rigaku biosaxs webinar 093009

49
SAXS techniques f i for proteins 1

Upload: squirell

Post on 29-Nov-2014

140 views

Category:

Documents


1 download

TRANSCRIPT

SAXS techniques f ifor proteins

1

SAXS techniques for proteinsSAXS techniques for proteins

Bi SAXS li ti• BioSAXS applications• BioSAXS theoretical overview• Experimental hardware for the home lab• Application examplesApplication examples• References and resources

2

SAXS techniques for proteins

Bi SAXS li ti

SAXS techniques for proteins

• BioSAXS applications• BioSAXS theoretical overview• Experimental hardware for the home lab• Application examplesApplication examples• References and resources

3

Biological applications of SAXSBiological applications of SAXS

• Calculation of generalized structural parameters (Dmax, Rg)• Determination of the molecular shape of macro-moleculesp• Differentiation of mono-disperse and aggregated solutions• Differentiation of folded and unfolded protein solutions

Characterization of oligomeric states• Characterization of oligomeric states

4

SAXS techniques for proteins

Bi SAXS li ti

SAXS techniques for proteins

• BioSAXS applications• BioSAXS theoretical overview• Experimental hardware for the home lab• Application examplesApplication examples• References and resources

5

Crystallography vs SAXSCrystallography vs. SAXS

Integrated profile

Log(

I)

q [Å-1]

6

Complimentary techniquesComplimentary techniques

Method Crystallography SAXSSamples Single crystals Dilute solutions (1 ~ 100mg/ml)

Advantages High resolution (up to 0.1nm)At i t t i f ti

Analysis in native conditionsAtomic structure information

Limitations Crystal required Low resolution (~1-2nm)Modeling ambiguity

7

Scattering intensityScattering intensity)(*)(∝)( AAI

X-ray diffraction

)(*•)( ∝)( qAqAqI

xy

z∑

1=)}++(2exp{ =)(

N

jjjjjhkl lzkyhxiπfA q

iA d)()(Δ)( ∫

x

rSmall angle x-ray scattering

riqrrρqA d)exp()(Δ =)( ∫V

8

Pair distribution functionPair distribution functionCrystal Solution

Patterson function Pair distribution function

P(r)

9r

Profile conversionProfile conversionSAXS pattern) SAXS pattern

Log(

I)q [Å-1]

Guinier plot

n(I)

Kratky plot

q2I

Pair distributionfunction

P(r

)q2 [Å-2]

ln

q [Å-1] r [Å]P

10

q [Å ] q [Å ] r [Å]

Guinier plotGuinier plot32Rq

3)]0(ln[=)](ln[ GRqIqI

Mono-disperse Aggregated

11

Kratky plotKratky plot

Folded Partially unfolded UnfoldedFolded Partially unfolded Unfolded

12

Pair distribution functionPair distribution function∞

qqrqqIπr

rP d)sin()( 2

=)( ∫∞

02

DD maxmax

rrPrrPrR d)(d)( = ∫∫maxmax

0

2

0

2G

Dmax

13

Shapes & scattering patternsShapes & scattering patternsSAXS patterns Pair distribution functionsSAXS patterns Pair distribution functions

14

Refinement of molecular envelopeRefinement of molecular envelope

Squeeze a bean bag Compare Pcal(r) and Pobs(r)

Pcal(r)

Pobs(r)obs( )

15

SAXS techniques for proteins

Bi SAXS li ti

SAXS techniques for proteins

• BioSAXS applications• BioSAXS theoretical overview• Experimental hardware for the home lab• Application examplesApplication examples• References and resources

16

Pinhole SAXS cameraPinhole SAXS camera

XG

Optic

1st 3rd

Pinholes

2nd

Sample chamberBeam path

2D detector

3 m~ 3 m

17

MicroMax 007MicroMax 007

MM007MM007

18

MicroMax 002+MicroMax 002+

MM002+

19

MicroMax 007 / 002+ specsMicroMax 007 / 002+ specsMM007 MM002+MM007 MM002+

Camera length ~ 3 m

S l i 1 5 5 15 lSample size 1.5 x 5 mm, 15 μl

Beam size at sample 0.5 mm

C K fl t l 1 108 2 107Cu Kα flux at sample 1 x 108 cps 2 x 107 cps

2θ minimum 0.1 º

Q minimum 0 006 Å-1Q minimum 0.006 Å 1

Maximum length scale 100 nm

20

SMAX 3000SMAX 3000Dual Chamber SAXS Camera

21

SMAX 3000SMAX 3000Simultaneous WAXS/SAXS

22

Length scales for SAXS/WAXSLength scales for SAXS/WAXS

Sample-to-detector distance

qmin (nm-1) qmax (nm-1) Dmax (nm) Dmin (nm)

1500 mmMW-SAXS 0.0054 0.16 115 3.8

500500 mmMW-MAXS 0.16 4.8 3.8 1.2

30 mm 4 6 45 1 3 0 14IP-WAXS 4.6 45 1.3 0.14

23

Flow cell sample handlingFlow cell sample handling

SamplePositioning stageCooling water

HeaterX-ray beam

Sample feeder

Linkam high temp unitManual flow cell

24

SAXS techniques for proteins

Bi SAXS li ti

SAXS techniques for proteins

• BioSAXS applications• BioSAXS theoretical overview• Experimental hardware for the home lab• Application examplesApplication examples• References and resources

25

Raw SAXS dataRaw SAXS dataHBsAg (hepatitis B surface antigen)

M t ditiMeasurement conditionsConcentration 5.75 mg/mlX-ray source MM007Scan time 60 min

C t f J h R U i it f G i

26

Courtesy of John Rose, University of Georgia

Integrated SAXS dataIntegrated SAXS dataHBsAg (hepatitis B surface antigen)

27

Integrated buffer dataIntegrated buffer dataHBsAg (hepatitis B surface antigen)

28

Background corrected dataBackground corrected dataHBsAg (hepatitis B surface antigen)

29

Guinier plot – determination or RGuinier plot determination or RgHBsAg (hepatitis B surface antigen)

Rg = 132. +/- 1.24

30

Pair distribution functionPair distribution functionHBsAg (hepatitis B surface antigen)

R 132 04Rg = 132.04

31

Ab-initio envelope determinationAb-initio envelope determinationHBsAg (hepatitis B surface antigen)

1 2 3

32

Raw SAXS dataRaw SAXS dataHSA (human serum albumin)

M t ditiMeasurement conditionsConcentration 5 mg/mlX-ray source MM007Scan time 90 min

33

Integrated SAXS dataIntegrated SAXS dataHSA (human serum albumin)

34

Kratky plotKratky plotHSA (human serum albumin)

Well folded

35

Pair distribution functionPair distribution functionHSA (human serum albumin)

R 29 02Rg = 29.02

36

Crystal structure andymolecular envelope (HSA)

37

Raw SAXS dataRaw SAXS dataG3B0F (C terminal of agrin)

M t ditiMeasurement conditionsConcentration 4 mg/mlX-ray source MM002+Scan time 120 min

Courtesy of Trushar Patel, University of Manitoba

38

y , y

Integrated SAXS dataIntegrated SAXS dataG3B0F (C terminal of agrin)

39

Pair distribution functionPair distribution functionG3B0F (C terminal of agrin)

Rg = 52.4

Characteristic shape of multi-domain protein

g 5Dmax = 175

40

Rigid body refinementRigid body refinementG3B0F (C terminal of agrin)

41

Comparison with synchrotron dataComparison with synchrotron data

Structure envelopes

Courtesy of Thomas Grant, HWI

42

SAXS techniques for proteins

Bi SAXS li ti

SAXS techniques for proteins

• BioSAXS applications• BioSAXS theoretical overview• Experimental hardware for the home lab• Application examplesApplication examples• References and resources

43

Biological Small AngleBiological Small Angle Scattering Group - DESY

• ATSAS 2.2• Software download

htt // bl h b d /E t lI f /http://www.embl-hamburg.de/ExternalInfo/Research/Sax/software.html

44

Review papersReview papers• Robust high throughput solution structural analyses by small• Robust, high-throughput solution structural analyses by small

angle X-ray scattering (SAXS)Greg L Hura et al., Nature Methods, July 20 (2009)

• Small-angle scattering studies of biological macromolecules in solutionDmitri I Svergun et al Rep Prog Phys 66 1735 (2003)Dmitri I Svergun et al., Rep. Prog. Phys. 66 1735 (2003)

• X-ray solution scattering (SAXS) combined with crystallography and computationcrystallography and computationChristopher D Putnam et al., Q. Rev. Biophys. 40, 191 (2007)

45

Reference bookReference book

S ll l tt i f X• Small-angle scattering of X-raysAndre Guinier & Gerard FournetWil (1955) ( t f i t)Wiley (1955) (out-of-print)

ProQuest www.umi.com

46

ConferenceConferenceTh 67th A l Pitt b h Diff ti C f• The 67th Annual Pittsburgh Diffraction ConferenceOctober 29th – 31stUniversity of Georgia Center for Continuing Educationhttp://www.pittdifsoc.org/PDC_2009/

47

Presentation for downloadPresentation for downloadThi t ti i il bl f d l d t• This presentation is available for download at http://www.rigaku.com/protein/webinars.html

48

Thank you !a youw w w . R i g a k u . c o m

49