โ€–CBMO๐‘ž2,๐œ†2 (Q๐‘›๐‘)

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘).

    (38)

    To estimate ๐ฝ2and ๐ฝ

    4, we firstly give the following

    estimates. For ๐‘ฅ โˆˆ ๐ต๐›พ, by Hoฬˆlderโ€™s inequality, we obtain

    ๐ผ๐‘

    ๐›ผ(๐‘“๐œ’๐ต๐‘

    ๐›พ

    ) (๐‘ฅ)

    =

    1

    ฮ“๐‘›(๐›ผ)

    โˆซ๐ต๐‘

    ๐›พ

    ๐‘“ (๐‘ฆ)

    ๐‘ฅ โˆ’ ๐‘ฆ๐‘›โˆ’๐›ผ

    ๐‘

    ๐‘‘๐‘ฆ

    โ‰ค1

    ฮ“๐‘›(๐›ผ)

    โˆซ๐ต๐‘

    ๐›พ

    ๐‘“ (๐‘ฆ)

    ๐‘ฅ โˆ’ ๐‘ฆ๐‘›โˆ’Re๐›ผ๐‘

    ๐‘‘๐‘ฆ

    =1

    ฮ“๐‘›(๐›ผ)

    โˆž

    โˆ‘

    ๐‘˜=๐›พ+1

    โˆซ๐‘†๐‘˜

    ๐‘“ (๐‘ฆ) ๐‘โˆ’๐‘˜(๐‘›โˆ’Re๐›ผ)

    ๐‘‘๐‘ฆ

    โ‰ค1

    ฮ“๐‘›(๐›ผ)

    โˆž

    โˆ‘

    ๐‘˜=๐›พ+1

    ๐‘โˆ’๐‘˜(๐‘›โˆ’Re๐›ผ) ๐ต๐‘˜

    1โˆ’1/๐‘ž

    1

    ๐ป(โˆซ๐‘†๐‘˜

    ๐‘“ (๐‘ฆ)๐‘ž1

    ๐‘‘๐‘ฆ)

    1/๐‘ž1

    โ‰ค1

    ฮ“๐‘›(๐›ผ)

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘)

    โˆž

    โˆ‘

    ๐‘˜=๐›พ+1

    ๐‘โˆ’๐‘˜(๐‘›โˆ’Re๐›ผ) ๐ต๐‘˜

    1+๐œ†1

    ๐ป

    =1

    ฮ“๐‘›(๐›ผ)

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘)

    ๐‘(๐›พ+1)(๐‘›๐œ†

    1+Re๐›ผ)

    1 โˆ’ ๐‘๐‘›๐œ†1+Re๐›ผ

    = ๐ถ๐ต๐›พ

    ๐œ†1+Re๐›ผ/๐‘›๐ป

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘),

    (39)

    where the penultimate โ€œ=โ€ is due to the fact that ๐œ†1+Re๐›ผ/๐‘› <

    โˆ’๐œ†2โ‰ค 0. Similarly,

    ๐ผ๐‘

    ๐›ผ((๐‘ โˆ’ ๐‘

    ๐ต๐›พ

    )๐‘“๐œ’๐ต๐‘

    ๐›พ

    ) (๐‘ฅ)

    =

    1

    ฮ“๐‘›(๐›ผ)

    โˆซ๐ต๐‘

    ๐›พ

    (๐‘ (๐‘ฆ) โˆ’ ๐‘๐ต๐›พ

    )๐‘“ (๐‘ฆ)

    ๐‘ฅ โˆ’ ๐‘ฆ๐‘›โˆ’๐›ผ

    ๐‘

    ๐‘‘๐‘ฆ

    โ‰ค1

    ฮ“๐‘›(๐›ผ)

    โˆซ๐ต๐‘

    ๐›พ

    ๐‘ (๐‘ฆ) โˆ’ ๐‘

    ๐ต๐›พ

    ๐‘“ (๐‘ฆ)

    ๐‘ฅ โˆ’ ๐‘ฆ๐‘›โˆ’Re๐›ผ๐‘

    ๐‘‘๐‘ฆ

    =1

    ฮ“๐‘›(๐›ผ)

    โˆž

    โˆ‘

    ๐‘˜=๐›พ+1

    โˆซ๐‘†๐‘˜

    ๐‘ (๐‘ฆ) โˆ’ ๐‘

    ๐ต๐›พ

    ๐‘“ (๐‘ฆ) ๐‘โˆ’๐‘˜(๐‘›โˆ’Re๐›ผ)

    ๐‘‘๐‘ฆ

    =1

    ฮ“๐‘›(๐›ผ)

    โˆž

    โˆ‘

    ๐‘˜=๐›พ+1

    ๐‘โˆ’๐‘˜(๐‘›โˆ’Re๐›ผ) ๐ต๐‘˜

    1โˆ’1/๐‘ž

    1โˆ’1/๐‘ž2

    ๐ป

    โ‹… (โˆซ๐‘†๐‘˜

    ๐‘“ (๐‘ฆ)๐‘ž1

    ๐‘‘๐‘ฆ)

    1/๐‘ž1

    (โˆซ๐‘†๐‘˜

    ๐‘ (๐‘ฆ) โˆ’ ๐‘

    ๐ต๐›พ

    ๐‘ž2

    ๐‘‘๐‘ฆ)

    1/๐‘ž2

    โ‰ค1

    ฮ“๐‘›(๐›ผ)

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘)

    โˆž

    โˆ‘

    ๐‘˜=๐›พ+1

    ๐‘โˆ’๐‘˜(๐‘›โˆ’Re๐›ผ) ๐ต๐‘˜

    1โˆ’1/๐‘ž

    2+๐œ†1

    ๐ป

    โ‹… (โˆซ๐ต๐‘˜

    ๐‘ (๐‘ฆ) โˆ’ ๐‘

    ๐ต๐›พ

    ๐‘ž2

    ๐‘‘๐‘ฆ)

    1/๐‘ž2

    โ‰ค1

    ฮ“๐‘›(๐›ผ)

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘)

    โˆž

    โˆ‘

    ๐‘˜=๐›พ+1

    ๐‘โˆ’๐‘˜(๐‘›โˆ’Re๐›ผ) ๐ต๐‘˜

    1โˆ’1/๐‘ž

    2+๐œ†1

    ๐ป

    ร— [(โˆซ๐ต๐‘˜

    ๐‘ (๐‘ฆ) โˆ’ ๐‘

    ๐ต๐‘˜

    ๐‘ž2

    ๐‘‘๐‘ฆ)

    1/๐‘ž2

    +๐‘๐ต๐‘˜

    โˆ’ ๐‘๐ต๐›พ

    ๐ต๐‘˜1/๐‘ž2

    ๐ป] .

    (40)

  • 6 Journal of Function Spaces

    Since ๐‘˜ โ‰ฅ ๐›พ + 1, by Lemma 12, we have๐‘๐ต๐‘˜

    โˆ’ ๐‘๐ต๐›พ

    โ‰ค ๐‘๐‘›

    (๐‘˜ โˆ’ ๐›พ) โ€–๐‘โ€–CBMO๐‘ž2,๐œ†2 (Q๐‘›๐‘)

    ๐ต๐‘˜๐œ†2

    ๐ป. (41)

    Thus๐ผ๐‘

    ๐›ผ((๐‘ โˆ’ ๐‘

    ๐ต๐›พ

    )๐‘“๐œ’๐ต๐‘

    ๐›พ

    ) (๐‘ฅ)

    โ‰ค1

    ฮ“๐‘›(๐›ผ)

    โ€–๐‘โ€–CBMO๐‘ž2,๐œ†2 (Q๐‘›๐‘)

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘)

    ร—

    โˆž

    โˆ‘

    ๐‘˜=๐›พ+1

    ๐‘โˆ’๐‘˜(๐‘›โˆ’Re๐›ผ) ๐ต๐‘˜

    1โˆ’1/๐‘ž

    2+๐œ†1

    ๐ป

    โ‹… [๐ต๐‘˜1/๐‘ž2+๐œ†2

    ๐ป+ ๐‘๐‘›

    (๐‘˜ โˆ’ ๐›พ)๐ต๐‘˜1/๐‘ž2+๐œ†2

    ๐ป]

    โ‰ค๐ถ

    ฮ“๐‘›(๐›ผ)

    โ€–๐‘โ€–CBMO๐‘ž2,๐œ†2 (Q๐‘›๐‘)

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘)

    โ‹…

    โˆž

    โˆ‘

    ๐‘˜=๐›พ+1

    (๐‘˜ โˆ’ ๐›พ) ๐‘โˆ’๐‘˜(๐‘›โˆ’Re๐›ผ) ๐ต๐‘˜

    1+๐œ†1+๐œ†2

    ๐ป

    โ‰ค๐ถ

    ฮ“๐‘›(๐›ผ)

    โ€–๐‘โ€–CBMO๐‘ž2,๐œ†2 (Q๐‘›๐‘)

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘)

    โˆž

    โˆ‘

    ๐‘˜=๐›พ+1

    (๐‘˜ โˆ’ ๐›พ) ๐‘๐‘˜๐‘›๐œ†

    = ๐ถ๐ต๐›พ

    ๐œ†

    ๐ป

    โ€–๐‘โ€–CBMO๐‘ž2,๐œ†2 (Q๐‘›๐‘)

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘).

    (42)

    Now by (39) and Hoฬˆlderโ€™s inequality, we obtain

    ๐ฝ2= (

    1๐ต๐›พ

    ๐ป

    โˆซ๐ต๐›พ

    (๐‘ (๐‘ฅ) โˆ’ ๐‘

    ๐ต๐›พ

    ) (๐ผ๐‘

    ๐›ผ๐‘“๐œ’๐ต๐‘

    ๐›พ

    ) (๐‘ฅ)

    ๐‘ž

    ๐‘‘๐‘ฅ)

    1/๐‘ž

    โ‰ค ๐ถ๐ต๐›พ

    ๐œ†1+Re๐›ผ/๐‘›โˆ’1/๐‘ž๐ป

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘)

    โ‹… (โˆซ๐ต๐›พ

    ๐‘ (๐‘ฅ) โˆ’ ๐‘

    ๐ต๐›พ

    ๐‘ž

    ๐‘‘๐‘ฅ)

    1/๐‘ž

    โ‰ค ๐ถ๐ต๐›พ

    ๐œ†1+Re๐›ผ/๐‘›โˆ’1/๐‘ž

    2

    ๐ป

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘)

    โ‹… (โˆซ๐ต๐›พ

    ๐‘ (๐‘ฅ) โˆ’ ๐‘

    ๐ต๐›พ

    ๐‘ž2

    ๐‘‘๐‘ฅ)

    1/๐‘ž2

    โ‰ค ๐ถ๐ต๐›พ

    ๐œ†

    ๐ป

    โ€–๐‘โ€–CBMO๐‘ž2,๐œ†2 (Q๐‘›๐‘)

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘).

    (43)

    It follows from (42) that

    ๐ฝ4= (

    1๐ต๐›พ

    ๐ป

    โˆซ๐ต๐›พ

    ๐ผ๐‘

    ๐›ผ((๐‘ โˆ’ ๐‘

    ๐ต๐›พ

    )๐‘“๐œ’๐ต๐‘

    ๐›พ

    ) (๐‘ฅ)

    ๐‘ž

    ๐‘‘๐‘ฅ)

    1/๐‘ž

    โ‰ค ๐ถ๐ต๐›พ

    ๐œ†

    ๐ป

    โ€–๐‘โ€–CBMO๐‘ž2,๐œ†2 (Q๐‘›๐‘)

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘).

    (44)

    The above estimates imply that๐ผ๐‘,๐‘

    ๐›ผ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž,๐œ†(Q๐‘›

    ๐‘)

    โ‰ค ๐ถ โ€–๐‘โ€–CBMO๐‘ž2,๐œ†2 (Q๐‘›๐‘)

    ๐‘“๏ฟฝฬ‡๏ฟฝ๐‘ž1,๐œ†1 (Q๐‘›

    ๐‘). (45)

    This completes the proof of the theorem.

    Remark 13. Since ๐‘-adic field is a kind of locally com-pact Vilenkin groups, we can further consider the Hardy-Littlewood-Sobolev inequalities on such groups, which ismore complicated and will appear elsewhere.

    Conflict of Interests

    The authors declare that there is no conflict of interestsregarding the publication of this paper.

    Acknowledgments

    This work was partially supported by NSF of China (Grantnos. 11271175, 11171345, and 11301248) and AMEP (DYSP)of Linyi University and Macao Science and TechnologyDevelopment Fund, MSAR (Ref. 018/2014/A1).

    References

    [1] L. Grafakos,Modern Fourier Analysis, vol. 250 ofGraduate Textsin Mathematics, Springer, New York, NY, USA, 2nd edition,2008.

    [2] S. Albeverio and W. Karwowski, โ€œA random walk on p-adicsโ€”the generator and its spectrum,โ€ Stochastic Processes and theirApplications, vol. 53, no. 1, pp. 1โ€“22, 1994.

    [3] V.A.Avetisov, A.H. Bikulov, S. V. Kozyrev, andV.A.Osipov, โ€œ๐‘-adicmodels of ultrametric diffusion constrained by hierarchicalenergy landscapes,โ€ Journal of Physics. A. Mathematical andGeneral, vol. 35, no. 2, pp. 177โ€“189, 2002.

    [4] S. Haran, โ€œRiesz potentials and explicit sums in arithmetic,โ€Inventiones Mathematicae, vol. 101, no. 3, pp. 697โ€“703, 1990.

    [5] A. Khrennikov, p-Adic Valued Distributions in MathematicalPhysics, Kluwer Academic Publishers, Dordrecht, The Nether-lands, 1994.

    [6] A. Khrennikov, Non-Archimedean Analysis: Quantum Para-doxes, Dynamical Systems and Biological Models, Kluwer Aca-demic Publishers, Dordrecht, The Netherlands, 1997.

    [7] A. N. Kochubei, โ€œA non-Archimedean wave equation,โ€ PacificJournal of Mathematics, vol. 235, no. 2, pp. 245โ€“261, 2008.

    [8] V. S. Varadarajan, โ€œPath integrals for a class of ๐‘-adicSchroฬˆdinger equations,โ€ Letters inMathematical Physics, vol. 39,no. 2, pp. 97โ€“106, 1997.

    [9] V. S. Vladimirov and I. V. Volovich, โ€œ๐‘-adic quantum mechan-ics,โ€ Communications in Mathematical Physics, vol. 123, no. 4,pp. 659โ€“676, 1989.

    [10] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-AdicAnalysis and Mathematical Physics. Volume I, Series on Sovietand East European Mathematics, World Scientific, Singapore,1992.

    [11] I. V. Volovich, โ€œ๐‘-adic space-time and string theory,โ€Akademiya Nauk SSSR: Teoreticheskaya i MatematicheskayaFizika, vol. 71, no. 3, pp. 337โ€“340, 1987.

    [12] I. V. Volovich, โ€œ๐‘-adic string,โ€ Classical and Quantum Gravity,vol. 4, no. 4, pp. L83โ€“L87, 1987.

    [13] S. Albeverio, A. Yu. Khrennikov, and V. M. Shelkovich, โ€œHar-monic analysis in the p-adicLizorkinspaces: fractional opera-tors, pseudo-differential equations, p-adic wavelets, Tauberiantheorems,โ€ Journal of Fourier Analysis and Applications, vol. 12,pp. 393โ€“425, 2006.

  • Journal of Function Spaces 7

    [14] N. M. Chuong and H. D. Hung, โ€œMaximal functions andweighted norm inequalities on local fields,โ€ Applied and Com-putational Harmonic Analysis, vol. 29, no. 3, pp. 272โ€“286, 2010.

    [15] N. M. Chuong, Y. V. Egorov, A. Khrennikov, Y. Meyer, andD. Mumford, Harmonic, Waveletand p-Adic Analysis, WorldScientific Publishers, Singapore, 2007.

    [16] Y.-C. Kim, โ€œCarleson measures and the BMO space on the ๐‘-adic vector space,โ€ Mathematische Nachrichten, vol. 282, no. 9,pp. 1278โ€“1304, 2009.

    [17] Y.-C. Kim, โ€œWeak type estimates of square functions associ-ated with quasiradial Bochner-Riesz means on certain Hardyspaces,โ€ Journal of Mathematical Analysis and Applications, vol.339, no. 1, pp. 266โ€“280, 2008.

    [18] Y.-C. Kim, โ€œA simple proof of the ๐‘-adic version of theSobolev embedding theorem,โ€ Communications of the KoreanMathematical Society, vol. 25, no. 1, pp. 27โ€“36, 2010.

    [19] S. Z. Lu and D. C. Yang, โ€œThe decomposition of Herz spaceson local fields and its applications,โ€ Journal of MathematicalAnalysis and Applications, vol. 196, no. 1, pp. 296โ€“313, 1995.

    [20] K. M. Rogers, โ€œA van der Corput lemma for the ๐‘-adicnumbers,โ€ Proceedings of the American Mathematical Society,vol. 133, no. 12, pp. 3525โ€“3534, 2005.

    [21] K. M. Rogers, โ€œMaximal averages along curves over the p-adicnumbers,โ€ Bulletin of the Australian Mathematical Society, vol.70, no. 3, pp. 357โ€“375, 2004.

    [22] M. H. Taibleson, Fourier Analysis on Local Fields, PrincetonUniversity Press, Princeton,NJ, USA,University of Tokyo Press,Tokyo, Japan, 1975.

    [23] S.-h. Lan, โ€œThe commutators on Herz spaces over locallycompact Vilenkin groups,โ€Advances inMathematics, vol. 35, no.5, pp. 539โ€“550, 2006.

    [24] C. Tang, โ€œThe boundedness of multilinear commutators onlocally compact Vilenkin groups,โ€ Journal of Function Spacesand Applications, vol. 4, no. 3, pp. 261โ€“273, 2006.

    [25] J. Wu, โ€œBoundedness of commutators on homogeneousMorrey-Herz spaces over locally compact Vilenkin groups,โ€Analysis in Theory and Applications, vol. 25, no. 3, pp. 283โ€“296,2009.

    [26] A. Khrennikov, โ€œ๐‘-adic valued probability measures,โ€ Indaga-tiones Mathematicae, vol. 7, no. 3, pp. 311โ€“330, 1996.

    [27] A. Khrennikov and M. Nilsson, p-Adic Deterministic and Ran-dom Dynamical Systems, Kluwer, Dordreht, The Netherlands,2004.

    [28] S. Haran, โ€œAnalytic potential theory over the ๐‘-adics,โ€ Annalesde lโ€™institut Fourier, vol. 43, no. 4, pp. 905โ€“944, 1993.

    [29] S. S. Volosivets, โ€œMaximal function and Riesz potential on ๐‘-adic linear spaces,โ€ p-Adic Numbers, Ultrametric Analysis, andApplications, vol. 5, no. 3, pp. 226โ€“234, 2013.

    [30] J. Alvarez, J. Lakey, and M. Guzmaฬn-Partida, โ€œSpaces ofbounded ๐œ†-central mean oscillation, Morrey spaces, and ๐œ†-central Carleson measures,โ€ Universitat de Barcelona. Col-lectanea Mathematica, vol. 51, no. 1, pp. 1โ€“47, 2000.

    [31] Q. Y. Wu, L. Mi, and Z. W. Fu, โ€œBoundedness of p-adic Hardyoperators and their commutatorson p-adic central Morrey andBMO spaces,โ€ Journal of Function Spaces and Applications, vol.2013, Article ID 359193, 10 pages, 2013.

    [32] Z. W. Fu, Q. Y. Wu, and S. Z. Lu, โ€œSharp estimates of p-adichardy andHardy-Littlewood-Poฬlya operators,โ€ActaMathemat-ica Sinica, vol. 29, no. 1, pp. 137โ€“150, 2013.

    [33] V. S. Vladimirov, โ€œGeneralized functions over p-adic numberfield,โ€ Uspekhi Matematicheskikh Nauk, vol. 43, pp. 17โ€“53, 1988.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of