resist-free and busbar compatible plating route on tcos ... · resist-free and busbar compatible...

25
©Fraunhofer ISE/Foto: Guido Kirsch © Fraunhofer ISE Resist-free and Busbar Compatible Plating Route on TCOs Developed on SHJ Solar Cells Thibaud Hatt , Jonas Bartsch, Sven Kluska and Markus Glatthaar Fraunhofer Institute for Solar Energy Systems ISE, Freiburg – Germany 9 th Metallization & Interconnection Workshop 2020

Upload: others

Post on 17-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • ©Fraunhofer ISE/Foto: Guido Kirsch

    © Fraunhofer ISE

    Resist-free and Busbar Compatible Plating Route on TCOs Developed on SHJ Solar Cells

    Thibaud Hatt, Jonas Bartsch, Sven Kluska and Markus Glatthaar

    Fraunhofer Institute for Solar Energy Systems ISE, Freiburg – Germany

    9th Metallization & Interconnection Workshop 2020

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    2

    FHG-SK: ISE-PUBLIC

    High-efficiency potential of SHJ solar cells

    Kaneka in 2015 h = 25.1% (Cu on front-side, busbars) [1]

    Hanergy in 2020 h = 25.1% (Ag both-sides, busbar-less) [2]

    Motivation Silicon Heterojunction Solar Cells

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020

    [1] D. Adachi et al., Appl. Phys. Lett., vol. 107, no. 23, 2015. [2] X. Ru et al., Sol. Mat., vol. 215, p. 110643, 2020.

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    3

    FHG-SK: ISE-PUBLIC

    High-efficiency potential of SHJ solar cells

    Kaneka in 2015 h = 25.1% (Cu on front-side, busbars) [1]

    Hanergy in 2020 h = 25.1% (Ag both-sides, busbar-less) [2]

    Motivation Silicon Heterojunction Solar Cells

    Why Cu-plating as low-T° metallization? Performance Conductiv ity , adhesion, contact res istiv ity…

    Cost raw material Cu (dividing Ag price by factor > 100) [3]

    Module-interconnection Versatile (BB-soldering / ECA / SWCT / Shingling…)

    PV future (TW-scale) By 2030 might exceed Ag worldwide production [4-5]

    Cuplated @ Fh-ISE

    10 µm

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020

    [1] D. Adachi et al., Appl. Phys. Lett., vol. 107, no. 23, 2015. [2] X. Ru et al., Sol. Mat., vol. 215, p. 110643, 2020. [3] S. Kluska et al., PV Inter. vol. 44, 2020.

    [4] N.M. Haegel, Science, 364, 836–838, 2019. [5] P.J. Verlinden, 2.0 TW Workshop, Denver, USA 2018.

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    4

    FHG-SK: ISE-PUBLIC

    Cu-plated metallization on TCOs

    Several plating approach (different mask, seed-layer on TCO, mono/bifacial plating…) [5-6]

    Resist masking on PVD metal-seed high h of 24.7% with busbars [6]

    Challenge by copper plating TCOs masking

    [5] T. Hatt et al., Sol. RRL, vol. 26, p. 1900006, 2019. [6] A. Lachowicz et al., 8th MIW, 2019. T. Hatt et al., 9th Metallization and

    Interconnection Workshop, 2020

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    5

    FHG-SK: ISE-PUBLIC

    Cu-plated metallization on TCOs

    Several plating approach (different mask, seed-layer on TCO, mono/bifacial plating…) [5-6]

    Resist masking on PVD metal-seed high h of 24.7% with busbars [6]

    „NOBLE“ approach @ Fh-ISE [5]

    Resist-free (patterning 5% cell area)

    Simultaneous bifacial plating

    Low contact resistivity

    High adhesion

    Challenge by copper plating TCOs masking

    [5] T. Hatt et al., Sol. RRL, vol. 26, p. 1900006, 2019. [6] A. Lachowicz et al., 8th MIW, 2019. T. Hatt et al., 9th Metallization and

    Interconnection Workshop, 2020

    *NOBLE Native Oxide Barrier Layer for selective Electroplating

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    6

    FHG-SK: ISE-PUBLIC

    Multi-task PVD metal stack on TCO

    Plating mask Al + native AlOx

    Homogeneous current distribution simultaneous bifacial plating

    PVD TCO/Metals (Al on top) Characteristics

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    7

    FHG-SK: ISE-PUBLIC

    Multi-task PVD metal stack on TCO

    Plating mask Al + native AlOx

    Homogeneous current distribution simultaneous bifacial plating

    Performance of PVD TiW or Ti as contacting layer on ITO [7]

    Low contact resistivity ρc ≤ 1 mΩcm²

    Ti TiW

    0.1

    0.5

    1.0

    2.0

    3.0

    4.05.0

    10.0

    Conta

    ct

    resis

    itiv

    ity ρ

    c [

    cm

    ²]

    Contacting metal-layer on ITO

    PVD TCO/Metals (Al on top) Characteristics

    [7] T. Hatt al., 47th IEEE-PVSC, 2020. T. Hatt et al., 9th Metallization and

    Interconnection Workshop, 2020

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    8

    FHG-SK: ISE-PUBLIC

    Multi-task PVD metal stack on TCO

    Plating mask Al + native AlOx

    Homogeneous current distribution simultaneous bifacial plating

    Performance of PVD TiW or Ti as contacting layer on ITO [7]

    Low contact resistivity ρc ≤ 1 mΩcm²

    High adhesion > 2 N/mm (busbar peel test 90°)

    PVD metal stack selectively etch-back [5]

    PVD TCO/Metals (Al on top) Characteristics

    [5] T. Hatt et al., Sol. RRL, vol. 26, p. 1900006, 2019. [7] T. Hatt al., 47th IEEE-PVSC, 2020.

    Ti TiW

    0.1

    0.5

    1.0

    2.0

    3.0

    4.05.0

    10.0

    Conta

    ct

    resis

    itiv

    ity ρ

    c [

    cm

    ²]

    Contacting metal-layer on ITO

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    9

    FHG-SK: ISE-PUBLIC

    Patterning by inkjet-printing of etchantaq

    Wetting on Al/AlOx

    Grid patterning Al/AlOx local removal by inkjet-printing

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020

    Al/AlOx

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    10

    FHG-SK: ISE-PUBLIC

    Patterning by inkjet-printing of etchantaq

    Wetting on Al/AlOx atmosphere / time dependent [8]

    Adsorption alkyl molecules

    Grid patterning Al/AlOx local removal by inkjet-printing

    [8] T. Hatt et al., 9th SiliconPV, 2019.

    5 days

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020

    Al/AlOx

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    11

    FHG-SK: ISE-PUBLIC

    Patterning by inkjet-printing of etchantaq

    Wetting on Al/AlOx atmosphere / time dependent [8]

    Chemical functionalization of Al/AlOx with self-assembled monolayer (ODPA) [9]

    Adsorption by condensation reaction or ionic attraction on Al2O3

    [10]

    Grid patterning Al/AlOx local removal by inkjet-printing

    [8] T. Hatt et al., 9th SiliconPV, 2019. [9] T. Hatt et al., submitted, 2020. [10] P. Thissen et al., ACS Langmuir, vol. 26, no. 1, pp. 156–164, 2010.

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020

    ODPA: octadecyl-phosphonic acid

    PO

    OHOH

    (ODPA)

    Al/AlOx

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    12

    FHG-SK: ISE-PUBLIC

    Patterning by inkjet-printing of etchantaq

    Wetting on Al/AlOx atmosphere / time dependent [8]

    ODPA functionalization of Al/AlOx (ODPA) [9]

    FTIR-ATR measurements on native AlOx

    Vibration of CH2 / CH3 ≈ 2900 cm-1

    Vibration of P=O ≈ 1100 cm-1

    Grid patterning Al/AlOx local removal by inkjet-printing

    [8] T. Hatt et al., 9th SiliconPV, 2019. [9] T. Hatt et al., submitted, 2020.

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020

    ODPA: octadecyl-phosphonic acid

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    13

    FHG-SK: ISE-PUBLIC

    Patterning by inkjet-printing of etchantaq

    Wetting on Al/AlOx atmosphere / time dependent [8]

    ODPA functionalization of Al/AlOx (ODPA) [9]

    FTIR-ATR measurements on native AlOx

    Vibration of CH2 / CH3 ≈ 2900 cm-1

    Vibration of P=O ≈ 1100 cm-1

    XPS measurements on native AlOx

    C1s increase / O1s decrease

    P2p difficult to observe due to Al2s

    Grid patterning Al/AlOx local removal by inkjet-printing

    [8] T. Hatt et al., 9th SiliconPV, 2019. [9] T. Hatt et al., submitted, 2020.

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020

    ODPA: octadecyl-phosphonic acid

    PO

    OHOH

    (ODPA)

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    14

    FHG-SK: ISE-PUBLIC

    Patterning by inkjet-printing of etchantaq

    Wetting on Al/AlOx atmosphere / time dependent [8]

    ODPA functionalization of Al/AlOx (ODPA) [9]

    FTIR-ATR measurements on native AlOx

    XPS measurements on native AlOx

    Contact angle (CA) measurements on textured SHJ cells

    CA after 30s ≥ 115°

    CA stabilized ≈ 135° (after ≈ 1-2 hours)

    Grid patterning Al/AlOx local removal by inkjet-printing

    [8] T. Hatt et al., 9th SiliconPV, 2019. [9] T. Hatt et al., submitted, 2020.

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020

    ODPA: octadecyl-phosphonic acid

    PO

    OHOH

    (ODPA)

    No ODPA

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    15

    FHG-SK: ISE-PUBLIC

    Patterning by inkjet-printing of etchantaq

    Wetting on Al/AlOx atmosphere / time dependent [8]

    Chemical functionalization of Al/AlOx with self-assembled monolayer (ODPA) [9]

    Patterning of full area SHJ solar cells [9]

    Grid patterning Al/AlOx local removal by inkjet-printing

    [8] T. Hatt et al., 9th SiliconPV, 2019. [9] T. Hatt et al., submitted, 2020. T. Hatt et al., 9th Metallization and

    Interconnection Workshop, 2020

    *Cu / Al layers sputtered @

    157 m

    m Al/AlOx

    Opened

    Patterned solar cell ITO / Cu / Al50nm

    Al/AlOx

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    16

    FHG-SK: ISE-PUBLIC

    Patterning by inkjet-printing of etchantaq

    Wetting on Al/AlOx atmosphere / time dependent [8]

    Chemical functionalization of Al/AlOx with self-assembled monolayer (ODPA) [9]

    Patterning of full area SHJ solar cells [9] microscopy (72 different spots)

    Grid patterning Al/AlOx local removal by inkjet-printing

    [8] T. Hatt et al., 9th SiliconPV, 2019. [9] T. Hatt et al., submitted, 2020. T. Hatt et al., 9th Metallization and

    Interconnection Workshop, 2020

    157 m

    m

    20 mm

    Al/AlOx

    10 f

    ing

    ers

    Opened

    Patterned solar cell ITO / Cu / Al50nm

    25 µm

    w l

    Al/AlOx

    Cu

    25 µm

    25 µm

    w l

    w l

    *Cu / Al layers sputtered @

    25 µm

    Al/AlOx (not opened)

    x50

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    17

    FHG-SK: ISE-PUBLIC

    Patterning by inkjet-printing of etchantaq

    Wetting on Al/AlOx atmosphere / time dependent [8]

    Chemical functionalization of Al/AlOx with self-assembled monolayer (ODPA) [9]

    Patterning of full area SHJ solar cells [9] microscopy (72 different spots)

    Narrow to wide patterning on same wafer

    Inhomogeneous even on same wafer

    Grid patterning Al/AlOx local removal by inkjet-printing

    [8] T. Hatt et al., 9th SiliconPV, 2019. [9] T. Hatt et al., submitted, 2020. T. Hatt et al., 9th Metallization and

    Interconnection Workshop, 2020

    *Cu / Al layers sputtered @

    wl 72.7 ± 29.7 µm wl 44.0 ± 23.8 µm

    No ODPA

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    18

    FHG-SK: ISE-PUBLIC

    Patterning by inkjet-printing of etchantaq

    Wetting on Al/AlOx atmosphere / time dependent [8]

    Chemical functionalization of Al/AlOx with self-assembled monolayer (ODPA) [9]

    Patterning of full area SHJ solar cells [9] microscopy (72 different spots)

    Narrow patterning

    Homogeneous on full wafer

    Grid patterning Al/AlOx local removal by inkjet-printing

    [8] T. Hatt et al., 9th SiliconPV, 2019. [9] T. Hatt et al., submitted, 2020. T. Hatt et al., 9th Metallization and

    Interconnection Workshop, 2020

    *Cu / Al layers sputtered @

    wl 72.7 ± 29.7 µm wl 44.0 ± 23.8 µm

    No ODPA

    wl 26.9 ± 3.1 µm

    With ODPA

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    19

    FHG-SK: ISE-PUBLIC

    Selective Cu plating on metal-seed [8]

    Homogeneous narrow fingers plated ≤ 30 µm [9]

    Cu plating Selective deposition

    [8] T. Hatt et al., 9th SiliconPV, 2019. [9] T. Hatt et al., submitted, 2020.

    20 µm 20 µm

    Al/AlOx

    Metal-seed

    Al/AlOx

    Cu-plated

    SEM picture

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    20

    FHG-SK: ISE-PUBLIC

    Selective Cu plating on metal-seed [8]

    Homogeneous narrow fingers plated ≤ 30 µm [9]

    Selective wet etch-back of PVD metal layers [5]

    Cu plating and etch-back Selective

    [5] T. Hatt et al., Sol. RRL, vol. 26, p. 1900006, 2019. [8] T. Hatt et al., 9th SiliconPV, 2019. [9] T. Hatt et al., submitted, 2020.

    20 µm 20 µm

    Al/AlOx

    Metal-seed

    Al/AlOx

    Cu-plated

    26 µm

    SEM picture

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    21

    FHG-SK: ISE-PUBLIC

    Development of this novel metallization

    Al patterning modification proof of concept

    Upscaling on full area solar cells (M2)

    Optimization of contacting layer and ρc

    SHJ solar cells efficiency „NOBLE“ metallization

    *NOBLE Native Oxide Barrier Layer for selective Electroplating

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020

    [3] S. Kluska et al., PV Inter. vol. 44, 2020. [5] T. Hatt et al., Sol. RRL, vol. 26, p. 1900006, 2019 [7] T. Hatt al., 47th IEEE-PVSC, 2020. [8] T. Hatt et al., 9th SiliconPV, 2019.

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    22

    FHG-SK: ISE-PUBLIC

    Development of this novel metallization

    Al patterning modification proof of concept

    Upscaling on full area solar cells (M2)

    Optimization of contacting layer and ρc

    Optimization of inkjet-printing patterning with SAM

    SHJ solar cells efficiency „NOBLE“ metallization

    Both SHJ cells no light soaking

    *NOBLE Native Oxide Barrier Layer for selective Electroplating

    [3] S. Kluska et al., PV Inter. vol. 44, 2020. [5] T. Hatt et al., Sol. RRL, vol. 26, p. 1900006, 2019 [7] T. Hatt al., 47th IEEE-PVSC, 2020. [8] T. Hatt et al., 9th SiliconPV, 2019.

    Area [cm²]

    Voc [mV]

    pFF [%]

    FF [%]

    Jsc [mV]

    Rs [Ωcm²]

    η [%]

    222* 736 84.8 81.3 37.9 0.5 22.7

    RefSP 735 84.6 81.5 38.3 0.7 22.9

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    23

    FHG-SK: ISE-PUBLIC

    Summary Novel Cu-metallization

    NOBLE metallization on TCOs for SHJ solar cells

    Simultaneous bifacial Cu-plating

    Low-cost – no resist, only grid-area to be patterned

    TCO + Metal stack PVD tool

    Al-patterning Inkjet-printer

    Cu-plating + etch-back Wet chemical baths

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    24

    FHG-SK: ISE-PUBLIC

    Summary Novel Cu-metallization

    NOBLE metallization on TCOs for SHJ solar cells

    Simultaneous bifacial Cu-plating

    Low-cost – no resist, only grid-area to be patterned

    Inkjet-printing patterning optimized

    Chemical functionalization of Al/AlOx surface with SAM

    Characterization of the fast ODPA adsorption

    Homogeneous fine patterning ≤ 30µm wide

    Successful transfer to large area SHJ solar cells (M2)

    η 22.7% on large area with FF > 81% and Rs < 0.5 Ω∙cm²

    TCO + Metal stack PVD tool

    Al-patterning Inkjet-printer

    Cu-plating + etch-back Wet chemical baths

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020

  • R 23 G 156 B 125

    R 242 G 148 B 0

    R 31 G 130 B 192

    R 226 G 0 B 26

    R 177 G 200 B 0

    R 254 G 239 B 214

    R 225 G 227 B 227

    © Fraunhofer ISE

    25

    FHG-SK: ISE-PUBLIC

    Acknowledgment The authors would like to thank …

    …the Fraunhofer society for funding within the project “LEO” (contract no. 840 190)

    …all co-workers at Fraunhofer ISE and VON ARDENNE for metal sputtering

    …you for your attention!

    [email protected]

    Fraunhofer Institute for Solar Energy Systems ISE

    Thibaud Hatt | Advanced Development for High Efficiency Silicon Solar Cells

    T. Hatt et al., 9th Metallization and Interconnection Workshop, 2020