research article new delay-dependent robust exponential ...new delay-dependent robust exponential...

19
Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2013, Article ID 268905, 18 pages http://dx.doi.org/10.1155/2013/268905 Research Article New Delay-Dependent Robust Exponential Stability Criteria of LPD Neutral Systems with Mixed Time-Varying Delays and Nonlinear Perturbations Sirada Pinjai and Kanit Mukdasai Department of Mathematics, Khon Kaen University, Khon Kaen 40002, ailand Correspondence should be addressed to Kanit Mukdasai; [email protected] Received 15 July 2013; Revised 30 September 2013; Accepted 2 October 2013 Academic Editor: Jitao Sun Copyright ยฉ 2013 S. Pinjai and K. Mukdasai. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. is paper is concerned with the problem of robust exponential stability for linear parameter-dependent (LPD) neutral systems with mixed time-varying delays and nonlinear perturbations. Based on a new parameter-dependent Lyapunov-Krasovskii functional, Leibniz-Newton formula, decomposition technique of coe๏ฌƒcient matrix, free-weighting matrices, Cauchyโ€™s inequality, modi๏ฌed version of Jensenโ€™s inequality, model transformation, and linear matrix inequality technique, new delay-dependent robust exponential stability criteria are established in terms of linear matrix inequalities (LMIs). Numerical examples are given to show the e๏ฌ€ectiveness and less conservativeness of the proposed methods. 1. Introduction Over the past decades, the problem of stability for neutral di๏ฌ€erential systems, which have delays in both their state and the derivatives of their states, has been widely investigated by many researchers, especially in the last decade. It is well known that nonlinearities, as time delays, may cause instability and poor performance of practical systems such as engineering, biology, and economics [1]. e problems of various stability and stabilization for dynamical systems with or without state delays and nonlinear perturbations have been intensively studied in the past years by many researchers of mathematics and control communities [1โ€“35]. Stability criteria for dynamical systems with time delay are generally divided into two classes: delay-independent one and delay- dependent one. Delay-independent stability criteria tend to be more conservative, especially for small size delay; such criteria do not give any information on the size of the delay. On the other hand, delay-dependent stability criteria are concerned with the size of the delay and usually provide a maximal delay size. Recently, many researchers have studied the stability problem for neutral systems with time-varying delays and nonlinear perturbations have appeared [29, 31]. Furthermore, the convergence rates are essential for the practical system; then the exponential stability analysis of time delay systems has been favorably approved in the past decades; see, for example, [3, 9, 10, 14, 18โ€“21, 25โ€“28]. In addition, many researchers have paid attention to the problem of stability for linear systems with polytope uncer- tainties. e linear systems with polytopic-type uncertainties are called linear parameter-dependent (LPD) systems. at is, the uncertain state matrices are in the polytope con- sisting of all convex combination of known matrices. Most of su๏ฌƒcient (or necessary and su๏ฌƒcient) conditions have been obtained via Lyapunov-Krasovskii theory approaches in which parameter-dependent Lyapunov-Krasovskii func- tional has been employed. ese conditions are always expressed in terms of linear matrix inequalities (LMIs). e results have been obtained for robust stability for LPD systems in which time-delay occurs in state variable; for example, [17, 18] presented su๏ฌƒcient conditions for robust

Upload: others

Post on 30-Jan-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Hindawi Publishing CorporationJournal of Applied MathematicsVolume 2013, Article ID 268905, 18 pageshttp://dx.doi.org/10.1155/2013/268905

    Research ArticleNew Delay-Dependent Robust Exponential StabilityCriteria of LPD Neutral Systems with Mixed Time-VaryingDelays and Nonlinear Perturbations

    Sirada Pinjai and Kanit Mukdasai

    Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand

    Correspondence should be addressed to Kanit Mukdasai; [email protected]

    Received 15 July 2013; Revised 30 September 2013; Accepted 2 October 2013

    Academic Editor: Jitao Sun

    Copyright ยฉ 2013 S. Pinjai and K. Mukdasai. This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properlycited.

    This paper is concernedwith the problemof robust exponential stability for linear parameter-dependent (LPD) neutral systemswithmixed time-varying delays and nonlinear perturbations. Based on a new parameter-dependent Lyapunov-Krasovskii functional,Leibniz-Newton formula, decomposition technique of coefficient matrix, free-weighting matrices, Cauchyโ€™s inequality, modifiedversion of Jensenโ€™s inequality, model transformation, and linear matrix inequality technique, new delay-dependent robustexponential stability criteria are established in terms of linear matrix inequalities (LMIs). Numerical examples are given to showthe effectiveness and less conservativeness of the proposed methods.

    1. Introduction

    Over the past decades, the problem of stability for neutraldifferential systems, which have delays in both their state andthe derivatives of their states, has been widely investigatedby many researchers, especially in the last decade. It iswell known that nonlinearities, as time delays, may causeinstability and poor performance of practical systems suchas engineering, biology, and economics [1]. The problemsof various stability and stabilization for dynamical systemswith or without state delays and nonlinear perturbations havebeen intensively studied in the past years bymany researchersof mathematics and control communities [1โ€“35]. Stabilitycriteria for dynamical systems with time delay are generallydivided into two classes: delay-independent one and delay-dependent one. Delay-independent stability criteria tend tobe more conservative, especially for small size delay; suchcriteria do not give any information on the size of the delay.On the other hand, delay-dependent stability criteria areconcerned with the size of the delay and usually provide amaximal delay size.

    Recently, many researchers have studied the stabilityproblem for neutral systems with time-varying delays andnonlinear perturbations have appeared [29, 31]. Furthermore,the convergence rates are essential for the practical system;then the exponential stability analysis of time delay systemshas been favorably approved in the past decades; see, forexample, [3, 9, 10, 14, 18โ€“21, 25โ€“28].

    In addition, many researchers have paid attention to theproblem of stability for linear systems with polytope uncer-tainties. The linear systems with polytopic-type uncertaintiesare called linear parameter-dependent (LPD) systems. Thatis, the uncertain state matrices are in the polytope con-sisting of all convex combination of known matrices. Mostof sufficient (or necessary and sufficient) conditions havebeen obtained via Lyapunov-Krasovskii theory approachesin which parameter-dependent Lyapunov-Krasovskii func-tional has been employed. These conditions are alwaysexpressed in terms of linear matrix inequalities (LMIs).The results have been obtained for robust stability for LPDsystems in which time-delay occurs in state variable; forexample, [17, 18] presented sufficient conditions for robust

  • 2 Journal of Applied Mathematics

    stability of LPD discrete-time systems with delays. Moreover,robust stability of LPD continuous-time systems with delayswas studied in [6, 19, 22, 30].

    In consequence, it is important and interesting to studythe problem of robust exponential stability for neutral sys-tems with parametric uncertainties. This paper investigatesthe robust exponential stability analysis for LPD neutralsystems with mixed time-varying delays and nonlinear per-turbations. Based on combination of Leibniz-Newton for-mula, free-weighting matrices, Cauchyโ€™s inequality, modifiedversion of Jensenโ€™s inequality, decomposition technique ofcoefficient matrix, the use of suitable parameter-dependentLyapunov-Krasovskii functional, model transformation, andlinear matrix inequality technique, new delay-dependentrobust exponential stability criteria for these systems will beobtained in terms of LMIs. Finally, numerical examples willbe given to show the effectiveness of the obtained results.

    2. Problem Formulation and Preliminaries

    We introduce some notations, a definition, and lemmas thatwill be used throughout the paper. ๐‘…+ denotes the set ofall real nonnegative numbers; ๐‘…๐‘› denotes the ๐‘›-dimensionalspace with the vector norm โ€– โ‹… โ€–; โ€–๐‘ฅโ€– denotes the Euclideanvector norm of ๐‘ฅ โˆˆ ๐‘…๐‘›; ๐‘…๐‘›ร—๐‘Ÿ denotes the set of ๐‘› ร— ๐‘Ÿreal matrices; ๐ด๐‘‡ denotes the transpose of the matrix ๐ด;๐ด is symmetric if ๐ด = ๐ด๐‘‡; ๐ผ denotes the identity matrix;๐œ†(๐ด) denotes the set of all eigenvalues of ๐ด; ๐œ†max(๐ด) =max{Re ๐œ† : ๐œ† โˆˆ ๐œ†(๐ด)}; ๐œ†min(๐ด) = min{Re ๐œ† : ๐œ† โˆˆ ๐œ†(๐ด)};๐œ†max(๐ด(๐›ผ)) = max{๐œ†max(๐ด ๐‘–) : ๐‘– = 1, 2, . . . , ๐‘}; ๐œ†min(๐ด(๐›ผ)) =min{๐œ†min(๐ด ๐‘–) : ๐‘– = 1, 2, . . . , ๐‘}; ๐ถ([โˆ’๐‘, 0], ๐‘…

    ๐‘›) denotes the

    space of all continuous vector functions mapping [โˆ’๐‘, 0] into๐‘…๐‘›, where ๐‘ = max{โ„Ž, ๐‘Ÿ}, โ„Ž, ๐‘Ÿ โˆˆ ๐‘…+; โˆ— represents the elements

    below the main diagonal of a symmetric matrix.Consider the system described by the following state

    equations of the form:

    ๏ฟฝฬ‡๏ฟฝ (๐‘ก) = ๐ด (๐›ผ) ๐‘ฅ (๐‘ก) + ๐ต (๐›ผ) ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))

    + ๐ถ (๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก)) + ๐‘“ (๐‘ก, ๐‘ฅ (๐‘ก))

    + ๐‘” (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))) + ๐‘ค (๐‘ก, ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))) , ๐‘ก > 0;

    ๐‘ฅ (๐‘ก + ๐‘ก0) = ๐œ™ (๐‘ก) , ๏ฟฝฬ‡๏ฟฝ (๐‘ก + ๐‘ก

    0) = ๐œ“ (๐‘ก) , ๐‘ก โˆˆ [โˆ’๐‘, 0] ,

    (1)

    where ๐‘ฅ(๐‘ก) โˆˆ ๐‘…๐‘› is the state variable and ๐ด(๐›ผ), ๐ต(๐›ผ), ๐ถ(๐›ผ) โˆˆ๐‘…๐‘›ร—๐‘› are uncertain matrices belonging to the polytope

    ๐ด (๐›ผ) =

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐›ผ๐‘–๐ด๐‘–, ๐ต (๐›ผ) =

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐›ผ๐‘–๐ต๐‘–, ๐ถ (๐›ผ) =

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐›ผ๐‘–๐ถ๐‘–,

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐›ผ๐‘–= 1, ๐›ผ

    ๐‘–โ‰ฅ 0, ๐ด

    ๐‘–, ๐ต๐‘–, ๐ถ๐‘–โˆˆ ๐‘…๐‘›ร—๐‘›

    , ๐‘– = 1, . . . , ๐‘.

    (2)

    โ„Ž(๐‘ก) and ๐‘Ÿ(๐‘ก) are discrete and neutral time-varying delays,respectively,

    0 โ‰ค โ„Ž (๐‘ก) โ‰ค โ„Ž, โ„Žฬ‡ (๐‘ก) โ‰ค โ„Ž๐‘‘, (3)

    0 โ‰ค ๐‘Ÿ (๐‘ก) โ‰ค ๐‘Ÿ, ฬ‡๐‘Ÿ (๐‘ก) โ‰ค ๐‘Ÿ๐‘‘, (4)

    where โ„Ž, ๐‘Ÿ, โ„Ž๐‘‘, and ๐‘Ÿ

    ๐‘‘are given positive real constants.

    Consider the initial functions ๐œ™(๐‘ก),๐œ“(๐‘ก) โˆˆ ๐ถ([โˆ’๐‘, 0], ๐‘…๐‘›)withthe norm โ€–๐œ™โ€– = sup

    ๐‘กโˆˆ[โˆ’๐‘,0]โ€–๐œ™(๐‘ก)โ€– and โ€–๐œ“โ€– = sup

    ๐‘กโˆˆ[โˆ’๐‘,0]โ€–๐œ“(๐‘ก)โ€–.

    The uncertainties ๐‘“(๐‘ก, ๐‘ฅ(๐‘ก)), ๐‘”(๐‘ก, ๐‘ฅ(๐‘ก โˆ’ โ„Ž(๐‘ก))), and ๐‘ค(๐‘ก, ๏ฟฝฬ‡๏ฟฝ(๐‘ก โˆ’๐‘Ÿ(๐‘ก))) are the nonlinear perturbations with respect to currentstate ๐‘ฅ(๐‘ก), discrete delayed state ๐‘ฅ(๐‘ก โˆ’ โ„Ž(๐‘ก)), and neutraldelayed state ๏ฟฝฬ‡๏ฟฝ(๐‘ก โˆ’ ๐‘Ÿ(๐‘ก)), respectively, and are bounded inmagnitude:

    ๐‘“๐‘‡

    (๐‘ก, ๐‘ฅ (๐‘ก)) ๐‘“ (๐‘ก, ๐‘ฅ (๐‘ก)) โ‰ค ๐œ‚2

    ๐‘ฅ๐‘‡

    (๐‘ก) ๐‘ฅ (๐‘ก) ,

    ๐‘”๐‘‡

    (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))) ๐‘” (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)))

    โ‰ค ๐œŒ2

    ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก)) ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)) ,

    ๐‘ค๐‘‡

    (๐‘ก, ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))) ๐‘ค (๐‘ก, ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก)))

    โ‰ค ๐›พ2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก)) ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก)) ,

    (5)

    where ๐œ‚, ๐œŒ, and ๐›พ are given positive real constants.In order to improve the bound of the discrete time-

    varying delayed โ„Ž(๐‘ก) in system (1), let us decompose theconstant matrix ๐ต(๐›ผ) as

    ๐ต (๐›ผ) = ๐ต1(๐›ผ) + ๐ต

    2(๐›ผ) , (6)

    where ๐ต1(๐›ผ) = โˆ‘

    ๐‘

    ๐‘–=1๐›ผ๐‘–๐ต1

    ๐‘–, ๐ต2(๐›ผ) = โˆ‘

    ๐‘

    ๐‘–=1๐›ผ๐‘–๐ต2

    ๐‘–, and โˆ‘๐‘

    ๐‘–=1๐›ผ๐‘–= 1,

    ๐›ผ๐‘–โ‰ฅ 0 with ๐ต1

    ๐‘–, ๐ต2

    ๐‘–โˆˆ ๐‘…๐‘›ร—๐‘›, ๐‘– = 1, . . . , ๐‘ being real constant

    matrices. By Leibniz-Newton formula, we have

    0 = ๐‘ฅ (๐‘ก) โˆ’ ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)) โˆ’ โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ . (7)

    By utilizing the following zero equation, we obtain

    0 = ๐บ๐‘ฅ (๐‘ก) โˆ’ ๐บ๐‘ฅ (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก)) โˆ’ ๐บโˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ , (8)

    where ๐›ฝ is a given positive real constant and ๐บ โˆˆ ๐‘…๐‘›ร—๐‘› will bechosen to guarantee the robust exponential stability of system(1). By (6), (7), and (8), system (1) can be represented by theform

    ๏ฟฝฬ‡๏ฟฝ (๐‘ก) = [๐ด (๐›ผ) + ๐ต1(๐›ผ) + ๐บ] ๐‘ฅ (๐‘ก) + ๐ต

    2(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))

    โˆ’ ๐บ๐‘ฅ (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก)) + ๐‘“ (๐‘ก, ๐‘ฅ (๐‘ก))

    + ๐‘” (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))) + ๐‘ค (๐‘ก, ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก)))

    + ๐ถ (๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก)) โˆ’ ๐ต1(๐›ผ) โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    โˆ’ ๐บโˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ .

    (9)

  • Journal of Applied Mathematics 3

    Definition 1. The system (1) is robustly exponentially stable,if there exist positive real constants ๐‘˜ and ๐‘€ such that, foreach ๐œ™(๐‘ก), ๐œ“(๐‘ก) โˆˆ ๐ถ([โˆ’๐‘, 0], ๐‘…๐‘›), the solution ๐‘ฅ(๐‘ก, ๐œ™, ๐œ“) of thesystem (1) satisfies

    ๐‘ฅ (๐‘ก, ๐œ™, ๐œ“) โ‰ค ๐‘€max {

    ๐œ™ ,๐œ“

    } ๐‘’โˆ’๐‘˜๐‘ก

    , โˆ€๐‘ก โˆˆ ๐‘…+

    . (10)

    Lemma 2 (Cauchy inequality). For any constant symmetricpositive definite matrix ๐‘ƒ โˆˆ ๐‘…๐‘›ร—๐‘› and ๐‘Ž, ๐‘ โˆˆ ๐‘…๐‘›, one has

    ยฑ2๐‘Ž๐‘‡

    ๐‘ โ‰ค ๐‘Ž๐‘‡

    ๐‘ƒ๐‘Ž + ๐‘๐‘‡

    ๐‘ƒโˆ’1

    ๐‘. (11)

    Lemma 3 (see [15]). The following inequality holds for any ๐‘Ž โˆˆ๐‘…๐‘›, ๐‘ โˆˆ ๐‘…๐‘š,๐‘,๐‘Œ โˆˆ ๐‘…๐‘›ร—๐‘š,๐‘‹ โˆˆ ๐‘…๐‘›ร—๐‘›, and ๐‘ โˆˆ ๐‘…๐‘šร—๐‘š:

    โˆ’2๐‘Ž๐‘‡

    ๐‘๐‘ โ‰ค [๐‘Ž

    ๐‘]

    ๐‘‡

    [๐‘‹ ๐‘Œ โˆ’ ๐‘

    โˆ— ๐‘][

    ๐‘Ž

    ๐‘] , (12)

    where [๐‘‹ ๐‘Œโˆ— ๐‘

    ] โ‰ฅ 0.

    Lemma4. For any constant symmetric positive definitematrix๐‘„ โˆˆ ๐‘…

    ๐‘›ร—๐‘› and โ„Ž(๐‘ก) which is discrete time-varying delayswith (3), vector function ๐œ” : [โˆ’โ„Ž, 0] โ†’ ๐‘…๐‘› such that theintegrations concerned are well defined; then

    โ„Žโˆซ

    0

    โˆ’โ„Ž

    ๐œ”๐‘‡

    (๐‘ ) ๐‘„๐œ” (๐‘ ) ๐‘‘๐‘  โ‰ฅ โˆซ

    0

    โˆ’โ„Ž(๐‘ก)

    ๐œ”๐‘‡

    (๐‘ ) ๐‘‘๐‘ ๐‘„โˆซ

    0

    โˆ’โ„Ž(๐‘ก)

    ๐œ” (๐‘ ) ๐‘‘๐‘ .

    (13)

    Proof. From Lemma 2, it is easy to see that

    โ„Žโˆซ

    0

    โˆ’โ„Ž

    ๐œ”๐‘‡

    (๐‘ ) ๐‘„๐œ” (๐‘ ) ๐‘‘๐‘  = โ„Žโˆซ

    0

    โˆ’โ„Ž(๐‘ก)

    ๐œ”๐‘‡

    (๐‘ ) ๐‘„๐œ” (๐‘ ) ๐‘‘๐‘ 

    + โ„Žโˆซ

    โˆ’โ„Ž(๐‘ก)

    โˆ’โ„Ž

    ๐œ”๐‘‡

    (๐‘ ) ๐‘„๐œ” (๐‘ ) ๐‘‘๐‘ 

    โ‰ฅ โ„Ž (๐‘ก) โˆซ

    0

    โˆ’โ„Ž(๐‘ก)

    ๐œ”๐‘‡

    (๐‘ ) ๐‘„๐œ” (๐‘ ) ๐‘‘๐‘ 

    =1

    2โˆฌ

    0

    โˆ’โ„Ž(๐‘ก)

    [๐œ”๐‘‡

    (๐‘ ) ๐‘„๐œ” (๐‘ )

    + ๐œ”๐‘‡

    (๐œ‰) ๐‘„๐œ” (๐œ‰)] ๐‘‘๐‘ ๐‘‘๐œ‰

    โ‰ฅ1

    2โˆฌ

    0

    โˆ’โ„Ž(๐‘ก)

    2๐œ”๐‘‡

    (๐‘ ) ๐‘„1/2๐‘‡

    ร— ๐‘„1/2

    ๐œ” (๐œ‰) ๐‘‘๐‘  ๐‘‘๐œ‰

    = โˆซ

    0

    โˆ’โ„Ž(๐‘ก)

    ๐œ”๐‘‡

    (๐‘ ) ๐‘‘๐‘ ๐‘„โˆซ

    0

    โˆ’โ„Ž(๐‘ก)

    ๐œ” (๐‘ ) ๐‘‘๐‘ .

    (14)

    Lemma 5. Let ๐‘ฅ(๐‘ก) โˆˆ ๐‘…๐‘› be a vector-valued function with firstorder continuous derivative entries.Then, the following integralinequality holds for any matrices ๐‘€

    ๐‘–โˆˆ ๐‘…๐‘›ร—๐‘›

    , ๐‘– = 1, 2, . . . , 5,

    and โ„Ž(๐‘ก) is discrete time-varying delays with (3) and symmetricpositive definite matrix ๐‘‹ โˆˆ ๐‘…๐‘›ร—๐‘›:

    โˆ’โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ )๐‘‹๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  โ‰ค [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    ๐‘‡

    ร— [๐‘€1+๐‘€๐‘‡

    1โˆ’๐‘€๐‘‡

    1+๐‘€2

    โˆ— โˆ’๐‘€2โˆ’๐‘€๐‘‡

    2

    ]

    ร— [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    + โ„Ž[๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    ๐‘‡

    [๐‘€3

    ๐‘€4

    โˆ— ๐‘€5

    ]

    ร— [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))] ,

    (15)

    where

    [

    [

    ๐‘‹ ๐‘€1

    ๐‘€2

    โˆ— ๐‘€3

    ๐‘€4

    โˆ— โˆ— ๐‘€5

    ]

    ]

    โ‰ฅ 0. (16)

    Proof. From the Leibniz-Newton formula, one has

    0 = ๐‘ฅ (๐‘ก) โˆ’ ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)) โˆ’ โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ (๐‘ก) ๐‘‘๐‘ . (17)

    Therefore, for any ๐ป1, ๐ป2โˆˆ ๐‘…๐‘›ร—๐‘›, the following equation is

    true:

    0 = 2 [๐‘ฅ๐‘‡

    (๐‘ก) โˆ’ ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก)) โˆ’ โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘‘๐‘ ]

    ร— [๐ป1๐‘ฅ (๐‘ก) + ๐ป

    2๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    = 2๐‘ฅ๐‘‡

    (๐‘ก)๐ป1๐‘ฅ (๐‘ก) + 2๐‘ฅ

    ๐‘‡

    (๐‘ก)๐ป2๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))

    โˆ’ 2๐‘ฅ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก))๐ป1๐‘ฅ (๐‘ก)

    โˆ’ 2๐‘ฅ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก))๐ป๐‘‡

    2๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))

    โˆ’ 2โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘‘๐‘ ๐ป1๐‘ฅ (๐‘ก)

    โˆ’ 2โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘‘๐‘ ๐ป2๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))

    = [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    ๐‘‡

    [

    [

    ๐ป1+ ๐ป๐‘‡

    1โˆ’๐ป๐‘‡

    1+ ๐ป2

    โˆ— โˆ’๐ป2โˆ’ ๐ป๐‘‡

    2

    ]

    ]

    ร— [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    โˆ’ 2โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) [๐ป1

    ๐ป2] [

    ๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))] ๐‘‘๐‘ .

    (18)

  • 4 Journal of Applied Mathematics

    Using Lemma 3 with ๐‘Ž = ๏ฟฝฬ‡๏ฟฝ(๐‘ ), ๐‘ = [ ๐‘ฅ(๐‘ก)๐‘ฅ(๐‘กโˆ’โ„Ž(๐‘ก))

    ], ๐‘ = [๐ป1

    ๐ป2], ๐‘Œ = [๐‘€

    1๐‘€2], and ๐‘ = [๐‘€3 ๐‘€4

    โˆ— ๐‘€5], we obtain

    โˆ’ 2โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) [๐ป1

    ๐ป2] [

    ๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))] ๐‘‘๐‘ 

    โ‰ค โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    [

    [

    ๏ฟฝฬ‡๏ฟฝ (๐‘ )

    ๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))

    ]

    ]

    ๐‘‡

    [

    [

    ๐‘‹ ๐‘€1โˆ’ ๐ป1

    ๐‘€2โˆ’ ๐ป2

    โˆ— ๐‘€3

    ๐‘€4

    โˆ— โˆ— ๐‘€5

    ]

    ]

    ร— [

    [

    ๏ฟฝฬ‡๏ฟฝ (๐‘ )

    ๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))

    ]

    ]

    ๐‘‘๐‘ 

    = โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ )๐‘‹๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    + [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    ๐‘‡

    ร— [๐‘€1+๐‘€๐‘‡

    1โˆ’ ๐ป1โˆ’ ๐ป๐‘‡

    1โˆ’๐‘€๐‘‡

    1+๐‘€2+ ๐ป๐‘‡

    1โˆ’ ๐ป2

    โˆ— โˆ’๐‘€2โˆ’๐‘€๐‘‡

    2+ ๐ป2+ ๐ป๐‘‡

    2

    ]

    ร— [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))] + โ„Ž (๐‘ก) [

    ๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    ๐‘‡

    [๐‘€3

    ๐‘€4

    โˆ— ๐‘€5

    ]

    ร— [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    โ‰ค โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ )๐‘‹๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  + [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    ๐‘‡

    ร— ([๐‘€1+๐‘€๐‘‡

    1โˆ’๐‘€๐‘‡

    1+๐‘€2

    โˆ— โˆ’๐‘€2โˆ’๐‘€๐‘‡

    2

    ]

    โˆ’ [๐ป1+ ๐ป๐‘‡

    1โˆ’๐ป๐‘‡

    1+ ๐ป2

    โˆ— โˆ’๐ป2โˆ’ ๐ป๐‘‡

    2

    ]) [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    + โ„Ž[๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    ๐‘‡

    [๐‘€3

    ๐‘€4

    โˆ— ๐‘€5

    ] [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))] .

    (19)

    Substituting (19) into (18), we obtain

    โˆ’โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ )๐‘‹๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  โ‰ค [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    ๐‘‡

    ร— [๐ป1+ ๐ป๐‘‡

    1โˆ’๐ป๐‘‡

    1+ ๐ป2

    โˆ— โˆ’๐ป2โˆ’ ๐ป๐‘‡

    2

    ]

    ร— [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    + [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    ๐‘‡

    ร— ([

    [

    ๐‘€1+๐‘€๐‘‡

    1โˆ’๐‘€๐‘‡

    1+๐‘€2

    โˆ— โˆ’๐‘€2โˆ’๐‘€๐‘‡

    2

    ]

    ]

    โˆ’ [๐ป1+ ๐ป๐‘‡

    1โˆ’๐ป๐‘‡

    1+ ๐ป2

    โˆ— โˆ’๐ป2โˆ’ ๐ป๐‘‡

    2

    ])

    ร— [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    + โ„Ž[๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    ๐‘‡

    [๐‘€3

    ๐‘€4

    โˆ— ๐‘€5

    ]

    ร— [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    = [๐‘ฅ(๐‘ก)

    ๐‘ฅ(๐‘ก โˆ’ โ„Ž(๐‘ก))]

    ๐‘‡

    ร— [๐‘€1+๐‘€๐‘‡

    1โˆ’๐‘€๐‘‡

    1+๐‘€2

    โˆ— โˆ’๐‘€2โˆ’๐‘€๐‘‡

    2

    ]

    ร— [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    + โ„Ž[๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    ๐‘‡

    [๐‘€3

    ๐‘€4

    โˆ— ๐‘€5

    ]

    ร— [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))] .

    (20)

    From (3), it is clear that

    โˆ’โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ )๐‘‹๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  โ‰ค โˆ’โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ )๐‘‹๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ . (21)

    From (20) and (21), the integral inequality becomes

    โˆ’โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ )๐‘‹๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  โ‰ค [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    ๐‘‡

    ร— [

    [

    ๐‘€1+๐‘€๐‘‡

    1โˆ’๐‘€๐‘‡

    1+๐‘€2

    โˆ— โˆ’๐‘€2โˆ’๐‘€๐‘‡

    2

    ]

    ]

    ร— [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    + โ„Ž[๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    ๐‘‡

    [๐‘€3

    ๐‘€4

    โˆ— ๐‘€5

    ]

    ร— [๐‘ฅ (๐‘ก)

    ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))] .

    (22)

    The proof of the theorem is complete.

  • Journal of Applied Mathematics 5

    Remark 6. In Lemma 4 and Lemma 5, we have modified themethod from [8, 33], respectively.

    3. Main results

    3.1. Robust Exponential Stability Criteria. In this section,robust exponential stability criteria dependent on mixedtime-varying delays of LPD neutral delayed system (1) withnonlinear perturbations via linear matrix inequality (LMI)approach will be presented. We introduce the followingnotations for later use:

    ๐‘ƒ๐‘—(๐›ผ) =

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐›ผ๐‘–๐‘ƒ๐‘—

    ๐‘–, ๐‘

    1(๐›ผ) =

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐›ผ๐‘–๐‘1

    ๐‘–,

    ๐‘…๐‘(๐›ผ) =

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐›ผ๐‘–๐‘…๐‘

    ๐‘–, ๐‘

    ๐‘—(๐›ผ) =

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐›ผ๐‘–๐‘๐‘—

    ๐‘–,

    ๐‘‚๐‘—(๐›ผ) =

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐›ผ๐‘–๐‘‚๐‘—

    ๐‘–, ๐‘Š

    ๐‘—(๐›ผ) =

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐›ผ๐‘–๐‘Š๐‘—

    ๐‘–,

    ๐‘€๐‘—(๐›ผ) =

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐›ผ๐‘–๐‘€๐‘—

    ๐‘–,

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐›ผ๐‘–= 1, ๐›ผ

    ๐‘–โ‰ฅ 0,

    ๐‘ƒ๐‘—

    ๐‘–, ๐‘1

    ๐‘–, ๐‘…๐‘

    ๐‘–,๐‘Š๐‘—

    ๐‘–, ๐‘๐‘—

    ๐‘–, ๐‘‚๐‘—

    ๐‘–,๐‘€๐‘—

    ๐‘–โˆˆ ๐‘…๐‘›ร—๐‘›

    ,

    ๐‘— = 1, 2, . . . , 10, ๐‘ = 1, 2, . . . , 6, ๐‘– = 1, 2, . . . , ๐‘;

    โˆ‘

    ๐‘–,๐‘—

    =

    [[[[[[[[[[[[[[[[[

    [

    ฮฃ1,1

    ๐‘–,๐‘—ฮฃ1,2

    ๐‘–,๐‘—ฮฃ1,3

    ๐‘–,๐‘—ฮฃ1,4

    ๐‘–,๐‘—ฮฃ1,5

    ๐‘–,๐‘—ฮฃ1,6

    ๐‘–,๐‘—ฮฃ1,7

    ๐‘–,๐‘—ฮฃ1,8

    ๐‘–,๐‘—ฮฃ1,9

    ๐‘–,๐‘—ฮฃ1,10

    ๐‘–,๐‘—

    โˆ— ฮฃ2,2

    ๐‘–,๐‘—ฮฃ2,3

    ๐‘–,๐‘—ฮฃ2,4

    ๐‘–,๐‘—ฮฃ2,5

    ๐‘–,๐‘—ฮฃ2,6

    ๐‘–,๐‘—ฮฃ2,7

    ๐‘–,๐‘—ฮฃ2,8

    ๐‘–,๐‘—ฮฃ2,9

    ๐‘–,๐‘—ฮฃ2,10

    ๐‘–,๐‘—

    โˆ— โˆ— ฮฃ3,3

    ๐‘–ฮฃ3,4

    ๐‘–,๐‘—ฮฃ3,5

    ๐‘–ฮฃ3,6

    ๐‘–ฮฃ3,7

    ๐‘–,๐‘—ฮฃ3,8

    ๐‘–ฮฃ3,9

    ๐‘–ฮฃ3,10

    ๐‘–

    โˆ— โˆ— โˆ— ฮฃ4,4

    ๐‘–,๐‘—ฮฃ4,5

    ๐‘–,๐‘—ฮฃ4,6

    ๐‘–,๐‘—ฮฃ4,7

    ๐‘–,๐‘—ฮฃ4,8

    ๐‘–ฮฃ4,9

    ๐‘–ฮฃ4,10

    ๐‘–

    โˆ— โˆ— โˆ— โˆ— ฮฃ5,5

    ๐‘–ฮฃ5,6

    ๐‘–ฮฃ5,7

    ๐‘–,๐‘—ฮฃ5,8

    ๐‘–ฮฃ5,9

    ๐‘–ฮฃ5,10

    ๐‘–

    โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃ6,6

    ๐‘–ฮฃ6,7

    ๐‘–,๐‘—ฮฃ6,8

    ๐‘–ฮฃ6,9

    ๐‘–ฮฃ6,10

    ๐‘–

    โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃ7,7

    ๐‘–,๐‘—ฮฃ7,8

    ๐‘–,๐‘—ฮฃ7,9

    ๐‘–,๐‘—ฮฃ7,10

    ๐‘–,๐‘—

    โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃ8,8

    ๐‘–ฮฃ8,9

    ๐‘–ฮฃ8,10

    ๐‘–

    โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃ9,9

    ๐‘–ฮฃ9,10

    ๐‘–

    โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃ10,10

    ๐‘–

    ]]]]]]]]]]]]]]]]]

    ]

    ,

    (23)

    where

    ฮฃ1,1

    ๐‘–,๐‘—= ๐ด๐‘‡

    ๐‘–๐‘ƒ1

    ๐‘—+ ๐ต1

    ๐‘–

    ๐‘‡

    ๐‘ƒ1

    ๐‘—+ ๐‘ƒ1

    ๐‘–๐ด๐‘—+ ๐‘ƒ1

    ๐‘–๐ต1

    ๐‘—+ ๐‘1

    ๐‘–+ ๐‘1

    ๐‘–

    ๐‘‡

    + ๐‘ƒ3

    ๐‘–+ ๐‘ƒ4

    ๐‘–+ โ„Ž๐‘€

    1

    ๐‘–

    ๐‘‡

    + โ„Ž๐‘€1

    ๐‘–โˆ’ ๐‘’โˆ’2๐‘˜โ„Ž

    ๐‘ƒ9

    ๐‘–

    โˆ’ ๐‘’โˆ’2๐‘˜๐›ฝโ„Ž

    ๐‘ƒ10

    ๐‘–+ โ„Ž2

    ๐‘€3

    ๐‘–+ ๐›ฝโ„Ž๐‘€

    6

    ๐‘–+ ๐›ฝโ„Ž๐‘€

    6

    ๐‘–

    ๐‘‡

    + ๐›ฝ2

    โ„Ž2

    ๐‘€8

    ๐‘–

    + ๐‘1

    ๐‘–

    ๐‘‡

    + ๐‘1

    ๐‘–+ ๐‘‚1

    ๐‘–

    ๐‘‡

    + ๐‘‚1

    ๐‘–+ ๐ด๐‘‡

    ๐‘–๐‘Š1

    ๐‘—+๐‘Š1

    ๐‘–

    ๐‘‡

    ๐ด๐‘—

    + ๐ต1

    ๐‘–

    ๐‘‡

    ๐‘Š1

    ๐‘—+๐‘Š1

    ๐‘–

    ๐‘‡

    ๐ต1

    ๐‘—+ ๐œ–1๐œ‚2

    ๐ผ + 2๐‘˜๐‘ƒ1

    ๐‘–,

    ฮฃ1,2

    ๐‘–,๐‘—= ๐‘ƒ1

    ๐‘–๐ต2

    ๐‘—โˆ’ โ„Ž๐‘€

    1

    ๐‘–

    ๐‘‡

    + โ„Ž๐‘€2

    ๐‘–+ โ„Ž2

    ๐‘€4

    ๐‘–+ ๐‘’โˆ’2๐‘˜โ„Ž

    ๐‘ƒ9

    ๐‘–

    + โ„Ž๐‘…2

    ๐‘–โˆ’ ๐‘1

    ๐‘–

    ๐‘‡

    + ๐‘2

    ๐‘–+ ๐‘‚2

    ๐‘–+๐‘Š1

    ๐‘–

    ๐‘‡

    ๐ต2

    ๐‘—

    + ๐ด๐‘‡

    ๐‘–๐‘Š2

    ๐‘—+ ๐ต1

    ๐‘–

    ๐‘‡

    ๐‘Š2

    ๐‘—,

    ฮฃ1,3

    ๐‘–,๐‘—= โˆ’๐‘1

    ๐‘–โˆ’ ๐›ฝโ„Ž๐‘€

    6

    ๐‘–

    ๐‘‡

    + ๐›ฝโ„Ž๐‘€7

    ๐‘–+ ๐›ฝโ„Ž2

    ๐‘€9

    ๐‘–+ ๐›ฝโ„Ž๐‘…

    5

    ๐‘–

    + ๐‘’โˆ’2๐‘˜๐›ฝโ„Ž

    ๐‘ƒ10

    ๐‘–+ ๐‘3

    ๐‘–โˆ’ ๐‘‚1

    ๐‘–

    ๐‘‡

    + ๐‘‚3

    ๐‘–

    + ๐ด๐‘‡

    ๐‘–๐‘Š3

    ๐‘—+ ๐ต1

    ๐‘–

    ๐‘‡

    ๐‘Š3

    ๐‘—,

    ฮฃ1,4

    ๐‘–,๐‘—= โˆ’๐‘ƒ1

    ๐‘–๐ต1

    ๐‘—โˆ’ ๐‘1

    ๐‘–

    ๐‘‡

    + ๐‘4

    ๐‘–+ ๐‘‚4

    ๐‘–

    โˆ’๐‘Š1

    ๐‘–

    ๐‘‡

    ๐ต1

    ๐‘—+ ๐ด๐‘‡

    ๐‘–๐‘Š4

    ๐‘—+ ๐ต1

    ๐‘–

    ๐‘‡

    ๐‘Š4

    ๐‘—,

    ฮฃ1,5

    ๐‘–,๐‘—= โˆ’๐‘1

    ๐‘–+ ๐‘5

    ๐‘–โˆ’ ๐‘‚1

    ๐‘–

    ๐‘‡

    + ๐‘‚5

    ๐‘–+ ๐ด๐‘‡

    ๐‘–๐‘Š5

    ๐‘—+ ๐ต1

    ๐‘–

    ๐‘‡

    ๐‘Š5

    ๐‘—,

    ฮฃ1,6

    ๐‘–,๐‘—= ๐‘6

    ๐‘–+ ๐‘‚6

    ๐‘–โˆ’๐‘Š1

    ๐‘–

    ๐‘‡

    + ๐ด๐‘‡

    ๐‘–๐‘Š6

    ๐‘—+ ๐ต1

    ๐‘–

    ๐‘‡

    ๐‘Š6

    ๐‘—,

    ฮฃ1,7

    ๐‘–,๐‘—= ๐‘ƒ1

    ๐‘–๐ถ๐‘—+ ๐‘7

    ๐‘–+ ๐‘‚7

    ๐‘–+๐‘Š1

    ๐‘–

    ๐‘‡

    ๐ถ๐‘—+ ๐ด๐‘‡

    ๐‘–๐‘Š7

    ๐‘—+ ๐ต1

    ๐‘–

    ๐‘‡

    ๐‘Š7

    ๐‘—,

    ฮฃ1,8

    ๐‘–,๐‘—= ๐‘ƒ1

    ๐‘–+ ๐‘8

    ๐‘–+ ๐‘‚8

    ๐‘–+๐‘Š1

    ๐‘–

    ๐‘‡

    + ๐ด๐‘‡

    ๐‘–๐‘Š8

    ๐‘—+ ๐ต1

    ๐‘–

    ๐‘‡

    ๐‘Š8

    ๐‘—,

    ฮฃ1,9

    ๐‘–,๐‘—= ๐‘ƒ1

    ๐‘–+ ๐‘9

    ๐‘–+ ๐‘‚9

    ๐‘–+๐‘Š1

    ๐‘–

    ๐‘‡

    + ๐ด๐‘‡

    ๐‘–๐‘Š9

    ๐‘—+ ๐ต1

    ๐‘–

    ๐‘‡

    ๐‘Š9

    ๐‘—,

    ฮฃ1,10

    ๐‘–,๐‘—= ๐‘ƒ1

    ๐‘–+ ๐‘10

    ๐‘–+ ๐‘‚10

    ๐‘–+๐‘Š1

    ๐‘–

    ๐‘‡

    + ๐ด๐‘‡

    ๐‘–๐‘Š10

    ๐‘—+ ๐ต1

    ๐‘–

    ๐‘‡

    ๐‘Š10

    ๐‘—,

    ฮฃ2,2

    ๐‘–,๐‘—= โˆ’ (1 โˆ’ โ„Ž

    ๐‘‘) ๐‘’โˆ’2๐‘˜โ„Ž

    ๐‘ƒ3

    ๐‘–โˆ’ โ„Ž๐‘€

    2

    ๐‘–

    ๐‘‡

    โˆ’ โ„Ž๐‘€2

    ๐‘–+ โ„Ž2

    ๐‘€5

    ๐‘–

    + โ„Ž2

    ๐‘…1

    ๐‘–โˆ’ 2โ„Ž๐‘…

    2

    ๐‘–โˆ’ ๐‘’โˆ’2๐‘˜โ„Ž

    ๐‘ƒ9

    ๐‘–+ ๐œ–2๐œŒ2

    ๐ผ โˆ’ ๐‘2

    ๐‘–

    ๐‘‡

    โˆ’ ๐‘2

    ๐‘–+๐‘Š2

    ๐‘–

    ๐‘‡

    ๐ต2

    ๐‘—+ ๐ต2

    ๐‘–

    ๐‘‡

    ๐‘Š2

    ๐‘—,

    ฮฃ2,3

    ๐‘–,๐‘—= โˆ’๐‘

    3

    ๐‘–โˆ’ ๐‘‚2

    ๐‘–

    ๐‘‡

    + ๐ต2

    ๐‘–

    ๐‘‡

    ๐‘Š3

    ๐‘—,

    ฮฃ2,4

    ๐‘–,๐‘—= โˆ’๐‘

    2

    ๐‘–

    ๐‘‡

    โˆ’ ๐‘4

    ๐‘–โˆ’๐‘Š2

    ๐‘–

    ๐‘‡

    ๐ต1

    ๐‘—+ ๐ต2

    ๐‘–

    ๐‘‡

    ๐‘Š4

    ๐‘—,

    ฮฃ2,5

    ๐‘–,๐‘—= โˆ’๐‘

    5

    ๐‘–โˆ’ ๐‘‚2

    ๐‘–

    ๐‘‡

    + ๐ต2

    ๐‘–

    ๐‘‡

    ๐‘Š5

    ๐‘—,

    ฮฃ2,6

    ๐‘–,๐‘—= โˆ’๐‘

    6

    ๐‘–โˆ’๐‘Š2

    ๐‘–

    ๐‘‡

    + ๐ต2

    ๐‘–

    ๐‘‡

    ๐‘Š6

    ๐‘—,

    ฮฃ2,7

    ๐‘–,๐‘—= โˆ’๐‘

    7

    ๐‘–+๐‘Š2

    ๐‘–

    ๐‘‡

    ๐ถ๐‘—+ ๐ต2

    ๐‘–

    ๐‘‡

    ๐‘Š7

    ๐‘—,

    ฮฃ2,8

    ๐‘–,๐‘—= โˆ’๐‘

    8

    ๐‘–+๐‘Š2

    ๐‘–

    ๐‘‡

    + ๐ต2

    ๐‘–

    ๐‘‡

    ๐‘Š8

    ๐‘—,

    ฮฃ2,9

    ๐‘–,๐‘—= โˆ’๐‘

    9

    ๐‘–

    ๐‘‡

    โˆ’๐‘Š2

    ๐‘–

    ๐‘‡

    + ๐ต2

    ๐‘–

    ๐‘‡

    ๐‘Š9

    ๐‘—,

    ฮฃ2,10

    ๐‘–,๐‘—= โˆ’๐‘

    10

    ๐‘–+๐‘Š2

    ๐‘–

    ๐‘‡

    + ๐ต2

    ๐‘–

    ๐‘‡

    ๐‘Š10

    ๐‘—,

    ฮฃ3,3

    ๐‘–= โˆ’ (1 โˆ’ ๐›ฝโ„Ž

    ๐‘‘) ๐‘’โˆ’2๐›ฝ๐‘˜โ„Ž

    ๐‘ƒ4

    ๐‘–โˆ’ ๐‘’โˆ’2๐›ฝ๐‘˜โ„Ž

    ๐‘ƒ10

    ๐‘–+ ๐›ฝ2

    โ„Ž2

    ๐‘…4

    ๐‘–

    โˆ’ 2๐›ฝโ„Ž๐‘…5

    ๐‘–โˆ’ ๐›ฝโ„Ž๐‘€

    7

    ๐‘–

    ๐‘‡

    โˆ’ ๐›ฝโ„Ž๐‘€7

    ๐‘–+ ๐›ฝ2

    โ„Ž2

    ๐‘€10

    ๐‘–

    โˆ’ ๐‘‚3

    ๐‘–

    ๐‘‡

    โˆ’ ๐‘‚3

    ๐‘–,

  • 6 Journal of Applied Mathematics

    ฮฃ3,4

    ๐‘–,๐‘—= โˆ’๐‘

    3

    ๐‘–

    ๐‘‡

    โˆ’ ๐‘‚4

    ๐‘–โˆ’๐‘Š3

    ๐‘–

    ๐‘‡

    ๐ต1

    ๐‘—,

    ฮฃ3,5

    ๐‘–= โˆ’๐‘‚3

    ๐‘–

    ๐‘‡

    โˆ’ ๐‘‚5

    ๐‘–, ฮฃ

    3,6

    ๐‘–= โˆ’๐‘‚9

    ๐‘–+๐‘Š3

    ๐‘–

    ๐‘‡

    ,

    ฮฃ3,7

    ๐‘–= โˆ’๐‘‚7

    ๐‘–+๐‘Š3

    ๐‘–

    ๐‘‡

    ๐ถ๐‘—, ฮฃ

    3,8

    ๐‘–= โˆ’๐‘‚8

    ๐‘–+๐‘Š3

    ๐‘–

    ๐‘‡

    ,

    ฮฃ3,9

    ๐‘–= โˆ’๐‘‚9

    ๐‘–+๐‘Š3

    ๐‘–

    ๐‘‡

    , ฮฃ3,10

    ๐‘–= โˆ’๐‘‚10

    ๐‘–+๐‘Š3

    ๐‘–

    ๐‘‡

    ,

    ฮฃ4,4

    ๐‘–,๐‘—= โˆ’๐‘’2๐‘˜โ„Ž

    ๐‘ƒ7

    ๐‘–โˆ’ ๐‘4

    ๐‘–

    ๐‘‡

    โˆ’ ๐‘4

    ๐‘–+๐‘Š4

    ๐‘–

    ๐‘‡

    ๐ต1

    ๐‘—โˆ’ ๐ต1

    ๐‘–

    ๐‘‡

    ๐‘Š4

    ๐‘—,

    ฮฃ4,5

    ๐‘–,๐‘—= โˆ’๐‘

    5

    ๐‘–โˆ’ ๐‘‚4

    ๐‘–

    ๐‘‡

    โˆ’ ๐ต1

    ๐‘–

    ๐‘‡

    ๐‘Š5

    ๐‘—,

    ฮฃ4,6

    ๐‘–,๐‘—= โˆ’๐‘

    6

    ๐‘–โˆ’๐‘Š4

    ๐‘–

    ๐‘‡

    โˆ’ ๐ต1

    ๐‘–

    ๐‘‡

    ๐‘Š6

    ๐‘—,

    ฮฃ4,7

    ๐‘–,๐‘—= โˆ’๐‘

    7

    ๐‘–+๐‘Š4

    ๐‘–

    ๐‘‡

    ๐ถ๐‘—โˆ’ ๐ต1

    ๐‘–

    ๐‘‡

    ๐‘Š7

    ๐‘—, ฮฃ

    4,8

    ๐‘–= โˆ’๐‘‚8

    ๐‘–+๐‘Š3

    ๐‘–

    ๐‘‡

    ,

    ฮฃ4,9

    ๐‘–= โˆ’๐‘‚9

    ๐‘–+๐‘Š3

    ๐‘–

    ๐‘‡

    , ฮฃ4,10

    ๐‘–= โˆ’๐‘‚10

    ๐‘–+๐‘Š3

    ๐‘–

    ๐‘‡

    ,

    ฮฃ5,5

    ๐‘–= โˆ’๐‘’2๐›ฝ๐‘˜โ„Ž

    ๐‘ƒ8

    ๐‘–โˆ’ ๐‘‚5

    ๐‘–

    ๐‘‡

    โˆ’ ๐‘‚5

    ๐‘–, ฮฃ

    5,6

    ๐‘–= โˆ’๐‘‚6

    ๐‘–โˆ’๐‘Š5

    ๐‘–

    ๐‘‡

    ,

    ฮฃ5,7

    ๐‘–,๐‘—= โˆ’๐‘‚7

    ๐‘–+๐‘Š5

    ๐‘–

    ๐‘‡

    ๐ถ๐‘—, ฮฃ

    5,8

    ๐‘–= โˆ’๐‘‚8

    ๐‘–+๐‘Š5

    ๐‘–

    ๐‘‡

    ,

    ฮฃ5,9

    ๐‘–= โˆ’๐‘‚9

    ๐‘–+๐‘Š5

    ๐‘–

    ๐‘‡

    , ฮฃ5,10

    ๐‘–= โˆ’๐‘‚10

    ๐‘–+๐‘Š5

    ๐‘–

    ๐‘‡

    ,

    ฮฃ6,6

    ๐‘–= ๐‘ƒ2

    ๐‘–+ โ„Ž2

    ๐‘ƒ5

    ๐‘–+ ๐›ฝ2

    โ„Ž2

    ๐‘ƒ6

    ๐‘–+ โ„Ž2

    ๐‘ƒ7

    ๐‘–+ ๐›ฝ2

    โ„Ž2

    ๐‘ƒ8

    ๐‘–

    + โ„Ž2

    ๐‘ƒ9

    ๐‘–+ ๐›ฝ2

    โ„Ž2

    ๐‘ƒ10

    ๐‘–โˆ’๐‘Š6

    ๐‘–

    ๐‘‡

    โˆ’๐‘Š6

    ๐‘–,

    ฮฃ6,7

    ๐‘–,๐‘—= ๐‘Š6

    ๐‘–

    ๐‘‡

    ๐ถ๐‘—โˆ’๐‘Š7

    ๐‘–, ฮฃ

    6,8

    ๐‘–= ๐‘Š6

    ๐‘–

    ๐‘‡

    โˆ’๐‘Š8

    ๐‘–,

    ฮฃ6,9

    ๐‘–= ๐‘Š6

    ๐‘–

    ๐‘‡

    โˆ’๐‘Š9

    ๐‘–, ฮฃ

    6,10

    ๐‘–= ๐‘Š6

    ๐‘–

    ๐‘‡

    โˆ’๐‘Š10

    ๐‘–,

    ฮฃ7,7

    ๐‘–,๐‘—= โˆ’ (1 โˆ’ ๐‘Ÿ

    ๐‘‘) ๐‘’โˆ’2๐‘˜๐‘Ÿ

    ๐‘ƒ2

    ๐‘–+ ๐œ–3๐›พ2

    ๐ผ + ๐‘Š7

    ๐‘–

    ๐‘‡

    ๐ถ๐‘—+ ๐ถ๐‘‡

    ๐‘–๐‘Š7

    ๐‘—,

    ฮฃ7,8

    ๐‘–,๐‘—= ๐‘Š7

    ๐‘–

    ๐‘‡

    โˆ’ ๐ถ๐‘‡

    ๐‘–๐‘Š8

    ๐‘—, ฮฃ

    7,9

    ๐‘–,๐‘—= ๐‘Š7

    ๐‘–

    ๐‘‡

    โˆ’ ๐ถ๐‘‡

    ๐‘–๐‘Š9

    ๐‘—,

    ฮฃ7,10

    ๐‘–,๐‘—= ๐‘Š7

    ๐‘–

    ๐‘‡

    โˆ’ ๐ถ๐‘‡

    ๐‘–๐‘Š10

    ๐‘—, ฮฃ

    8,8

    ๐‘–= ๐‘Š8

    ๐‘–

    ๐‘‡

    +๐‘Š8

    ๐‘–โˆ’ ๐œ–1๐ผ,

    ฮฃ8,9

    ๐‘–= ๐‘Š8

    ๐‘–

    ๐‘‡

    +๐‘Š9

    ๐‘–, ฮฃ

    8,10

    ๐‘–= ๐‘Š8

    ๐‘–

    ๐‘‡

    +๐‘Š10

    ๐‘–,

    ฮฃ9,9

    ๐‘–= ๐‘Š9

    ๐‘–

    ๐‘‡

    +๐‘Š9

    ๐‘–โˆ’ ๐œ–2๐ผ, ฮฃ

    9,10

    ๐‘–= ๐‘Š9

    ๐‘–

    ๐‘‡

    +๐‘Š10

    ๐‘–,

    ฮฃ10,10

    ๐‘–= ๐‘Š10

    ๐‘–

    ๐‘‡

    +๐‘Š10

    ๐‘–โˆ’ ๐œ–3๐ผ,

    ฬ‚ฮฃ7,7

    ๐‘–= โˆ’ (1 โˆ’ ๐‘Ÿ๐‘‘) ๐‘’

    2๐‘˜๐‘Ÿ

    ๐‘ƒ2

    ๐‘–+๐‘Š7

    ๐‘–

    ๐‘‡

    ๐ถ๐‘—+ ๐ถ๐‘‡

    ๐‘–๐‘Š7

    ๐‘—,

    ๐‘1

    ๐‘–= ๐‘ƒ1

    ๐‘–๐บ.

    (24)

    Theorem 7. For โ€–๐ถ๐‘–โ€– + ๐›พ < 1, ๐‘– = 1, 2, . . . , ๐‘ and given

    positive real constants โ„Ž, โ„Ž๐‘‘, ๐‘Ÿ, ๐‘Ÿ๐‘‘, ๐œ‚, ๐œŒ, ๐›พ, and ๐›ฝ, system (1)

    is robustly exponentially stable with a decay rate ๐‘˜, if thereexist symmetric positive definite matrices ๐‘ƒ๐‘—

    ๐‘–, any appropriate

    dimensional matrices ๐‘…๐‘๐‘–, ๐‘๐‘—๐‘–, ๐‘‚๐‘—๐‘–, ๐‘Š๐‘—๐‘–, ๐‘€๐‘—๐‘–, ๐บ, ๐‘ = 1, 2, . . . 6,

    ๐‘— = 1, 2, . . . , 10, ๐‘– = 1, 2, . . . , ๐‘, and positive real constants

    ๐œ–1, ๐œ–2, and ๐œ–

    3such that the following symmetric linear matrix

    inequalities hold:

    [

    [

    ๐‘…1

    ๐‘–๐‘…2

    ๐‘–

    โˆ— ๐‘…3

    ๐‘–

    ]

    ]

    > 0, ๐‘– = 1, 2, . . . , ๐‘,

    [

    [

    ๐‘…4

    ๐‘–๐‘…5

    ๐‘–

    โˆ— ๐‘…6

    ๐‘–

    ]

    ]

    > 0, ๐‘– = 1, 2, . . . , ๐‘,

    [

    [

    ๐‘’โˆ’2๐‘˜โ„Ž

    ๐‘ƒ3

    ๐‘–โˆ’ ๐‘…3

    ๐‘–๐‘€1

    ๐‘–๐‘€2

    ๐‘–

    โˆ— ๐‘€3

    ๐‘–๐‘€4

    ๐‘–

    โˆ— โˆ— ๐‘€5

    ๐‘–

    ]

    ]

    โ‰ฅ 0, ๐‘– = 1, 2, . . . , ๐‘,

    [

    [

    ๐‘’โˆ’2๐›ฝ๐‘˜โ„Ž

    ๐‘ƒ6

    ๐‘–โˆ’ ๐‘…6

    ๐‘–๐‘€6

    ๐‘–๐‘€7

    ๐‘–

    โˆ— ๐‘€8

    ๐‘–๐‘€9

    ๐‘–

    โˆ— โˆ— ๐‘€10

    ๐‘–

    ]

    ]

    โ‰ฅ 0, ๐‘– = 1, 2, . . . , ๐‘,

    โˆ‘

    ๐‘–,๐‘–

    < โˆ’๐ผ, ๐‘– = 1, 2, . . . , ๐‘,

    โˆ‘

    ๐‘–,๐‘—

    +โˆ‘

    ๐‘—,๐‘–

    <2

    (๐‘ โˆ’ 1)๐ผ, ๐‘– = 1, 2, . . . , ๐‘ โˆ’ 1,

    ๐‘— = ๐‘– + 1, ๐‘– + 2, . . . , ๐‘.

    (25)

    Moreover, the solution ๐‘ฅ(๐‘ก, ๐œ™, ๐œ“) satisfies the inequality

    ๐‘ฅ (๐‘ก, ๐œ™, ๐œ“) โ‰ค โˆš

    ๐ฟ

    ๐œ†min (๐‘ƒ1 (๐›ผ))max [๐œ™

    ,๐œ“

    ] ๐‘’โˆ’๐‘˜๐‘ก

    ,

    โˆ€๐‘ก โˆˆ ๐‘…+

    ,

    (26)

    where ๐ฟ = ๐œ†max(๐‘ƒ1(๐›ผ)) + ๐‘Ÿ๐œ†max(๐‘ƒ2(๐›ผ)) + โ„Ž๐œ†max(๐‘ƒ3(๐›ผ))+๐›ฝโ„Ž๐œ†max(๐‘ƒ4(๐›ผ)) + โ„Ž

    3๐œ†max(๐‘ƒ5(๐›ผ)+๐‘ƒ7(๐›ผ) + ๐‘ƒ9(๐›ผ)) +

    (๐›ฝโ„Ž)3

    ๐œ†max(๐‘ƒ6(๐›ผ)+๐‘ƒ8(๐›ผ) + ๐‘ƒ10(๐›ผ)) + โ„Ž3๐œ†max ([๐‘…1(๐›ผ) ๐‘…2(๐›ผ)

    โˆ— ๐‘…3(๐›ผ)])+

    (๐›ฝโ„Ž)3

    ๐œ†max ([๐‘…4(๐›ผ) ๐‘…5(๐›ผ)

    โˆ— ๐‘…6(๐›ผ)]).

    Proof. Choose a parameter-dependent Lyapunov-Krasovskiifunctional candidate for system (9) as

    ๐‘‰ (๐‘ก) =

    7

    โˆ‘

    ๐‘–=1

    ๐‘‰๐‘–(๐‘ก) , (27)

    where

    ๐‘‰1(๐‘ก) = ๐‘ฅ

    ๐‘‡

    (๐‘ก) ๐‘ƒ1(๐›ผ) ๐‘ฅ (๐‘ก) ,

    ๐‘‰2(๐‘ก) = โˆซ

    ๐‘ก

    ๐‘กโˆ’๐‘Ÿ(๐‘ก)

    ๐‘’2๐‘˜(๐‘ โˆ’๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ2(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ ,

    ๐‘‰3(๐‘ก) = โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๐‘’2๐‘˜(๐‘ โˆ’๐‘ก)

    ๐‘ฅ๐‘‡

    (๐‘ ) ๐‘ƒ3(๐›ผ) ๐‘ฅ (๐‘ ) ๐‘‘๐‘ 

    + โˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž(๐‘ก)

    ๐‘’2๐‘˜(๐‘ โˆ’๐‘ก)

    ๐‘ฅ๐‘‡

    (๐‘ ) ๐‘ƒ4(๐›ผ) ๐‘ฅ (๐‘ ) ๐‘‘๐‘ ,

  • Journal of Applied Mathematics 7

    ๐‘‰4(๐‘ก) = โ„Žโˆซ

    0

    โˆ’โ„Ž

    โˆซ

    ๐‘ก

    ๐‘ก+๐œƒ

    ๐‘’2๐‘˜(๐‘ โˆ’๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ5(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐œƒ

    + ๐›ฝโ„Žโˆซ

    0

    โˆ’๐›ฝโ„Ž

    โˆซ

    ๐‘ก

    ๐‘ก+๐œƒ

    ๐‘’2๐‘˜(๐‘ โˆ’๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ6(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐œƒ,

    ๐‘‰5(๐‘ก) = โ„Žโˆซ

    0

    โˆ’โ„Ž

    โˆซ

    ๐‘ก

    ๐‘ก+๐œƒ

    ๐‘’2๐‘˜(๐‘ โˆ’๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ7(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐œƒ

    + ๐›ฝโ„Žโˆซ

    0

    โˆ’๐›ฝโ„Ž

    โˆซ

    ๐‘ก

    ๐‘ก+๐œƒ

    ๐‘’2๐‘˜(๐‘ โˆ’๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ8(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐œƒ,

    ๐‘‰6(๐‘ก) = โ„Žโˆซ

    0

    โˆ’โ„Ž

    โˆซ

    ๐‘ก

    ๐‘ก+๐œƒ

    ๐‘’2๐‘˜(๐‘ โˆ’๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ9(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐œƒ

    + ๐›ฝโ„Žโˆซ

    0

    โˆ’๐›ฝโ„Ž

    โˆซ

    ๐‘ก

    ๐‘ก+๐œƒ

    ๐‘’2๐‘˜(๐‘ โˆ’๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ10(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐œƒ,

    ๐‘‰7(๐‘ก) = โ„Žโˆซ

    ๐‘ก

    โˆ’โ„Ž

    โˆซ

    ๐œƒ

    ๐œƒโˆ’โ„Ž(๐œƒ)

    ๐‘’2๐‘˜(๐œƒโˆ’๐‘ก)

    [๐‘ฅ (๐œƒ โˆ’ โ„Ž (๐œƒ))

    ๏ฟฝฬ‡๏ฟฝ (๐‘ )]

    ๐‘‡

    ร— [๐‘…1(๐›ผ) ๐‘…

    2(๐›ผ)

    โˆ— ๐‘…3(๐›ผ)

    ]

    ร— [๐‘ฅ (๐œƒ โˆ’ โ„Ž (๐œƒ))

    ๏ฟฝฬ‡๏ฟฝ (๐‘ )] ๐‘‘๐‘  ๐‘‘๐œƒ

    + ๐›ฝโ„Žโˆซ

    ๐‘ก

    โˆ’๐›ฝโ„Ž

    โˆซ

    ๐œƒ

    ๐œƒโˆ’๐›ฝโ„Ž(๐œƒ)

    ๐‘’2๐‘˜(๐œƒโˆ’๐‘ก)

    [๐‘ฅ (๐œƒ โˆ’ ๐›ฝโ„Ž (๐œƒ))

    ๏ฟฝฬ‡๏ฟฝ (๐‘ )]

    ๐‘‡

    ร— [๐‘…4(๐›ผ) ๐‘…

    5(๐›ผ)

    โˆ— ๐‘…6(๐›ผ)

    ]

    ร— [๐‘ฅ (๐œƒ โˆ’ ๐›ฝโ„Ž (๐œƒ))

    ๏ฟฝฬ‡๏ฟฝ (๐‘ )] ๐‘‘๐‘  ๐‘‘๐œƒ.

    (28)

    Calculating the time derivatives of ๐‘‰๐‘–(๐‘ก), ๐‘– = 1, 2, 3, . . . , 7,

    along the trajectory of (9), yields

    ๏ฟฝฬ‡๏ฟฝ1(๐‘ก) = 2๐‘ฅ

    ๐‘‡

    (๐‘ก) ๐‘ƒ1(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    = 2๐‘ฅ๐‘‡

    ๐‘ƒ1(๐›ผ) [ (๐ด (๐›ผ) + ๐ต

    1(๐›ผ) + ๐บ) ๐‘ฅ (๐‘ก)

    + ๐ต2(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)) โˆ’ ๐บ๐‘ฅ (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก))

    + ๐‘“ (๐‘ก, ๐‘ฅ (๐‘ก)) + ๐‘” (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)))

    + ๐‘ค (๐‘ก, ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))) + ๐ถ (๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))

    โˆ’ ๐ต1(๐›ผ) โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    โˆ’๐บโˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ ]

    + 2๐‘˜๐‘ฅ๐‘‡

    (๐‘ก) ๐‘ƒ1(๐›ผ) ๐‘ฅ (๐‘ก) โˆ’ 2๐‘˜๐‘‰

    1(๐‘ก) ,

    ๏ฟฝฬ‡๏ฟฝ2(๐‘ก) = ๏ฟฝฬ‡๏ฟฝ

    ๐‘‡

    (๐‘ก) ๐‘ƒ2(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ (1 โˆ’ ฬ‡๐‘Ÿ (๐‘ก)) ๐‘’โˆ’2๐‘˜๐‘Ÿ(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))

    ร— ๐‘ƒ2(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก)) โˆ’ 2๐‘˜๐‘‰

    2(๐‘ก)

    โ‰ค ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ2(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก) โˆ’ ๐‘’

    โˆ’2๐‘˜๐‘Ÿ

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))

    ร— ๐‘ƒ2(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))

    + ๐‘Ÿ๐‘‘๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก)) ๐‘ƒ2(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))

    โˆ’ 2๐‘˜๐‘‰2(๐‘ก) .

    (29)

    The time derivative of ๐‘‰3(๐‘ก) is

    ๏ฟฝฬ‡๏ฟฝ3(๐‘ก) = ๐‘ฅ

    ๐‘‡

    (๐‘ก) ๐‘ƒ3(๐›ผ) ๐‘ฅ (๐‘ก) โˆ’ (1 โˆ’ โ„Žฬ‡ (๐‘ก)) ๐‘’

    โˆ’2๐‘˜โ„Ž(๐‘ก)

    ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก))

    ร— ๐‘ƒ3(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)) + ๐‘ฅ

    ๐‘‡

    (๐‘ก) ๐‘ƒ4(๐›ผ) ๐‘ฅ (๐‘ก)

    โˆ’ (1 โˆ’ ๐›ฝโ„Žฬ‡ (๐‘ก)) ๐‘’โˆ’2๐‘˜๐›ฝโ„Ž(๐‘ก)

    ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก))

    ร— ๐‘ƒ4(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก)) โˆ’ 2๐‘˜๐‘‰

    3(๐‘ก)

    โ‰ค ๐‘ฅ๐‘‡

    (๐‘ก) ๐‘ƒ3(๐›ผ) ๐‘ฅ (๐‘ก) โˆ’ ๐‘’

    โˆ’2๐‘˜โ„Ž

    ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก))

    ร— ๐‘ƒ3(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)) + โ„Ž

    ๐‘‘๐‘’โˆ’2๐‘˜โ„Ž

    ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก))

    ร— ๐‘ƒ3(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)) + ๐‘ฅ

    ๐‘‡

    (๐‘ก) ๐‘ƒ4(๐›ผ) ๐‘ฅ (๐‘ก)

    โˆ’ ๐‘’โˆ’2๐›ผ๐›ฝโ„Ž

    ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก)) ๐‘ƒ4(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก))

    + ๐›ฝโ„Ž๐‘‘๐‘’โˆ’2๐‘˜๐›ฝโ„Ž

    ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก)) ๐‘ƒ4(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก))

    โˆ’ 2๐‘˜๐‘‰3(๐‘ก) .

    (30)

    Obviously, for any scalar ๐‘  โˆˆ [๐‘ก โˆ’ โ„Ž, ๐‘ก], we get ๐‘’โˆ’2๐‘˜โ„Ž โ‰ค๐‘’โˆ’2๐‘˜(๐‘ โˆ’๐‘ก)

    โ‰ค 1 and for any scalar ๐‘  โˆˆ [๐‘ก โˆ’ ๐›ฝโ„Ž, ๐‘ก], we obtain๐‘’โˆ’2๐›ฝ๐‘˜โ„Ž

    โ‰ค ๐‘’โˆ’2๐›ฝ๐‘˜(๐‘ โˆ’๐‘ก)

    โ‰ค 1. Together with Lemma 4, we obtain

    ๏ฟฝฬ‡๏ฟฝ4(๐‘ก) = โ„Ž

    2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ5(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ โ„Žโˆซ

    0

    โˆ’โ„Ž

    ๐‘’2๐‘˜๐‘ 

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก + ๐‘ ) ๐‘ƒ5(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก + ๐‘ ) ๐‘‘๐‘ 

    + ๐›ฝ2

    โ„Ž2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ6(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ ๐›ฝโ„Žโˆซ

    0

    โˆ’๐›ฝโ„Ž

    ๐‘’2๐›ฝ๐‘˜๐‘ 

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก + ๐‘ ) ๐‘ƒ6(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก + ๐‘ ) ๐‘‘๐‘ 

    โˆ’ 2๐‘˜๐‘‰4(๐‘ก)

  • 8 Journal of Applied Mathematics

    โ‰ค โ„Ž2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ5(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ โ„Žโˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž

    ๐‘’2๐‘˜(๐‘ โˆ’๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ5(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    + ๐›ฝ2

    โ„Ž2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ6(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ ๐›ฝโ„Žโˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž

    ๐‘’2๐›ฝ๐‘˜(๐‘ โˆ’๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ6(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    โˆ’ 2๐‘˜๐‘‰4(๐‘ก)

    โ‰ค โ„Ž2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ5(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ โ„Ž๐‘’โˆ’2๐‘˜โ„Ž

    โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ5(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    + ๐›ฝ2

    โ„Ž2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ6(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ ๐›ฝโ„Ž๐‘’โˆ’2๐›ฝ๐‘˜โ„Ž

    โˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ6(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    โˆ’ 2๐‘˜๐‘‰4(๐‘ก) ,

    ๏ฟฝฬ‡๏ฟฝ5(๐‘ก) โ‰ค โ„Ž

    2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ7(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ โ„Ž๐‘’โˆ’2๐‘˜โ„Ž

    โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ7(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    + ๐›ฝ2

    โ„Ž2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ8(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ ๐›ฝโ„Ž๐‘’โˆ’2๐›ฝ๐‘˜โ„Ž

    โˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ8(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    โˆ’ 2๐‘˜๐‘‰5(๐‘ก)

    โ‰ค โ„Ž2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ7(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ ๐‘’โˆ’2๐‘˜โ„Ž

    โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘‘๐‘ ๐‘ƒ7(๐›ผ)โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž

    ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    + ๐›ฝ2

    โ„Ž2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ8(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ ๐‘’โˆ’2๐›ฝ๐‘˜โ„Ž

    โˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘‘๐‘ ๐‘ƒ8(๐›ผ) โˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž

    ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    โˆ’ 2๐‘˜๐‘‰5(๐‘ก)

    โ‰ค โ„Ž2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ7(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ ๐‘’โˆ’2๐‘˜โ„Ž

    โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘‘๐‘ ๐‘ƒ7(๐›ผ) โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    + ๐›ฝ2

    โ„Ž2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ8(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ ๐‘’โˆ’2๐›ฝ๐‘˜โ„Ž

    โˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘‘๐‘ ๐‘ƒ8(๐›ผ) โˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    โˆ’ 2๐›ผ๐‘‰5(๐‘ก) ,

    ๏ฟฝฬ‡๏ฟฝ6(๐‘ก) โ‰ค โ„Ž

    2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ9(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ ๐‘’โˆ’2๐‘˜โ„Ž

    โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘‘๐‘ ๐‘ƒ9(๐›ผ) โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    + ๐›ฝ2

    โ„Ž2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ10(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ ๐‘’โˆ’2๐›ฝ๐‘˜โ„Ž

    โˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘‘๐‘ ๐‘ƒ10(๐›ผ)โˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    โˆ’ 2๐‘˜๐‘‰6(๐‘ก)

    = โ„Ž2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ9(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ ๐‘’โˆ’2๐‘˜โ„Ž

    [๐‘ฅ๐‘‡

    (๐‘ก) โˆ’ ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    ร— ๐‘ƒ9(๐›ผ) [๐‘ฅ (๐‘ก) โˆ’ ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))]

    + ๐›ฝโ„Ž2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก) ๐‘ƒ10(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก)

    โˆ’ ๐‘’โˆ’2๐›ฝ๐‘˜โ„Ž

    [๐‘ฅ๐‘‡

    (๐‘ก) โˆ’ ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก))]

    ร— ๐‘ƒ10(๐›ผ) [๐‘ฅ (๐‘ก) โˆ’ ๐‘ฅ (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก))] โˆ’ 2๐‘˜๐‘‰

    6(๐‘ก) .

    (31)

    Taking the time derivative of ๐‘‰7(๐‘ก), we obtain

    ๏ฟฝฬ‡๏ฟฝ7(๐‘ก) = โ„Žโ„Ž (๐‘ก) ๐‘ฅ

    ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก)) ๐‘…1(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))

    + 2โ„Ž๐‘ฅ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก)) ๐‘…2(๐›ผ) ๐‘ฅ (๐‘ก)

    โˆ’ 2โ„Ž๐‘ฅ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก)) ๐‘…2(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))

    + โ„Žโˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘…3(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    + ๐›ฝ2

    โ„Žโ„Ž (๐‘ก) ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก)) ๐‘…4(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก))

    + 2๐›ฝโ„Ž๐‘ฅ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก)) ๐‘…5(๐›ผ) ๐‘ฅ (๐‘ก)

    โˆ’ 2๐›ฝโ„Ž๐‘ฅ๐‘‡

    (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก)) ๐‘…5(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก))

    + ๐›ฝโ„Žโˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘…6(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  โˆ’ 2๐‘˜๐‘‰

    7(๐‘ก)

    โ‰ค โ„Ž2

    ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก)) ๐‘…1(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))

    + 2โ„Ž๐‘ฅ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก)) ๐‘…2(๐›ผ) ๐‘ฅ (๐‘ก)

    โˆ’ 2โ„Ž๐‘ฅ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก)) ๐‘…2(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))

    + โ„Žโˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘…3(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    + ๐›ฝ2

    โ„Ž2

    ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก)) ๐‘…4(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก))

    + 2๐›ฝโ„Ž๐‘ฅ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก)) ๐‘…5(๐›ผ) ๐‘ฅ (๐‘ก)

    โˆ’ 2๐›ฝโ„Ž๐‘ฅ๐‘‡

    (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก)) ๐‘…5(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก))

    + ๐›ฝโ„Žโˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘…6(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  โˆ’ 2๐‘˜๐‘‰

    7(๐‘ก) .

    (32)

  • Journal of Applied Mathematics 9

    By Lemma 5 and the integral term of the right hand sideof ๏ฟฝฬ‡๏ฟฝ4(๐‘ก) and ๏ฟฝฬ‡๏ฟฝ

    7(๐‘ก), we obtain

    โˆ’ โ„Žโˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) [๐‘’โˆ’2๐‘˜โ„Ž

    ๐‘ƒ5(๐›ผ) โˆ’ ๐‘…

    3(๐›ผ)] ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    โˆ’ ๐›ฝโ„Žโˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) [๐‘’โˆ’2๐›ฝ๐‘˜โ„Ž

    ๐‘ƒ6(๐›ผ) โˆ’ ๐‘…

    6(๐›ผ)] ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ 

    โ‰ค โ„Ž[๐‘ฅ (๐‘ก)

    ๐‘ฅ๐‘ก โˆ’ โ„Ž (๐‘ก)]

    ๐‘‡

    ร— [๐‘€๐‘‡

    1(๐›ผ) + ๐‘€

    1(๐›ผ) โˆ’๐‘€

    ๐‘‡

    1(๐›ผ) + ๐‘€

    2(๐›ผ)

    โˆ— โˆ’๐‘€๐‘‡

    2(๐›ผ) โˆ’ ๐‘€

    2(๐›ผ)

    ]

    ร— [๐‘ฅ (๐‘ก)

    ๐‘ฅ๐‘ก โˆ’ โ„Ž (๐‘ก)]

    + โ„Ž2

    [๐‘ฅ (๐‘ก)

    ๐‘ฅ๐‘ก โˆ’ โ„Ž (๐‘ก)]

    ๐‘‡

    [๐‘€3(๐›ผ) ๐‘€

    4(๐›ผ)

    โˆ— ๐‘€5(๐›ผ)

    ]

    ร— [๐‘ฅ (๐‘ก)

    ๐‘ฅ๐‘ก โˆ’ โ„Ž (๐‘ก)] + ๐›ฝโ„Ž[

    ๐‘ฅ (๐‘ก)

    ๐‘ฅ๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก)]

    ๐‘‡

    ร— [๐‘€๐‘‡

    6(๐›ผ) + ๐‘€

    6(๐›ผ) โˆ’๐‘€

    ๐‘‡

    6(๐›ผ) + ๐‘€

    7(๐›ผ)

    โˆ— โˆ’๐‘€๐‘‡

    7(๐›ผ) โˆ’ ๐‘€

    7(๐›ผ)

    ]

    ร— [๐‘ฅ (๐‘ก)

    ๐‘ฅ๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก)]

    + ๐›ฝ2

    โ„Ž2

    [๐‘ฅ (๐‘ก)

    ๐‘ฅ๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก)]

    ๐‘‡

    [๐‘€8(๐›ผ) ๐‘€

    9(๐›ผ)

    โˆ— ๐‘€10(๐›ผ)

    ]

    ร— [๐‘ฅ (๐‘ก)

    ๐‘ฅ๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก)] .

    (33)

    From the Leibniz-Newton formula, the following equa-tions are true for any parameter-dependent real matrices๐‘๐‘–(๐›ผ), ๐‘‚

    ๐‘–(๐›ผ), ๐‘– = 1, 2, . . . , 10 with appropriate dimensions:

    2 [๐‘ฅ๐‘‡

    (๐‘ก)๐‘๐‘‡

    1(๐›ผ) + ๐‘ฅ

    ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก))๐‘๐‘‡

    2(๐›ผ)

    + ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก))๐‘๐‘‡

    3(๐›ผ) + โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘‘๐‘ ๐‘๐‘‡

    4(๐›ผ)

    + โˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘‘๐‘ ๐‘๐‘‡

    5(๐›ผ) + ๏ฟฝฬ‡๏ฟฝ

    ๐‘‡

    (๐‘ก)๐‘๐‘‡

    6(๐›ผ)

    + ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))๐‘๐‘‡

    7(๐›ผ) + ๐‘“

    ๐‘‡

    (๐‘ก, ๐‘ฅ (๐‘ก))๐‘๐‘‡

    8(๐›ผ)

    +๐‘”๐‘‡

    (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)))๐‘๐‘‡

    9(๐›ผ) + ๐‘ค

    ๐‘‡

    (๐‘ก, ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก)))๐‘๐‘‡

    10(๐›ผ) ]

    ร— [๐‘ฅ (๐‘ก) โˆ’ ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)) โˆ’ โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ ] = 0,

    2 [๐‘ฅ๐‘‡

    (๐‘ก) ๐‘‚๐‘‡

    1(๐›ผ) + ๐‘ฅ

    ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก)) ๐‘‚๐‘‡

    2(๐›ผ)

    + ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก)) ๐‘‚๐‘‡

    3(๐›ผ) + โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘‘๐‘ ๐‘‚๐‘‡

    4(๐›ผ)

    + โˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘‘๐‘ ๐‘‚๐‘‡

    5(๐›ผ) + ๏ฟฝฬ‡๏ฟฝ

    ๐‘‡

    (๐‘ก) ๐‘‚๐‘‡

    6(๐›ผ)

    + ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก)) ๐‘‚๐‘‡

    7(๐›ผ) + ๐‘“

    ๐‘‡

    (๐‘ก, ๐‘ฅ (๐‘ก)) ๐‘‚๐‘‡

    8(๐›ผ)

    + ๐‘”๐‘‡

    (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))) ๐‘‚๐‘‡

    9(๐›ผ) +๐‘ค

    ๐‘‡

    (๐‘ก, ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))) ๐‘‚๐‘‡

    10(๐›ผ) ]

    ร— [๐‘ฅ (๐‘ก) โˆ’ ๐‘ฅ (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก)) โˆ’ โˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ ] = 0.

    (34)

    From the utilization of zero equation, the followingequation is true for any parameter-dependent real matrices๐‘Š๐‘–, ๐‘– = 1, 2, . . . , 10 with appropriate dimensions:

    2 [๐‘ฅ๐‘‡

    (๐‘ก)๐‘Š๐‘‡

    1(๐›ผ) + ๐‘ฅ

    ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก))๐‘Š๐‘‡

    2(๐›ผ)

    + ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ ๐›ฝโ„Ž (๐‘ก))๐‘Š๐‘‡

    3(๐›ผ) + โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘‘๐‘ ๐‘Š๐‘‡

    4(๐›ผ)

    + โˆซ

    ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘‘๐‘ ๐‘Š๐‘‡

    5(๐›ผ) + ๏ฟฝฬ‡๏ฟฝ

    ๐‘‡

    (๐‘ก)๐‘Š๐‘‡

    6(๐›ผ)

    + ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))๐‘Š๐‘‡

    7(๐›ผ) + ๐‘“

    ๐‘‡

    (๐‘ก, ๐‘ฅ (๐‘ก))๐‘Š8(๐›ผ)

    + ๐‘”๐‘‡

    (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)))๐‘Š๐‘‡

    9(๐›ผ)

    +๐‘ค๐‘‡

    (๐‘ก, ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก)))๐‘Š๐‘‡

    10(๐›ผ) ]

    ร— [ (๐ด (๐›ผ) + ๐ต1(๐›ผ)) ๐‘ฅ (๐‘ก) + ๐ต

    2(๐›ผ) ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))

    + ๐ถ (๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก)) + ๐‘“ (๐‘ก, ๐‘ฅ (๐‘ก)) + ๐‘” (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)))

    + ๐‘ค (๐‘ก, ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))) โˆ’ ๐ต1(๐›ผ) โˆซ

    ๐‘ก

    ๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  โˆ’ ๏ฟฝฬ‡๏ฟฝ (๐‘ก)]

    = 0.

    (35)

    From (5), we obtain, for any positive real constants ๐œ–1, ๐œ–2,

    and ๐œ–3,

    0 โ‰ค ๐œ–1๐œ‚2

    ๐‘ฅ๐‘‡

    (๐‘ก) ๐‘ฅ (๐‘ก) โˆ’ ๐œ–1๐‘“๐‘‡

    (๐‘ก, ๐‘ฅ (๐‘ก)) ๐‘“ (๐‘ก, ๐‘ฅ (๐‘ก)) ,

    0 โ‰ค ๐œ–2๐œŒ2

    ๐‘ฅ๐‘‡

    (๐‘ก โˆ’ โ„Ž (๐‘ก)) ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))

    โˆ’ ๐œ–2๐‘”๐‘‡

    (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))) ๐‘” (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))) ,

    0 โ‰ค ๐œ–3๐›พ2

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก)) ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))

    โˆ’ ๐œ–3๐‘ค๐‘‡

    (๐‘ก, ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))) ๐‘ค (๐‘ก, ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))) .

    (36)

  • 10 Journal of Applied Mathematics

    According to (29)โ€“(36), it is straightforward to see that

    ๏ฟฝฬ‡๏ฟฝ (๐‘ก) โ‰ค ๐œ๐‘‡

    (๐‘ก)

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐‘

    โˆ‘

    ๐‘—=1

    ๐›ผ๐‘–๐›ผ๐‘—โˆ‘

    ๐‘–,๐‘—

    ๐œ (๐‘ก) โˆ’ 2๐‘˜๐‘‰ (๐‘ก) , (37)

    where ๐œ๐‘‡(๐‘ก) = [๐‘ฅ๐‘‡(๐‘ก),๐‘ฅ๐‘‡(๐‘กโˆ’โ„Ž(๐‘ก)),๐‘ฅ๐‘‡(๐‘กโˆ’๐›ฝโ„Ž(๐‘ก)),โˆซ๐‘ก๐‘กโˆ’โ„Ž(๐‘ก)

    ๏ฟฝฬ‡๏ฟฝ๐‘‡(๐‘ )๐‘‘๐‘ ,

    โˆซ๐‘ก

    ๐‘กโˆ’๐›ฝโ„Ž(๐‘ก)๏ฟฝฬ‡๏ฟฝ๐‘‡(๐‘ )๐‘‘๐‘ , ๏ฟฝฬ‡๏ฟฝ

    ๐‘‡(๐‘ก), ๏ฟฝฬ‡๏ฟฝ๐‘‡(๐‘ก โˆ’ ๐‘Ÿ(๐‘ก)), ๐‘“๐‘‡(๐‘ก, ๐‘ฅ(๐‘ก)), ๐‘”๐‘‡(๐‘ก, ๐‘ฅ(๐‘ก โˆ’

    โ„Ž(๐‘ก))), ๐‘ค๐‘‡(๐‘ก, ๏ฟฝฬ‡๏ฟฝ(๐‘ก โˆ’ ๐‘Ÿ(๐‘ก))] and โˆ‘๐‘–,๐‘—is defined in (23). From the

    fact that โˆ‘๐‘๐‘–=1

    ๐›ผ๐‘–= 1,

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐›ผ๐‘–๐ด๐‘–

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐›ผ๐‘–๐ต๐‘–=

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐›ผ2

    ๐‘–๐ด๐‘–๐ต๐‘–+

    ๐‘โˆ’1

    โˆ‘

    ๐‘–=1

    ๐‘

    โˆ‘

    ๐‘—=๐‘–+1

    ๐›ผ๐‘–๐›ผ๐‘—[๐ด๐‘–๐ต๐‘—+ ๐ด๐‘—๐ต๐‘–] ,

    (๐‘ โˆ’ 1)

    ๐‘

    โˆ‘

    ๐‘–=1

    ๐›ผ2

    ๐‘–โˆ’ 2

    ๐‘โˆ’1

    โˆ‘

    ๐‘–=1

    ๐‘

    โˆ‘

    ๐‘—=๐‘–+1

    ๐›ผ๐‘–๐›ผ๐‘—=

    ๐‘โˆ’1

    โˆ‘

    ๐‘–=1

    ๐‘

    โˆ‘

    ๐‘—=๐‘–+1

    [๐›ผ๐‘–โˆ’ ๐›ผ๐‘—]2

    โ‰ฅ 0.

    (38)It is true that if conditions (25) hold, then

    ๏ฟฝฬ‡๏ฟฝ (๐‘ก) + 2๐‘˜๐‘‰ (๐‘ก) โ‰ค 0, โˆ€๐‘ก โˆˆ ๐‘…+

    , (39)which gives

    ๐‘‰ (๐‘ก) โ‰ค ๐‘‰ (0) ๐‘’โˆ’2๐‘˜๐‘ก

    , โˆ€๐‘ก โˆˆ ๐‘…+

    . (40)From (40), it is easy to see that

    ๐œ†min (๐‘ƒ1 (๐›ผ)) โ€–๐‘ฅ (๐‘ก)โ€–2

    โ‰ค ๐‘‰ (๐‘ก) โ‰ค ๐‘‰ (0) ๐‘’โˆ’2๐‘˜๐‘ก

    , (41)

    ๐‘‰ (0) =

    7

    โˆ‘

    ๐‘–=1

    ๐‘‰๐‘–(0) , (42)

    where๐‘‰1(0) = ๐‘ฅ

    ๐‘‡

    (0) ๐‘ƒ1(๐›ผ) ๐‘ฅ (0) ,

    ๐‘‰2(0) = โˆซ

    0

    โˆ’๐‘Ÿ(0)

    ๐‘’2๐‘˜๐‘ 

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ2(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘ ,

    ๐‘‰3(0) = โˆซ

    0

    โˆ’โ„Ž(0)

    ๐‘’2๐‘˜๐‘ 

    ๐‘ฅ๐‘‡

    (๐‘ ) ๐‘ƒ3(๐›ผ) ๐‘ฅ (๐‘ ) ๐‘‘๐‘ 

    + โˆซ

    0

    โˆ’๐›ฝโ„Ž(0)

    ๐‘’2๐‘˜๐‘ 

    ๐‘ฅ๐‘‡

    (๐‘ ) ๐‘ƒ4(๐›ผ) ๐‘ฅ (๐‘ ) ๐‘‘๐‘ ,

    ๐‘‰4(0) = โ„Žโˆซ

    0

    โˆ’โ„Ž

    โˆซ

    0

    ๐œƒ

    ๐‘’2๐‘˜๐‘ 

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ5(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐œƒ

    + ๐›ฝโ„Žโˆซ

    0

    โˆ’๐›ฝโ„Ž

    โˆซ

    0

    ๐œƒ

    ๐‘’2๐‘˜๐‘ 

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ6(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐œƒ,

    ๐‘‰5(0) = โ„Žโˆซ

    0

    โˆ’โ„Ž

    โˆซ

    0

    ๐œƒ

    ๐‘’2๐‘˜๐‘ 

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ7(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐œƒ

    + ๐›ฝโ„Žโˆซ

    0

    โˆ’๐›ฝโ„Ž

    โˆซ

    0

    ๐œƒ

    ๐‘’2๐‘˜๐‘ 

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ8(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐œƒ,

    ๐‘‰6(0) = โ„Žโˆซ

    0

    โˆ’โ„Ž

    โˆซ

    ๐‘ก

    ๐œƒ

    ๐‘’2๐‘˜๐‘ 

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ9(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐œƒ

    + ๐›ฝโ„Žโˆซ

    0

    โˆ’๐›ฝโ„Ž

    โˆซ

    0

    ๐œƒ

    ๐‘’2๐‘˜๐‘ 

    ๏ฟฝฬ‡๏ฟฝ๐‘‡

    (๐‘ ) ๐‘ƒ10(๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ ) ๐‘‘๐‘  ๐‘‘๐œƒ,

    ๐‘‰7(0) = โ„Žโˆซ

    0

    โˆ’โ„Ž

    โˆซ

    ๐œƒ

    ๐œƒโˆ’โ„Ž(๐œƒ)

    ๐‘’2๐‘˜๐œƒ

    [๐‘ฅ (๐œƒ โˆ’ โ„Ž (๐œƒ))

    ๏ฟฝฬ‡๏ฟฝ (๐‘ )]

    ๐‘‡

    ร— [๐‘…1(๐›ผ) ๐‘…

    2(๐›ผ)

    โˆ— ๐‘…3(๐›ผ)

    ]

    ร— [๐‘ฅ (๐œƒ โˆ’ โ„Ž (๐œƒ))

    ๏ฟฝฬ‡๏ฟฝ (๐‘ )] ๐‘‘๐‘  ๐‘‘๐œƒ

    + ๐›ฝโ„Žโˆซ

    0

    โˆ’๐›ฝโ„Ž

    โˆซ

    ๐œƒ

    ๐œƒโˆ’๐›ฝโ„Ž(๐œƒ)

    ๐‘’2๐‘˜๐œƒ

    [๐‘ฅ (๐œƒ โˆ’ ๐›ฝโ„Ž (๐œƒ))

    ๏ฟฝฬ‡๏ฟฝ (๐‘ )]

    ๐‘‡

    ร— [๐‘…4(๐›ผ) ๐‘…

    5(๐›ผ)

    โˆ— ๐‘…6(๐›ผ)

    ]

    ร— [๐‘ฅ (๐œƒ โˆ’ ๐›ฝโ„Ž (๐œƒ))

    ๏ฟฝฬ‡๏ฟฝ (๐‘ )] ๐‘‘๐‘  ๐‘‘๐œƒ.

    (43)

    From (41), we conclude that

    ๐œ†min (๐‘ƒ1 (๐›ผ)) โ€–๐‘ฅ (๐‘ก)โ€–2

    โ‰ค ๐‘‰ (0) ๐‘’โˆ’2๐‘˜๐‘ก

    โ‰ค ๐ฟmax [๐œ™ ,๐œ‘

    ]2

    ๐‘’โˆ’2๐‘˜๐‘ก

    ,

    (44)

    where ๐ฟ = ๐œ†max(๐‘ƒ1(๐›ผ)) + ๐‘Ÿ๐œ†max(๐‘ƒ2(๐›ผ))+ โ„Ž๐œ†max(๐‘ƒ3(๐›ผ)) +๐›ฝโ„Ž๐œ†max(๐‘ƒ4(๐›ผ))+ โ„Ž

    3๐œ†max(๐‘ƒ5(๐›ผ) + ๐‘ƒ7(๐›ผ)+๐‘ƒ9(๐›ผ)) + (๐›ฝโ„Ž)

    3

    ๐œ†max(๐‘ƒ6(๐›ผ) +๐‘ƒ8(๐›ผ) +๐‘ƒ10(๐›ผ)) + โ„Ž3๐œ†max ([

    ๐‘…1(๐›ผ) ๐‘…2(๐›ผ)

    โˆ— ๐‘…3(๐›ผ)]) + (๐›ฝโ„Ž)

    3

    ๐œ†max ([๐‘…4(๐›ผ) ๐‘…5(๐›ผ)

    โˆ— ๐‘…6(๐›ผ)]). From (44), this means that the system

    (1) is robustly exponentially stable. The proof of the theoremis complete.

    Next, we consider the following system:

    ๏ฟฝฬ‡๏ฟฝ (๐‘ก) = ๐ด (๐›ผ) ๐‘ฅ (๐‘ก) + ๐ต (๐›ผ) ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)) + ๐ถ (๐›ผ) ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))

    + ๐‘“ (๐‘ก, ๐‘ฅ (๐‘ก)) + ๐‘” (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))) , ๐‘ก > 0;

    ๐‘ฅ (๐‘ก) = ๐œ™ (๐‘ก) , ๏ฟฝฬ‡๏ฟฝ (๐‘ก) = ๐œ“ (๐‘ก) , ๐‘ก โˆˆ [โˆ’๐‘, 0] .

    (45)

    We introduce the following notations for later use:

    โˆ

    ๐‘–,๐‘—

    =

    [[[[[[[[[[[[[[[[

    [

    ฮฃ1,1

    ๐‘–,๐‘—ฮฃ1,2

    ๐‘–,๐‘—ฮฃ1,3

    ๐‘–,๐‘—ฮฃ1,4

    ๐‘–,๐‘—ฮฃ1,5

    ๐‘–,๐‘—ฮฃ1,6

    ๐‘–,๐‘—ฮฃ1,7

    ๐‘–,๐‘—ฮฃ1,8

    ๐‘–,๐‘—ฮฃ1,9

    ๐‘–,๐‘—

    โˆ— ฮฃ2,2

    ๐‘–,๐‘—ฮฃ2,3

    ๐‘–,๐‘—ฮฃ2,4

    ๐‘–,๐‘—ฮฃ2,5

    ๐‘–,๐‘—ฮฃ2,6

    ๐‘–,๐‘—ฮฃ2,7

    ๐‘–,๐‘—ฮฃ2,8

    ๐‘–,๐‘—ฮฃ2,9

    ๐‘–,๐‘—

    โˆ— โˆ— ฮฃ3,3

    ๐‘–ฮฃ3,4

    ๐‘–,๐‘—ฮฃ3,5

    ๐‘–ฮฃ3,6

    ๐‘–ฮฃ3,7

    ๐‘–,๐‘—ฮฃ3,8

    ๐‘–ฮฃ3,9

    ๐‘–

    โˆ— โˆ— โˆ— ฮฃ4,4

    ๐‘–,๐‘—ฮฃ4,5

    ๐‘–,๐‘—ฮฃ4,6

    ๐‘–,๐‘—ฮฃ4,7

    ๐‘–,๐‘—ฮฃ4,8

    ๐‘–ฮฃ4,9

    ๐‘–

    โˆ— โˆ— โˆ— โˆ— ฮฃ5,5

    ๐‘–ฮฃ5,6

    ๐‘–ฮฃ5,7

    ๐‘–,๐‘—ฮฃ5,8

    ๐‘–ฮฃ5,9

    ๐‘–

    โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃ6,6

    ๐‘–ฮฃ6,7

    ๐‘–,๐‘—ฮฃ6,8

    ๐‘–ฮฃ6,9

    ๐‘–

    โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃฬ‚7,7

    ๐‘–,๐‘—ฮฃ7,8

    ๐‘–,๐‘—ฮฃ7,9

    ๐‘–,๐‘—

    โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃ8,8

    ๐‘–ฮฃ8,9

    ๐‘–

    โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃ9,9

    ๐‘–

    ]]]]]]]]]]]]]]]]

    ]

    .

    (46)

    Corollary 8. For โ€–๐ถ๐‘–โ€– < 1, ๐‘– = 1, 2, . . . , ๐‘ and given

    positive real constants โ„Ž, โ„Ž๐‘‘, ๐‘Ÿ, ๐‘Ÿ๐‘‘, ๐œ‚, ๐œŒ, and ๐›ฝ, system (45)

    is robustly exponentially stable with a decay rate ๐‘˜, if thereexist symmetric positive definite matrices ๐‘ƒ๐‘—

    ๐‘–, any appropriate

    dimensional matrices ๐‘…๐‘๐‘–, ๐‘€๐‘™๐‘–, ๐‘๐‘—๐‘–, ๐‘‚๐‘—๐‘–, ๐‘Š๐‘—๐‘–, ๐‘ = 1, 2, . . . 6,

    ๐‘™ = 1, 2, . . . , 10, ๐‘— = 1, 2, . . . , 9, ๐‘– = 1, 2, . . . , ๐‘, and positive

  • Journal of Applied Mathematics 11

    real constants ๐œ–1, ๐œ–2such that the following symmetric linear

    matrix inequalities hold:

    [๐‘…1

    ๐‘–๐‘…2

    ๐‘–

    โˆ— ๐‘…3

    ๐‘–

    ] > 0, ๐‘– = 1, 2, . . . , ๐‘,

    [๐‘…4

    ๐‘–๐‘…5

    ๐‘–

    โˆ— ๐‘…6

    ๐‘–

    ] > 0, ๐‘– = 1, 2, . . . , ๐‘,

    [

    [

    ๐‘’โˆ’2๐‘˜โ„Ž

    ๐‘ƒ3

    ๐‘–โˆ’ ๐‘…3

    ๐‘–๐‘€1

    ๐‘–๐‘€2

    ๐‘–

    โˆ— ๐‘€3

    ๐‘–๐‘€4

    ๐‘–

    โˆ— โˆ— ๐‘€5

    ๐‘–

    ]

    ]

    โ‰ฅ 0, ๐‘– = 1, 2, . . . , ๐‘,

    [

    [

    ๐‘’โˆ’2๐›ฝ๐‘˜โ„Ž

    ๐‘ƒ6

    ๐‘–โˆ’ ๐‘…6

    ๐‘–๐‘€6

    ๐‘–๐‘€7

    ๐‘–

    โˆ— ๐‘€8

    ๐‘–๐‘€9

    ๐‘–

    โˆ— โˆ— ๐‘€10

    ๐‘–

    ]

    ]

    โ‰ฅ 0, ๐‘– = 1, 2, . . . , ๐‘,

    โˆ

    ๐‘–,๐‘–

    < โˆ’๐ผ, ๐‘– = 1, 2, . . . , ๐‘,

    โˆ

    ๐‘–,๐‘—

    +โˆ

    ๐‘—,๐‘–

    <2

    (๐‘ โˆ’ 1)๐ผ, ๐‘– = 1, 2, . . . , ๐‘ โˆ’ 1,

    ๐‘— = ๐‘– + 1, ๐‘– + 2, . . . , ๐‘.

    (47)

    Moreover, the solution ๐‘ฅ(๐‘ก, ๐œ™, ๐œ“) satisfies the inequality

    ๐‘ฅ (๐‘ก, ๐œ™, ๐œ“) โ‰ค โˆš

    ๐ฟ

    ๐œ†min (๐‘ƒ1 (๐›ผ))max [๐œ™

    ,๐œ“

    ] ๐‘’โˆ’๐‘˜๐‘ก

    ,

    โˆ€๐‘ก โˆˆ ๐‘…+

    ,

    (48)

    where ๐ฟ = ๐œ†max(๐‘ƒ1(๐›ผ)) + ๐‘Ÿ๐œ†max(๐‘ƒ2(๐›ผ)) + โ„Ž๐œ†max(๐‘ƒ3(๐›ผ)) +๐›ฝโ„Ž๐œ†max(๐‘ƒ4(๐›ผ)) + โ„Ž

    3๐œ†max(๐‘ƒ5(๐›ผ) + ๐‘ƒ7(๐›ผ) + ๐‘ƒ9(๐›ผ)) +

    (๐›ฝโ„Ž)3

    ๐œ†max(๐‘ƒ6(๐›ผ) + ๐‘ƒ8(๐›ผ) + ๐‘ƒ10(๐›ผ)) + โ„Ž3๐œ†max ([

    ๐‘…1(๐›ผ) ๐‘…2(๐›ผ)

    โˆ— ๐‘…3(๐›ผ)]) +

    (๐›ฝโ„Ž)3

    ๐œ†max ([๐‘…4(๐›ผ) ๐‘…5(๐›ผ)

    โˆ— ๐‘…6(๐›ผ)]).

    3.2. Exponential Stability Criteria. In this section, we studythe exponential stability criteria for neutral systems withtime-varying delays by using the combination of linearmatrixinequality (LMI) technique and Lyapunov theory method.We introduce the following notations for later use:

    โˆ‘ =

    [[[[[[[[[[[[[[

    [

    ฮฃ11

    ฮฃ12

    ฮฃ13

    ฮฃ14

    ฮฃ15

    ฮฃ16

    ฮฃ17

    ฮฃ18

    ฮฃ19

    ฮฃ1,10

    โˆ— ฮฃ22

    ฮฃ23

    ฮฃ24

    ฮฃ25

    ฮฃ26

    ฮฃ27

    ฮฃ28

    ฮฃ29

    ฮฃ2,10

    โˆ— โˆ— ฮฃ33

    ฮฃ34

    ฮฃ35

    ฮฃ36

    ฮฃ37

    ฮฃ38

    ฮฃ39

    ฮฃ3,10

    โˆ— โˆ— โˆ— ฮฃ44

    ฮฃ45

    ฮฃ46

    ฮฃ47

    ฮฃ48

    ฮฃ49

    ฮฃ4,10

    โˆ— โˆ— โˆ— โˆ— ฮฃ55

    ฮฃ56

    ฮฃ57

    ฮฃ58

    ฮฃ59

    ฮฃ5,10

    โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃ66

    ฮฃ67

    ฮฃ68

    ฮฃ69

    ฮฃ6,10

    โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃ77

    ฮฃ78

    ฮฃ79

    ฮฃ7,10

    โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃ88

    ฮฃ89

    ฮฃ8,10

    โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃ99

    ฮฃ9,10

    โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃ10,10

    ]]]]]]]]]]]]]]

    ]

    ,

    (49)

    where

    ฮฃ1,1

    = ๐ด๐‘‡

    ๐‘ƒ1+ ๐ต๐‘‡

    1๐‘ƒ1+ ๐‘๐‘‡

    1+ ๐‘ƒ1๐ด + ๐‘ƒ

    1๐ต1+ ๐‘1+ ๐‘ƒ3

    + ๐‘ƒ4+ โ„Ž๐‘€

    ๐‘‡

    1+ โ„Ž๐‘€

    1โˆ’ ๐‘’โˆ’2๐‘˜โ„Ž

    ๐‘ƒ9โˆ’ ๐‘’โˆ’2๐‘˜๐›ฝโ„Ž

    ๐‘ƒ10

    + โ„Ž2

    ๐‘€3+ ๐›ฝโ„Ž๐‘€

    6+ ๐›ฝโ„Ž๐‘€

    ๐‘‡

    6+ ๐›ฝ2

    โ„Ž2

    ๐‘€8

    + ๐‘๐‘‡

    1+ ๐‘1+ ๐‘‚๐‘‡

    1+ ๐‘‚1+ ๐ด๐‘‡

    ๐‘Š1+๐‘Š๐‘‡

    1๐ด

    + ๐ต๐‘‡

    1๐‘Š1+๐‘Š๐‘‡

    1๐ต1+ ๐œ–1๐œ‚2

    ๐ผ + 2๐‘˜๐‘ƒ1,

    ฮฃ1,2

    = ๐‘ƒ1๐ต2โˆ’ โ„Ž๐‘€

    ๐‘‡

    1+ โ„Ž๐‘€

    2+ โ„Ž2

    ๐‘€4+ ๐‘’โˆ’2๐‘˜โ„Ž

    ๐‘ƒ9

    + โ„Ž๐‘…2โˆ’ ๐‘๐‘‡

    1+ ๐‘2+ ๐‘‚2+๐‘Š๐‘‡

    1๐ต2

    + ๐ด๐‘‡

    ๐‘Š2+ ๐ต๐‘‡

    1๐‘Š2,

    ฮฃ1,3

    = โˆ’๐‘1โˆ’ ๐›ฝโ„Ž๐‘€

    ๐‘‡

    6+ ๐›ฝโ„Ž๐‘€

    7+ ๐›ฝโ„Ž2

    ๐‘€9+ ๐›ฝโ„Ž๐‘…

    5

    + ๐‘’โˆ’2๐‘˜๐›ฝโ„Ž

    ๐‘ƒ10+ ๐‘3โˆ’ ๐‘‚๐‘‡

    1+ ๐‘‚3

    + ๐ด๐‘‡

    ๐‘Š3+ ๐ต๐‘‡

    1๐‘Š3,

    ฮฃ1,4

    = โˆ’๐‘ƒ1๐ต1โˆ’ ๐‘๐‘‡

    1+ ๐‘4+ ๐‘‚4

    โˆ’๐‘Š๐‘‡

    1๐ต1+ ๐ด๐‘‡

    ๐‘Š4+ ๐ต๐‘‡

    1๐‘Š4,

    ฮฃ1,5

    = โˆ’๐‘1+ ๐‘5โˆ’ ๐‘‚๐‘‡

    1+ ๐‘‚5+ ๐ด๐‘‡

    ๐‘Š5+ ๐ต๐‘‡

    1๐‘Š5,

    ฮฃ1,6

    = ๐‘6+ ๐‘‚6โˆ’๐‘Š๐‘‡

    1+ ๐ด๐‘‡

    ๐‘Š6+ ๐ต๐‘‡

    1๐‘Š6,

    ฮฃ1,7

    = ๐‘ƒ1๐ถ + ๐‘

    7+ ๐‘‚7+๐‘Š๐‘‡

    1๐ถ + ๐ด

    ๐‘‡

    ๐‘Š7+ ๐ต๐‘‡

    1๐‘Š7,

    ฮฃ1,8

    = ๐‘ƒ1+ ๐‘8+ ๐‘‚8+๐‘Š๐‘‡

    1+ ๐ด๐‘‡

    ๐‘Š8+ ๐ต๐‘‡

    1๐‘Š8,

    ฮฃ1,9

    = ๐‘ƒ1+ ๐‘9+ ๐‘‚9+๐‘Š๐‘‡

    1+ ๐ด๐‘‡

    ๐‘Š9+ ๐ต๐‘‡

    1๐‘Š9,

    ฮฃ1,10

    = ๐‘ƒ1+ ๐‘10+ ๐‘‚10+๐‘Š๐‘‡

    1+ ๐ด๐‘‡

    ๐‘Š10+ ๐ต๐‘‡

    1๐‘Š10,

    ฮฃ2,2

    = โˆ’ (1 โˆ’ โ„Ž๐‘‘) ๐‘’โˆ’2๐‘˜โ„Ž

    ๐‘ƒ3โˆ’ โ„Ž๐‘€

    ๐‘‡

    2โˆ’ โ„Ž๐‘€

    2

    + โ„Ž2

    ๐‘€5+ โ„Ž2

    ๐‘…1โˆ’ 2โ„Ž๐‘…

    2โˆ’ ๐‘’โˆ’2๐‘˜โ„Ž

    ๐‘ƒ9

    + ๐œ–2๐œŒ2

    ๐ผ โˆ’ ๐‘๐‘‡

    2โˆ’ ๐‘2+๐‘Š๐‘‡

    2๐ต2+ ๐ต๐‘‡

    2๐‘Š2,

    ฮฃ2,3

    = โˆ’๐‘3โˆ’ ๐‘‚๐‘‡

    2+ ๐ต๐‘‡

    2๐‘Š3,

    ฮฃ2,4

    = โˆ’๐‘๐‘‡

    2โˆ’ ๐‘4โˆ’๐‘Š๐‘‡

    2๐ต1+ ๐ต๐‘‡

    2๐‘Š4,

    ฮฃ2,5

    = โˆ’๐‘5โˆ’ ๐‘‚๐‘‡

    2+ ๐ต๐‘‡

    2๐‘Š5,

    ฮฃ2,6

    = โˆ’๐‘6โˆ’๐‘Š๐‘‡

    2+ ๐ต๐‘‡

    2๐‘Š6,

    ฮฃ2,7

    = โˆ’๐‘7+๐‘Š๐‘‡

    2๐ถ + ๐ต

    ๐‘‡

    2๐‘Š7,

    ฮฃ2,8

    = โˆ’๐‘8+๐‘Š๐‘‡

    2+ ๐ต๐‘‡

    2๐‘Š8,

    ฮฃ2,9

    = โˆ’๐‘๐‘‡

    9โˆ’๐‘Š๐‘‡

    2+ ๐ต๐‘‡

    2๐‘Š9,

    ฮฃ2,10

    = โˆ’๐‘10+๐‘Š๐‘‡

    2+ ๐ต๐‘‡

    2๐‘Š10,

  • 12 Journal of Applied Mathematics

    ฮฃ3,3

    = โˆ’ (1 โˆ’ ๐›ฝโ„Ž๐‘‘) ๐‘’โˆ’2๐›ฝ๐‘˜โ„Ž

    ๐‘ƒ4โˆ’ ๐‘’โˆ’2๐›ฝ๐‘˜โ„Ž

    ๐‘ƒ10+ ๐›ฝ2

    โ„Ž2

    ๐‘…4

    โˆ’ 2๐›ฝโ„Ž๐‘…5โˆ’ ๐›ฝโ„Ž๐‘€

    ๐‘‡

    7โˆ’ ๐›ฝโ„Ž๐‘€

    7+ ๐›ฝ2

    โ„Ž2

    ๐‘€10

    โˆ’ ๐‘‚๐‘‡

    3โˆ’ ๐‘‚3,

    ฮฃ3,4

    = โˆ’๐‘๐‘‡

    3โˆ’ ๐‘‚4โˆ’๐‘Š๐‘‡

    3๐ต1,

    ฮฃ3,5

    = โˆ’๐‘‚๐‘‡

    3โˆ’ ๐‘‚5,

    ฮฃ3,6

    = โˆ’๐‘‚9+๐‘Š๐‘‡

    3, ฮฃ

    3,7= โˆ’๐‘‚7+๐‘Š๐‘‡

    3๐ถ,

    ฮฃ3,8

    = โˆ’๐‘‚8+๐‘Š๐‘‡

    3, ฮฃ

    3,9= โˆ’๐‘‚9+๐‘Š๐‘‡

    3,

    ฮฃ3,10

    = โˆ’๐‘‚10+๐‘Š๐‘‡

    3,

    ฮฃ4,4

    = โˆ’๐‘’2๐‘˜โ„Ž

    ๐‘ƒ7โˆ’ ๐‘๐‘‡

    4โˆ’ ๐‘4+๐‘Š๐‘‡

    4๐ต1โˆ’ ๐ต๐‘‡

    1๐‘Š4,

    ฮฃ4,5

    = โˆ’๐‘5โˆ’ ๐‘‚๐‘‡

    4โˆ’ ๐ต๐‘‡

    1๐‘Š5,

    ฮฃ4,6

    = โˆ’๐‘6โˆ’๐‘Š๐‘‡

    4โˆ’ ๐ต๐‘‡

    1๐‘Š6,

    ฮฃ4,7

    = โˆ’๐‘7+๐‘Š๐‘‡

    4๐ถ โˆ’ ๐ต

    ๐‘‡

    1๐‘Š7,

    ฮฃ4,8

    = โˆ’๐‘‚8+๐‘Š๐‘‡

    3,

    ฮฃ4,9

    = โˆ’๐‘‚9+๐‘Š๐‘‡

    3, ฮฃ

    4,10= โˆ’๐‘‚10+๐‘Š๐‘‡

    3,

    ฮฃ5,5

    = โˆ’๐‘’2๐›ฝ๐‘˜โ„Ž

    ๐‘ƒ8โˆ’ ๐‘‚๐‘‡

    5โˆ’ ๐‘‚5,

    ฮฃ5,6

    = โˆ’๐‘‚6โˆ’๐‘Š๐‘‡

    5,

    ฮฃ5,7

    = โˆ’๐‘‚7+๐‘Š๐‘‡

    5๐ถ, ฮฃ

    5,8= โˆ’๐‘‚8+๐‘Š๐‘‡

    5,

    ฮฃ5,9

    = โˆ’๐‘‚9+๐‘Š๐‘‡

    5,

    ฮฃ5,10

    = โˆ’๐‘‚10+๐‘Š๐‘‡

    5,

    ฮฃ6,6

    = ๐‘ƒ2+ โ„Ž2

    ๐‘ƒ5+ ๐›ฝ2

    โ„Ž2

    ๐‘ƒ6+ โ„Ž2

    ๐‘ƒ7+ ๐›ฝ2

    โ„Ž2

    ๐‘ƒ8

    + โ„Ž2

    ๐‘ƒ9+ ๐›ฝ2

    โ„Ž2

    ๐‘ƒ10โˆ’๐‘Š๐‘‡

    6โˆ’๐‘Š6,

    ฮฃ6,7

    = ๐‘Š๐‘‡

    6๐ถ โˆ’๐‘Š

    7, ฮฃ

    6,8= ๐‘Š๐‘‡

    6โˆ’๐‘Š8,

    ฮฃ6,9

    = ๐‘Š๐‘‡

    6โˆ’๐‘Š9, ฮฃ

    6,10= ๐‘Š๐‘‡

    6โˆ’๐‘Š10,

    ฮฃ7,7

    = โˆ’ (1 โˆ’ ๐‘Ÿ๐‘‘) ๐‘’โˆ’2๐‘˜๐‘Ÿ

    ๐‘ƒ2+ ๐œ–3๐›พ2

    ๐ผ

    + ๐‘Š๐‘‡

    7๐ถ + ๐ถ

    ๐‘‡

    ๐‘Š7,

    ฮฃ7,8

    = ๐‘Š๐‘‡

    7โˆ’ ๐ถ๐‘‡

    ๐‘Š8, ฮฃ

    7,9= ๐‘Š๐‘‡

    7โˆ’ ๐ถ๐‘‡

    ๐‘Š9,

    ฮฃ7,10

    = ๐‘Š๐‘‡

    7โˆ’ ๐ถ๐‘‡

    ๐‘Š10

    ฮฃ8,8

    = ๐‘Š๐‘‡

    8+๐‘Š8โˆ’ ๐œ–1๐ผ,

    ฮฃ8,9

    = ๐‘Š๐‘‡

    8+๐‘Š9, ฮฃ

    8,10= ๐‘Š๐‘‡

    8+๐‘Š10,

    ฮฃ9,9

    = ๐‘Š๐‘‡

    9+๐‘Š9โˆ’ ๐œ–2๐ผ, ฮฃ

    9,10= ๐‘Š๐‘‡

    9+๐‘Š10,

    ฮฃ10,10

    = ๐‘Š๐‘‡

    10+๐‘Š10โˆ’ ๐œ–3๐ผ,

    ฮฃฬ‚7,7

    = โˆ’ (1 โˆ’ ๐‘Ÿ๐‘‘) ๐‘’โˆ’2๐‘˜๐‘Ÿ

    ๐‘ƒ2+๐‘Š๐‘‡

    7๐ถ + ๐ถ

    ๐‘‡

    ๐‘Š7,

    ๐‘1= ๐‘ƒ1๐บ.

    (50)

    If ๐ด(๐›ผ) = ๐ด, ๐ต(๐›ผ) = ๐ต, and ๐ถ(๐›ผ) = ๐ถ, where ๐ด, ๐ต, ๐ถ โˆˆ๐‘…๐‘›ร—๐‘› are real constant matrices, then system (1) reduces to the

    following system:

    ๏ฟฝฬ‡๏ฟฝ (๐‘ก) = ๐ด๐‘ฅ (๐‘ก) + ๐ต๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)) + ๐ถ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))

    + ๐‘“ (๐‘ก, ๐‘ฅ (๐‘ก)) + ๐‘” (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)))

    + ๐‘ค (๐‘ก, ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))) , ๐‘ก > 0;

    ๐‘ฅ (๐‘ก) = ๐œ™ (๐‘ก) , ๏ฟฝฬ‡๏ฟฝ (๐‘ก) = ๐œ“ (๐‘ก) , ๐‘ก โˆˆ [โˆ’๐‘, 0] .

    (51)

    Corollary 9. For โ€–๐ถโ€–+๐›พ < 1 and given positive real constantsโ„Ž, โ„Ž๐‘‘, ๐‘Ÿ, ๐‘Ÿ๐‘‘,๐œ‚,๐œŒ, ๐›พ, and๐›ฝ, system (51) is exponentially stablewith

    a decay rate ๐‘˜, if there exist symmetric positive definitematrices๐‘ƒ๐‘–, any appropriate dimensional matrices ๐‘…

    ๐‘ , ๐‘๐‘–, ๐‘‚๐‘–, ๐‘Š๐‘–, ๐‘€๐‘–,

    ๐บ, ๐‘  = 1, 2, . . . 6, ๐‘– = 1, 2, . . . , 10, and positive real constants๐œ–1, ๐œ–2, and ๐œ–

    3such that the following symmetric linear matrix

    inequalities hold:

    [๐‘…1

    ๐‘…2

    โˆ— ๐‘…3

    ] > 0,

    [๐‘…4

    ๐‘…5

    โˆ— ๐‘…6

    ] > 0,

    [

    [

    ๐‘’โˆ’2๐‘˜โ„Ž

    ๐‘ƒ3โˆ’ ๐‘…3

    ๐‘€1

    ๐‘€2

    โˆ— ๐‘€3

    ๐‘€4

    โˆ— โˆ— ๐‘€5

    ]

    ]

    โ‰ฅ 0,

    [

    [

    ๐‘’โˆ’2๐›ฝ๐‘˜โ„Ž

    ๐‘ƒ6โˆ’ ๐‘…6

    ๐‘€6

    ๐‘€7

    โˆ— ๐‘€8

    ๐‘€9

    โˆ— โˆ— ๐‘€10

    ]

    ]

    โ‰ฅ 0,

    โˆ‘ < 0.

    (52)

    Moreover, the solution ๐‘ฅ(๐‘ก, ๐œ™, ๐œ“) satisfies the inequality

    ๐‘ฅ (๐‘ก, ๐œ™, ๐œ“) โ‰ค โˆš

    ๐ท

    ๐œ†min (๐‘ƒ1)max [๐œ™

    ,๐œ“

    ] ๐‘’โˆ’๐‘˜๐‘ก

    , โˆ€๐‘ก โˆˆ ๐‘…+

    ,

    (53)

    where๐ท = ๐œ†max(๐‘ƒ1) + ๐‘Ÿ๐œ†max(๐‘ƒ2) + โ„Ž๐œ†max(๐‘ƒ3) + ๐›ฝโ„Ž๐œ†max(๐‘ƒ4) +โ„Ž3๐œ†max(๐‘ƒ5 + ๐‘ƒ7 + ๐‘ƒ9) + (๐›ฝโ„Ž)

    3

    ๐œ†max(๐‘ƒ6 + ๐‘ƒ8 + ๐‘ƒ10) +

    โ„Ž3๐œ†max ([

    ๐‘…1 ๐‘…2

    โˆ— ๐‘…3]) + (๐›ฝโ„Ž)

    3

    ๐œ†max ([๐‘…4 ๐‘…5

    โˆ— ๐‘…6]).

    If๐ด(๐›ผ) = ๐ด,๐ต(๐›ผ) = ๐ต,๐ถ(๐›ผ) = ๐ถ, and๐‘ค(๐‘ก, ๏ฟฝฬ‡๏ฟฝ(๐‘กโˆ’๐‘Ÿ(๐‘ก))) = 0,where ๐ด, ๐ต, ๐ถ โˆˆ ๐‘…๐‘›ร—๐‘› are real constant matrices, then system(1) reduces to the following system:

    ๏ฟฝฬ‡๏ฟฝ (๐‘ก) = ๐ด๐‘ฅ (๐‘ก) + ๐ต๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)) + ๐ถ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))

    + ๐‘“ (๐‘ก, ๐‘ฅ (๐‘ก)) + ๐‘” (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))) , ๐‘ก > 0;

    ๐‘ฅ (๐‘ก) = ๐œ™ (๐‘ก) , ๏ฟฝฬ‡๏ฟฝ (๐‘ก) = ๐œ“ (๐‘ก) , ๐‘ก โˆˆ [โˆ’๐‘, 0] .

    (54)

    Corollary 10. For โ€–๐ถโ€– < 1 and given positive real constantsโ„Ž, โ„Ž๐‘‘, ๐‘Ÿ, ๐‘Ÿ๐‘‘, ๐œ‚, ๐œŒ, and ๐›ฝ, system (54) is exponentially stable

    with a decay rate ๐‘˜, if there exist symmetric positive definitematrices ๐‘ƒ

    ๐‘—, any appropriate dimensional matrices ๐‘…

    ๐‘ , ๐‘๐‘–, ๐‘‚๐‘–,

  • Journal of Applied Mathematics 13

    ๐‘Š๐‘–, ๐‘€๐‘—, and ๐บ, where ๐‘  = 1, 2, . . . 6, ๐‘– = 1, 2, . . . , 9, and

    ๐‘— = 1, 2, . . . 10, and positive real constants ๐œ–1, ๐œ–2such that the

    following symmetric linear matrix inequalities hold:

    [๐‘…1

    ๐‘…2

    โˆ— ๐‘…3

    ] > 0,

    [๐‘…4

    ๐‘…5

    โˆ— ๐‘…6

    ] > 0,

    [

    [

    ๐‘’โˆ’2๐‘˜โ„Ž

    ๐‘ƒ3โˆ’ ๐‘…3

    ๐‘€1

    ๐‘€2

    โˆ— ๐‘€3

    ๐‘€4

    โˆ— โˆ— ๐‘€5

    ]

    ]

    โ‰ฅ 0,

    [

    [

    ๐‘’โˆ’2๐›ฝ๐‘˜โ„Ž

    ๐‘ƒ6โˆ’ ๐‘…6

    ๐‘€6

    ๐‘€7

    โˆ— ๐‘€8

    ๐‘€9

    โˆ— โˆ— ๐‘€10

    ]

    ]

    โ‰ฅ 0,

    โˆ < 0,

    (55)

    where

    โˆ =

    [[[[[[[[[[[[[

    [

    ฮฃ11

    ฮฃ12

    ฮฃ13

    ฮฃ14

    ฮฃ15

    ฮฃ16

    ฮฃ17

    ฮฃ18

    ฮฃ19

    โˆ— ฮฃ22

    ฮฃ23

    ฮฃ24

    ฮฃ25

    ฮฃ26

    ฮฃ27

    ฮฃ28

    ฮฃ29

    โˆ— โˆ— ฮฃ33

    ฮฃ34

    ฮฃ35

    ฮฃ36

    ฮฃ37

    ฮฃ38

    ฮฃ39

    โˆ— โˆ— โˆ— ฮฃ44

    ฮฃ45

    ฮฃ46

    ฮฃ47

    ฮฃ48

    ฮฃ49

    โˆ— โˆ— โˆ— โˆ— ฮฃ55

    ฮฃ56

    ฮฃ57

    ฮฃ58

    ฮฃ59

    โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃ66

    ฮฃ67

    ฮฃ68

    ฮฃ69

    โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃฬƒ77

    ฮฃ78

    ฮฃ79

    โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃ88

    ฮฃ89

    โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— ฮฃ99

    ]]]]]]]]]]]]]

    ]

    . (56)

    Moreover, the solution ๐‘ฅ(๐‘ก, ๐œ™, ๐œ“) satisfies the inequality

    ๐‘ฅ (๐‘ก, ๐œ™, ๐œ“) โ‰ค โˆš

    ๐ท

    ๐œ†min (๐‘ƒ1)max [๐œ™

    ,๐œ“

    ] ๐‘’โˆ’๐‘˜๐‘ก

    , โˆ€๐‘ก โˆˆ ๐‘…+

    ,

    (57)

    where๐ท = ๐œ†max(๐‘ƒ1) + ๐‘Ÿ๐œ†max(๐‘ƒ2) + โ„Ž๐œ†max(๐‘ƒ3) + ๐›ฝโ„Ž๐œ†max(๐‘ƒ4) +โ„Ž3๐œ†max(๐‘ƒ5 + ๐‘ƒ7 + ๐‘ƒ9) + (๐›ฝโ„Ž)

    3

    ๐œ†max(๐‘ƒ6 + ๐‘ƒ8 + ๐‘ƒ10) +

    โ„Ž3๐œ†max ([

    ๐‘…1 ๐‘…2

    โˆ— ๐‘…3]) + (๐›ฝโ„Ž)

    3

    ๐œ†max ([๐‘…4 ๐‘…5

    โˆ— ๐‘…6]).

    4. Numerical Examples

    In order to show the effectiveness of the approaches presentedin Section 3, three numerical examples are provided.

    Example 1. Consider the robust exponential stability of sys-tem (1) with

    ๐ด (๐›ผ) = ๐›ผ1[โˆ’2 0

    0 โˆ’1] + ๐›ผ2[โˆ’2 0

    0 โˆ’0.8] ,

    ๐ต (๐›ผ) = ๐›ผ1[โˆ’1 0

    โˆ’1 โˆ’0.8] + ๐›ผ2[โˆ’1 0

    โˆ’1 โˆ’1] ,

    ๐ถ (๐›ผ) = ๐›ผ1[0.1 0

    0 0.1] + ๐›ผ2[0.2 0

    0 0.1] ,

    ๐‘“ (๐‘ก, ๐‘ฅ (๐‘ก)) = [0.05 sin (๐‘ก) ๐‘ฅ

    1(๐‘ก)

    0.05 cos (๐‘ก) ๐‘ฅ2(๐‘ก)

    ] ,

    ๐‘” (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))) = [0.1 cos (๐‘ก)2๐‘ฅ

    1(๐‘ก โˆ’ โ„Ž (๐‘ก))

    0.1 sin (๐‘ก)2๐‘ฅ2(๐‘ก โˆ’ โ„Ž (๐‘ก))

    ] ,

    โ„Ž (๐‘ก) = 0.9sin2 ( ๐‘ก2) ,

    ๐‘ค (๐‘ก, ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))) = [0.1 cos (๐‘ก) ๏ฟฝฬ‡๏ฟฝ

    1(๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))

    0.1 sin (๐‘ก) ๏ฟฝฬ‡๏ฟฝ2(๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))

    ] ,

    ๐‘Ÿ (๐‘ก) = cos2 ( ๐‘ก4) ,

    (58)

    where ๐‘ฅ(๐‘ก) โˆˆ ๐‘…2. It is easy to see that โ„Ž = 0.9, โ„Ž๐‘‘= 0.45,

    ๐‘Ÿ = 1, ๐‘Ÿ๐‘‘= 0.25, ๐œ‚ = 0.05, ๐œŒ = 0.1, ๐›พ = 0.1, and given rate

    of convergence ๐‘˜ = 0.1. Decompose matrix ๐ต(๐›ผ) as follows:๐ต(๐›ผ) = ๐ต

    1(๐›ผ) + ๐ต

    2(๐›ผ), where

    ๐ต1(๐›ผ) = ๐›ผ

    1[โˆ’0.83 0

    โˆ’1 โˆ’0.63] + ๐›ผ2[โˆ’0.83 0

    โˆ’1 โˆ’0.83] ,

    ๐ต2(๐›ผ) = ๐›ผ

    1[โˆ’0.17 0

    0 โˆ’0.17] + ๐›ผ2[โˆ’0.17 0

    0 โˆ’0.17] .

    (59)

    The numerical solutions ๐‘ฅ1(๐‘ก) and ๐‘ฅ

    2(๐‘ก) of system (1) with

    (58)-(59) are plotted in Figure 1 where the states ๐‘ฅ1(๐‘ก) and

    ๐‘ฅ2(๐‘ก) are attracted to the stable origin.

    Solution. By using the LMI Toolbox in MATLAB (withaccuracy 0.01), we use conditions (25) in Theorem 7 forsystem (1) with (58)-(59). The solutions of LMIs verify asfollows:

    ๐‘ƒ1

    1= 103

    ร— [3.3091 โˆ’0.0455

    โˆ’0.0455 0.7941] ,

    ๐‘ƒ1

    2= 103

    ร— [3.3091 โˆ’0.0455

    โˆ’0.0455 0.7941] ,

    ๐‘ƒ2

    1= 103

    ร— [4.3739 โˆ’0.3929

    โˆ’0.3929 2.7610] ,

    ๐‘ƒ2

    2= 103

    ร— [4.7896 โˆ’0.4618

    โˆ’0.4618 2.8307] ,

    ๐‘ƒ3

    1= 104

    ร— [1.5976 0.1384

    0.1384 0.3189] ,

    ๐‘ƒ3

    2= 104

    ร— [1.5976 0.1384

    0.1384 0.3189] ,

    ๐‘ƒ4

    1= 103

    ร— [9.8670 โˆ’0.0635

    โˆ’0.0635 4.5726] ,

  • 14 Journal of Applied Mathematics

    ๐‘ƒ4

    2= 103

    ร— [8.8868 โˆ’0.2421

    โˆ’0.2421 3.2473] ,

    ๐‘ƒ5

    1= 103

    ร— [1.3009 โˆ’0.1372

    โˆ’0.1372 0.6505] ,

    ๐‘ƒ5

    2= 103

    ร— [1.0898 โˆ’0.0980

    โˆ’0.0980 0.3986] ,

    ๐‘ƒ6

    1= 104

    ร— [2.8885 โˆ’0.0338

    โˆ’0.0338 2.6935] ,

    ๐‘ƒ6

    2= 104

    ร— [2.8526 โˆ’0.0449

    โˆ’0.0449 2.4922] ,

    ๐‘ƒ7

    1= 103

    ร— [2.6064 โˆ’0.3045

    โˆ’0.3045 2.5259] ,

    ๐‘ƒ7

    2= 103

    ร— [2.3663 โˆ’0.1722

    โˆ’0.1722 2.5747] ,

    ๐‘ƒ8

    1= 104

    ร— [1.4801 โˆ’0.0277

    โˆ’0.0277 1.4063] ,

    ๐‘ƒ8

    2= 104

    ร— [1.4740 โˆ’0.0862

    โˆ’0.0862 1.4207] ,

    ๐‘ƒ9

    1= 103

    ร— [2.6064 โˆ’0.3045

    โˆ’0.3045 2.5259] ,

    ๐‘ƒ9

    2= 103

    ร— [2.3663 โˆ’0.1722

    โˆ’0.1722 2.5747] ,

    ๐‘ƒ10

    1= 104

    ร— [1.4570 โˆ’0.0000

    โˆ’0.0000 1.2074] ,

    ๐‘ƒ10

    2= 104

    ร— [1.4354 0.0019

    0.0019 1.0978] ,

    ๐‘€1

    1= 103

    ร— [โˆ’9.1839 โˆ’1.2537

    โˆ’1.2537 โˆ’2.0706] ,

    ๐‘€1

    2= 104

    ร— [โˆ’1.0642 โˆ’0.1844

    โˆ’0.1844 โˆ’0.2293] ,

    ๐‘€2

    1= 103

    ร— [8.8459 1.1503

    1.1503 2.0066] ,

    ๐‘€2

    2= 104

    ร— [1.0288 0.1763

    0.1763 0.2238] ,

    ๐‘€3

    1= 104

    ร— [1.0499 0.1090

    0.1090 0.2928] ,

    ๐‘€3

    2= 104

    ร— [1.1838 0.1766

    0.1766 0.2881] ,

    ๐‘€4

    1= 103

    ร— [โˆ’8.8058 โˆ’0.9604

    โˆ’0.9604 โˆ’2.6545] ,

    ๐‘€4

    2= 104

    ร— [โˆ’1.0454 โˆ’0.1677

    โˆ’0.1677 โˆ’0.2680] ,

    ๐‘€5

    1= 104

    ร— [1.0303 0.1018

    0.1018 0.3190] ,

    ๐‘€5

    2= 104

    ร— [1.1590 0.1622

    0.1622 0.3078] ,

    ๐‘€6

    1= [

    โˆ’34.9655 โˆ’18.7513

    โˆ’18.7513 35.4129] ,

    ๐‘€6

    2= [

    โˆ’39.8158 โˆ’24.8476

    โˆ’24.8476 13.4547] ,

    ๐‘€7

    1= [

    2.0904 2.7717

    2.7717 โˆ’7.8109] , ๐‘€

    7

    2= [

    3.2803 5.2929

    5.2929 โˆ’4.0693] ,

    ๐‘€8

    1= 104

    ร— [1.4679 0.0003

    0.0003 1.2678] ,

    ๐‘€8

    2= 104

    ร— [1.4438 โˆ’0.0080

    โˆ’0.0080 1.1830] ,

    ๐‘€9

    1= 103

    ร— [โˆ’0.8905 0.0058

    0.0058 โˆ’2.9028] ,

    ๐‘€9

    2= 103

    ร— [โˆ’1.1307 โˆ’0.0760

    โˆ’0.0760 โˆ’3.7474] ,

    ๐‘€10

    1= 104

    ร— [1.4684 0.0005

    0.0005 1.2673] ,

    ๐‘€10

    2= 104

    ร— [1.4444 โˆ’0.0077

    โˆ’0.0077 1.1828] ,

    ๐‘…1

    1= 103

    ร— [2.9131 0.1748

    0.1748 0.7782] ,

    ๐‘…1

    2= 103

    ร— [2.3463 0.0353

    0.0353 0.5806] ,

    ๐‘…2

    1= 103

    ร— [1.1393 0.0531

    0.0531 0.1251] ,

    ๐‘…2

    2= [

    876.5627 32.5550

    32.5550 98.5599] ,

    ๐‘…3

    1= 103

    ร— [2.6387 โˆ’0.0759

    โˆ’0.0759 0.5866] ,

    ๐‘…3

    2= 103

    ร— [2.0346 โˆ’0.0762

    โˆ’0.0762 0.3589] ,

    ๐‘…4

    1= 103

    ร— [5.6600 โˆ’0.0415

    โˆ’0.0415 5.0541] ,

    ๐‘…4

    2= 103

    ร— [5.5782 โˆ’0.0710

    โˆ’0.0710 4.6031] ,

    ๐‘…5

    1= 104

    ร— [โˆ’7.9071 0.0551

    0.0551 โˆ’3.8199] ,

    ๐‘…5

    2= 104

    ร— [โˆ’7.3912 0.4576

    0.4576 โˆ’3.2145] ,

  • Journal of Applied Mathematics 15

    ๐‘…6

    1= 104

    ร— [1.4893 โˆ’0.0162

    โˆ’0.0162 1.3778] ,

    ๐‘…6

    2= 104

    ร— [1.4703 โˆ’0.0223

    โˆ’0.0223 1.2713] ,

    ๐‘1

    1= 103

    ร— [8.7493 3.8534

    3.8534 โˆ’3.1296] ,

    ๐‘1

    2= 104

    ร— [0.6691 0.2686

    0.2686 โˆ’1.0299] ,

    ๐‘2

    1= 103

    ร— [โˆ’3.8698 โˆ’0.3606

    โˆ’0.3606 1.4605] ,

    ๐‘2

    2= 103

    ร— [โˆ’4.5981 โˆ’0.9753

    โˆ’0.9753 1.2772] ,

    ๐‘3

    1= [

    โˆ’114.8946 โˆ’186.6948

    โˆ’186.6948 โˆ’113.8034] ,

    ๐‘3

    2= [

    210.0606 โˆ’115.9077

    โˆ’115.9077 โˆ’174.4056] ,

    ๐‘4

    1= 104

    ร— [โˆ’1.1296 โˆ’0.0266

    โˆ’0.0266 0.1446] ,

    ๐‘4

    2= 104

    ร— [โˆ’1.0062 0.1041

    0.1041 0.8782] ,

    ๐‘5

    1= 103

    ร— [4.5589 โˆ’2.3847

    โˆ’2.3847 0.8561] ,

    ๐‘5

    2= 103

    ร— [5.3887 โˆ’2.4363

    โˆ’2.4363 1.1619] ,

    ๐‘6

    1= 103

    ร— [5.9564 โˆ’1.9530

    โˆ’1.9530 1.5688] ,

    ๐‘6

    2= 103

    ร— [6.7696 โˆ’1.9958

    โˆ’1.9958 2.0384] ,

    ๐‘7

    1= 103

    ร— [5.9602 โˆ’0.2891

    โˆ’0.2891 2.9332] ,

    ๐‘7

    2= 103

    ร— [6.3929 โˆ’0.0855

    โˆ’0.0855 3.1668] ,

    ๐‘8

    1= 103

    ร— [โˆ’9.6508 โˆ’0.4780

    โˆ’0.4780 3.5901] ,

    ๐‘8

    2= 104

    ร— [โˆ’0.8505 0.0574

    0.0574 1.1344] ,

    ๐‘9

    1= 103

    ร— [5.5789 โˆ’2.0704

    โˆ’2.0704 1.3737] ,

    ๐‘9

    2= 103

    ร— [6.3923 โˆ’2.1169

    โˆ’2.1169 1.8008] ,

    ๐‘10

    1= 103

    ร— [โˆ’3.6595 3.2032

    3.2032 โˆ’0.1648] ,

    ๐‘10

    2= 103

    ร— [โˆ’4.3781 3.2120

    3.2120 0.1271] ,

    ๐‘‚1

    1= 104

    ร— [1.5923 โˆ’0.7669

    โˆ’0.7669 1.6350] ,

    ๐‘‚1

    2= 104

    ร— [1.8134 โˆ’0.6324

    โˆ’0.6324 2.3112] ,

    ๐‘‚2

    1= 104

    ร— [1.0371 โˆ’0.0001

    โˆ’0.0001 โˆ’0.3635] ,

    ๐‘‚2

    2= 104

    ร— [0.9152 โˆ’0.1464

    โˆ’0.1464 โˆ’1.0978] ,

    ๐‘‚3

    1= 103

    ร— [โˆ’1.0355 0.1515

    0.1515 โˆ’0.3626] ,

    ๐‘‚3

    2= 103

    ร— [โˆ’1.4990 0.3148

    0.3148 โˆ’0.4988] ,

    ๐‘‚4

    1= [

    โˆ’51.1797 71.7167

    71.7167 โˆ’390.4844] ,

    ๐‘‚4

    2= [

    โˆ’22.7818 โˆ’177.9764

    โˆ’177.9764 237.5644] ,

    ๐‘‚5

    1= 104

    ร— [โˆ’1.4569 0.2376

    0.2376 โˆ’0.4763] ,

    ๐‘‚5

    2= 104

    ร— [โˆ’1.5078 0.2277

    0.2277 โˆ’0.4312] ,

    ๐‘‚6

    1= 104

    ร— [โˆ’1.3667 0.2475

    0.2475 โˆ’0.4459] ,

    ๐‘‚6

    2= 104

    ร— [โˆ’1.4169 0.2441

    0.2441 โˆ’0.4015] ,

    ๐‘‚7

    1= 103

    ร— [5.5038 0.7900

    0.7900 โˆ’4.7294] ,

    ๐‘‚7

    2= 104

    ร— [0.4206 โˆ’0.0170

    โˆ’0.0170 โˆ’1.2249] ,

    ๐‘‚8

    1= [

    244.5684 88.4596

    88.4596 481.2263] ,

    ๐‘‚8

    2= [

    272.5078 401.6259

    401.6259 โˆ’0.2695] ,

    ๐‘‚9

    1= 104

    ร— [โˆ’1.3911 0.2447

    0.2447 โˆ’0.4543] ,

    ๐‘‚9

    2= 104

    ร— [โˆ’1.4415 0.2394

    0.2394 โˆ’0.4095] ,

    ๐‘‚10

    1= 104

    ร— [1.3674 โˆ’0.2535

    โˆ’0.2535 0.3868] ,

    ๐‘‚10

    2= 104

    ร— [1.4277 โˆ’0.2479

    โˆ’0.2479 0.3580] ,

  • 16 Journal of Applied Mathematics

    ๐‘Š1

    1= 104

    ร— [1.5106 โˆ’0.0468

    โˆ’0.0468 0.7929] ,

    ๐‘Š1

    2= 104

    ร— [1.4523 โˆ’0.0341

    โˆ’0.0341 0.7069] ,

    ๐‘Š2

    1= 103

    ร— [5.9653 โˆ’2.4134

    โˆ’2.4134 1.7851] ,

    ๐‘Š2

    2= 103

    ร— [6.9091 โˆ’2.5666

    โˆ’2.5666 1.9597] ,

    ๐‘Š3

    1= [

    โˆ’289.7085 24.4200

    24.4200 โˆ’461.3886] ,

    ๐‘Š3

    2= [

    โˆ’223.5193 93.6566

    93.6566 โˆ’234.3346] ,

    ๐‘Š4

    1= 104

    ร— [โˆ’1.2746 0.2653

    0.2653 โˆ’0.3694] ,

    ๐‘Š4

    2= 104

    ร— [โˆ’1.3242 0.2636

    0.2636 โˆ’0.3371] ,

    ๐‘Š5

    1= 103

    ร— [4.8778 โˆ’0.0916

    โˆ’0.0916 3.8521] ,

    ๐‘Š5

    2= 103

    ร— [4.8245 โˆ’0.0681

    โˆ’0.0681 3.9058] ,

    ๐‘Š6

    1= 103

    ร— [7.9418 โˆ’0.4415

    โˆ’0.4415 6.9527] ,

    ๐‘Š6

    2= 103

    ร— [7.9864 โˆ’0.4713

    โˆ’0.4713 7.2384] ,

    ๐‘Š7

    1= 103

    ร— [4.5999 โˆ’2.3966

    โˆ’2.3966 0.1608] ,

    ๐‘Š7

    2= 103

    ร— [5.2537 โˆ’2.3858

    โˆ’2.3858 0.0285] ,

    ๐‘Š8

    1= 104

    ร— [โˆ’1.3844 0.2577

    0.2577 โˆ’0.4094] ,

    ๐‘Š8

    2= 104

    ร— [โˆ’1.4426 0.2499

    0.2499 โˆ’0.3763] ,

    ๐‘Š9

    1= 103

    ร— [7.1086 โˆ’0.3474

    โˆ’0.3474 6.1090] ,

    ๐‘Š9

    2= 103

    ร— [7.1257 โˆ’0.3627

    โˆ’0.3627 6.3346] ,

    ๐‘Š10

    1= 103

    ร— [8.0468 โˆ’0.7400

    โˆ’0.7400 6.5133] ,

    ๐‘Š10

    2= 103

    ร— [8.1365 โˆ’0.8020

    โˆ’0.8020 6.8109] ,

    ๐บ = [โˆ’2.1527 1.4389

    6.5441 โˆ’11.7139] , ๐œ–

    1= 4.2164 ร— 10

    4

    ,

    ๐œ–2= 5.7269 ร— 10

    4

    , ๐œ–3= 5.3163 ร— 10

    4

    .

    (60)

    0 1 2 3 4 5 6 7 8Time (s)

    โˆ’2

    โˆ’1

    0

    1

    2

    3

    4

    5

    6

    The s

    tate

    var

    iabl

    ex(t)

    x1(t)

    x2(t)

    Figure 1: The simulation solutions ๐‘ฅ1(๐‘ก) and ๐‘ฅ

    2(๐‘ก) are presented for

    system (1) with (58)-(59) in Example 1, ๐›ผ1= ๐›ผ2= 1/2, and initial

    conditions ๐‘ฅ1(๐‘ก) = 2 + 3 cos(๐‘ก), ๐‘ฅ

    2(๐‘ก) = 1 + 2 sin(๐‘ก), ๐‘ก โˆˆ [โˆ’1, 0], by

    using the Runge-Kutta fourth order method with Matlab.

    Table 1: The maximum allowed time delay โ„Ž for ๐‘˜ = 0.1, ๐œ‚ = 0.05,๐œŒ = 0.1, and ๐›ฝ = 0.1.

    โ„Ž๐‘‘= ๐‘Ÿ๐‘‘

    0 0.5 0.9Chen et al. (2008) [3] 1.2999 0.9442 0.5471Qiu and Cui (2010) [26] 1.4008 1.0120 0.6438Pinjai and Mukdasai (2011) [25] 1.6237 1.1052 0.6205Corollary 10 6.4417 5.2362 2.5666

    Example 2. Consider the following neutral system (54),which is considered in [3, 25, 26]:

    ๏ฟฝฬ‡๏ฟฝ (๐‘ก) = ๐ด๐‘ฅ (๐‘ก) + ๐ต๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)) + ๐ถ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))

    + ๐‘“ (๐‘ก, ๐‘ฅ (๐‘ก)) + ๐‘” (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))) ,

    (61)

    with

    ๐ด = [โˆ’2 0

    0 โˆ’0.9] , ๐ต = [

    โˆ’1 0

    โˆ’1 โˆ’1] , ๐ถ = [

    0.1 0

    0 0.1] .

    (62)

    Decompose matrix ๐ต as follows: ๐ต = ๐ต1+ ๐ต2, where

    ๐ต1= [

    โˆ’0.83 0

    โˆ’1 โˆ’0.83] , ๐ต

    2= [

    โˆ’0.17 0

    0 โˆ’0.17] , (63)

    โ€–๐‘“(๐‘ก, ๐‘ฅ(๐‘ก))โ€– โ‰ค ๐œ‚โ€–๐‘ฅ(๐‘ก)โ€–, and โ€–๐‘”(๐‘ก, ๐‘ฅ(๐‘กโˆ’โ„Ž(๐‘ก)))โ€– โ‰ค ๐œŒโ€–๐‘ฅ(๐‘กโˆ’โ„Ž(๐‘ก))โ€–.The maximum value โ„Ž for exponential stability of system(61) with (62)-(63) is listed in the comparison in Table 1, fordifferent values of โ„Ž

    ๐‘‘and ๐‘Ÿ

    ๐‘‘. In Table 1, we let ๐œ‚ = 0.05,

    ๐œŒ = 0.1, ๐›ฝ = 0.1 and โ„Ž(๐‘ก) = ๐‘Ÿ(๐‘ก). We can see that our resultsin Corollary 8 are much less conservative than in [3, 25, 26].

    Example 3. Consider the following neutral system (51), whichis considered in [14, 28]:

    ๏ฟฝฬ‡๏ฟฝ (๐‘ก) = ๐ด๐‘ฅ (๐‘ก) + ๐ต๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก)) + ๐ถ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก)) + ๐‘“ (๐‘ก, ๐‘ฅ (๐‘ก))

    + ๐‘” (๐‘ก, ๐‘ฅ (๐‘ก โˆ’ โ„Ž (๐‘ก))) + ๐‘ค (๐‘ก, ๏ฟฝฬ‡๏ฟฝ (๐‘ก โˆ’ ๐‘Ÿ (๐‘ก))) ,

    (64)

  • Journal of Applied Mathematics 17

    Table 2: The maximum allowed time delay โ„Ž.

    โ„Ž๐‘‘= ๐‘Ÿ๐‘‘= 0 ๐‘˜ = 0.1 ๐‘˜ = 0.3 ๐‘˜ = 0.5 ๐‘˜ = 0.7 ๐‘˜ = 0.9

    Syed Ali (2012) [28] 10.2180 2.9481 1.4126 0.7232 0.3045Liu et al. (2013) [14] 12.2475 3.7460 1.9563 1.1015 0.5957Corollary 9 14.1728 4.7242 2.8345 2.0246 1.5747โ„Ž๐‘‘= ๐‘Ÿ๐‘‘= 0.5 ๐‘˜ = 0.1 ๐‘˜ = 0.3 ๐‘˜ = 0.5 ๐‘˜ = 0.7 ๐‘˜ = 0.9

    Syed Ali (2012) [28] 6.7523 1.7922 0.7308 0.3580 0.1027Liu et al. (2013) [14] 10.8211 3.3202 1.7390 0.9662 0.4857Corollary 9 11.5872 3.8624 2.3174 1.6553 1.2874

    with

    ๐ด = [โˆ’2 0

    0 โˆ’2] , ๐ต = [

    0 0.4

    0.4 0] , ๐ถ = [

    0.1 0

    0 0.1] .

    (65)

    Decompose matrix ๐ต as follows: ๐ต = ๐ต1+ ๐ต2, where

    ๐ต1= [

    0 0.3

    0.2 0] , ๐ต

    2= [

    0 0.1

    0.2 0] , (66)

    โ€–๐‘“(๐‘ก, ๐‘ฅ(๐‘ก))โ€– โ‰ค ๐œ‚โ€–๐‘ฅ(๐‘ก)โ€–, โ€–๐‘”(๐‘ก, ๐‘ฅ(๐‘ก โˆ’ โ„Ž(๐‘ก)))โ€– โ‰ค ๐œŒโ€–๐‘ฅ(๐‘ก โˆ’ โ„Ž(๐‘ก))โ€–,and โ€–๐‘ค(๐‘ก, ๏ฟฝฬ‡๏ฟฝ(๐‘ก โˆ’ ๐‘Ÿ(๐‘ก)))โ€– โ‰ค ๐›พโ€–๏ฟฝฬ‡๏ฟฝ(๐‘ก โˆ’ ๐‘Ÿ(๐‘ก))โ€–. By Corollary 9 tosystem (64) with (65)-(66), one can obtain the maximumupper bounds of the time delay with different convergencerate ๐‘˜ as listed in Table 2. In Table 2, we let โ„Ž = 0.1, ๐œ‚ = 0.1,๐œŒ = 0.05, ๐›พ = 0.05, and ๐›ฝ = 0.1. It is clear that the results inCorollary 9 give larger delay bounds than the recent resultsin [14, 28].

    5. Conclusions

    The problem of robust exponential stability for LPD neu-tral systems with mixed time-varying delays and nonlinearuncertainties has been presented. Based on combinationof Leibniz-Newton formula, free-weighting matrices, linearmatrix inequality, Cauchyโ€™s inequality, modified version ofJensenโ€™s inequality, model transformation, and the use of suit-able parameter-dependent Lyapunov-Krasovskii functional,new delay-dependent robust exponential stability criteriaare formulated in terms of LMIs. Numerical examples haveshown significant improvements over some existing results.

    Acknowledgments

    This work was supported by the Higher Education ResearchPromotion and the National Research University Projectof Thailand, Office of the Higher Education Commission,through the Cluster of Research to Enhance the Qualityof Basic Education, Khon Kaen University, Khon Kaen,Thailand.

    References

    [1] K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-DelaySystem, Birkhaฬˆauser, Berlin, Germany, 2003.

    [2] Y. Y. Cao and J. Lam, โ€œComputation of robust stabilitybounds for time-delay systems with nonlinear time-varying

    perturbations,โ€ International Journal of Systems Science, vol. 31,pp. 359โ€“365, 2000.

    [3] Y. Chen, A. Xue, R. Lu, and S. Zhou, โ€œOn robustly exponentialstability of uncertain neutral systems with time-varying delaysand nonlinear perturbations,โ€Nonlinear Analysis:Theory,Meth-ods & Applications, vol. 68, no. 8, pp. 2464โ€“2470, 2008.

    [4] W.-H. Chen and W. X. Zheng, โ€œDelay-dependent robust stabi-lization for uncertain neutral systems with distributed delays,โ€Automatica, vol. 43, no. 1, pp. 95โ€“104, 2007.

    [5] J. Hale, Theory of Functional Differential Equations, Springer,New York, NY, USA, 2nd edition, 1977.

    [6] Y. He, M. Wu, J.-H. She, and G.-P. Liu, โ€œParameter-dependentLyapunov functional for stability of time-delay systems withpolytopic-type uncertainties,โ€ IEEE Transactions on AutomaticControl, vol. 49, no. 5, pp. 828โ€“832, 2004.

    [7] Y.He,Q.-G.Wang, C. Lin, andM.Wu, โ€œDelay-range-dependentstability for systems with time-varying delay,โ€ Automatica, vol.43, no. 2, pp. 371โ€“376, 2007.

    [8] X. Jiang and Q.-L. Han, โ€œOn ๐ปโˆž

    control for linear systemswith interval time-varying delay,โ€Automatica, vol. 41, no. 12, pp.2099โ€“2106, 2005.

    [9] V. L. Kharitonov and D. Hinrichsen, โ€œExponential estimates fortime delay systems,โ€ Systems & Control Letters, vol. 53, no. 5, pp.395โ€“405, 2004.

    [10] O. M. Kwon and J. H. Park, โ€œExponential stability for time-delay systems with interval time-varying delays and nonlinearperturbations,โ€ Journal ofOptimizationTheory andApplications,vol. 139, no. 2, pp. 277โ€“293, 2008.

    [11] O. M. Kwon, J. H. Park, and S. M. Lee, โ€œOn robust stabilitycriterion for dynamic systems with time-varying delays andnonlinear perturbations,โ€ Applied Mathematics and Computa-tion, vol. 203, no. 2, pp. 937โ€“942, 2008.

    [12] C. Li, J. Sun, andR. Sun, โ€œStability analysis of a class of stochasticdifferential delay equations with nonlinear impulsive effects,โ€Journal of the Franklin Institute, vol. 347, no. 7, pp. 1186โ€“1198,2010.

    [13] C. Li, J. Shi, and J. Sun, โ€œStability of impulsive stochastic differ-ential delay systems and its application to impulsive stochasticneural networks,โ€Nonlinear Analysis: Theory, Methods & Appli-cations, vol. 74, no. 10, pp. 3099โ€“3111, 2011.

    [14] Y. Liu, S. M. Lee, O. M. Kwon, and J. H. Park, โ€œDelay-dependentexponential stability criteria for 9 neutral systems with intervaltime-varying delay and nonlinear perturbations,