restoration, creation and enhancement of mountain kettle ... › download › documents ›...

103
Restoration, Creation and Enhancement of Rocky Mountain Kettle Ponds and Playas: Aims, Methods and Specifications for an EcologicallySound Design J. Bradley Johnson and David A. Steingraeber Department of Biology Colorado State University Fort Collins, CO 80521 [email protected] [email protected] May 1, 2007

Upload: others

Post on 08-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Restoration, Creation and Enhancement ofRocky Mountain Kettle Ponds and Playas:

Aims, Methods and Specifications for an Ecologically‐Sound Design

J. Bradley Johnsonand David A. Steingraeber

Department of BiologyColorado State UniversityFort Collins, CO [email protected]@lamar.colostate.edu

May 1, 2007

Page 2: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

1This report was printed on recycled paper

i

EXECUTIVE SUMMARY1

This report details the findings of a study seeking to increase the success of wetlandrestoration, enhancement and creation projects by providing wetland‐specific design guidelinesfor mountain kettle ponds and playas.  This information is particularly aimed at compensatorymitigation projects initiated in response to Clean Water Act permit requirements orenforcement actions.

Design specifications and recommendations are based on an intensive three‐year studyof pristine or minimally‐impacted examples of the wetlands, or so‐called reference sites. Reference site evaluations included quantification of the fundamental hydrogeomorphic factorsthat drive wetland functioning and condition, including site hydrology, topography, soilcomposition, and water and soil chemistry.  Hydrogeomorphic habitat requirements forcharacteristic plant communities were derived from analysis of the physical environment. 

ACKNOWLEDGMENTS

The authors would like to thank the U.S. Environmental Protection Agency, Region 8who were the primary sponsors of this study (WET 11 project grant, CD 998004‐09).  We alsothank Colorado Division of Wildlife, Denver Water, and Park County Government for generouslyproviding match support.  Lastly we would like to acknowledge Mark Beardsley, Tom Johnson,Sarah Fowler (US EPA), Alex Chappell and Bill Goosmann (formerly of CDOW), and Gary Nichols(Park County Department of Recreation and Tourism),  without whose help this project couldnot have been completed. 

Page 3: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

ii

TABLE OF CONTENTS

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Scope of Study and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Contents, Organization and Use of Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

MITIGATION GUIDELINES ‐ KETTLE PONDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Formation and Hydrogeological Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Hydrogeologic Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Hydrology and Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Seasonal Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Daily Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Hydrologic Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Basin Design and Hydrogeomorpholgy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Overview of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Basin Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Basin/Pool Bottoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Basin Design Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Basin Soils, Substrate and Water Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Basin Substrate and Soil Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Pond Water Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Vegetation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Vegetation‐related Design Recommendations  . . . . . . . . . . . . . . . . . . . . . . . . . . 31

MITIGATION GUIDELINES – MOUNTAIN PLAYAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Reference Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Formation and Hydrogeological Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Hydrogeologic Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Hydrology and Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Hydrologic Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Basin Design and Hydrogeomorphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Basin Design Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Basin Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Page 4: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

iii

Soil Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Vegetation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Vegetation‐related Design Recommendations  . . . . . . . . . . . . . . . . . . . . . . . . . . 57

References Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

APPENDIX 1 – STUDY METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Reference Site Identification and Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Hydrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Topographical Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Soil and Water Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Vegetation Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

APPENDIX 2 KETTLE POND TRANSECT CROSS‐SECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

APPENDIX 3 MOUNTAIN PLAYA TRANSECT CROSS‐SECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

APPENDIX 4 SOIL AND WATER CHEMISTRY DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Page 5: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

1

INTRODUCTION

Wetland restoration, improvement and creation projects are implemented for manyreasons in Colorado. For instance, agencies or landowners may wish to enhance wildlife habitat,create natural areas, or restore degraded open spaces.  It seems likely, however, that suchactions are most frequently undertaken to meet requirements of a §404 of the Clean Water Act(CWA) permit to offset wetland habitat loss resulting from a land use action.  

The CWA, which is the primary vehicle for wetland impact regulation in Colorado, has agoal of  maintaining and restoring the chemical, physical and biological integrity of waters,including wetlands.  Projects creating wetland losses through fill activities are required under§404 to provide compensatory mitigation (generally referred to simply as “mitigation”) for suchlosses.  Such mitigation usually takes the form of wetland restoration, creation, or preservation,or, more recently, purchase of credits in mitigation banks or deposits to “in‐lieu” fee programs.

Despite the need for and the effort applied to achieving compensatory mitigation, themajority of such projects are deemed ineffective on one or more grounds.  For example, studiesby the National Research Council (2001) revealed that between only 0 and 67 % of examinedmitigation wetlands met standards of ecological functionality or viability.  Causes of thisineffectiveness are manifold and vary from project to project, however, one overriding themein the analysis of such results is that unsuccessful projects generally lacked clear performancecriteria and explicit and appropriate restoration goals (NRC 2001).   

Mitigation project plans omit such criteria, and many times fail, largely because we lackthe fundamental information needed to create ecologically‐appropriate design specificationsand project goals for most Colorado wetland types.  This report represents a step towardsaddressing this scientific short‐coming by developing specific restoration, enhancement, andcreation (henceforth “mitigation”) guidelines for two types of Colorado wetlands – Kettle Pondsand Mountain Playas. 

The specific aims of this study are to prescribe science‐based mitigation guidelines forboth wetland types based on detailed analysis of minimally‐impacted reference wetlands. Recommendations consider the appropriate: 1) hydrologic regime, 2) basin morphology, 3) soilcomposition, 4) water and soil chemistry, and 5) zonal plant species composition.

The mitigation specifications described in this report are based on intensive study of 12reference wetlands located in Park and Summit Counties in central Colorado, and informalsurvey of approximately 138 potential kettle pond and playa sites (Fig. 1).  Sites were onlyselected as reference wetlands if they were in pristine or minimally‐impacted condition so thatspecifications 

Page 6: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Fig. 1. Regional map of the kettle pond and playa sites surveyed in Summit and ParkCounties, respectively. Yellow circles indicate surveyed kettle ponds, while black crossesshow surveyed playas. The map inset at the top of the page illustrates the location of thestudy regions within the State of Colorado

2

Page 7: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

3

would reflect the optimal configuration for creating conditions conducive to wetlanddevelopment.  Utilization of design specifications explicitly aimed at recreating the wetland’snatural developmental template (Bedford 1996) is a critical step towards maximization ofmitigation success.

Scope of Study and RecommendationsThe reference domain, or geographic area from which reference wetlands were selected

(Smith et. al 1995), is Summit and Park Counties in Rocky Mountains of central Colorado. Although targeting the central mountains between 2,460 to 3,700 m of elevation (8,000 to12,000ft), design recommendations should be generally applicable throughout the montaneand subalpine zones of Colorado.  Care must be taken when applying recommendations outsideof the specific reference domain, however.  Particularly, species assemblages or chemicalcriteria would be expected to vary from those described here owing to biogeographic patternsand differences in regional geology.

It is important to realize that this report only presents ecologically‐basedrecommendations for mitigation design.  It does not consider, the relative merit or likelihood ofsuccess of any particular mitigation scenario, nor do these findings imply that any projectproposing impacts to such wetland sites will be  approved under federal, state or localenvironmental regulations.  Any regulated action must be reviewed by regulatory andmanagement agencies on a case‐by‐case basis.  This report does not address any legal aspect ofproject execution such as land ownership, or securement of necessary water rights andapplicable permits.  It is the responsibility of the project proponent to meet all federal, stateand local regulations required to perform mitigation. 

Contents, Organization and Use of DocumentThis report is divided into three major sections, 1) mitigation guidelines for kettle ponds,

2)  mitigation guidelines for mountain playas, and 3) appendices including detailed studymethods and reference data.  Mitigation specifications are broken down into subsections, eachdealing with an individual component of the wetland’s hydrogeomorphic setting or biotichabitat.

Within each subsection, a discussion of study findings relevant to the component ofmitigation is presented first.  It is not the intent of this report to provide in‐depth descriptionsof individual reference sites or to present a thorough treatment of the basic ecology of kettleand playa wetlands.  The general information and discussion of results provided is aimed atproviding readers with a context for recommendations and conclusions.

Page 8: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

4

Findings and results include the measured ranges for parameters and data summaries. These data should be used to guide mitigation design.  Raw data is provided in appendices forapplications requiring additional analyses.  Design parameters such as wetland hydrographs orbasin topography are frequently discussed independently in this report.  It is critical to note,however, that at all time users must consider the interaction of  physical parameters and striveto create a harmonious, integrative design.

The, perhaps, most efficient and effective way to specify mutually complementarytarget values for design parameters is to replicate the form and function of a single one of thereference sites analyzed here.  During post‐build monitoring, reference data specific to designparameters could then be used to evaluate the as‐built performance of mitigation relative toproject goals.  For each parameter, the range of values provided by the entire referencewetland population may provide a reasonable acceptable range for each success criterion.

 A considerable emphasis is placed on specifying design parameters for the physicalaspects of the wetlands, since these lay the foundation for proper functioning.  It is onlythrough creation of an appropriate developmental template that mitigation can be successful. Design founded on hydrogeomorphology, also facilitates the creation of passive functioning, inwhich sites, optimally, are self‐sustaining with little or no human intervention required formaintenance in perpetuity.  Lastly, hydrogeomorphic attributes (e.g., basin slope) are the onesmost readily, and commonly, manipulated during mitigation construction.

Very little information is available on the wetland types considered in this report.  Thus,the conclusions and recommendations forwarded here result from analysis of these data alone,with little independent corroboration.  Users should be aware that this study could not possiblycover every variant of the wetlands in question and the design guidelines provided here maynot be appropriate in every conceivable situation.  Mitigation should only be attempted byqualified experts knowledgeable in the ecology of these wetlands, who can judge theapplicability of any recommended approach.  New information on the ecology and mitigation ofkettle and playa wetlands should be always be considered in mitigation design. 

MITIGATION GUIDELINES ‐ KETTLE PONDS

General Overview

The kettle ponds considered here are wetland ecosystems that include areas ofperpetual surface water and areas of terrestrialized pond basin that have a variable water

Page 9: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

5

regime.  Soils across the kettles are almost invariably organic, although organic layers may bethin around the margins.  Groundwater inflow maintains the perennial surface water andsupports obligate aquatic species.

Kettles very commonly take on a characteristic doughnut shape, with a pool of openwater near the center and one or more concentric, ring‐shaped zones of vegetation (Photo 1). The relative extent and distribution of open water versus terrestrial habitat varies widelybetween sites, however (Photo 2).  The ratio of these habitat types, to a large degree, dependson the successional state of the wetland since the kettles start as open water basins andgradually fill in with organic matter and sediment.  Fully‐terrestrial fen wetlands commonlydevelop from kettle ponds.

Depressions that hold surface water at the beginning of the growing season but then dryout (presumably owing to a lack of connection to a groundwater source) are extremelycommon in glaciated terrain.  While some of these depressions hold wetlands, they are notconsidered kettle ponds in the sense of this report (Photo 3).   

Reference Sites

Table 1 provides an brief overview of vital statistics for the eight kettle reference sitesand Fig. 2 shows their geographic location.  Since the focus of this report is not on sitedescription but rather developing mitigation guidelines for kettle ponds in general, additionalinformation on the character of specific sites is only provided incidentally.  Additional site‐specific data can be found in the report appendices.  Photographs 1 and 4 ‐ 10 and show thecharacter the reference sites and the type of wetland considered in this report. 

Table 1.  Information on the location of kettle pond reference sites and summary of samplingapproach.  X and Y‐UTMS are geographical coordinates in the Universal Transmeridian dataprojection.Site Name X‐UTM Y‐UTM Elev. (m) No. of

TransectsNo. ofVegetation Plots

Instrumentation Photo No.

KP 15 390169 4406617 3,025 (9,922 ft) 4 31 Staff gauge 4KP 25 388667 4407567 3,024 (9,911 ft.) 2 19 Staff gauge 5KP 46 401570 4393271 3, 099 (10,165 ft.) 4 40 Data logging well 6KP 53 402029 4393524 3,087 (10,125 ft.) 4 52 Staff gauge 7KP 63 401099 4394955 3,047 (9,994) 4 39 Staff gauge 8KP 66 399476 4395511 2,941 (9,646 ft.) 4 56 Data logging well 1KP 75 401477 4396328 2,940 (9,311 ft) 4 56 Data logging well 9KP 79 404766 4389770 2,872 (9,429 ft.) 3 61 Data logging well 10

Page 10: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

6

Page 11: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Photo 1.  Doughnut‐shaped kettle pond with a small, deep pond at the center.  Thecoarse sedges (Carex vesicaria) are mostly rooted in shallow standing water.  Note thegroundwater well in the center of the photograph near the left edge (Site KP 66).

Photo 2.  Kettle pond with a fairly high ratio of surface water to terrestrial wetland.  Astaff gauge may be seen in the edge of the open water, right of center (Site KP15).

7

Page 12: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Photo 3a.  View of the hummocky forested topography that kettle ponds are commonlyfound in.  The composition of the moraine is evidenced by the boulders on the soilsurface.

Photo 3.  A type of mesic depression found throughout glaciated areas.  Although wetenough to support some wetland species, this type of site is only temporarily orintermittently inundated and lacks the organic soil development characteristic of kettles. This type of habitat is not the target of this report.

8

Page 13: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Photo 4.  View across KP 15 showing variable width sedge communities with a centralpond dominated by pond lily.

Photo 5.  View of the south end of KP 25 with its narrow margin of graminoids and anessentially unvegetated open water pond.

9

Page 14: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Photo 6.  View down KP 46 showing the predominately open water habitat with marginsof variable width and development.

Photo 7.  Photograph of KP 53 showing Carex utriculata habitat (foreground)  gradinginto Carex vesicaria and finally Menyanthes trifoliata communities at the center.

10

Page 15: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Photo 8.  View of KP 63 showing the characteristic gradient from grasses (in theforeground) to sedges and then finally to deep water aquatic habitats.

Photo 9.  View down the length of KP 75 showing the drier meadow portions of the site. The main pond is barely visible in the background, just above center in the photograph.

11

Page 16: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Photo 10.  View across KP 79.  At the time of the picture the site was experiencing asignificant draw down apparently caused by beaver activity.  Exposed mudflats can beseen just below center in the photograph.

12

Page 17: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

13

Formation and Hydrogeological Setting

OverviewKettle ponds are found in the upper Montane and subalpine zones of Colorado’s

southern Rocky Mountains, at elevations between approximately 2,600 and 3,500 metersabove sea level (~8,500 ‐ 11,500 ft.).  These ponds were formed near the end of the last ice age,around 12,000 years ago when receding glaciers left behind block of calved ice.  The ice masseswere gradually buried by glacial debris as till and outwash filled the valleys and blanketed themountain sides.  After the blocks of ice melted, their impressions remained, molded in the tillby a phenomenon resembling the “lost wax” casting process used in art and sculpture.  Thesedepressional features are exceedingly common in the hummocky terrain associated withmoraines (Photo 3a) and in valley bottom out wash plains (Photo 11).

Actual kettle ponds and similar wetlands are much less common than the ubiquitousice‐formed depressions (Photo 3).  This is because these perpetually saturated ecosystemsrequire groundwater inputs  to maintain their water level in the relatively dry climate of thesouthern Rocky Mountains.  Kettle ponds are directly linked to local aquifers and regionalgroundwater flow systems.

Every year, mountain  aquifers fill up with snow melt and then drain and draw downthroughout the season.  Like alluvial aquifers, the porous glacial material has a fairly high waterholding capacity (specific yield) so a large percentage of the snow pack water can infiltrate, bereserved and slowly drain from the aquifer throughout the summer.  Since the porous glacial tillgenerally sits on Precambrian bedrock strata or other low permeability layers, groundwaterflow is largely directed through the upper strata.  This hydrogeological setting is essential to theformation and maintenance of kettle ponds.  The topographically‐complex, hummocky terrainassociated with glacial depositional features provides an abundance of slope breaks whichallow for groundwater discharge.  Moreover, it provides natural retention basins which, actinglike miniature watersheds, focus and collect shallowly flowing groundwater. 

Hydrogeologic Design ConsiderationsKettle pond mitigation must occur in an appropriate hydrogeological setting.  If a

mitigation project involves restoration or enhancement of an existing kettle pond, it cangenerally be assumed that the hydrogeological setting is appropriate, unless site specificevaluation indicates differently.  Under a creation scenario, the best location for mitigationwould be a natural topographical basin in a depositional landscape where the water table couldbe intercepted by excavation, or groundwater discharge into a constructed depression couldotherwise be induced (Fig. 3).  

Page 18: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Photo 11.  Two small kettle ponds (left and right of center) located in a glacial out wash plain.  Sage brushcovered hills of till rise out of the flat wet meadow.

14

Page 19: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Local G

roundwate

r Flow

Local Groundwater Flow

Outlfow throughgroundwater rechargeand/or surface outlet

Pond Depression

Saturaturated Till

Satur

atur

ated

Till

Water Table

Figures 3 & 4. Illustrations of two hydrogeologic setting in which kettle ponds are commonly found. Figure 2shows the typical setting of kettles located in hummocky, morainal terrain. The kettle basin (natural orexcavated) is drawn as a simple bowl-shaped depression for illustration purposes only. Actual basin shapesare presented in later figures. Figure 3 shows a flatter, out wash plain setting.

Figure 4

Figure 3

15

Page 20: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

16

Excavated pond depressions may also be sited at or near the base of open slopes.  Whiletempting, natural, but dry, glacial depressions (Photo 3) should not be “enhanced” (e.g.excavated) in an attempt to create kettle conditions.  By their nature, such sites havedemonstrated that their hydrogeologic setting is not conducive to the formation of ponds. Unless site specific investigations reveal that special circumstances exist and favorableconditions could be induced, these sites should not be considered as candidates for mitigationwork.  

Broad glacial outwash plains are another setting in which kettle pond creation could besuccessful (Photo 11 and Figure 4).  Optimally, a shallow water table would be intercepted byexcavation of the pond depression.  Kettles sited in such locales should not be subjected to overbank flooding by any associated water bodies.

Later sections of this report will consider specific components of site hydrology andbasin topography.

Preliminary candidate sites (or search areas) for mitigation can be identified usingreadily available geographic resources.  Geologic maps provide a guide to the location of areaswith appropriate surface geology.  Search in particular for the various types of unitsabbreviated with a “Q” (for Quaternary).  Within regions of glacial deposition indicated bygeologic maps, areas falling in the target elevation range and with the characteristic hummockytopography can be identified using topographical maps.  Utilization of a Geographic InformationSystem (GIS) can be invaluable for identifying potential sites when a wide area needs to beconsidered. 

Hydrology and Hydrodynamics

OverviewLike most of Colorado’s subalpine ecosystems, the hydrology of kettle ponds is

intimately tied to the snow melt cycle.  In the spring and early summer, the melting snow packcreates a flush of water that fills the kettle basins and recharges groundwater aquifers.  Afterthe snow pack is gone, the recharged groundwater becomes the sustaining source for theponds through out the dry summers.  Figures 5‐8 illustrate the seasonal hydrologic cycle ofeight wetlands measured in 2005 and 2006, including precipitation data obtained from theGreen Mountain Reservoir dam.  The following sections discuss each of the key aspects of thenatural hydrographs as they pertain to designing successful mitigation.

Seasonal Behavior: Kettles possess water levels that fall quite linearly with time throughoutmost of the growing season, with mean seasonal draw down varying between about 41 and 69cm (Table 2).  Despite the significant seasonal draw down, kettle water levels do not display theerratic behavior of precipitation‐dominated wetlands which may display the same grossseasonal pattern of draw down. 

Page 21: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

-10

0

10

20

30

40

50

60

6/22/2005 7/2/2005 7/12/2005 7/22/2005 8/1/2005 8/11/2005 8/21/2005 8/31/2005 9/10/2005 9/20/2005 9/30/2005

Date

Wate

rD

ep

th(c

m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

KP75

KP79

KP15

Green Mtn PPT

-20

-10

0

10

20

30

40

50

60

70

80

90

5/18/2006 6/7/2006 6/27/2006 7/17/2006 8/6/2006 8/26/2006 9/15/2006 10/5/2006 10/25/2006

Date

Wate

rD

ep

th(c

m)

0

0.5

1

1.5

2

2.5

3

3.5

KP75

KP79

KP66

KP15

Green Mtn PPT

Figures 5 & 6. 2005 and 2006 hydrographs for kettle pond sites equipped withEcotone data logging wells. Precipitation (PPT) measured at the Green MountainReservoir Dam is charted on a second x-axis.

Figure 6

Figure 5

17

Page 22: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

-10

0

10

20

30

40

50

60

5/13/2005 6/2/2005 6/22/2005 7/12/2005 8/1/2005 8/21/2005 9/10/2005 9/30/2005

Date

Wate

rD

ep

th(c

m)

0

5

10

15

20

25

30

35

40

45

50

KP25

KP46

KP53

KP63

0

10

20

30

40

50

60

70

80

5/18/2006 6/7/2006 6/27/2006 7/17/2006 8/6/2006 8/26/2006 9/15/2006 10/5/2006 10/25/200

6

Date

Wate

rD

ep

th(c

m)

0

10

20

30

40

50

60

70

80

KP25

KP46

KP53

KP63

Figures 7 & 8. 2005 and 2006 hydrographs for kettle pond sites equipped withmanually-read staff gauges. Precipitation (PPT) measured at the Green MountainReservoir Dam is charted on a second x-axis.

Figure 8

Figure 7

18

Page 23: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

20

Table 2.  Summary of seasonal water surface/table behavior.  All water table measurements are relative to the well elevation andare not intended to describe actual pond depths.  See text and later figures for consideration of hydrogeomophology.  KP 66 wasadded to the study 2006.  The date of seasonal maxima was estimated by measuring the height of pollen deposition on wellstickups/staff gauges and extrapolating the date from the measured rate of change of the water surface.  The dates of seasonalminima were actually measured by data logging wells.  The date of minimum water surface height at the manually read wells couldnot be ascertained from the data, however it seems highly likely that it occurred around September 21st.     

Seasonal Range(cm)

Seasonal Maximum(cm)

Seasonal Minimum(cm)

Seasonal Mean (cm) Approximate Dateof SeasonalMaximum

Date of SeasonalMinimum

2005 2006 2005 2006 2005 2006 2005 2006 2005 2005 2006

Logg

er W

ells KP 15 64.7 89.5 58.0 80.0 ‐6.7 ‐9.5 20.5 20.7 May 25 ‐ June 1 Sept. 21 Sept 7

KP66 NA 50.1 NA 64.0 NA 13.9 NA 28.0 May 25 ‐ June 1 NA Sept 20

KP75 39.1 47.5 36.2 47.0 ‐2.9 ‐0.5 17.8 17.9 May 25 ‐ June 1 Sept 21 Sept 19

KP79 13.2 61.2 52.2 53.0 39.0 ‐8.2 46 27.5 May 25 ‐ June 1 Sept 21 Oct 4

Man

ual W

ells KP 25 43.5 48 51 68 8 20.0 33.7 40.5 May 25 ‐ June 1 NA NA

KP 46 57.5 55 56 65 ‐0.5 10.0 34.8 35.9 May 25 ‐ June 1 NA NA

KP 53 45.5 55 55 72 9.5 16.5 37.8 44.6 May 25 ‐ June 1 NA NA

KP 63 33.5 29.5 44.5 68.5 11.0 36.0 31.0 50.3 May 25 ‐ June 1 NA NA

Page 24: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

21

Similarly, while water declines seasonally, within sites, the rates of decline wereessentially identical between study years (except KP 79 which was influenced by beaveractivity).  Among sites, water table declines generally were in the range of 0.5 to 1 cm/day.  Thehydrograph parameter that is apparently most variable is the water level at the beginning ofthe growing season since this is mainly dictated by the quality and amount of snow pack.    

Water levels are at their maximum during the snow melt peak which generally occurs inlate May or early June.  The date of seasonal water level minima were surprisingly consistent(Table 2), often occurring on the same day or within a few days of each other (again exceptingKP 79, 2006).

During late summer and early fall, water table decline rates slacken and waterelevations rebound.  Like other aspects of the hydrograph, this behavior is consistent with agroundwater influenced hydrology.  Late in the growing season, water loss is reduced throughdecreased evapotranspiration, yet groundwater inputs continue unabated, which allows fillingto occur.  The winter time portion of the hydrograph is not known.

Daily Behavior: Water levels are fairly stable on a daily rate, averaging (median) between 0.25to 0.76 cm of variation (Figs. 9 ‐ 10).  Precipitation events were commonly associated withincreases in water level, but gains were modest typically elevating water surfaces by 0.5 to 1.5cm.  Considering surface water decline rates, such storm inputs would only make up for one ortwo days of normal loss.  Even large, multi‐day storm systems only provided water sufficient tomake up for  a few days of typical decline.  Again, the marginal effect of precipitation on short‐term patterns in pond hydrology is attributed to the significant contribution of groundwater tothe wetland water balance. 

Hydrologic Design ConsiderationsSuccessful hydrologic design must create the balance of conditions that exist in natural

kettles.  Consistency and stability should be the principle guiding hydrologic design.  This doesnot imply that water levels should remain stationary throughout the growing season.  Instead,ponds should be filled at the start of the growing season.  Water levels should then declineduring the summer, but that decline should be systematic and consistent between years.  Kettlepond vegetation is highly tuned to the timing and magnitude of water level reductions, andnatural patterns of habitat zonation and biotic diversity are to a large degree the result ofseasonal draw down patterns (see Vegetation section for additional discussion).

To achieve the desired hydrologic behavior, utilization of a groundwater source is highlydesirable, if not a requirement.  Optimally, potential groundwater contributions to themitigation site would be calculated and the size of pond supportable by the source would bemodeled by creating a water balance for different basin configurations.  A second option wouldbe to estimate the size of pond supportable by groundwater sources, excavate the pond and 

Page 25: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

0

0.5

1

1.5

2

2.5

3

3.5

4

6/22/2005 7/2/2005 7/12/2005 7/22/2005 8/1/2005 8/11/2005 8/21/2005 8/31/2005 9/10/2005 9/20/2005 9/30/2005

Date

Dail

yW

ate

rD

ep

thR

an

ge

(cm

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

KP75

KP79

KP66

KP15

Green Mtn. PPT

0

2

4

6

8

10

12

14

16

6/4/2006 6/24/2006 7/14/2006 8/3/2006 8/23/2006 9/12/2006 10/2/2006

Date

Dail

yW

ate

rD

ep

thR

an

ge

(cm

)

0

0.5

1

1.5

2

2.5

3

3.5

KP75

KP79

KP66

KP15

Green Mtn. PPT

Figure 9

Figure 10

Figures 9 & 10. Daily water level ranges from kettle ponds equipped withEcotone data logging wells. Precipitation (PPT) from the Green MountainReservoir Dam is charted on a secondary x-axis.

22

Page 26: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

23

then, prior to final grading and revegetation, monitor water level behavior to determinewhether it falls within desired ranges.  If not, basin configuration could then be revised toremedy undesirable behavior without disrupting newly planted vegetation.

Potential water sources amenable to supporting created kettles could be artesiansprings, seeps, or shallow aquifers intercepted by pond excavation.  If groundwater sources arenot available, the feasibility of kettle construction and long‐term maintenance must be closelyscrutinized.  A water source comparable to groundwater inflow must be secured for mitigationto be successful.  Water must flow into the wetland at nearly constant rates throughout thegrowing season and that water must be available to the wetland every year in perpetuity. These requirements necessitate the utilization of a passive supply system that should requireno maintenance.  The single advantage of using a constructed supply system is that thepotential to “tweak” it to achieve performance goals is possible.  To emphasize the degree ofhydrologic specificity required to maintain kettle ponds, it is noted that these wetlands arehydrologically similar to fens which are highly acknowledged to have stringent hydrologicrequirements.  In fact, kettle ponds are commonly a successional stage en route to fenformation, and many exist as remnant pools in terrestrialized basins which are currently fens. Thus hydrologic design must be treated as if fen wetlands were involved. 

Basin Design and Hydrogeomorpholgy

Overview of FindingsThe hydrodynamics described in the section above work in concert with the

topographical configuration of kettle ponds to create the patterns of habitat zonation andbiotic diversity that are characteristic of natural ponds.  Water level patterns createheterogeneity through temporal control; however, since water surfaces are flat, differences insubstrate elevation to a large degree control spatial heterogeneity.  Uniformly steep sidedbasins with flat bottoms produce species‐poor wetlands regardless of water level variation andare not characteristic of kettle ponds.  Oftentimes species colonizing such settings areundesirable invasives such as cattails (Typha spp.) which are difficult to eradicate onceestablished.

In wetlands, including kettles, topographical gradient to a very large degree determinesthe steepness of ecological gradients.  That is, topography controls the rate at which one plantcommunity grades into another.  Natural kettle ponds have variably sloped basin bottoms, withmicrotopographical rises and depressions.  As water levels decline, areas of pond bottom areexposed at different rates according to gradient, and islands are exposed and isolated pools areformed. 

Page 27: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

24

Maximum water depth determines the amount of draw down that can occur and stillallow the pond to maintain the perennial surface water necessary to support obligate aquaticspecies such as buckbean (Menyanthes trifoliata)and yellow pond lily (Nuphar luteum).  Themaximum water depth measured in transects ranged between 5 and 170 cm, with an averageof 58 cm (Table 3).

Table 3.  The average maximum water depth measured in each survey transect.

Site Transect AverageMaximumSeasonalDepth(m)

Site Transect AverageMaximumSeasonalDepth (m)

KP 79 1 0.6 KP 25 1 0.62 0.8 midline 1.7midline 1.2 KP 46 1 0.7

KP 75 1 0.7 2 0.82 0.4 3 0.53 0.8 midline 0.7midline 0.6 KP 53 1 0.5

KP 15 1 0.9 2 0.62 1.0 3 0.63 0.3 midline 0.7midline 1.1 KP 63 1 0.2

KP 66 1 0.8 2 0.92 1.3 3 0.13 0.9 midline 0.7midline 1.4

At seasonal maxima, most areas within the kettle basins were inundated, although thedepth of flooding varied according to topography.

Basin topography to a large degree determines the width of habitat zones, thedistribution of specific community types, and the rate at which communities grade from onetype to another.  Unless an area is perennially deeply flooded (which to a large degree negatesthe effects of topography on biota), shallowly graded surfaces tend to produce wide habitatzones that grade slowly from one to the other, while steep surfaces do the opposite.

The major types of topographical surfaces found in kettle ponds are: 1) basin edges, 2)pool sides, and 3) basin bottoms.  Figure 11 shows the hypothetical arrangement oftopographical surfaces based on the cross‐section surveyed at KP 63.  Illustrations of all thesurveyed cross‐sections can be found in Appendix 3.  The following sections discuss themorphology of each surface.

Page 28: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Upland Surface

Basin EdgeBasin Bottom

Pool Side

Lower Limit of Organic Fill

Figure 11. Key to kettle pond topographical surfaces. Cross-section is based on transect 2 ofsite KP 63. The dotted line indicates the interface of the underlying glacial parent material andthe biologically-derived organic soils.

PoolPool

RidgeSide Slope

Pool S

ide

Pool Side

Basin Bottom

Pool Bottom

Model Basin Shape

Maximum Flood Level

Limit of Organic

Fill

Fig. 12. Hypothetical design cross-section based on an ellipsoidal form modified with ridges andpools.

25

Page 29: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

26

Basin Edges: As the name implies, basin edges demarcate the outer boundary of the kettlebasin.  Basin edge slopes connect the basin bottom to the land surface of the surroundinguplands.  Basin edges are generally the steepest topographical surfaces found in kettle pondssince these zones have experienced little or no filling, which tends to attenuate slope grades. Mean edge grade was 22.5%, with a maximum of 130% and a minimum of 2.9% (Table 4).  Totalrelief between the basin surface to the upland surface averaged 58 cm, with maximum andminimum of 138 cm and 23 cm, respectively.  The highest slope and relief values generallyoccur when a large boulder is located on the edge of the pond. 

Table 4.  Summary of the mean slope gradient measured from each of the three kettlesurfaces. 

Topographical Surface Mean Gradient (%) Maximum Gradient (%) Minimum Gradient (%)

Basin Edge 22.5  130.0 2.9

Basin/Pool Bottom 3.6 8.3 0.3

Pool Side 10.1 26.5 20.7

Basin/Pool Bottoms: The basin bottom is commonly the predominant surface feature ofkettles.  Ideally the basin bottom begins after the gradient inflection point at the toe of theedge slope (Fig. 11); although this need not be the case, such as when a basin edge leadsdirectly into pool.  Pool bottoms are features analogous to the more expansive basin bottoms,except they are found in deep isolated depressions, whereas the basin bottom can be thoughtof as spanning the width of the wetlands, across a range of hydrologic conditions.

Pool bottoms are the deepest part of any kettle, and in most ponds these remainperpetually flooded.  Surveyed pool bottoms were situated at elevations between about 80 ‐180 cm below maximum flooding depths (Table 3).  Some kettles whose pool bottoms becameseasonally exposed were observed during this study.  Although such sites are common variantof depressional wetland, these sites were not the focus of this study since they are commonlyintermediates between true pond environments and fens or wet meadows which are seasonalinundated and which may only contain nearly‐filled remnants of the pond depression.

Basin and pool bottoms are low gradient surfaces, sloping at a mean rate of 3.4%, with amaximum and minimum of 8.2 and 0.28%, respectively (Table 4).  These slopes are by no meansuniform across the kettles – even in a theoretical sense –, since bottoms generally follow theshape of an ellipsoidal curve.  Nor are bottoms forms continuous; they are continuallyinterrupted by pools, ridges and rises of various magnitudes.  This variation in form (inconjunction with hydrologic regime) is what gives kettle ponds their characteristic pattern of

Page 30: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

27

zonation and biotic richness.  When a kettle contains a single, perennial open‐water body thatcovers most of its area the distinction between basin bottom and pool bottom becomesarbitrary.

Side Slopes: Topographic variation from high terrestrialized surfaces, to basin bottoms to poolsis an essential feature of every kettle.  Side slopes provide segues between the various surfaceswithin the pond basin.  Pool sides are the slopes that connect basin edges and bottoms withpool bottoms.  Ridge sides connect basin bottoms to elevated surfaces or promontories (Fig.11).

Side slopes have gradients intermediate to other features.  They tend to be flatter thanbasin edges but steeper than the bottoms.  Mean side slope gradient was 10.1 %, with amaximum and minimum of 26.5 % and 2.1 %, respectively (Table 4).    

Basin Design GuidanceTogether, the pond hydrograph and maximum water depth interact with basin

topography to create the hydrologic setting of the wetland.  Since the overall hydrologicenvironment is known to be the single most important influence on wetland character,vegetation  and functioning, it is crucial that the component parameters shaping thisenvironment work synergistically to produce the desired ecological characteristics.

Together, their edges and bottoms dictate the gross morphology kettle pond basins,which can usually be abstracted to a hemi‐ellipsoid or bowl‐shape  (Fig. 12, compare withfigures in Appendix 3).  Note, the dimensions of the ellipsoid can vary significantly among sites,from broad and shallow, to narrow and deep.  Pools, ridges and undulations in the basinbottom caused by differential filling rates (See Soil and Substrate Section) and substrateirregularities usually mask this basic form, however, the geometric model can be a usefulstarting point when initiating design.

Kettle pond basins should not be constructed in the manner of gravel ponds and otherman‐made water bodies, which are commonly uniformly, deep, steep‐sided (e.g. 3:1 grading)and trapezoidal in cross‐section.  The homogenous, species‐poor type of environment thatresults from such approaches should not be taken as the equivalent of a kettle pond.

More or less flat bottom areas can comprise portions of the kettle basin, though.  Such asurface configuration can be quite beneficial, particularly if designed so that it is only shallowlyflooded (less than approximately 20 cm) at the season maximum and the water table does notdrop below about 30 cm for most of the growing season.  Although grossly flat, such areas 

Page 31: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

28

should nonetheless include microtopographical rises and depressions to enhance habitatcomplexity.

Basins should be designed such that most features are submerged (to various depths) atthe beginning of the growing season.  Through the summer as the water table drops, islandsshould emerge and isolated pools should form.  Some areas should remain shallowly inundated,while the centers of deepest pools may remain too deep to support growth of macro‐aquaticplants.  In summary well planned, systematic variability that is complementary to thehydrologic regime is the key to successful basin design.

The basin design and its role in habitat engineering will be considered further in theVegetation section. 

Basin Soils, Substrate and Water Chemistry

Basin Substrate and Soil CompositionAfter formation, kettle basins were initially devoid of plant life and soil organic material;

probably, in fact, they lacked soils altogether.  As primary succession ensued, aquatic plantscolonized the deep open‐water areas that predominated and terrestrial species becameestablished on the shores.  As these plants died, their remains settled on the pond bottoms andgradually organic soil strata formed.  

The results of this processes, which is generally known as terrestrialization, are evidentin the cross‐sectional profiles (see Appendix 3 and Fig. 11 Hypothetical surfaces).  In the ponds,deposited material blankets the mineral soil and bouldery substrate to a variable depth. Organic soils (Histosols) were found at all kettle sites.  The soil samples subjected to weight losson ignition showed the organic nature of the soils in the upper 30 cm of the profile.  (Table 5). It is highly likely that organic matter content in deeper layers is quite similar to those reportedin Table 5.

Upon examination of cross‐sectional profiles various patterns of deposition becomeevident.  First, the organic soil surface generally mirrors substrate topography, althoughgradients are generally slackened and sharp transitions are softened by the deposited soils.Some minor substrate features may be completely masked by the sediment.  Also, deep poolsgenerally possess the deepest organic soils.  This is probably due to settling and redistributionof organic matter rather than differences in production or decomposition rates in pool areas. Lastly, the depth of organic sediment on moderately sloped basin edges and side slopes is

Page 32: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

29

commonly thin and runs parallel to substrate slopes, while steep basin edges commonly lackany appreciable organic matter accumulation.

Pond Water ChemistryPond waters are quite acidic and mineral poor.  Table 5 provides a summary of

measured water chemistry parameters.  Average water pH ranged from 4.2 to 5.7 which is onthe low side of values measured in other Rocky Mountain peatlands.  The same findinggenerally holds true for all of the other analytes.

Low mineral nutrient concentrations likely result from a relatively short contact timebetween source groundwater and the crystalline parent material which is slow to releaseminerals.  Moreover, the acidic forest floor litter tends to leach minerals from the soil, whichfurther reduces the amount dissolvable in groundwater.

Soil, Substrate and Water Design ConsiderationOrganic soils are a critical component of the kettle ponds.  They provide a low density

rooting medium for wetland and aquatic plants, they alter basin water chemistry bysequestering metals and mineral nutrients and acidifying it, and, in terrestrial areas, they helpto maintain water table height and other key functions.

Most kettle pond plant species are peatland specialists and some only occur inpeatlands (see Vegetation section).  Thus organic soils must be present in order to effectsuccessful mitigation.  The organic soil accumulation rate exhibited by kettle ponds is notknown, but what is certain, is that appreciable accumulation only occurs on the order centuriesand millennia.  Therefore, mitigation cannot rely on in situ, post‐build accumulation of organicsoils.  This is the exact situation that confounds fen mitigation, which again highlights theparallels between the to closely related wetland systems.

In restoration or enhancement situations, native organic soils will likely be present and may beintact in the ponds.  No effort should be spared to save and preserve these soils.  Without themsuccessful mitigation is not possible.  If mitigation is attempting to create a kettle pond, organicsoils must be obtained from other sources.  If the mitigation project is being initiated to fulfillpermit requirements for fill of a kettle wetland or other such impacts, organic soils from theimpacted site should be carefully harvested and utilized to promote mitigation success.  If at allpossible, harvested soils should be immediately transplanted in the mitigation site.  Whiledrying is known to cause irreversible, negative effects in fen soils, the effects of drying on kettlesoils and the ramifications for mitigation success are unknown.

Like fens, kettle ponds are organic soil, peatland ecosystems.  Mitigation that utilizesmineral soils in lieu of organic soils may create a nice looking pond, but this should not be takenas the equivalent of a kettle pond.

Page 33: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

30

Table 5.  Soil organic matter content and water chemistry parameters analyzed from kettle pond surface water.  Ca   Mg   Na   K   B CO3 HCO3  Cl  SO4 Hardness

as CaCO3Alkalinityas CaCO3

Ortho P

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐mg/L‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐Soil OrganicContent (%)

pH ElectricalConductivity

KP 75 54.9 4.8 96.2 7.9 2 2.6 0.5 0.01 <0.1 35.4 1.4 1.3 28 29 0.959

KP 63 62.2 4.74 57 3.1 0.8 1.7 0.5 0.01 <0.1 15 1.3 1.2 11 12 0.013

KP 66 57.6 4.46 47.9 1.9 0.4 2.3 0.8 0.01 <0.1 6.1 3.2 0.4 6 5 0.059

KP 53 62.4 4.19 35 1.4 0.2 0.4 0.7 0.01 <0.1 4.3 1.2 0.7 4 4 0.011

KP 46 30.4 5.69 21.5 2.7 0.2 0.9 0.5 0.01 <0.1 6.7 1.1 0.6 8 5 0.117

KP 79 19.1 5.35 49.2 2.8 0.5 1.3 0.3 <0.01 <0.1 10.4 0.9 1.6 9 9 0.026

KP 15 35.3 5.27 40 3 0.4 1.4 1 0.01 <0.1 11 2.5 0.8 9 9 0.036

KP 25 17.7 4.9 38.1 1.9 0.2 0.6 0.4 0.01 <0.1 6.7 1.2 0.3 6 5 0.071

Page 34: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

31

Vegetation

OverviewKettles are almost exclusively dominated perennial species.  While graminoids dominate

throughout most of these wetlands, forbs are an important component of the vegetation,particularly in deep‐water areas, and willows and alder are commonly found as scatteredindividuals or in small patches.  Vegetation composition is most strongly controlled by waterlevel and other hydrologic characteristics (Fig. 13, see also below).

Fig. 14 shows the simplified results of a cluster analysis performed on vegetationsamples.  Vegetation was first divided into that which is located in more terrestrial areas, andthat which is more aquatic.  Each of these categories was then divided into four and fivevegetation subclasses, respectively.  Each subclass is identified with a number indicating itsposition in the cluster analysis.  Figure 15 a‐d shows the mean state of hydrologic parameterswithin each vegetation zone, with zones ordered according to their overall relative wetness. Subclasses in the classification were arranged in the same order of wetness (Fig. 14).

Table 6 contains descriptions of each of the nine vegetation subclasses including meanhydrologic characteristics and species statistics.

Vegetation‐related Design Recommendations Kettle vegetation is dominated by perennials, the majority of which reproduce primarily

through vegetative growth.  The dominant sedges, in particular, are known to reproduce almostexclusively through asexual means and seeds are difficult to induce to germinate.  These lifehistory traits require that kettles be (re)vegetated primarily using transplanted plugs, or stemcuttings in the case of shrubs.  Plugging can be supplemented by seeding and seeding withCalamagrostis canadensis is particularly recommended in this regard.

Species lists provided in Table 6 should be used to develop the project planting plan. Reported species coverage values can be used to develop project targets and performancecriteria.  Creation of an appropriate hydrogeomorphological environment is absolutely essentialto vegetation development and maintenance.  Table 6, further, provides guidance on thehydrologic environment appropriate for the growth of the various vegetation types.  Thisinformation, in conjunction with design recommendations discussed earlier, should be used toguide the development of planting plans that match kettle environment to the appropriateflora. 

Page 35: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

DCA

Axis 1

Axis

2

-1.0

0.0

1.0

Max WL

Axis 1

r = -.810 tau = -.641

Axis 2

r = -.039 tau = -.062

-1.0 0.0 1.0

Figure 13. DCA of sample plot species composition and regression of plot scores vs. maximum water levelin plots. Graph A is the original ordination of sample plots. In such plots, proximity of points implies similarityin species composition. The most significant axis of species composition (axis 1) has a correlation coefficientof 0.81 with maximum seasonal water level (B). Regression of axis scores on other hydrologic factors (e.g.Mean and minimum water depth) showed this same relation, corroborating the idea that hydrology is theforemost factor dictating species composition within kettles. Chart C shows that vegetation variation on thesecond axis is not correlated to maximum seasonal water depth but rather to other factors.

AC

B

32

Page 36: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

All Sites

More Terrestrial Sites More Aquatic Sites

Margin Meadow

2

Burreed Pond

Margin

4

Blister Sedge-Lakeshore

Sedge Pond Margin

6

Yellow water Lily

Pond

8

Blister Sedge –

Buckbean Pond

5

Blister Sedge

Wet Margin

1

Beaked Sedge

Wet Margin

3

Lakeshore Sedge-

Blister Sedge Pond

Margin

7

Beaked sedge

Pond Margin

9

All Sites

More Terrestrial Sites More Aquatic Sites

Margin Meadow

2

Burreed Pond

Margin

4

Blister Sedge-Lakeshore

Sedge Pond Margin

6

Yellow water Lily

Pond

8

Blister Sedge –

Buckbean Pond

5

Blister Sedge

Wet Margin

1

Beaked Sedge

Wet Margin

3

Lakeshore Sedge-

Blister Sedge Pond

Margin

7

Beaked sedge

Pond Margin

9

Figure 14. Dendrogram summarizing the results of a cluster analysis of species composition data. Each branch of the treeshows the natural divisions in the data. At the first division the more terrestrial sites are separated from the more aquaticones. Later divisions parsed kettle vegetation into nine community types, which are given a descriptive name andnumbered according to their position in the cluster analysis. The order of clustering of the third tier has been rearranged toreflect the relative wetness based on hydologic data.

33

Page 37: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Season Mean Water Depth

-60

-40

-20

0

20

40

60

80

2 3 1 4 6 9 7 5 8

Vegetation Type

Seaso

nalM

ean

Wate

rD

ep

th(c

m)

Maximum Water Depth

-20

-10

0

10

20

30

40

50

60

70

80

90

2 3 1 4 6 9 7 5 8

Vegetation TypeM

axim

um

Wate

rD

ep

th(c

m)

Season Minimum Water Depth

-100

-80

-60

-40

-20

0

20

40

2 3 1 4 6 9 7 5 8

Vegetation Type

Seaso

nalM

inim

um

Wate

rD

ep

th(c

m)

Season Range

0

10

20

30

40

50

60

70

80

90

2 3 1 4 6 9 7 5 8

Vegetation Type

Se

as

on

al

Ra

ng

ein

Wa

ter

Le

ve

l(c

m)

A B

C D

Figure 15 a -d. Graphs displaying the state of key hydrologic variables in each vegetation subclass. SeeTable 6 for additional explanation of subclasses.

34

Page 38: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

35

Table 6.  The tables below provide hydrologic specifications and species composition diagnosticstatistics for the nine vegetation subclasses defined at reference kettle ponds.  Each tablebegins by providing the community type code for the habit (from cluster analysis), followed bythe descriptive name given to the community based on the dominant species and/or character. The second section provides a narrative account of key habit characteristics.  This is followed bya summary of the hydrologic conditions measured in the community (seasonal range, maximumwater level, minimum water level, mean seasonal water level, number of representative plots[n]) – along with diagnostic statistics.  Diagnostic statistics (Mean, standard deviation [SD],maximum measured value [max], and minimum measured value [min]) were calculated fromthe pool of representative plots.  For example, in community type 2 the maximum water level,averaged across all community type 2 plots, was  6.1 cm below the soil surface.  This averagehad a standard deviation of 23.5.  The highest water level measured in such plots was 59.7 cm. In the driest plots, the maximum water level achieved over a season was 71.3 cm below the soilsurface.  Negative values in hydrologic statistics indicate levels below the ground surface,positive values relate the depth of surface water above the ground.

Following hydrologic statistics is a list of species that occurred in the community, followed bythe mean species cover averaged across all representative plots (mean), the standard deviationof the mean (SD), and the maximum cover value attained within a sample plot (max).  Minimumcoverage is only included for a few species that were always present in plots within acommunity.  Otherwise minimum values are assumed to be zero.  Care must be used ininterpreting mean coverage values.  Mean coverage is a gross statistic for the entire vegetationzone.  Most species within a community occur in relatively dense patches separated by gapslacking the species.

Communities are presented in order of increasing wetness.   

Community Type Code: 2 Community Name: Margin MeadowDescription: Driest type of kettle vegetation.  It is found toward the edges of the basins and grades gradually orabruptly into mesic upland.  Going into the basin, this zone can cover large sections of the kettle bottom,particularly in highly terrestrialized sites.  This zone almost always covers the ecotone (transitional zone) touplands which can be very narrow, thus edge plots often included a somewhat mixed species assemblage.  Thedrier end of this community includes a mix of facultative wetland plants (e.g. characteristically Calamagrostiscanadensis) and mesic forest species.  Over a span of one to two meters, conditions typically become much moreuniformly wet as the basin bottom is intersected, and hydrophytes become dominant (e.g., Carex aquatilis and C.utriculata).  This is the richest and most densely vegetated community type.

These areas can be subject to flooding early in the season, but are the first areas to dry out and water levelsgenerally recede to 40 cm or more below the ground surface.n = 58 plots Mean SD Max MinSeasonal Range 41.4 11.0 77.1 31.5Maximum Water Level ‐6.1 23.5 59.7 ‐71.3Minimum Water Level ‐57.4 20.7 ‐19.8 ‐108.5Mean Seasonal Water Level ‐36.2 20.9 1.6 ‐87.1

Page 39: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

36

Species Mean SD Max Species Mean SD MaxCalamagrostis canadensis 38.0 35.48 87.5 Ranunculus hyperboreus 0.3 2.06 15.5Carex aquatilis 15.4 29.90 87.5 Alnus incana 0.3 2.04 15.5Carex utriculata 6.3 17.46 87.5 Pedicularis groenlandica 0.3 2.04 15.5Vaccinium scoparium 3.6 14.81 87.5 Rosa woodsii 0.2 0.64 2.5Bare soil 3.5 8.48 38.0 Aconitum columbianum P 0.13 1.0Carex canescens 2.7 5.59 15.5 Alopecurus aquealis P 0.33 2.5Salix planifolia 2.2 7.66 38.0 Arctostaphylos uvi‐ursi P 0.02 0.1Carex vesicaria 1.9 8.80 62.5 Arnica cordifolia P 0.01 0.1Glyceria elata 1.8 11.63 87.5 Epilobium hornemannii P 0.33 2.5Moss 1.8 6.25 38.0 Geum macrophyllum P 0.01 0.1Veratrum tenuipetalum 1.6 8.62 62.5 Geranium richardsonii P 0.46 2.5Juniperus communis 1.6 8.62 62.5 Limnorchis dilatata P 0.01 0.1Agrostis scabra 1.2 3.97 15.5 Lonicera involucrata P 0.33 2.5Salix drummondiana 1.2 5.69 38.0 Menyanthes trifoliata P 0.33 2.5Equisetum arvense 1.0 3.48 15.5 Nuphar lutea P 0.33 2.5Vaccinium myrtilloides 0.9 5.36 38.0 Poa reflexa P 0.33 2.5Erigeron peregrinus 0.5 2.85 15.5 Salix glauca(?) P 0.46 2.5Viola adunca 0.4 2.11 15.5 Senecio triangularis P 0.02 0.1Epilobium lactiflorum 0.4 2.09 15.5 Stellaria sp. P 0.46 2.5Galium trifidum 0.4 2.07 15.5 Torreyochloa pauciflora P 0.33 2.5Deschampsia cespitosa 0.4 2.08 15.5

Community Type Code: 3 Community Name: Beaked Sedge WetMargin

Description: This is a seasonally inundated community type that experiences water level draw downs to at least 20cm below the soil surface.  It may comprise the outermost vegetation zone in areas of the kettle with extremelyabrupt transitions to upland.  More commonly it occurs inward of community 2, providing a transitional zone tomore permanently flooded habitats.

Beaked sedge (C. utriculata), which can tolerate significant inundation as well modest but sustained draw down,dominates this zone.  In drier areas Calamagrostis canadensis dominates, and forest species can even take hold onsmall rises.  In the wettest examples of this community, buckbean (Menyanthes trifoliata) can survive within thesedge sward.

Mean SD Max Minn = 37Seasonal Range 56.5 19.9 77.1 31.5Maximum Water Level 21.4 24.7 88.0 ‐23.4Minimum Water Level ‐38.0 24.1 10.9 ‐88.1Mean Seasonal Water Level ‐12.8 22.2 39.6 ‐59.4Species Mean SD Max Min Species Mean SD MaxCarex utriculata 48.7 30.13 87.5 2.5 Juniperus communis 0.5 2.57 15.5Bare soil 12.1 17.18 62.5 Sparganium angustifolium 0.4 2.55 15.5Calamagrostis canadensis 10.3 19.28 87.5 Moss 0.4 2.55 15.5Salix planifolia 7.4 18.17 62.5 Lonicera involucrata 0.4 2.55 15.5Glyceria borealis 1.8 4.87 15.5 Rosa woodsii 0.2 0.69 2.5

Page 40: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

37

Carex aquatilis 1.5 4.28 15.5 Salix monticola P 0.41 2.5Sphagnum 1.0 6.25 38.0 Epilobium hornemannii P 0.02 0.1Glyceria elata 0.9 3.56 15.5 Carex canescens P 0.41 2.5Menyanthes trifoliata 0.8 3.55 15.5 Alopecurus aquealis P 0.02 0.1Eleocharis palustris 0.5 2.57 15.5 Agrostis scabra P 0.02 0.1

Community Code: 1 Community Name: Blister sedge WetMargin

Description: This community is similar to community 3, however, it is found in wetter settings which have a meanwater level near or above the ground surface.  Blister sedge (Carex vesicaria) is strongly dominant throughout mostof this zone, commonly forming near monocultures.  As with Community 3, plots sometimes included narrow bandsor islands of more mesic species where topographical rises were encountered. 

Mean  SD Max Minn = 31Seasonal Range 42.8 2.9 50.3 31.5Maximum Water Level 25.2 13.0 63.6 ‐6.4Minimum Water Level ‐18.2 11.0 5.4 ‐49.7Mean Seasonal Water Level 1.5 11.2 26.7 ‐30.2

Mean  SD Max Min Mean SD MaxCarex vesicaria 70.0 24.58 87.5 15.5 Juniperus communis 0.5 2.78 15.5Salix planifolia 9.5 24.56 87.5 Glyceria borealis 0.2 0.62 2.5Salix drummondiana 6.1 19.87 87.5 Aconitum columbianum P 0.02 0.1Calamagrostis canadensis 4.9 13.34 62.5 Deschampsia cespitosa P 0.45 2.5Carex aquatilis 3.4 8.29 38.0 Equisetum arvense P 0.45 2.5Carex canescens 3.0 9.76 38.0 Geum macrophyllum P 0.45 2.5Bare soil 1.3 6.82 38.0 Rosa woodsii P 0.02 0.1Menyanthes trifoliata 1.2 6.83 38.0 Stellaria sp. P 0.02 0.1Epilobium lactiflorum 0.5 2.78 15.5

Community Type Code: 4 Community Name: Burrreed PondMargin

Description: This vegetation is generally found on the margin of ponds, extending out into shallow open waterareas.  These areas are inundated for all or most of the season, but vegetation can tolerate short‐term drawdowns, such as was observed at KP 79 in 2006.  At the drier end of the gradient included within this community,mesic species ,such as Calamagrostic canadensis occur, however, hydric or aquatic species such as Sparganiumangustifolium and Glyceria borealis are more typical of the vegetation type.  Large areas of bare soil, exposedduring seasonal draw down, are typical of this habitat.  Vegetation in and around such mud flats (or open waterearlier in the season) is generally sparse, except at the drier end of the spectrum.   This was the most commonlysampled type of vegetation.

Mean SD Max  Minn = 71Seasonal Range 47.9 11.8 77.1 31.5Maximum Water Level 15.6 29.2 92.1 ‐71.4Minimum Water Level ‐17.2 37.8 34.4 ‐114.1Mean Seasonal Water Level 5.1 36.7 55.8 ‐87.3

Page 41: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

38

Mean SD Max  Mean SD Max Bare soil 36.3 27.12 87.5 Carex utriculata 0.9 7.42 62.5Sparganium angustifolium 12.6 21.56 62.5 Eleocharis palustris 0.7 3.15 15.5Unknown aquatic 9.3 17.51 62.5 Erigeron peregrinus 0.6 4.52 38.0Carex lenticularis 7.3 23.12 87.5 Agrostis scabra 0.5 2.59 15.5Calamagrostis canadensis 5.0 14.80 87.5 Nuphar lutea 0.4 2.58 15.5Glyceria borealis 4.1 9.81 38.0 Arnica cordifolia 0.2 1.84 15.5Open water 3.4 14.08 87.5 Juniperus communis 0.2 1.84 15.5Vaccinium scoparium 3.0 7.74 38.0 Danthonia intermedia P 0.30 2.5Vaccinium myrtilloides 2.5 8.32 38.0 Gaultheria humifusa P 0.01 0.1Carex vesicaria 1.9 8.93 62.5 Glyceria elata P 0.30 2.5Moss 1.5 5.68 38.0 Poa reflexa P 0.30 2.5Salix planifolia 1.1 7.62 62.5 Rosa woodsii P 0.01 0.1Carex aquatilis 1.0 5.15 38.0

Community Type Code: 6 Community Name: Blister Sedge ‐Lakeshore SedgePond Margin

Description: This community is found on the edge of ponds in areas that 20cm of inundation and which flood todepths greater than 40 cm.  Water levels usually draw down in parts of this habitat to levels  near the soil surfacelate in the growing season.   Soils remain perpetually saturated, though.  Like the Burreed Pond Margin, this oneleads a dual existence.  First as a part of a pond, and then later as (semi‐) terrestrial habitat.  These disparate andstressful conditions create a species‐poor habitat dominated mainly by Blister Sedge (C. vesicaria), althoughLakeshore Sedge (C. lenticularis) grows in small patches within the matrix of Blister Sedge.  In deeper water areas,buckbean (Menyanthes trifoliata) occurs as scattered individuals.

Mean SD Max Minn = 9Seasonal Range 44.5 8.0 50.3 31.5Maximum Water Level 33.0 12.0 43.5 10.5Minimum Water Level ‐5.4 3.8 ‐2.7 ‐8.1Mean Seasonal Water Level 14.2 3.8 16.8 11.5

Mean SD Max Min Mean SD MaxCarex vesicaria 49.4 27.24 87.5 15.5 Menyanthes trifoliata 0.8 1.25 2.5Open water 45.4 28.78 87.5 2.5 Carex aquatilis P 0.03 0.1Bare soil 15.1 10.26 38.0 2.5 Salix planifolia P 0.03 0.1Carex lenticularis 8.7 20.83 62.5

Page 42: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

39

Community Type Code: 9 Community Name Beaked Sedge PondMargin

Description: This is very similar to the Blister Sedge‐Lakeshore Sedge pond margin, expect that it is somewhatmore aquatic and C. utriculata and C. aquatilis dominate rather than the former two sedges.  Species richness isalso apparently higher, but this was probably due to the steepness of gradients this habitat was commonlyassociated with, rather than a higher richness of the core habitat.  Since this habitat commonly began near steepbasin edges leading directly into pool areas, a greater range of environmental conditions were sampled in a singleplot which produced more diverse plots.  

Mean SD Max Minn = 32Seasonal Range 53.2 8.8 77.1 31.5Maximum Water Level 42.3 21.8 78.0 ‐4.5Minimum Water Level ‐0.8 17.2 27.9 ‐27.1Mean Seasonal Water Level 15.3 15.3 42.0 ‐13.0

Mean SD Max Min Mean SD MaxOpen water 70.4 25.01 87.5 15.5 Moss 0.6 2.76 15.5Carex utriculata 34.5 34.33 87.5 Nuphar lutea 0.6 2.76 15.5Calamagrostis canadensis 11.7 24.2 87.5 Sparganium angustifolium 0.5 2.74 15.5Bare soil 7.5 12.96 38 Vaccinium scoparium 0.6 2.76 15.5Carex aquatilis 4.7 18.72 87.5 Carex canescens 0.3 0.84 2.5Veratrum tenuipetalum 2.4 11.30 62.5 Alnus incana P 0.44 2.5Menyanthes trifoliata 1.8 4.56 15.5 Glyceria elata P 0.44 2.5Glyceria borealis 1.0 3.82 15.5 Vaccinium myrtilloides P 0.44 2.5

Community Type Code: 7 Community Name: Lakeshore Sedge‐Blister Sedge Pond

MarginDescription: This is a Lakeshore Sedge‐dominated variant of community 6.   It was only found at one site (KP 53),for which mean and minimum water level values were unavailable.  It appears to be a more aquatic variant ofcommunity 6, but other distinguishing differences are not known.

n = 5Mean SD Max Min

Seasonal Range 50.3 0.0 50.3 50.3Maximum Water Level 43.1 7.2 50.5 34.5Mean Seasonal Water Level

Mean SD Max MinOpen water 77.5 13.69 87.5 62.5Carex lenticularis 33.9 19.55 62.5 15.5Carex vesicaria 28.7 36.13 87.5 0.1Menyanthes trifoliata 0.5 1.12 2.5

Page 43: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

40

Community Type Code: 5 Community Name: Blister Sedge ‐Buckbean Pond

Description: This habitat occurs in permanently ponded areas.  Typically, buckbean (Menyanthes trifoliata) growsscattered in a matrix of Blister sedge, becoming dominant in the deeper open water areas.  This is the second mostfrequently sampled community type.n = 67

Mean SD Max MinSeasonal Range 47.7 4.6 50.3 31.5Maximum Water Level 59.1 20.6 115.0 14.6Minimum Water Level 15.1 20.1 64.9 ‐28.7Mean Seasonal Water Level 31.0 18.6 79.0 ‐9.1

Mean SD Max Min Mean SD MaxOpen water 79.9 21.57 87.5 2.5 Glyceria borealis 2.2 6.28 38.0Carex vesicaria 60.6 27.57 87.5 2.5 Potamogeton sp. 0.3 1.91 15.5Carex utriculata 3.0 10.41 62.5 Sparganium angustifolium P 0.43 2.5Menyanthes trifoliata 2.5 5.25 15.5 Bare soil P 0.01 0.1

Community Type Code: 8 Community Name: Yellow Pond Lily PondDescription: The yellow pond community is found in the deepest water areas of kettle ponds.  On the edges of thedeepest areas, a mix of hydrophytic and aquatic species grow, but in the middle, Yellow Pond Lily (Nuphar lutea) isgenerally monotypic.n = 45

Mean SD Max MinSeason Range 46.5 12.1 77.1 31.5Max WL 65.8 15.6 102.6 27.5Miin WL 23.5 14.8 65.4 1.3Mean WL 44.4 14.3 86.8 20.9

Mean SD Max Min Mean SD MaxOpen water 85.3 8.89 87.5 38.0 Salix planifolia 1.4 9.32 62.5Nuphar lutea 6.2 16.42 62.5 Carex utriculata 1.0 3.91 15.5Sparganium angustifolium 5.5 14.96 62.5 Bare soil 0.4 2.33 15.5Menyanthes trifoliata 4.2 13.47 62.5 Carex vesicaria 0.3 2.31 15.5Glyceria borealis 3.4 6.18 15.5 Poa reflexa P 0.01 0.1Potamogeton sp. 2.5 8.40 38.0

Page 44: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

41

MITIGATION GUIDELINES – MOUNTAIN PLAYAS

General Overview

Mountain playas are intermittently‐flooded, herbaceous depressional wetlands found ininter‐mountain valleys and basins (e.g., South Park) within an elevational range of about 2,280to 3,000 (~7,500 ‐ 9,850 ft.).  Mountain playas are generally found in the bottoms of largertopographical basin and valley systems where they can collect surface run off focused by thelocal topography (Photo 12).  Critically, these bottoms are also the repositories for fine soilmaterial mobilized  through hillslope processes.   The accumulated fines form a clay aquiclude(perching layer) that prevents downward percolation of the collected surface water.  

The concentration of runoff into a closed basin creates relatively mesic soil conditions inthe semi‐arid valleys which support lush populations of grasses and forbs in areas wherevegetation is otherwise sparse.  Basins also flood occasionally, which provides habitat foraquatic biota, as well as waterfowl, non‐game bird species and all manner of wildlife.  Cattle arealso frequent users of this important grassland resource.  Because of the atypical conditionsfound in playas, they also lend considerable biotic diversity to the short‐grass steppe ecosystemin which they are found.

It is important to note that mountain playas are considered to be wetland ecosystems inthe ecological sense, however, they may not possess all the required characteristics to meetjurisdictional criteria.

Reference Sites

Table 7 provides an brief overview of vital statistics for the four reference sites and Fig.16 shows a map of study site location.  Since the focus of this report is not on individual sitedescription but rather developing mitigation guidelines for mountain playas in general,additional information on the character of specific sites is only provided incidentally.  Additionalsite‐specific data can be found in the report appendices.

Page 45: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Photo 12. View south across Playa Lake 1. The photograph is taken from the north rim of the playa basin. Thecontinuations of this rim can be seen surrounding the basin. Vegetation zonation is faintly evident around the floodedarea. A couple of weeks prior to when the picture was taken, the pond was completely dry and densely vegetated with alush cover of andHordeum jubatum Puccinellia airoides.

42

Page 46: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a
Page 47: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

44

Table 7.  Information on the location of playa reference sites and summary of samplingapproach.  X and Y‐UTMS are geographical coordinates in the Universal Transmeridian dataprojection.

Site Name X‐UTM Y‐UTM Elev. (m) No. ofTransects

No. ofVeg.Plots

InstrumentationDescription PhotoNo.

Bald HillPlaya

426590 43317202,752(9,022 ft)

3 85 Data loggingwell

Shallow, amorphous complexof basins on open plains.Sparsely, but relatively evenly,vegetated throughout.

17

Playa Lake1

426137 43373592,780(9,115 ft.)

3 20 Data loggingwell; datalogging raingauge

Circular depression in anevident basin.  Denselyvegetated throughout,including aquatic macrophytesduring flooding.  Pondingpersistent when occurring.

12,18, 19

Playa Lake2

426110 43375932,782(9,121 ft.)

3 103 NA Circular depression in an smalldeep basin.  Barren salt/mudflat through out the basinbottom, with concentric bandsof vegetation ringing thebottom.  Ponding appearsephemeral.

13

FirehousePlaya

427571 43460682,827(9,267 ft.)

3 25 Two datalogging wells;data loggingrain gauge

Large amorphous depressionin the bottom of a large, deepbasin holding additionalplayas.  Barren or sparselyvegetated mud flat throughoutthe bottom, with narrow,poorly defined communityzonation occurring on thesides.

14, 16

Formation and Hydrogeological Setting

OverviewNo investigation of mountain playa formation has been performed.  Unlike the plains’

playas, whose origins are the subject of much debate and speculation, most mountain playasseem to be the result of straight‐forward hill‐slope processes.  Typically, mountain playas sit inthe bottom of physiographic basins and valleys (Photo 15).  Through time, fine material fromthe surrounding hill sides has been washed down into the bottoms, accumulating the claylayers necessary to create a perching layer.  Presumably, the reason that bottom soils are so

Page 48: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Photo 14.  View northwest across the Fire House Playa.  Well A can be seen left of thevehicle in the playa bottom.

Photo 13.  View north across Playa Lake 1.

45

Page 49: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Photo 15.  View north in the region of South Park known as “The Basin” showing the characteristic physiographyand landscape in which mountain playas are found. 

46

Page 50: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

47

 fine grained is because the surface runoff from the surrounding basin sides is the only vehicleof transport, and this low‐energy flow is not sufficient to mobilize larger particles.

In plains systems, one theory suggests that playas may form as a result of a positive‐feedback mechanism induced by buffalo wallows.  In most cases, this theory does not seem toapply to mountain playas since the bulk of these systems are associated with large‐scale basins.However, in some instances, where playa depressions are located in large open plains (e.g. BaldHill Playa) the buffalo wallow theory could have merit.

Mountain playas very commonly have one or more inlets that flow ephemerally, duringand after storm events and playa water is wholly supplied by direct precipitation and inputsfrom the surrounding catchment.  Playas do not have outlets.  Once in the playa basin, pondedwater is isolated from underlying aquifers by clay aquitard that lines their bottoms, so the onlyappreciable loss of water from playas is through evapotranspiration.  

Hydrogeologic Design Considerations    There are two primary issues related to hydrogeologic design that must be considered

during playa mitigation.  First, the basin in which it is built must be of sufficient size to supplythe playa with enough water to induce periodic flooding.  In an enhancement or restorationscenario, basin size can generally be assumed to be appropriate.  In playa creation, thecatchment area required to flood the basin during a storm event of a given magnitude andperiodicity should be modeled.  If the size of a chosen basin is not large enough to support thedesired hydrologic behavior, a different mitigation site should be chosen.  If selecting anothersite is not feasible, the natural water supply could be augmented by an artificial source.

The second design requirement is that a clay pan must be present.  The clay layer neednot be naturally occurring, and methods for construction of clay‐lined basins are well known;however, the clay should be obtained from deposits derived from evaporite‐bearing parentmaterial if the target system is to be saline like the ones described here.  Many of thecharacteristic species of South Park playas are halophytes (salt‐loving) and only grow undersuch conditions.  If the basin is to be lined with a geotech liner or non‐saline clay, a cover layerof coarser salty soil could potentially develop the characteristic salt crust and saline soilenvironment.  Soils are discussed further in a separate section below.

Hydrology and Hydrodynamics

OverviewPlaya hydrology is driven by precipitation and the wetlands are, by definition, isolated

from the regional water table.  Such a reliance on precipitation makes the hydrologic regime

Page 51: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

48

erratic and as unpredictable as the local weather.  Table 8 provides a summary of seasonalwater table statistics.

Mean water table levels were recorded as between 73 and 97 cm below the groundsurface, but actual mean levels were probably over 100 cm because depths greater than 100cm could not be measured owing to depth limitations of the wells.  Seasonal water tableranges, were calculated as being between 5 and 159 cm, but again this value almost certainlyunderestimates the actual ranges.  This fact is strongly emphasized by the 2005 range for PlayaLake 1.  In this case the well was dry most of the season, but water levels fluctuated 5 cm at thelower end of the measurable range.  Consequently, the actual changes in level that occurredare unknown. 

Water table levels were variable bothwithin and between seasons as would be expectedin precipitation‐fed wetlands (Table 8).  Figures 17 ‐ 18 show the seasonal hydrographs alongwith precipitation data collected on‐site at the Playa Lake 1 and Fire House sites.  Thesehydrographs show the direct and rapid response of playa water levels to precipitation events,wherein single storms raised water tables by more than 100 cm in some cases.  Daily watertable ranges were also highly volatile and driven by precipitation (Figs. 19 ‐ 20), with diurnalfluctuations ranging from 0 to nearly 100 cm in some cases.

It should be cautioned that water table depth does not convey the full picture of thehydrologic environment of playas.  Since playas are perched above regional water tables,ground water wells have a tendency to record either behavior occurring below the clay panwhich does not readily influence surface processes, or they record depth and periodicity offlooding.   The later was the target of this study.  But playa basin clays have a high water holdingcapacity and were observed to be saturated (or nearly so) at times when measured water tablelevels were well below the soil surface.  Thus, in times other than flood events, the surfacedynamics of playas may be much more related to wetland conditions than groundwaterreadings may suggest.

Table 8.  Summary of water table behavior at reference playa sites.  Both the seasonal ranges and mean depths aregreater than reported here, since wells were very often dry, in which case data values were recorded as ‐100 cm(depth of the well).  

Parameter Firehouse Playawell A

Firehouse Playawell B

Bald Hill Playa Playa Lake 1

2005 Mean WaterTable Depth (cm)

‐80 ‐88 ‐97 ‐87

2006 Mean WaterTable Depth (cm)

‐73 NA ‐93 NA

2005 Season WaterTable Range (cm)

101 31 111 5

2006 Season WaterTable Range (cm)

76 NA 23 159

Page 52: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

-120

-100

-80

-60

-40

-20

0

20

5/23/2005 6/12/2005 7/2/2005 7/22/2005 8/11/2005 8/31/2005 9/20/2005 10/10/2005 10/30/2005

Date

Wate

rD

ep

th(c

m)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

Firehouse A

Firehouse B

Playa Lake 1

Bald Hill

FireHouse PPT

Playa Lakes PPT

-120

-100

-80

-60

-40

-20

0

20

40

60

80

5/18/2006 6/7/2006 6/27/2006 7/17/2006 8/6/2006 8/26/2006 9/15/2006 10/5/2006 10/25/200

6

11/14/200

6

Date

Wate

rD

ep

th(c

m)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Firehouse A

Firehouse B

Playa Lake 1

Bald Hill

FireHouse PPT

Playa Lakes PPT

Figs. 17 & 18. 2005 and 2006 hydrographs (respectively) for playareference sites. Also included are precipitation data collected the Playa Lake1 and the Fire House Playa.

49

Page 53: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

0

10

20

30

40

50

60

70

6/7/2006 6/27/2006 7/17/2006 8/6/2006 8/26/2006 9/15/2006 10/5/2006 10/25/2006 11/14/2006

Date

Dail

yW

ate

rT

ab

leR

an

ge

(cm

)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

FHA

FHB

PL

BH

Fire House PPT

Bald Hill PPT

0

20

40

60

80

100

120

5/23/2005 6/12/2005 7/2/2005 7/22/2005 8/11/2005 8/31/2005 9/20/2005 10/10/2005 10/30/2005

Date

Dail

yW

ate

rT

ab

leR

an

ge

(cm

)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

FHA

FHB

PL

BH

Fire House PPT

Bald Hill PPT

Figs. 19 & 20. 2005 and 2006 daily water level ranges (respectively). Chartedon the secondary x-axis are daily precipitation data collected at Playa Lake 1and the Fire House Playa.

50

Page 54: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

51

Hydrologic Design ConsiderationsNatural playa hydrology is driven by precipitation and surface runoff, and this should be

the aim of mitigation as well.  The key to achieving this goal is insuring that the supporting basincan provide sufficient run off to supply the playa basin.  Describing methods to predictlandscape runoff is beyond the scope of this report, though.  

If the desired hydrologic regime is not attainable through precipitation alone, it wouldseem possible to create the target conditions with surface water augmentation.  In such cases,the augmentation plan should seek to produce the same type of erratic water table behaviorseen in reference systems.  The sites should not remain continually flooded, because cycles ofwetting and drying cause salt precipitation in the upper layers of the soil and produces the saltcrusts typical of the habitats which support halophytic species.  Cycles of draw‐down andwetting are also probably crucial to the establishment and maintenance of many playa species. 

Basin Design and Hydrogeomorphology

OverviewAppendix 3 provides surveyed cross‐sections for all of the playa reference sites overlaid

with maximum, minimum and mean water levels.  All of the reference playas flooded at leastonce during the two‐year monitoring phase of this study, although the depth, extent andduration of flooding varied greatly among sites.  At Playa Lake 1, flooding reached depths ofover 60 cm and surface water remained from mid‐July to beyond the end of the monitoringperiod in November.  Playa Lake 2 on the other hand, was observed to have flooded twice in2006 (and probably several other times throughout the growing season, but this site did nothave monitoring instruments to record such events), but flood waters rapidly receded.  In lateJune 2006, the site was estimated to have been 25 ‐ 35% flooded in the morning of sitesurveying.  By the afternoon, the inundated area was less than 10%, and the next day nosurface water was present.

The form of playa basins is basically that of a flat bottomed bowl, with edgeconfigurations that approximately circumscribe the arc of an ellipse (Fig. 21).  Zone 1, whichcomprises the basin bottom, is predominately flat but with a gradual increase in slope as itapproaches the transition to zone 2.  Zone 1 is the primary zone of inundation.  Because of theextremely flat terrain even a modest flood event of a few centimeters may inundate the entirebottom.  There is generally an identifiable slope inflection at the transition to zone 2, withgradients increasing to an average of 2.3 %.  Zone 2 is subject to periodic flooding especially onthe lower margins, although vegetation remains emergent and appears to tolerate thetemporary inundation (Photo 19).  At zone 3, slopes generally increase again attaining a meanof 6.4 %.  These areas only flood under exceptional circumstances, although vegetation in the 

Page 55: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

0 10 20 30 40 50 60 70 80 90 100

Horizontal distance (m)

Ele

vati

on

(m)

Zone 1 Zone 2

Zone3

Zone4

Slope = 0.2%(0 - 0.6)

Slope = 2.3%(0.7 - 3.9)

Slope = 6.42%(1.4 - 15.8)

Slope = ~4%

Figure 21. Hypothetical cross-section of a playa basin starting from the center (left - zone 1) and grading intothe upland zone (zone 4). Above each zone label are the mean slopes surveyed for each, followed by therange of measurements. Zone 1 is the basin bottom and area of frequent innundation. These areas arecommonly sparsely vegetated mud or salt flats. Zone 2 is relatively wet and the most highly vegetated area ofa playa. The zone is occasionally inundated during larger flood events. Zone 3 marks the transition to upland.It is rarely flooded, although plants benefit from elevated soil moisture levels created during floods. At Zone 4uplands begin – these areas do not flood. Slopes are not drawn to scale in this illustration.

52

Page 56: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

53

zone benefits from the increased water availability created by lower levels of innundation.  Aselevation increases in zone 3, a gradual gradient towards upland is produced.  Zone 4 marks thebeginning of the uplands characteristic of the landscape surrounding the basins.

Basin Design GuidancePlaya basin design is relatively straightforward, although slopes should be graded

carefully and the interaction of edge slope and flood level should be carefully considered.  As istypical of wetland, the topographical slope in playas to a very large degree determines rapidityof species turnover and the width of ecological zones.

In natural situations, basin edges can slope gradually or be quite steep.  Additionally,slope can increase from zone 1 to 3 (typical), or it can remain essentially constant producing amore even turn over of species.  There is no single correct approach.  Rather designers andrestoration ecologists should consider the overall project goals.  It is clear from this study,however, that basins with uniformly steep sides such as those created to maximize waterstorage are not appropriate design models for playa mitigation.  If built as such, the “playa”would likely consist of a nearly barren bottom, ringed by very narrow – perhaps less than ameter – marginal zones of vegetation.  Such basins should not be considered the equivalent ofnatural playas for regulatory purposes.

The natural reoccurrence interval of flooding is not known and can only be determinedthrough long‐term intensive monitoring, however, based on examination of this studies dataand long‐term precipitation data some provisional recommendations can be made.  Mitigationprojects should aim for playas to shallowly flood (< 5 cm) for brief periods one to five times perseason, while a major flood event (> 20 cm) with water persisting for a least one month shouldoccur about every three years.

Basin SoilsPlaya soils are dominated by clays (Fig. 22, Table 9).  As has been discussed previously,

the presence low permeability clay soils in playa bottoms is essential to their functioning.   Thedepth or thickness of the clay pan varied within and among reference sites, ranging from lessthan 20 cm in a portion of Playa Lake 1 to probably more than 100 cm in other sites.

The soils of South Park are known to frequently be calcareous or otherwise salty owingto the limestone, dolomite and evaporite‐bearing parent materials in the region.  The naturalsaltiness of the soils is highly elevated in playas owing to the frequent wetting and drying cycleswhich act to transport and concentrate salts at or near the soil surface (Photos 16 ‐ 17).  Table 9provides a summary of chemical analyses of soil samples obtained along survey transects. 

Page 57: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

-80

-70

-60

-50

-40

-30

-20

-10

0

PL1-1-0 PL1-1-14 PL-1-32 PL1-1-45 PL1-1-82 PL1-2-13 BH-1-80 BH-1-70 BH-1-56 BH-2-28 BH-2-48 BH-2-62 FH-2-30 FH-2-60 FH-2-92 FH-3-125 FH-3-10 FH-3-78 FH-3-98

Dep

th(c

m)

Gravelly Sand Sand Gravelly Clay Clay 2 Clay 1 Heavy Clay Silty Clay Loam Silty Clay Sandy Clay

Figure 22. Chart of soil profiles. The bottom horizons are cut off at the maximum depth of the sample and lower layers extend beyond thecharted depth. Column headings are labeled with sample codes (site-transect-location on the transect in meters). PL = Playa Lake 1, BH = BaldHil Playal and FH = Fire House Playa.

54

Page 58: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Photo 16.  View west across the Fire House Playa during installation of well A.  Thewhiteness in the basin bottom is a salt crust.  The ridge line in the background is part ofthe greater topographical basin in which the playa sits.

Photo 17.  View northwest across the Bald Hill Playa showing saline soils and thedevelopment of a salt crust (above center of photograph).  

55

Page 59: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

56

 Samples have been grouped according to the habitat zone from which they were obtained (Fig.21).  Habitat zones are discussed further in the Vegetation Section.

The general trend is for analyte values to decrease going from zone 1 (bottom) to zone 3or 4 (upland).  This trend fits well with expectations considering the salt accumulation processesdiscussed above.

Table 9.  Summary results of playa soil analyses.  Values are means of samples grouped byhabitat zone.  

Units %‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ppm‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐meq/L‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐----------%-------

Zone  n pH EC* OM NO3‐N P K Zn Fe Mn Cu Ca Mg Na SAR Sand Silt Clay

Zone 1 9 8.1 26.1 1.5 38.4 5.3 699.3 2.8 82.2 6.7 5.9 28.9 125.1 238.8 25.7 18.6 30.6 50.9

Zone 2 8 8.1 33.8 1.8 42.3 6.8 615.9 2.5 68.8 3.7 5.2 20.7 123.0 321.8 31.1 26.0 22.9 51.1

Zone 3 9 8.1 11.9 2.3 45.3 8.3 442.0 1.9 58.6 4.0 5.2 16.3 41.6 119.1 17.0 33.2 23.1 43.7

Zone 4 1 7.5 1.5 3.2 127.6 18.7 567.0 2.5 46.9 4.7 7.2 7.0 4.8 2.0 0.8 18.0 26.0 56.0

 * Electrical Conductivity, units = mmhos/cm

Soil Design ConsiderationsPlaya bottoms must have substantial clay layers starting from the surface and extending

down at least 20 cm.  Thicker layers would no doubt help improve basin performance by furtherdecreasing permeability.  Optimally, the clay used in the bottoms should be derived fromevaporitic parent material to produce the soil environment found in reference playas. Utilization of less salty clay or a synthetic liner system may be possible if employed inconjunction with a saline cover soil.  This suggestion should be tested before beingimplemented on a large scale, however.

Vegetation

OverviewMountain playa vegetation is comprised solely of herbaceous species.  Across entire

wetlands, graminoids are predominant in terms of biomass, however, large areas of salt flatscontain only forbs, and grading into the uplands (upper reaches of zone 3), graminoids andforbs tend to co‐dominate.

Plant communities are dispersed in a strongly zonal manner, presumably in response toflooding depth and physical processes driven by hydrology (Photo12, Figs. 23 ‐ 24).   Figure 25

Page 60: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

2See the Methods Section for explanation of statistical methods

57

shows a detrended correspondence analysis2 ordination of vegetation sample plots along withregressions of plot scores on plot elevations.  The figure illustrates the high correlation betweenthe two variables, underscoring the critical relationship between vegetation and elevation (andconsequently water availability) within the basin.

Cluster analysis differentiated the four habitat zones, and sample arrangement withinthe analysis corresponded closely with plot elevation relative to the basin bottom.  Figure 26shows a zonal classification of plant community types based on cluster analyses that includesinformation on the essential characteristics of the communities and dominant/characteristicspecies.

Vegetation‐related Design Recommendations Seeding is the most effective means of (re)vegetating playas since most playa species

reproduce well via seed.  Revegetation through plugging is not recommended and would likelynot be successful.  When seeding, care should be taken to shield seeds from the high winds thatcould otherwise strip them from the site.  Optimally, seeding should occur just prior to a floodevent to promote germination and establishment, however, as long as seeds are not removedfrom the site by wind erosion they should germinate on their own when conditions becomefavorable.

The species lists included in Fig. 26 can be used to formulate seed mixes.  The mixshould include an even distribution of species chosen from all habitat zones, and the mix shouldbe applied uniformly across the entire site, allowing the basin environment to dictate thecomposition of species that becomes established.

When defining project goals it is important to keep the dynamic nature of playa ecologyin mind.  This is particularly important for projects involving federally‐mandated compensatorymitigation, since success criteria play a legal as well as ecological role.  Vegetation‐basedcriteria are almost always used in describing project targets and success criteria.  In developingsuccess criteria it is very important to account for the dramatic temporal variation in speciescomposition and coverage that can occur as a result of flooding.  Developing success criteriabased on the assumption of community persistence can lead to erroneous conclusions aboutsite development and project success.  As an example, Photographs 18 and 19 show a view ofPlaya Lake 1 taken a few weeks apart.  In Photograph 18 the bottom (zone 1) is covered with adense sward of grasses.  Shortly thereafter when the playa flooded, all of the grasses in thatzone were killed and vegetation coverage there was essentially zero (Photo 19).  Approximatelysix weeks after flooding , inundated areas were once again vegetated, but this time bypondweed (Potamogeton spp.) and other aquatic species.  Performance evaluations performed at each of these times would yield very different results.  Although part of the natural cycle ofthe wetland, short‐term vegetational dynamics if not properly accounted for during project goaland performance criteria designation, could confound evaluation.

Page 61: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Zone 1Zone 2

Zone 3

Zone 4

Fig. 23. View south across Playa Lake 1 with vegetation zones delineated. Thephotograph was taken on June 29, 2006 before flooding occurred.

Zone 1

Zone 2

Zone 3

Zone 4

Fig. 24. View northeast across the eastern end of Bald Hill Playa with habitat zonesdelineated.

58

Page 62: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

dca

Axis 1

Axis

2

0.0

1.0

2.0

relief

Axis 1

r = .671 tau = .432

Axis 2

r = .426 tau = .386

0.0 1.0 2.0

Fig. 25. DCA ordination of playa vegetation plots (A). In B axis 1 ordination scores are regressed on plotelevation relative to the basin bottom. Graph C shows axis 2 scores regressed against plot elevations.These results show that elevation is significantly correlated with the two most significant gradients ofvegetational change.

A

B

C

59

Page 63: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

All Sites

Periodically

Flooded

Infrequently or

Never Flooded

Zone 1

0 - 10 cm above

bottom

Zone 2

10 - 30 cm above

bottom

Zone3

30 - 100 cm above

bottom

Zone 4

>100 cm above

bottom

Scattered patches

of sparse

vegetationSueda calceoliformis

Puccinellia airoides

Triglochin maritimum

Distichlis spicata

Nearly barrenPuccinellia airoides

Thellungiella salsuginea

Patches of

vegetation;

occassionally

densePuccinellia airoides

Triglochin maritimum

Sueda calceoliformis

Glaux maritima

Vegetation patchyPuccinellia airoides

Triglochin maritimum

Glaux maritima

Relatively even

vegetation

including bare and

dense patchesDistichlis spicata

Leymus triticoides

Puccinellia airoides

Glaux maritima

Triglochin maritimum

Juncus balticus

Plantago eriopoda

Argentina anserina

Lepidum montanum

Antennaria microphylla

Astragalus kentrophyta

Artemisia frigida

Picradenia rickardsonii

Relatively even

vegetation

characteristic of

surroundingsArgentina anserina

Hordeum jubatum

Cirsium coloradense

Elymus trachycalus

Koeleria macrantha

Taraxacum officinale

Picradenia rickardsonii

Artemisia frigida

Guttrhizhia sarothrae

Figure 26. Zonal classification of playa vegetation based on cluster analysis. At the second division, boxes include the zone number and theelevational range (relative to the basin bottom) in which the zone is found. The lower row of boxes includes a summary statement of the vegetationcharacter within the zone followed by a list of dominant or characteristic species. Note that vegetation in zone 1 of divided into three sub-types.

60

Page 64: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Photo 19.  A similar view of Playa Lake 1 as the above photograph taken on July 22,2006.  Note the well station in the pond, right of center in the photograph.  

Photo 18.  View southeast across the east end of Playa Lake 1 on June 29, 2006.  Notethe well right of center for reference.

61

Page 65: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

62

References Cited

Bedford, B. (1996). "The need to define hydrologic equivalence at the landscape scale forfreshwater wetland mitigation." Ecological Applications: 57‐68.

Johnson, J. B. and T. D. Gerhardt (2002). "Mapping and characterization of mires and fens inSouth Park, Park County, Colorado." Unpublished report submitted to the U.S. BLM.

NRC (2001). Compensating for wetland losses under the Clean Water Act. Washington D.C.,National Academy Press.

Smith, R. D., A. Ammann, et al. (1995). "An approach for assessing wetland functions usinghydrogeomorphic classification, reference wetlands and functional indices." Technical ReportWRP‐DE‐9, U.S. Army Corps of Engineer Waterways Experiment Station, Vicksburg, MS.

Page 66: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

63

APPENDICES

Page 67: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

64

APPENDIX 1 – STUDY METHODS

Reference Site Identification and Selection

Kettle PondsSummit County was chosen as the reference domain for study of kettle ponds, since this

area was known to hold an abundance of such wetlands and the hydrogeologic setting isrepresentative of “typical” mountain environs in Colorado.  Additionally, the region isexperiencing profound growth and development, and it seems likely that this growth willproduce for a disproportionate percentage of kettle pond mitigation needs.

Digital geographic resources including topographic and geologic maps, elevation models(DEMs), vector‐based data (roads, streams, etc.), ortho‐photo quads and wetland maps wereassembled in a geographic information system (GIS).  Detailed, county‐wide wetland maps thatincluded hydrogeomorphic classification were used to determine the hydrogeologic setting inwhich kettle ponds formed (Johnson 2005).  Once fundamental search criteria were identified,potential reference sites were located.  To develop the best possible guidelines for kettle pondmitigation, it was deemed essential that reference sites be in as close to a natural state as existsin the region.  Based on hydrogeologic criteria, land use history and access potential the searcharea was narrowed to the Eagle’s Nest Wilderness on the western side of Summit County. 

Potential kettle pond areas were marked on the GIS and their geographic coordinatesrecorded.  Over ninety‐four pond sites were visited in the field.  Each site was briefly evaluatedand the location marked with a Global Positioning System (GPS).  From the pool of 94 sites,eight were chosen for intensive investigation.  Sites were selected to span the natural range ofkettle pond variability observed during preliminary reconnaissance.

All sites were judged to be in pristine condition and significant effort was expended toensure such was the case.  Sites were located in completely roadless areas (including historical), currently only accessible on foot, and most were well off established hiking trails.  Noneshowed any sign of having been logged or having been disturbed in any way.      

Mountain PlayasPark County, specifically the South Park region, was chosen as the primary reference

domain for the study of mountain playas, since they were thought to be fairly common in theregion and sufficient GIS data was available for the reason to remotely locate potential studysites.

Page 68: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

65

The information incorporated into the GIS included topographic and geologic maps,digital elevation models (DEMs), vector‐based data (roads, streams, property ownership, etc.),and ortho‐photo quads and wetland maps.  Also included was an analysis of satellite imageryproduced by the US Bureau of Land Management for a fen mapping project performed by theauthor (Johnson and Gerhardt 2003).

As with the kettles, potential sites were then identified using these resources, and 44were reconnoitered in the field.  Most identified sites turned out to be cattle ponds, salt flats orotherwise dry basins which appeared to have an extremely long recurrence interval forflooding.  Based on this survey, it appears that playas are less common in the region thanoriginally assumed.  From the inventory of potential playas, four reference sites were chosenfor inclusion in this study.  None of the four sites could be considered pristine, rather they weredeemed to be in “minimally‐impacted” condition.  None had been detectably hydrologicallyaltered, nor subject to any other development.  All of the sites were, and continue to be, grazedby cattle, although grazing levels appear to be of moderate to low intensity.  Sites were chosento encompass the natural range of variation observed in mountain playas during thereconnaissance, including deep densely vegetated basins, shallower basins dominated bybarren salt flats, and very shallow, moderately vegetated amorous depressional areas. 

Study DesignStudy design focused on quantification of the primary factors dictating wetland

functioning, character and condition, namely hydrology, geomorphology and soil composition. The secondary aim was then to determine how these factors interact to produce the patternsof vegetation seen on the landscape.  The goal of this study design was to develop designspecifications for critical wetland habitat features that could be feasibly implemented during amitigation project.

Hydrology

Kettle PondsFour kettle pond sites (KP15, 66, 75, and 79) were each equipped with one data logging

well (Remote data Systems Ecotone, WM or WL series models).  Manually read Staff gaugeswere installed in the remaining four reference sites (KP 25, 46, 53 and 63).  Data logging wellswere placed in margin areas of the ponds that were accessible but which were predicted toremain essentially inundated.  Data loggers were programed to read water table levels every sixhours.  Water depths at staff gauges were read at during each site visit, two to three times pergrowing season.

Page 69: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

66

Mountain PlayasThree of the four playa reference sites were equipped with similar data logging wells,

programmed to read water table levels every two hours to better quantify the rapid changes inwater depth predicted to occur at the precipitation‐dominated wetlands.  One tipping bucketrain gauge interfaced with a Watch Dog data logger was placed at both the Firehouse and PlayaLake 1 sites.

Unfortunately, various technical issues plagued the playa wells.  Rodents chewed thelogger cable of one well (FH B) during the 2005 field season resulting in significant data loss. Although returned to the manufacturer for repair, the logger did not function properly in 2006which caused additional data loss.  It was also noticed that the other playa site Ecotone dataloggers commonly malfunctioned which resulted in additional data loss.  It was later revealedby the manufacturer that those wells are prone to problems  in highly saline environments suchas are found in the playas.  Lastly, at the PL1, site heavy monsoonal rains in 2006 caused thebasin to flood deeply.  Flooding submerged both the well and rain gauge at the site whichconfounded instrument calibration and accurate data logging.  Water depths at the PL1 sitewere obtained manually at the well location several times during the flooded period.  All dataaffected by these issues were omitted from further analyses.

Climatological data for the kettle pond study area were obtained from the GreenMountain Reservoir dam (Site # 53592).  This site lies at 2,359 m (7,740 ft.)  elevation and isbetween 8 and 30 km (4.75 ‐ 31 mi.) from the reference wetlands.  While the 658 m (2,100 ft.)difference in elevation between the gauge site and reference sites is expected tounderestimate the actual amount of precipitation received at the reference site, precipitationdata should provide an acceptable accurate relative assessment of the distribution and severityof summer storms.  Long‐term data from the Antero Reservoir weather station were obtainedto provide context for the rain gauges installed at the Fire House and Playa lakes sites.

Topographical SurveyWetland topography was surveyed using transects and a Laser‐Mark™ self‐leveling laser

level with a stadia rod and detector.  At all of the kettle sites and the Bald Hill Playa, transectswere arrayed perpendicular to a mid‐ or baseline.  At the kettle sites the mid‐line, was alined topass through the approximate middle of the site including the deepest pond areas.  This mid‐line was also surveyed.  At the remaining playa sites, three radially‐arranged transects wereused.  Transects began at the approximate middle of the sites and ran out to the uplands. Three transects, oriented approximately 120N to one another were used at each of these playasites.    Tables 1 and 7 provide the number of transects for each site.

Elevations relative to an arbitrary benchmarks were measured, typically every meteralong the transect; although this interval varied according to local topography.  

Page 70: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

67

A Leica GS 20 Global Positioning System (GPS) unit was used to geographically positionsurvey points and transects.  Survey data and geographic coordinates were analyzed usingArcView 9.2 software, AutoDesk Map3D 2007, and Microsoft Excel software packages. 

Soil and Water Sampling

KettlesPond water pH and electrical conductivity were measured using Orion Model 500 and

YSI Model 30 field meters, respectively.  The pH meter was calibrated in the field before eachuse.  The conductivity meter did not require calibration.  One water sample was also obtainedfrom each pond for lab analysis.  

Organic soil depth was determined using a 160 cm long T‐probe, which was plunged intothe soil until underlying till was encountered.  One soil sample was obtained for lab analysisfrom the upper 25 cm of the soil in shallow, permanently flooded areas.  

PlayasSoil samples for lab analyses were obtained from the upper 20 cm horizon.  Soil samples

were taken along transects and located across the range of habitat zones present at the site. Soil profiles were also described at each sampling location.  Appendix 4 provides a list of soiland water analytes.

All lab analyses were performed by the Colorado State University Soil and Water TestingLab.

Vegetation SurveyPlant species composition was evaluated using 2 x 2 m square plots arrayed to form

continuous belt transects down survey transect lines.  Along long transects coveringhomogeneous habitat (e.g., playa salt flats), plots were sometimes spaced more widely.  Eachspecies in a plot was identified and its percent cover visually estimated and placed into a coverclass using the Braun‐Blauquet scale.  Unknown species were collected and pressed for lateridentification and verification using the Colorado State University Herbarium referencecollection.

Agglomerative cluster analysis, using the Bray‐Curtis distance measure and flexible betagroup linkage method (beta = ‐0.25) were used to classify samples into habitat types. Detrended Correspondence Analysis (DCA) was used to reconstruct vegetational gradientsacross sites and relate changes in vegetation to environmental factors.  Species data wereLog(x+1) transformed before DCA was performed.   PC‐Ord version 5.0 was used for allvegetation analyses. 

Page 71: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

68

APPENDIX 2KETTLE POND

TRANSECT CROSS‐SECTIONS

Each Chart shows the upper surface of organic soils, the lower extent of organic soils, and theaverage water level maximum (Seasonal Max), minimum (Seasonal Min), and seasonal mean

(Seasonal Mean).

Important Note:Care must be taken in visual interpretation of the magnitude of rises, slope grades and otheraspects of topography shown in cross‐sections.  Owing to the modest vertical relief present

relative to transect length, vertical relief needed to be greatly exaggerated to make topographiccharacter and surface variation perceptible.  Vertical exaggeration varies with cross‐section. 

Original data should be used for design or modeling purposes. 

Page 72: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

KP15 T1

95

95.5

96

96.5

97

97.5

98

98.5

99

-15 -10 -5 0 5 10 15 20 25

Dis tance from M idline (m )

Ele

vati

on

(m)

Soil Surface Soil Bottom Season Max Season Min Season Mean

KP15 T2

95

95.5

96

96.5

97

97.5

98

98.5

99

-10 -5 0 5 10 15

Dis tance from M idline (m )

Ele

vati

on

(m)

Page 73: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

KP15 T3

96

96.2

96.4

96.6

96.8

97

97.2

97.4

97.6

97.8

98

-6 -4 -2 0 2 4 6 8

Distance from Midline (m )

Ele

vati

on

(m)

KP15 Midline

95

95.5

96

96.5

97

97.5

98

98.5

99

0 10 20 30 40 50 60

Distance Along Midline (m )

Ele

vati

on

(m)

Page 74: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

KP75 T1

95

95.5

96

96.5

97

97.5

98

98.5

99

-20 -15 -10 -5 0 5 10 15 20

Distance from Midline (m)

Ele

vati

on

(m)

KP75 T2

95

95.5

96

96.5

97

97.5

98

98.5

99

-20 -15 -10 -5 0 5 10 15 20 25

Distance from Midline (m)

Ele

va

tio

n(m

)

Page 75: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

KP75 T3

95

95.5

96

96.5

97

97.5

98

98.5

99

-30 -20 -10 0 10 20 30 40

Distance from Midline (m)

Ele

va

tio

n(m

)

KP75Midline

97

97.2

97.4

97.6

97.8

98

98.2

98.4

98.6

98.8

99

0 10 20 30 40 50 60 70 80 90 100

Distance Along Midline (m)

Ele

va

tio

n(m

)

Page 76: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

KP79 T1

97.2

97.4

97.6

97.8

98

98.2

98.4

98.6

98.8

-30 -20 -10 0 10 20 30 40 50

Distance from Midline (m)

Ele

va

tio

n(m

)

KP79 T2

97

97.2

97.4

97.6

97.8

98

98.2

98.4

98.6

-20 -15 -10 -5 0 5 10 15 20 25 30

Distance from Midline (m )

Ele

vati

on

(m)

Page 77: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

KP79 M idline

96.5

97

97.5

98

98.5

99

99.5

100

0 10 20 30 40 50 60 70 80 90

Dis tance Along M idline (m )

Ele

vati

on

(m)

Page 78: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

K P 2 5 T 1

9 6 .6

9 6 .8

9 7

9 7 .2

9 7 .4

9 7 .6

9 7 .8

9 8

9 8 .2

9 8 .4

9 8 .6

-8 -6 -4 -2 0 2 4 6 8

Dis t a n c e f r o m M id lin e ( m )

Ele

vation

(m)

K P 2 5 M id l in e

9 6

9 6 .5

9 7

9 7 .5

9 8

9 8 .5

9 9

0 5 1 0 1 5 2 0 2 5

Dis t a n c e a lo n g M id lin e ( m )

Ele

vation

(m)

Page 79: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

K P 4 6 T 1

9 5

9 5 .5

9 6

9 6 .5

9 7

9 7 .5

9 8

9 8 .5

-1 0 -5 0 5 1 0 1 5 2 0 2 5

Dis t a n c e f r o m M id lin e ( m )

Ele

vation

(m)

K P 4 6 T 2

9 4 .5

9 5

9 5 .5

9 6

9 6 .5

9 7

9 7 .5

9 8

9 8 .5

- 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

Dis t a n c e f r o m M id lin e ( m )

Ele

vation

(m)

Page 80: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

K P 4 6 T 3

9 5 .5

9 6

9 6 .5

9 7

9 7 .5

9 8

9 8 .5

-1 0 -5 0 5 1 0 1 5 2 0

Dis t a n c e f r o m M id lin e ( m )

Ele

vation

(m)

K P 4 6 M id l in e

9 6 .8

9 7

9 7 .2

9 7 .4

9 7 .6

9 7 .8

9 8

0 1 0 2 0 3 0 4 0 5 0

Dis t a n c e a lo n g M id lin e ( m )

Ele

vation

(m)

Page 81: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

K P 5 3 T 1

9 5 .5

9 6

9 6 .5

9 7

9 7 .5

9 8

9 8 .5

-2 0 -1 5 -1 0 -5 0 5 1 0 1 5 2 0

Dis t a n c e f r o m M id lin e ( m )

Ele

vation

(m)

K P 5 3 T 2

9 5 .5

9 6

9 6 .5

9 7

9 7 .5

9 8

9 8 .5

-2 5 -2 0 -1 5 -1 0 -5 0 5 1 0 1 5 2 0

Dis t a n c e f r o m M id lin e ( m )

Ele

vation

(m)

Page 82: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

K P 5 3 T 3

9 5 .5

9 6

9 6 .5

9 7

9 7 .5

9 8

9 8 .5

- 2 5 - 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5

Dis t a n c e f r o m M id lin e ( m )

Ele

vation

(m)

K P 5 3 M id l in e

9 7

9 7 .2

9 7 .4

9 7 .6

9 7 .8

9 8

9 8 .2

9 8 .4

9 8 .6

0 1 0 2 0 3 0 4 0 5 0 6 0

Dis t a n c e a lo n g M id lin e ( m )

Ele

vation

(m)

Page 83: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

K P 6 3 T 1

9 5 .5

9 6

9 6 .5

9 7

9 7 .5

9 8

9 8 .5

-6 -4 -2 0 2 4 6 8 1 0

Dis t a n c e f r o m M id lin e ( m )

Ele

vation

(m)

K P 6 3 T 2

9 5

9 5 .5

9 6

9 6 .5

9 7

9 7 .5

9 8

9 8 .5

-2 0 -1 5 -1 0 -5 0 5 1 0 1 5 2 0

Dis t a n c e f r o m M id lin e ( m )

Ele

vation

(m)

Page 84: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

K P 6 3 T 3

9 6

9 6 .5

9 7

9 7 .5

9 8

9 8 .5

-3 0 -2 0 -1 0 0 1 0 2 0 3 0

Dis t a n c e f r o m M id lin e ( m )

Ele

vation

(m)

K P 63 M Id -l in e

9 7

9 7 .2

9 7 .4

9 7 .6

9 7 .8

9 8

9 8 .2

9 8 .4

9 8 .6

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0

Dis ta n c e f r o m M id lin e (m )

Ele

vation

(m)

Page 85: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

KP66 T1

95

95.5

96

96.5

97

97.5

98

98.5

99

-15 -10 -5 0 5 10 15

Distance from Midline (m)

Ele

va

tio

n(m

)

KP66 T2

95

95.5

96

96.5

97

97.5

98

98.5

99

-25 -20 -15 -10 -5 0 5 10 15 20 25

Distance from Midline (m)

Ele

va

tio

n(m

)

Page 86: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

KP66 T3

95

95.5

96

96.5

97

97.5

98

98.5

99

-25 -20 -15 -10 -5 0 5 10 15 20 25

Distance from Midline (m)

Ele

va

tio

n(m

)

KP66 Midline

96.6

96.8

97

97.2

97.4

97.6

97.8

98

98.2

98.4

98.6

0 10 20 30 40 50 60 70

Distance Along Midline (m)

Ele

va

tio

n(m

)

Page 87: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

70

APPENDIX 3MOUNTAIN PLAYA

TRANSECT CROSS‐SECTIONS

Each Chart shows the basin surface the average water level maximum (Seasonal Max),minimum (Seasonal Min), and seasonal mean (Seasonal Mean).

Important Note:Care must be taken in visual interpretation of the magnitude of rises, slope grades and otheraspects of topography shown in cross‐sections.  Owing to the modest vertical relief present

relative to transect length, vertical relief needed to be greatly exaggerated to make topographiccharacter and surface variation perceptible.  Vertical exaggeration varies with cross‐section. 

Original data should be used for design or modeling purposes. 

Page 88: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Playa Lake 1 - Transect 1

28

28.5

29

29.5

30

30.5

31

0 10 20 30 40 50 60 70 80 90 100

Distance from Center Point (m)

Ele

va

tio

n(m

)

Soil Surface Season Max Season Min Season MeanPlaya Lake 1 - Transect 2

28

28.5

29

29.5

30

30.5

31

0 20 40 60 80 100 120

Distance from Center (m)

Ele

va

tio

n(m

)

Soil Surface Season max Season Min Season Mean

Page 89: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Playa Lake 1 - Transect 3

28

28.5

29

29.5

30

30.5

31

31.5

0 20 40 60 80 100 120

Distance from Center (m)

Ele

va

tio

n(m

)

Soil Surface Season Max Season Min Season Mean

Page 90: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Playa Lakes 2 - Transect 1

31.2

31.4

31.6

31.8

32

32.2

32.4

32.6

32.8

0 10 20 30 40 50 60 70 80

Distance from Center (m )

Ele

vati

on

(m)

Soil Surface

Playa Lake 2 - Transect 2

31.2

31.4

31.6

31.8

32

32.2

32.4

32.6

32.8

0 10 20 30 40 50 60 70

Distance from Center (m)

Ele

va

tio

n(m

)

Soil Surface

Page 91: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Playa Lake 2 - Transect 3

31

31.5

32

32.5

33

33.5

34

0 10 20 30 40 50 60 70 80

Distance from Center (m)

Ele

va

tio

n(m

)

Soil Surface

Page 92: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Bald Hill Playa - Transect 1

29

29.5

30

30.5

31

31.5

0 20 40 60 80 100 120

Distance from Baseline(m)

Ele

va

tio

n(m

)

Soil Surface Season Max Season Min Season Mean

Bald Hill Playa - Transect 2

29

29.5

30

30.5

31

31.5

-20 0 20 40 60 80 100 120 140

Distance from Baseline (m )

Ele

vati

on

(m)

Soil Surface Season Max Season Min Season Mean

Page 93: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Bald Hill Playa - Transect 3

29

29.5

30

30.5

31

31.5

32

0 20 40 60 80 100 120 140

Distance from Baseline (m )

Ele

vati

on

(m)

Soil Surface Season Max Season Min Season Mean

Page 94: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Firehouse Playa - Transect 1

27.5

28

28.5

29

29.5

30

30.5

31

0 10 20 30 40 50 60 70 80 90

Distance from Center (m)

Ele

vati

on

(m)

Soil Surface Season Max Season Min Season Mean

Firehouse Playa - Transect 2

27.5

28

28.5

29

29.5

30

30.5

31

0 50 100 150 200 250

Distance from Center (m )

Ele

vati

on

(m)

Soil Surface Season Max Season Min Season Mean

Page 95: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

Firehouse Playa - Transect 3

27

27.5

28

28.5

29

29.5

30

30.5

31

31.5

32

32.5

0 20 40 60 80 100 120 140 160 180

Distance from Center (m )

Ele

vati

on

(m)

Soil Surface Season Max Season Min Season Mean

Page 96: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

72

APPENDIX 4 

SOIL AND WATER CHEMISTRYDATA

This Appendix contains original soil and water lab reports obtained form the CSU Soil and WaterTesting Lab

Page 97: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

73

Brad Johnson/Biology Colorado State UniversityCampus 1878 Soil, Water and Plant Testing

LaboratoryColorado State University Natural & Environmental Sciences

Bldg - A319Fort Collins, CO 80523-1120

DATE RECEIVED: 09-20-2006 (970) 491-5061 FAX: 491-2930DATE REPORTED: 12-08-2006

BILLING:RESEARCH SOIL ANALYSIS

WLOI --------------------------------------AB-DTPA-------------------------------------------Lab Sample ----------paste----------- Lime % % ------------------------------------ppm-----------------------------------------------------

# ID # pH EC Estimate OM OM NO3-N P K Zn Fe Mn Cummhos/cm

R893 KP75 4.8 0.3 Low 54.9 5.4 14.3 178 23.7 1238 21.0 13.7R894 KP63 4.4 0.3 Low 62.2 7.6 10.0 106 3.2 685 21.0 9.4R895 KP65 4.1 0.3 Low 57.6 3.6 7.2 151 14.3 848 41.6 4.5R896 KP53 4.2 0.4 Low 62.4 1.7 9.3 279 23.0 646 58.6 9.4R897 KP46 5.4 1.3 Low 30.4 3.8 38.6 169 6.8 584 43.6 7.1R898 KP79 6.2 3.5 Low 19.1 1.5 27.4 201 2.7 547 42.8 16.4R899 KP15 5.9 2.1 Low 35.3 3.9 17.4 304 11.2 469 19.7 6.1R900 KP25 4.6 0.2 Low 17.7 0.9 68.6 227 3.4 610 48.2 10.6R901 P1 T3 Z1 - 21M 7.2 37.1 High 1.6 18.0 7.8 682 3.1 44.5 2.7 5.5R902 FH T3 Z2 - 78M 8.1 82.3 High 0.6 5.7 3.1 291 0.7 17.5 1.3 2.0R903 P2 T3 Z1 - 1M 8.4 29.5 High 2.3 1.7 3.4 800 4.7 202 17.9 7.2R904 FH T2 Z1 30M 8.3 32.6 High 0.9 13.5 3.4 679 0.8 42.8 2.4 3.4R905 FH T3 Z1- 10M 8.4 49.9 High 1.3 21.6 3.4 706 1.0 64.6 3.2 4.1R906 P2 T1 Z2 - 48M 8.6 37.0 High 2.2 14.6 4.9 658 2.5 200 10.2 3.0R907 FH T2 Z2 - 92M 8.0 69.5 High 0.8 23.7 2.5 440 0.8 10.9 1.7 2.2

Page 98: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

74

R908 FH T3 Z3 - 98M 8.4 10.7 High 0.8 9.2 1.8 243 0.6 16.5 1.5 2.2R909 PL1 T3 Z3 - 66M 7.7 1.8 Low 2.6 35.2 8.7 574 4.3 66.2 4.7 10.2R910 P1 T1 Z4 - 82M 7.5 1.5 High 3.2 128 18.7 567 2.5 46.9 4.7 7.2R911 FH T2 Z3 - 28M 8.9 53.2 High 3.9 65.8 18.7 724 0.9 29.2 6.3 2.2R912 PL1 T1 Z2 - 32M 7.6 1.6 Low 3.6 107 13.7 757 4.7 96.1 4.0 9.1R913 P2 T3 Z3 - 58M 7.6 5.0 Low 1.7 23.5 6.2 242 0.9 43.5 4.3 5.0

Brad Johnson/Biology Colorado State UniversityCampus 1878 Soil, Water and Plant Testing

LaboratoryColorado State University Natural & Environmental Sciences

Bldg - A319Fort Collins, CO 80523-1120

DATE RECEIVED: 09-20-2006 (970) 491-5061 FAX: 491-2930DATE REPORTED: 12-08-2006

BILLING:RESEARCH SOIL ANALYSIS

--------------------------------------AB-DTPA-------------------------------------------

Lab Sample ----------paste----------- Lime % ------------------------------------ppm-----------------------------------------------------# ID # pH EC Estimate OM NO3-N P K Zn Fe Mn Cu

mmhos/cmR914 PL1 T1 Zl - 14M 7.7 6.5 High 93.7 9.9 699 4.34 75.3 5.77 8.38R915 P2 T1 Z1 - 25M 7.9 37.0 High 1.1 4.6 725 5.39 215 16.6 8.50R916 BH T2 Z1 - 62M 8.9 26.9 High 51.6 3.1 628 0.55 24.3 2.87 2.77R917 FH T2 Z3 -

125M8.1 14.0 High 4.1 2.1 226 0.53 13.5 2.59 3.09

Page 99: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

75

R918 BH T2 Z2 - 48M 8.9 31.6 High 14.8 3.1 665 0.63 19.5 2.78 2.71R919 PL1 13 Z2 - 52M 7.5 1.4 Low 78.6 9.9 665 5.37 90.2 4.21 10.2R920 PL1 T2 Z3 - 87M 7.5 1.5 High 105 13.7 621 3.60 69.3 3.59 8.14R921 PL1 T2 Z1 - 13M 7.6 2.7 Low 72.8 8.7 653 4.42 57.5 4.42 9.16R922 P2 T1 Z3 - 58M 8.4 13.6 High 68.0 4.9 554 2.30 194 6.82 4.93R923 PL1 T2 Z2 - 54M 7.6 1.9 Low 84.5 13.7 703 4.74 95.5 3.10 9.97R924 PL1 T1 Z3 - 45M 7.6 3.4 High 82.7 13.7 599 3.40 76.4 4.32 9.60R925 BH T1 Z1 - 56M 8.2 12.5 High 71.3 3.4 721 0.69 14.4 5.02 3.82R926 BH T1 Z3 - 83M 8.4 3.9 High 14.3 4.9 194 0.39 19.5 2.23 1.96R927 BH T1 Z2 - 70M 8.7 44.7 High 9.1 3.4 748 0.70 20.9 2.48 2.06

Brad Johnson/Biology Colorado State UniversityCampus 1878 Soil, Water and Plant Testing

LaboratoryColorado State University Natural & Environmental Sciences

Bldg - A319Fort Collins, CO 80523-1120

DATE RECEIVED: 09-20-2006 (970) 491-5061 FAX: 491-2930DATE REPORTED: 12-08-2006

BILLING:RESEARCH SOIL ANALYSIS

Lab Sample ------------------------meq/L-------------------------- ----------------%------------------# ID # Ca Mg Na K SAR Sand Silt Clay Texture

Page 100: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

76

R893 KP75 1.8 1.2 0.5 0.1 0.4R894 KP63 1.1 0.7 0.6 0.1 0.6R895 KP65 1.3 0.8 0.4 0.1 0.4R896 KP53 1.7 1.2 0.7 0.4 0.6R897 KP46 11.1 3.5 1.1 0.2 0.4R898 KP79 21.1 10.0 12.4 0.3 3.1R899 KP15 14.2 7.6 4.3 0.6 1.3R900 KP25 1.0 0.6 0.4 0.1 0.4R901 P1 T3 Z1 - 21M 62.7 145 247 2.6 24.3 27 18 55 ClayR902 FH T3 Z2 - 78M 33.6 280 730 5.3 58.4 54 22 24 Sandy Clay LoamR903 P2 T3 Z1 - 1M 26.1 220 229 3.0 20.6 4 32 64 ClayR904 FH T2 Z1 30M 32.1 157 393 3.2 40.5 23 23 54 ClayR905 FH T3 Z1- 10M 28.1 211 439 3.8 40.2 21 48 31 Clay LoamR906 P2 T1 Z2 - 48M 25.6 158 401 2.9 41.8 22 24 54 ClayR907 FH T2 Z2 - 92M 35.9 261 559 4.1 45.8 35 24 41 ClayR908 FH T3 Z3 - 98M 10.0 20.7 103 0.6 26.3 61 17 22 Sandy Clay LoamR909 PL1 T3 Z3 - 66M 8.1 5.4 5.0 0.4 1.9 8 23 69 ClayR910 P1 T1 Z4 - 82M 7.0 4.8 2.0 0.5 0.8 18 26 56 ClayR911 FH T2 Z3 - 28M 26.9 175 688 8.2 68.5 33 21 46 ClayR912 PL1 T1 Z2 - 32M 5.6 4.4 4.0 0.7 1.8 11 23 66 ClayR913 P2 T3 Z3 - 58M 20.2 20.0 14.6 0.9 3.3 31 35 34 Clay Loam

Brad Johnson/Biology Colorado State UniversityCampus 1878 Soil, Water and Plant Testing

LaboratoryColorado State University Natural & Environmental Sciences

Bldg - A319Fort Collins, CO 80523-1120

DATE RECEIVED: 09-20-2006 (970) 491-5061 FAX: 491-2930

Page 101: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

77

DATE REPORTED: 12-08-2006BILLING:

RESEARCH SOIL ANALYSIS

Lab Sample ------------------------meq/L-------------------------- ----------------%------------------# ID # Ca Mg Na K SAR Sand Silt Clay Texture

R914 PL1 T1 Zl - 14M 22.1 17.0 33.3 1.4 7.5 13 22 65 ClayR915 P2 T1 Z1 - 25M 26.1 237 373 4.2 32.5 16 70 14 Silt LoamR916 BH T2 Z1 - 62M 26.7 113 301 3.9 35.9 26 19 55 Clay R917 FH T2 Z3 -

125M28.7 52.1 108 0.9 17.0 49 25 26 Sandy Clay Loam

R918 BH T2 Z2 - 48M 25.5 104 363 4.3 45.0 31 20 49 ClayR919 PL1 13 Z2 - 52M5.7 3.9 3.9 0.6 1.8 7 26 67 ClayR920 PL1 T2 Z3 - 87M5.7 4.0 3.7 0.5 1.7 13 23 64 ClayR921 PL1 T2 Z1 - 13M12.4 8.4 9.6 0.7 3.0 7 19 74 ClayR922 P2 T1 Z3 - 58M 24.3 80.7 111 1.5 15.3 22 28 50 ClayR923 PL1 T2 Z2 - 54M7.3 5.7 6.8 0.7 2.7 10 23 67 ClayR924 PL1 T1 Z3 - 45M20.3 11.6 7.3 0.9 1.8 14 23 63 ClayR925 BH T1 Z1 - 56M 24.2 17.9 124 2.3 27.1 30 24 46 ClayR926 BH T1 Z3 - 83M 2.1 4.4 31.3 0.8 17.3 68 13 19 Sandy LoamR927 BH T1 Z2 - 70M 26.2 167 507 9.7 51.7 38 21 41 Clay

Page 102: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

78

BradJohnson/Biology

Colorado State University

Campus Mail 1878 Soil, Water & Plant Testing LabColorado State University A319 NESB

Fort Collins, CO 80523-1120970-491-5061 Fax 970-491-2930

Date Received: 09-20-2006Date Reported: 12-18-2006 Billing:

Water Analysis Report

Lab Sample pH E. C. Ca Mg Na K B CO3 HCO3 Cl SO4 NO3 NO3-N

# ID µmhos/cm ---------------------------------------------------------mg/L-------------------------------------------------------------

W385 KP 75 6.7 56.4 7.9 2.0 2.6 0.5 0.01 <0.1 35.4 1.4 1.3 2.8 0.6W386 KP 63 6.7 36.1 3.1 0.8 1.7 0.5 0.01 <0.1 15.0 1.3 1.2 <0.1 <0.1W387 KP 65 7.0 47.1 1.9 0.4 2.3 0.8 0.01 <0.1 6.1 3.2 0.4 3.2 0.7W388 KP 53 6.8 18.9 1.4 0.2 0.4 0.7 0.01 <0.1 4.3 1.2 0.7 <0.1 <0.1W389 KP 46 6.7 17.1 2.7 0.2 0.9 0.5 0.01 <0.1 6.7 1.1 0.6 2.8 0.6W390 KP 79 6.7 29.2 2.8 0.5 1.3 0.3 <0.01 <0.1 10.4 0.9 1.6 1.1 0.2W391 KP 15 7.8 30.6 3.0 0.4 1.4 1.0 0.01 <0.1 11.0 2.5 0.8 <0.1 <0.1W392 KP 25 5.5 30.2 1.9 0.2 0.6 0.4 0.01 <0.1 6.7 1.2 0.3 <0.1 <0.1

Lab Sample Hardness Alkalinity Total Ortho# ID as CaCO3 as CaCO3 Dissolved Solids P

-------------------------------------------mg/l-----------------------------------------------

Page 103: Restoration, Creation and Enhancement of Mountain Kettle ... › download › documents › cwic... · and project goals for most Colorado wetland types. This report represents a

79

W385 KP 75 28 29 55 0.959W386 KP 63 11 12 24 0.013W387 KP 65 6 5 19 0.059W388 KP 53 4 4 9 0.011W389 KP 46 8 5 16 0.117W390 KP 79 9 9 19 0.026W391 KP 15 9 9 20 0.036W392 KP 25 6 5 11 0.071