results and trends in the development of nanocomposite materials...

35
VIZ GRAF, Busteni, October 2006 1 RESULTS AND TRENDS RESULTS AND TRENDS IN THE DEVELOPMENT OF IN THE DEVELOPMENT OF NANOCOMPOSITE NANOCOMPOSITE MATERIALS MATERIALS Radu L. Orban Radu L. Orban Technical University of Cluj Technical University of Cluj - - Napoca Napoca ROMANIA ROMANIA

Upload: others

Post on 27-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • VIZ GRAF, Busteni, October 2006 1

    RESULTS AND TRENDS RESULTS AND TRENDS IN THE DEVELOPMENT OF IN THE DEVELOPMENT OF

    NANOCOMPOSITE NANOCOMPOSITE MATERIALSMATERIALS

    Radu L. OrbanRadu L. Orban

    Technical University of ClujTechnical University of Cluj--NapocaNapocaROMANIAROMANIA

  • VIZ GRAF, Busteni, October 2006 2

    Nanocomposite materials Nanocomposite materials iinspired from the naturenspired from the nature

    BBiological materials join together:iological materials join together:-- sensingsensing-- actuation actuation -- healinghealing-- other propertiesother properties

    built into the primary built into the primary structurestructureof an organismof an organism

    Extension to materials design :Extension to materials design :-- mechanicalmechanical-- electricalelectrical-- electronicelectronic-- magneticmagnetic-- optical, etc. optical, etc.

    integrated functionsintegrated functions

  • VIZ GRAF, Busteni, October 2006 3

    How to get these integrated functions ?How to get these integrated functions ?combining combining metallic, ceramic, polymericmetallic, ceramic, polymeric materials to a :materials to a :

    -- nanometricnanometric-- molecularmolecular-- atomicatomic

    | scalescale to work in synergyto work in synergyExpected properties :Expected properties :

    beyond those of the sum of individual capabilitiesbeyond those of the sum of individual capabilities

    incorporated intelligenceincorporated intelligence high added valuehigh added value

    The new, as obtained, The new, as obtained, nanocomposite materialsnanocomposite materials | IntermaterialsIntermaterials

  • VIZ GRAF, Busteni, October 2006 4

    PossibilitiesPossibilitiesto obtain nanocomposite structures to obtain nanocomposite structures Intra-type

    High strength and reliability, Excellent HT High strength and reliability, Excellent HT mechanical properties, High toughnessmechanical properties, High toughness

    Super tough and strong(at room and high temperatures)

    Micro/Nano Hybrid - type Mutual Nano - type

    Micro - sized particles,whisker or fibers

    Phase A Phase B(A/B + B/A)

    New functions:New functions:MachinabilityMachinability

    SuperplasticitySuperplasticity

    Inter-type Intra/Inter-type Nano/Nano-type

    Nano dispersion

    Intra-type

    K. Niihara, 4th International PM Conference of Turkey, Sakarya 2005

  • VIZ GRAF, Busteni, October 2006 5

    Common Bulk Nanocomposites

    Strongly improved mechanical properties

    Metal/Ceramic/PolymerMetal/Ceramic/Polymer--Ceramic/Metal Ceramic/Metal

    SystemsSystems

    Structural MaterialsStructural Materials

    Nanoparticles

    Micro Matrix

    Ceramic-Pores Nanocomposites

    Permeability, High Fracture Toughness, Strength

    CeramicCeramic--Nanopores SystemsNanopores Systems

    Metal/Ceramic-Carbon Nanocomposites

    Metal/CeramicMetal/Ceramic––Carbon SystemsCarbon Systems

    Hard/Soft Nanocomposites

    Mechanical Properties, Machinability

    CeramicCeramic--Metal, CeramicMetal, Ceramic--CeramicCeramicSystemsSystems

    Micro/Nano Composites

    Nano Sized2nd Phase

    Matrix

    High Fracture Toughness, Strength

    MetalMetal--Ceramic, CeramicCeramic, Ceramic--Metal, Metal, CeramicCeramic--Ceramic SystemsCeramic Systems

    In-grain toughening

    Micro Sized2nd Phase

    Carbon Nanotubes/Fullerenes

    Matrix

    Soft 2nd Phase

    Hard Matrix

    Novel Nano Processing

    Nanopores

    Matrix

    Grain BoundaryControl Concept

    Polymer Based Polymer Based NanocompositesNanocomposites

    Metal Based Metal Based NanocompositesNanocomposites

    Ceramic based Ceramic based NanocompositesNanocomposites

    High Strength, Fracture Toughness

    micro/nano

    Bulk Nanocomposite MaterialsBulk Nanocomposite Materials

  • VIZ GRAF, Busteni, October 2006 6

    Recent achievements Recent achievements in nanocomposites developmentsin nanocomposites developments

    ⎪⎪

    Common Metal Matrix Nanocomposites (MMNCs)*

    Modern method of MMNCs production:

    InIn--situ reactive synthesis situ reactive synthesis of reinforcing phases in the metalof reinforcing phases in the metalmatrix melt / powder compactsmatrix melt / powder compacts

    -- Reinforcing particles:Reinforcing particles:-- nanometric size nanometric size -- thermodynamically stable, thermodynamically stable, -- uniformly distributeduniformly distributed

    -- Cleaner interfacesCleaner interfaces-- Energy savingsEnergy savings

    Matrix materials : Matrix materials : Al, Ti, Ni, Cu, Fe, various alloysAl, Ti, Ni, Cu, Fe, various alloys

    Reinforcing phases : Reinforcing phases : oxides, carbides, borides, nitridesoxides, carbides, borides, nitrides

  • VIZ GRAF, Busteni, October 2006 7

    Possible reactions ofPossible reactions ofMMNCs Reactive Processing* MMNCs Reactive Processing*

    Synthesis reactionsSynthesis reactionskM + mR + nC kM + RmC n (1)(m+p)R +nC pR + RmCn (1’)

    Displacement reactionsDisplacement reactions

    MMkkTT nn + mR + mR kM + RkM + RmmTTnn (2)(2)

    kM + MkM + MppTTnn+mR +mR (k+p)M +R(k+p)M +RmmTTnn (2(2’’))

    kM + mR + XkM + mR + XttTTn+qn+q kM + RkM + RmmTTnn + X+ XttTTq q (3)(3)

    Thermodynamic condition:Thermodynamic condition: ΔΔGG00f/rf/r < 0< 0* R.L. Orban, Proceedings RoPM 2000, Cluj-Napoca

  • VIZ GRAF, Busteni, October 2006 8

    Thermodynamic possibilities Thermodynamic possibilities of reactive processing of MMNCs*of reactive processing of MMNCs*

    Oxide RCs inOxide RCs in--situ synthesissitu synthesis Carbides/Borides RCsCarbides/Borides RCsinin--situ synthesissitu synthesis

    -1500

    -1000

    -500

    0

    500

    1000

    0 500 1000 1500 2000 2500 3000

    Temperature, T [K]

    Stan

    dard

    Gib

    bs F

    ree

    Ener

    gy o

    f For

    mat

    ion,

    ΔG

    0f [k

    J/m

    ol]

    Al + 2/3Al2O3 + Zr = 7/3Al + ZrO2Ti + 2Al + 1.5TiO2 = 2.5Ti + Al2O3Ti + Zr + TiO2 = 2Ti + ZrO2Ti + 3Al = TiAl3Ni + 2Al + 3NiO = 4Ni + Al2O3Ni + Zr + 2NiO = 3Ni + ZrO22Ni + 3Al = Ni2Al3Cu + 2Al + 3CuO = 4Cu + Al2O3Cu + Zr + 2CuO = 3Cu + ZrO2Fe + 2Al + Fe2O3 = 3Fe + Al2O3Fe + Zr +2/3 Fe2O3 = 7/3Fe + ZrO2

    -350

    -300

    -250

    -200

    -150

    -100

    -50

    0

    50

    100

    0 500 1000 1500 2000 2500 3000 3500

    Temperature, T [K]

    Stan

    dard

    Gib

    bs F

    ree

    Ener

    gy o

    f For

    mat

    ion,

    ΔG

    0 r [k

    J/m

    ol]

    Ti + C = TiC2Ta + C = Ta2CNb + C = NbCV + C = VC4B + C = B4C4Al + 3C = Al4C33Fe + C = Fe3C3Ni + C = Ni3C3Al + Ti = Al3Ti3Ni + Ti = Ni3TiTi + 2B = TiB2Zr + 2B = ZrB2Al + 12B = AlB12Fe + B = FeB4Ni + 3B = Ni4B3

  • VIZ GRAF, Busteni, October 2006 9

    Bulk metalsBulk metalsmultifunctionalisationmultifunctionalisationCu/Ni (~500Cu/Ni (~500 nm) + nm) + (3.3(3.3÷÷5.6) wt.% Al5.6) wt.% Al22OO33 (20 nm)(20 nm)

    -- Higher mechanical strength than Cu/Ni (~1.5 x)Higher mechanical strength than Cu/Ni (~1.5 x)

    -- Higher hardness / wear resistance, Higher hardness / wear resistance, endurance limit (4endurance limit (4÷÷6 x)6 x)

    -- The same electrical conductivity/ The same electrical conductivity/ magnetic properties / corrosion magnetic properties / corrosion resistance as resistance as Cu / Ni pure metalsCu / Ni pure metals

    Applications : Applications : -- heavy duty electrical contacts heavy duty electrical contacts -- magnetic cores for hostile environments etc.magnetic cores for hostile environments etc.

  • VIZ GRAF, Busteni, October 2006 10

    WW--Cu nanocompositesCu nanocomposites- higher strength than similar

    crystalline materials fabricated by liquid phase sintering / infiltration

    - lower thermal expansion coefficient

    Applications :- heavy duty heavy duty electrical contactselectrical contacts-- electrodes for electroelectrodes for electro--dischargedischarge

    machining, shape charge linersmachining, shape charge linersNanocrystalline Cemented Nanocrystalline Cemented carbidescarbides very thin tools, e.g. drilling tools very thin tools, e.g. drilling tools

    ØØ < 0.5 mm< 0.5 mm

    3

    4

    5

    6

    7

    8

    9

    0,05 0,1 0,15 0,2 0,25 0,3

    Cu content, [wt. fraction]

    CTE

    , [pp

    m /

    K]

    NanocompositeComposite by infiltration 1Composite by sinteringComposite by infiltration 2

  • VIZ GRAF, Busteni, October 2006 11

    Nanocomposites Nanocomposites (Intra&Intergranular)(Intra&Intergranular)

    Notable enhancement of:Notable enhancement of:-- Mechanical Mechanical and thermal propertiesand thermal properties

    -- Homogeneity atHomogeneity atthe nanoscalethe nanoscale

    -- Physical andPhysical andchemical propertieschemical properties

    Addition of new functionsAddition of new functionsGradual components Gradual components dispersion dispersion FGMFGM

    Monolithic and/or Monolithic and/or MicroMicro--compositescomposites

    - Mechanical properties are notenough high e.g. toughness

    - Inhomogeneity ofmicrostructure, mechanical,physical properties

    Bulk nanocrystalline ceramicsBulk nanocrystalline ceramicsNecessity of further Necessity of further improvements / improvements / multifunctionalisationmultifunctionalisationStructure control at nanoStructure control at nano--scalescale

    G.B. modification (Intergranular N.Cs.)

    VVery small additions ery small additions of secondary phase(s)of secondary phase(s)

    Homogeneity in nano and/or molecular-scalePhysical properties enhancementAddition of new functions: electric, optical, etc.Reliability enhancement

    K. Niihara, Key Engineering Materials, Vols. 161-163 (1999), pp. 527-534.

  • VIZ GRAF, Busteni, October 2006 12

    CeramicCeramic--metal nanocompositesmetal nanocompositesAl2O3 - (W, Mo, Ti, Ni, Co, Fe, FeNi)ZrO2 - (Mo, Ni. Co)MgO - (Fe, Ni)Mullite - (Ni, Co, FeCo)SiC – (Al, AlSi, AlZn, AlMg)

    CeramicCeramic--ceramic ceramic

    SHSSpark PlasmaSintering Two-stepsinteringElectrophoresisInfiltration

    Al2O3 - (SiC, ZrO2 , TiC, TiN, TiB2, BN) MgO - SiC Si3N4 - (SiC, TiN, BN, ZrO2 ) B4C - SiC, B4C – SiC+ TiB2

    IntermetallicIntermetallic--ceramic ceramic NiAl NiAl –– AlAl22OO33 –– TiBTiB2 2 * * SHS under pressure SHS under pressure

    * R.L. Orban, M. Lucaci,, 16th International Plansee Seminar, Reutte, Austria 2005 High Performance PM Metals, vol. 1, p. 1170- 1180

  • VIZ GRAF, Busteni, October 2006 13

    AlAl22OO3 3 -- SiC nanocompositeSiC nanocompositeAl2O3 monolith

    Al2O3/5vol%-SiC Nanocomposite

    Typical SEM Microstructure Intragranular SiC dispersion

    K. Niihara, 4th International PM Conference of Turkey, Sakarya 2005

  • VIZ GRAF, Busteni, October 2006 14

    SiSi33NN44 (SiC, Al(SiC, Al22OO33, ZrO, ZrO22) ) –– SiNSiNnanocompositenanocompositeTo improve machinability, To improve machinability,

    toughnesstoughnessSi3N4/SiC/ZrO2/Al2O3 (powder)

    +H3BO3

    +CO(NH2)2 (urea)

    Ball Milling

    H2Reduction

    Si3N4 nanopowder + BN precursor coating

    (t-BN)

    HPSintering

    Si3N4//SiC/ZrO2/Al2O3 -hBN

    NanocompositeK. Niihara, 4th International PM Conference of Turkey, Sakarya 2005

  • VIZ GRAF, Busteni, October 2006 15

    4mm4mm4mm

    SiSi33NN44 (SiC, Al(SiC, Al22OO33, ZrO, ZrO22) ) –– SiN SiN nanocompositenanocompositeMultifunctinality realised :

    -- High strength at room and elevated temperaturesHigh strength at room and elevated temperatures

    -- Higher toughnessHigher toughness-- Lower hardness and Young's ModulusLower hardness and Young's Modulus

    -- QuasiQuasi--plasticityplasticity- Good machinability (>15vol%hGood machinability (>15vol%h--BNBN))-- Excellent thermal shock resistanceExcellent thermal shock resistance- Good corrosion resistance to molten metals

    SiSi33NN44 –– SiC nanocompositeSiC nanocompositesuperplasticitysuperplasticity

    Properties : - mutual C-CNCsStrength: 1.2 GPa (RT); 1.0 GPa (1000 oC)KIC : 8 MPam 1/2

  • VIZ GRAF, Busteni, October 2006 16

    Bulk polymer nanocompositesBulk polymer nanocomposites

    Polymer – metal nanocompositesPolymers Polymers –– metallic nanopowders (Ag, Cu, Ni, Fe, magneticmetallic nanopowders (Ag, Cu, Ni, Fe, magneticalloys) alloys) mechanical / electrical / magnetic / decorativemechanical / electrical / magnetic / decorativemultifunctionalisationmultifunctionalisation

    Polymers (Polymers (thermoplastics) / Elastomers thermoplastics) / Elastomers ––metallic/ceramic nanopowders / nanotubesmetallic/ceramic nanopowders / nanotubes-- nanopowders/nanotubes nanopowders/nanotubes high specific surface area high specific surface area

    difficulties in incorporation into polymer matrix difficulties in incorporation into polymer matrix surfactantssurfactants

    Polymer – ceramic nanocompositesPolymers Polymers –– ceramic nanopowders (SiOceramic nanopowders (SiO22, Al, Al22OO33, clay etc.) , clay etc.) mechanical / electrical /electronic / opticalmechanical / electrical /electronic / optical multifunctionalisationmultifunctionalisation

  • VIZ GRAF, Busteni, October 2006 17

    Polymer (pPolymer (polypropylene, nylon etc.olypropylene, nylon etc.) ) ––clay nanocompositesclay nanocomposites

    Clay (Clay (montmorillonite)montmorillonite)a multilayer aluminoa multilayer alumino--silicatesilicate

    -- interinter--layer layer spacing in the nanometric range spacing in the nanometric range organophobicorganophobic vs. vs. organic compounds organic compounds surfactants surfactants

    organoclay organoclay delaminated delaminated layers layers ~ 1 nm thickness / high aspect ratios (10 ~ 1 nm thickness / high aspect ratios (10 ÷÷100)100)

    Two types of composites Two types of composites

    delaminated (exfoliated) delaminated (exfoliated) montmorillonite montmorillonite layered crystal structurelayered crystal structure

    intercalatedintercalated

    Properties (Nylon+5wt.% Clay)

    - 68 % higher E; 126 % higher G- 60 % higher σfl; tdistorsion: 65 152 0C

  • VIZ GRAF, Busteni, October 2006 18

    Mechanical multifunctionalisation Mechanical multifunctionalisation through Carbon nanotubesthrough Carbon nanotubes

    a) Single wall SWCNT

    b) Multi-wallMWCNT

    7.89.00.8207Steel

    2.716.00.569Aluminium

    4.515.00.9103Titanium

    1.61.22.1152Graphite fibre

    1.81.52.71260MWCNT

    1.44.065.01210SWCNT

    Density(g/cm3)

    Fracture Strain(%)

    Yield Strength(GPa)

    Elastic Modulus(GPa)Material

    Mechanical properties of CNTs/common engineering materialsMechanical properties of CNTs/common engineering materials

    ØØ = 2 = 2 ÷÷ 20 nm20 nmℓℓ < ~ 10 < ~ 10 μμmm

  • VIZ GRAF, Busteni, October 2006 19

    Metal Metal –– Nanotubes nanocompositesNanotubes nanocomposites

    Ceramic Ceramic –– Nanotubes NCsNanotubes NCs

    Polymer Polymer –– NanotubesNanotubes NCsNCs

    Nanotubes fabricationNanotubes fabrication (Ni, Fe, Co etc. catalysts) (Ni, Fe, Co) oxides + CNTs (MO-CNTs) nanocomposite powders

    Ni/Fe/Co + (MO-CNTs NP) (Me + MeO + CNTs) NCs- Properties: Properties: UTS UTS 34 34 ÷÷ 37 % higher 37 % higher GearsGears

    SiOSiO22 (quartz) + MWCNTs (quartz) + MWCNTs CMNCsCMNCs ((133 133 ÷÷ 146 %146 %higher toughness, preserving clarity, corrosion resistance etc.)

    CNTs CNTs high flexibility high flexibility bend during bend during processing processing CNTsCNTs network interpenetrating network interpenetrating the polymer matrix the polymer matrix High mechanical resistanceHigh mechanical resistance

  • VIZ GRAF, Busteni, October 2006 20

    Mechanical multifunctionalisationMechanical multifunctionalisationthrough through nanocomposite coatingsnanocomposite coatingsNanostructuredNanostructured coating layerscoating layers (NSCLs)(NSCLs)

    Nanosized hard compounds (SiC,TiC,TiN)+Me (Al, Ni) NSCLs low friction coefficient, very high wear resistance

    Nanostructured Diamond/DLC/TiN filmsNanostructured Diamond/DLC/TiN films

    CrystallineCrystalline NanocrystallineNanocrystalline

    Can be obtained by:Can be obtained by:- Microwave plasma enhanced CVD- Laser ablation of graphite

    Results: spsp33 hybridisationhybridisation øø10 10 ÷÷ 50 nm nodules of 50 nm nodules of diamond diamond nanocrystalline filmsnanocrystalline films smoother surfacesmoother surface11÷÷3 3 μμm thick, 80 GPa hardness, low friction coefficientm thick, 80 GPa hardness, low friction coefficient

  • VIZ GRAF, Busteni, October 2006 21

    Multifunctionalisation Multifunctionalisation through nanoporesthrough nanopores

    Nanopore creationNanopore creation new properties, keeping / new properties, keeping / enhancing the initial ones enhancing the initial ones multifunctionalisationmultifunctionalisationCore material+nanoporesCore material+nanopores nanostructured nanostructured

    materialmaterialNanopores creation :Nanopores creation :-- nanoporous Carbon structuresnanoporous Carbon structures-- ceramic nanoporous materialsceramic nanoporous materials

    Nanoporous Nanoporous Carbon Carbon

    structuresstructuresNanoporous carbon + Metal particles Nanoporous carbon + Metal particles catalyst materials*catalyst materials*

    *L. Gray et al., Wiley, 2005.

  • VIZ GRAF, Busteni, October 2006 22

    BCNs infiltrationBCNs infiltration bulk nanocomposite materialsbulk nanocomposite materialsProcessed by solProcessed by sol--gel method in the gel method in the ““aeroaero--gelgel”” variantvariant

    Ceramic nanoporous materialsCeramic nanoporous materialsBlock ceramic materials (BCNs) Block ceramic materials (BCNs)

    Nanostructured ceramic membranes (NCMs)Nanostructured ceramic membranes (NCMs)Commonly made from SiO2, Al2O3, TiO2 and ZrO2

    - pores diameter: 3÷ 5 nm

    Processing by Aerogel methodProcessing by Aerogel methodlike block nanoporous ceramicslike block nanoporous ceramics

    Producing by SelfProducing by Self--assembly assembly method method templatetemplate--assisted assisted selfself--assemblyassembly like biological systemslike biological systems

  • VIZ GRAF, Busteni, October 2006 23

    SuperconductiveSuperconductiveceramicsceramics

    Ionic conductive ceramicsIonic conductive ceramics

    Ionic carriers transport Ionic carriers transport by diffusionby diffusionNernst Nernst –– Einstein equation:Einstein equation:

    σi = Di . Ni . Qi / k . T- σi electrical conductivity- Di diffusion coefficient of “ i ” specie- Qi electrical charge- Ni charge carrier concentration- k Boltzman constant

    - T absolute temperature

    σi = ƒ(Di)

  • VIZ GRAF, Busteni, October 2006 24

    Electrical SuperconductiveElectrical SuperconductiveCeramics by Grain Boundary ControlCeramics by Grain Boundary ControlDigb>> Div σigb >> σiv

    Ionic superconductive ceramicsIonic superconductive ceramicsSi3N4 / E2O - Al2O3- SiO2

    (E = Na, Li, K, etc) MgO / Na2O - Al2O3- SiO2

    Electronic superconductive ceramicsElectronic superconductive ceramicsZrO2 / V2O5 - Bi2O3 - CuO AlN / YN, etc.

    GB conduction

    mainly at hightemperature

    GB + latticeconduction

    at roomtemperature

  • VIZ GRAF, Busteni, October 2006 25

    Ionic superconductiveIonic superconductiveceramicsceramics

    ~ 5 x 102 at 1000 0C107Mullite / Na2O-Al2O3-SiO2

    ~ 102 at 1000˚C106~107 at 100˚CDMgO / Na2O-Al2O3-SiO2

    ~ 5 x 101 at 1000 0C107~ 108 at 100 0C1010Si3N4 / Li2O-Al2O3-SiO2

    ~ 8 x 101 at 1000 0C107~ 107 at 100 0C1010Si3N4 / Na2O-Al2O3-SiO2

    Resistivity [Ω.cm-1]NanocompositeMonolithMaterial

    Ionic conductive

  • VIZ GRAF, Busteni, October 2006 26

    ConductivPass-way

    Electronic grain boundary Electronic grain boundary conduction in ceramicsconduction in ceramics

    500nm

    AlN

    AlN

    Grain boundary phase

    AlN

    Grain boundary phaseAlN

    Electronic conductivity through pass-way of grain boundaries

    Schematic model of conduction in Schematic model of conduction in AlN/Y2O3AlN/Y2O3--CeO2CeO2nanoconanocompositesmposites

  • VIZ GRAF, Busteni, October 2006 27

    Electronic superconductiveElectronic superconductiveceramicsceramics

    ~10-1 at T1014Y-TZP/CNT

    ~108 at R T1012Al2O3 / TZP+CNT Hybrid

    ~ 10-1 at RT (AC) 1010Si3N4 / V2O5 System

    ~ 2 x10-1 at RT1011AlN / YN System

    ~ 102 at RT1014Y-TZP / Organic System

    ~ 102 at RT1014Y-TZP / Bi2O3-CuO-V2O5

    Resistivity [Ω.cm-1]NanocompositeMonolithMaterial

    Electronic conductive

  • VIZ GRAF, Busteni, October 2006 28

    Polymer electricalPolymer electricalmultifunctionalisationmultifunctionalisation

    Purpose :Purpose :To get higher conductivity than common To get higher conductivity than common

    conductive polymers & higher strengthconductive polymers & higher strength-- by high conductive metal particles by high conductive metal particles

    (Cu, Ag, Au) fillers (Cu, Ag, Au) fillers percolation threshold percolation threshold controlled / unidirectional conductioncontrolled / unidirectional conduction

    To get special properties To get special properties magnetic (e.g. nano Ni filler), magnetic (e.g. nano Ni filler), electronic, optical,electronic, optical,shape memory effectsshape memory effects

  • VIZ GRAF, Busteni, October 2006 29

    Shape memory effect inShape memory effect innanocomposite polymersnanocomposite polymers(artificial muscles(artificial muscles))

    Ionic PolymerIonic Polymer-- metal nanocompositesmetal nanocomposites- Elecyroactive polymers per fluorinated ionomers Polyperfluoroethilenesulfonate, e.g. Nafion, Fluolon etc.

    -- Applied electric field Applied electric field generation generation of cations of cations migration toward cathod migration toward cathod

    pressure pressure reversible bending reversible bending 10 x higher than shape memory 10 x higher than shape memory alloys (e.g. Nialon)alloys (e.g. Nialon)

    Mechanism :Mechanism :

    Applications:Applications: actuators, medical devices etc.

  • VIZ GRAF, Busteni, October 2006 30

    ElectricalElectricalmultifunctionalisation multifunctionalisation of materials with CNTsof materials with CNTs

    Electrical/electronic properties of CNTsElectrical/electronic properties of CNTs- One dimensionalityOne dimensionality 1 D space 1 D space electrons confined electrons confined

    in one direction in one direction ideal 1 D conductors / semiconductors ideal 1 D conductors / semiconductors ƒƒ (cyrality (cyrality –– atom disposal in the hexagonal ray)atom disposal in the hexagonal ray)

    -- BendingBending atom disposal changes cylarity change metal to semiconductor transitions nanojunctionsnanojunctions

    Field Emission Transistors

    - Monochromatic electron beams, emitters, nanoconnectors etc.

  • VIZ GRAF, Busteni, October 2006 31

    ElectronicElectronicmultifunctionalisation multifunctionalisation by nanostructured coatingsby nanostructured coatingsNanocrystalline diamond coatings

    Fotoluminiscence Fotoluminiscence propertiesproperties

    Colors depending on Colors depending on the electron beam the electron beam intensity intensity easy to be easy to be changedchanged

    High resolution, high High resolution, high dimensions displayersdimensions displayers

  • VIZ GRAF, Busteni, October 2006 32

    OpticalOpticalmultifunctionalisationmultifunctionalisation

    Strong transparent Si3N4Control the chemical composition and structure of G.B.Control the chemical composition and structure of G.B.Able to fabricate by common sintering processAble to fabricate by common sintering processHigh strength and toughnessHigh strength and toughness

    400 mm 500 mm 600 mmApplications: Spatial vehicles windows

  • VIZ GRAF, Busteni, October 2006 33

    Future trendsFuture trends

    Nanocomposites

    Strongly improvedmechanical properties

    Ceramic/Ceramic SystemsCeramic/Ceramic Systems

    Structural Materials

    Nano Particle

    Micro Matrix

    Molecular Composites

    Modified Lattice

    Matrix Atom

    Extremely low fraction of 2nd phases

    (5 vol%, 0,01 − 0,1 vol%)Ceramic/Ceramic, Organic/Ceramic/ Ceramic/Ceramic, Organic/Ceramic/

    Systems

    Multifunctional Materials

    Layer by LayerLayer by LayerLattices CompositesLattices Composites

    ≈ 1 nm(Insulators)

    1 μm

    Bulk multilayer structure materialCeramic/Ceramic SystemsCeramic/Ceramic Systems

    Core/Shell NanoclusterComposites

    Core

    20 nm

    Shell

    Novel magnetic/electric properties

    Metal/Metal, Metal/CeramicSystems

    Magnetic/Optic/Electric Devices

    Nanoporous Composites

    2nd Phase

    20 nm

    MatrixNanopore

    Large surface area, Improved thermal shock

    resistance

    Ceramic/Metal SystemsCeramic/Metal Systems

    Catalysts, Coating Materials

    NanoParticles

    FullereneDispersed

    NanoComposites

    Nano Tubes

    Self-Organized

    NanoComposites

    In-grain toughening

    5 ÷ 10 nm(Ferroelectrics)

  • VIZ GRAF, Busteni, October 2006 34

    ConclusionsConclusionsNanocomposite Nanocomposite materials open materials open

    an enormous potential for :an enormous potential for :- existing materials multifunctionalisation- enhancing natural performances of

    existing materials- creation of new multifunctional materials- materials designmaterials design- development of functionally-graded

    materials - broad and exciting research area

  • VIZ GRAF, Busteni, October 2006 35

    Thank you for your attention !Thank you for your attention !