reu poster- final - vanderbilt university...chemicaltreatmenteffectsontheopcalproperes...

1
Chemical Treatment Effects on the Op4cal Proper4es of Single to FewLayer Molybdenum Disulfide Domenic DiGiovanni 1,2 , Roel L. Flores 3 , Angelica Coleman 4 , Rui Wang 5 , and Yaqiong Xu 3,5,6 Abstract This study focuses on the opIcal properIes of single and fewlayer molybdenum disulfide to chemically treated with ozone plasma. In parIcular, the changes the photoluminescence and Raman spectra of the MoS 2 were studied throughout treatment. The cumulaIve length of exposure to ozone plasma, the number of layers of MoS 2 in each sample, and whether a given sample was annealed prior to treatment were all criteria in comparaIve study. To also compare exfoliated versus synthesized MoS 2 , we aSempted vaporsolid synthesis of MoS 2 monolayers but were unsuccessful. We determined that singlelayer MoS 2 annealed prior to treatment exhibited the greatest response in photoluminescence, perhaps due to adsorpIon of oxygen species, but prolonged exposure would reduce photoluminescence, likely due to MoS 2 etching and defect formaIon. Background Figure 1: Structure of molybdenum disulfide layers 5 References 1. Gokus, T., et al., “Making Graphene Luminescent by Oxygen Plasma Treatment.” ACS Nano 3 (12), 39633968 (2009). 2. Zhang, E., et al., “LowEnergy Xray and OzoneExposure Induced Defect FormaIon in Graphene Materials and Devices.” IEEE Transac/ons on Nuclear Science 58 (6), 29612967. 3. Tongay, S., et al., “BroadRange ModulaIon of Light Emission in TwoDimensional Semiconductors by Molecular PhysisorpIon GaIng.” Nano Le5. 13 (6), 28312836. 4. Wu, S., et al., “VaporSolid Growth of High OpIcal Quality MoS 2 Monolayers with NearUnity Valley PolarizaIon.” ACS Nano 7 (3), 27682772. 5. Radisavlijevic, B., et al., “Singlelayer MoS 2 Transistors.” Nature Nanotechnology 6, 147150 (2011). Molybdenum disulfide, in its monolayer form: Acts as a direct bandgap material with a bandgap of about 1.8eV, unlike bulk MoS 2 , which is an indirect bandgap material Has a photoluminescence demonstrated to be much higher than thicker MoS 2 Is oien compared to graphene, another twodimensional material known for its applicability in electronics; graphene has been found to exhibit a higher photoluminescence aier oxygen plasma treatments 1 , though ozone plasma and xray treatments can introduce defects into the material and hinder its electronic performance. 2 This comparison suggests that it is important to aSempt similar treatments on MoS 2 in order to expand our understanding of the material. 1. Hillsdale College, 2. TNSCORE REU Program, 3. Vanderbilt Interdisciplinary Program in Materials Science, 4. School for Science and Math at Vanderbilt, 5. Vanderbilt Department of Physics and Astronomy, 6. Vanderbilt Department of EECS Hillsdale College, 33 E College Street, Hillsdale, MI 49242 Vanderbilt University, 2201 West End Avenue, Nashville, TN 37235 Materials and Methods Results and Conclusions Future Research Mechanical Exfolia4on: MoS 2 flakes were taken from bulk MoS 2 using Scotch tape. The tape was used to peel back layers from the bulk MoS 2 ; then the tape was folded in order to spread and separate flakes. The flakes were then transferred from the tape to a silicon dioxidecoated wafer. The flakes were characterized by opIcal microscopy and Raman spectroscopy. VaporSolid Synthesis: MoS 2 powder was used as a source and a SiO2coated wafer as a substrate. The source was placed in a boat within a quartz tube and heated to ~900°C in a furnace. As a carrier gas, argon flowed through the tube to bring the MoS 2 vapor to a colder porIon of the furnace where the substrate was located. The cooling MoS 2 would then form monolayer films on the substrate. 4 This process was aSempted but unsuccessful, as no monolayer films and only extremely small crystals were observed. Figure 2: OpIcal image of mechanically exfoliated molybdenum disulfide bilayer flake Annealing: The samples to be annealed were placed in a quartz tube inside a furnace. The system was pumped down to a vacuum of about 10 milliTorr, and the samples were heated for 40 minutes at 450°C. Figure 3: (lei) OpIcal image of MoS2 deposited on SiO2 substrate; (right) SEM image of the area of deposiIon Ozone Plasma Treatment: Single and fewlayer flakes of MoS 2 were tested for their Raman and photoluminescence spectra, then either annealed with a subsequent measurement of the spectra or kept asexfoliated. The samples were then placed in a UV Ozone cleaner and exposed to ozone plasma for various intervals. The photoluminescence and Raman spectra were measured for each sample aier each interval. Future research stemming from this project will involve: ConInuing study of the etching and photoluminescence enhancement effects RepeIIons of this experiment using other treatments such as oxygen plasma or xrays in order to beSer establish the mechanism of photoluminescence enhancement Study the effects of chemical treatments on the electronic properIes of MoS 2 ReevaluaIon and improvement of vaporsolid synthesis methods Figure 5: MoS2 Raman and photoluminescence spectra during treatment at various Imes: before annealing (blue); annealed, 0 min. (dark red); 1 min (green); 2 min. (purple); 3 min. (light blue); 4 min. (light green); 5 min. (orange); 6 min. (dark blue); 8.5 min. (aqua); 10 min. (red) Comparing the photoluminescence response across annealed and nonannealed samples of varying thicknesses over the course of several intervals of plasma treatment, we found that singlelayer molybdenum disulfide samples that had been annealed exhibited a significantly greater response to the ozone plasma treatment. We hypothesize that these responses are the result of the adsorpIon of oxygen by the MoS 2 during treatment, as oxygen adsorpIon has been shown to enhance photoluminescence in MoS 2 . 3 The Raman spectra show slight separaIon variaIons and leishiiing, but the data does not support a definite conclusion. The authors are grateful to Dr. Anthony Hmelo, Dr. Bo Choi, Dr. Dmitry Koktysh, Dr. Jed Ziegler and other VINSE staff members for training and permission to use the facility. This work was supported by the NaIonal Science FoundaIon (TNSCORE DMR 0907619, ECCS1055852, and CBET1264982). Raman Spectroscopy: 375 405 415 Raman Shii (cm 1 ) Raman Intensity (arb. units) Figure 4: CharacterisIc Raman Spectra (lei) and photoluminescence spectra (right) for monolayer (blue), bilayer (red), and fewlayer (green) molybdenum disulfide 19cm 1 Photoluminescence (arb. units) 525 625 725 Raman Spectra of Molybdenum Disulfide Photoluminescence Spectra of Molybdenum Disulfide Wavelength (nm) Photoluminescence (arb. units) Photoluminescence (arb. units) Raman Intensity (arb. units) Raman Intensity (arb. units) 525 625 725 525 625 725 380 398 415 375 395 415 Wavelength (nm) Wavelength (nm) Raman Shii (cm 1 ) Raman Shii (cm 1 ) Raman Spectra (top) and Photoluminescence Spectra (boVom) of Monolayer MoS 2 at Various Stages in Treatment Raman Spectra (top) and Photoluminescence Spectra (boVom) of FewLayer MoS 2 at Various Stages in Treatment 0 1 2 3 4 0123456789 0 15 30 45 0 300 700 0 1500 3000 4500 0 600 1200 1800

Upload: others

Post on 11-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: REU Poster- Final - Vanderbilt University...ChemicalTreatmentEffectsontheOpcalProperes of)Single)to)Few;Layer)Molybdenum)Disulfide) Domenic(DiGiovanni1,2, RoelL.Flores 3,(AngelicaColeman

Chemical  Treatment  Effects  on  the  Op4cal  Proper4es  of  Single  to  Few-­‐Layer  Molybdenum  Disulfide  

Domenic  DiGiovanni1,2,  Roel  L.  Flores3,  Angelica  Coleman4,  Rui  Wang5,  and  Yaqiong  Xu3,5,6  

Abstract  

This  study  focuses  on  the  opIcal  properIes  of  single  and  few-­‐layer  molybdenum  disulfide  to  chemically  treated  with  ozone  plasma.  In  parIcular,  the  changes  the  photoluminescence  and  Raman  spectra  of  the  MoS2  were  studied  throughout  treatment.  The  cumulaIve  length  of  exposure  to  ozone  plasma,  the  number  of  layers  of  MoS2  in  each  sample,  and  whether  a  given  sample  was  annealed  prior  to  treatment  were  all  criteria  in  comparaIve  study.  To  also  compare  exfoliated  versus  synthesized  MoS2,  we  aSempted  vapor-­‐solid  synthesis  of  MoS2  monolayers  but  were  unsuccessful.  We  determined  that  single-­‐layer  MoS2  annealed  prior  to  treatment  exhibited  the  greatest  response  in  photoluminescence,  perhaps  due  to  adsorpIon  of  oxygen  species,  but  prolonged  exposure  would  reduce  photoluminescence,  likely  due  to  MoS2  etching  and  defect  formaIon.  

Background  

Figure  1:  Structure  of  molybdenum  disulfide  layers5  

References  1.  Gokus,  T.,  et  al.,  “Making  Graphene  Luminescent  by  Oxygen  Plasma  Treatment.”  ACS  Nano  3  (12),  3963-­‐3968  

(2009).  2.  Zhang,  E.,  et  al.,  “Low-­‐Energy  X-­‐ray  and  Ozone-­‐Exposure  Induced  Defect  FormaIon  in  Graphene  Materials  and  

Devices.”  IEEE  Transac/ons  on  Nuclear  Science  58  (6),  2961-­‐2967.  3.  Tongay,  S.,  et  al.,  “Broad-­‐Range  ModulaIon  of  Light  Emission  in  Two-­‐Dimensional  Semiconductors  by  Molecular  

PhysisorpIon  GaIng.”  Nano  Le5.  13  (6),  2831-­‐2836.  4.  Wu,  S.,  et  al.,  “Vapor-­‐Solid  Growth  of  High  OpIcal  Quality  MoS2  Monolayers  with  Near-­‐Unity  Valley  

PolarizaIon.”  ACS  Nano  7  (3),  2768-­‐2772.  5.  Radisavlijevic,  B.,  et  al.,  “Single-­‐layer  MoS2  Transistors.”  Nature  Nanotechnology  6,  147-­‐150  (2011).  

Molybdenum  disulfide,  in  its  monolayer  form:  •  Acts  as  a  direct  bandgap  material  with  a  bandgap  of  about  1.8eV,  

unlike  bulk  MoS2,  which  is  an  indirect  bandgap  material  •  Has  a  photoluminescence  demonstrated  to  be  much  higher  than  

thicker  MoS2  •  Is  oien  compared  to  graphene,  another  two-­‐dimensional  material  

known  for  its  applicability  in  electronics;  graphene  has  been  found  to  exhibit  a  higher  photoluminescence  aier  oxygen  plasma  treatments1,  though  ozone  plasma  and  x-­‐ray  treatments  can  introduce  defects  into  the  material  and  hinder  its  electronic  performance.2  This  comparison  suggests  that  it  is  important  to  aSempt  similar  treatments  on  MoS2  in  order  to  expand  our  understanding  of  the  material.  

1.  Hillsdale  College,  2.  TN-­‐SCORE  REU  Program,  3.  Vanderbilt  Interdisciplinary  Program  in  Materials  Science,  4.  School  for  Science  and  Math  at  Vanderbilt,  5.  Vanderbilt  Department  of  Physics  and  Astronomy,  6.  Vanderbilt  Department  of  EECS  Hillsdale  College,  33  E  College  Street,  Hillsdale,  MI  49242  Vanderbilt  University,  2201  West  End  Avenue,  Nashville,  TN  37235  

Materials  and  Methods   Results  and  Conclusions  

Future  Research  

Mechanical  Exfolia4on:  MoS2  flakes  were  taken  from  bulk  MoS2  using  Scotch  tape.  The  tape  was  used  to  peel  back  layers  from  the  bulk  MoS2;  then  the  tape  was  folded  in  order  to  spread  and  separate  flakes.  The  flakes  were  then  transferred  from  the  tape  to  a  silicon  dioxide-­‐coated  wafer.  The  flakes  were  characterized  by  opIcal  microscopy  and  Raman  spectroscopy.  

Vapor-­‐Solid  Synthesis:  MoS2  powder  was  used  as  a  source  and  a  SiO2-­‐coated  wafer  as  a  substrate.  The  source  was  placed  in  a  boat  within  a  quartz  tube  and  heated  to  ~900°C  in  a  furnace.  As  a  carrier  gas,  argon  flowed  through  the  tube  to  bring  the  MoS2  vapor  to  a  colder  porIon  of  the  furnace  where  the  substrate  was  located.  The  cooling  MoS2  would  then  form  monolayer  films  on  the  substrate.4  This  process  was  aSempted  but  unsuccessful,  as  no  monolayer  films  and  only  extremely  small  crystals  were  observed.  

Figure  2:  OpIcal  image  of  mechanically  exfoliated  molybdenum  disulfide  bilayer  flake  

Annealing:  The  samples  to  be  annealed  were  placed  in  a  quartz  tube  inside  a  furnace.  The  system  was  pumped  down  to  a  vacuum  of  about  10  milliTorr,  and  the  samples  were  heated  for  40  minutes  at  450°C.  

Figure  3:  (lei)  OpIcal  image  of  MoS2  deposited  on  SiO2  substrate;  (right)  SEM  image  of  the  area  of  deposiIon  

Ozone  Plasma  Treatment:  Single  and  few-­‐layer  flakes  of  MoS2  were  tested  for  their  Raman  and  photoluminescence  spectra,  then  either  annealed  with  a  subsequent  measurement  of  the  spectra  or  kept  as-­‐exfoliated.  The  samples  were  then  placed  in  a  UV  Ozone  cleaner  and  exposed  to  ozone  plasma  for  various  intervals.  The  photoluminescence  and  Raman  spectra  were  measured  for  each  sample  aier  each  interval.  

Future  research  stemming  from  this  project  will  involve:  •  ConInuing  study  of  the  etching  and  photoluminescence  enhancement  effects  •  RepeIIons  of  this  experiment  using  other  treatments  such  as  oxygen  plasma  or  x-­‐rays  in  

order  to  beSer  establish  the  mechanism  of  photoluminescence  enhancement  •  Study  the  effects  of  chemical  treatments  on  the  electronic  properIes  of  MoS2  •  Re-­‐evaluaIon  and  improvement  of  vapor-­‐solid  synthesis  methods  

Figure  5:  MoS2  Raman  and  photoluminescence  spectra  during  treatment  at  various  Imes:  before  annealing  (blue);  annealed,  0  min.  (dark  red);  1  min  (green);  2  min.  (purple);  3  min.  (light  blue);  4  min.  (light  green);  5  min.  (orange);                

6  min.  (dark  blue);  8.5  min.  (aqua);  10  min.  (red)  

Comparing  the  photoluminescence  response  across  annealed  and  non-­‐annealed  samples  of  varying  thicknesses  over  the  course  of  several  intervals  of  plasma  treatment,  we  found  that  single-­‐layer  molybdenum  disulfide  samples  that  had  been  annealed  exhibited  a  significantly  greater  response  to  the  ozone  plasma  treatment.  We  hypothesize  that  these  responses  are  the  result  of  the  adsorpIon  of  oxygen  by  the  MoS2  during  treatment,  as  oxygen  adsorpIon  has  been  shown  to  enhance  photoluminescence  in  MoS2.3  The  Raman  spectra  show  slight  separaIon  variaIons  and  lei-­‐shiiing,  but  the  data  does  not  support  a  definite  conclusion.  

The  authors  are  grateful  to  Dr.  Anthony  Hmelo,  Dr.  Bo  Choi,  Dr.  Dmitry  Koktysh,  Dr.  Jed  Ziegler  and  other  VINSE  staff  members  for  training  and  permission  to  use  the  facility.  This  work  was  supported  by  the  NaIonal  Science  FoundaIon  (TN-­‐SCORE  DMR  0907619,  ECCS-­‐1055852,  and  CBET-­‐1264982).  

Raman  Spectroscopy:  

375                                                                                  405                                                                                  415  Raman  Shii  (cm-­‐1)  

Raman  Intensity

 (arb.  units)  

Figure  4:  CharacterisIc  Raman  Spectra  (lei)  and  photoluminescence  spectra  (right)  for  monolayer  (blue),  bilayer  (red),  and  few-­‐layer  (green)  molybdenum  disulfide  

       19cm-­‐1          

Photolum

inescence  (arb.  units)  

525                                                                                      625                                                                                      725  

Raman  Spectra  of  Molybdenum  Disulfide   Photoluminescence  Spectra  of  Molybdenum  Disulfide  

Wavelength  (nm)  

Photolum

inescence  (arb.  units)  

Photolum

inescence  (arb.  units)  

Raman  Intensity

 (arb.  units)  

Raman  Intensity

 (arb.  units)  

525                                                                      625                                                                    725   525                                                                      625                                                                    725  

380                                                                      398                                                                    415   375                                                                      395                                                                    415  

Wavelength  (nm)  Wavelength  (nm)  

Raman  Shii  (cm-­‐1)   Raman  Shii  (cm-­‐1)  

Raman  Spectra  (top)  and  Photoluminescence  Spectra  (boVom)  of  Monolayer  MoS2  at  Various  Stages  in  Treatment  

Raman  Spectra  (top)  and  Photoluminescence  Spectra  (boVom)  of  Few-­‐Layer  MoS2  at  Various  Stages  in  Treatment  

0            1            2            3            4    

0    1    2    3    4    5    6    7    8    9      

0                      15                      30                      45  

0                              300                              700  

0                1500              3000              4500  

0            600            1200            1800