riding herd on co2 capture in albertalehnherr/igor_lehnherrs_personal_website... · consideration...

32
Canadian Chemical News | L’Actualité chimique canadienne A Magazine of the Chemical Institute of Canada and its Constituent Societies | Une magazine de l’Institut de chimie du Canada et ses sociétés constituantes July August | juillet août 2011 RIDING HERD ON CO 2 CAPTURE IN ALBERTA www.accn.ca E-WASTE NOT, WANT NOT MERCURY’S FINAL VERDICT

Upload: buicong

Post on 24-May-2018

216 views

Category:

Documents


1 download

TRANSCRIPT

Canadian Chemical News | L’Actualité chimique canadienneA Magazine of the Chemical Institute of Canada and its Constituent Societies | Une magazine de l’Institut de chimie du Canada et ses sociétés constituantes � Chemical Institute of Canada

July • August | juillet • août 2011

RidingheRd on Co2 CaptuRe in albeRta

www.accn.ca

E-wastE not, want not MerCUry’S fINAL verdICt

JULy • AUgUSt 2011 Canadian ChEmiCal nEws 3

Final Verdict Mercury, historically endowed with healing - even magical - properties, gets its comeuppance.By Tyler Irving

tablE oF ContEnts

Features

Give a tossCindy Coutts of SIMS recycling Solutions helps keep valuable aluminum, copper and zinc out of landfills. By Tyler IrvingPour obtenir la version française de cet article,écrivez-nous à [email protected]

lady oilmanSusan Cole of enhance energy is behind the world’s largest pipeline system for capturing, transporting and storing industrial CO2.By Brian Bergman

2014

Departments

From the Editor

Guest ColumnBy David Mosey

Chemical newsBy Tyler Irving

society news

Chemfusion By Joe Schwarcz

5

7

8

28

3024

July • August | juillet • août Vol.63, no./no 7

Chemical Engineering

Chemistry

business

Join the International year of Chemistry Celebrations!

this is a year long opportunity to educate the public on the wonders of chemistry.

See planned activities and get involved now at www.iyc2011.ca

Chemical Institute of Canada

gold Level Sponsors

frOM the edItOr

exeCUtIve dIreCtOrRoland andersson, MCIC

ACtINg edItOr Roberta staley

edItOr (on leave)Jodi di menna

NewS edItOrtyler irving, MCIC

CONtrIbUtINg edItOrtim lougheed

Art dIreCtION & grAphIC deSIgNKrista lerouxKelly turner

SOCIety NewSbobbijo sawchyn, MCIC Gale thirlwall

MArketINg MANAgerbernadette dacey

MArketINg COOrdINAtOrluke andersson

CIrCULAtION michelle moulton

fINANCe ANd AdMINIStrAtION dIreCtOrJoan Kingston

MeMberShIp ServICeS COOrdINAtOr angie moulton

edItOrIAL bOArdJoe schwarcz, MCIC, chairmilena sejnoha, MCICbernard west, MCIC

edItOrIAL OffICe130 Slater Street, Suite 550Ottawa, ON k1p 6e2t. 613-232-6252 | f. [email protected] | www.accn.ca

[email protected]

SUbSCrIptION rAteSgo to www.accn.ca to subscribe or to purchase single issues. the individual non-CIC member subscription price for 2011 is $100 CdN. the institutional subscrip-tion price for 2011 is $150 CdN. Single copies can be purchased for $10.

ACCN (Canadian Chemical News/ L’Actualité chimique canadienne) is published 10 times a year by the Chemical Institute of Canada, www.cheminst.ca

recommended by the Chemical Institute of Canada (CIC), the Canadian Society for Chemistry (CSC), the Canadian Society for Chemical engineering (CSChe), and the Canadian Society for Chemical technology (CSCt). views expressed do not necessarily represent the official position of the Institute or of the Societies that recommend the magazine.

ChANge Of AddreSScirculation@chemins t.ca

printed in Canada by delta printing and postage paid in Ottawa, Ont.publications Mail Agreement Number:40021620. (USpS# 0007–718)

Indexed in the Canadian business Index and available online in the Canadian business and Current Affairs database.

ISSN 0823-5228

visit us at www.accn.ca

Marq De Villiers, critically acclaimed author and Governor

General’s Award winner, recently penned a timely essay for the

Ottawa Citizen about the illusory perception that citizens can help

fight climate change by making a few small life-style changes.

Whether this is hanging laundry out to dry or unplugging cellular phone

chargers, the consensus in the media is “every little bit helps.”

Such “comforting illusion” — such “codswallop,” De Villiers writes.

De Villiers argues that the problem of climate change is so vast

— compounded by enormous inefficiencies and rapacious consumption — it

cannot be alleviated except by massive and expensive technological invest-

ment. The one bright light, De Villiers acknowledges, is government support

of a process called carbon capture and sequestration. Here at ACCN, carbon

capture and sequestration takes centre stage in a profile of Susan Cole, founding

president of Calgary-based Enhance Energy. Cole is the penultimate individual

in ACCN’s series featuring outstanding Canadian women in the chemical

sciences and engineering to honour the International Year of Chemistry and the

100th anniversary of Marie Curie’s Nobel Prize for Chemistry. Cole’s company

is building the world’s largest pipeline system for capturing, transporting and

storing industrial CO2, which is expected to come on stream in 2013. Critics

and skeptics may question the long-term viability of this taxpayer-supported

initiative, but there is little doubt it is a concrete step in the battle against

climate change. Certainly the undertaking is Cole’s crowning achievement in a

venerable career in the energy industry.

The rest of the magazine offers a wide-range of stories and news — from

methylmercury contamination to muskeg mop-ups — for you to peruse,

whether you are chilling at the cottage or beach or taking a break from your

laboratory labours.

Have a great summer.

If you want to share your thoughts on any article write to Roberta Staley at [email protected]

did you know you can read back issues of ACCN, the Canadian

Chemical News for free online?

go to www.accn.ca

to browse our archives.

JULy • AUgUSt 2011 Canadian ChEmiCal nEws 7

gUeSt COLUMN

About a month ago, Fukushima reactor

Units 1, 2 and 3 at the disabled nuclear plant in

Japan were sub-critical and their seriously damaged

cores were being cooled by fresh water injection.

The next steps will include establishing closed circuit cooling

for these units, closing any leakage paths for radioactive

material and collecting and decontaminating the very large

amounts of highly radioactive water discharged from the

damaged rectors. This done, work can begin on the long

job of decontamination and dismantling the remains of the

reactor cores and safely disposing of the radioactive debris.

The Fukushima accident, in fact, was four nuclear

accidents at once: three degraded core cooling accidents

at Units 1, 2 and 3 and loss of cooling to the stored fuel

from Unit 4. There are cogent economic reasons for

constructing a number of reactors at one site, however,

it is now very clear that all owner/operators of multi-unit

nuclear installations will want to review their capability

for handling multiple serious concurrent events induced by

extreme off-site hazards.

In Canada, with the exception of single reactors in

New Brunswick (Point Lepreau) and Quebec (Gentilly-2),

our nuclear plants are concentrated in Ontario at three

multi-unit sites: Bruce, on the eastern shores of Lake Huron;

Darlington, in Clarington, Ont.; and Pickering, east of

Toronto. A significant feature of these installations is that

the reactors share the same, single containment system;

four (or in the case of Pickering, six) operational reactors

are linked to a single containment vacuum building. This

arrangement means that in the event of an accident in one

reactor that triggers the containment system, all the other

operating reactors must shut down promptly and remain

shut down until the accident unit can be isolated from the

containment system and the pressure suppression capability

of the vacuum building can be restored. Until this happens,

the remaining reactors do not have access to a contain-

ment system. It is not clear how effective the containment

provisions at Ontario’s nuclear generating stations might be

Lessons for Canada in fukushima nuclear failure by david mosey

following multiple reactor failures. However, it is a matter

to which Bruce Energy and Ontario Power Generation

should give urgent attention.

For the long-term development of nuclear energy, the

Fukushima accident might well stimulate a rethink of our

approach towards this essential element in the world’s

energy mix. The conventional wisdom of economy of

scale dictates that large reactors (typically over 1000

MWe capacity) are grouped together. These reactors have

physically large cores and require complex control and

safety systems with dauntingly high reliability require-

ments. The Fukushima accident might encourage us

to consider possible alternatives. One approach worth

consideration is the use of large numbers of smaller reac-

tors (of the order of 100 MWe capacity) of a standardized

design with passive safety features for control and cooling.

Core design could be optimized for a specific core life.

Such reactors would be factory produced, readily trans-

ported to site and, at the end of the core life, returned

to the manufacturer for core replacement. Small reactors

would be much easier to site and would provide a well-

distributed, resilient system. Drawbacks to this approach

include the increased demand for fissile material (higher

levels of enrichment would be required for their fuel),

which might dictate future construction of reactors

specifically for fissile isotope production and associated

isotope separation plants. However, isotope production

reactors can be operated at modest temperatures and

pressures and do not pose the same engineering challenges

as large power generating reactors. Isotope separation

would require stringent environmental controls.

The Fukushima accident is leading to re-evaluation

of nuclear programs worldwide. Let’s hope that

re- evaluation is based on rational thought and sound

technical principles rather than political expediency.

David Mosey of Nova Scotia is an independent consultant with a special interest in the influence of organizational and managerial

factors on safety. He is the author of Reactor Accidents: Institutional Failure in the Nuclear Industry.

8  l’aCtualité ChimiquE CanadiEnnE JUILLet • AOût 2011

the field of carbon capture and storage (CCS) has taken a big step forward. researchers at the National research Council (NrC) have created a polymer membrane that shows unprecedented performance in separating CO2 from various gas mixtures.

Microporous polymer membranes for gas separation have been around for decades but have always been subject to a trade-off between permeability and selectivity. As the pore size is increased to let gases through at a higher rate, the ability to select which molecules go through and which stay behind is decreased. In order to do CCS from real industrial flue gas, membranes must be able to maintain their selectivity at extremely high throughput rates — up to 500 cubic metres per second. Another problem is that many polymer molecules change their shape on exposure to CO2, which degrades their performance.

At the NrC, Michael guiver, Naiying du, Mauro dal-Cin and their team have been working on a substance known as a polymer of intrinsic microporosity (pIM). Unlike most polymers that have flexible chains, pIMs are made from molecules that are rigid, planar and at right angles, which prevents them from contorting. the team further modified this polymer by substituting tetrazole groups on to the monomer. these nitrogen-based ring structures attract CO2 and allow it to diffuse through the polymer faster than other gases by acting like molecular channels. Importantly, this works even better when CO2 is mixed with other gases; it appears that the same process that speeds up CO2 can slow down other gases like N2 when both are present.

“the unexpected surprise was seeing the mixed gas selectivity higher than the pure gas,” says dal-Cin. guiver agrees. “It’s got a very high novelty, and I think the results are really groundbreaking,” he says. the researchers believe that if these films can be made thin enough, they could reduce the cost of carbon capture to below $20  per ton, which the United States department of energy has t argeted as critical for the future of CCS technology. the research was published in the April 2011 issue of Nature Materials.

BreakThroughIn Co2 gaS SeparaTIon

envIronMenT

MaTerIalS SCIenCe

The effects of monomethylmercury (MMHg, often called just methylmercury) in Canada’s Arctic have been known for decades: it accumulates in muscle and fatty tissues and people who eat whale and seal meat tend to have increased exposure to this dangerous neurotoxin. A recent study has shed new light on how this molecule gets into the food chain.

Monomethylmercury arrives in Arctic waters in several ways. It leaches out of sediments, washes in from rivers or is air-borne in the form of volatile dimethylmercury (DMHg), which is degraded to MMHg by ultraviolet light. However, there are also microorganisms in the ocean that can convert inorganic mercury, which is not absorbed by the body, into MMHg.

To find out which source is most significant, Igor Lehnherr in the Department of Biological Sciences at the University of Alberta took samples of Arctic seawater and fed them with isotope-labelled forms of mercury. By analyzing the fate of these isotopes, Lehnherr deduced the rates at which the various forms of mercury were interconverted in the water. He then used a computer model to calculate how much of the MMHg concentration measured in the original water could be accounted for by these processes and arrived at an answer of about 50 per cent.

“It has to be the single largest source, because all the other sources together are about equivalent to this one,” says Lehnherr. This has implications for industrial activities. “Because we’ve established a mechanism by which inorganic mercury can be methylated, we know that the more inorganic mercury is released, the more MMHg will be produced,” says Lehnherr. “If we can limit our emissions of inorganic mercury to the environment, we can also slow down this production of MMHg.” A major source of inorganic mercury is the burning of coal, which generates more than 40 per cent of the world’s electricity. The work was published this past May in Nature Geoscience.

study REVEals souRCE oF mEthylmERCuRy in aRCtiC sEawatER

In this model of the tetrazole-functionalized polymer of intrinsic microporosity (TZpIM), the dotted line indicates possible hydrogen bonding between the tetrazole ring (blue) and the oxy-gen atoms on the ether linkages of the polymer chains. This bonding acts to tighten the mo-lecular structure, increasing the selectivity of Co2 over n2.

JULy • AUgUSt 2011 Canadian ChEmiCal nEws 9

CheMICAL NewS Canada's top stories in the chemical sciences and engineering

MIxINg MedICAtIONS CAN IMprOve effICACy Of ANtIbIOtIC

pharMaCeuTICalS

BIoCheMISTry

Pharmacists are constantly warning us to avoid mixing medications because of the risk of harmful interactions. But a team at McMaster University recently demonstrated that when it comes to antibiotics, interactions with other medications can sometimes be beneficial.

Until now, rational drug design has largely focused on disrupting the genetic pathways of pathogens that are known to be essential for life. For example, in the case of E. coli, only about 300 of the approximately 4,500 genes are es-sential. “All the drug companies, in the late 1990s and early 2000s, went after those hammer and tongs and the net result has been no new drugs,” says Gerry Wright, scientific director

of the Michael G. DeGroote Institute for Infectious Disease Research at McMaster University. That’s because many of those pathways are hard to dis-rupt with drugs and those that aren’t often have analogues in human cells. Wright and the research team suspected that they might get better results by tar-geting multiple non-essential pathways rather than a single essential one.

To do this, the team drew up a list of 1,057 off-patent drugs that are known to be bioactive but not necessarily against pathogens. They tested each of these drugs, combining them with the antibiotic minocycline and determining the effect on the disease-causing organisms E. coli, S. aureus

and P. aeruginosa. To their surprise, 69 of these combinations showed a synergistic effect. One of these was loperamide, which is marketed as Imodium. The team selected this for an in vivo validation using a mouse model of Salmonella infection. Sure enough, the loperamide-minocycline combination performed better than either drug by itself.

Wright is encouraged by this finding. “We’re looking at other antibiotics and other compound libraries and we’re identifying a whole bunch of new, completely unexpected partners.” The work was published in last month’s issue of Nature Chemical Biology.

Using some clever polysaccharide chemistry, researchers at the University of guelph have created a conjugate that could lead to the world’s first vaccine against the notorious bacterium Helicobacter pylori.

H. pylori infects the stomach lining and is estimated to be carried by half the world’s population. while the majority of infections have no symptoms, some can cause gastritis, ulcers and even stomach cancer. Antibiotics control the bug but are expensive to use, particularly in the developing world where most infections occur.

Mario Monteiro and his team specialize in the creation of vaccines based on polysaccharides, rather than the cell surface proteins that are often used for vaccine targets. the surface of H.  pylori was found to exhibit a lipopolysaccharide (LpS) that varies in structure from strain to strain; some can even mimic human blood group antigens. the breakthrough came when the team was able to find an LpS region that was conserved between most H. pylori strains, extract it and couple it to a simple protein.

CheMIST DevelopS poSSIBle vaCCIne for H. pylori

when this construct was injected into mice, their immune system was able to raise antibodies that recognized all forms of the H. pylori LpS, including those from strains that disguise themselves as mammalian cells.

Monteiro cautions that the existence of antibodies doesn’t necessarily imply protection and that work is ongoing. however, he believes that this is an important advance in the fight against a major world health problem. “H. pylori is the most prevalent bacterium in the world and gastric cancer is at the top of the list for cancers that cause death. for global health, a vaccine is the way to go, ” says Monteiro, whose research was published in Vaccine.

10  l’aCtualité ChimiquE CanadiEnnE JUILLet • AOût 2011

A multidisciplinary team at the University of Alberta and the National Institute for Nanotechnology is developing new materials that could one day allow for safe organ transplants between patients of different ABO blood types.

Lori West, a paediatric transplant cardiologist and director of the Heart Transplant Research Program at the University of Alberta Faculty of Medicine and Dentistry in Edmonton, has shown that infants up to about age two are able to accept heart transplants from donors outside their own blood type. This is possible because the infant immune sys-tem is not yet able to recognize and react to the blood group antigens on the tissues of the donor heart. Patients who have had these types of transplants appear to maintain the tolerance of the new blood type past the age when their immune system becomes mature. This raises the possibility of inducing blood group tolerance through artificial means, which could expand the number of organs available to patients who need transplants. One way of doing this could be to coat cardiac stents for infants with saccharides that resemble blood group antigens. “If successful, this would theoretically prolong the window during which it would be safe to transplant a blood group-mismatched donor heart beyond the age of infancy,” says West.

Since stainless steel is relatively nonreactive, Jillian Buriak, professor of chemistry at U of A, and her team used a technique called atomic layer deposition (ALD) to put a five-nanometre-thick coat-ing of silica on the surface of the steel. The next step was to get the sugar molecules to attach to the silica. This involved expertise from a group led by Todd Lowary, another chemistry professor from the U of A and an expert in carbohydrate chemistry. The researchers added a chemical tether to one end of a sugar-based molecule such as D-galactose. The tether ends in a trialkoxysilane group, which is able to bond to the silica. Importantly, the tether allows the biologically active part of the sugar to be accessed by antibodies in the blood.

“We were happy that it worked as well as it did,” says Lowary. “It’s the first time that we’ve been able to put sugars down on the steel.” However, he cautions that this is just a first step. “What we’re doing now is developing more sophisticated forms where we have more complex saccharides or sugars on the surface, including the blood group antigens.”

Sugar coating heart tranSPlantS

SafeTy

Nova Scotia’s Occupational health and Safety division has called for new warnings about trimethylsilyldiazomethane (tMSd) after a chemist died following exposure to fumes.

roland daigle, a chemist at pharmaceutical company Sepracor Canada in windsor, N.S., died in October 2008 after working with tMSd in a fumehood that had been shut down due to a renovation on the roof of the facility. daigle, 46, developed breathing problems and died 18 hours later in a halifax hospital. this past May, Sepracor Canada pleaded guilty to failing to provide proper ventilation and was fined $45,000 under Nova Scotia’s Occupational health and

healTh

tOd

d LO

wA

ry

ChEmist’s dEath lEads to RECommEndations

Researchers at the University of Alberta coated stainless steel with a thin layer of silica. They then constructed silane-terminated “tether” molecules which can bond to the silica, and which terminate in either poly-ethylene glycol (PEG, in blue) to act as spacers, or various monosaccharides (red with yellow globe). The technique could one day allow steel implants to be functionalized with blood group antigens.

Safety Act. the plea bargain resulted in the dropping of four other charges relating to providing personal protection equipment, training, and ensuring that the scene of the accident was secure.

tMSd is used as a methylating agent in organic synthesis and is often used in place of diazomethane, which is known to be harmful to lungs. “I think there was a false sense of security about using tMSd,” says Nancy Murphy, medical director of the Iwk regional poison Centre in halifax. “you read in the literature that it’s a safe alternative to diazomethane because it’s less explosive,” Murphy says. “but that says nothing about whether it’s safe for humans to use. It wasn’t really made clear in the material safety data sheets (MSdS) prior to this case that it was potentially fatal,” she adds. that has now changed, according to Jim Leblanc, director of the Occupational health and Safety division of Nova Scotia’s depart-ment of Labour. Leblanc says that recommendations have been made to the global company Sigma-Aldrich, which produces the chemical in Ontario, to ensure its product carries the appropriate warning about “ pulmonary edema [being] an effect of excessive exposure” in its MSdS.

JULy • AUgUSt 2011 Canadian ChEmiCal nEws 11

Canada's top stories in the chemical sciences and engineeringCheMICAL NewS

BuSIneSS

hyDroCarBonS

this summer, Canada’s largest corn ethanol producer will break ground on a new demonstration plant in Chatham, Ont. that will produce economically viable ethanol from such feedstocks as corn cobs, maize and switchgrass.

greenfield ethanol, which produces 600 million litres of ethanol per year at its plants in Ontario and Quebec, has teamed with danish biotech company Novozymes and global equipment producer Andritz to create a new partnership, called g2 bioChem. the facility will use a patented enzymatic pre-treatment pro-cess to break down biomass from a variety of vegetation, including agricultural residues, sorghum, switchgrass ( miscanthus) and even poplar trees. the result is pure streams of cellulose and hemicelluloses, which are then hydrolysed into

g2 bIOCheM tO OpeN CeLLULOSIC ethANOL pLANt IN ONtArIO

oIl Mop-up of MuSkeg ConTInueSA massive cleanup operation continues in northern Alberta following the largest oil spill to occur in the province in decades.

The spill resulted from a leak in the Rainbow pipeline, operated by Calgary-based Plains Midstream Canada. It was first detected April 29 in a section of the 45-year-old pipe about 100 kilometres northeast of Peace River, Alta. About 28,000 bar-rels, or 4.5 million litres of crude oil, spilled onto 18 hectares of muskeg on Lubicon Lake Cree nation traditional territory. The same day, students at Little Buffalo School 12 kilometres away complained of a nauseous smell, burning eyes and headaches, prompting officials to close the facility for a week. Air quality de-tection equipment from both the Alberta Energy Resources Con-servation Board (ERCB) and Plains Midstream were dispatched to Little Buffalo, but failed to find any increase in hydrocarbons, hydrogen sulphide, or sulphur dioxide. Still, community leader Steve Noskey says he has concerns about the underlying safety of the line itself. “When was the line last pressure tested?” Noskey asked. “How do they test it, what is used? Can any First Nations in the area be involved in the testing?”

More than 300 personnel have been involved with the on-site cleanup. Floating oil is being recovered using drum skimmers and vacuum trucks while oil-soaked vegetation and soil are being removed and transported to a nearby oilfield waste facility. A perimeter fence and other deterrent measures have been set up to prevent wildlife from entering the area, although beaver

and birds have died as a result of the spill. The faulty section of the pipe had also been excavated and examined. According to the ERCB, the leak was caused by a combination of factors, including excessive stress on the pipe. The ERCB has directed Plains Midstream to undertake further investigations before considering a re-start of the pipeline.

As of deadline, the company had recovered about 42 per cent of the original oil and was optimistic that cleanup would be finished in a matter of months, says Paul Kelly, managing director of Environmental Health and Safety, Land & Regulatory Affairs with Plains Midstream. “We’ve had remarkable success thus far, but the most important thing is that we’re going to stay here as long as it takes to fully remediate the site,” Kelly says.

Chemical News is reported and written by Tyler Irving.

single sugars that can be fermented into ethanol by yeast. the company re-ports it can produce 316 litres of etha-nol per dry tonne of corn cobs in less than five days. the plant will have an initial capacity of five tonnes, but can be scaled up to 2,000  tonnes using a modular system.

Crucially, the production will be com-petitive with existing ethanol produc-tion, says g2 bioChem president barry wortzman. “Our process technology results in a low cost per litre, which is essential to the viable commercial-ization of next generation ethanol,” wortzman says.

gr

eeN

peA

Ce

CsC

Canadian Society for Chemistry

The Materials Chemistry Division announces its new Research Excellence Award that will be presented for the first time during the 95th Canadian Chemistry Conference and Exhibition in Calgary, Alta.

Sponsored by the Materials Chemistry Division of the CSC

Nominations for this award are being accepted now. Deadline: September 15, 2011 for the 2012 selection.Visit www.chemistry.ca/awards for more details. Contact [email protected].

AwArd fOr reSeArCh exCeLLeNCe IN MAterIALS CheMIStry

NEW

14  l’aCtualité ChimiquE CanadiEnnE JUILLet • AOût 2011

Lady

oilmaN Enhance Energy president susan Cole’s quest to clean up the oil industry by creating the world’s largest Co2 capture, transport and storage pipeline makes her a rose among the roughnecks.

by brian bergman

A decade ago, Susan Cole was named co-winner of Saskatchewan’s

“Oilman of the Year” award in recognition of her role managing

the world’s largest carbon dioxide (CO2) injection and storage

project near Weyburn, Sask. But if the British-born chemical engi-

neer and entrepreneur sees anything amiss in that gender-specific honorific, she

isn’t letting on. “I find when audiences hear that, you do get a lot of laughter,” she

acknowledges. “People see the irony in it, but I don’t really think about it too much.

I’ve been working in the energy industry for 25 years and I haven’t really had any

issues when it comes to my gender.”

Cole’s impressive career would appear to attest to that. A graduate of the

University of Calgary’s Schulich School of Engineering (she later returned to

earn an MBA from the same institution), Cole spent six years overseeing — from

conception to startup — the showcase Weyburn project initiated by PanCanadian

Energy Corporation (later part of EnCana, now Cenovus Energy). The Weyburn

facility remains the most significant test case to date of using CO2 to generate

Special report for the international year of Chemistry

JULy • AUgUSt 2011 Canadian ChEmiCal nEws 15

ChEmiCal EnGinEERinG | CO2 CAptUreeN

hA

NCe

eN

erg

y

enhanced oil recovery (EOR) in depleted oil fields and then

storing that CO2 underground indefinitely to avoid green-

house gas emissions.

Cole has also held various roles with Norcen Energy

Resources and PanCanadian — including reservoir

engineering, oil and gas marketing and corporate planning

— and served as Team Lead of EnCana Corp.’s Athabasca

Oil Business Unit, where she managed EOR operations at

the Pelican Lake heavy oil fields in northern Alberta.

After two decades of working for large energy companies,

Cole struck out on her own in 2005 to become the founding

president of Enhance Energy Inc., a Calgary-based company

that is currently building the world’s largest pipeline system

for capturing, transporting and storing industrial CO2.

The 240-kilometre Alberta Carbon Trunk Line (ACTL),

expected to come on stream in 2013, will gather and

compress CO2 from central Alberta oil sands refineries,

natural gas processing facilities, chemical manufacturers and

coal-fired power generation plants. The CO2 will be pipe-

lined to aging conventional oil fields where, using proven and

safe technology, it will be injected into reservoirs to make

the remaining tough-to-extract oil flow more freely. The CO2

will then be permanently sequestered in the same reservoirs.

At full capacity, the ACTL will handle up to 40,000

tonnes of CO2 per day, or up to 14.6 million tonnes

of CO2 per year. That’s the equivalent of eliminating

CO2 emissions from 2.6 million cars — or about a third

of all registered vehicles in Alberta. Moreover, Enhance

Energy is projecting that, over a 30-year timeframe, the

injected CO2 will result in the recovery of an additional one

billion barrels of oil and generate an estimated $15 billion

in royalties for the Alberta government.

Dressed in blue jeans and a plain black shirt for a “casual

Fridays” interview in the modest boardroom of Enhance

Energy’s 9th floor downtown Calgary office, Cole explains

why she decided to take the plunge as an entrepreneur. “It

was all about timing,” she says. “Six years ago, we started to

see a big jump in oil prices. At the same time, there was an

increasing awareness globally that we need to do something

to reduce CO2 emissions. Those two factors together

allowed us to kick-start this project.”Enhance Energy president Susan Cole

16  l’aCtualité ChimiquE CanadiEnnE JUILLet • AOût 2011

Cole notes there is a long track

record of successful CO2/EOR projects

in the United States. But companies

there have access to naturally occur-

ring CO2, which is pumped from the

ground like natural gas — a much less

expensive proposition than capturing

the CO2 that is a waste byproduct of

industrial development. And while

the Weyburn project demonstrated

the efficacy of using industrial

CO2 emissions to revive declining oil

reservoirs, that facility is dependent

on CO2 supply from a coal gasification

facility in North Dakota.

“We knew from the start we could do

what we were doing in Weyburn on a

much larger scale in Alberta,” says Cole.

“That’s because this province has the

unique combination of a ready supply

of industrial CO2 in close proximity to

a number of potential EOR customers.

For example, the central Alberta

region where our pipeline is being built

generates 52 per cent of the province’s

total CO2 emissions, most of it from

the coal-fired power sector. In the same

area, there are a number of declining

conventional oil fields that can benefit

from CO2 injection and are ideal for

long-term storage of CO2.”

As it turned out, Cole’s timing was

indeed fortuitous. In 2007, Alberta

became the first jurisdiction in North

America to effectively put a price on

carbon. Facilities that emit more than

100,000 tonnes of greenhouse gas

emissions were henceforth required

to meet targeted reductions in their

emissions intensity. If they did not, they

had the option of contributing $15 a

tonne for emissions over the target into

a fund supporting the development of

emissions-reducing technologies.

The Alberta government also

committed $2 billion to support the

advancement and implementation

of carbon capture and storage (CCS)

technology. The government projects

CCS technology will be responsible

for 70 per cent of the province’s CO2

emissions reductions by 2050.

Given that backdrop, it was perhaps

only a matter of time before Cole and the

Alberta government forged a symbiotic

partnership. Earlier this year, Enhance

Energy and Northwest Upgrading (a key

initial CO2 supplier for the ACTL)

reached a formal agreement to receive

$495 million from Alberta’s CCS fund

for the planning, development and

construction of the proposed pipeline.

The project has also received $63 million

in federal government support.

Cole makes no apologies for seeking

out government funding for what is,

in the end, a private sector initiative

that hopes to generate profits for its

investors. Her marketing experience

is evident in the way she has pitched

the Alberta Carbon Trunk Line as a

21st century version of the Alberta Gas

the alberta government also

committed $2 billion to support the

advancement and implementation

of carbon capture and storage (CCs)

technology. the government projects

CCs technology will be responsible

for 70 per cent of the province’s

Co2 emissions reductions by 2050.

JULy • AUgUSt 2011 Canadian ChEmiCal nEws 17

Trunk Line (AGTL). In a 2009 open

letter on the Enhance Energy website,

Cole explained the decision to christen

the CO2 pipeline the ACTL as follows:

“Cast your mind way back to 1954, when

the Alberta Government was under

pressure to allow the export of natural

gas via federally incorporated pipelines.

To ensure Albertans would have control

over their resources, legislation was

enacted to create [the AGTL]. This

orderly, unified pipeline system proved

to be a boon to the province’s natural

gas industry and played a crucial role

in establishing the petrochemical

industry here. Fast forward to today and

we Albertans face a similar challenge:

ensure that we once again have control

over our own resources while developing

a solution to permit the sustainable

production of bitumen.”

In an interview with ACCN, Cole

offers another analogy. “I also like

to describe it as akin to building the

TransCanada Highway,” she says.

“It’s building the linkages that allow

someone in Nova Scotia to sell goods

to Vancouver. No one company could

afford to build that highway, but by the

government doing so, you make this kind

of commerce possible. We’re trying to

do a similar thing — build the linkages

so people can access and use CO2 and,

collectively, reduce CO2 emissions.”

Warming to her subject, Cole adds

that government funding has allowed

Enhance Energy to expand the scope of

the project and to begin planning work

on lateral extensions to the original

pipeline that will help maximize its

long-term viability and impact. “Going

back to those analogies, you know, we

could start really small, just like when

we started in-house with one project,”

she says. “But if we are really going to

get hold of our emissions problem in

Alberta and in Canada, governments

are going to have to pave the way for

multiple projects, not just one. Because

we can’t solve our problems with just

one project — we need a lot more.”

As for Enhance Energy’s other

investors, Cole declines to name them;

“we are a private equity company, so

we don’t disclose.” But there is one

exception. In November 2007, the

venerable British-based commodity

bank, Barclays Capital, publicly

announced “a significant investment”

in Enhance Energy. In a news release,

Barclays cited Alberta’s recently enacted

climate change regulations and the

bank’s desire to invest in market solu-

tions to environmental challenges.

“People really are interested in

investing in our project because of its

dual nature,” observes Cole. “It has

that ‘green’ aspect, but it’s also an

economic proposition. At the same

time, this is a very long-term project,

so we need investors who are patient

and not looking for a quick payoff.”

Cole credits her training as a

chemical engineer with setting her on

the right path. “Rather than using your

thermodynamics or fluid mechanics

equations directly, I find engineering

degrees are a way of teaching people

how to solve problems, which is really

what we do in the oil and gas industry.”

Similarly, the MBA helped prepare

Cole for being her own boss. “When

you work for a large company, they set

the budgets for you, and you execute.

When you have your own small

company, you have to know where

the money is coming from, not just

how to spend it.” This last statement is

delivered with a broad smile.

After a quarter century, Cole clearly

remains fascinated by her chosen

profession. “I think the oil and gas

industry is very creative,” she says.

“From the outside, it probably looks

somewhat boring. But we’re always

trying to improve the way we do things

and we are always challenged; that’s

what keeps us going. There’s never

a dull moment.”

Earlier this year, Enhance Energy and northwest upgrading reached a formal agreement to receive $495 million from alberta’s CCs fund for the planning, development and construction of the proposed pipeline.

20  l’aCtualité ChimiquE CanadiEnnE JUILLet • AOût 2011

SIMS Recycling Solutions

Canada is an above-ground

mining company that

recovers valuable metals

like aluminum, copper and zinc from

electronic waste such as computers

and televisions. Electronics recyclers

have evolved in a challenging

regulatory environment that is

determining the best way to deal with

the growing amount of electronic

waste. Cindy Coutts, president of

SIMS Recycling Solutions Canada,

has been involved in waste and

recycling issues from both a commer-

cial and a regulatory perspective at

both the international and domestic

levels. ACCN spoke with Coutts to

get an insider’s perspective on how

e-waste laws and regulations are

shaping the future of her business,

which operates 14 sites in North

America and another 40 worldwide.

aCCn how did the idea of an ‘above-ground mine’ come about?

CC Metals are the ultimate recyclable

material. You can recycle them over

and over again and they never lose any

of their inherent properties unlike a

paper fibre, which you can only recycle

two or three times on average.

The first Canadian facility for SIMS

Recycling Solutions was originally

built as part of the mining company

AQ& sims Recycling solutions Canada president Cindy Coutts is leading the rapidly growing e-recycling sector, helping orchestrate the regulatory and policy changes needed to integrate metal and plastic salvage into the Canadian economy.

by tyler irving

give a toss

Noranda, which later became Falconbridge and eventually Xstrata. In the 1980s,

the focus on long-term sustainability was something that was bantered about quite

a bit. Since we sold a significant portion of some of our metals into a variety of

different industries that made products, we were looking to try to prevent the

metals from being lost into landfill, so that we wouldn’t have to go out and build

quite so many virgin mines to meet society’s insatiable need for metals.

We started looking at the variety of products that consumed our metals and

targeted electronics. Even though e-waste only makes up about one per cent of the

current waste stream, it is the fastest-growing addition and electronics consume

quite a variety of different metals. Originally we had three similar sites: one in

California, one in Tennessee and a third site that opened in Brampton in 2003.

aCCn what metals can you extract from e-waste?

CC As a non-ferrous company, we were interested in all the non-ferrous metals:

lead, tin, aluminum, copper, cadmium, mercury, nickel and zinc. But the industry

has evolved quite a bit in the past 25 years and we’re now looking at recovering

all of the resources in electronics, including steel and a variety of different plastic

chemistries. We have a recycling rate well into the 90 per cent range.

Obviously there’s a significant difference in the chemical makeup of a laptop,

a floor model photocopier or a cell phone, but if you take the group as a whole,

you’re looking at about 40 per cent steel and 30 per cent plastic. The remaining

30 per cent is a variety of other materials. So it’s predominantly plastic and steel,

but there are probably 25 different output streams that we create as a result of our

above-ground mining process.

aCCn how do you separate all these different streams from each other?

CC The first thing we do is a triage to remove anything that is hazardous, which we

don’t want going through our mechanical shredders. This includes things like small

mercury light bulbs that are in laptops and televisions. We send that to a dedicated

mercury bulb recycler. We also remove batteries as some, like a lead-acid battery, are

hazardous. You send that to an appropriate recycler.

Unfortunately all these hazards must be removed by hand because each electronic

product has a different hazard in it. On top of that, the battery may be in the top left

corner from a unit made in 1998 and in the bottom left corner of the same unit made

in 1999. We’ve invested quite heavily in dust collection equipment, to make sure

JULy • AUgUSt 2011 Canadian ChEmiCal nEws 21

businEss | e-wASte reCyCLINg

that none of that ambient dust is being inhaled by workers or is

discharged to the environment.

So then you’re left with the electronics without the

hazards, and those go through a series of mechanical shred-

ders. We then have several different mechanical separation

technologies. For example, we’ll pull off steel using its

magnetic properties and we get a nice clean steel chip that

we sell to a steel mill. It can be formed into any product

that you typically would make from steel such as rebar for

the construction industry. Then we pull off aluminum,

which goes to an aluminum smelter to be re-consumed.

Copper goes to make new wiring, new copper tubing, or new

electronics. The capacity of our combined plants is about

100,000 tonnes per year and we employ about 200 people.

aCCn how do you get your e-waste?

CC In Canada, until about four years ago — and only two

years ago in Ontario — e-waste was recycled on an entirely

voluntary basis. A company, government or school with old

electronics had a few options. Firstly, you could just put it in

a landfill. You can still do this; it’s not illegal in most juris-

dictions in Canada. Secondly, you could look up recycling

on the Internet, but what you’d most likely find are compa-

nies I’ll call “sham recyclers.” They would pick up the e-waste

and ship it to the developing world. When it arrives, they

use cheap manual labour to pick out the bits that have value:

the copper, steel and aluminum. Anything difficult or costly

to recycle, like the CRT leaded glass, would get dumped in

the rivers and ditches and lakes. Finally, if you wanted to do

the right thing, you could work with a company like SIMS,

and there’s a charge for environmentally sound recycling. It’s

fairly nominal, but there’s still a charge.

In the past few decades, we’ve seen the concept of

extended producer responsibility, or EPR. This is a global

concept that sprang out of jurisdictions in Europe and Japan,

where waste is a much more urgent problem because there’s

far less land space. EPR is a concept that puts the onus back

on the producer to manage the full life cycle of their prod-

ucts and this led to the concept of product stewardship. In

product stewardship, regulations are put in place mandating

manufacturers to manage their products at the end of their

life. They typically do that by levying a fee at the point of

sale of a new product; if you purchase a new television in

Ontario right now, you’ll notice that there’s a fee on your

invoice, called a recycling fee. That fee goes into a pool

that is managed by a not-for-profit corporation set up by the

manufacturers. The corporation effectively doles this money

out to recyclers that meet the standards to conduct proper

recycling on their behalf.

aCCn why charge a fee for recycling waste?

CC The economics are such that the resources we produce give

us a positive revenue, but some of them cost us to produce. For

example, steel gives us a positive revenue, but something like

mercury will cost money to recycle properly. So depending

on resource prices, these can net close to nothing. You need

to charge a fee for the recycling process to liberate all those

resources and to encourage investment into the technology

that can do this. This can come from the stewardship programs

I mentioned earlier. For example, Ontario currently offers an

incentive of $650 per tonne for personal computers and

$850 per tonne for display devices.

Cindy Coutts, president of

SIMS Recycling Solutions Canada.

CiC Fellowshipsdo you know a deserving member? the CIC fellowship is a senior class of membership that recognizes the merits of CIC members who have made outstanding contributions.

Nominations for 2012 CIC fellowship are due October 3, 2011.

for more information, visit www.cheminst.ca/fellowship.

Chemical Institute of Canada

Continuing Education for Chemical Professionals

Laboratory Safety course

September 19–20, 2011Vancouver, BCOctober 24–25, 2011London, ONfor → Chemists and chemical technologists whose responsibilities include managing, conducting safety audits or improving the operational safety of chemical laboratories, chemical plants and research facilities.

Registration Fees* CIC Members $550Non-members $750Student Members $150*includes Laboratory Health and Safety Guidelines 4th ed.

For more information, visit www.cheminst.ca/profdev

JULy • AUgUSt 2011 Canadian ChEmiCal nEws 23

In other jurisdictions where no

stewardship legislation exists, there is

still a fee for recycling electronics. It

ranges significantly, given the value

of the resources, the costs of dealing

with any contained hazards and the

energy required to separate and recover

the resources. We don’t receive any

government funding.

aCCn In terms of recycled materials, what are your biggest money-makers?

CC By unit, gold is most valuable at

nearly $1,500 per ounce, however, there

is very little gold in electronics. Steel, on

average, makes up 40 per cent of a mixed

electronic stream so by volume it has the

highest positive revenue. We recover

25 different resources, all with positive

value, however the cost to recover varies

by resource.

aCCn you mentioned unscrupulous operators who ship e-waste over-seas; is that legal?

CC It’s illegal in Canada to ship e-waste

to many countries. However, it happens

because transportation is very cheap.

Containers of goods from Asia that are

sold in our markets frequently go back empty, so the back-haul freight is very cheap.

Once the e-waste gets there, labour to pick it apart by hand is also cheap and environ-

mental laws — if they exist at all — are often not enforced.

aCCn how can this be prevented?

CC There are a number of things. Environment Canada is responsible for patrol-

ling our export borders, but we have very few resources for inspecting containers.

Secondly, there is a recycling standard that is evolving in Canada; the four prov-

inces that have regulated stewardship programs all use this standard. It’s a very good

start, but it needs to be audited much more rigorously. There are recyclers who are

approved as environmentally sound under the standard who probably shouldn’t be.

aCCn what is the future of above-ground mining?

CC I believe that we have to have individual producer responsibility, versus extended

producer responsibility, so that manufacturers actually compete on managing the

life cycle of their products. We don’t have a separate item on the bill for a TV that

outlines the cost to meet all the labour laws, or all the transport regulations. So why

on earth do we have a separate fee that talks about recycling? You force creativity and

efficiencies through competition.

aCCn why do you stay in this business?

CC I firmly believe that private industry has no bounds on its creativity, and if we can

become more sustainable as a society through companies offering environmentally

sound services, we’re going to get there a whole lot faster than through strictly regula-

tory means. We’re a for-profit organization and I think that’s terrific, because we can

transcend international boundaries and push higher and higher standards. When I

can go home at the end of the day and know that as a result of the work we’re doing at

SIMS, we’re diverting waste from landfill, we’re conserving resources, we’re managing

hazards well — how much more could you want in your job? You’ve got a career and

you’re doing something good for society.

The materials in obsolete electronics get a chance at a second life.

24  l’aCtualité ChimiquE CanadiEnnE JUILLet • AOût 2011

final VErdict

The prisoner stood, head bowed, in the witness

box, as the judge read the verdict. “Mercury,

alias Quicksilver, alias Hydrargyrum, as a

known neurotoxin, you are convicted of posing

a danger to humanity,” the judge declared. “I sentence you

to be banned in all practical forms from the manufacture,

import and sale of all products in Canada, beginning in 2012.

“Do you have any final words?” the judge asked, peering

over his spectacles at the thin, silver-haired defendant.

The prisoner raised his head to meet the judge’s gaze.

“Thank you, your honour. I know that nothing I can say will

change the decision of the court, however, I appreciate the

opportunity to defend my name. The charges against me are

based on a biased misreading of the facts. The many benefits

that I have brought to humanity over the past millenniums

have been ignored. I reiterate my defence that I have aided

humanity more than I have harmed it.”

Mercury cleared his throat and turned his gaze to the

packed courtroom: “I was born in humble circumstances, in

a ban on the import or use of mercury in manufacturing goes into effect in Canada next year.

mercury mounts a defence in the court of scientific inquiry.

by tyler irving

a block of cinnabar, thousands of years ago. For most of my

life I was a simple pigment, adorning buildings, pottery and

occasionally human bodies with a characteristic red hue. But

it was in the ovens of the ancient alchemists that I was liber-

ated by heat, assuming my familiar, dazzling form: shiny like

metal, flowing like liquid and able to combine with a seem-

ingly infinite variety of other metals in amalgams. I became

known as Prima Materia, the ideal form of metal. Along with

sulphur and salt, I was considered one of the fundamental

materials of the universe. Some considered me a bridge

between the known and the unknown, transcending solid

and liquid, earth and heaven, life and death.”

Mercury paused and scanned the riveted crush of onlookers.

“But anyone who took the alchemists seriously did so at their

peril. The Chinese emperor Qin Shi Huang was one. In the

months leading up to his death in 210 B.C.E., he ingested

great quantities of mercury-containing pills, which his doctors

believed would make him immortal. The emperor is believed

to have died of mercury poisoning. However, I respectfully

JULy • AUgUSt 2011 Canadian ChEmiCal nEws 25

ChEmistRy | MerCUry bAN

submit that it is the physicians’ malpractice, not I, that is

responsible for Qin Shi Huang’s demise.

“Around the same time,” Mercury continued, “I became

involved in the mining industry. My knack for combining

easily with gold allowed me to absorb small particles of this

metal from the ore — particles too small to be panned. As

part of my amalgam, however, they easily sunk to the bottom

of the miner’s pans and we could be separated once more.

If it weren’t for this, huge quantities of gold would remain

unrecovered to this day.”

Mercury paused to take a deep breath, then resumed his

oration. “Through mining, I gained an appreciation for

the finer things in life. One of my crowning achievements

was in the European and British haberdasheries of the

17th to 19th centuries. In my orange nitrate salt form, I broke

down the stiff outer hairs of beaver pelts, allowing them to

be more easily matted together into the felt hats that fine

gentlemen wore. Of course, some of the hat makers failed to

take precautions and inhaled the mercury vapours, leading

to sensory impairment, numbness, loss of vision, shaking,

clumsiness and anti-social behaviour. I assert once again that

I cannot be blamed for these effects.

“If there is a villain here, it is the unlearned medical prac-

tices of the times. Before the 20th century, doctors believed I

could cure the sick and extend life. I was prescribed for many

ailments, from teething pain to syphilis. Recall the poetic

but bitter aphorism: ‘a night with Venus is followed by a

lifetime with Mercury.’

“Pure white calomel, my chloride, is one of my more

attractive salts and is supremely useful for measuring electric

potentials, as scientists would later discover. But 200 years

ago, the best use that scientific minds could conceive of

for calomel was as a laxative. Benjamin Rush, a signer of

the United States Declaration of Independence, is doubt-

less responsible for the deaths of hundreds of patients with

yellow fever, to whom he fed calomel until they foamed at

the mouth and their teeth fell out. His laxatives, called

‘Thunderclappers,’ were used by members of the Lewis and

Clark expedition on their famous trek from Illinois to the

Pacific Coast. To this day, the 19th-century excursion can be

traced by deposits of mercury in the soil.

“Yet, I have much to contribute to human health,” Mercury

continued. “In my liquid elemental form, I’m practically

2012

26  l’aCtualité ChimiquE CanadiEnnE JUILLet • AOût 2011

harmless, for I am hardly absorbed by the digestive tract at all.

In this form, I can do plenty of good, most notably in dental

fillings. For more than 100 years, I have repaired the broken

teeth of humankind, and many people still carry me in their

mouths. Without my help, they would still be suffering from

pain, infection and nutritional problems.

“I am a boon to medicine in other ways. Mercury ther-

mometers made it possible to measure miniscule rises in

temperature while mercury sphygmomanometers allowed

blood pressure measurements. Without these tools, health

care would still be in the dark ages. For more than a century,

my bright orange-coloured organic salt merbromin —

known as Mercurochrome, Asceptichrome or Supercrome

— kept wounds clean from bacterial infections. Another of

my organic forms, Thimersol, also fights bacteria, keeping

vaccines, medicines and cosmetics from spoiling.”

Mercury directed his comments to the judge. “You’ll

find my handiwork in places where you least expect it. The

very paper you are reading from was prepared and bleached

with chemicals that for decades were produced using the

Castner-Kellner process. This system employs a mercury-

based electrolytic cell to break apart salt water into sodium

hydroxide and chlorine gas, both of which are useful in the

pulp and paper industry. And my salts can be used as cata-

lysts in the production of acetaldehyde, a fantastically useful

chemical used in the manufacture of perfumes, plastics,

synthetic rubber, drugs, and explosives.

“Regretfully, my work in these important areas has been

curtailed due to my negative reputation. It’s true that residues

from industrial processes — if improperly designed — can

leak into water sources. Here, microorganisms change me into

methylated organic forms that, unlike my native metal, are

easy for organisms to absorb. I am thus consumed by plankton,

which are eaten by shellfish. I accumulate and concentrate

as I move up the food chain into seals, whales and humans.

This is the cause of Minamata disease, first noted near an

industrial plant in Japan almost 60 years ago. The symptoms

are similar to the mad hatters of past centuries: numbness

in the hands and feet, trouble balancing, difficulties seeing,

hearing, swallowing and even death. Some of the same symp-

toms appeared among aboriginal Canadians living near paper

mills in Northern Ontario in the 1970s. Even today, northern

peoples who consume whale and seal meat have elevated

levels of mercury in their hair, blood and breast milk.

“But such things are the result of human shortcomings: poor

regulations, inadequate waste management and ill-conceived

plant designs. Because of them, I have been usurped by other

molecules in antiseptics, by polymer composites in dental fill-

ings and by electronic devices in blood pressure machines. My

work in industry has been taken over by nickel and titanium

and alcohol now fills thermometers.

“But I contend that I am no more a threat to humanity

than any of my metallic brethren and still have an important

role to play. I light up cities all over the world as a compo-

nent of compact fluorescent light bulbs, the one application

for which no substitute has yet been found. The energy saved

by these bulbs cuts down on the use of coal-fired power

plants, the same plants from which my vapours can’t help

but be expelled into the air by the scalding temperatures in

the furnaces. I will continue to have a place in laboratories,

where my unique abilities have always been appreciated.

And I hold out hope that the chemists of the future will

find new uses for my talents that will enable me to take my

rightful place once again.”

Mercury paused. “Your honour, I am finished now. Thank

you for allowing me to restate and elucidate my defence,

although I realize that it has no impact upon the decision of

this court.”

The judge looked down at the defendant in the dock.

“Mercury, your contributions to the intellectual progress

and betterment of humankind are indisputable. However,

the evidence: that you have poisoned the environment and

been responsible for countless cases of disease, suffering and

death are equally indisputable. In the opinion of this court,

your usefulness is outweighed by your disadvantages and for

this you are banned. Your life sentence commences in 2012.”

The judge picked up the gavel and brought it down.

“Court is dismissed.”

the CCUCC Chemistry doctoral Award Sponsored by the Canadian Council of University Chemistry Chairs (CCUCC)

The CCUCC Chemistry Doctoral Award is presented for outstanding achievement and potential in research by a graduate student whose PhD thesis in chemistry was formally accepted by a Canadian university in the 12-month period preceding the nomination deadline.

Award: A framed scroll and cash prize.

Nominations are open for the 2012 award.

Submit your nomination to: Awards Manager | Canadian Society for Chemistry | [email protected]

Deadline: September 15, 2011The full Terms of Reference for this award are available at www.chemistry.ca/awards

Canadian Society for Chemistry

CSC

October 14, 2011.

CIC

28  l’aCtualité ChimiquE CanadiEnnE JUILLet • AOût 2011

SOCIety NewS

ConferenCeS

Chemistry conference draws nobel Prize winners The best and brightest in the chemical sciences descended upon the Palais des congrès de Montréal June 5–9 for the 94th Canadian Chemistry Conference and Exhibition. Hosted by the Canadian Society for Chemistry (CSC), the conference, with its theme “Chemistry and Health,” drew academics, including three Nobel Prize winners, members of industry and business as well as students to celebrate achievement and to present the latest in innovation and research.

The record number of attendees — 2,967 — included 1,340 graduate students and post-doctoral researchers whose work was showcased in evening poster presentations. About 2,400 abstracts were also presented in the Palais plenary lecture rooms. Many of these were so popular, spectators spilled out into the hallway to catch the talks, which encompassed chemistry in all its forms: inorganic, organic, industrial, analytical, materials and biological and medicinal, among other disciplines.

Several Nobel Laureates attended the conference, including the University of Toronto’s John Polyani, HFCIC, who spoke about surface patterning on the molecular scale, and Roger Tsien of the University of California who lectured on building molecules to image electric fields and disease processes, a significant advancement within the field of neurobiology. Barry Sharpless, professor at California’s Scripps Research Institute, who shared a Nobel for chemistry in 2001, discussed green chemistry and catalysis in a session honouring Tak-Hang (Bill) Chan.

Other notable talks included the CIC Medal Lecture by Adi Eisenberg, FCIC, of McGill University, who was feted for his work on the development of block copolymer vesicles. Montréal Medal Lecture winner Jan Kwak, FCIC, of Dalhousie and Qatar universities discussed his work in colloid science. Mel Usselman, MCIC, of the University of Western Ontario won the CIC Award for Chemical Education while X. Chris Le, FCIC, of the University of Alberta

received the Environment Division Research and Development Award. A keynote lecture by Stephen Hanessian, FCIC, of the Université de Montréal on the design and synthesis of drug prototypes inspired by natural products was warmly received by conference-goers.

Another highlight was the CIC and Canadian Society for Chemistry Awards Reception and Banquet, held June 8 at the glass-walled Montréal Science Centre on the King Edward Pier in the Old Port of Montreal. With a spectacular summer electrical storm as backdrop, 20 researchers and professors were lauded for their contributions to Canadian chemistry while a smartly dressed crowd dined on a three-course dinner with wine.

Next year’s conference, themed “Energizing Chemistry,” will be held in Calgary at the Telus Convention Centre May 26–30.

CIC chair Hadi Mahabadi, FCIC (left) with the 2011 CIC Medal winner Adi Eisenberg, FCIC.

kr

IStA LerO

Ux

Canadian Chemistry Olympiad participants were recognized.

Grad students and post-doctoral researchers competed for best poster.

JULy • AUgUSt 2011 Canadian ChEmiCal nEws 29

SOCIety NewS

iyC in Jeopardy!Jeopardy!, one of North America’s leading syndicated game shows, featured questions related to the 2011 International Year of Chemistry during its June 21 episode. With nine million daily viewers, Jeopardy! was the perfect venue for publicizing the IYC’s message of celebrating chemistry and the contributions that it makes to society.

STuDenTS

P.E.i. draws top chemists Top chemistry students and faculty members from the Atlantic region flocked to the University of Prince Edward Island for ChemCon 2011, held May 20–22 in Charlottetown. The conference opened with a career fair, three plenary lectures, a mixer, social event and ended with an awards banquet. Undergraduate and graduate students competed for best oral and poster presentations.

CorreCTIon

May’s ACCN reported that NSERC presi-dent Suzanne Fortier first met Thompson Rivers University chancellor Nancy Greene in an airport lounge. In fact, the initial meeting between Fortier and Green took place at a dinner for honorary degree recipients at Thompson Rivers University.

In MeMorIaM

The CIC wishes to extend its condolences to the family of Dr. Leo Breitman, FCIC.

CSChe

InTernaTIonal year of CheMISTry

let them Eat Cake

ouTreaCh

More than 500 elementary and high school students from across Canada descended upon Toronto’s Seneca College Newnham Campus to compete for more than $1 million in prizes at the 50th annual Canada-Wide Science Fair May 16–17. Best Project honours went to 17-year-old Grade 12 students Danny Huang and Jaclynn Wong of Harry Ainley High School in Edmonton. The pair probed the ability of the drug

PUGNAc to slow the growth of cancer cells. The research may have implications for the early detection and treatment of cancer. In addition to the $10,000 Best Project Award, Huang and Wong won the $5,000 Platinum Award for Best Senior Project, a $1,500 senior gold medal, the $1,000 senior Health Challenge Award and $22,000 in scholarships from five Canadian universities.

Annapolis Valley, N.S. student Ellen Song’s winning entry secured her a spot with Team Canada in Expo Sciences International, a noncompetitive science fair organized by the International Movement for Leisure Activities in Science and Technology (MILSET) held in Bratislava, Slovakia this July. Song, 16, used a mixture of volatile aldehydes to fumigate apples that had been in storage for six months. These aldehydes are known to be the precur-sors of the aroma of apples. Song showed that natural enzymes in apples use such compounds to renew and enhance the natural aroma, netting her the UNESCO International Year of Chemistry Award.

$1 million for budding scientists

Dalhousie University proved that there is no sweeter science than chemistry when faculty and students served up slices of periodic table cake on May 7 in support of Science Rendezvous and the International Year of Chemistry (IYC). The Chemistry Rendezvous BBQ, organized by Dalhousie’s Department of Chemistry, not only served cake but batches of edible liquid nitrogen ice cream.

Carleton University’s Department of Chemistry and Institute of Biochemistry also showed its support for Science Rendezvous by organizing a Chemistry Magic Show festival. Jeff Smith, Bob Burk, MCIC, and Jeff Manthorpe, MCIC, wowed a crowd with demonstrations involving liquid nitrogen, flash paper, spoons made of gallium that melted in warm water, ice cubes that sank and spontaneous combustion of an M&M. Visitors turned pennies into miniature Olympic medals by plating them with zinc

then heating them, made ice cream from chocolate milk and liquid nitrogen and tried to identify foodstuffs like cinnamon, vanilla and grape by the smell of the major constituents of their aroma.

Science Rendezvous, launched in Toronto four years ago, was celebrated at more than 20 venues across Canada. The annual event was created to enhance the public’s understanding of chemistry and promote science awareness.

© M

Ike

twO

hy/

the

New

yO

rk

er C

OLL

eCtI

ON

geIr

SIM

eNSe

N, S

CAN

wAy

CAt

erIN

g

30  l’aCtualité ChimiquE CanadiEnnE JUILLet • AOût 2011

The enduring geniusof Robert Woodward

T hat’s a bet!” exclaimed Linus Pauling, as he accepted a proposed wager from Robert Burns Woodward, Harvard

University’s up-and-coming young chemistry professor. I suspect most of you have heard of Pauling, who was already world famous in the 1940s and on his way to the 1954 Nobel Prize in chemistry, but Woodward remains largely unknown to the general public. Yet in the field of organic chemistry, he is a colossus.

The era of antibiotics was just beginning to unfold in the mid-20th century and the tetracyclines had just been isolated from a soil bacte-rium. Oxytetracycline (trade name Terramycin) was of special interest because of its effectiveness against a broad variety of bacteria, but its molecular structure was unknown. This was just the kind of challenge Woodward loved. Solving the mystery of Terramycin’s structure might lead to a laboratory synthesis, or perhaps even to a more effective version of the drug. Pauling wasn’t particularly inter-ested in Terramycin, but he was very interested in x-ray crystallography, an emerging instrumental technique that was capable of determining molec-ular structure by studying how x-rays bounced off atoms in a sample. He was confident that the new x-ray technique would yield results before Terramycin’s structure could be solved using classic chemical methods. But Pauling didn’t reckon with the brilliance of Woodward. By age 20, Woodward

had achieved a doctorate, followed by a post-doctoral fellowship and a professorship at Harvard.

The man eventually regarded as the Mozart of organic synthesis could now pursue his passion. Woodward would make molecules like quinine — derived from the cinchona tree — that had never before been synthesized. After about 50 years of meticulous experiments by numerous chemists, the puzzle of quinine’s structure was finally solved in 1908. Given its complexity, synthesis seemed almost impossible. By 1944 however, with associate William von Doering, Woodward had worked out the elaborate synthetic method that catapulted him to fame. Woodward’s breakthrough was espe-cially timely due to a quinine shortage in the United States, caused by the Japanese occupation of Java where cinchona trees grew.

In truth, the impact of Woodward’s synthesis did not lie in the commer-cial production of quinine. It was too complicated and impractical for that. But he had demonstrated that extremely intricate organic molecules could be constructed through ingenious reaction sequences. This was thanks to Woodward’s encyclopedic knowledge of chemical reactions and his uncanny ability to examine the structural diagram of a molecule and deduce the simple compounds that could serve as starting materials for its synthesis.

With his legions of students, Woodward went on to synthesize a host of other compounds including

cholesterol, cortisone, strychnine and chlorophyll as well as his crowning achievement, the incredibly complex vitamin B12. The latter synthesis, carried out in conjunction with Swiss chemist Albert Eschenmoser, required the collaborative effort of more than 100 students and post-doctoral fellows, an achievement that took 12 years.

Ironically, none of these syntheses had commercial application. Woodward carried them out simply to show that they could be done. But the schemes turned out to be invaluable. The reactions developed and the sequences of ingenious steps would prove to be useful in a myriad of practical chemical syntheses. The Woodward era changed the face of organic chemistry.

Woodward was also famous for his clever turns of phrase and amazing blackboard technique with coloured chalk. I was lucky enough to see him deliver a talk in the 1970s where he described the solution to the thorny puzzle of Terramycin. He had determined its structure before crystallography confirmed it, winning the bet with Pauling. But Woodward also stated that he knew that such a bet could never be made again because the future of molecular structure determi-nation lay in instrumentation. He was right about that, too.

As might be expected, Woodward was a workaholic. When asked once if he took vacations, he replied that he tried to take Christmas day off. Woodward was the recipient of the 1965 Nobel Prize in chemistry. The consensus is that he would have won another had he not died in 1979 of a heart attack in his sleep at the age of 62.

Joe Schwarcz is the director of McGill University’s Office for Science and Society.

Read his blog at chemicallyspeaking.com.

CheMFusion

by Joe schwarcz

the Catalysis AwardCall for NominationsThe Catalysis Award, sponsored by the Canadian Catalysis Foundation, is awarded biannually to an individual who, while resident in Canada, has made a distinguished contribution to the field of catalysis. The recipient of the Award receives a rhodium- plated silver medal and travel expenses to present the Award Lecture at the Canadian Symposium on Catalysis or the annual conference of the Canadian Society for Chemistry or the Canadian Society for Chemical Engineering.

Nominations for the 2012 Award must be submitted in writing to the Awards Manager by October 3, 2011, using the CIC nomination form found at www.cheminst.ca/awards.

Previous winners of the Catalysis Award are R.J. Cvetanovic and Y. Amenomiya (1977), R.B. Anderson (1979), C.H. Amberg (1982), H. Alper (1984), H.W. Habgood (1986), J.B. Moffat (1988), B.R. James (1990), B. Wojciechowski (1992), I. Dalla Lana (1994), M. Ternan (1996), S. Kaliaguine (1998), G.L. Rempel (2000), M.C. Baird (2002), C.A. Fyfe (2004), S. Brown (2006), Flora T.T. Ng (2008) and R. Stanley Brown (2010).

For more information, please contact the Division Vice-Chair, William Epling, Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1; Tel: (519) 888-4567, ext. 37048, Fax: (519) 888-4347, E-mail: [email protected]

or

Gale Thirlwall, Awards Manager, Chemical Institute of Canada, 130 Slater Street, Suite 550, Ottawa, ON K1P 6E2; Tel: (613) 232-6252, ext 223; Fax: (613) 232-5862, E-mail: [email protected].

CiC

Chemical Institute of Canada

Innovation, Industry and Internationalization

61st Canadian Chemical engineering

Conference

London, Ontario, Canada

October 23—26, 2011

Innovation, industrie et internationalisation

61e Congrès canadien de génie

chimique

London, Ontario, Canada

du 23 au 26 octobre 2011

Canadian Society for Chemical engineering

Société canadienne de génie chimique

www.csche2011.ca

SCGChCSChe