review exercise 1 - pmt

16
Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 1 Review exercise 1 1 Equation of circle with centre (βˆ’3, 8) and radius r: (x + 3) 2 + (y βˆ’ 8) 2 = r 2 r = distance from (βˆ’3, 8) to (0, 9) r 2 = (0 + 3) 2 + (9 βˆ’ 8) 2 = 9 + 1 = 10 The equation for C is: (x + 3) 2 + (y βˆ’ 8) 2 = 10 2 a Rearranging: x 2 βˆ’ 6x + y 2 + 2y = 10 Completing the square: (x βˆ’ 3) 2 βˆ’ 9 + (y + 1) 2 βˆ’ 1 = 10 (x βˆ’ 3) 2 + (y + 1) 2 = 20 a = 3, b = βˆ’1, r = 20 b The circle has centre (3, βˆ’1) and radius 20 . 3 a Rearranging 3x + y = 14: y = 14 βˆ’ 3x Solving simultaneously using substitution: (x βˆ’ 2) 2 + (14 βˆ’ 3x βˆ’ 3) 2 = 5 (x βˆ’ 2) 2 + (βˆ’3x + 11) 2 = 5 x 2 βˆ’ 4x + 4 + 9x 2 βˆ’ 66x + 121 βˆ’ 5 = 0 10x 2 βˆ’ 70x + 120 = 0 x 2 βˆ’ 7x + 12 = 0 (x βˆ’ 3)(x βˆ’ 4) = 0 So x = 3 and x = 4 x = 3: y = 14 βˆ’ 3 Γ— 3 = 5 x = 4: y = 14 βˆ’ 3 Γ— 4 = 2 Point A is (3, 5) and point B is (4, 2). b Using Pythagoras’ theorem: Length AB = 2 2 (4 3) (2 5) βˆ’ + βˆ’ = 10

Upload: others

Post on 26-Jan-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

1

Review exercise 11 Equation of circle with centre (βˆ’3, 8) and radius r:

(x + 3)2 + (y βˆ’ 8)2 = r2

r = distance from (βˆ’3, 8) to (0, 9) r2 = (0 + 3)2 + (9 βˆ’ 8)2 = 9 + 1 = 10 The equation for C is: (x + 3)2 + (y βˆ’ 8)2 = 10 2 a Rearranging: x2 βˆ’ 6x + y2 + 2y = 10 Completing the square: (x βˆ’ 3)2 βˆ’ 9 + (y + 1)2 βˆ’ 1 = 10 (x βˆ’ 3)2 + (y + 1)2 = 20 a = 3, b = βˆ’1, r = 20 b The circle has centre (3, βˆ’1) and radius 20 . 3 a Rearranging 3x + y = 14: y = 14 βˆ’ 3x Solving simultaneously using substitution: (x βˆ’ 2)2 + (14 βˆ’ 3x βˆ’ 3)2 = 5 (x βˆ’ 2)2 + (βˆ’3x + 11)2 = 5 x2 βˆ’ 4x + 4 + 9x2 βˆ’ 66x + 121 βˆ’ 5 = 0 10x2 βˆ’ 70x + 120 = 0 x2 βˆ’ 7x + 12 = 0 (x βˆ’ 3)(x βˆ’ 4) = 0 So x = 3 and x = 4 x = 3: y = 14 βˆ’ 3 Γ— 3 = 5 x = 4: y = 14 βˆ’ 3 Γ— 4 = 2 Point A is (3, 5) and point B is (4, 2). b Using Pythagoras’ theorem: Length AB = 2 2(4 3) (2 5)βˆ’ + βˆ’

= 10

Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

2

4 The equation of the circle is x2 + y2 = r2. Solving simultaneously using substitution: x2 + (3x βˆ’ 2)2 = r2 x2 + 9x2 βˆ’ 12x + 4 βˆ’ r2 = 0 10x2 βˆ’ 12x + 4 βˆ’ r2 = 0 Using the discriminant for no solutions: b2 βˆ’ 4ac < 0 (βˆ’12)2 βˆ’ 4(10)(4 βˆ’ r2) < 0 144 βˆ’ 160 + 40r2 < 0 40r2 βˆ’ 16 < 0 When 40r2 βˆ’ 16 = 0 8(5r2 βˆ’ 2) = 0

r2 = 25

r = 25

Β±

25

βˆ’ < r < 25

However, the radius cannot be negative.

So 0 < r < 25

5 a Equation of circle with centre (1, 5) and radius r: (x βˆ’ 1)2 + (y βˆ’ 5)2 = r2

r = distance from (1, 5) to (4, βˆ’2) r2 = (4 βˆ’ 1)2 + (βˆ’2 βˆ’ 5)2 = 9 + 49 = 58 The equation for C is: (x βˆ’ 1)2 + (y βˆ’ 5)2 = 58

Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

3

5 b Gradient of the radius of the circle at P

= 2 1

2 1

y yx xβˆ’βˆ’

= 2 54 1βˆ’ βˆ’βˆ’

= 73

βˆ’

Gradient of the tangent = 37

Equation of the tangent at P: y βˆ’ y1 = m(x βˆ’ x1) y + 2 = 3

7 (x βˆ’ 4) 3x βˆ’ 7y βˆ’ 26 = 0 6 a AB2 = (6 βˆ’ 2)2 + (5 βˆ’ 1)2 = 42 + 42 = 32 BC2 = (8 βˆ’ 6)2 + (3 βˆ’ 5)2 = 22 + 22 = 8 AC2 = (8 βˆ’ 2)2 + (3 βˆ’ 1)2 = 62 + 22 = 40 Using Pythagoras’ theorem: AB2 + BC2 = 32 + 8 = 40 = AC2 Therefore, ∠ABC is 90Β°. b As triangle ABC is a right-angled triangle, AC is a diameter of the circle. c AC is a diameter of the circle, so the midpoint of AC is the centre.

Midpoint = 1 2 1 2,2 2

x x y y+ +

= 2 8 1 3,2 2+ +

= (5, 2) Radius = 1

2 Γ— AC

= 12 Γ— 40

= 12 Γ— 2 10

= 10 The equation of the circle is: (x βˆ’ 5)2 + (y βˆ’ 2)2 = 10

Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

4

7 2

2 3

2 20 42224 4 4

x xx x x+ ++ βˆ’

= 2

2 3

10 21112 2 2

x xx x x+ ++ βˆ’

= 2

( 3)( 7)2 ( 56)

x xx x x+ +

βˆ’ βˆ’ βˆ’

= ( 3)( 7)2 ( 7)( 8)

x xx x x+ +

βˆ’ + βˆ’

= ( 3)2 ( 8)

xx x+

βˆ’ βˆ’

a = 3, b = βˆ’2, c = βˆ’8 8 a Using the factor theorem: f( 1

2 ) = 2( 12 )3 βˆ’ 7( 1

2 )2 βˆ’ 17( 12 ) + 10

= 14 βˆ’ 7

4 βˆ’ 172 + 10

= 0 So (2x βˆ’ 1) is a factor of 2x3 βˆ’ 7x2 βˆ’ 17x + 10.

b

2

3 23 10

2 1 2 7 17 10x x

x x x xβˆ’ βˆ’

βˆ’ βˆ’ βˆ’ +

3 2

2

2

26 176 3

20 1020 10

0

x xx xx x

xx

βˆ’

βˆ’ βˆ’

βˆ’ +βˆ’ +βˆ’ +

2x3 βˆ’ 7x2 βˆ’ 17x + 10 = (2x βˆ’ 1)(x2 βˆ’ 3x βˆ’ 10) = (2x βˆ’ 1)(x βˆ’ 5)(x + 2) c (2x βˆ’ 1)(x βˆ’ 5)(x + 2) = 0 So x = 1

2 , x = 5 or x = βˆ’2 So the curve crosses the x-axis at ( 1

2 , 0), (5, 0) and (βˆ’2, 0). When x = 0, y = βˆ’1 Γ— βˆ’5 Γ— 2 = 10

So the curve crosses the y-axis at (0, 10). x β†’ ∞, y β†’ ∞ x β†’ βˆ’β€‰βˆž, y β†’ βˆ’β€‰βˆž

Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

5

9 f(x) = 3x3 + x2 βˆ’ 38x + c a f(3) = 0 3(3)3 + (3)2 βˆ’ 38(3) + c = 0 3 Γ— 27 + 9 βˆ’ 114 + c = 0 c = 24 b f(x) = 3x3 + x2 βˆ’ 38x + 24 f(3) = 0, so (x βˆ’ 3) is a factor of 3x3 + x2 βˆ’ 38x + 24.

2

3 23 10 8

3 3 38 24x x

x x x x+ βˆ’

βˆ’ + βˆ’ +

3 2

2

2

3 910 3810 30

8 248 24

0

x xx xx x

xx

βˆ’

βˆ’

βˆ’βˆ’ βˆ’βˆ’ +

3x3 + x2 βˆ’ 38x + 24 = (x βˆ’ 3)(3x2 + 10x βˆ’ 8) = (x βˆ’ 3)(3x βˆ’ 2)(x + 4) 10 a g(x) = x3 βˆ’ 13x + 12 g(3) = (3)3 βˆ’ 13(3) + 12 = 27 βˆ’ 39 + 12 = 0 So (x βˆ’ 3) is a factor of g(x).

b

2

3 2

3 43 0 13 12

x xx x x x

+ βˆ’βˆ’ βˆ’ βˆ’ +

3 2

2

2

33 133 9

4 124 12

0

x xx xx x

xx

βˆ’

βˆ’

βˆ’βˆ’ +βˆ’ +

g(x) = x3 βˆ’ 13x + 12 = (x βˆ’ 3)(x2 + 3x βˆ’ 4) = (x βˆ’ 3)(x + 4)(x βˆ’ 1)

Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

6

11 a ( ) 3 2f 8x x ax bx= + + + ( )f 3 2= , so

( ) ( ) ( )3 23 3 3 8 227 9 3 8 2

a ba b

+ + + =

+ + + =

9 3 33a b+ = βˆ’ (1) ( )f 1 2βˆ’ = βˆ’ so

( ) ( ) ( )3 21 1 1 8 21 8 2

a ba b

βˆ’ + βˆ’ + βˆ’ + = βˆ’

βˆ’ + βˆ’ + = βˆ’

9a bβˆ’ = βˆ’ (2) Multiply equation (2) by 3 and add to equation (1)

9 3 333 3 27 12 60

5

a ba ba

a

+ = βˆ’βˆ’ = βˆ’

= βˆ’= βˆ’

When a = βˆ’5, b = 4 b ( ) 3 2f 5 4 8x x x x= βˆ’ + +

( ) ( ) ( ) ( )3 2f 2 2 5 2 4 2 88 20 8 84

= βˆ’ + +

= βˆ’ + +=

12 a ( ) 3 2f 2 6x x ax bx= + + + ( )f 1 0= , so

( ) ( ) ( )3 22 1 1 1 6 02 6 0

a ba b+ + + =

+ + + =

8a b+ = βˆ’ (1) ( )f 1 10βˆ’ = , so

( ) ( ) ( )3 22 1 1 1 6 102 6 10

a ba b

βˆ’ + βˆ’ + βˆ’ + =

βˆ’ + βˆ’ + =

6a bβˆ’ = (2) Add equations (1) and (2)

8 6

2 21

a ba b

aa

+ = βˆ’βˆ’ =

= βˆ’= βˆ’

When a = βˆ’1, b = βˆ’7

Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

7

12 b ( ) 3 2f 2 7 6x x x x= βˆ’ βˆ’ + ( )1x βˆ’ is a factor, so

2

3 2

3 2

2

2

2 6 1 2 7 6

2 2 7 6 6 6 6 0

x xx x x x

x xx xx x

xx

+ βˆ’βˆ’ βˆ’ βˆ’ +

βˆ’

βˆ’

βˆ’βˆ’ +βˆ’ +

( )( )3 2 22 7 6 1 2 6x x x x x xβˆ’ βˆ’ + = βˆ’ + βˆ’ Now factorise the quadratic ( ) ( )( )22 6 2 3 2x x x x+ βˆ’ = βˆ’ + so ( )( )( )3 22 7 6 1 2 3 2x x x x x xβˆ’ βˆ’ + = βˆ’ βˆ’ +

So x = 1, 32

x = , or x = βˆ’2

13 a ( ) 4 3f 5x x x ax b= + + + ( ) ( )f 2 f 1= βˆ’ , so

( ) ( ) ( ) ( ) ( ) ( )4 3 4 32 5 2 2 1 5 1 1a b a b+ + + = βˆ’ + βˆ’ + βˆ’ + 16 + 40 + 2a = 1 – 5 – a 3a = –60 a = –20 b ( ) 4 3f 5 20x x x x b= + βˆ’ + ( )3x + is a factor so by the factor theorem ( )f 3 0βˆ’ =

( ) ( ) ( )4 33 5 3 20 3 081 135 60 0

6

bb

b

βˆ’ + βˆ’ βˆ’ βˆ’ + =

βˆ’ + + == βˆ’

14 a Example: When a = 0 and b = 0, 02 + 02 = (0 + 0)2. b (a + b)2 = a2 + 2ab + b2 When a > 0 and b > 0, 2ab > 0 Therefore a2 + b2 < (a + b)2 When a < 0 and b < 0, 2ab > 0 Therefore a2 + b2 < (a + b)2 When a > 0 and b < 0, 2ab < 0 Therefore a2 + b2 > (a + b)2 When a < 0 and b > 0, 2ab < 0 Therefore a2 + b2 > (a + b)2 The conditions are a > 0 and b > 0 or a < 0 and b < 0.

Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

8

15 a p = 5: 52 = 25 = 24 + 1 p = 7: 72 = 49 = 2(24) + 1 p = 11: 112 = 121 = 5(24) + 1 p = 13: 132 = 169 = 7(24) + 1 p = 17: 172 = 289 = 12(24) + 1 p = 19: 192 = 361 = 15(24) + 1 b 3(24) + 1 = 73 and 73 is not a square number. 16 a Rearranging: x2 βˆ’ 10x + y2 βˆ’ 8y = βˆ’32 Completing the square: (x βˆ’ 5)2 βˆ’ 25 + (y βˆ’ 4)2 βˆ’ 16 = βˆ’32 (x βˆ’ 5)2 + (y βˆ’ 4)2 = 9 (x βˆ’ 5)2 + (y βˆ’ 4)2 = 32 a = 5, b = 4, r = 3 b Centre of circle C is (5, 4). Centre of circle D is (0, 0). Using Pythagoras’ theorem: Distance = 2 2(5 0) (4 0)βˆ’ + βˆ’ = 41 c Radius of circle C = 3 Radius of circle D = 3 Distance between the centres = 41 3 + 3 < 41 Therefore, the circles C and D do not touch.

17 a 5 0.75x = log5 log 0.75x =

log 0.75log5

x =

= βˆ’0.179 (3 s.f.) b 5 52log log 3 1x xβˆ’ = 2

5 5log log 3 1x xβˆ’ =

2

5log 13xx

=

2

153xx=

2 15x x= 2 15 0x xβˆ’ = ( )15 0x x βˆ’ = x = 0 or x = 15 since x β‰  0, x = 15

Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

9

18 a 2 13 10xβˆ’ = ( )2 1 log3 log10x βˆ’ =

( ) log102 1log3

x βˆ’ =

1 log10 12 log3

x = +

= 1.55 (3 s.f.) b ( )2 2log log 9 2 2x x+ βˆ’ = ( )( )2log 9 2 2x xβˆ’ = ( ) 29 2 2x xβˆ’ = 22 9 4 0x xβˆ’ + = ( )( )2 1 4 0x xβˆ’ βˆ’ =

1 or 42

x x= =

19 a 1 1log 12 log 9 log 82 3p p p

βˆ’ +

( )

1132log 12 log 9 log 8

log 12 log 3 log 2

log 12 log 6

12log6

log 2

p p p

p p p

p p

p

p

= βˆ’ +

= βˆ’ +

= βˆ’

=

=

b 4log 1.5x = βˆ’

1.5418

x βˆ’=

=

Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

10

20 4log 64 3log log 4 5x xx+ βˆ’ =

3log 64 log 4 5

log 4x xx

+ βˆ’ =

3 3log 4 log 4 5log 4x x

x

βˆ’ + =

34 3log 5

4 log 4xx

+ =

2 3log 4 5log 4x

x

+ =

32log 4 5log 4x

x

+ =

Let log 4xy = , so

32 5yy

+ =

22 3 5y y+ = 22 5 3 0y yβˆ’ + = ( )( )2 3 1 0y yβˆ’ βˆ’ =

3 or 12

y y= =

Therefore

3log 4 or log 4 12x x= =

When 3log 42x =

32 4

2.52 (3 s.f.)xx

==

When log 4 1x =

1 4

4xx==

Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

11

21 2log 6log 2 7xx + =

22

6log 7log

xx

+ =

Let 2logy x= , so

( )( )

2

6 7

7 6 01 6 0

1 or 6

yy

y yy y

y y

+ =

βˆ’ + =

βˆ’ βˆ’ =

= =

Therefore 2 2log 1 or log 6x x= = When 2log 1x = x = 2 When 2log 6x = x = 26 = 64

22 2

3 912log 9 log 2tt

= +

212loglog9 2log3 log9

t t = +

122loglog9 2log3 2log3

t t = +

2

12log9 log 2log 3

108log9 log

1089

12

2 3

tt

tt

tt

t

t

= + =

=

=

=

2 3t β‰  βˆ’ , since it’s not valid.

Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

12

23 a (1 βˆ’ 2x)10

= 10 9 8 210 101 1 ( 2 ) 1 ( 2 )

1 2x x

+ βˆ’ + βˆ’

7 3101 ( 2 )

3x

+ βˆ’ +

. . .

= 10(9)1 10( 2 ) ( 2 )2

x x+ βˆ’ + βˆ’

( )310(9)(8) 26

x+ βˆ’ + . . .

= 1 βˆ’ 20x + 180x2 βˆ’ 960x3 + . . . 23 b (0.98)10 = (1 βˆ’ 2(0.01))10

= 1 βˆ’ 20(0.01) + 180(0.01)2 βˆ’ 960(0.01)3 + . . . = 0.817 (3 d.p.) 24 (1 + 2x)5 = 5 4 3 21 1 (2 ) 1 (2 )

5 51 2

x x+ + +

. . .

= 25(4)1 5(2 ) (2 )2

x x+ + + . . .

= 1 + 10x + 40x2 + . . . (2 βˆ’ x)(1 + 2x)5 = (2 βˆ’ x)(1 + 10x + 40x2 + . . .) = 2 + 20x + 80x2 + . . . βˆ’ x βˆ’ 10x2 + . . . = 2 + 19x + 70x2 + . . . β‰ˆ 2 + 19x + 70x2 a = 2, b = 19, c = 70 25 (2 βˆ’ 4x)q x term = 1 12 ( 4 )

1

q xq

q

βˆ’ βˆ’ βˆ’

= q Γ— 2q βˆ’ 1 Γ— βˆ’4x

= βˆ’4 Γ— 2q βˆ’ 1qx βˆ’4 Γ— 2q βˆ’ 1q = βˆ’32q 2q βˆ’ 1 = 8 q βˆ’ 1 = 3 q = 4

Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

13

26 a Using the binomial expansion

( ) ( )( ) ( )( )( )32

3 31 1 12 2 2 2 22 3

2 3

3(1 4 ) 1 (4 ) (4 ) (4 ) ...2 2! 3!1 6 6 4 ...

x x x x

x x x

βˆ’+ = + + + +

= + + βˆ’ +

b

c

112 112So 1.1852921000

1185.292112 10.582962857 10.58296 (5 d.p.)112

β‰ˆ

β‡’ β‰ˆ = =

d Using a calculator

Note, you will get different answers if you use values rounded to 5 d.p. in calculating the percentage error.

Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 14

Challenge

1 a ( ) 4 3 2f 2 23 24x x ax x bx= + βˆ’ + + 2 6x x+ βˆ’ is a factor so

( ) ( )

( )( ) ( ) ( )

( ) ( )( )

2

2 4 3 2

4 3 2

3 2

3 2

2

2 2 96 2 23 24

2 2 12 2 11

2 2 6 2

9 6 12 24

9

x a x ax x x ax x bx

x x xa x x bx

a x a x a x

a x a b x

a

+ βˆ’ βˆ’ +

+ βˆ’ + βˆ’ + +

+ βˆ’

βˆ’ βˆ’ +

βˆ’ + βˆ’ βˆ’ βˆ’

βˆ’ βˆ’ + + βˆ’ +

βˆ’ βˆ’ ( ) ( )( ) ( )

2 9 6 9

7 3 30 6

x a x a

a b x a

+ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’

+ βˆ’ + βˆ’ βˆ’

Since 2 6x x+ βˆ’ is a factor 30 6 0 5a aβˆ’ βˆ’ = β‡’ = βˆ’7 3 0 38a b b+ βˆ’ = β‡’ =

Alternative solution: by factorisation: 4 3 2

2 2

2 23 24( 6)(2 7 4)

x ax x bxx x x x

+ βˆ’ + +

+ βˆ’ βˆ’ βˆ’3x coefficient: 2 7 5a = βˆ’ = βˆ’

x coefficient: 6 7 4 38b = βˆ’ Γ—βˆ’ βˆ’ =

b Substitute for a and b into ( ) ( )

( )( )

2

2

2 2 9 0

2 7 4 02 1 4 0

x a x a

x xx x

+ βˆ’ βˆ’ + =

βˆ’ βˆ’ =

+ βˆ’ =Therefore

( )( )( )( )( )( )

4 3 2 22 23 24 ( 6) 2 1 4

3 2 2 1 4

x ax x bx x x x x

x x x x

+ βˆ’ + + = + βˆ’ + βˆ’

= + βˆ’ + βˆ’

Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 15

2 Rearranging x2 + y2 + 8x βˆ’ 10y = 59:

x2 + 8x + y2 βˆ’ 10y = 59 Completing the square: (x + 4)2 βˆ’ 16 + (y βˆ’ 5)2 βˆ’ 25 = 59

(x + 4)2 + (y βˆ’ 5)2 = 100 Both circles have the same centre at (βˆ’4, 5). The radius of one circle is 8 and the other is 10, so (x + 4)2 + (y βˆ’ 5)2 = 82 lies completely inside x2 + y2 + 8x βˆ’ 10y = 59.

3

( ) (( ( 1)

82 +1 2242 1 log8+ = 2 2)βˆ’x log 4

6 + 3 4 44 7

6

y x

y

xy = βˆ’x

y x

βˆ’=

βˆ’=

3 2 1) loy g 2+ = 4 βˆ’ log 2

2 4log =1+y xlog

22

2

2 2

12

2 2

2 12

1 log7log6 log 4

7+

1log 1 log6 2

7log 1 log6

7log 16

x

x

x

x

x

x4 βˆ’ = +

x4 βˆ’ =

x4 βˆ’ = + 4 βˆ’ =

12

12

4 7 26

4 12 βˆ’ 7 0

x

x

βˆ’x x

βˆ’=

=

Let z = 1

x 2

( )( )

24 12 βˆ’ 7 02 +1 2

or1 72 2

z zz z

z z

βˆ’ =

βˆ’ 7 =

βˆ’= =

0

So 1 12 2 or1 7

2 2491 or

4 4

x x

x x

= βˆ’ =

= =

Β© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 16

3 When 14

x =

14 74 16

y

βˆ’ = = βˆ’

When 494

x =

494 74 76

y

βˆ’ = =

1n n

k k

+ +

n! n ! )! (k +1)!( βˆ’1)!βˆ’n k+

k !(n kβˆ’

4 LHS =

=

= !(k +1) !( )+

( 1+ )!( )! (k 1+ )!( )!n

k βˆ’n k βˆ’n kn n kβˆ’

= !(( 1)+ + ( ))(k +1)!( )!

n k n kβˆ’n kβˆ’

= +1)( 1+ )!( )!

!(n nk βˆ’n k

= ( +1)!( 1)!( )!

nk + βˆ’n k

=1

nk +1 +

= RHS