rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 )...

80
REPORT ON COLLABORATIVE PROJECT WITH THE BRITISH WATERWAYS BOARD OH THE EFFECTS OF AFFORESTATION ON THE RUNOFF FROR THE CATCHNENTS SUPPLYING THE CRINAN CANAL RESERVOIRS rielf ;/ - 003 ti CORE Metadata, citation and similar papers at core.ac.uk Provided by NERC Open Research Archive

Upload: others

Post on 28-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

REPORT ON COLLABORATIVE PROJECT

W ITH THE BRITISH WATERWAYS BOARD

OH THE EFFECTS OF AFFORESTATION

ON THE RUNOFF FROR THE CATCHNENTS

SUPPLYING THE

CRINAN CANAL RESERVOIRS

rielf ;/ -003

ti

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NERC Open Research Archive

Page 2: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

r •

Page 3: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

CONTENTS

1. INTRODUCTION

72. FOREST INTERCEPTION MEASUREMENTS'

3 . FOREST INTERCEPTION MODELLING

4 . HEATH INTERCEPTION MEASUREMENTS

5. SOIL MOISTURE MEASUREMENTS

46 . CLIMATOLOGY

47. EXTRA EVAPORATION LOSS RESULTING FROM AFFORESTATION

48. CONCLUSIONS

49. REFERENCES

6

Page 4: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 5: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

(2) FOREST INTERCEPTION MEASUREMENTS

-4-

Cumulative values of gross rainfall from the Loch An Add ground levelgauge and net rainfall from the two plastic sheet gauges are shown i nFigure 2.

For periods in which data were lost from one sheet only the data from theother were directly substituted (periods 1.4.79-20.4.79 and 1.7.79-31.7.79see Figure 2).

However, for two months during the winter cf 1978-1979 data were lostthrough icing of both net rainfall gauges and net rainfall had to beestimated by assuming an appropriate value of the interception ratio(where the interception ratio is defined by(Rainfall-Net rainfall)/Painfall.

The value chosen was 33;; and these estir.ates are shown as a dotted linefor this period in Figure. 2.

The monthly and annual totals (exclud ing snow periods ) of rainfall, andnet rainfall recorded by the two sheets are shorm in Table 1 together withthe interception rat ios.

Page 6: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

4

Page 7: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

(1) INTRODUCTION

-3-

Recent research has shown that in the high rainfall upland areas of the

UK, evaporation losses from forest are higher than those from shorter

veoetation. The primary cause of the increased evaporation is the much

enhanced evaporation rates from forests during and follow ing precipitation

(an "interception" loss).

The objective of the present study is to determine the increase in

evaporation loss that will result from the afforestation that is now

takino place on the catchments of the Crinan Canal Reservoirs.

The study, initiated in November 1978 has so far been concerned with:

(1) Measuring and modelling the interception loss from mature forest at an

experimental site located on the western bank of Loch An Add (see Fig. 1);

(2) measuring soil moisture deficits beneath forest and heath vegetation

to determine the transpiration from these crops (The location of neutron

probe access tubes are also shown in Fig. 1), and mor e recently, since

June 1980, with:

(3) an experiment to measure the interception characteristics of

intermed iate heioht heath vegetation using a "wet-surface" lysimeter

system.

Page 8: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 9: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

111 l o 11 78-30 .11.78 197.3 128.21 132.97 0.350 0.326

1.12.78-28 .12 .78 145.8 84 .74 89.16 0.419 0.388111 29.12.78-26 . 1.79 Snow Period

1 27. 1.79-22. 2.79 Snow Period

p 23. 2.79-29. 3 .79 197.6 126.55 124.25 0.359 0.371

30 . 3.79-26. 4 .79 38.8 46.79 49 .41 0.473 0.4441

27. 4.79-31. 5.79 107.6 57.87 60.34 0.462 0.439

1 1. 6.79-28. 6 .79 63.3 32.14 34.37 0.492 0.457

29. 6 .79-26. 7.79 129.5 82.87 90.74 0.360 0.299

27 . 6 .79-23. 8.79 158.5 99.53 105.74 C.372 0.3331

24. 8.79-27. 9.79 195.9 113.6 118.01 0.420 0.398

/ 28. 9.79-10.11.79 324.6 206.51 218.31 0.364 0.327

1

Annual 1631.4 978.81 1022.76 0.400 0.3731

Period:November 1978 - November 1979

Rainfall

-5-

Table 1

Net Rainfall

Sheet 1 Sheet 2

Interception Ratio

Sheet 1 Sheet2

Page 10: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

l

1

Page 11: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

-6-

Period: November 1979 - November 1980

Rainfall Net Rainfall

Sheet 1 Sheet 2

Interception Ratio

Sheet 1 Sheet 2

11.11.79-29.11.79 179.3 111.01 118.43 0.38 0.3430.11.79- 4. 1.80 256.5 135.74 157.37 0.47 0.385. 1.80-31. 1.80 65.0 26.11 29.18 0.59 0.551. 2.80-28. 2.80 126.0 60.97 73.20 0.51 0.41

29. 2.80-27. 3.80 83.4 53.72 57.51 0.35 0.3128. 3.80-24. 4.80 27.5 9.13 8.59 0.66 0.6825. 4.80-29. 5.80 33.9 23.32 24.92 0.31 0.2630. 5.30-26. 6 .80 164.3 89.48 106.30 0.45 0.3527. 6.80-31. 7.80 180.7 98.01 103.31 0.46 0.431. 8.80-28. 8.80 120.5 67.06 71.78 0.44 0.40

29. 3.80-25. 9.80 233.5 177.87 190.06 0.37 0.3326. 9.80-30.10.80 309.5 186.74 208.09 0.39 0.3331.10 .80-27.11.80 179.0 107.37 114.66 0.40 0 .36

Annual 2009.1 1146.53 1263.40 0.43 0.37

Page 12: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

-

Page 13: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

S .

The present interception model is defined by the Penman-Monteith evaporation• equation (Monteith 1965):

•-1 -1Lambda*E = Delta*Rn + (Rho*Cp*VPD)/Ra m s )

Delta + Gamma*(1+Rs/Ra)

(3) FOREST INTERCEPTION MODELLING

where Delta = slope of the saturation vapour

pressure curveo -1

(kPa C )5-2 -1

II - = vapour flux (kg m s )

o -1• Gamma = psychrometric constant (kPa C )

-1• Lambda = latent heat of vapourisation (J kg )

XI -1Ra = aerodynamic resistance (s m )

a -3Rho = density of air (kg m )

• -1Cp = specific heat of air 0 kg )

-zRn = net radiation m )

Rs = surface resistance (assumed zero-1

when the canopy is wet) (s m )

VPD = vapour pressure deficit (kPa)

and by the continuity equation:

4

dC/dT = k(1 - exp(bC)) - ' (mm min )

where = (1 - p)R - E (mm)

Page 14: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

_]

Page 15: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

and

The canopy drainage parameters b, k, and p and the aerodynamic parameter Ra,are derived by optimisation techniques using a non-linear least squaresalgorithm. This algorithm minimises the sum of squares of the differencesbetween the predicted and observed net rainfall profiles on a 5 minutebasis. The optimal parameter values determ ined for the Spruce forest atCrinan during the period 16 August to 2A August 1979 are shown in Table 2.For comparison, the optimal parameter values determined for the Spruceforest at Plynlimon are also shown.

Model parameter

Ra

-1= drainage parameter (mm )

= canopy storage (mm)

= evaporation rate as estimated-1

by the Penman- Mont e i t h equation (mm min )

- 1= drainage parameter (mm min )

= "free throughfall" fraction (dimensionless)0 = the rate of precipitation plus

-1evaporation (mm min )

- 1= precipitation rate (mm min )

Table 2

(Threshold Plynlimon Crinan

rodel, Calder 1979)

3.5

0.05

4.07

0.057-5

9.56 * 10

2.24

Page 16: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

-

Page 17: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

(4) HEATH INTERCEPTION MEASUREMENTS

Measurements of the evaporation rates from wet heather and grass have beenI made using a recently developed wet-surface weighing lysimeter system and

constitute the first serious field trial of it.

The system essentially comprises a Pet microcomputer and Sartorius0 electronic balance (0 to 30 kg) with an accuracy of one gramme. It is

powered by a 1.5 kW Honda generator. Meteorological variables are alsomeasured by an automatic weather station. Figure 3 shows the lysimeter and

I° weather station and figure 4 shows the sample after installation of the0 lysimeter. A cross-sectional diagram of the lysimeter is shown in figure 5.

i The Pet and its peripheral devices are housed in a caravan which can beparked up to 100 metres distant from the site of the experiment. MulticoreI cables connect the computer to the balance whi ch is housed in a purposebuilt box whi ch protects it from dirt and moisture while allowing it tcfunction normally. When the lysimeter is in operation a pan containing thesample of vegetation together with the top few centimetres of soil rests on1 top of the box whi ch resides in a lined hole (see Fig. 5). The hole is keptfree of standing water by a small battery operated marine (totallyimmersible) pump and float-switch. The weight of the sample is monitored bythe Pet approximately once a second and it also nonitcrs the meteorological

1 variables from the weather station at a frequency determined by the1 experimenter; a frequency of once a minute was used at Crinan. On-line

calculations are performed and the raw data are stored on floppy disks forlater analysis.

/ The experiment was set up at four sites on the catchment (see Fig. 1), eachone chosen as being representative of the local area. Samp les whi ch wereeither predominantly heather or grass were used anC evaporation rates were

Page 18: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 19: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

,

-10-

determined while the canopy was wet (and therefore did not represent

transpiration rates). Sprayers, both petrol driven and manual pump types,

were used on occasions when there was either no rain or not enough to wet

the canopy thoroughly. Care was taken when setting up the lysimeter and

throughout the experiment to ensure that surrounding vegetation was

disturbed as little as possible.

Uhen the canopy is wet the evaporation rate iS dependent only upon the net -

radiation, the temperature, the vapour pressure deficit and the aercdynamic

resistance; the aerodynamic resistance is in turn governed by the wind

speed, crop type and condition and site characteristics. The evaporation

rates were measured at site 1 in June and at the other sites in September.

Sites 1 and 4 were on exposed hills with w ind speeds higher than the average

for all the sites: site 3 was near loch na Faoilinn. A variety of weather

conditions were encountered.

Table 3 sumnarises the evaporation resu lts. As expected the exposed sites

gave higher evaporat ion rates than the other two and it is also believed

that the values obtained from the spray runs o.ay be unrepresentative of

natural wet conditions due tc high vapour pressure deficits caused by the

dryness of the surrounding area. From the non-spray run mcasurerants it is

possible to give a mean sumr.er daytin€ evaporation rate for wet heather of

about 0 .5 mm an hour for sunny conditions and 0 .3 -- an hour for cloudy

conditions. The mean rate for vet grass is about 0 .11 mm an hour. W inter

evaporation rates wi l l be considerably less. Night time evaporation was also

measured and found to be less than 0.01 - - z.n hou r for both heather and

grass.

Further analysis of the data will yiet: carameter values which can be used

in interception modelling.

Page 20: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 21: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

Table 3

Crop Site Date Time Weather Spray !lean Evaporation rateWindspeed

g.m.t. m/s add hr

Heather 1 21-6 1700 overcast no 5.7 0.325 +/- .0051 22-6 1015 sunny no 6.3 0.44 +/- .0052 23-9 1715 cloudy no 4.9 0.08 +/- .012 23-9 2200 no 2.1 0 .006 +/- .0012 24-9 0630 no 2.0 0.36 +/- .0012 24-9 0740 no 3.4 0.23 +/- .0022 24-9 0905 sunny no 3.7 0 .56 +/- .0022 24-9 1050 cloudy no 4.1 0.39 +/- .0032 24-9 1156 bright sun no 4.3 0.71 +/- .0013 25-9 1624 cloudy yes 3.0 0.38 +/- .0013 25-9 1730 cloudy yes 3.9 0.15 +/- .0014 27-9 1320 sunny yes 6.6 0.85 11 - .0054 27-9 1425 sunny yes 6.5 0 .65 +/- .0014 27-9 1530 sun/cloud yes 5.5 0.57 +/- .0014 27-9 1630 sun/cloud yes 4.0 0.19 +/- .0014 27-9 1740 sun/cloud yes 4 .2 0.13 +/- .0044 28-9 0715 cloudy no 3.6 0.03 +/- .0054 28-9 0855 cloudy yes 4.4 0.11 +/- .00054 28-9 1100 cloudy no 3.5 0 .47 +/- .0014 28-9 1330 sunny yes 5.3 2.5 +/- .003

Grass 2 24-9 1405 cloud/sun yes 3.4 0.17 +/- .0013 24-9 1700 Yes 2.5 0.006 +/- .0023 25-9 0300 sun/cloud no 1.9 0.04 +/- .00013 25-9 0949 sun/cloud no 2.5 0.19 +/- .00033 25-9 1140 sunny yes 3.1 0.33 +/- .0014 28-9 1730 yes 2.0 0.005 +/- .002

Page 22: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 23: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

(5) SOIL MOISTURE MEASUREMENTS

The object of the soil moisture observations on the Crinan catchments was

to estimate the losses due to transpiration by monitoring the development

of so il moisture deficits (SMD) under differen t vegetation types. This

method has the disadvantage that when the so il is beneath field capacity

the residual drainage (both vertical and lateral) is ignored. This

residual drainage has been found to be appreciable in situations with deep

water tables but is expected to be small in the soils found at Crinan

which overlie impermeable bedrock and generally have shallow water tables.

The soil itoisture observations were made using a neutron probe developed

at the Institute o f kydrology. The details o f the sites of the access

tubes are shown in table 4. The first group o f sites were set up in

July/August 1979 and the second in Nay 1.980 when it became evident that

large Si;Ds were developing.

Page 24: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 25: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

Date-installed'

-

1for day i

0

SHDi < 0, SflDi = O.

-13 -

/ able 4

31 - 7 - 79 NR 796879 1.20m - 2.25m sitka spruce brown earth 04-0731 - 7 - 79 NR 801878 all 2.50m myrtle peat 01-03.

1 1 - 8 - 79 NR 802878 1.00m - 1.35m myrtle/ brown earth 11-13heather

1 - 8 - 79 NR 818901 1.60m - 2.25m bracken brown earth20 - 5 - 80 NR 817885 1.0m - 1.2m heather peat 26-3120 - 5 - 80 NR 819887 1.75m - 2.25m heather peat 20-25

Grid ref. Tube dipths Vegetation Soil type Tube n o:

1The analysis used below follows broadly the methods outlined in detail in Calder

I° et al (1981). Hodel estimates of the SHD are made using a daily soil moisture0 balance:

0 SNDi = SHDi-1 + evaporation estimate - rainfall

0

0

) The evaporation estimate is generally a potential evaporat ion, sometimes reduced) using a soil moisture depletion model.

To calculate the observed SHD a field capacity value at each tube is required,/ this was found by optimisation using a simple SMD model (the optimisation usesonly periods when the Sflp is' small (< 30 mm)). This procedure provides anobjective method of determ inins the field capacities. For this optimisation itwas assumed that the evaporation is always equal to the Penman potential. It has

-

Page 26: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 27: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

-14 -

been shown that the optimised values are essentially independent of theevaporation sub-model used. For these field capacity optimisations and for thesubsequent model runs it was necessary to construct estimates of the dailypotential evaporation from daily meteorological observations of temperature,humidity, sunshine, rainfall and wind speed. These quantities were estimated fromthe local climatological stations: Knapdale, riachrihanish, Dunstaffnage andKildonan. The data from the automatic weather stations were used to check thatthese values were representative of the Crinan catchments. The various estimatesthe potential evaporation used in Calder et al (1981) were calculated for Crinan(Fig. 10), of these most use was made of Penman Et, this is the standard 1948form using an albedo of 0 .25.

Figures 6 tc 9 show the predictions of one of the simpler models, using thePenman Et E S the evaporation estinate. It is evident that the only appreciableSilDs (observed or predicted) occured in the dry period in April and Nay 1980. Itis these data that provide the most useful information. In the rainless period(days 100-140) the development of the si ..D beneath the forest is predicted towithin 5 mm by the use of the Penman potent ial evaporation and no so il moisturedepletion model, a maximum Sr,D of 100 MN i S reached. In the subsequent wettingup period (days 14C-200) the soil did not wet up as fast as the model predicted;this suggests a loss of rainfall which could be accounted for by the interceptionlosses from the forest. Fioure 11 shot:s how the model fit is improved byincluding a simple interception ratio (the model used is similar to Calder andNewson, 1979); considering the limited data and the uncertainties within themodel the agreement is very good.The SfiDs observed at the myrtle and heather sites, unlike the forest, did notdevelop at the potential rate, possible explanations for this ano

1/ heather and myrtl. exert a strono stomatal control,

nally are that:

2/ the new season leaves may not have fully developed at this time of year,

Page 28: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 29: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

0p 3/ there is a significant lateral inflow of soil moisture.

/ Explanat ion 3 is possible for the heather and myrtle site, which is a peat site0 at the bottom of a local valley, but is unlikely at the other heather sites. It_ must be concluded that at this time of year the transpiration from heather is

much less than from spruce.0 "

0 The results described above are based on only one dry period, and theobservations at two of the sites were only started halfway through this period.It is sugoested that the soil moisture observations are continued for the summer

6 and autumn of 19E1 at least. The access to the upper heather site is now) considerably more difficult and it is proposed that this be dismantled and a newa site established within bracken. The heather and . myrtle site was ploughed and

planted with spruce a few years before the installation of the tubes; in 1979

these trees were small relative to the myrtle but they are now of similar size;I ft would be cf interest to monitor the changes of M ) as the trees developa further.

w

Page 30: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 31: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

(6) CLIMATOLOGY

The monthly averages of the meteorological variables from one of the automatic

weather stations above the forest canopy W ull 1) are presented in table 5 for

1980. The figures confirm the picture of the climate described in the earlier

report (a very low vapour pressure deficit, a relatively low summer temperature

and noderate wind speeds). A comparison was made with the observations from the

nearest standard climatological station, Knapdale, a station by the canal 2t

Cairnbarn, this comparison showed:

1/ the estimate of wind speed and vapour pressure deficit are very similar to

those measured on the catchments,

2/ the monthly rainfall totals are within a few rams of those measured at Loch An

Add, the only major deviation occuring in Febuary 1979 when there was appreciable

sno fall, the Loch An Add neasurement in this period is probably an

underestimate,

3/ the solar and net radiations are badly estimated from the Vachrihanish

sunshine observations (there are no such observations from Knapdale), this is not

surprising considering the separation of the stations and the uncertainties in

the equations used.

Figure 12 shows the year by year changes in the maximum soil moisture deficit

reached in each year, as calculated by the Meteorological Office grassland SMD

model. It shows that in the middle to late 70s there has been a run of years in

O lich Larne SMDs have developed. These are a result of dry periods of one or two

months in the summer cr autumn; clearly this slightly anomalous climatic

fluctuaticrr_has put additional strains cn the water resources of the region. It

is interesting to note that this climatic change is not evident in the annual

rainfall figures, it being the seasonal distribution of rainfall which has been

Page 32: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 33: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

affected.

1980

1 gg)

PenmanP E

-1(mm day )

( * = less than 25 days of observations)

Table 5

Jan Feb March April Ray June July Aug

1 solarradiation 1.8 2.7 6.1 11.4* 19.1 13.6 14.3-2 -1((lJ m day )

0netradiation -0 .1 1.4 3.2 6.3* 12.6 8.3 8.8-2 -1(MJ m day )

0

0.68 0.82* 0.75 3.75 1.55 1.69 1.34

temperature 3.4 3.1* 3.0 11.5 12.1 13 .1 13.0

wind speed 2.7 3.1* 3.0 2.8 2.6 2.5 2 .9-1(m sec )

0.3 0.6* 0.9 2.0 4.2 2.5 2.7 2.4

Page 34: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 35: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

(7) EXTRA EVAPORATION LOSS RESULTING FROM AFFORESTATION

An estimate of the extra evaporation loss resulting from afforestation of

the Crinan Canal reservoirs may be calculated using the evaporation model

proposed by Calder and Newson 1979.

The model is defined by the equation:

where,

extra loss = f( P * alpha - w * Et)

f = fraction of catchment with complete canopy coverage;

P = annual precipitation (m );

al;:ha = interception fraction, i.e., the fraction of annual

precipitation lost to interception;

w = fraction of year when the canopy is wet: and

Et = Penman's Et estimate.

Estipates of these parameter values for the Crinan Canal catchments are

given below:

Total area of catchment = 527 ha (100%)

Area of catchments excludinc; reservoirs (see Fig. 1) = 428 ha or 81%

Area o' land proposed for forestry = 7C% of land area

(information supplied by F.C.) = 300 ha or 577.

Page 36: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 37: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

Therefore f = 0.5

and also P = 1660 mm

Alpha = 0 .4

= 0 .2

Et = 410 mm

-19 -

Projected area of land under complete canopy coverage, i.e., area underforestry minus area of roads and rides

= 264 hectares or 50% of catchment area.

Therefore projected extra

evaporation loss per annum = 0.5 * ( 1660 * 0.4 - 0.2 * 410 )

= 291 mm

= 340 million gallons

Page 38: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

-

Page 39: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

(8) CONCLUSIONS

-20-

(1) The results have confirmed the importance of the role of interceptionin the annual evaporation from forest at Crinan; 715 mm interception ih1989 mm ra infall during 1979 and 804 mm interception in 2009 •mm rainfallduring 1980.

(2) The forest interception results are in good agreement with otherresults obtained in the UK (Fig. 13).

(3) Preliminary results suggest that interception losses from heather aresignificantly higher than those from grass and may even approach thosefrom forests; typical summer daytime evaporation rates from wet forest,heather and grass are 1.25, 0.4, and 0.1 mm an hour respectively. Annuallosses from heather nay not, however, be dissim ilar as there is alsoevidence to suggest that transpiration rates from heather may be lowerthan from grass.

(4) Further research is requ ired to determire in greater detail theevaporat ion characteristics of this medium height upland vegetation.

(5) Until further results on this research topic are available we believethe most reasonable est imate of evaporation loss from upland heathvegetation is provided by Pcnrans' Et. Uith this assumption, and by makinguse of the Calder and flewson model, the projected extra annual loss fromthe Ceinam Canal catchments as a result of afforestation is 291mm which isequivalent to 340 million gallons.

Page 40: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 41: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

1-(9) REFERENCES

O' Calder I. R., Harding R. J. and P. T. W. Rosier, 1981: The prediction of1 soil moisture deficit: what are the controlling factors? Submitted to J., of Hydro.

1 Calde r I. R. and Newson M.D., 1979: Land-use and upland water resources in0 Britain. Water Res. Gull., 15, 1628-1639.

Monteith J. L., 1965: Evaporation and environment. In: The state and1 movement of water in living organisms. Symp. Soc. Exptl. Biol., 19,11 205-234.

F

-21-

Page 42: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 43: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

CAPTIONS

Fig. 1 Nap of the Crinan catchment area, showing experimental sites.

Fig. 2 Cumulative values of rainfall and net rainfall measured beneath theforest canopy, for 1979 and 1930.

Fig. 3 Photographs of wet-surface weighing lysimeter and automatic weatherstation.

Fig. 4 Photograph of vegetation sample in place on lysimeter.

Fig. 5 Schematic diagram of wet-surface weighing lysimeter.

Figs. 6 - 9 Soil moisture observations and simple model predictions forfour of the sites.

Fig. 10 Daily estimates of potential evaporation for the Crinan:atchments.

Fig. 11 Observed and predicted SflDs with siNple interception model.

Fig. 12 historical rainfall and maximum Sflp reached in each year.

Fig. 13 Cumulative interception ratios as a function of annualprecipitation measured for forests in the UK.

Page 44: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 45: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

Oki (.3; I f 2.:\ / s/ is? , P...5;t •; ..< :1

11, 9 7 : K N A P DA L E F O R E ST

l,,; •

: 0

S -.:-"4 .•

/ e / ..l f ) s. : ,4 'Ca-., .. ;.:- ..04 , b • ..,, ; S ess. • t , 4 . t e ; so

It -: :1 • / r : t 9t7 . . , 4:,..l...AY

ist , . -t.,.. /•••! .•

lir

1st

< I ' . n ,- b 2 2

i . Atr . .

-/ 0

.A 5 1- I

.7 7 4, , ,-,:

e P56 r14 4

'' .

.' , •, ) . ,•,( y/ ( —_ ,,„ / / P3 1 ; 1 7 \ t r i )

V f I t% te -,12 Z / I / .P.: 74a

•.6 s t ".• - / 4•; ., 1i -1•1•1 . 4 '3 , .0 .: 1 - Z., 4 P4 .-.4 2 i C ,

•` 2„,ti • r." .... I, , . ,

, ,

.t r4Stk ,, , i . ! 4 6 . : ...r -. • • zi., . .- ; • to , • i f • i t) 1 a _ i t ,

, . „ T.4 , .5, s ' s in .: t .: , 111? , / / A:. ; / : , • :

a , , ,I . . „,, u/ c,),.c t ,,D2 4...., 0 [ 4: i .C- 1 I : 7 ‘‘, 1

k A 54,4;

o . t , : ,%„, j e t

T.. ' i l ‘s•41:7--wt. 1/4, : 5 i ; : • * ,.. e " 'I 6 P, ‘P,

5 S • 1 a • i i i, 4 •7 e y t.. „7 . 7 13‘ ,.. i s v ip : „ .• . 1"lb : 3 3i i 1

,1,,,

i ` .--- 1-- . .0 ,

•;

/,;-: , / 0 - .. .': - 4 • d ,, b. ,-, ' • - . '`. . • ,/ , ' ! / t y L I ••• • P i e: *. 1

i. • ••• . ,., ,, ,

..f is

s-, -i f. f or vi t. .• ' c

/ 5 6 - , ., f.

,,:.,•,- ),•r

& 4- -:W - !

;, ` ' , ' l b :r •, ,./ . . 7 .1 ` ... Zt" : -." i31 , - - 'D .,:.1.--;.?.11".i .._3 22-41

1

; - ' -.• , <, ,L • a , p ),,,,

,..1_,: , s.: 0 . • •

n i • 3I4 , 5 r

' '"s- %•

/ %t -C C'

% . ' 44; ' : , j %.• - •- <( ,

'' '•, ...• •• 1, /

•,4.t a% •":

,.... ? 5 5 - . ' " i e, );tisc

4 4

. 19 -.1 ps , • •••. •

_ - te , p ', . ..11/; ; ; ‘ .:J .;:,...' il t_ . ., _

( 2 0 %. 1 le . ; , " S ! '

11. - - , . ; ( 4.s j - u[1, e .... • - sic , -.ef ;/ Li , / • e -71..c.. 1. 2 , . . #

ra a a . ... a , a ,

„./ c

±.S t

I • .4. : • • •

,

I

/ .N e u t r o n a c c e s ss i t e s 4 - 7

382 i s*/21

; •

,_/

,;.,0 •• 7 ; ( P7 3. .

I i

I / -2. ; 7 7

/ t rA

"-„. , S

p t : P75 ,

I

• .• , ' -ns s t e

P75 1# .

tel G r o u n d le v e l

V .N e t r a i n f a l l ..» .. .)."' • 378

/ 18' P73 .

)

a ..

• . 1 -s•s ( - -N "

N e u t r o n a c c e s s t u b e L', 4,__s i t e s 1- 3 , M y r t le N ., *

11- 1 3 , M y r t le - H e a t h e r

g a u g e s i t e

P7 5

ph / r a i n g a u g e s i t e,

S s \ / : 1- 1 1:3 I .

37628

sun, 1

P.dc rv •4: p 4 i ` . • t . •:": l e/ L .-- .. -.. . . , : t 7, . ,i ., i ' ;.; • , -; * : 11/4. .„ 2 -9 •.PS1 •• ; ,,e :. I t .fr er, ..;',. ; •1 4 .4" 'C. , 14 1 - ' e. , • • ;; IP/ C' ', ' .

...• ° -C

---••

.

••• •

p„......,... ,n

~-!" 41 : • ' ' : . 1 ge %41 . " . . . . ' ,1•, •i Jf le.-• -* .,- n

.7 '

1 .... In . •- . sc.P 5 1

• 3 9 s t p ., T 1 , . , A

" •

/

• - . •

A/1 375 ' I • -•

. / 27 • • / .• 372 •

'• 23

•14••••••';

f / ;.......--/1 C r 41/ .. - li ": 9 71: ? 477:1 e. ;

) > 2 #. • •

V : v ., i se m!,!...,‘ ' . i5 ; .- s u l, b .- r . . . .

P73 et . %

ft „1 . • ..

•t . ... 1

i : {/ . 4 %( 4 . . t .

•••%- / CO 7,

•e•

. , _ ..,.. • ;, .. \ •1/ 9 : •,f

, 4$..

' -. t%. -7 .„ ..1' . ; ,•• . ' r , SS

, / 14%5 .

/ ' / • P 7.5 - . . N e u t ro n a c c e s s t u b e / /

: ; .ss .\\ ; / ,

•• ••• • .1 ''' 1 P75 /! r t - r •

SS

1 • tj s i t e s 2 0 - 2 5 , H e a t h e r --4- - -- - - 4„

• I •i i /

.t

• L es< s i t e s 2 6 - 3 1, H e a t h e r NNy 5: i

/ #1 7 . a V , 1 a /t ‘/ # / X 41". ./ .

/ 1 P 73 • i //

, . ii •

1 ,Vi ,,'

' /•-

•12 A.. .x .,., .- , '

, - ,•\ 7

. , ; ,• •• • . 1 • •,1

I .s ,

/,

- 1 .

•377

/'

/s s

24 1 / d ' , 1,- -,- /- - ,

1./ •

t u b e , „ss I ./1 / 1 J ,

S p r u c e f o r e s t • 1•°76- ,

. , , • ,...--- .Vi , .', .• 2/ -- -, ss A

• /

... ..... 2 : : ? • P7 3, ,.: P ,76 --- /S S /,,, ... . .' '' ' ' ' . V ; ( - C

.. . , ... N , C a / • I ) . . 1. ; ., • ••‘• . aa ••••.. P75 / • •• • ,

380 - ; / , 0 .We t

C l • -.•

ss •3 79 11 .•

9P725 .

•. 1 1 -:

4 11/4 •

• 4 .

• •

••••..,, 1 • en 1 .• . • a • ,

,•• 9 • t

• 1- " • 4 7

a1 y

a 1 %.) ' 1174

i v '- .. I /

f 3271° / r 7

1 / . .r )

si r

Ly s i m e t e r s i t e s :;1

i t:

4 ;

• .1/•

Page 46: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 47: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

<X

1011 II

40V

12.51 It D

I C11.

81

I54

04

5I

ItC/I

••ost

AU

GU

ST

.5

0(

OA

2.b

450

,71. sli

11 la

II 1

TO

IS

Ili IS

I till

11 30 .11

j•

Nu

A111

1 1

/ 31

1. 1

11 30

51 le

IT 1

11 tO

.1

/0 I

M•

Y

1 IV

IS

1 IS

'1 10

11 10

H.

1U

SI A

RV

10 11

70 35

510

155

1 11

70 /I

10 11

10 15

515

Ol

"1"5

• I'

, • ';

.. 1.:

': •

: . •.

. .•_•••

• •

•.•

. . :

••

. :

. -r-

•I

,.

• • ..:

I

•. •

....—moo

.1 .

1 !--

I .

I

I I-

!i

t-r- i

11 1

i .i

. :

.'i

, ,

1_Iw

o .J....___

_!.

I: !

: {

1 1 i

i .

!-

1

L I

I 1

!,

1 I

I1

1i i i

I 1 1 I

I1111

!!li

d '- -I

1--

71 1 -1--

!1

-1-1 --1 i

,.

,,

IH1

r ,

i , 1, , ,

_1400,

I H

1 I H

i

IH

11 1 I H

' 7

Fl_ ___

i1

1 i 1

Acu

.niFa..I.L

1 1

l' 1

i1 11, 1

I1

i i

.-120

01

11

' 1

I I

: :

I1

L

I '

I 1

i_

_:....

'I

II

.1

1.1

; .. I

I I

' •1-

I—

1001

'

1....k

..-.1..--..

--........-..:

.-..

]''

':;411•119 . -

--- --

- 1 - - -

-,-

I 1- 1---- -

--.--- -.-- - y

l•-• I

i

I::

I I

L

e

raw

a

// 2 I

;•

-;•

I'

; -

.1 I

11

:1

.....e

...

. I

I :

;t

: ! 1

I .

•:..........,_.,.._

•i

: I

1 ::

1 1 :

1 : I

•,

...

;. •

:. .

. i

11 I,

1 .

i . •

• •.,

.1. i

'Il .I,

1 il 1 •

.1 1.1F

.. NI e

6r

eii?ikli 1.1

1 :. I

I;

i!

I I

1. I

• ;

I :

I 1

!' 1

I

_4.4

01

. -.;

- I

I I

.

1. .

1 1 1 : ...

. I .1

I. I: ...

1 I f

•I

: .

I 1 I,

1 I. i

: :

!

•--

- •

: •

: i

: On! !

r 1

I 1

. .

1 1

. '

' 1

1.2._

1 I

, I

1I

I . :

I :

I .

: :

.I

i :

I .

' :

.--, 1

1-1-"--! i1-

'.I.-

' 1 - ' ;

•1 "

: •

: I

I !:.

1 .1,

. I

1.•

: :

: i

; •-

• i.

I I

1,

i'oat&

16:ss—o

n-she

ct2

j —r

— -T

-i- -- -;- • .1

.. :.- . .... .

: • --

• •

: .

. H

1

.1 1

;•••

--Hoo.in. :losson sh

e2e i..

. •

•.

• .

...

I,

1515

51 5

ic •

• h

i 5

5 5

0 i \

IJ 51,

5 1

1, 5

II

5 .

. if

el is

> .0

1 .0

11 7

R. O

r.

..• .

1 \

i.I. il

III5

%T

WI

N

NO

VIM

OIR

D

IO

.111

5I / IL/It

IAIL I'

1.1.011..II

41.5

111.

1•5

1,11

• ••

11 ILI

II

5 •••

.1

/0 I \

I h

. I \

/J /

5 1

IllJO

li

lt

• I

t r

• •

-1. I

• •

I•

I \I3

If

III \

ro• I

./ 14

11

11

197

9 19 80

0111

111111

•0

:_•

•0

0•

00

00

0 s

ee

s a

00

00

0s

aa

ss

as

_fik_

i

Page 48: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 49: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

1.1i ga

la 01

NO

VI

Men

MC

I Main

al du

l v

Mi la

n/

•41.110.11

AP

RIL

MA

T

An

a O

IL /

•Let i ta

I 4

00

••0

1 •

0/ . 10

5

I 03

110

fl I

IS of

ke as

s 11

10 1S

5

0 L

I St

OS

I f 30

31 I

10 I I

/ 0 11

550

I S

30 15

• .0

i fJO

11

l e51

l a I I

I i u

1% JO

I,

S

1 IS

11 35

I S

I 10

i f 5

011

01111

30 30

10

I II 51

00 11

510

I S

70I

I 0

0 11

10 1

1 111

11 :

I111

1 I C

11

, •

. 0

01.

1014

it N

ewt m

at • 13I

CI r i l

l S

.1Au

t IA•

•• U

55

50*

5 M

AC

SO

A

VIA

.

••

•••

-••7•••• ----••

• •

'

::

119

78 9

79

in-li

aa

df11112

••

••

•111

0•

41•

••

••

••

••

Wa

l la

Sa

ll

Page 50: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 51: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

F ig 3

F i g 4

"

-- ---lit T - 'c-:17c .- --a s4 " : .- -" ....te.,a 1. 0•- . iv:,, ,.r . "'6":!. _ :-.<041/4 A sa

. '" . •- '44. .' • " 4 -9 * PA4 .0

teNi. 4.-4.

... . ... . .. . . * 44,44 7 :. l i t

, . •-. ti .s -- i ..e..-L7 ) •ssr 4-(-

, • .., ! rk k's. .6

. -. 1.4C

•;

...., *O va rA 1". .b a t' ...* ,---S i Tiii et

Page 52: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 53: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

ImP

urcr

e on

w

e

s t

Iv e

e e

ve

se

e s

ee

ss

ee

se

ev

ew

e1.

Tra

y c

on

tain

ing

sp

ec

ime

n2.

Po

lys

tyre

ne

sp

ac

er

blo

ck

3.

Bo

x c

on

tain

ing

ele

ctr

on

ic

ba

lan

ce

4.

Alu

min

ium

h

ole

li

ne

r5

. L

ev

ell

ing

tra

y6

. C

on

cre

te

blo

ck

s7.

Pu

mp

an

d•s

wit

ch

8.

Bre

ath

er

••

••

8

4

6

1

2

7

-

Page 54: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 55: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

• 0 L

l (7) CRINRN - HEATHER AND MYRTLE

o

PENMAN El EVAP.

CRPACIIY

LI

Fig

6

TUBES

FC VALUE

VARIANCE OF DATA .(MNrw21=

NUMBER OF OBSERVATIONS

70.

346

01

02

03

11

12

13

a+

X

0

t x

1971

1970. 1914.

485.

371

205.

50

)0

0 15

0 2

00

25

0 S

OO

5

0 '?

00

! 50

20

0 2

50

30

01979

80

Page 56: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 57: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

CD U)

CRINAN - FOREST

PENMAN ET EVRP.

FIELD CAPACITY

TUBES

04

05

06

07

6+

X

0

FC VALUE ...

697.

614.

692.

373.

50

100

150

20

0 2

50

30

0 3

5 5

0 10

0 •

150

20

0 2

50

3(

1979

80

Fig 7

' •

A

VARIANCE OF DA1A .(MMw*2)2

24.

NUMBER OF OB5ERVATION6

246

Page 58: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 59: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

LO

\itiviLj

CRINRN - HERTHER U.

TUBES

21

22

23

24

25

26

a.

+

X

0

+

XPENMRN ET EVRP.

FIELD CAPACITY

FC VALUE _

928.

997.

960.

915.

956.

938.

50

100

150

20

0 2

50

30

0 3

5 5

0 : 0

0 15

0 2

00

25

0 3

01

1979.

80

Fi g

8

X•

•'::

VARIANCE OF DATA

.(MMww2).z

NUMBER OF OBSERVATIONS

21.

69

Page 60: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 61: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

I n c 0 CRINAN L.

0

PENMAN ET EVAP.

0 FIELD CAPACITY

VARIANCE OF DATA .(MM),(4(2)=

25.

NUMBER OF OBSERVATIONS

75

TUBES

26

27

28

29

30

31

aX

0

t X

FC VALUE

993.

767.

879.

886.

799.

767.

se

l 00

I 5e

20

0 2

50

30

0 3

5 5

0 10

0 15

0 2

00

25

0 30

01979

80

F i g 9

-11

1.11

.11

1

Page 62: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

11

Page 63: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

a a0 RAINFALL

. ..t6.

CONSTRNT

,

+ CLIMATOLOGICAL

t CRINRN

X PRIESTLEY TRYLO

o ....0

00 PENMRN

_.1.

+

TH

OM

RND OLIVER

Page 64: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 65: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

• 0

ktukA

JA;

CRINRN

FOREST

PENMRN ET EVRP.

INTERCEPT MODEL

Ziab

tki

'

50

100

150

no

HO

M

O

35

50

100

150

HO

2

50

MO

1970

80

ig

Page 66: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 67: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

S

5 111

5

•11

S

• S

S

•S

IPVP

a

VI,

a a

aa

vv

av

ww

ww

ww

w

• M

AX

.

S.M

. D.

(mm

) 10

0

80

• -

SM

DO

-R

AIN

FALL

60

••

160

0

• •

Fi g

12

a

TO

TA

LA

NN

UA

L,

RA

INFA

LL

(mm

)•

• •

0 2

00

0

••

180

0

40

140

0•

•0

• 5

20

120

0

019

64

5 6

7 8

9 70

1

2 3

4 5

6 7

8 9

80

100

0

Page 68: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 69: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

w HIM

"'NY

Atd

i pw

•orn

! 1

mi!

Oft

ein

i!R

AP

9:::!

40 1:

0.2

-

F i

g 13

100

0 2

00

0

AN

NU

AL

PR

EC

IPIT

AT

ION

(m

m)

"Yu

4

1'lit

ti,it°

\\

0 B

AG

LE

Y

RO

SE

ISL

E 7

S

TO

CK

Sc

zim

p,n1

80

T4

EN

TA

BA

NK

AIN

KI+

71P

LY

NL

IMO

N '

77

TH

ET

FO

RD

E_IQ

hK

IEL

DE

RB

RA

MS

HIL

LL

,c)--

--

AFS

6(

NL

IMO

N

6P

LY

N L

I M

ON

'7

4'7

',

t•

__

__

_ •,

GR

ES

KIN

E

r„,P

LY

N L

I MO

N '

75

3'0

00

Page 70: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 71: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

11_Q J i .7 S

irt, a.

V II . 72 '3 S1 36 GA S.o_

!S S 9 •2. 36•

2- 2 :7

!/ Y. ( 23 ( 12___

Oc?

.5"f7 __3 8 33 _ ._

.J 0: 3 _t o+ .9 g ......

. 3 0 ._ ; s r ._

"7. _

..10

7 8

72

f . i t 7 9•

/(.72

i t I t _71_

W e_

23 .72 1:2943‘ ./ (. fr l _o_frek.0 .9" <61. Ws.??r3 .0 .91_1 (3.07 234 7

:z s e 12:75h 2.t if / -06 ' 40.11162.m7 28.g( 26.43.iS"

I:7o 576 ( s.Sc! 1 :P2 _ 9 g.-3 43:93_ 32. .• 3o-Z2_

5(.66 .../0_,L : 7.7 L 19.9±. » o:7_.::iy-J .Y 7t224 36.446 33.94 ..-

s-v e .2 .co- t t( il 0 .9 o I !:-/,) 4 1, 8140 3 9 41 -3 •39 _

2 446_.12 3 (1- .31 * ()_ /73. gt 88 .S.4.23 zft .72.38.77

4 .744 4 .7s. 3 4-b _i s-L Q (0 _ H 3.5 (3tr-L-2. 9t.Sg 4 S:21342.3Z

23.52,•24 9 7.. .6 .Cir S-2 s .0 .94 flptf ._1 112.14 56 .S0 :57 •9 4,47.6o _

1/ ..6 1 t S 6 0 -ESS 0 .7 st t oq7. ./ b6 .‘t-ii t .71, us-cCS-2.,41.416.31,<

o .0 • o _o 16 8j _..n3_7(, ./rts.c6.

0 ..31f 2_. 7.5 0 .93 _ ./76 .3 118.0 t ia .46 .51 .2(0S3.sy..

027i 4227/ __04 9._.9 .11 : 1..90 :177.2- .1/3 7 ( .122-i7. .5-'8.96..1.51.603

15 4 57 4,4 12.1:0 2: ? • / ...q 10. io3.9319p ,2- 1,12178 13,(41 ja l.g _i9579( 9?2, 24 __

-

.3t 443.1 :Zb / S01 / 4 /21.7) (- 164 $ 2- 37 %

Ø. o o . 0 . ° 9 _ 0 .“ 1/2.3 5-8•4 .4_

0 • 0 . 0 0 44 0 : • 0 r/ S • fed.a 143.o2. S-846

9: 33 .13 .73_ 670.7 _St A7 ;0 7.3 j ig., Li g .p710 ,9? !6 44.37

c eS 9 bt ..O. ( t .q " fl T 2o2. .(22J3 1_3a.ai _169 .73 6411.7 .

0 .0 0 .0 4 ./ o . o 203.0 i331.3 . Ltd., 6 1 .&7 :6 449 ‘

.9- 91 .57f g . 12:9f ./ 277 1 o -t h 22c !A n- 4 .1.33 .1 2•73- n .57

j oAk et.07 74 447 13 .1P2.51.723.2.. / /_9-81.68554 .40,90.42_g4.7o j

.114 ./..:P AL 14 0 . ..2 .2 4).:9 .s7.94

0 44( 04 1).10 t o_e_b0_ p..(13 2 .; ECI.O.uf :74-t .sW.E!„0,0 .:oto p.o cyo . 0 pf;.. (21/10.34.10,94- '53' 46 se-gg

6.“ .:9L38 .7 T 0 6.0 1Lt.0 _17ft t-1•; i22..o/ / 3•9.8-1T- -- . "1 -

Page 72: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 73: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

.434roaot tisoo2o.i .7 9.

2 6 .7-75

Pe 7,

TU123-0 2.21. _ _.34.1-0_ 3!7 Ai l , .110

1.12. Iral .1.291:4 4 14:2C 4 58 11-7082. 141 •8 lu01 .yllo..2.1 412..411 )9:8794 7.16.!

1294.41.) 344 :7549.1.6 " 5 74tat p0

:

Page 74: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

• et i

Page 75: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

") .19 in * ssw Sb3 3& 00 i sa 1 121So 'al . 61 01 1;

0 -19 113-o

o -9 734)

446% . .0 .t ._;1,3 3 .1“ 1

LA1 -1) .S111 S'iti "11314- 38-14 11../ 1. It -11 1-19

4 (26 LO-14 1 0-1 119 -t“ 24, 1 I 24 1- 5 1-0SI. 1; 719 .i i.ott •gl .to 94: 14 ai -i 41-b 1.to

_ 138 -0.1350 13140 W1.48 93-44 SO-s).

,Fr-

No .‘A P./6 1'14A I HT Lot Sr4 ‘ PS I a. I 14-

Let , t11312 ;21•b$ .1%-tet- !La i _"

1S4..T

11.0-0 1.0f22.7 40t _2.1.19_,2 t-i f T6 -151 :1 ! ISt ° t _

I

an 2443 (61 2. nIti _Ab-as IS-S1 1-oi ;4-13 1-t “ 30- lu a rai .t i 'n o (.0-1

a g i CA M NET est,u-(i st IN 0241'4 Lo&s1 a.

ly* Xi sirm'aj f.t, Is2o19s-Dz it31431-t 1411: 0541,131 15(0 .6

111-6t t _15)", -/L,ti at -/ 94-S-14 •1 4:10 0.7t si 2,z;

IIIS53 0 5 % 42.19 ,7-7g

il V S.). $ ol .161 .1., 162497/ 0 1 .1.0

_IWO :19_4 3' 114 4t.0 2 _t efiS.14-sI

p a l 1060.1in a s b53:4-12M1276

I1112111101021110 9 Err1 6 1.0 .4:331

m u l li.n. rts 1.1 i g sm 0 0 17. . 1

. 19831 111 51 1274i 759..4 7 I 4-.7+

_

Page 76: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 77: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

. 29

• •1/. 79

pz11. 79_

6 9 ./1.7 1

42.7563./2:79j o 42 .79

t frz)10 -1. 70

i 7 .1. fo

i b

3 I. I . go

7 .2 .50

rif . 2 So

/ . 2 t

2. 2.50

PO •3 $0

?7.- 3.80

et . Fo

07. 9,80

Pit - et . 8)

12.a-. 8bs-.Fo

Pz .s-10

n .5:80)57 6.50

) 2-6 .Fo

$1.6..6 Sa .•• :

.

go. of 7-7,0s Ne6- Rai n /n t .l ossRaj ri I . / 2 / 2_

Cu m u kt f iveNet-

Rai n I

Il czfues& in

2.Mt. Loss

1 2

0 0 0 0 0 •0 0 .0 0 : 0 0 .0 0 0 OD 0 0 0 o 0 .0

7./ 2 18 197 /44-C /3 in /2•97 3 /2 27. / /41./3 /3.98' /2•9 7 /3./2

9-8 379 366/

2itt.St s*-98 5.24` 3132.t i

76 9 3s.69 35-96 38 .2/ 6.944

02•q w e 1106• 72•32 7g 47 o -ogi 3.53 (71.3 /11.0 1 /1• 3 8-29 6 •37x-

4L2-0 310 3164Y-2243 244•39 95 2 / 761 22/3 /331/-9 4,2.82 7 3I W.gt8

97.0 983 969 63.69 61' 5-0 g.3/ 3 Zo 3(3.0 /97-13 2//.62 /6• 2. 0/-68

7. 5 119 /S it 7 •7/ 9 -57 9-79 27•99 3.so 2oLt.T3221 (3 96-.9( 29.67

r

C•0 6Wo 770 9 / -86 67 3 ./ 54. o 33 3S-3 c6 7 6- 27 SV /15 0 5. 60-00

2.0•0 rio HS 7.13 s •33 2.87 // .62 41-sT -8' M g tr 28tH3 r2o/.92. 171-62

r

u s" 7.5- 3 n 5•32 9 65 3 11 i/ 64' •3 2517 0 2s553k0g-60 n o

13•0 4 11, 3 ? 2 1 1 2-70 10 15 l o 3 o 4 773 LCO55-292.201Zte .74 u11 0

23-5 190 180 2 1 1 / 2-•7 7 11 19 0 72 w o r 272-86. 30,f98 227-5c4 95n

201-0 et 3 35 211 2-70 17•22 17•30 52 0 -8" 27544 3074 8 216 .16 2/312

5-10 30 2 3 0 8 / 9.5 7 2/ 87 6- 43 /313 s-s-ST 29512/ 3294; 260692262S

446 0 5 25 . 29 .87 7•27 -.19 7.73 6/0 1 32S-0 2 136682 2gS-.78 24398

/ 6 -o /3 6 / 60 8 11 / .3 6 7•19 9 .61( 62.6-3 333 83 378482923 72 41862

3/ -5' 4'39 41-4/0 84 s- 1.2 4' 3 OS o.2. 451 .3 362 .Z 6 1/09-92 2960Zk t r ? 1

*S-S 5 0 3-s g .5 5- -gct -t •s s- 666 1 345.gy-Q12.37300.% 253.73

43-5" 3 3 5 3 2 0 21.7 1 22-72 79 120-78 7 10 .2 387-5-S-1935 69 22 .65 27€f .5/

/ 7. 6 99 87 1•641 .fg /I 19 r 727-8 393.96 l'/ ///g7 b33 .81t 2n e3

0 •T 0 0 0 0 0 0 0 .8 0 .8 728-6 393.96 4 €8 376 .4MF8673

92 39- 27 2 2•9-1 .78 570 9 7361 3% .0 .liw2i1 39-iczlzw-ez/- 6 0 0 0 0 -0 /- (- 737-7 396-67 iru#1-7Z W.02.293412.1

0 -5 o • 0 -0 0 -0 0 5 0 S- 738.2 L96-68 E 28 W52. 1253.92

0 .6 3 2 0 (9 o 1%. o 44/ 0 4% 73818 96 g 7 W in V/ 93 "M8

Page 78: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á

Page 79: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

• :rfl: 4

76 -o9

17-55-

11,4.06

21 47

6-41

5D-02

38 0t/-

7S-6r

/4-IS

28.71

0 37

30-71

Sh-n

0-97

6o-33

94-07

ai n /a t- t oss2 / 2

34 1 1/1 .36 111.09

/2-6cf i0.77 19 11,

/3 90

4 0 66 41-0 -66

11-to 5, 5S- 1S: 9-0

Rt-63 113't 10-77

30 SI (9.53 0 .23

12% 7 02 5.26

5248 121ta Ign

35-76 1235 6 22 24.

81-6S 4-832 9-23s

i f -37 11-37 /0-03

3133 1t 73 (642

7740 40 63 33-50

3247 31.29 29-13

66.7v 32.//

0 -59 1/ -t 3

64-6/ 38' 4 7

co m b 2t.93

15.73

72 -26

1r.ol

34-39

18-99-

P or / Il echa n icia l Cott-A t e-a t- one

2 ea s t he a ka oll skee t i År, 8 112. / l ecli a ni r co wnte rs cd os_ ilwaA e ot tge n t azi r 2

a cni a la & At e sWe& 12ct.4:h. ha- l oss

Rai n i ._ 12 . ... I 2

950-if str-6z1psot 4€31-78 714 5

972-9

99 9

/o70 6

/ // 6

//st

1173- 635 SD

523.35 .-9(SS 9-53" 3S7-3S

53/J15

Sheet 2 . A e.ezt .21

( The

u.6sli tr2c .

02-77 g4 39713

60749 7361 503.11 37-79

25 W 16969/ 5244C 45349IW1 Stf 36 ooq63-961rt/223 .6 66r o7 7923S Z -531457-ZS

(I 237-1 O s-SS7sz).9 .5r ar s7

1/2 07.6 72,i--S7 3-27 I3Btt 03 5D5-33

(3713-61762-61F4-303 6o7-99 .527 -S7IN94-.4g3T-29 92tf--68 sra-3/ 2 9-92

(S2o-6 G2-42 'NO61 I663./Fs'79.9

Imf -/ W -19 972-03 6g6 -9 I 10 647

1675-/ eS1-550folf943 1727-51l-'629 97

174.1./ 912 -27 1(022-00757.83 6.59-lo

(130-/ 1039-/6111W-7i 750-9f 687 -36I 2./ 10q0 ,13 rig-9-73 I-97 692-37

/9w ./ fi co.y.b(214--344 .6tt 72.6774

0091 //q653 1.1263-40 2.57 74-S*-70

a k a

ini k te r e v n e t - ra im

4

4

4

3 / - 7-8o 9 6 0 1173 107/

7 - 8 .Fo 33 5- 277 255

ll e.g i o 2379 2 17 206

2 0 11.80 W ./ 4-ge/ 't39-

2 8 -8.80 /3 S /cry // 6

.Ffo 71.5- 772 741

62 -0 S37 51,o

/ 9 .9 .E0 /20 0 / 168 // so

2 .519 SO 26 o 211 225-

2 ./ 0 .E-0 9 7 5- 4 44' yin

9 . 1/ 0 lon, / DA

23t o -80 62-0 4.1-7 (7 ‘163

3 0 .102 0 3 .0 T7r 9 '•13. / Feo / 2 -o / 5- / 9 -

2 0 .11 .g o 99-o 93 / 9/ o

2 7 . // .6b 61 .0 7/ / 69/

R CU:r 1

N o . o fi 77))5-4/ e &

2. /

3. 7 -80 133 2-19-/ 0 . 7 .8 0 22-S / 78 1/-73

17 . 7.80 27-o 125 / 58 F .10/I/ o n echa i lc a l

Fro 7o .7 an n umbers.2 3 . 7 .2 l e

Page 80: rielf;/ - 003 · 2012. 3. 31. · to s n01 - r nd s.: can used. ... 2 410 mm-r s area. extra 410 ) m s-ONS-0 on n h ll. her). are hose st, Annual o ower. he n. eve th ng m is ons

á