resynchronization of the adaptive codebook in a constrained celp codec after a frame erasure

19
UNIVERSITÉ DE SHERBROOKE RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A CONSTRAINED CELP CODEC AFTER A FRAME ERASURE Mohamed Chibani, Roch Lefebvre and Philippe Gournay Université de Sherbrooke, Sherbrooke, Québec, Canada

Upload: lucien

Post on 21-Jan-2016

35 views

Category:

Documents


0 download

DESCRIPTION

RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A CONSTRAINED CELP CODEC AFTER A FRAME ERASURE. Mohamed Chibani, Roch Lefebvre and Philippe Gournay Université de Sherbrooke, Sherbrooke, Québec, Canada. Outline. Basic CELP model Constrained optimization Resynchronization at the decoder - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A

CONSTRAINED CELP CODECAFTER A FRAME ERASURE

Mohamed Chibani, Roch Lefebvre and Philippe Gournay

Université de Sherbrooke, Sherbrooke, Québec, Canada

Page 2: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

Outline

Basic CELP model Constrained optimization Resynchronization at the decoder

Open-loop search of the shift (drift) of the ACB Closed-loop search of the shift

Pitch contour modification Experimental results Conclusions

Page 3: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

Excitation Model in CELP Coding

ICB (ACELP)

ACB )(

1

zA

pg

cgSynthesized

speech

Codebook index

ACB delay

Page 4: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

Excitation Search in CELP Coding

Calculate the optimal gain of the ACB

y0(n) is the (non-scaled) ACB contribution

Determine the optimal delay of the ACB

Update the target for the ICB parameters search

Build the target signal x1(n) from the input speech

.)(

)()(

2

0

01

0

n

n

ny

nynxg

)()()( 0012 nygnxnx

)(zW

)(zW)(1 zA

)(zW)(1 zA

)(zW)(1 zA

)(nx

ICB (ACELP)

ACB

Zero input

Error minimization

)(2 nx

)(1 nx

+-

+

+

-

-cg

pg)(0 ny

Page 5: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

At the Encoder…

Page 6: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

Constrained Search of the Excitation Parameters

Evaluate the ACB contribution

Determine the ACB parameters (the gain and the delay)

)55.0(

th

th

R

RR yesno

Update the target for the ICB parameters search

n

n

ny

nynxg

)(

)()(

2

0

01

0

n

nth

ny

nxRg

)(

)(

2

0

2

1

0

)()()( 0012 nygnxnx

n

n

x

p

nx

nyg

E

ER

)(

)(

2

1

2

0

2

0

Page 7: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

At the Decoder…

Page 8: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

Prelude to the Resynchronization Algorithm

After a frame erasure, both the waveform and the position of the pitch pulses in the ACB memory are erroneous.

For voiced speech, the pitch pulse waveform evolves slowly.

If the expected position of the last pitch pulse in the ACB memory can be determined, the ACB memory can be corrected.

Due to the constraint, a good approximation of the pitch pulse can be obtained using only the parameters of the current frame.

Page 9: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

The Excitation Signal Obtained After Setting to Zero the ACB Memory

Excitation signal e0(n)

The correct excitation signal

Page 10: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

Block Diagram of the Resynchronization Algorithm

Search for P(-1)

ACB memory Determination of the

potential shift d0

Set to zero the ACB memory and

build eo(n)

Estimation of P(0)

Closed-loop search for the

optimal shift dopt

P(-1)

eo(n)

P(0)

dopt

Page 11: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

Current frame

subframe 0

subframe 1

subframe 2

subframe 3

ACB memory

)1(P)0(P

Determination of the Expected Pitch Pulse Position in the Erroneous ACB Memory

The excitation e0(n)

The correct excitation

The last pulse in the ACB memory

P(-1)

ACB delays

Page 12: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

Estimation of the Shift d0

P(0) P(-1)

ACB memory

T(-1)

0d )P()P(δ 100

P(0) : The expected position of the last pitch pulse in the ACB memory

P(-1) : The actual position of the last pitch pulse in the ACB memory

Page 13: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

Closed-loop Search for the Optimal Shift

1_

_

2

0

1_

_0

)(

)()(

)( FRML

LFRMLn

FRML

LFRMLn

ne

nene

Cd

d

L_FRM=256

))((maxarg dd d Copt

2,2 00 ddd

L=max(2*L_SBFR,T(3))

T(3) is the ACB delay of the 4th subframe

ed is the excitation

signal built after correcting the ACB for every shift candidate

Page 14: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

Example of a Resynchronized Excitation

The correct excitation

The excitation e0(n)

The excitation signal built using the erroneous ACB memory

The excitation signal built after correcting the ACB memory

Page 15: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

Modification of the Pitch Contour After the Resynchronization

current frame next frameprevious frame

a)

b)

c)

T(0)

T(0)+dopt

T(0)+d1

The correct excitation

The excitation after the resynchronization

The excitation after the modification of the pitch contour

1

1

pN

iiopt dd di is the shift of each interval

Np is the number of pitch periods

Page 16: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

The Effect of the Resynchronization Algorithm when Applied on Voiced

Speech Segment

1 8765432

Lost frame

a)

b)

c)

d)

Frame number

The frame where the resynchronization is

applied

Error-free signal

Standard codec

Constrained codec

Constr. + resynchro.

Page 17: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

Experimental Results

0

10

20

30

40

50

60

70

80

90

MU

SH

RA

Sco

re

0% 5% 10%

Frame erasure rate

Test features:

AMR-WB at mode 2 (12.65 kb/s)

10 listeners 14 pairs of sentences

for each condition Listening using

binaural headphones

42.3

6

29.9

9

74.8

8 Standard codec73

.67

49.1

8

36.7

0

Constrained codec73.6

7

53.9

0

40.4

0

Constr. + Resynchro.

Page 18: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

Conclusions

The resynchronization allows to speed up the recovery of the decoder after a frame erasure.

The method (constraint + resynchronization) needs neither extra bits nor extra delay.

The modified codec is completely interoperable with the standard (the bitstream is not modified).

Only 10 to 15% of the frames following an erased frame are resynchronized.

The only drawback is a minor loss of quality in error-free channels.

Page 19: RESYNCHRONIZATION OF THE ADAPTIVE CODEBOOK IN A  CONSTRAINED CELP CODEC AFTER A FRAME  ERASURE

UNIVERSITÉ DE

SHERBROOKE

Thank you