©richard c. jaeger 6/5/97 microelectroni circuit design table 1.1 - the worldwide electronics...

28
©RICHARD C. JAEGER 6/5/97 M M I I C C R R O O E E L L E E C C T T R R O O N N I I CIRCUIT DESIGN CIRCUIT DESIGN Table 1.1 - The Worldwide Electronics Market ($1,013 Billion) in 1992 [1] Category Share (%) Data processing hardware 23 Data processing software & services 18 Professional electronics 10 Telecommunications 9 Consumer electronics 9 Active components 9 Passive components 7 Computer integrated manufacturing 5 Instrumentation 5 Office electronics 3

Upload: natalia-valley

Post on 15-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

Table 1.1 - The Worldwide Electronics Market ($1,013 Billion) in 1992 [1]

Category Share (%)Data processing hardware 23Data processing software & services 18Professional electronics 10Telecommunications 9Consumer electronics 9Active components 9Passive components 7Computer integrated manufacturing 5Instrumentation 5Office electronics 3Medical electronics 2

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

Table 1.2 - Milestones in ElectronicsYear Event1884 American Institute of Electrical Engineers (AIEE)

formed1895 Marconi first radio transmissions 1904 Fleming Valve (Diode Vacuum Tube)1906 Pickard - Solid-state Point-contact diode (Silicon)1906 Deforest - Triode Vacuum Tube (Audion) - Age of

electronics begins1910-1911 "Reliable" tubes fabricated1912 Institute of Radio Engineers (IRE) Founded1907-1927 Diodes and Triodes - First Radio Circuits1920 Armstrong invents super heterodyne receiver1925 TV demonstrated1925 Lilienfeld files patent application on the field-effect

device

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

1927-1936 Multigrid Tubes1933 Armstrong invents FM modulation1935 Heil receives British patent on a field-effect device1940 Radar developed during World War II; TV in limited

use1947 Bipolar Transistors Invented by Bardeen, Brattain &

Shockley at Bell Laboratories1950 Color TV begins1952 Shockley describes the unipolar field-effect transistor

1952 Commercial production of silicon bipolar transistors at Texas Instruments

1956 Bardeen, Brattain & Shockley Receive Nobel Prize for Invention of Bipolar Transistors

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

1958 Simultaneous Development of the Integrated Circuit by Kilby at Texas Instruments & Noyce and Moore at Fairchild Semiconductor

1961 First commercial digital IC available from Fairchild Semiconductor

1963 AIEE and IRE Merge to become the Institute of Electrical and Electronic Engineers (IEEE) Your Professional Society!

1967 First Semiconductor RAM (64 bits) discussed at the IEEE International Solid-Sate Circuits Conference (ISSCC)

1968 Introduction of the first commercial IC operational amplifier - the A-709 - by Fairchild Semiconductor

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

1970 1-transistor dynamic memory cell invented by Dennard at IBM 1971Introduction of the 4004 microprocessor by Intel

1972 First 8-bit Microprocessor - The Intel 8008 1974 First commercial 1 kilobit memory chip 1974 Introduction of the 8080 microprocessor1978 First 16-bit Microprocessor 1984 Megabit Memory chip1995 Experimental Gb Memory Chip Presented at the IEEE

ISSCC

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

2000199519901985198019751970196510 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 10

Year

Chi

p D

ensi

ty (

Bit

s/C

hip)

Figure 1.2 - Memory chip density as a function of time based upon first paper presentation at the IEEE International Solid-State Circuits Conference (ISSCC)

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

200019951990198519801975197010 3

10 4

10 5

10 6

10 7

Year

Num

ber

of T

ransi

stor

s

P6Pentium

486DX 68040

386SX 68030

80286

8086

80856800

40048080

Figure 1.3 - Microprocessor complexity versus time

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

200019951990198519801975197010 -1

10 0

10 1

Year

Dyn

amic

Mem

ory

Feat

ure

Size

(um

)

Figure 1.4 Feature size in dynamic memory chips versus time (Courtesy ISSCC)

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

Table 1.3 - Levels of IntegrationDate Historical Reference Components/chip1950 Discrete components 1-21960 SSI - Small-scale Integration < 102

1966 MSI - Medium-scale integration 102 - 103 1969 LSI - Large-scale integration 103 - 104

1975 VLSI - Very-large-scale integration 104 - 109

1990 ULSI - Ultra-large-scale integration > 109

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

Amplitude

t

High Level

Low Level

"1"

"0"

Figure 1.5 - A time varying binary digital signal

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

t

v(t) or i(t)

Figure 1.6 - An analog signal

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

VO

Digital-to-Analog Converter

(DAC)

VFS

+

-

Binary Input Data

( b , b , b , ... b )1 2 3 n

Figure 1.7 - Block diagram representation for a D/A converter

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

vX

Analog-to-Digital Converter

(ADC)

VFS

+

- Binary Output Data

( b , b , b , ... b )1 2 3 n

+ -

Figure 1.8 - Block diagram representation for a A/D converter

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

Input Voltage

Bin

ary

Outp

ut

Code

000

001

010

011

100

101

110

111

0 VFSVFS2

3VFS4

VFS4

0 VFSVFS2

3VFS4

VFS4

-1.5

-0.5

0.5

1.5

Input Voltage

Quanti

zati

on E

rror

(LSB

)

1 LSB1 LSB

1.9 - (a) Input-output relationship and (b) quantization error for 3-bit ADC

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

i1i 1

(b) CCCS

i1 1i

(d) CCVS

1A vv1

+

-

(c) VCVS

g vm 1v1

+

-

(a) VCCS

Figure 1.10 - Controlled Sources

(a) Voltage-controlled current source - (VCCS)

(b)Current-controlled current source - (CCCS)

(c) Voltage-controlled voltage source - (VCVS)

(d) Current-controlled voltage source - (CCVS).

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

R1

R2

v 2

+

-

SivS

8 k

2 k

v1+ -

10 V

Figure 1.11 - A resi st ive vol tage divider

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

Figure 1.12 - Current division in a simple network

R1

R2

v

+

-

Si

i 2

3 k2 k

i 1

5 mAs

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

(a)

R1

RS v O

+

-

i1

1 k

20 ki 1

v S

= 50

Figure 1.13 - (a) Two-terminal circuit and its(b) Thévenin and (c) Norton equivalents

RTH

v TH RTH

Ni

(b) (c)

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

R1

RSi1

1 k

20 ki 1

v X

Xi

(v = 0)S

= 50

Figure 1.14 - A test source vx is applied to thenetwork to find RTH.

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

R1

RSi1

1 k

20 ki 1

v S Ni

= 50

0

Figure 1.15 - Circuit for determining short-circuit output current

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

R = 282 TH

v = 0.718 vTH s

R = 282 TH

Ni = (2.55 x 10 S) v-3

s

iNTH

v

(a) (b)

Figure 1.16 - Completed Thévenin (a) and Norton (b) equivalent circuits for the two-

terminal network in Fig. 1.13 (a)

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

R1

R2

iS

vS 2i

g vm 1+

-

v1

2 k

3 k 0.1 v1

Figure 1.17 - Circuit containing a voltage-controlled current source

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

f

Amplitude

0 4.5 MHz

Figure 1.18 - Spectrum of a television signal

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

Table 1.3 - Frequencies Associated with Common Signals

Category Frequency RangeAudible sounds 20 Hz - 20 kHzBaseband video (TV) signal 0 - 4.5 MHzAM radio broadcasting 540 - 1600 kHzHigh frequency radio communications 1.6 - 54 MHzVHF television (Channels 2-6) 54 - 88 MHzFM radio broadcasting 88 - 108 MHzVHF television (Channels 7-13) 174 - 216 MHzUHF television (channels 14 - 69) 470 - 806 MHzCellular telephones 824 - 892 MHzSatellite television 3.7 - 4.2 GHz

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

Amplitude

tT 3T2T0

Amplitude

f

0 fo 3fo2fo 4fo 5fo

Vo

VDC

(a) (b)

Figure 1.19 - A periodic signal (a) and its amplitude spectrum (b)

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

vov

s A

Figure 1.20 - E lectronic symbol for an amplifier with voltage gain A

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

RF Amplifier and Filter

MixerIF

Amplifier and Filter

Local Oscillator

FM Detector

Audio Amplifier

Speaker

10.7 MHz 50 Hz - 15 kHz(88 - 108 MHz)

(77.3 - 97.3 MHz)

Antenna

Figure 1.21 - Block diagram for an FM radio Receiver

©RICHARD C. JAEGER 6/5/97

MMIICCRROOEELLEECCTTRROONNIICIRCUIT DESIGNCIRCUIT DESIGN

Amplitude

f

f H

f

fL

f

fL fH

f

fH

f

fL

A A A

A A

(a) (b) (c)

(d) (e)

Amplitude

Figure 1.22 - Ideal amplifier frequency responses: (a) Low-pass (b) high-

pass (c) band-pass (d) band-reject and (e) all-pass

characteristics