reversible storage of alternative fuels in nanoporous carbon: methane and hydrogen · 2020. 3....

47
EMPA Zurich—3/28/07 1 Reversible Storage of Alternative Fuels in Nanoporous Carbon: Methane and Hydrogen Peter Pfeifer Department of Physics University of Missouri Columbia, MO 65211 http://all-craft.missouri. edu Your next car might well run on clean natural gas and be ready for hydrogen when it comes along

Upload: others

Post on 08-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • EMPA Zurich—3/28/07 1

    Reversible Storage of Alternative Fuels inNanoporous Carbon: Methane and Hydrogen

    Peter PfeiferDepartment of PhysicsUniversity of MissouriColumbia, MO 65211

    http://all-craft.missouri.edu

    Your next carmight well run onclean natural gasand be ready forhydrogen when it

    comes along

  • EMPA Zurich—3/28/07 2

    Feb. 16, 2007:

  • EMPA Zurich—3/28/07 3

    Programmatic overview

  • EMPA Zurich—3/28/07 4

    Why alternative fuels?

    • Reduce dependence on foreign oil• Harness domestic renewable energy sources• Create new opportunities for domestic agriculture• Create clean air in cities• Reduce transportation costs by improving energy efficiency• Reduce greenhouse gas emissions

    What are alternative fuels?

    Developsustainabletransportationin U.S.

    • Ethanol (from corn, wood, …)• Natural gas*‡ (NG; from domestic gas fields, deep-sea methane hydrate

    fields, landfills, biomass); 85% of NG used in U.S. is domestic• Biodiesel (from soybeans, vegetable oils, …)• Hydrogen* (from NG, water & electricity, coal, …)• Electricity (from coal/nuclear/hydroelectric/solar/wind power plants)

    * ALL-CRAFT ‡At pump: ~$1.25 less than equivalent gallon of gasoline

  • EMPA Zurich—3/28/07 5

    How doalternativefuels worktogether?

    World energy consumptionU.S. energy consumption

  • EMPA Zurich—3/28/07 6

    Who we are—Partners

    • MU (lead institution): Physics (Pfeifer, Principal Project Leader; Wexler),Chemistry (Atwood & Hawthorne), Chemical Engineering (Suppes), CivilEngineering (Bowders), Office of Research (Coleman)

    • Lincoln University, Jefferson City

    • Midwest Research Institute (MRI), Kansas City

    • DBHORNE, LLC, Atlanta

    • Renewable Alternatives, LLC, Columbia

    • Missouri Biotechnology Association (MOBIO), Jefferson City

    • Clean Vehicle Education Foundation, Washington, DC

    • Missouri Dept. of Natural Resources (Energy Center), Jefferson City

    • City of Columbia (Municipal Landfill), Columbia

    • Kansas City Office of Environmental Quality/Central Fleet, Kansas City

  • EMPA Zurich—3/28/07 7

    Who we are—People

    MU, PhysicsSarah Barker, Jacob Burress, Sara CarterCarol Faulhaber (Northwest MO State U.)John Flavin, Lacy HardcastleCintia Lapilli, Jeff Pobst, Robert SchottDemetrius Taylor, Mikael Wood

    MU, ChemistryJerry AtwoodPraveen Thallapally,Trevor Wirsig

    MU, Chemical EngineeringMona-Lisa Banks (Lincoln University)Joshua Bulloc, Sean CrockettTarek Dannoon, Matt Factor, Mike GordonMonty Kemiki (Penn State University)Parag Shah, Serean SpellerbergMustafa Yousif (Alabama A&M U.)Galen Suppes

    MU, Civil & Environmental EngineeringJoshua BergstenJohn Bowders

    MRIBob Barton, Phil BuckleyTom Breier, David DolsonJason Downing, Steve Eastman (MU)Phil Freeze, Sam Grinter (MU)Steve Graham, Antonio Howard (Lincoln U.)Greg Jones, Juan MartinezDarren Radke, Todd Vassalli (MU)

    Kansas City Office of Environmental QualityDennis MurphySam Swearngin

    ConsultantsCindy Carroll, MO Dept. of Natural ResourcesAnne Dillon, National Renewable Energy Lab., CODoug Horne, Clean Vehicle Education FoundationCynthia Mitchell, Columbia Municipal LandfillJohn Noller, MO Dept. of Natural ResourcesPhil Parilla, National Renewable Energy Lab., CODavid Quinn, Royal Military College of CanadaFrancisco Rodriguez-Reinoso, U. Alicante, SpainRusty Sutterlin, Renewable Alternatives LLCJim Wegrzyn, Brookhaven National Laboratory

  • EMPA Zurich—3/28/07 8

    • Develop low-pressure, high-capacity storage technologies for natural gas(NG, methane, CH4) and hydrogen (H2), based on new adsorbent materialsdiscovered at MU:— nanoporous carbon from waste corncob in Missouri (“sponge for NG”)— calixarene (“crystalline vacuum pump”)

    • Demonstrate low-pressure, flat-panel NG tank for— next-generation clean vehicles (NG internal combustion engines)— hydrogen fuel cell cars (no hydrogen infrastructure needed)— collection of NG from landfills (“pollutant to renewable energy”)— large-scale shipping of NG from Alaska and deep-sea methane hydrate

    fields (reduction of dependence on foreign oil)

    • Develop low-pressure, flat-panel H2 tank for hydrogen fuel cell car

    What we do

    Funded by: – NSF Program “Partnerships for Innovation”– MU, MRI, Advanced Photon Source/DOE, DED/GAANN

  • EMPA Zurich—3/28/07 9

    Where it all started

    Van der Waalsattraction innanopores forcesNG into liquid-likedense fluid (170 g/lat 35 bar)

    1.4 nm

  • EMPA Zurich—3/28/07 10

    Bindingenergy:17 kJ/mol

    Why are nanopores important?

    In narrow pores, van der Waalspotentials overlap; create deepenergy well:

    Max. CH4 capacity in pores ofwidth 1.1 nm (Nicholson, 1998).

    Molecules are held in tight-packed configurations.

  • EMPA Zurich—3/28/07 11

    Why are nanopores important (cont.’d)?

    ~3.7 Å

    WidthWidth~6 Å~6 Å

    WidthWidth~11 Å~11 Å

    WidthWidth~22 Å~22 Å

  • EMPA Zurich—3/28/07 12

    Current natural-gas vehicles

    • Low emission of hydrocarbons ( ozone, smog), NOx, particulatematter. Up to 40% reduction of CO2. NG stored as compressed naturalgas (CNG) in steel or composite cylinders at 250 atm (3600 psi).

    • Clean Cities Coalitions:

    – Los Angeles: 1500 CNG buses– Kansas City: 200 CNG public utility vehicles– U.S.: 130,000 CNG vehicles– worldwide: over 5 million CNG vehicles

    /

  • EMPA Zurich—3/28/07 13

    Goal: Develop low-pressure (35 atm, 500 psi), “flat-panel” tank, like gasolinetank. Store NG in nanoporous carbon; pores adsorb NG like a sponge: ANG tank

    Why are we not already driving NG-fueled cars?

    • High-pressure cylindrical/sphericaltanks take up passenger or trunkspace.

    CNG cylinders in transit bus:

    • Only NG passenger car in U.S.: Honda Civic GX; CNG tank in trunk:

  • EMPA Zurich—3/28/07 14

    Best flat-panel tank previously

    Atlanta Gas Light Adsorbent ResearchGroup (AGLARG), 1997:

    Adsorbent: monolithic activated carbon(“briquettes”) from peach pit;troublesome maintenance of consistentquality of briquettes; binder blocks pores

    ALL-CRAFT: Monolithic carbon, withsuperior performance, from corncob.Missouri corn can supply raw materialfor NG tanks of all cars in the U.S.

    © A

    GLA

    RG

    1997

    4 tanks in bed ofNG Dodge Dakota

    © A

    GLA

    RG

    1997

  • EMPA Zurich—3/28/07 15

    Performance of ALL-CRAFT tank

    • Target pressure for flat tank: 35 bar (35 atm, 500 psig *); without adsorbent,pressure would have to be 150 bar, much more than what a flat tank can bear

    • DOE target capacity: 118 g/l (volume CH4 at 25 oC & 1 bar, per volume tank: 180)

    • AGLARG tank:98 g/l

    • ALL-CRAFTtarget: >100 g/lachieved!DOE targetachieved!

    © A

    LL-C

    RA

    FT

    2007

    *) 500 psi:pressure in NGpipelines

    DOE target; best ALL-CRAFT carbon

    AGLARG capacity

    Adsorbent Filled Tank (ANG)

    Empty Tank (CNG)

  • EMPA Zurich—3/28/07 16

    • Landfills: largest human-made source of methane (CH4) in U.S.Landfill gas (LFG): ~ 50% CH4, ~ 50% CO2

    • CH4: 20 times more potent greenhouse gas than CO2Capture CH4 at landfill: “pollutant to renewable energy”If no power plant: recover CH4 in 60,000 pound ANG tanks

    • Annual CH4 emission from landfills in U.S.:– Could power 4 million homes: $5 billion/yr– Greenhouse equivalent to emission from 90 million cars (~1/2 of cars in U.S.)– If captured, equivalent to planting forest 2 x area of MO

    Recovery ofbiomethanefrom landfillsand farms

  • EMPA Zurich—3/28/07 17

    ALL-CRAFT accomplishments in the laband on the road

    October 2004 - present

  • EMPA Zurich—3/28/07 18

    Carbon production & methane storage capacity

    • Produced over 100 different carbons fromcorncob (variable activation procedures) &over 300 monoliths for test tank

    • Searched for maximum storage capacity, with:– M/V: gram of NG per liter of carbon– V/V: NG, as volume of gas at 25 oC and

    1 atm, per volume of carbon– M/M: gram of NG per kilogram of carbon

    ALL-CRAFT, typical monolith (#6, 22, 30, 46, 70)

    ALL-CRAFT, best performance (Sample S-33/k)

    AGLARG, best performance

    ANG DOE target

    M / V 101-113 g/liter Av.: 107 g/liter

    115-119 g/liter 120% of AGLARG 100% of DOE

    98 g/liter 118 g/liter

    V / V 155-172 liter/liter Av.: 164 liter/liter

    176-182 liter/liter 150 liter/liter 180 liter/liter

    M / M 148-227 g/kg Av.: 188 g/kg

    230-239 g/kg 140% of AGLARG

    170 g/kg N/A

    Starting material & final product(“Missouri hockey puck”)

  • EMPA Zurich—3/28/07 19

    Methane storage capacity, cont.’d

    100% ofDOEtarget

    83% ofDOEtarget

    Best Sample, S-33/k

    Mass-per-volume storage at 25o C

    (gravimetric instrument)

    Typical monolith, #46

    Mass-per-volume storage at 25o C

    (volumetric instrument)

    Best Sample, S-33/k

    Mass-per-mass storage at 25o C

    (gravimetric instrument)

  • EMPA Zurich—3/28/07 20

    Methane storage capacity, cont’d

    Volumetricmeasurementof CH4 uptake,& temperatureon 3.5” mono-liths (MRI testfixture):

    Gravimetricmeasurementof CH4 uptakeon smallsamples:

    © M

    RI 2006

    Temperature of monolithduring fueling

  • EMPA Zurich—3/28/07 21

    Absolute adsorbed, excess adsorbed, amount stored

  • EMPA Zurich—3/28/07 22

    Summary of storage capacities

    119 g/L

    118 g/L

    24.9 g/L

  • EMPA Zurich—3/28/07 23

    Small-angle x-ray scattering

    Spatial arrangement of pores from small-angle x-ray scattering(Advanced Photon Source, Argonne National Laboratory):

  • EMPA Zurich—3/28/07 24

    Computer modeling of pore formation

  • EMPA Zurich—3/28/07 25

    Scanning & transmission electron microscopy

  • EMPA Zurich—3/28/07 26

    S-33/k zoomed in

  • EMPA Zurich—3/28/07 27

    Nitrogen adsorption isotherm

  • EMPA Zurich—3/28/07 28

    Pore-size distribution from N2 isotherm(subcritical ads.)

  • EMPA Zurich—3/28/07 29

    Methane adsorption isotherm: binding energy, …

  • EMPA Zurich—3/28/07 30

    Pore-size distribution from CH4 isotherm(supercritical ads)

  • EMPA Zurich—3/28/07 31

    Comparison/validation

  • EMPA Zurich—3/28/07 32

    Hydrogen storage

  • EMPA Zurich—3/28/07 33

    Hydrogen excess adsorption isotherm

  • EMPA Zurich—3/28/07 34

    Hydrogen absolute adsorption isotherm

  • EMPA Zurich—3/28/07 35

    Hydrogen storage isotherm

  • EMPA Zurich—3/28/07 36

    Hydrogen storage—validation& comparison with other adsorbents

  • EMPA Zurich—3/28/07 37

    Road test of ALL-CRAFT natural gasprototype tank

  • EMPA Zurich—3/28/07 38

    ALL-CRAFT ANG tank on Ford F-150: MRI, Kansas CityOffice of Environmental Quality—October 2006 to present

    Ford F-150 pickup for road test inKansas City (MRI, 4/06 - 9/06)

    © M

    RI 2006

    © M

    RI 2005

    6 Al tubesholding300 carbonbriquettes

    © M

    RI 2006

  • EMPA Zurich—3/28/07 39

    ALL-CRAFT tank on Ford F-150

  • EMPA Zurich—3/28/07 40

    Natural gas vehicles over time

    First NG vehicle 1910 (USA) with balloon tank on trailer NG vehicle~1930(France)with balloontank on roof

    Current NG vehicle withhigh-pressure tank in trunk

    Future NG vehicle with low-pressuretank under floor

  • From agricultural waste to high-tech storage tanks

  • EMPA Zurich—3/28/07 42

    Recovery of NG (biomethane) from landfills:Example Columbia, MO

  • EMPA Zurich—3/28/07 43

    Current recovery of methane from landfills

    • Electricity generation(large sites: STL, KC, …)

    • Direct heat(large/intermediate sites:STL, KC, Columbia, …)

    Opportunity:During high-flow periods,store in stationary tanks

    • Flare off (small sites)

    • Not captured (abandoned sites)

    Opportunity:Store in transportable tanks

  • EMPA Zurich—3/28/07 44

    Columbia landfill

  • EMPA Zurich—3/28/07 45

    Renewable NG from landfills

    • Collect & purify methane at landfill

    • 40,000 lb carbon tank, with 24 wt% storage capacity, can store 9,600 lb of methane

    • Ship full tank on tractor trailer to central processing facility; discharge methane

    • Return empty tank to landfill

    • Example:

    Columbia landfill Flow rate One tank full in

    Operated as “dry tomb,” 2005

    250 cuft/min 15,000 lb/day

    0.64 days

    Operated as bioreactor, 2020

    980 cuft/min 57,000 lb/day

    0.17 days

    Methane recovery in transportable tanks

    • Tanks of interest at small or abandoned landfills

  • EMPA Zurich—3/28/07 46

    Conclusions & outlook—R&D

    For methane:

    – Achieved DOE target of 118 g CH4/liter adsorbent @ 35 bar, 298 K

    – Corresponds to 238 g CH4/kg adsorbent @ 35 bar, 298 K

    – Operational ANG tank on road, with monoliths made from corncob

    For hydrogen:

    – Achieved 80 g H2/kg adsorbent @ 47 bar, 77 K

    – Compares favorably with best-performing adsorbents in literature

    – Plan: dope carbon with boron to increase binding energy

  • EMPA Zurich—3/28/07 47

    Conclusions & outlook—economic opportunities

    National level

    • NG fueled cars = next-generation clean vehicles1. Reduce smog, respiratory disease, cardio-vascular disease, …2. Reduce greenhouse gas emissions3. Reduce dependence on foreign oil now4. Harness domestic NG fields (Alaska), deep-sea methane hydrate fields

    (Oregon), renewable NG from landfills & biomass (Missouri, …)

    • Recovery of NG from landfills1. Pollutant to energy2. Economic growth in rural areas

    State level

    • Produce NG tanks, from MO corn cob, for 10 million cars/year: $10 billion/yr• Produce & operate NG tanks, from MO corn cob, for 2,500 landfills: $10 billion/yr• Produce NG tanks, from MO corn cob, for large-scale NG shipping: $5 billion/yr

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure true /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles true /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /NA /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /LeaveUntagged /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice