research contributionkamran/ocl/pr/final report_revised.docx · web viewa novel antenna design...

17
National Institute of Justice Grant 2006-IJ-CX-K043 and 2009-SQ-B9-K007 Title: Realization of a Software-Defined Emergency Radio Kamran Kiasaleh (Professor, [email protected] , 972-883-2990), PI, Poras Balsara (Professor, [email protected] , 972-883-2557), co- PI, Dinesh Bhatia (Professor, [email protected] , 972-883-2386), co- PI 9/24/2012 Submitted by Rachell Reilly, Director, Office of Sponsored Projects, 972-883-2040, [email protected] DUNS: 80-018-8161, EIN: 75-1305566 The University of Texas at Dallas, 800 W. Campbell Road, AD15, Richardson, TX 75080-3021 A Software-Defined Emergency Radio – grant # 2006-IJ-CX-K043, Project Dates: 9/1/2006-9/30/2012 ARRA: Realization of a Software-defined Emergency Radio – grant # 2009-SQ-B9-K007

Upload: hoangdien

Post on 14-Apr-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Research Contributionkamran/OCL/pr/FInal Report_revised.docx · Web viewA novel antenna design technique using PSO that can reconfigure antenna pattern in real time using programmable

National Institute of Justice

Grant 2006-IJ-CX-K043 and 2009-SQ-B9-K007

Title: Realization of a Software-Defined Emergency Radio

Kamran Kiasaleh (Professor, [email protected], 972-883-2990), PI,

Poras Balsara (Professor, [email protected], 972-883-2557), co-PI,

Dinesh Bhatia (Professor, [email protected], 972-883-2386), co-PI

9/24/2012

Submitted by Rachell Reilly, Director, Office of Sponsored Projects, 972-883-2040,

[email protected]

DUNS: 80-018-8161, EIN: 75-1305566

The University of Texas at Dallas, 800 W. Campbell Road, AD15, Richardson, TX 75080-3021

A Software-Defined Emergency Radio – grant # 2006-IJ-CX-K043,

Project Dates: 9/1/2006-9/30/2012

ARRA: Realization of a Software-defined Emergency Radio – grant # 2009-SQ-B9-K007

Project Dates: 8/1/09 – 8/31/12

Final Report

Rachell Reilly

Page 2: Research Contributionkamran/OCL/pr/FInal Report_revised.docx · Web viewA novel antenna design technique using PSO that can reconfigure antenna pattern in real time using programmable

ACCOMPLISHEMENTS

1. Objectives: The major objective of this project is the realization of a radio transceiver that meets two major characteristics; first, it must be low-cost and low-power, in-par with the commercially available wireless telephony devices available today, and second, the device must be programmable to function as a software-defined radio, allowing the emergency responder to realize not only a P25, push-to-talk radio, but also a wireless device compatible with the current standards (in this case, GSM).

2. Achievements I. Implementation

We developed a prototype that uses TI’s proprietary DRP technology, originally designed to implement a GSM radio, to realize a P-25, push-to-talk radio, thereby demonstrating the potential of DRP chipset to achieve the goals set in the project. The following picture depicts the transceiver box, which allows one to communicate over 700 MHz frequency band using P25 signaling format in a push-to-talk format.

Page 3: Research Contributionkamran/OCL/pr/FInal Report_revised.docx · Web viewA novel antenna design technique using PSO that can reconfigure antenna pattern in real time using programmable

The DRP chipset, needless to say, meets the low-power, low-cost requirements for this project as the chipset was designed to implement inexpensive GSM radios (for the most part, the chip was designed to realize pre-paid phones). DRP chipset has proven itself in the field as the “backbone” of the low-cost (under $20), low-power GSM phones deployed worldwide which are mass-produced by Nokia with billions in sales. The following video clip demonstrates the capability of the UTD’s Emergency SDR platform, which due to a lack of access to the internal function of DRP chipset (TI no longer supports this chipset, although it has not stopped the production of the chip) requires an external board (designed, built, and tested at UTD) which houses FPGFA and other peripherals:

www.utdallas.edu/~kamran/OCL/fpr/P25_demo.wmv

Nonetheless, the system demonstrates the ability of the caller to place a push-to-talk call using the 700 MHz band using proprietary antenna structure. The box shown is capable of establishing communication over 1-2 km (-120 dBm receiver sensitivity). Due to restriction of the usage of 700 MHz band for experimental purposes, imposed by FCC, the above demo is done in lab. Furthermore, the core of the device is the FPGA and DRP chipsets that can be fabricated onto a pocket size platform. To demonstrate this task, we implemented the design onto an off-chip board. Provided the limitation imposed upon the research team at UTD, which prevented us from a full access to the chipset internal functions, this is the last possible step that one can take toward demonstrating an SDR platform based on a low-cost, low-power, commercially available chipset, designed for realizing a low-cost cellular GSM handset. UTD’s offices of technology commercialization along with the investigators have taken an active role in the commercialization of the developed technology. To that end, UTD has created a brief description of the SDR technology for first responders, shown at the end of this report, for the dissemination among interested parties.

We have also been in contact with a number of sources for the commercialization of this technology, as mandated by the project objective. To that end, currently we are in discussion with SUTIMCO (www.suti.com) to license this technology for further commercialization.

Page 4: Research Contributionkamran/OCL/pr/FInal Report_revised.docx · Web viewA novel antenna design technique using PSO that can reconfigure antenna pattern in real time using programmable

II. Research Contribution

This research activity has resulted in one major patent: toward a realization of emergency responders radio based on commercially

available cellular technology, issued on Sep. 4, 2012 (US 8,260,279 B2), entitled, “System, Method and Apparatus for Providing Communications that Conform to a Cellular Communication Standard and a non-Cellular Communication Standard”

In addition to numerous conference presentations and papers, this research has led to 5 key publications in IEEE Transactions on Antennas and Propagation, IEEE Transactions on Circuit and Systems, IEEE Transactions on Magnetics, IEEE Transactions on Consumer Electronics, and IEEE Antennas and Wireless Propagation Letters.

In summary, this research has resulted in the development of a modified particle swarm optimization technique (PSO), which is critical to reconfigurable platforms operating in real time. The proposed technique is shown to be far more superior to the standard PSO technique. The journal publications (with Arezoo Modiri, a Ph.D. student involved with the project) in IEEE Transactions on Antennas and Propagation and IEEE Transactions on Magnetics have been cited numerously [13]-[15]. It is of paramount importance to underscore the significance of this discovery, which will enable computing platforms reconfigure themselves in expeditious manner, for any future implementation of a viable SDR solution.

This research also has led to the introduction of a novel, computationally efficient clock synchronization technique for reconfigurable platforms (refs. [8] and [16]). The result of this discovery was published in IEEE Transactions on Circuit and Systems and IEEE Transactions on Consumer Electronics. Provided that clock synchronization is a key feature of any digital receiver, often responsible for dropped calls, loss of communication, etc., the result of this research is a noticeable contribution to the field of SDR.

A novel antenna design technique using PSO that can reconfigure antenna pattern in real time using programmable platform (DSP) was also introduced and investigated. This technique will be of critical importance to the design of an SDR solution where receiver/transmitter antenna reconfiguration must be achieved in real time.

Page 5: Research Contributionkamran/OCL/pr/FInal Report_revised.docx · Web viewA novel antenna design technique using PSO that can reconfigure antenna pattern in real time using programmable

A detailed list of refereed publications, conference presentation, and invited talks is given below:

List of Publication related to the porject

1. A Practical Step Forward Toward Software-Defined Radio Transmitters, Kamran Kiasaleh (with E. Atalla, I. Bashir, P. Balsara, B. Staszewski), IEEE Dallas Circuit and System Workshop on System-on-Chip, Dallas, Texas, (Nov. 2007)

2. Novel Receiver Architecture for the Detection of QAM Signals in the Presence of Residual Phase Error and Channel Fading, Kamran Kiasaleh (with Beilei Zhang), MICOM 2007 (IEEE), Orlando, FL, (Oct. 2007)

3. Broadband receiver design on FPGA, Kamran Kiasaleh (with Beilei Zhang), IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, Las Vegas, NV (March 2008)

4. Challenges and Promises of Software-Defined Radio, Kamran Kiasaleh, Invited talk, IEEE-APS Meeting, Dallas, TX (Dec. 2008)

5. Partially-Coherent Receiver Architectures for QAM Communications in the Presence of Non-constant Phase Estimation Error, Kamran Kiasaleh (with Beilei Zhang), IEEE Transactions on Wireless Communications, 8, No. 2, (2009), pp. 568-573

6. Low complexity digital clock recovery algorithm for implementation in software-defined radios, Kamran Kiasaleh (with Ali Montazeri), IEEE International Conference on Signal Processing and Communication Systems (ICSPCS), Omaha, NE (Oct. 2009)

7. DSP implementation of a DRP™ -based low cost software-defined emergency radio, Kamran Kiasaleh (with Gaurav Sureka), IEEE International Conference on Signal Processing and Communication Systems (ICSPCS), Omaha, NE (Oct. 2009)

8. Design and Performance Analysis of a Low Complexity Digital Clock Recovery Algorithm for Software-Defined Radio Applications, Kamran Kiasaleh (with Ali Montazeri), IEEE Transactions on Consumer Electronics, 56¸ No. 3, (2010), pp. 1258-1263

9. Efficient Design of Microstrip Antennas using Modified PSO Algorithm, Kamran Kiasaleh (with Arezoo Modiri), Biennial IEEE Conference on Electromagnetic Field Computation (CEFC), Digital Object Identifier: 10.1109/CEFC.2010.5481558, Chicago, IL (May 2010)

10. A Clock Recovery Algorithm for Software Defined Radios and Performance Analysis over a Frequency non-selective Fading Channel, Kamran Kiasaleh (with Ali Montazeri), Integrated Communications Navigation and Surveillance Conference (ICNS), Digital Object Identifier: 10.1109/ICNSURV.2010.5503336, Hanover, VA (May 2010)

Page 6: Research Contributionkamran/OCL/pr/FInal Report_revised.docx · Web viewA novel antenna design technique using PSO that can reconfigure antenna pattern in real time using programmable

11. Energy-Efficient Filter Design Algorithm for Intelligent Software-Defined Radios, Kamran Kiasaleh (with Gaurav Sureka and Xiaojiang Tian), Proceedings of the Second Annual European Reconfigurable Radio Technologies Workshop, Mainz Germany (June 2010)

12. A low-cost, low-power DSP/FPGA/DRP-based Software-Defined Radio for Emergency Responders, Kamran Kiasaleh (with Zhengjie Liu, Gaurav Sureka, Xiaojiang Tian, Allen Web, Anish Nair), ICASSP 2010 Show and Tell, Dallas, TX (March 16, 2010)

13. Modification of Real-Number and Binary PSO Algorithms for Accelerated Convergence, Kamran Kiasaleh (with Arezoo Modiri), IEEE Transactions on Antennas and Propagation, 59¸ No. 1, (2011), pp. 214-224

14. Efficient Design of Microstrip Antennas for SDR Applications Using Modified PSO Algorithm, Kamran Kiasaleh (with Arezoo Modiri), IEEE Transactions on Magnetics, 47¸ No. 5, (2011), pp. 1278-1281

15. DSP Implementation of the Particle Swarm and Genetic Algorithms for Real-Time Design of Thinned Array Antennas, Kamran Kiasaleh (with Damin Cao, Arezoo Modiri, Gaurav Sureka), IEEE Antennas and Wireless Propagation Letters, Vol. 11, 2012.

16. Low-Power Spectral-Line Clock Recovery Algorithm for SDR Applications, Kamran Kiasaleh (with Ali Montazeri and Allen Webb), IEEE Transactions on Circuit and Systems II, 58¸ No. 11, (2011), pp. 773-777

17. A demonstration of an Emergency SDR platform, Innovation Showcase (Dallas, TX), RCIC, August 30, 2012.

18. Novel UWB Hybrid Dipole Antenna with Quasi-Isotropic Radiation Pattern, Kamran Kiasaleh (with Arezoo Modiri and Jaskaran Singh), accepted for presentation at IEEE Radio Wireless Week (RWW2013), Jan. 2013, Austin Texas.

3. Training Opportunity: This project involved and provided research support, either fully or partially, for a large number of MS and Ph.D. students. Students were afforded an opportunity to design algorithms, simulate, and implement their algorithms using real-world platforms. This is a complete cycle of an engineering endeavor. Furthermore, this project provided an environment where students could develop a commercially viable platform, learn about the needs of emergency responders and test the implemented platforms in a realistic environment. Furthermore, an invited talk was given, along with a show-and-tell session at ICASSP conference and a demonstration at Dallas Innovation

Page 7: Research Contributionkamran/OCL/pr/FInal Report_revised.docx · Web viewA novel antenna design technique using PSO that can reconfigure antenna pattern in real time using programmable

Showcase, organized by North Texas Regional Center for Innovation & Commercialization (North Texas RCIC) http://ntxrcic.org/, in order to educate the scientific and engineering community regarding the problem of realizing a low-cost, low-power radio for emergency responders and our solution to this important problem. Ultimately, the best form of training is the production of MS and Ph.D. students. The following list provides further information regarding the participating students and their respective standings at UTD:

1. Beilei Zhang (Ph.D.)2. Ali Montazeri (Ph.D.)3. Arezoo Modiri (Ph.D.)4. Gaurav Sureka (Ph.D.)5. Anish Nair (Ph.D.)6. Essam Attala (Ph.D.)7. Xiaojiang Tian (Ph.D.)8. Imran Bashir (Ph.D.)9. Praveen Aroul (Ph.D.)10. Allen Webb (MS)11. Qi Li (MS)12. Damin Cao (MS)13. Zhengjie Liu (MS)14. Jay Shah (MS)15. Jaskaran Singh (M

4. Dissemination of Results:

For the most part, the dissemination of results has been in the form of scientific conference paper presentations, journal publications, show-and-tell demo at a major signal processing conference, and presentation to potential venture capitals and institutional investors in a premier entrepreneurship showcase. A list of publication is provided above. A number of invited talks were also given to stimulate interest in the subject, raise awareness regarding this important problem and how it impacts the nation’s first responders, and solicit ideas for commercialization. An indirect, yet effective means of disseminating information was pursued as well. To elaborate, a 3-page (see above) brief was created by the office of technology commercialization and was distributed to potential investors and interested parties. This format of advertising was received favorably by participants in the RCIC technology showcase in Dallas in Aug. 2012.

Page 8: Research Contributionkamran/OCL/pr/FInal Report_revised.docx · Web viewA novel antenna design technique using PSO that can reconfigure antenna pattern in real time using programmable

The University of Texas at Dallas is seeking companies interested in commercializing a revolutionary new Software Defined Radio (SDR) technology which overcomes the limitations of conventional hardware-based radio by providing an RF modulator (the radio “front end”) that is completely software-defined and not based on the physical layer. This is accomplished through UTD’s patent-pending reconfiguration of the low-cost, low-power, commercially-available Texas Instruments LoCostoTM single-chip GSM radio.

Whereas traditional radio devices are limited to operating within specific hardware-defined parameters, this reconfigured GSM radio provides a “Universal Transceiver” chip capable of transmitting, receiving, and switching between, any given modulation type, frequency, or bandwidth, including common communication standards such as GSM/EDGE, Project 25 (P25), 802.11b,g,n (WiFi), 802.16 (WiMAX), Bluetooth, ZigBee, etc.

Additionally, the transceiver’s SDR software can be upgraded over-the-air while the radio is in operation, allowing new wireless features, capabilities, and communication standards to be added to SDR radio systems without requiring any new hardware. This ensures that SDR-enabled equipment will not become outdated or obsolete as communication standards evolve.

ApplicationsCommunication difficulties between various federal, state, and local public safety agencies using disparate proprietary radio hardware is a well-known problem, resulting in poorly-coordinated emergency responses and delayed processing of urgent information. This was the impetus behind the P25 radio standard which has been designed as a “common” communication protocol to allow interoperability between different agencies, irrespective of radio hardware manufacturer.

Conventional P25 radios are built using numerous specialty discrete components and complex board designs, resulting in very expensive equipment which is bulky, heavy, and inefficient. Because of this, adoption of P25 radio hardware has been slow.

Information Technology Solutions

Page 9: Research Contributionkamran/OCL/pr/FInal Report_revised.docx · Web viewA novel antenna design technique using PSO that can reconfigure antenna pattern in real time using programmable

When implemented as a P25 radio, UTD’s SDR technology promises to significantly reduce the size, weight, and cost of P25-compliant radio communication equipment for the public safety, security, military, utility, and transportation industries.

Applications Include:

P25 Portable and Mobile Radios

P25 Base Stations

Wireless Bridge for IP Integration into P25 networks.

Wireless “Smart” Power Meters

Adaptive/Cognitive/Intelligent Radio

Advantages

Low Component Cost

Complete SDR solution is implemented in a single, “off-the-shelf” TI GSM chip, leveraging “economies of scale” and highly integrated features such as high-resolution QVGA color display, USB 2.0 connectivity, and mass storage capability.

Eliminates the need for custom board design.Reduced Time To Market

Eliminates the need to design of complex RF modulation circuitry. Variety of distinct radio products can be based on common architecture platform.

Low Power Consumption

TI GSM chip has been specifically optimized for low-power mobile phone applications.

Light Weight/ Small Form Factor

Combines the functionality of multiple conventional P25 hardware components into a single GSM chip, enabling full-featured P25 radio to be implemented in mobile phone form factor.

Power efficiency enables reduced battery size.

Software Flexibility

SDR software is upgradeable “over-the-air”, allowing easy deployment of bug fixes, new wireless features, and communication standards to be added.

Reduces hardware obsolescence.

Page 10: Research Contributionkamran/OCL/pr/FInal Report_revised.docx · Web viewA novel antenna design technique using PSO that can reconfigure antenna pattern in real time using programmable

Reliability Proven reliability of TI GSM chip in consumer mobile applications.

Low Risk Fully P25 C4FM (continuous 4-level FM)-compliant data signal has been demonstrated using this technology (see figure X).

TechnologyA “Universal Transceiver” chip has been developed by reconfiguring the internal software of the Texas Instruments LoCostoTM chip (a reconfigurable, programmable, low-cost, Digital RF Processor (DRP)-based single-chip GSM/EDGE radio currently used in low-power GSM mobile phones).

This GSM radio chip’s software has been successfully reconfigured to modulate the RF carrier signal with P25-compliant C4FM (continuous 4-level FM) data. The plot to the left illustrates how the actual measured output of this invention exactly matches that of an ideal P25 signal.

Note that the P25 digital public safety standard operates in the 746-806 MHz frequency band, which is different from the normal operating band of the GSM/EDGE chip. The modulation of this P25 signal is based completely in software, without the need for any hardware modifications to the chip or ancillary circuitry.

This technology is patent pending. Click here to view patent application.

InventorsKamran Kiasaleh, PhD., is a Professor of Electrical Engineering at the University of Texas at Dallas and is the Associate Department Head of the Electrical Engineering program. His research experience in the area of telecommunications spans over 24 years in

Page 11: Research Contributionkamran/OCL/pr/FInal Report_revised.docx · Web viewA novel antenna design technique using PSO that can reconfigure antenna pattern in real time using programmable

industrial and academic settings. He was the recipient of a National Science Foundation (NSF) research initiation award and a NASA/Jet Propulsion Laboratory (JPL) group achievement award for a Galileo experiment - the first successful optical communications demonstration with a deep-space vehicle. He holds three patents, one of which is implemented in 3rd generation wireless communication receivers. He is a senior member of IEEE and holds a Professional Engineering license in the state of Texas.

Poras Balsara, Ph.D., is a Professor of Electrical Engineering at the University of Texas at Dallas and is also associated with its Center for Integrated Circuits and Systems. His research and teaching interests include VLSI design, design of energy efficient digital circuits and systems, computer arithmetic, VLSI architectures and algorithms for DSP and telecommunications, and reconfigurable architectures. Current research topics include: Energy efficient digital systems, VLSI circuits and architectures for DSP and telecommunications, and reconfigurable digital systems.

Licensing OpportunityThis technology is available for exclusive and non-exclusive licensing.

Page 12: Research Contributionkamran/OCL/pr/FInal Report_revised.docx · Web viewA novel antenna design technique using PSO that can reconfigure antenna pattern in real time using programmable
Page 13: Research Contributionkamran/OCL/pr/FInal Report_revised.docx · Web viewA novel antenna design technique using PSO that can reconfigure antenna pattern in real time using programmable