rights / license: research collection in copyright - …34221/... · this page was generated...

67
Research Collection Doctoral Thesis Synthese von (+ sub -)-trans-4,4,7,9-Tetramethyl-3β-hydroxy- decalon-(8) Author(s): Löffel, Hans Rolf Publication Date: 1959 Permanent Link: https://doi.org/10.3929/ethz-a-000113881 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection . For more information please consult the Terms of use . ETH Library

Upload: dinhmien

Post on 19-Aug-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Research Collection

Doctoral Thesis

Synthese von (+ sub -)-trans-4,4,7,9-Tetramethyl-3β-hydroxy-decalon-(8)

Author(s): Löffel, Hans Rolf

Publication Date: 1959

Permanent Link: https://doi.org/10.3929/ethz-a-000113881

Rights / License: In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For moreinformation please consult the Terms of use.

ETH Library

Prom. Nr. 2969

I. Synthese von (±)-trans-4,4,7,9-

Tetramethyl-3 ß -hydroxy-decalon- (8)

IL Zur Kenntnis der Chrysergonsaure

Von der

Eidgenössischen Technischen

Hochs-chule in Zürich

zur Erlangungder Würde eines Doktors der technischen Wissenschaften

genehmigte

PROMOTIONSARBEIT

vorgelegt von

HANS ROLF LÖFFEL

dipl. Ing.-Chem. E. T. H.

von Müntschemier (Bern)

Referent: Herr Prof. Dr. 0. Jeger

Korreferent: Herr Prof. Dr. V. Prelog

Juris-Verlag Zürich

1959

Leer - Vide - Empty

Meinen lieben Eltern

in Dankbarkeit gewidmet

Leer - Vide - Empty

Meinem sehr verehrten Lehrer,

Herrn Prof. Dr. O. Jeger,

unter dessen Leitung die vorliegende Arbeit ausgeführt wurde, sowie

Herrn Dr. J. Kalvoda und

Herrn Dr. D. Arigoni

möchte ich herzlich danken für alle wertvollen Ratschläge und Anregungen und für

die unermüdliche Hilfe, die sie mir stets zuteil werden liessen.

Leer - Vide - Empty

- 7 -

Inhaltsverzeichnis

I. Die Synthese von (t)-trans-4, 4, 7

, 9-Tetramethyl-3 (3 -

hydroxy-decalon-(8) 9

Einleitung 9

Theoretischer Teil 10

Anhang 16

Experimenteller Teil 20

Zusammenfassung 29

II. Zur Kenntnis der Chry ser gonsäure 30

Einleitung 30

Theoretischer Teil 31

a) Frühere Arbeiten über Mutterkornfarbstoffe 31

b) Eigene Arbeiten über die Chrysergonsäure 34

Experimenteller Teil 51

Zusammenfassung 65

Leer - Vide - Empty

- 9 -

I. DIE SYNTHESE VON (±)-TRANS-4, 4, 7, 9-

TETRAMETHYL-3 ß-HYDROXY-DECALON-(8)

E inleitung

Nachdem die Konstitution der meisten Di- und Triterpene aufgeklärt war, be¬

gann man sich mit ihrer Partial- und Totalsynthese zu befassen. Da den meisten

Triterpenen, wie z.B. Onocerin (A), Lanosterin (B) und ß-Amyrin (C), wie auch

den Diterpenen wie Manool (D), Sclareol (E), Labdanolsäure (F) und anderen dasselbe

trans-Decalinsystem zu Grunde liegt, sind bicyclische Verbindungen vom Typus (G)

für die Totalsynthese von besonderem Interesse.

B

OH

COOH

-O

- 10 -

Theoretischer Teil

Im Zusammenhang mit der Konstitutionsaufklärung und Konfigurationsbestim¬

mung von eK-Amyrin wurde schon Ende der Vierzigerjahre ' das (-)-trans-4,4,1,9-

Tetramethyl-3 ß -hydroxy-decalon-(8) (Xa) erhalten. Zur gleichen Verbindung führte2)

in neuerer Zeit der Abbau vonUrsolsäure '. Da das genannte Hydroxyketon sterisch

eindeutig definiert ist und den in der Einleitung zitierten Vorbedingungen entspricht,

schien es reizvoll, zu diesem einen synthetischen Zugang zu finden.

Xa

Die zu lösende Aufgabe bestand in der Einführung von Sauerstoffunktionen in die

Stellungen 3 und 8 und von Methylgruppen in die Stellungen 4, 7 und 9 eines geeigneten

Decalinderivates. Einen besonders wichtigen Aspekt stellte die Stereochemie dar, da

die Verbindung vier asymmetrische C-Atome aufweist und somit im Verlauf der Syn¬

these Gelegenheit zur Bildung von Stereoisomeren geboten war.

Als Ausgangsmaterial für die nachfolgenden Versuche war es naheliegend, das

bekannte und leicht zugängliche A -9-Methyl-octalin-3, 8-dion (I) 'zu wählen, da

darin bereits die beiden Sauerstoffunktionen des gesuchten Endproduktes, sowie die

Methylgruppe an der Ringverknüpfungsstelle (C-9) vorgebildet sind.

Bevor zur Einführung der beiden Methylgruppen am C-4 geschritten werden

konnte, stellte sich zunächst die Aufgabe, die bei dieser Operation störende Carbonyl-

gruppe C-8 vorübergehend zu blockieren. Eine solche Blockierung gelang in präpara-

tiv ergiebiger Ausbeute durch Behandlung von I mit Aethylenglykol in Anwesenheit von

4)p-Toluolsulfonsäure ,

wobei erwartungsgemäss das Carbonyl der <x, ß -ungesättig¬

ten Ketongruppierung bedeutend langsamer als das isolierte Carbonyl am C-8 reagier¬

te. Nach chromatographischer Trennung des anfallenden Reaktionsgemisches an Alu¬

miniumoxyd konnte in 50 - 60-proz. Ausbeute das gesuchte Monoketal II, das isome-

1) R. Rüegg, J. Dreiding, O. Jeger und L. Ruzicka, Helv. 33, 889 (1950).2) D. Arigoni, H. Bosshard, J. Dreiding und O. Jeger, Helv. 37, 2173(1954).3) P. Wieland & K. Miescher, Helv. 33, 2215 (1950).4) Vgl. z.B. S. Bernstein, M. Heller~S S.M. Stollar, J. Amer. ehem. Soc. 76,

5674 (1954).—

-li¬

re Monoketal ni (0 - 5-proz.) sowie das Diketal IV (3 - 12-proz.) in reiner Form

isoliert werden ' '.

Die nachfolgende Methylierung des ex, (3 -ungesättigten Ketons n erfolgte in

Anlehnung an die Vorschriften von J.M. Conia ', wobei in einer glatt verlaufenden

Reaktion ein Produkt der Zusammensetzung CjcH22°3 resultierte. Dieses konnte

anhand der Analyse und seiner spektroskopischen Daten als (±)-A '-4,4,9-Tri-

methyl-octalin-3, 8-dion-8-äthylenketal (V) charakterisiert werden.

Die Verbindung V wurde nun mittels Lithiumaluminiumhydrid in Aether redu¬

ziert, wobei in ungefähr gleichen Ausbeuten die beiden am C-3 epimeren Alkohole VI

vom Smp. 87° sowie VII vom Smp. 148° entstanden. Die bereits an dieser Stelle vor¬

genommene Konfigurationszuteilung an die Hydroxylgruppe des Epimerenpaares VI

und VII ist zulässig, da das tiefer schmelzende Isomere VI im weiteren Verlauf der

Synthese das Racemat von Xa mit ß -ständiger Hydroxylgruppe am C-3 liefert.

Für weitere Versuche war es nun ratsam, die Ketalgruppierung von VI hydroly¬

tisch zu spalten, was durch Erwärmen mit verdünnter Essigsäure leicht erzielt wer¬

den konnte. Das anfallende, in reiner Form nicht isolierte ungesättigte Hydroxyketon

wurde mit Acetanhydrid-Pyridin zum O-Acetylderivat verestert und dieses in Eis¬

essiglösung einer katalytischen Hydrierung in Anwesenheit eines Platinoxyd-Kataly¬

sators unterworfen. Da bei der Hydrierung, wie aus dem Wasserstoffverbrauch ge¬

schlossen werden kann, mit der Doppelbindung gleichzeitig auch die Carbonylgruppe

reduziert wird, hat man das rohe Reduktionsprodukt mit Chrom(VI)-oxyd nachoxydiert.

Durch chromatographische Trennung des Reaktionsgemisches an Aluminiumoxyd ge¬

lang es wiederum mühelos, zwei kristalline Verbindungen: das (t) O-Acetyl-trans-

4,4,9-Trimethyl-3 ß-hydroxy-decalon-(8) (VIII) vom Smp. 94°, sowie das am C-10

stereoisomere IX vom Smp. 54 zu isolieren. Auch im Falle des Verbindungspaares

Vni und IX wurde die Konfigurationszuteilung auf Grund der Ueberführung von vm in

das Endprodukt X vorgenommen.

5) Man hat sich nicht bemüht, die genaue Lage der Doppelbindung in den Nebenproduk¬ten HI und IV der Ketalisierung zu bestimmen, und man formuliert sie in Anlehnungan die Ergebnisse der analogen Versuche bei ,â4-3-Keto-steroiden, bei welchen

die Ketalisierung der C-3-Carbonylgruppe mit einer Verschiebung der Doppelbin¬dung zwischen C-5 und C-6 verbunden ist.

6) Es sei bemerkt, dass diese Ausbeuten ohne weiteres reproduzierbar sind, wenn

man die im experimentellen Teil dieser Arbeit angegebenen Vorschriften genau be¬

folgt. Insbesondere sei erwähnt, dass bei Verlängerung der Reaktionsdauer wohl

die Ausbeute am gesuchten Monoketal II fällt, ohne dass dabei aber die Ausbeute

am Diketal IV entsprechend erhöht würde - was man auf sekundäre Vorgänge (Zer¬setzung) zurückführen kann.

7) Bull. Soc.chim. France 1954, 690, 943; 1956, 1040. Vgl. auch R.B. Wood war d,A.A. Patchett, D.H.RTHarton, D.ÄTTTlves & R.B. Kelly ,

J. Amer. ehem.

Soc. 76, 2852 (1954).

12 -

<*)XR=Ac Smp=C-)XR=AC Smp=130° (HXI Smp=69°t»XaR=H Smp=112° HXI Smp=46°HXaR=H Smp=50°

XV XIV R=AC

XlVa R=H

- 13 -

Die beiden O-Acetylderivate VHI und IX lieferten bei alkalischer Verseifung die

kristallinen Hydroxyketone Villa vom Smp. 74 und IXa vom Smp. 139.

Als letzte Stufe der Synthese stellte sich die Aufgabe, in ex-Stellung zur Keto-

gruppe am C-7 eine Methylgruppe einzuführen. Bei der Umsetzung der O-Acetyl-Ver-

bindung VHI mit Aethylformiat in Anwesenheit von Natriummethylat als Katalysator

entstand in praktisch quantitativer Ausbeute die in reiner Form nicht isolierte ex -Hy-

droxymethylen-Verbindung. Diese wurde direkt mit Acetanhydrid-Pyridin verestert

und anschliessend in Eisessiglösung mit Palladiumkohle als Katalysator hydriert.

Als Endprodukt dieser Reaktionsfolge resultierte in guter Ausbeute das bei 98°

schmelzende (Î) 0-Acetyl-trans-4,4,7,9-tetramethyl-3 ß-hydroxy-decalon-(8) (X),

dessen in Chloroformlösung aufgenommenes IR. -Absorptionsspektrum (Fig. A, Kur¬

ve 2) in jeder Hinsicht mit demjenigen des natürlichen (-)-Antipoden übereinstimmt.

35ÖÖ3ÔÔÔ 2SÖÖ2000 1900 BÖÖ1700 B00 600 U00 1300 BO0 1100 SÖÖ9ÖÖSÖÖ 700 errf

t 3, l 5 | Z 8 9 10 11 B 13 U IS ,11

"Söö äoöö 25ÔÔ 2000 1900 noo otö boo boo vjöö noo coo iSH BOB 5BB So 700 cm1

Fig. A8>

Kurve 1: (-)-0-Acetyl-trans-4,4,7,9-tetramethyl-3 (5-hydroxy-decalon-(8) (X) (natürlich).

Kurve 2: (t)-0-Acetyl-trans-4,4,7,9-tetramethyl-3-ß-hydroxy-decalon-(8) (X) (synth.).

8) Die IR. -Absorptionsspektren wurden in Chloroformlösung mit einem Perkin-Elmer-

Spektrophotometer, Modell 21, aufgenommen.

- 14 -

i5(10)

Auch die IR. -Absorptionsspektren des freien racemischen Hydroxyketons Xa

vom Smp. 112° (vgl. Fig. B) sowie des durch Oxydation mit Chrom(VI)-oxyd aus Xa

erhaltenen racemischen Diketons XI vom Smp. 69 (vgl. Fig. C) stimmten mit den

entsprechenden Ultrarot-Spektren der Umwandlungsprodukte des optisch aktiven

(-)-Hydroxyketons in sämtlichen Einzelheiten überein.

Analog wie das 3 ß -Hydroxyketal VI wurde auch das am C-3 epimere (t)- A'

4,4,9-Trimethyl-3<x-hydroxy-octalon-(8)-äthylenketal (VII) weiteren Umwandlungen

unterworfen. Nach säurekatalysierter Spaltung der Ketalgruppierung, Veresterung

der Hydroxygruppe und katalytischer Hydrierung resultierte wiederum ein Gemisch

der am C-10 stereoisomeren Verbindungen: das (±)-0-Acetyl-trans-4,4, 9-trimethyl-

3«-hydroxy-decalon-(8) (Xm) vom Smp. 102° und das (t)-O-Acetyl-cis-4,4, 9-tri-

methyl-3tx-hydroxy-decalon-(8) (XII) vom Smp. 99°. Die beiden O-Acetyl-Verbindun-

gen Xin und XII Hessen sich mit 5-proz. Lösung von Kaliumhydroxyd zu den entspre¬

chenden freien Hydroxyketonen Xllla und Xlla hydrolysieren.

"3555 30ÖÖ 25ÔÔ 2000 1900 «00 1700 1600 1500 Û0Ô" 800 B00 ÜÖÖ 1000 900 80Ö 7ÔÔ-

i 3 i 5 6 7 8 9 10 11 12 13 K B ,u

3500 3000 2500 2000 1900 «00 1700 BOO 1600 KO0 1300 1200 1100 1000 900 800 700 cm

Fig. B8)

Kurve 1: (-)-trans-4,4,7,9-Tetramethyl-3 ß-hydroxy-decalon-(8) (Xa) (natürlich).

Kurve 2: (t)-trans-4,4, 7, 9-Tetramethyl-3 (3-hydroxy-decalon-(8) (Xa) (synthetisch).

- 15 -

Dass im Verbindungspaar XII und Xlla die beiden Ringe eis-Konfiguration auf¬

weisen, ergibt sich aus folgendem Befund: Nach dem Einführen der Methylgruppe am

C-7 und der Hydrolyse der Estergruppierung am C-3 in der gebildeten Verbindung

XIV resultierte der freie Alkohol XlVa vom Smp. 129°, dessen Oxydation ein mit XI

isomeres Tetramethyl-decalin-dion XV (vgl. Fig. C) lieferte. Da in den beiden race-

mischen Diketonen XI und XV die Methylgruppe am C-7 die thermodynamisch stabilere

9 P H POKBii

"SÖÖ äSÖQ 250) 2000 800 «X 1700 B00 B00 UOO O00 1200 1«J (KO 900 8ÖÖ 700 cnf

3 i 5 6 7 8 9 10 11 g O 14 15 jj

~S0Ö 55» 25ÖÖ 2000 1900 555 1700 «00 B00 M0O 1300 C00 It» B00 555 95! 700 erf

3 t 6 6 7 8 9 10 H 12 13 H 15 ,u

~~%B 5BÔÔ zöö 2000BOoeoot700BOOBooi4ooobbi2obm)tioo 90Ö âôô—700 ai

Fig. C8)

Kurve 1: (-)-trans-4,4, 7, 9-Tetramethyl-decalin-3, 8-dion (XI) (natürlich).

Kurve 2: (î)-trans-4,4,7,9-Tetramethyl-decalin-3,8-dion (XI) (synthetisch).Kurve 3: (î)-cis-4,4,7, 9-Tetramethyl-decaUn-3,8-dion (XV) (synthetisch).

- 16 -

Konfiguration'einnimmt, folgt aus der Verschiedenheit der beiden Diketone, dass

in XV und somit auch in den Zwischenprodukten XII und XIV die beiden Ringe eis ver¬

knüpft sein müssen.

Die Hydroxyketone Villa, IXa, Xlla, Xllla, (t) Xa, (-)Xa und XlVa wurden für

uns freundlicherweise von Herrn Dr. S ehr eiber oxydiert ,wobei der Verlauf

der Reaktion qualitativ verfolgt wurde. Man erhielt die folgenden k*-Werte: 1,62;

3,55; 0,83; 1,50; 1,60; 1,57; 0,83.

Anhang

Die Aktualität des Problems brachte es mit sich, dass sich mehrere Forschungs¬

gruppen gleichzeitig mit der Synthese dem Hydroxyketon Xa analog gebauter bicyc-

lischer Verbindungen befassten. Unabhängig von uns synthetisierten B. Gaspert,

T.G. Halsall undD. Willis '

ausgehend vom Diketon I über die Zwischenstufen

XVI - XVIII das auch von uns hergestellte Decalon VIII, während F. So ndhe im er

12)und D. E lad ' dasselbe Decalon mit etwas veränderter Reihenfolge der Zwischen¬

stufen XIX - XXI bereiteten. Die Alkylierung der Verbindung VIH durch F. Sond-

heimer führte im Verlauf der weiteren Synthese zum Decalon Xa, das sich mit un¬

serem Präparat nach dem Smp., Misch-Smp. und dem IR. -Absorptionsspektrum als

identisch erwies.

9) Beim trans-Diketon XI ist es wohl die Konfiguration mit äquatorialer Lage der

Methylgruppe. Da das nicht-kristalline cis-Isomere XV in zwei Konstellationen

vorliegen kann, ist eine Aussage über die bevorzugte Lage der Methylgruppe amC-7 in dieser Verbindung nicht möglich.

10) Zur Methodik vgl. J. Schreiber & A. E schenmoser, Helv. 38, 1529 (1955).11) J.Chem.Soc. 1958, 624.

12) J.Amer. chemTSöc. 80, 1967(1958).

17

O OR' OR« OR'

XVI XVII

OH OR' OR'

O'RO

\..-Q

RO—S

H' x H'

XDC xx xxi vni

o

RO_

H

H^ RO'

xxn xxm

R R"

RO

OH

RORO-K^s^ R°-

rA H i "H

'

XXIV XXV XXVI XXVII

- 18 -

Wie den Berichten der beiden Arbeitsgruppen zu entnehmen ist, entstehen sämt¬

liche Zwischenprodukte in sterisch einheitlich verlaufenden Reaktionen. Unsere Resul¬

tate weichen demnach in dieser Hinsicht von denjenigen der erwähnten Forschungs¬

gruppen ab. Die Reduktion des Ketals V mit Lithiumaluminiumhydrid liefert in un¬

gefähr gleichen Ausbeuten die beiden epimeren Alkohole VI und VII. Ebenfalls

zeigte es sich (siehe oben), dass die katalytische Hydrierung der Doppelbindung

C-5-C-10 zu einem Gemisch beider möglicher Stereoisomeren führt, dessen Zusam¬

mensetzung in unserem Fall stark von der Konfiguration am C-3 abhängig ist. So lie¬

fert die Hydrierung der Verbindung XXII mit ß -ständiger O-Acetylgruppe am C-3

das trans-Decalon VIH sowie das entsprechende cis-Isomere IX in einem Verhältnis

von 3:1. Bei der Hydrierung der am C-3 epimeren O-Acetyl-Verbindung XXIH wird

dagegen in 83-proz. Ausbeute das cis-Decalon XII isoliert, wobei die entsprechende

Verbindung vom Typus des trans-Decalins Xni nur zu 17-proz. anfällt.

Eine Erklärung für das ungleiche Verhalten des Ketals V und des Pyranyläthers

XVI bei der Reduktion mit Lithiumaluminiumhydrid könnte wohl in der Verschieden¬

heit der sterischen Verhältnisse gefunden werden. Bei der Reduktion der Ketogruppe

am C-3 der Verbindung XVI erfolgt der Angriff des Hydridjons fast ausschliesslich

von der oc -Seite des Moleküls. Im Falle des Ketons V wird jedoch mindestens in der

Konstellation B (R,R" = O; R', R*" = -0-CH2-CH2-0-) durch den axial gebundenen

ot-ständigen Substituenten (Ketal-O) am C-8 die hintere Seite des Moleküls abge¬

schirmt, was eine Reduktion der Ketogruppe zu einem 3 ß -Hydroxyl erschweren

könnte14)15).Im Zusammenhang mit der Hydrierung der 5-6-Doppelbindung spielt neben

der Konfiguration des Substituenten in Stellung 8 auch die Orientierung der Sau-

erstoffunktion am C-3 eine bedeutende Rolle. Bei der Hydrierung eines Präpara¬

tes, welches einen 3 (3 -Substituenten trägt oder am C-3 unsubstituiert ist, kann eine

bevorzugte Anlagerung des Wasserstoffes von der ungehinderten Rückseite des Mole¬

küls angenommen werden '. Dies führt eo ipso überwiegend zu Verbindungen der

trans-Decalinreihe. Wenn dagegen Verbindungen mit einem 3 tx-Substituenten der

Hydrierung unterworfen werden, so erfolgt wegen der sterischen Hinderung der Rück-

13) Bezogen auf die Summe der isolierten Alkohole.

14) Die obere Ableitung ist nur dann zulässig, wenn der Verlauf der Reduktion mit

Metallhydriden durch sterische Hinderung beeinflusst wird (vgl. dazu D.H.R. Bar¬

ton, J.chem.Soc. 1953, 1027). Bekanntlich werden sterisch gehinderte Ketone zu

axialen Alkoholen reduziert, was auch im Fall des Ketons V zu 50% zutreffen wird.

15) In der zweiten möglichen Konstellation (A) ist bei den Verbindungen die Vordersei¬

te des Moleküls durch einen axialen /J-ständigen Substituenten am C-8 gegen einen

Angriff geschützt. Das Keton kann auch als relativ weniger gehindert angesehenwerden.

16) Vgl. auch J.D. Cocker und T.G. Halsall, Chemistry and Ind. 1956, 1275

und Anm. 17).

- 19 -

seite des Moleküls die Wasserstoffanlagerung syn zur Methylgruppe am C-9. Da eine

derartige Beeinflussung der Stereochemie der Hydrierungsreaktion bei den Steroiden

17)gut bekannt ist

, war eine Inversion der Ausbeuten an eis- und trans-Produkten auch

in der bicyclischen Reihe a priori zu erwarten. Trotzdem sollten aber zu weit gehen¬

de Analogieschlüsse vermieden werden, da die konstellativen Verhältnisse bei beiden

Gerüsten nicht identisch sind und im Falle des A l'-Trimethyloctalons sich zusätz¬

liche Faktoren auswirken können. Es sei einerseits auf die Wechselwirkung der bei¬

den axialen '

Methylgruppen am C-4 und C-9, welche eine Deformation des Ring¬

systems hervorrufen könnte, hingewiesen und anderseits die formelle Möglichkeit

der Ausbildung der Konstellation A erwähnt, in welcher, wie Modellbetrachtungen

zeigen, die Vorderseite des Moleküls einem Angriff des Wasserstoffes eher ausge¬

setzt ist.

Die Hydrierung des Dien-Systems der Verbindung XXIV führt nach Angaben von

19)N.B. Hay n es und C.J. Timmons 'in einer sterisch einheitlich verlaufenden Re¬

aktion zum O-Benzoyl-Derivat des Decalins XXV. Ebenso ergibt die Hydrierung der

Verbindung XXVII und Nachoxydation der Hydroxylgruppe am C-8 das O-Benzoylderi-

vat des Ketons VTfla. Im Gegensatz dazu liefert die Hydrierung des Dienonsystems

der Verbindung XXVI das Derivat des cis-Decalons iXa.

Im Zusammenhang mit den oben beschriebenen Versuchen sei hervorgehoben,

dass verschiedene Autoren auch solche eis- und trans-Decalone herstellten, die eine

Ketogruppe am C-6 oder C-7 enthalten. T.G. Halsall, W.J. Rodewald und D.

Willis ' synthetisierten die Verbindung XXVIII, während das Decalon XXDC von

21)

S.L. Mukher jee undP.C.Dutta '

hergestellt wurde. Von T.G. Halsall und22)

D.B. Thomas ' wurde ferner das Decalin XXX bereitet, das ein Zwischenpro¬

dukt für die Synthese der Ringe D und E von (3 -Amyrin darstellt.

,-Çp »°-ÇQ,oRO-

xxvm xxDC~

xxx

17) I.R. Lewis und C.W. Shopee, J.chem.Soc. 1955, 1367.

18) Das Auftreten von Konstellationen mit äquatorialer Lage der C-9-Methylgruppeerscheint anhand von Modellbetrachtungen aus rein sterischen Gründen nicht wahr¬

scheinlich. Neben A und B könnte möglicherweise noch eine Konstellation, in wel¬

cher der Ring I in Wannenform vorliegt, eine Rolle spielen.19) Proc. chem.Soc. 1958, 345.

20) ibid. T55?, 231.

21) ibid. 1358", 351.

22) J.chem.Soc. 19567~2431.

- 20 -

Experimenteller Teil '

4Partielle Ketalisierung von I. Eine Mischung von 6 g A -9-Methyl-octalin-3,8-dion

(I), 35 ml Aethylenglykol und 100 mg p-Toluolsulfonsäure in 170 ml Benzol wurde in

24)einem Rundkolben mit angeschlossenem Wasserabscheider 21/4 Std. unter Rück-

fluss erwärmt (Oelbad-Temperatur 120^. Das abgekühlte Reaktionsgemisch wurde mit

gesättigter Natriumhydrogencarbonat-Lösung und anschliessend mit dest. Wasser ge¬

waschen. Nach dem Eindampfen der mit wasserfreiem Natriumsulfat getrockneten

Benzol-Lösung konnten 7, 720 g eines rotbraunen, zähflüssigen Oeles isoliert werden.

Dieses wurde zwecks Auftrennung der Reaktionsprodukte in 40 ml eines Petroläther-

Benzol-(4 : 1)-Gemisches aufgenommen und an einer Säule von 180 g neutralem Alu¬

miniumoxyd (Akt. n) chromatographiert.

Mit dem gleichen Lösungsmittelgemisch konnten aus der Säule 1,08 g des Dike-

tals IV eluiert werden. Nach viermaliger Umkristallisation aus Hexan schmolz das

so erhaltene Präparat bei 92 - 93°. Im UV. -Bereich des Spektrums tritt keine selek¬

tive Absorption auf, und im IR. -Spektrum der Verbindung fehlt die Absorptionsbande

der Carbonylgruppe.

C15H22°4 Ber- C 67'64 H 8'"

Gef. C 67,77 H 8,52%

Mit Petroläther-Benzol (1: 1) und mit reinem Benzol eluierte man aus der Säule4

in Form eines Oeles 4,12 g (t)- A -9-Methyl-octalin-3,8-dion-8-äthylenketal (II).

Dieses absorbiert im UV. -Spektrum bei 242 mju (log £ = 4,10) und weist im IR. -Ab¬

sorptionsspektrum das Doublett der <x, (3 -ungesättigten Keton-Gruppierung bei 1670

und 1625 cm" auf. Es siedet im Hochvakuum (0,1 Torr) unter teilweiser Zersetzung

bei 124 ; n_ =1, 5370. Zur Analyse wurde eine Probe aus dem Chromatogramm im

Hochvakuum bei Zimmertemperatur getrocknet.

C13H18°3 Ber- C 70'24 H 8>16%

Gef. C 70,27 H 8,17%

23) Die Smp. wurden in offenen Kapillarröhrchen im Kofler-Block bestimmt und sind

korrigiert. Die angegebenen Sdp. beziehen sich auf Badtemperatur. Die IR. -Ab¬

sorptionsspektren wurden in Chloroformlösung mit einem Perkin-Elmer-Spektro-photometer, Modell 21, aufgenommen. Die Angaben über UV.-Absorptionsspek¬tren beziehen sich auf Lösungen der Substanzen in Feinsprit.

24) Beim längeren Erwärmen (6 Std.) konnten aus 1 g angesetztem Diketon I neben

grossen Mengen Zersetzungsprodukten lediglich 300 mg Diketal IV und 150 mgMonoketal II isoliert werden. Ein kurzes Erwärmen (1 Std.) liefert neben 20%Ausgangsmaterial 5% Monoketal in, 5% Diketal IV und 40% Monoketal II. Bei

grösseren Ansätzen fällt die Ausbeute stark ab.

- 21 -

Zur weiteren Charakterisierung der Verbindung II wurde eine Probe durch

Kochen mit Semicarbazidhydrochlorid und Natriumacetat in Methanol in das ent¬

sprechende Semicarbazon übergeführt. Zur Analyse gelangte ein dreimal aus Metha¬

nol umkristallisiertes Präparat vom Smp. 203 - 204 (im Vakuum).

C14H21°3N3 Ber- C 60,19 H 7'58%

Gef. C 60,18 H 7,49%

Benzol-Aether-Gemische mit steigendem Aether-Gehalt eluierten aus der Säule

lediglich 0,22 g des unreinen Monoketals (n). Beim Auswaschen der Säule mit Aether-

Methanol (1 : 1) konnten schliesslich 1,25 g dunkelgefärbter Produkte unbekannter Kon¬

stitution isoliert werden.

Bei kurzer Reaktionsdauer (1 Std. ) konnte bei der chromatographischen Auftren¬

nung, wie bereits angegeben ', anschliessend an das Diketal IV, mit gleichem Lö¬

sungsmittel auch das (t)-A * '-9-Methyl-octalin-3, 8-dion-3-äthylenketal (III) eluiert

werden. Nach dreimaliger Umkristallisation aus Hexan erhielt man ein Präparat vom

Smp. 61-62,welches im UV. -Spektrum keine Absorption über 220 mu aufwies. Im

IR. -Absorptionsspektrum der Verbindung tritt die Frequenz des gesättigten Carbonyls

bei 1715 cm" auf. Das Präparat wurde zur Analyse im Hochvakuum destilliert.

C13H18°3 Ber* C 70'24 H 8>16%

Gef. C 70,06 H 8,29%

(t)-A ^10*-4,4,9-Trimethyl-octalin-3,8-dion-8-äthylenketal (V). Zu einer auf

0 abgekühlten Lösung von 7 g Kalium in 150 ml t-Amylalkohol wurden unter Durch -

leiten von Stickstoff und Feuchtigkeitsausschluss 4,7 g des Monoketals II in 15 ml t-

Amylalkohol getropft. Anschliessend versetzte man das Reaktionsgemisch tropfen¬

weise innert 30 Min. mit 50 g Methyljodid und liess unter Stickstoff bei 20 drei Tage

stehen. Die praktisch farblose Lösung, zusammen mit dem ausgefallenen Kaliumjodid,

wurde dann auf Eis gegossen, mit Aether versetzt und wie üblich aufgearbeitet. Nach

dem Abdampfen des Lösungsmittels im Vakuum wurde das erhaltene Reaktionsprodukt

im Petroläther-Benzol-(l : 1)-Gemisch gelöst und an einer mit dreissigfacher Gewichts¬

menge neutralem Aluminiumoxyd (Akt. II) beschickten Säule chromatographiert. Mit

dem gleichen Lösungsmittelgemisch wurden 4, 7 g 4' '-4,4, 9-Trimethyl-octalin-

3,8-dion-8-äthylenketal (V) eluiert. Das als nichtkristallisierendes Oel vorliegende

Produkt wies im IR.-Absorptionsspektrum bei 1710 cm" eine der gesättigten Keton-

Gruppierung entsprechende Bande auf. Im UV. -Spektrum der Verbindung tritt ober¬

halb 220 mju keine selektive Absorption auf. Zur Analyse gelangte ein zweimal im

Hochvakuum destilliertes Präparat, Sdp. 110°/0,05 Torr; n^ =1,510.

- 22 -

C15H22°3 Ber- C 71,97 H 8>86%

Gef. C 71,94 H 8,841

Reduktion von V mit Lithiumaluminiumhydrid. In einem mit Rückflusskühler und

Tropftrichter versehenen Schliffkolben wurden unter Vibrieren bei Feuchtigkeitsaus -

schluss 3 g Lithiumaluminiumhydrid in 150 ml abs. Aether suspendiert und tropfen¬

weise mit einer Lösung von 7, 33 g V in 150 ml abs. Aether versetzt. Das Reaktions¬

gemisch wurde drei Std. unter Rückfluss gekocht und anschliessend 15 Std. bei 20°

stehengelassen. Unter Eiskühlung wurde nun durch vorsichtige Zugabe von Wasser

das überschüssige Lithiumaluminiumhydrid zersetzt, das ausgefallene Aluminium¬

hydroxyd mittels gesättigter Seignette-Salz-Lösung aufgelöst und das resultierende

Gemisch unter Vermeidung von Säuren aufgearbeitet. Nach dem Eindampfen des Lö¬

sungsmittels isolierte man 7,422 g eines farblosen Oeles. Zwecks chromatographi¬

scher Reinigung wurde dieses in 40 ml Petroläther-Benzol (1: 1) aufgenommen und

an neutralem Aluminiumoxyd (Akt. II) chromatographiert. Mit gleichem Lösungsmit¬

telgemisch wurden aus der Säule neben öligen Fraktionen 2,3 g des kristallinen Zot. -

Hydroxyketals VII ausgewaschen. Nach sechsmaliger Umkristallisation aus Hexan

schmolz das in feinen Nadeln kristallisierende Produkt bei 147 - 148.Zur Analyse

wurde es im Hochvakuum (0,02 Torr) bei 110 sublimiert.

C15H24°3 Ber* C 71'39 H 9»59*

Gef. C 71,44 H 9,63%

Mit Benzol eluierte man nach einer kleineren öligen Fraktion (50 mg) 2,00 g

(+)- 45*10)-4,4,9-Trimethyl-3 fi -hydroxy-decalon-(8)-äthylenketal (VI). Nach vier¬

maliger Umkristallisation aus Hexan und anschliessender Destillation im Hochvakuum

(0,02 Torr) bei 110,schmolzen die groben Kristalle der analysenreinen Verbindung

bei 86,5 -87°.

C15H24°3 Ber* C 71'39 H 9>59*

Gef. C 71,43 H 9,68%

Die IR.-Absorptionsspektren der beiden Verbindungen VI und VU sind ähnlich,

weisen aber im Gebiet zwischen 900 - 1400 cm" deutliche Unterschiede auf.

(t)-Q-Acetyl-trans- und cis-4,4, 9-trimethyl-3 ß-hydroxy-decalon-(8) (VIII) bzw. (IX).

1,086 g (3 -Hydroxyketal VI vom Smp. 84 - 85° wurden mit 120 ml 90-proz. Essig¬

säure 40 Min. im Wasserbad erwärmt. Die abgekühlte Reaktionslösung wurde mit

dreifacher Menge Wasser verdünnt und das ausgefallene ölige Produkt in Aether auf-

- 23 -

genommen. Nach dem Auswaschen der Essigsäure mit 2-n. Natriumcarbonat-Lösung,

Neutralwaschen mit Wasser, Trocknen und Eindampfen des Lösungsmittels resultier¬

ten 914 mg eines zähen Oeles. Im IR. -Absorptionsspektrum des Produktes trat eine

scharfe Carbonyl-Bande bei 1706 cm und die Frequenz der Hydroxylgruppe bei

3650 cm"1 auf.

Das so erhaltene Rohprodukt wurde nun zwecks Veresterung der freien Hydroxyl¬

gruppe in einem Gemisch von 15 ml Acetanhydrid und 5 ml Pyridin gelöst und 14 Std.

bei Zimmertemperatur stehengelassen. Die übliche Aufarbeitung lieferte 1,087 g der

gewünschten O-Acetyl-Verbindung. Diese wurde in 30 ml Eisessig gelöst und mit

229 mg vorhydriertem Platinoxyd-Katalysator der Hydrierung unterworfen, wobei

rasch 198 ml (entsprechend 1,98 Mol.) Wasserstoff aufgenommen wurden. Nach dem

Abfiltrieren des Katalysators und Eindampfen des Lösungsmittels im Vakuum erhielt

man 1,103 g eines amorphen Produktes. Zur Rückoxydation der Sauerstoff-Funktion

am C-8 wurde das rohe Reduktionsprodukt in 25 ml Eisessig gelöst, tropfenweise mit

5 ml einer 6,7-proz. Chrom(VI)-oxyd-Lösung in 90-proz. Essigsäure versetzt und

4 Std. unter Rühren bei 20° stehengelassen. Nach dem Zerstören des überschüssigen

Oxydationsmittels mit Methanol wurde die Essigsäure im Vakuum weitgehend einge¬

dampft, der Rückstand mit Wasser und Aether versetzt und normal aufgearbeitet. Da¬

bei fielen 1,085 g eines farblosen zähen Oeles an, welches darauf in 20 ml Petroläther

gelöst und an einer Säule aus 30facher Menge neutralem Aluminiumoxyd (Akt. n) chro-

matographiert wurde.

Mit Petroläther wurden 179 mg einer kristallinen Verbindung vom Smp. 51 - 52

eluiert. Nach dreimaligem Umkristallisieren aus Hexan und anschliessender Subli¬

mation (0,02 Torr/100 ) schmolz das gegen Tetranitromethan gesättigte Präparat von

(t)-0-Acetyl-cis-4,4, 9-trimethyl-3 ß-hydroxy-decalon-(8) (IX) bei 53,5 - 54,5° und

lieferte die folgenden Analysenwerte.

C15H24°3 Ber- C 71,39 H 9»59%

Gef. C 71,32 H 9,68%

Im IR. -Absorptionsspektrum tritt die Acetat-Bande bei 1720 und die Carbonyl-

Bande des 6-Ringketons bei 1700 cm" auf.

Mit gleichem Lösungsmittel wurden noch zwei Mischfraktionen (150 mg) von tie¬

ferem Smp. erhalten. Petroläther-Benzol-Gemische mit steigendem Benzol-Gehalt

eluierten insgesamt 600 mg (±)-0-Acetyl-trans-4,4, 9-trimethyl-3 ß -hydroxy-decalon-

(8) (Vm). Die einzelnen Fraktionen schmolzen zwischen 80 und 90. Nach dreimali¬

gem Umkristallisieren aus Hexan und anschliessender Sublimation wurde ein Präparat

vom Schmelzpunkt 93,5 - 94, 5 erhalten. Im IR. -Absorptionsspektrum der Verbindung

treten Banden bei 1730, 1700 und 1260 cm" auf.

- 24 -

C15H24°3 Ber< C 71'39 H 9>59%

Gef. C 71,09 H 9,72%

(t)-cis-4,4,9-Trimethyl-3 ß -hydroxy-decalon-(8) (Ka). 17 mg der Verbindung IX

vom Smp. 54° wurden mit 10 ml einer 5-proz. wässerig-alkoholischen Lösung von

Kaliumhydroxyd 1 Std. im Wasserbad erwärmt. Die Reaktionslösung wurde mit Was¬

ser verdünnt und wie üblich aufgearbeitet, wobei 15 mg Produkt anfielen. Dieses wur¬

de in 4 ml Petroläther-Benzol-(l : 1)-Gemisch aufgenommen und an hundertfacher Men¬

ge neutralem Aluminiumoxyd (Akt. n) chromatographiert. Mit gleichem Lösungsmit¬

tel konnten lediglich 8 mg IXa eluiert werden, wobei der Rest der Substanz an der

Säule adsorbiert blieb. Nach viermaligem Umkristallisieren aus Hexan schmolz die

analysenreine Verbindung bei 138 - 139. In ihrem IR. -Absorptionsspektrum treten

Absorptionsbanden bei 3650 und 1700 cm" auf.

C13H22°2 Ber* C 74,24 H 10>54%

Gef. C 74,41 H 10,41%

(t)-trans-4,4,9-Trimethyl-3 ß-hydroxy-decalon-(8) (Villa). 20 mg der O-Acetyl-Ver-

bindung VIII vom Smp. 93, 5 wurden mit 10 ml einer 5-proz. wässerig-alkoholischen

Lösung von Kaliumhydroxyd durch einstündiges Erwärmen auf dem Wasserbade hydro-

lysiert. Nach entsprechender Aufarbeitung und chromatographischer Reinigung wur¬

den 10 mg eines farblosen Oeles erhalten, welches nach zweimaliger Destillation bei

118 /0,02 Torr und nach längerem Stehen kristallisierte und bei 67 - 68° schmolz.

Im IR. -Absorptionsspektrum der Verbindung treten Banden bei 3640 und 1700 cm"

auf. Zur Analyse gelangte ein dreimal aus Hexan umkristallisiertes Präparat vom

Smp. 74°.

C13H22°2 Ber# C 74,24 H 10>54%

Gef. C 74,16 H 10,37%

(t)-Q-Acetyl-trans-4,4, 7, 9-tetramethyl-3 ß -hydroxy-decalon-(8) (X). Zu einer vib¬

rierten Suspension von 700 mg frisch hergestelltem, im Hochvakuum getrocknetem

Natriummethylat in 20 ml wasserfreiem Benzol wurden unter Durchleiten von Stick¬

stoff und bei Feuchtigkeitsausschluss 3 ml Aethylformiat zugefügt. Nach ca. V2 Std.

wurden unter Kühlung 213 mg VHI in 10 ml abs. Benzol zugetropft. Nach erfolgter

Zugabe wurde das Reaktionsgemisch weitere 15 Std. bei Zimmertemperatur vibriert

und anschliessend aufgearbeitet. Auf übliche Weise konnten 212 mg saurer Produkte

isoliert werden. Das zähe Oel gab mit Eisen(HI)-chlorid eine stark violette Färbung

und wurde ohne eine zusätzliche Reinigung acetyliert. Zu diesem Zweck löste man die

- 25 -

Substanz in 9 ml Acetanhydrid und 3 ml Pyridin und Hess die Lösung bei 20 16 Std.

stehen. Nach Verdünnen des Reaktionsgemisches mit Wasser, Aufnahme in Aether

und der üblichen Aufarbeitung konnten 250 mg eines neutralen, nunmehr mit EisenflU)-

chlorid nicht reagierenden Oeles isoliert werden. Dieses kristallisierte nach einigem

Stehen, wurde jedoch direkt in 10 ml Eisessig aufgenommen und mit 199 mg vorhydrier¬

tem Palladiumkohle-Katalysator hydriert. In 30 Min., nach der Aufnahme von 2 Mol.

Wasserstoff, kam die Reaktion zum Stillstand. Es resultierten 210 mg eines amorphen

Produktes, welches in 5 ml Petroläther aufgenommen und an einer Säule mit dreissig-

facher Gewichtsmenge neutralem Aluminiumoxyd (Akt. II) chromatographiert wurde.

Mit Petroläther und Petroläther-Benzol-Gemischen mit steigendem Benzolgehalt, wur¬

den insgesamt 180 mg (±)-0-Acetyl-trans-4,4,7,9-tetramethyl-3 ß -hydroxy-decalon-

(8) (X) vom Smp. 93 - 94 eluiert. Nach zweimaliger Umkristallisation aus Hexan

schmolz das analysenreine Präparat von X bei 98 - 98, 5. Im IR. -Absorptionsspek¬

trum der Verbindung, welches mit demjenigen des entsprechenden optisch aktiven Ab¬

bauproduktes von <x -Amyrin identisch ist, treten die Banden der Carbonylgruppe des

Ketons und des O-Acetylrestes bei 1705 bzw. 1730 cm" auf. Zur Analyse gelangte ein

zusätzlich einmal im Hochvakuum sublimiertes Produkt vom Smp. 98 - 98,5 .

C16H26°3 Ber- C 72,14 H 9>84%

Gef. C 72,24 H 9,95%

(t)-trans-4,4, 7, 9-Tetramethyl-3 ß -hydroxy-decalon-(8) (Xa). 51 mg der O-Acetyl-

Verbindung (X) vom Smp. 98 - 98,5 wurden mit 10 ml einer 5-proz. wässerig-alko¬

holischen Lösung von Kaliumhydroxyd 1 Std. im Wasserbad erwärmt. Die anschliessen¬

de Aufarbeitung lieferte 45 mg eines amorphen Produktes, welches an neutralem Alu¬

miniumoxyd (Akt. H) chromatographiert wurde. Petroläther-Benzol-Gemische eluier-

ten 42 mg (t)-trans-4,4, 7, 9-Tetramethyl-3 0-hydroxy-decalon-(8) (Xa). Das erhaltene

Produkt wurde bei 0,02 Torr destilliert (Sdp. 110°), wonach das abgekühlte Destillat

spontan kristallisierte. Nach zweimaliger Umkristallisation aus Hexan schmolz das

Analysenpräparat bei 111,5 - 112 . Das IR. -Absorptionsspektrum der Verbindung ist

mit demjenigen des entsprechenden optisch aktiven Produktes identisch.

C14H24°2 Ber* C 74'95 H 10.78%

Gef. C 74,69 H 10,62%

(±)-trans-4,4,7,9-Tetramethyl-decalin-3,8-dion (XI). 10 mg Hydroxyketon Xa vom

Smp. 112 wurden in 5 ml Eisessig gelöst und tropfenweise unter Rühren mit 0, 7 ml

einer 0,67-proz. Lösung von Chrom(VI)-oxyd in 90-proz. Essigsäure versetzt. Nach

4 Std. Reaktion bei 20 wurde das überschüssige Oxydationsmittel mit Methanol zerstört und

- 26 -

das Reaktionsgemisch nach Verdünnen mit Wasser aufgearbeitet. Man erhielt 11 mg

neutrale Produkte, die anschliessend chromatographisch (neutrales Aluminiumoxyd

Akt. II) gereinigt wurden. Mit Petroläther-Benzol-(4 : 1)-Gemisch wurden 8, 5 mg

einer kristallinen Fraktion vom Smp. 58 - 60 erhalten. Nach zweimaligem Umkri¬

stallisieren aus Hexan schmolz das so erhaltene (+)-trans-4,4,7,9-Tetramethyl-de-

calin-3,8-dion (XI) bei 68-69 .Sein IR. -Spektrum ist mit demjenigen des authen¬

tischen Präparates vom optisch aktiven XI identisch. Zur Analyse gelangte ein Prä¬

parat vom Smp. 69.

C14H22°2 Ber" C 75'63 H 9>97%

Gef. C 75,46 H 9,73%

(t)-O-Acetyl-trans- und (±)-Q-Acetyl-cis-4, 4, 9-trimethyl-3o<-hydroxy-decalon-(8)

(XIII) bzw. (Xu). Die Ueberführung von VU in XII und Xin wurde in Anlehnung an

die analogen Versuche in der ß -Hydroxy-Reihe ausgeführt. 559 mg ot-Hydroxyketal

VU vom Smp. 146 - 147 wurden zwecks Spaltung der Ketal-Gruppierung 40 Min. mit

380 cm 90-proz. Essigsäure im Wasserbad erwärmt. Die Aufarbeitung lieferte 488 mg

eines zähen, öligen Rohproduktes, welches im IR. -Absorptionsspektrum Banden bei

3680 und 1710 cm" aufwies. Die Veresterung des Produktes mit 7 ml Acetanhydrid

und 2, 5 ml Pyridin während 14 Std. bei 20 lieferte 550 mg einer schwach gelben rohen

O-Acetyl-Verbindung, in deren IR. -Spektrum zwei stark ausgeprägte Absorptionsban¬

den bei 1725 und 1710 cm" auftraten. Bei der anschliessenden Hydrierung des Präpa¬

rates in 14 ml Eisessig mit 139 mg eines vorhydrierten Platinoxyd-Katalysators wur¬

den in 4V2 Std. annähernd 2 Mol. Wasserstoff aufgenommen. Nach dem Abfiltrieren

des Katalysators und Eindampfen des Lösungsmittels erhielt man 570 mg eines Pro¬

duktes, in dessen IR. -Absorptionsspektrum die Banden der Hydroxylgruppe und des

O-Acetylrestes bei 3640 bzw. 1720 cm" auftraten. Zwecks Umwandlung der C-8-

Hydroxylgruppe in ein Carbonyl wurde das erhaltene Präparat in 15 ml Eisessig mit

2,65 ml einer 6,7-proz. Lösung von Chrom(VI)-oxyd in 90-proz. Essigsäure nach¬

oxydiert. Die übliche Aufarbeitung lieferte 585 mg eines nichtkristallisierenden Oeles.

Letzteres wurde in 5 ml Petroläther gelöst und an einer Säule, welche mit vierzig -

fâcher Gewichtsmenge neutralem Aluminiumoxyd beschickt war, chromatographiert.

Mit gleichem Lösungsmittel Hessen sich 90 mg einer bei 88 - 90 schmelzenden Ver¬

bindung isolieren. Die IR. -Absorptionsbanden des Keton-Carbonyls und der O-Acetyl-

Gruppe liegen bei 1695 bzw. 1725 cm" . Nach viermaligem Umkristallisieren aus

Hexan schmolz das analysenreine Präparat von (±)-0-Acetyl-trans-4,4, 9-trimethyl-

3<x-hydroxy-decalon-(8) (Xm) bei 102 - 103°.

- 27 -

C15H24°3 Ber* C 71'39 H 9,59%

Get. C 71,47 H 9,65%

Bei weiterem Eluieren mit Petroläther wurden in zwei Fraktionen 55 mg Substanz

vom Smp. 70 - 71° bzw. 78 - 82° erhalten, denen mit Petroläther-Benzol-Gemischen

(9:1, 4:1, 1:1) und mit reinem Benzol 430 mg (±)-0-Acetyl-cis-4,4, 9-trimethyl-

3cx-hydroxydecalon-(8) (XII) vom Smp. 84 - 87° bis 96 - 97° folgten. Die vereinigten

Fraktionen wurden dreimal aus Hexan umkristallisiert und lieferten ein Präparat vom

Smp. 99°. Ein Gemisch aus annähernd gleichen Mengen von XIII und XII schmolz be¬

reits bei 71 - 80°. Im IR. -Absorptionsspektrum der Verbindung XII, welches sich von

demjenigen der Verbindung XIII relativ wenig unterscheidet, können dem Carbonyl des

Ketons und der O-Acetyl-Gruppe die Banden bei 1700 bzw. 1725 cm" zugeschrieben

werden. Zur Analyse wurde eine Probe zusätzlich im Hochvakuum bei 90 sublimiert

und schmolz dann bei 99 - 99,5 .

C15H24°3 Ber* C 71'39 H 9>59%

Gef. C 71,41 H 9,70%

(t)-cis-4,4, 9-TrimethyI-3o< -hydroxy-decalon-(8) (Xlla). 19,5 mg O-Acetyl-Verbin-

dungXH wurden mit 10 ml einer 5-proz. wässerig-methanolischen-(l : 3) Lösung von

Kaliumhydroxyd eine Std. im Wasserbad erwärmt. Die anschliessende Aufarbeitung

lieferte 17 mg eines öligen Neutralproduktes, welches chromatographiert wurde. Die

eluierten 16 mg wurden im Hochvakuum (0,02 Torr) bei 100 destilliert. Das so er¬

haltene (t)-cis-4,4, 9-Trimethyl-3ex-hydroxy-decalon-(8) (Xlla) kristallisierte beim

Anreiben mit Hexan und schmolz nach zweimaligem Umlösen aus gleichem Lösungs¬

mittel bei 88,5 - 89.Das IR. -Spektrum des Präparates weist die üblichen zwei Ban¬

den der Hydroxyketone bei 3650 und 1700 cm" auf.

C13H22°2 Ber* C 74'24 H 10>54%

Gef. C 74,44 H 10,55%

(t)-trans-4,4,9-Trimethyl-3o< -hydroxy-decalon-(8) (XMa). Unter gleichen Bedin¬

gungen wie die Verbindung XII wurden 18, 5 mg Xni (Smp. 102 - 103°) durch einstündi¬

ges Erwärmen mit 10 ml Kaliumhydroxydlösung verseift. Die erhaltenen 16 mg eines

amorphen Produktes wurden an neutralem Aluminiumoxyd (Akt. II) chromatographiert.

So erhielt man 15 mg (±)-trans-4,4, 9-Trimethyl-3o«-hydroxy-decalon-(8) (XHIa) in

Form eines farblosen Oeles, welches im Hochvakuum (0,05 Torr) bei 115° destilliert

wurde. Nach längerer Zeit kristallisierte das Präparat; aus Hexan umgelöst

schmolz dieses bei 88 - 89°. Bei der Mischprobe mit dem Alkohol Xlla wur-

- 28 -

de eine Schmelzpunkterniedrigung von ca. 20° festgestellt. Auch im IR. -Spektrum

dieser Verbindung erschienen die erwarteten Absorptionsbanden der Hydroxyl- und

Carbonylgruppen bei 3650 und 1700 cm".

C13H22°2 Ber- C 74>24 H 10»54%

Gef. C 74,25 H 10,65%

(t)-0-Acetyl-cis-4,4,7, 9-tetramethyl-3o< -hydroxy-decalon-(8) (XIV). Zu einer

Suspension von 500 mg Natriummethylat in 15 ml abs. Benzol wurde unter Vibrieren

in No-Atmosphäre 1,5 ml frisch destillierter Ameisensäure-äthylester gegeben und

die auf 0 abgekühlte Reaktionsmischung mit einer Lösung von 115 mg des Décalons

Xu in 7 ml absolutem Benzol versetzt. Nach 15stündigem Vibrieren bei 20° wurde auf¬

gearbeitet, wobei 121 mg der ex -Hydroxymethylen-Verbindung als Rohprodukt anfie¬

len. Diese wurden mit 10 mg der gleichen Verbindung von einem vorhergehenden An¬

satz vereinigt, in 7 ml Acetanhydrid und 2, 5 ml Pyridin gelöst und 15 Std. bei 20

stehengelassen. Nach der Aufarbeitung resultierten 160 mg der neutralen Bis-O-ace-

tyl-Verbindung. Ohne eine weitere Reinigung vorzunehmen, wurde auch diesmal das

Rohprodukt in 10 ml Eisessig aufgelöst und mit 199 mg vorhydrierter Palladium-Kohle

als Katalysator hydriert. Es wurden insgesamt im Verlaufe von 30 Min. 21 ml Was¬

serstoff aufgenommen. Nach dem Abfiltrieren des Katalysators und Eindampfen des

Lösungsmittels im Vakuum wurden 130 mg eines schwach braunen Oeles gewonnen.

Durch chromatographische Reinigung unter den üblichen Bedingungen wurden 112 mg

reines, zunächst als nicht kristallisierendes Oel vorliegendes (t)-O-Acetyl-cis-

4,4,7,9-tetramethyl-3o<.-hydroxy-decalon-(8) (XIV) erhalten. Auch dieses Präparat

kristallisierte nach längerem Stehen. Aus Hexan umgelöst zeigte es einen Smp. von

101 - 102°. Obschon das IR. -Spektrum demjenigen von X sehr ähnlich ist, besteht

jedoch kein Zweifel an der Verschiedenheit der beiden Substanzen. Zur Analyse ge¬

langte ein zweimal im Hochvakuum bei 105° (0,05 Torr) destilliertes Präparat.

nj° = 1,490.

C16H26Og Ber. C 72,14 H 9,84%

Gef. C 71,81 H 9,66%

(t)-cis-4,4, 7, 9-Tetramethyl-3tx-hydroxy-decalon-(8) (XIVa). 86 mg O-Acetylverbin-

dung XIV wurden in 10 ml 5-proz. wässerig-methanolischer-(l : 3) Lösung von Kalium¬

hydroxyd 1 Std. am Wasserbad erwärmt und anschliessend aufgearbeitet. Die erhalte¬

nen 75 mg Oel wurden in 5 ml Petroläther-Benzol-(9: 1) aufgenommen und an einer Ko¬

lonne mit 60fachem Gewicht an neutralem Aluminiumoxyd (Akt. n) chromatographiert.

Die einzelnen, mit Petroläther-Benzol-Gemischen eluierten Fraktionen (insgesamt

- 29 -

68 mg) wiesen einen Smp. von 115 - 122 bis 127 - 128 auf. Nach dem Vereinigen

der Fraktionen und dreimaligem Umlösen aus Hexan wurde ein Präparat vom Smp.

129° erhalten, welches ein dem Hydroxyketon Xa ähnliches, jedoch deutlich verschie¬

denes Spektrum aufwies und die folgenden Analysenresultate lieferte:

C14H24°2 Ber* C 74>95 H 10>78%

Gef. C 74,99 H 10,64%

(t)-cis-4,4,7,9-Tetramethyl-decaUn-3,8-dion (XV). 10 mg Hydroxyketon XlVa, ge¬

löst in 5 ml Eisessig, wurden mit 5 ml einer 0,67-proz. Lösung von Chrom(VI)-oxyd

in 99-proz. Essigsäure versetzt und vier Std. unter Rühren bei 20° stehengelassen.

Die Aufarbeitung lieferte 11 mg des rohen Diketons XV, welches chromatographiert

und bei 0,04 Torr destilliert wurde (Sdp. 95°). Im IR. -Spektrum fehlt die Hydroxyl-

bande im 3640 cm" - Bereich, wobei jedoch eine kräftige Carbonylbande bei 1705

cm auftritt.

Zusammenfassung

Es wurde das racemische trans-4,4,7, 9-Tetramethyl-3ß -hydroxy-decalon-(8)

(Xa) synthetisiert. Das stereoisomere racemische cis-4,4,7,9-Tetramethyl-3ot-hy-

droxy-decalon-(8) (XlVa) und die zwei Hydroxyketone (+)-trans-4,4,7-Trimethyl-3cK.-

hydroxy-decalon-(8) (Xina) und (t)-cis-4,4,7-Trimethyl-3 ß-hydroxy-decalon-(8) (IXa)

wurden ebenfalls als Nebenprodukte der Synthese erhalten.

- 30 -

II. ZUR KENNTNIS DER CHRYSE RGONSAE URE

Einleitung

Die starken physiologischen Eigenschaften der Mutterkornmetabolitenprodukte

richteten frühzeitig die Aufmerksamkeit der Forscher auf diese Verbindungen, die

vom Pilz Claviceps purpurea auf verschiedenen Getreidearten, insbesondere auf

Roggen erzeugt werden. Die darin enthaltenen Alkaloide sind äusserst giftig und ha¬

ben durch ihre Anwesenheit im Getreidemehl besonders im Mittelalter Anlass zu

schweren Epidemien gegeben. Daneben wurde ebenfalls frühzeitig ihre therapeutische

Wirksamkeit zur Auslösung von Uteruskontraktionen bei der Anwendung von schwachen

Dosen erkannt.

Intensive Forschungen über Mutterkornalkaloide, bei denen A. S t o 11 und Mit-

arbeiter ' '

massgeblich beteiligt waren, führten zur Isolierung von sechs verschie¬

denen Basen, die alle Amide derselben Schlüsselsubstanz, der Lysergsäure I, dar¬

stellen. Die endgültige Formel der letzteren wurde 1949 von A. S toll et al. ' auf¬

gestellt. Die d, 1-Lysergsäure ist in der Folge 1956 von R.B. Woodward und Mit¬

arbeitern ' totalsynthetisch hergestellt worden.

COOH

N-CH3

HN

Neben den erwähnten Alkaloiden produziert der Pilz Ergosterin, Vitamin D und eine

grössere Anzahl von Aminen '. Ferner werden in geringen Mengen gelbe Farbstoffe

erzeugt, über die nachfolgend berichtet werden soll. Unter diesen besitzen die Seca-

lonsäure und die Chrysergonsäure nach Untersuchungen von A. S toll et al. ' eine

gewisse antibakterielle Wirksamkeit, indem sie das Wachstum von Staphylokokken zu

hemmen vermögen.

1)A. Stoll in "Fortschritte der Chemie organischer Naturstoffe", Band IX, S. 114,Springer-Verlag, Wien (1952).

2) Cl. Schlöpf in "Festschrift A.Stoll". S.5, Birkhäuser Basel (1957).3) A. Stoll, A. Hof mann und F. Troxler, Helv. 32, 506 (1949).4) E.C.Kornfeld, E.J. Fornef eld, G.B.Kline, M.J.Mann, D.E.Morrison,R.G.Jones und R.B. Woodwar d, J. Amer. ehem.Soc. 78, 3087(1956).

5) A. Stoll, J. Renz und A. Brack, Helv. 35, 2022 (1952).

- 31 -

Theoretischer Teil

a) Frühere Arbeiten über Mutterkornfarbstoffe

Das Mutterkorn enthält in Mengen von 1-2 Gewichtspromillen gelbe Farbstoffe.6-9)

Frühere Untersuchungen verschiedener Forscher ' beschränkten sich hauptsäch¬

lich auf die Isolierung der Farbstoffe, doch wurden diese nur mangelhaft charakteri¬

siert. Erst in neuerer Zeit wurden einige Pigmente durch genauere physikalische

Daten und chemische Eigenschaften gekennzeichnet.

Die ersten bedeutenden Beiträge zur Kenntnis von Mutterkornfarbstoffen stam¬

men von W. Bergmann ,der 1932 aus den Rückständen der Mutterkornextraktion

einen Farbstoff isolierte, den er Ergochrysin nannte. Die Identität mit einem früher

von C. Jacoby' beschriebenen gleichnamigen Farbstoff wurde jedoch nicht belegt.

Die Isolierung erfolgte nach der Entfernung der ätherlöslichen Bestandteile aus den

Mutterkornrückständen durch Extraktion mit Chloroform, aus welchem Ergochrysin

in goldgelben Blättchen vom Smp. 266 auskristallisierte. Auf Grund der Verbren¬

nungswerte und der Molekulargewichtsbestimmung nach Rast stellte W. Bergmann für

Ergochrysin die Formel C28H28°12 au*'

W. Bergmann gelang es als erstem, durch Alkalischmelze von Ergochrysin

mehrere definierte Abbauprodukte zu fassen. In der Säurefraktion identifizierte er

neben Essigsäure und Oxalsäure die 1,3,5-Kresotinsäure (II) und in der phenolischen

Fraktion Resorcin (III) und 2,4,2,,4'-Tetrahydroxydiphenyl (IV). Durch Acetylieren

von Ergochrysin mit Acetanhydrid und einer Spur Pyridin in der Hitze erhielt W.

Bergmann ein farbloses Produkt vom Smp. 240°, das er auf Grund der Verbrennungs¬

werte als Dekaacetat, C^H^gO^^i auffasste. Ferner gelang W. Bergmann durch Ein¬

wirkung von kalter, konzentrierter Salpetersäure die Darstellung eines stickstoffhal¬

tigen Reaktionsproduktes vom Smp. 260,dem er die Formel CigH.gOgN zuschrieb.

A. S to 11, J. Renz und A. Brack isolierten 1952 aus ungarischem Mutter¬

korn einen gelben Farbstoff, den sie Secalonsäure nannten. Die Identität mit einem

Farbstoff, den ein früherer Autor ' unter demselben Namen beschrieben hatte, ist

jedoch nicht gesichert. Die Isolierung der Secalonsäure aus Mutterkorn erfolgte nach

der Entfernung von öligen Bestandteilen mit Petroläther durch Extraktion mit Chloro¬

form und Eisessig. Eine detaillierteBeschreibungfindet sich in unseren eigenen Arbeiten.

6) G. Dragendorff und V. Podwy ssotzky, Arch. exp. Path. Pharm. 6,172(1877).7) C. Jacoby, Arch. exp. Path. Pharm. 39, 85(1897).8) F. Kraft, Arch.Pharm. 244, 344 (19TJB).

9) G. Barger, Ergot andTTrgotism, Gurney and Jackson, London, 1931, p.140.10) W. Bergmann, Ber. deutsch, ehem. Ges. 65, 1489(1932).

- 32 -

Die Autoren konnten in der Secalonsäure Methoxylgruppen nachweisen. Auf

Grund dieses Methoxylgehaltes und in der Annahme, dass das Molekül zwei Methoxyl¬

gruppen enthält, wurde ein Molekulargewicht berechnet, das in Uebereinstimmung

mit den Verbrennungswerten der Formel C-^HoßonOia entsprach. Die Bestimmung

nach Zerewitinoff ergab für die Secalonsäure 6-7 aktive Wasserstoffe. Die Verbin¬

dung ist auch durch ein UV. -Absorptionsspektrum charakterisiert, das in der Publi¬

kation von A. S to 11 und Mitarbeitern ' abgebildet ist.

Die Secalonsäure erwies sich als optisch aktiv. Während die Drehung in Chloro¬

form oder Acetonlösung einen konstanten Wert behielt, änderte sich diese in Pyridin-

lösung zu einem allmählich konstanten Wert. Die Mutarotation betrug ungefähr 140 .

Da es nicht gelang, das ursprüngliche Pigment vollständig aus der Pyridinlösung zu¬

rückzugewinnen, scheint die Mutarotation eher auf einer Abbaureaktion als auf einem

Gleichgewicht zu beruhen. Rascher als in Pyridinlösung vollzog sich die Mutarotation

in alkalischen Medien.

Die Acetylierung der Secalonsäure mit überschüssigem Pyridin und Acetanhydrid

bei Zimmertemperatur ergab keine kristallinen Verbindungen. Das amorphe Reaktions¬

produkt lieferte einen Acetylgehalt von etwa 40%.

Die Secalonsäure lieferte bei der Acetylierung in heissem Acetanhydrid und Py¬

ridin ein farbloses, kristallines Derivat vom Smp. 205 - 206,für das Stoll et al. die

Formel CirjHjgO- vorschlugen. Es gelang den Autoren nicht, Acetylgruppen nachzu¬

weisen '. Sie stellten fest, dass die Verbindung eine Methoxylgruppe pro Molekül ent¬

hielt und in Soda unlöslich war.

Die Alkalischmelze der Secalonsäure lieferte in der Phenolfraktion 2,4,2', 4'-

Tetrahydroxydiphenyl; dasselbe Produkt hatte bereits Bergmann ' durch Alkali¬

schmelze von Ergochrysin erhalten. In der Säurefraktion konnte die von Bergmann

gefundene Kresotinsäure nicht isoliert werden. Dagegen wurden zwei neue Säuren, die

Bernsteinsäure (V) und die Methylbernsteinsäure (VI) gefasst. Bei milderer Behand¬

lung fiel Methylbernsteinsäure als einziges Produkt an.

ÇOOH OH

H-c CH9-COOH CH,-CH-COOH

H\=f CH2-COOH CH2-COOH

v /-vu m

V VI

-OH

HO OHm

ho —<( y——\ fi—OH

IV

*) Vgl. eigene Arbeiten.

- 33 -

5)

S toll et al. ' konnten die Secalonsäure in schweizerischem Mutterkorn nicht

auffinden, doch gelang ihnen die Extraktion eines neuen Farbstoffes, für den sie den

Namen Chrysergonsäure einführten. Zur Isolierung der Chrysergonsäure wurde das

mit Petroläther entfettete Mutterkorn mit 80% Methanol extrahiert, worauf die kon¬

zentrierte Lösung mit Salzsäure gerade angesäuert und mit Aether ausgeschüttelt

wurde. Die aus der ätherischen Lösung abgeschiedenen Bestandteile wurden durch

Filtration oder Zentrifugieren abgetrennt. Nach der Extraktion mit Eisessig, Metha¬

nol und Aether Hess sich das gelbe Pulver aus Dioxan-Aether Umkristallisieren.

Die Chrysergonsäure war in typischer Weise durch schwerere Löslichkeit von

der Secalonsäure zu unterscheiden. Die analytischen Werte und die chemischen Eigen¬

schaften zeugten indessen von einer nahen Verwandtschaft der beiden Farbstoffe. Auf

Grund der Elementaranalyse wurde für die Chrysergonsäure die Formel C32H30-32O14aufgestellt. Die Verbindung enthält ebenfalls zwei Methoxylgruppen pro Molekül. Die

Bestimmung nach Zerewitinoff ergab für die Chrysergonsäure 6 aktive Wasserstoff¬

atome. Das UV. -Absorptionsspektrum der Chrysergonsäure ist nahezu deckungsgleich

mit demjenigen der Secalonsäure (siehe Abbildung der Spektren in der Publikation von

5)Stoll et al. ')• Die beiden Pigmente unterschieden sich in der Drehung und in der

Mutarotation, welche bei der Chrysergonsäure nur annähernd 40 betrug. (Die Drehung

der Chrysergonsäure konnte wegen ihrer schweren Löslichkeit nicht in Chloroform

oder Aceton bestimmt werden.) Die Chrysergonsäure lieferte bei der Alkalischmelze

dieselben Abbauprodukte wie die Secalonsäure. Ein bei Zimmertemperatur acetylier-

tes Präparat wies ebenfalls 40% Acetylgehalt auf.

Angeblich lieferte die Chrysergonsäure durch Acetolyse in der Hitze ein Präpa¬

rat vom Smp. 237 - 246,welches verschieden war von dem nach derselben Methode

dargestellten Präparat der Secalonsäure '. Die Verbrennungswerte stimmten auf die

Formel C,rHic^v Auch bei diesem Produkt gelang den Autoren der Nachweis von

Acetylgruppen nicht. Pro Molekül wurde eine Methoxylgruppe gefunden.

Ein weiterer Mutterkornfarbstoff wurde von verschiedenen Autoren~

'unter

dem Namen Ergoflavin beschrieben. Bedeutende Beiträge zur Kenntnis des Ergoflavins

wurden jedoch erst in neuester Zeit geleistet. A. Robertson und Mitarbeiter '

extrahierten 1958 aus dem alkaloidfreien Rückstand von Mutterkorn den Farbstoff

Ergoflavin, ohne indessen die Identität ihres Farbstoffes mit dem Ergoflavin früherer

Autoren näher zu belegen.

11) A. Freeborn, Pharm.J. [4] 34, 568(1912).12) A.W. Forst, Arch. exp. Path. PTTarm. 114, 125 (1926).13) W. Bergmann, Ber.deutsch.ehem.Ges. 65, 1486(1932).14) G. Eglinton, F.E.King, G. Lloyd, J.TV. Loder.J.R. Marshall, Alexan¬

der Robertson and W.B. Whalley, J.chem.Soc. 1958, 1833.

- 34 -

Die englischen Autoren stellten für Ergoflavin die Summenformel C30H2gOj4auf. Das Pigment enthält vier phenolische Hydroxylgruppen, zwei alkoholische Hydro¬

xylgruppen, zwei Carbonylgruppen und zwei y -Lactonringe. Der Abbau des Tetra-

O-Methyläthers mit Bariumhydroxyd lieferte einen Dimethyläther von 3,3'-Diacetyl-

2,4,2',4'-tetrahydroxydiphenyI(VH); dieses liess sich durch Reduktion und Methylie-

rung in 3,3,-Diaethyl-2,4,2,,4'-tetramethoxydiphenyl(VIH)überführen, welches iden¬

tisch war mit einem synthetischen Präparat.

ToH OhI fäcHg ÔCH3Ivn vm

Es bestehen somit Anzeichen für die Annahme, dass den drei Farbstoffen Secalon¬

säure, Chrysergonsäure und Ergoflavin ein substituierter Diphenylkern zu Grunde

liegt. A.Robertson et al. halten es ferner für wahrscheinlich, dass Ergoflavin

symmetrisch gebaut ist und in der Natur durch oxydative Kupplung von identischen

Cjg-Bestandteilen entsteht.

b) Eigene Arbeiten über die Chrysergonsäure

Das zur Verfügung stehende Mutterkorn wurde nach dem von A. S to 11 und Mit¬

arbeitern bei der Extraktion von Secalonsäure angewandten Prinzip bearbeitet. Das

Mycelium wurde fein gemahlen, mit Petroläther entfettet und mit Chloroform extra¬

hiert. Nach dem Einengen des Chloroforms entfettete man ein zweites Mal mit Petrol¬

äther. Der braune Rückstand wurde nach der Pulverisierung dreimal mit Essigsäure

ausgewaschen, wobei das Filtrat nur noch schwach gelb ablief. Man kochte das zurück¬

bleibende gelbe Pulver mit Methanol auf und extrahierte es nach dem Abfiltrieren mit

Chloroform im Soxhlet. Auf diesem Wege konnte mit einer Ausbeute von knapp l%o

ein gelber Farbstoff isoliert werden. Auf Grund des direkten Vergleiches mit Proben

von Secalonsäure und Chrysergonsäure, die uns von A. S toll und Mitarbeitern freund¬

licherweise zur Verfügung gestellt wurden, liess sich die Identität unseres Präparates

mit der Chrysergonsäure (DC) feststellen.

Die Chrysergonsäure ist in allen organischen Lösungsmitteln mit Ausnahme von

Pyridin sehr schwer löslich und lässt sich aus der tausendfachen Gewichtsmenge Chlo¬

roform Umkristallisieren. Aus diesem Lösungsmittel bildet sie optisch aktive Nadeln

- 35 -

vom Smp. 257°. Der Anfangswert der Drehung in Pyridin betrug [oc] _ = -2° t 1°.

Die Verbrennungswerte stimmten auf die Formel C/o-j» or,H„pO. .. Auf Grund der

wahrscheinlicheren C32-Formel enthält die Chrysergonsäure 17 Ringe bzw. Doppel¬

bindungen. Pro Molekül wurden zwei Methoxyl, zwei C-Methyl- und eine Acetylgruppe

nachgewiesen. Infolge der Schwerlöslichkeit konnten keine Zerewitinoffbestimmungen

durchgeführt werden. Für röntgenographische Molekulargewichtsbestimmungen waren

die Kristalle ungeeignet.

Das IR. -Absorptionsspektrum der Chrysergonsäure (Nujol) zeigte eine schmale

Hydroxylbande bei 3600 cm" und eine Càrbonylschwingung bei 1745 cm". Ein Triplet

in der Gegend von 1600 cm" könnte von der Anwesenheit eines aromatischen Systems

herrühren. Eventuell vorhandene, chelatisierte Carbonylgruppen könnten ebenfalls

in diesem Bereich liegen. Das UV. -Absorptionsspektrum (in Feinsprit) zeigte ein

ausgeprägtes Maximum bei 342 mu, log 6 = 4,46 und zwei weniger ausgeprägte Ma-

ximabei262mu, logt = 4,11 und 241 mp, log fc = 4,14. Der pK-Wert von rund 9 (er konn¬

te wegen der schweren Löslichkeit der Chrysergonsäure in Cellosolve nur approxima¬

tiv bestimmt werden), weist darauf hin, dass der saure Charakter auf der Anwesen¬

heit phenolischer Gruppierungen beruht. Im Einklang mit diesem Befund steht die

rotbraune Farbreaktion der Chrysergonsäure mit Ferrichlorid.

Die ersten chemischen Versuche ' galten der Charakterisierung der funktionel¬

len Gruppen der Chrysergonsäure. Die Acetylierung der Chrysergonsäure mit Acetan-

hydrid und einer Spur Pyridin bei Zimmertemperatur lieferte ein schwach gelbes,

amorphes Produkt, das in Benzol löslich war und auf Silicagel chromatographiert

wurde. Die Verseifung lieferte vier Aequivalente Essigsäure, die Oxydation nach

Kuhn Roth sechs Aequivalente Essigsäure, wobei angenommen wurde, dass durch die

Oxydation vier Acetyl und zwei C-Methylgruppen erfasst worden sind. Im IR. -Absorp¬

tionsspektrum des Produktes war die Hydroxylschwingung von 3600 cm" nur noch

schwach angedeutet. Eine breite Bande trat bei 1755 cm" auf, die ohne Zweifel aus

der Ueberlagerung einer Schwingung, die der Gegenwart phenolischer Acetate zugewiesen

werden kann, mit der im Spektrum der Chrysergonsäure bereits vorhandenen Bande

bei 1745 cm hervorgeht. Die Aetherschwingung der Acetate war bei 1200 cm" sicht¬

bar. Auffallend war die neue Carbonylschwingung bei 1685 cm" ; da diese Bande in der

Chrysergonsäure selbst nicht enthalten ist, liegt die Annahme nahe, dass diese von

einer Carbonylgruppe herrührt, deren Schwingung bei der nicht acetylierten Säure in¬

folge Chelatisierung in den Bereich von 1600 cm verschoben wurde. Das Acetat ent¬

hält anscheinend immer noch Phenole, da es mit Ferrichlorid eine braune Farbreaktion

[) Eine Uebersicht über die Reaktionen, die in der Folge durchgeführt wurden, findet

man im Reaktionsschema auf Seite 50.

- 36 -

liefert. Das UV.-Absorptionsspektrum zeigt zwei Maxima bei 244 mji, log £ =3,37

und 277, log 6=4, 32.

Ein kristallines Acetat wurde durch die Einwirkung von Acetanhydrid in der Ge¬

genwart von Bortrifluorid bei Zimmertemperatur auf die Chrysergonsäure erhalten.

Man isolierte ein Produkt X vom Smp. 222 - 226°, das als Tetraacetat C40H4QO18der Chrysergonsäure aufgefasst werden könnte. Vorläufig fehlen jegliche Beweise da¬

für, ob das Gerüst unverändert geblieben ist, da noch kein Versuch unternommen wur¬

de, aus dem Acetat die Chrysergonsäure zurückzugewinnen. Eine halbierte Formel

CgoHonOn kann nicht ausgeschlossen werden.

Auf Grund der C4Q-Formel wurden zwei Methoxyl und vier Acetylgruppen pro

Molekül nachgewiesen. Ferrichlorid gab auch mit dem kristallinen Acetat eine braune

Farbreaktion. Die Verbindung erwies sich als optisch inaktiv.

Im IR. -Absorptionsspektrum traten Schwingungen bei 1775 cm" (nur Schulter),

1755 cm" und 1740 cm" auf. Ueberraschend fehlte beim kristallinen Acetat die Ban¬

de bei 1680 cm" ebenso wie jede Hydroxylschwingung. Das Fehlen dieser Bande so¬

wie die positive Ferrichloridprobe sprechen für die Anwesenheit einer o-Hydroxy-

Ketogruppierung, die wohl infolge Ausbildung von Wasserstoffbrücken im Spektrum

nicht sichtbar wäre. Sehr charakteristisch war das UV. -Absorptionsspektrum mit

vier Maxima bei 248, 255, 261 und 313 mu, log £ = 4,41; 4,41; 4,37 bzw. 4,20.

Verätherungen der Chrysergonsäure mit Diazomethan lieferten keine kristallinen

Verbindungen. Nach einer Einwirkungszeit von 15 Minuten wurde ein benzollösliches

Produkt erhalten, das zur Hauptsache mit Aether-Essigester aus der Silicagelsäule

eluiert wurde. Sämtliche Fraktionen waren amorph. Das IR. -Absorptionsspektrum

schien ähnlich demjenigen des Ausgangsmaterials, wenn man von einer stark in die

Breite entwickelten Hydroxylbande bei 3460 cm und einer starken Verstümmelung

der übrigen Bande absieht. Deutlich verschieden wie beim Ausgangsmaterial verhielt

sich das UV. -Absorptionsspektrum mit einem einzigen Maximum bei 327 mu, log £ =

4,47. Ferrichlorid lieferte mit dem amorphen Produkt nach wie vor eine braune Farb¬

reaktion.

Eine Verätherung von Chrysergonsäure mit Diazomethan unter Zusatz von Borti-

fluorid blieb ebenfalls erfolglos. Diese Methode, welche nach W.S. Johnson et al. '

sowie nach E. Müller und W. Rundel ' Methyläther von sterisch ungehinderten

primären und sekundären aliphatischen Alkoholen in guten Ausbeuten liefert, führte

in unserem Fall zu Ausgangsmaterial.

15) M. C. Caserio, J.D. Roberts, M. Nee man and W.S. Johnson, J. Amer,

ehem.Soc. 80, 2584 (1958).16) E.Müller und W. Rundel, Angew.Chem. 70, 105(1958).

- 37 -

Eine kristalline Verbindung wurde bei der Methylierung von Chrysergonsäure

mit Methyljodid und Kaliumcarbonat in kochendem Aceton isoliert. Mit einer Ausbeute

von 10% wurde ein Produkt XI vom Smp. 305 - 308° gefasst, das aus Methanol umge¬

löst wurde. Die Analysenwerte schienen auf eine Isomerisierung hinzuweisen, da sie

wie beim Ausgangsmaterial auf die Formel Cg2H32°14 passten. Der Methoxylgehalt

blieb gegenüber der Chrysergonsäure unverändert: es wurden zwei Methoxylgruppen

pro Molekül nachgewiesen. Im IR. -Absorptionsspektrum wurden an Stelle von einer

Hydroxylbande deren drei festgestellt bei 3660, 3500 und 3360 cm" . An Stelle von

einer Carbonylschwingung waren zwei bei 1735 und 1755 cm" sichtbar. Eine Bande

bei 1640 cm" könnte von einem chelatisierten Keton herrühren. Das UV. -Absorp¬

tionsspektrum war ebenfalls gänzlich verschieden vom Ausgangsmaterial mit zwei

Maxima bei 362 mu, log £ =3,64 und 261 mu, log 6 = 4,40.

Die Entstehung des Produktes ist unklar. Das Ausbleiben einer Zunahme an

Kohlenstoff und Wasserstoff bei den Verbrennungswerten sowie der gegenüber dem

Ausgangsmaterial unveränderte Methoxylgehalt schien eine Verätherung auszuschlies-

sen. Eine Verseifung konnte ebenfalls nicht stattgefunden haben, da das Kochen von

Chrysergonsäure in Aceton und Kaliumcarbonat allein unverändertes Ausgangsmaterial

lieferte.

Keinen Erfolg zeitigte ein Versuch, allfällig vorhandene Ketogruppen der Chry¬

sergonsäure mit Natriumborhydrid zu reduzieren. Die Säure war gegen dieses Re¬

duktionsmittel beständig. Drastischer wirkte das Lithiumaluminiumhydrid, das den

gelben Farbstoff in einen braunen, amorphen Schaum umsetzte. Im IR. -Absorptions¬

spektrum war die Ketobande von 1740 cm verschwunden, und die Hydroxylschwin-

gung bei 3300 cm" war breit und ausgeprägt. Das UV. -Absorptionsspektrum zeigte

zwei Maxima bei 216 mu, log £ =4,53 und 257 mu, log £ = 4,18 sowie eine Schul¬

ter bei 282 mfi, log £ = 3,83. Analytische Bestimmungen wurden keine durchgeführt.

Die Acetylierung des Rohproduktes lieferte einen fast farblosen, amorphen

Schaum, dessen IR.-Absorptionsspektrum Banden bei 3500, 1765 und 1735 cm zeigte.

Das UV.-Absorptionsspektrum wies ein Maximum bei 217 mu, log £ =4,45 auf.

Ebenfalls amorph war das mit Methyljodid und Kaliumcarbonat verätherte Derivat.

Die Nitrierung der Chrysergonsäure mit kalter, konzentrierter Salpetersäure

führte zu farblosen, verfilzten Nadeln vom Smp. 250° (Verbindung Xn). Die Analysen¬

werte stimmten auf die Formel Cg2H3()OjgN2. Es wären demnach zwei Nitrogruppen

in das Molekül eingeführt worden. Der pK-Wert von 5,95 (in Cellosolve) lag bedeutend

tiefer als bei der Chrysergonsäure, was mit einer Aktivierung der Phenole durch die

Nitrogruppen zu verstehen wäre.

Im IR. -Absorptionsspektrum traten neben einer schmalen, sehr ausgeprägten

- 38 -

Hydroxylbande bei 3580 cm" und der ursprünglichen Carbonylbande bei 1735 cm"

Schwingungen auf bei 1525, 1557 und 1310 cm",die von den Nitrogruppen herrühren

könnten. Das UV. -Absorptionsspektrum erlitt mit seinen zwei Maxima bei 338 mfi,

log £ =4,45 und 262 mu, log 6 =4,48 relativ wenige Veränderungen.

Die Chrysergonsäure erwies sich gegen kalte, absolute methanolische Salzsäure

als beständig.

Da eine milde Behandlung der Chrysergonsäure wenig erfolgreich schien, wurde

versucht, durch drastischere Methoden ein Abbauprodukt zu erhalten, dessen Aufklä¬

rung weniger Schwierigkeiten mit sich bringen würde. Günstig in dieser Hinsicht51

schien eine Verbindung, die A. S toll und Mitarbeiter ' bei der Behandlung von Chry¬

sergonsäure mit Acetanhydrid und Pyridin in der Hitze erhalten hatten. Bei der Wie¬

derholung dieser Versuche isolierten wir ein Produkt, das nach dem Chromatogra¬

phieren auf Silicagel und Umlösen aus Methanol bei 201 schmolz. Dieses Produkt ist

daher verschieden von der Verbindung, die von A. Stoll et al. beschrieben wurde '.

Das Acetolyseprodukt (Xin) erwies sich hingegen als identisch mit einer Verbindung,

die von der Basler Forschungsgruppe durch analoge Behandlung der Secalonsäure er¬

halten worden war. Die Entstehung eines identischen Spaltstückes ausgehend von Se¬

calonsäure konnte in der vorliegenden Arbeit bestätigt werden.

Molekulargewichtsbestimmungen konnten wegen der ungünstigen Beschaffenheit

der Kristalle nicht durchgeführt werden. Aus den Werten der Methoxylbestimmung

Hess sich ein Molekulargewicht von 430 - 500 berechnen. Ferner erhielt man ein

Aequivalentgewicht von 470 aus der Säuretitration eines Oxydationsproduktes, das

später beschrieben wird. Auf Grund der Verbrennungswerte stellte man die Formel

C04H22O10 au*• Pr0 Molekül wurde eine Methoxylgruppe, vier C-Methyl und vier

Acetylgruppen nachgewiesen '. Das Acetolyseprodukt erwies sich als optisch inaktiv.

Das IR. -Absorptionsspektrum des Acetolyseproduktes zeigte keine Hydroxyl-

schwingungen mehr. Eine Carbonylschwingung bei 1775 cm" wurde der Anwesenheit

von phenolischen Acetaten zugeordnet. Wie im Spektrum der Chrysergonsäure war

eine Bande bei 1730 cm" sichtbar. Die Schwingung von 1680 cm" wurde als nicht

chelatisiertes Keton aufgefasst. Dieses wurde bereits im Spektrum der bei Zimmer¬

temperatur acetylierten Chrysergonsäure beobachtet. Das UV. -Absorptionsspektrum

zeigte eine schwache Absorption mit zwei Schultern bei 290 m/i, log £ =3,29 und

235 mp, log £ = 4,04. Die Ferrichloridprobe war negativ.

*) Laut mündlicher Mitteilung von Dr. Renz gelang es nicht, die Herstellung des

Spaltstückes vom Smp. 237 - 246° zu wiederholen.

**) Dies steht im Gegensatz zu den Beobachtungen von A. Stoll et al., die in ihrem

Produkt vom Smp. 206° keine Acetylgruppen nachgewiesen hatten.

- 39 -

Die ersten Reaktionen galten der Untersuchung über das Verhalten des Acetolyse-

produktes bei der Verseifung. Die Behandlung mit Alkallen führte selbst bei milden

Bedingungen zu Verharzungen. Die Einwirkung von heisser methanolischer Salz und

Schwefelsäure lieferte hellgelbe, nicht kristalline Reaktionsprodukte, die im IR. -Ab¬

sorptionsspektrum nur noch schwache Anzeichen für die Anwesenheit von phenolischen

Acetaten (1775 cm" ) zeigten, während die Bande von 1720 cm" intakt blieb.

Die Verseifung der phenolischen Acetate gelang mit Hydroxylaminhydrochlorid

in pyridinhaltigem Alkohol. Die dabei entstandene, leuchtend gelbe Substanz, welche

von uns Ergotin (XIV) genannt wurde, konnte aus Methanol-Wasser umkristallisiert

werden und schmolz bei 186.Die Verbrennungswerte stimmten auf die Formel

C-, gHjgOn. Ergotin enthielt immer noch eine Methoxylgruppe; ferner wurden eine

C-Methyl- und ein Acetylgruppe pro Molekül nachgewiesen. Im IR. -Absorptionsspek¬

trum war im Gegensatz zum Spektrum des Acetolyseproduktes eine Hydroxylbande bei

3280 cm sichtbar. Verschwunden war die Carbonylschwingung bei 1775 cm,wäh¬

rend die Banden bei 1725 und 1690 cm" unverändert geblieben waren. Das UV. -Ab¬

sorptionsspektrum zeigte zwei Maxima bei 252 mu, log £ =4,27 und 360 mu,

log £ = 3,62 (siehe Abbildung).

Die unmittelbare Beziehung des Ergotins zum Acetolyseprodukt ging aus der Be¬

obachtung hervor, dass das Acetylieren von Ergotin wiederum zum Acetolyseprodukt

führt.

Die oben erwähnten Befunde können dadurch zur Uebereinstimmung gebracht

werden, dass im Acetolyseprodukt drei phenolische Acetate vorhanden sind, die durch

die Einwirkung von Hydroxylaminhydrochlorid verseift wurden. Was die Natur der

vierten Acetylgruppe anbetrifft, die im Ergotin immer noch nachgewiesen wurde,

muss ausgeschlossen werden, dass es sich um ein phenolisches Acetat handelt wegen

des Fehlens einer Bande bei 1775 cm im Spektrum der Verbindung. Es wäre denk¬

bar, dass es sich um eine aliphatische Acetoxygruppe handelt, die durch die Einwir¬

kung des relativ milden Verseifungsmittels Hydroxylaminhydrochlorid nicht ange¬

griffen worden wäre. Da aber später gezeigt wird, dass im Acetolyseprodukt und dem¬

nach auch im Ergotin eine Säureestergruppierung enthalten ist, wären bei der Anwesen¬

heit von vier Acetylgruppen im Acetolyseprodukt alle Sauerstoffatome der Formel

^24^22^10 cnaraIcterisiert: acnt Sauerstoffatome würden auf Acetylgruppen und zwei

auf die Säureestergruppe entfallen. In diesem Falle wäre aber die Bande bei 1690 cm"

im IR. -Absorptionsspektrum des Acetolyseproduktes und des Ergotins nicht mehr er¬

klärbar. Anderseits scheint eine Aenderung der Formel auf O*-. durch analytische Re¬

sultate ausgeschlossen.

Wir hielten daher die Anwesenheit einer aliphatischen Acetoxygruppe für unwahr¬

scheinlich und vermuteten, dass die beim Ergotin analytisch erfasste Acetylgruppe der

- 40 -

Gegenwart einer labilen C-CO-CH, Gruppe zuzuschreiben ist. Diese Labilisierung

wäre z.B. durch die Anwesenheit einer Hydroxylgruppe in o- oder p-Stellung zum

Keton zu erklären. Im Falle einer o-Stellung des Hydroxyls wäre das Keton chelati-

siert. Die Anwesenheit einer Bande bei 1690 cm" im Spektrum lässt daher die p-

Stellung als wahrscheinlicher gelten, wie sie durch die Partialformel XV ausgedrückt

wird:

>-o-<HO—({ V—COCHg

XV

Dass bei der alkalischen Verseifung tatsächlich Essigsäure entweicht, wurde papier-

chromatographisch ermittelt. Die Anwesenheit dreier phenolischer Acetylgruppen,

eines Säureesters und eines Methylketons würde neun Sauerstoffatome des Acetolyse-

produktes charakterisieren. Die Bruttoformel verlangt, dass eine zehnte Sauerstoff¬

funktion als weiteres Carbonyl oder als Aether vorliegt.

Das Ergotin war so empfindlich, dass es durch Chromatographieren auf Silica-

gel in ein amorphes Produkt verwandelt wurde. Es gelang nicht, Ergotin auf anderem

Wege aus dem Acetolyseprodukt, z.B. durch Verseifung mit Pyridinhydrochlorid zu

erhalten, da stets amorphe Produkte anfielen. Durch Verätherung mit Diazomethan

lieferte Ergotin keine kristallinen Derivate.

Weiteren Aufschluss über die Struktur des Acetolyseproduktes brachten Reduk¬

tionsversuche. Das Acetolyseprodukt war weder mit Palladiumkohle noch mit Platin¬

oxyd in Eisessig oder Acetanhydrid hydrierbar. Angegriffen wurde das Acetolysepro¬

dukt durch Natriumborhydrid in kochendem Dioxan. Das Reaktionsprodukt war jedoch

amorph und eignete sich nicht für weitere Untersuchungen.

Einen farblosen Schaum lieferte dagegen die Reduktion des Acetolyseproduktes

mit Lithiumaluminiumhydrid in heissem Dioxan. Im IR.-Absorptionsspektrum des

Produktes waren keine Carbonylschwingungen mehr sichtbar, und es erschien die er¬

wartete Hydroxylschwingung bei 3300 cm . Das UV. -Absorptionsspektrum war wenig

charakteristisch mit einem schwachen Maximum bei 280 mju.

Wurde dieser Schaum reacetyliert, so konnte in schlechter Ausbeute ein kri¬

stallines Produkt XVI vom Smp. 230 erhalten werden, das aus Methanol umgelöst

wurde. Aus den Verbrennungswerten ging eine Bruttoformel Co^noOg hervor. Wich¬

tig ist, dass im neuen kristallinen Acetat keine Methoxylgruppe mehr nachgewiesen

werden konnte. Diese Tatsache und das Verschwinden der Bande bei 1730 cm" im IR. -

Absorptionsspektrum des Präparates Hessen es als sehr wahrscheinlich erkennen,

dass die Methoxylgruppe des Acetolyseproduktes und des Ergotins von einem Säure-

- 41 -

ester und nicht von einem Aether stammt. Die Schwingung von 1765 cm deutete

wiederum auf die Anwesenheit von Phenolacetaten hin. Dagegen fehlte die Bande von

1680 cm" wohl als Folge der Reduktion des Ketons.

Die Ferrichloridprobe war negativ. Umso schwerer verständlich war die An¬

wesenheit von nur zwei Aequivalenten Essigsäure bei der Verseifung. Auch die Brutto¬

formel C04H22O0 konnte nicht gedeutet werden. Das UV. -Absorptionsspektrum des

Acetates zeigte kein Maximum. Der Mechanismus der Reaktion ist unklar und bedarf

weiterer Untersuchungen.

Aus den vorangehenden Reaktionen ist zu entnehmen, dass die hohe Alkaliempfind¬

lichkeit des Acetolyseproduktes immer noch ein Hindernis zur weiteren Aufklärung

bildet. Es wurde daher versucht, durch drastische Methoden noch weiter abzubauen

und zu bekannten Spaltprodukten zu gelangen.

Durch energische Oxydation mit Chromsäure in Eisessig-Acetanhydrid wurde

eine farblose, kristalline Säure XVII erhalten, die aus Essigester umgelöst wurde

und bei 300 sich zu zersetzen begann. Der pK-Wert von 4,32 (in Cellosolve) wies

auf eine starke Säure hin. Das Aequivalentgewicht von 470 machte es jedoch klar,

dass das Acetolyseprodukt nur unwesentlich angegriffen worden ist. Die Ergebnisse

der Elementaranalyse stimmten auf die Formel Cj^HjqOj,. Es wurde eine Methoxyl-

gruppe pro Molekül nachgewiesen.

Die Formel verlangt, dass die Behandlung mit Chromsäure eine Methylgruppe

des Acetolyseproduktes in eine Carboxylgruppe überführte. Der tiefe pK-Wert der

Säure macht es wahrscheinlich, dass die oxydierte Methylgruppe aus einer Methyl-

ketongruppierung -CO-CH» hervorgegangen ist, so dass die Säure eine cx-Ketosäure

-CO-COOH darstellt. Damit im Einklang ist die Beobachtung, dass das UV.-Absorp¬

tionsspektrum des Oxydationsproduktes nur unwesentliche Aenderungen erfährt, (Schul¬

ter bei 238 mu, log £ =4,15 und ein Maximum bei 295 mu, log 6 = 3,52), was

nicht der Fall sein dürfte, wenn die bei der Oxydation angegriffene Methylgruppe direkt

am aromatischen Kern sitzen würde. Das IR. -Absorptionsspektrum des Oxydations¬

produktes zeigte Banden bei 3300 cm" (Hydroxylgruppe), 1775 cm" (phenolische Ace¬

tate), 1745 cm" (Säureester), 1725 cm" (freie Säure) und 1685 cm" (Keton).

Die Veresterung des Oxydationsproduktes mit Diazomethan lieferte eine kristalline

Verbindung XVIII vom Smp. 205,deren Verbrennungswerte der Formel C25H22®12

entsprachen. Es wurden zwei Methoxylgruppen pro Molekül nachgewiesen. Das IR. -

Absorptionsspektrum des Disäureesters zeigte in den wesentlichen Gruppen Aehnlich-

keiten mit dem Spektrum des Acetolyseproduktes; die Hydroxylgruppe war verschwun¬

den, und es traten die erwarteten Banden bei 1775, 1730 und 1680 cm" auf. Sehr cha¬

rakteristisch war das UV. -Absorptionsspektrum mit drei Maxima bei 216 mu, log t =

4,60, 254 mp, log £ =4,40 und 355 m/i, log £ = 3,67.

- 42 -

Wichtig ist nun, dass sowohl das Oxydationsprodukt wie auch dessen Methyl¬

ester bei der Acetylbestimmung ebenso wie das Acetolyseprodukt bei der Verseifung

vier Aequivalente Essigsäure liefern. Dies bedeutet, dass die Oxydation nicht an der

labilen C-Acetylgruppe stattgefunden hat. Es muss daher gefolgert werden, dass im

Ergotin ausser der labilen noch eine zweite C-Acetylgruppe enthalten ist, welche im

Gegensatz zur ersten die alkalische Verseifung aushält, jedoch oxydativ leicht ange¬

griffen werden kann. Die Tatsache, dass Ergotin bei der Kuhn Roth Oxydation ledig¬

lich eine C-Methylgruppe liefert, beruht scheinbar auf der leichten Oxydierbarkeit

der zweiten C-Acetylgruppe.

Der Versuch, das veresterte Oxydationsprodukt entsprechend dem Acetolyse¬

produkt mit Hydroxylaminhydrochlorid zu verseifen, lieferte nur ein amorphes Re¬

aktionsprodukt, das nicht untersucht wurde.

Bei der Oxydation des Acetolyseproduktes mit kalter, konzentrierter Salpeter¬

säure konnten nur Spuren von feinen, verfilzten Nadeln isoliert werden.

Stärker als durch Oxydation mit Chromsäure wurde das Acetolyseprodukt durch

energische Behandlung mit Bariumhydroxyd und Kaliumhydroxyd angegriffen.

Durch Einwirkung vonwässerigem Bariumhydroxyd auf das Acetolyseprodukt und

nachfolgender Veräußerung mit Diazomethan wurden zwei kristalline Verbindungen er¬

halten, die sich durch fraktionierte Kristallisation aus Methanol trennen Hessen. Wir

nannten die beiden Isomere, die auf Grund der analytischen Bestimmungen Isomere

sein müssen, Aether A (XIX) und B(XXn). Aether A (hauchteine, fast farblose Nadeln

vom Smp. 238 ) war etwas schwerer löslich als Aether B (relativ grobe, gelbe Kri¬

stalle vom Smp. 213 ). Die beiden Produkte wurden in Ausbeuten von 5 und 15% ge-

fasst. Die Eigenschaften der Isomeren sowie ihrer Derivate sind in der Tabelle zu-

sammengefasst. (siehe S. 45).

Beide Verbindungen konnten ebenfalls bereitet werden durch Verätherung von

Ergotin mit Methyljodid und Kaliumcarbonat in kochendem Aceton, wobei anschei¬

nend das Kaliumcarbonat die Rolle des Bariumhydroxydes übernimmt, wie später

gezeigt wird.

Aus den Verbrennungswerten sowie aus den daraus hergestellten Derivaten leite¬

te man für den Aether A die Bruttoformel C-. gH< gOg ab. Aether A enthält nach dieser

Formel 10 Ringe bzw. Doppelbindungen. Pro Molekül wurden drei Methoxylgruppen

und eine C-Methyl, aber keine Acetylgruppe nachgewiesen. Die Bestimmung nach

Zerewitinoff lieferte ein aktives Wasserstoffatom pro Molekül. Das UV.-Absorptions¬

spektrum zeigte drei Maxima bei 214 mu, log £ = 4,48, 254 mu, log £ = 4,28 und

352 mu, log £ =3,50 (siehe Abbildung).

- 43 -

4,5 loge

4,0

4,5

4,0

4,5

4,0

3,5

400 360 320 280 240 200

Im IR. -Absorptionsspektrum konnte keine Hydroxylschwingung festgestellt wer¬

den. Trotz des Fehlens dieser Schwingung lieferte das Produkt mit Ferrichlorid eine

intensive violette Farbreaktion. Das Fehlen dieser Bande kann nur durch die Anwesen¬

heit einer o-Hydroxyketogruppierung erklärt werden, wobei die Carbonylgruppe infol¬

ge Chelatisierung in den Bereich von 1600 cm" verschoben wurde. Die Bande bei

1720 cm liess wiederum auf die Gegenwart eines Säureesters schliessen.

Dass im Aether A tatsächlich noch eine freie Hydroxylgruppe enthalten ist, wurde

durch Acetylierung bewiesen. Man erhielt ein amorphes Acetat XX, dessen Verbren-

(1) Ergotin (XIV)

- 44 -

nungswerte auf die Formel C^oHgQO^ stimmten. Es Hess sich eine Acetylgruppe pro

Molekül nachweisen. Die Ferrichloridprobe des Acetates war negativ.

Das UV. -Absorptionsspektrum zeigte drei Maxima bei 215 mu, log £ = 4,56;

242 mu, log £ =4,22 und 312 mu, log 6 = 3,78. Im IR.-Absorptionsspektrum des

amorphen Produktes trat neben den Banden bei 1770 cm" (aromatisches Acetat) und

1730 cm (Säureester) eine neue Schwingung bei 1670 cm" auf. Diese muss einem

nunmehr nicht chelatisierten Keton entsprechen.

Das Acetat konnte durch Verseifung mit Hydroxylaminhydrochlorid in pyridin-

haltigem Alkohol in den Aether A zurückgeführt werden.

Die Säureestergruppierung, die im Aether A vermutet wurde, liess sich durch

alkalische Verseifung nachweisen. Dabei erhielt man eine Säure XXI vom Smp. 278,

die aus Methanol umgelöst wurde. Dieselbe Säure konnte auch durch alkalische Ver¬

seifung des acetylierten Aethers A bereitet werden. Die Verbrennungswerte entspra¬

chen erwartungsgemäss der Formel Cj^Hj-Oq, und es konnten nur noch zwei Metho-

xylgruppen und eine C-Methylgruppe nachgewiesen werden. Das IR. -Absorptionsspek¬

trum zeigte Banden bei 2620 und 1690 cm",die von der Hydroxyl und Carbonylschwin-

gung der Säuregruppe herrühren mochten, während eine weitere Carbonylschwingung

bei 1625 cm" dem chelatisierten Keton zugeschrieben wurde. Das UV. -Absorptions¬

spektrum zeigte zwei Maxima bei 252 mu, log £ =4,25 und 350 mu, log £ = 3,47.

Das Aequivalentgewicht der Säure A konnte infolge schwerer Löslichkeit in Cellosolve

nicht bestimmt werden.

Die Säure liess sich durch Veresterung mit Diazomethan in den Aether A (XIX)

zurückführen.

Der mit dem Aether A isomere Aether B (XXQ) (CjoH. „CO zeigte in alien Punk-

ten analoge analytische und chemische Eigenschaften. Sämtliche Reaktionen, die beim

Aether A beschrieben sind, Hessen sich beim Aether B parallel durchführen. Die

Eigenschaften der Verbindungen sind in der Tabelle zusammengefasst. Es sei le¬

diglich beigefügt, dass die zum Aether B gehörende Säure XXIV vom Smp. 248 aus

Methylenchlorid umgelöst wurde. Bei der Mikrotitration wurde ein Aequivalentgewicht

von 311 gefunden (berechnet: 316).

Um die Anwesenheit eines Ketons im Aether A chemisch nachzuweisen, wurde

eine Reduktion mit Natriumborhydrid durchgeführt. In schlechter Ausbeute (4%) liess

sich ein farbloses, kristallines Produkt XXV vom Smp. 254° (unscharf) isolieren,

dessen Verbrennungswert mit der Formel C18^20^6 verträglich war. Das UV. -Ab¬

sorptionsspektrum war gänzlich verschieden von demjenigen des Ausgangsmaterials

mit einem einzigen Maximum bei 296 mju; log £ = 3,80. Für ein IR.-Absorptions¬

spektrum reichte die Substanz nicht mehr aus.

Ein amorphes Produkt wurde durch Reduktion von Aether A mit Lithium¬

aluminiumhydrid erhalten. Im IR.-Absorptionsspektrum waren sämtliche Carbo-

Abbildung

Siehe

*)

352/

3,16

248/

3,85

;

350/

3,47

252/

4,25

;

308/

3,85

245/4,20;

214/

4,52

;

312/3,78

242/4,22;

215/

4,56

;

353/

3,50*)

249/4,16;

213/

4,45

;

50**

352/3,

254/4,28;

214/

4,48

;

(Nu)

1625

1685,

2680,

(Nu)

1625

1690,

2620,

(CHC

lg)

1670

1720,

1760,

(Nu)

1670

1730,

1770,

(Nu)

1740

(Nu)

1720

248°

278°

amorph

amorph

213°

238°

C17H

16°6

C17H16°6

C20H

20°7

C20H20°7

C18H

18°6

C18H

18°6

(XXIV)

BSäure

(XXI)

ASäure

(XXin)

acetyllert

BAether

(XX)

acetyllert

AAether

(XXH)

BAether

(XIX)

AAether

log

max/

-Absorptionsspektrum;

UV.

cm"l

-Absorptionsspektrum

IR.

Smp.

Formel

Derivate

und

Bund

AAether

isomeren

der

Eigenschaften

Tabelle

- 46 -

nylschwingungen verschwunden, und das UV.-Absorptionsspektrum zeigte mit zwei

Maxima bei 213 mp, log 6 = 4,40 und 260 mju, log 6 = 3,77 keine Aehnlichkei-

ten mit dem Reduktionsprodukt aus Natriumborhydrid. Da sich auch das Acetat

und der Aether des Lithiumaluminiumhydrid-Reduktionsproduktes nicht kristallisie¬

ren Hessen, wurde auf weitere Untersuchungen verzichtet.

In Anbetracht der Tatsache, dass bei der Alkalischmelze von Chrysergonsäure

2,4,2',4'-Tetrahydroxydiphenyl isoliert wurde, scheint es wahrscheinlich, dass auch

den Aethern A (XIX) und B (XXII) ein Diphenylgerüst zu Grunde liegt. Die Annahme

eines solchen Systems würde übrigens der Oxydationsstufe der beiden Aether aufs Beste

entsprechen. Unter Zugrundelegung dieses Gerüstes und unter Berücksichtigung der

Charakterisierung der funktionellen Gruppen muss man darauf schliessen, dass die

Carbonylgruppe der Aether A und B als Methylketon oder Aldehyd vorliegen muss. Die

Anwesenheit einer Aldehydfunktion in den Aethern A und B, somit aber auch im Ace-

tolyseprodukt (XHI) (vgl. unten) darf ruhig ausgeschlossen werden, bleibt doch eine

Oxydation derselben beim Acetolyseprodukt unter solchen Bedingungen aus, die eine

Methylgruppe in eine Carboxylgruppe überführen können. Die Aether A und B ent¬

halten demnach eine Carboxylgruppe, drei phenolische Hydroxyle und eine C-Acetyl-

gruppe, welche gezwungenermassen alle am Diphenylkern haften müssen. Da die Spek¬

tren der Aether A und B auf ein chelatisiertes Keton deuten und da beide Verbindungen

Dimethyläther darstellen, kann daraus gefolgert werden, dass das Methylketon in

o, o'-Stellung von Hydroxylgruppen flankiert sein muss. Vergleiche Formel XXVI.

OH

Eine neue Reihe von Produkten wurde erhalten durch den Abbau des Acetolyse-

produktes mit wässrig-methanolischer Kalilauge. Mit einer Ausbeute von 70% wurde

ein saures Produkt isoliert, das bereits vor der Verätherung kristallisierte. Die gel¬

be, extrem schwer lösliche Säure XXVII vom Smp. > 360 wurde aus Methylenchlorid-

Methanol umgelöst. Das Aequivalentgewicht von 269 und die Analysenwerte Hessen sich

mit der Formel C-.cH,q05 in Uebereinstimmung bringen. Die Säure enthält nach die¬

ser Formel 11 Ringe bzw. Doppelbindungen. Es wurden keine Methoxyl und Acetyl-

gruppen nachgewiesen. Die Oxydation nach Kuhn Roth ermittelte die Anwesenheit einer

C-Methylgruppe pro Molekül. Im IR.-Absorptionsspektrum Hess eine Bande bei 1645

cm" auf die Anwesenheit eines chelatisierten Methylketons schliessen, während die

Banden bei 1705 und 3100 cm" der Hydroxyl und Carbonylschwingung der Säuregruppe

- 47 -

zugeordnet werden konnten. Das UV. -Absorptionsspektrum zeigte gegenüber allen

bisherigen Produkten ein völlig neues Bild mit vier Maxima bei 233 mu, log £ =

4,31; 270 mu, log 6 = 4,29; 297 mu; log £ =4,26 und 377 mu, log £ =3,56

(siehe Abbildung).

Die Säure lieferte mit Ferrichlorid eine violette Farbreaktion. Im Einklang mit

der Anwesenheit einer phenolischen Hydroxylgruppe Hess sich durch Acetylieren der

freien Säure ein farbloses, kristallines Acetat XXVm vom Smp. > 340 bereiten, des¬

sen Ferrichloridprobe negativ war. Das Produkt lieferte bei der Mikrotitration ein

Aequivalentgewicht von 321 (berechnet für C.-HjoOr: 312) und enthielt eine Acetyl-

gruppe pro Molekül. Das IR. -Absorptionsspektrum zeigte erwartungsgemäss Banden

bei 2400 cm" (Hydroxylschwingung der Säure), 1770 cm" (phenolisches Acetat),

1723/30 (Carbonylschwingung der Säure) und 1660 cm" (nicht chelatisiertes Keton).

Durch kürzere Einwirkung von Diazomethan auf die Kaliumhydroxydabbausäure

konnte in schlechter Ausbeute ein grünliches Produkt XXDC vom Smp. 292 gefasst

werden, das mit Ferrichlorid immer noch eine positive Farbreaktion lieferte. Da

ausserdem die Verbrennungswerte auf die Formel Cig^i9O5 stimmten und nur eine

Methoxylgruppe pro Molekül nachgewiesen werden konnte, wurde vermutet, dass nur

die Säure, nicht aber die phenolische Gruppierung verestert worden war. Dies Hess

sich dadurch beweisen, dass durch alkalische Verseifung die Ausgangssäure zurück¬

gewonnen werden konnte.

Die Banden im IR. -Absorptionsspektrum des Präparates bei 1730 cm" und

1645 cm" entsprachen ohne Zweifel einem Säureester und einem Keton. Das UV. -

Absorptionsspektrum des Esters war deckungsgleich demjenigen der Ausgangssäure

und unterschied sich von jenem nur durch niedrigere Extinktionen.

Beim Versuch, denselben Säureester vom Smp. 292° auch durch Verätherung

des Kaliumhydroxydabbauproduktes mit Dimethylsulfat und Kaliumhydroxyd herzu¬

stellen, wurde ein neues Produkt isoliert. Das gelbe Reaktionsprodukt XXX vom Smp.

250° (unscharf) lieferte Verbrennungswerte, die mit der Formel C-^Hj^Og in Einklang

zu bringen waren. Dies wäre nur mit einer Verätherung der phenolischen Gruppe in

Uebereinstimmung zu bringen. Die schwach positive Ferrichloridreaktion liess indes¬

sen auf phenolische Verunreinigungen schliessen. Das IR. -Absorptionsspektrum zeigte

Banden bei 1730 und 1645 cm". Das UV. -Absorptionsspektrum wies vier Maxima auf,

die gegenüber dem Ausgangsmaterial zum Teil etwas verschoben waren: bei 233 mu,

log £ = 4,34; 270 mu, log 6 = 4,45; 288 mu, log £ =4,26 und 376 m/i, log £ =

3,64.

Von den fünf Sauerstoffatomen des Kaliumhydroxydabbauproduktes (XXVD.) sind

deren vier charakterisiert. In der Annahme, dass dem Produkt ein Diphenylgerüst zu

- 48 -

Grunde liegt, muss aus der Bruttoformel gefolgert werden, dass die fünfte Sauer-

stoffunktion als Carbonyl oder Aether vorliegt. Eine Carbonylgruppe kann aber nicht

im Gerüst untergebracht werden, da alle Kohlenstoffatome durch den Diphenylkern,

die Carboxylgruppe und die C-Acetylgruppe gefasst sind. Es muss sich daher um eine

Aetherbindung handeln, welche direkt am aromatischen Kern haftet. Das ist nur mög¬

lich, wenn ein Dibenzofurangerüst vorliegt.

Der Grundkörper des Bariumhydroxydabbauproduktes (XIX) bzw. (XXII), für

welchen sich eine Formel CjcHjoCv berechnen lässt, unterscheidet sich von der

Kaliumhydroxydabbau säure C^H^qOij, die gleichzeitig der Grundkörper dieser Reihe

ist, um den Mehrgehalt von einem Mol Wasser. Dies macht es wahrscheinlich, dass

das eine Produkt aus dem andern entstanden ist. Von den zwei Abbaumethoden ist

zweifellos diejenige des Bariumhydroxydes bzw. des Kaliumcarbonates die mildere.

Der Gedanke liegt nahe, dass die Entstehung des Dibenzofurangerüstes auf eine Se¬

kundärreaktion zurückzuführen ist, nämlich auf eine Wasserabspaltung aus dem Grund¬

körper des Bariumhydroxydabbauproduktes. Dies würde bedingen, dass je zwei Hy¬

droxylgruppen in 2,2'-Stellung am Diphenylkern sitzen. Auf Grund dieser Ueberlegung

sowie aus früheren Beobachtungen lässt sich die Formel XIX für die Reihe der Ba-

riumhydroxydabbauprodukte und die Formel XXVII für die Reihe der Kaliumhydroxyd-

abbauprodukte ableiten, wobei lediglich die Lage der Carboxylgruppe unbewiesen bleibt.

Die Wasserabspaltung eines substituierten 2, 2'-Dihydroxydiphenyls (bzw. eines

Diacetoxydiphenyls) mit Alkalien ist in der Tat bereits beobachtet worden '. Der

Mechanismus einer solchen basenkatalysierten Wasserabspaltung lässt sich wie folgt

formulieren:

COOH

OH OH I

XDC

ÇOOH

COOH

Be H

ÇOOH

OH

COOH

- Q-W^

xxvn

17) W.E. Parham in "Heterocyclic Compounds, R.C. Elderfield", Vol.2_, 123(1951).J. van Alphen, Rec.Trav. chim. 51_, 715 (1932).

- 49 -

Schliesslich sei die Natur des Ueberganges von Ergotin (XIV) zu seinen Abbauproduk¬

ten diskutiert.

Das Ergotin stellt einen Methylester dar, dessen entsprechende Säure die Brutto¬

formel Cj^H-i^O- besitzt. Da dem Grundkörper des Bariumhydroxydabbauproduktes

die Bruttoformel C15H12Ofi zukommt, muss der Uebergang mit einem Verlust von

CgHgO, d.h. eines Acetylrestes verknüpft sein.

In Anbetracht der Tatsache, dass Ergotin eine labile C-Acetylgruppe enthält,

die in den Abbauprodukten nicht mehr nachgewiesen werden kann, liegt die Möglich¬

keit nahe, dass der durch das Bariumhydroxyd bewirkte Abbau lediglich in der Ab¬

spaltung dieser labilen Gruppe besteht. Damit im Einklang ist die Tatsache, dass in

den Spektren der Abbauprodukte keine Bande bei 1690 cm" auftritt. Das Fehlen einer

Chelatisierung und die Labilität dieser C-Acetylgruppe könnte durch die Gegenwart

einer p-Hydroxyketogruppierung erklärt werden (siehe Formel XV). Eine mögliche

Struktur für Ergotin ist durch die Formel XIV wiedergegeben.

COOH

XIV

Bedeutend schwieriger zu deuten ist der Uebergang der Chrysergonsaure zum Acetyl-

ergotin. Unter der Annahme, dass die zwei Methoxylgruppen, die in der Chrysergon¬

saure nachgewiesen wurden, von zwei Carbomethoxygruppen stammen, hätte die ent¬

sprechende freie Dicarbonsäure die Bruttoformel ConHogOj.. Der Uebergang zum

Grundkörper des Ergotins wäre daher mit dem Verlust einer C.,H« .On Gruppe ver¬

bunden. Auffallend ist die hohe Oxydationsstufe des abgespaltenen Restes. Dieser

scheint übrigens derjenige Teil zu sein, der für die optische Aktivität der Chrysergon¬

saure verantwortlich ist.

Weitere Aussagen über die Natur dieses Spaltstückes müssen bis auf das Vor¬

liegen von mehr Tatsachenmaterial verschoben werden.

- 50 -

Reaktionsschema

Bortrifluorid - Acetolyseprodukt

X

"Chrysergon- CHgJ/K^Ogsäureäther" XI

O.prod. CH2N2 Oxydât CrOjverestert

"

prod.

xvm

Ac20/BF3

Chrysergonsäure IX

Ac20/Py

Acetolyseprodukt

xm

HNO,

1. LiAlH.

Dinitrochrysergonsäure

xn

xvn

LiAlH.-Red.prod.2. Ac20/Py «acetyliert

XVI

KOH-Abbausäure

acetyliert XXVm

Ac20/Py

A. CHjJ/KjC^B. 1. Ba(OH)2

Aether A Säure B

acetyliert XXIV

XX

NaBH„Aether A

xrx

Na BH4 - Red. prod.

XXV

- 51 -

Experimenteller Teil '

Isolierung der Chrysergonsäure (PC). Diese erfolgte in Anlehnung an die von A. S toll

und Mitarbeitern bei der Isolierung der Secalonsäure angewandten Methode. 10 kg

Mutterkorn schweizerischer Provenienz wurden fein gemahlen, in einem Soxhlet mit

Petroläther entfettet und mit Chloroform extrahiert. Nach dem Einengen des Lösungs¬

mittels wurde der Rückstand mit Petroläther aufgeschlemmt und abgenutscht. Man

pulverisierte das Gut, zerrieb es mit ca. 60 ml Eisessig und filtrierte ab. Den Rück¬

stand wusch man noch zweimal mit 40 ml Essigsäure, bis das Filtrat nur noch schwach

gelb ablief. Das gelbe Pulver wurde mit 400 ml Methanol aufgekocht und nach dem Ab-

nutschen im Soxhlet mit Chloroform extrahiert, wobei die Säure auskristallisierte.

Nach dem Einengen des Chloroforms erhielt man 10 g gelbe feine Nadeln vom Smp.

248 - 255. Zur Analyse wurde eine Probe ein zweites Mal aus Chloroform umgelöst.

Smp. 250 - 258. Das Präparat wurde im Hochvakuum bei 100° getrocknet.

<=*q° = -2° ±1° (c = 1,037) 2 dm Rohr

UV.-Absorptionsspektrum: 342/4,46; 262/4,11 und 241/4,14 (mu/log 6 )

IR. -Absorptionsspektrum (Nu): 3600, 1740 und 1600 cm

H 5,04% Gef. C 60,35 H 4,72%Gef. 9, 39% (für 2 Methoxyle)

Gef. 2,43% (für 1 Acetyl)

Gef. 4,06% (für 2 C-Methyle)

Acetylierung der Chrysergonsäure (PC) bei Zimmertemperatur. 100 mg Chrysergon¬

säure wurden in 20 cm^ Acetanhydrid und 2 cm Pyridin aufgeschlemmt, wobei die Säure

nach ungefähr dreissig Minuten in Lösung ging. Nach drei Stundenwurde am Vakuum einge¬

dampft, und das benzollösliche Reaktionsprodukt (131 mg) wurde an 6,5 g Silicagel '

chromatographiert. Man eluierte mit Benzol-Aether 4 : 1 ein schwach gelbes, amorphes

Produkt, das mit Ferrichlorid immer noch eine braune Farbreaktion lieferte.

UV.-Absorptionsspektrum: 244/3,37 und 277/4,32 (mu/log £ )***\

*) Die Schmelzpunkte wurden in evaquierten Kapillarröhrchen im Kofler-Block be¬stimmt und wurden nicht korrigiert. Die IR. -Absorptionsspektren wurden mit ei¬

nem Perkin-Elmer-Spektrophotometer, Modell 21, aufgenommen. Die Angabenüber UV. -Absorptionsspektren beziehen sich auf Lösungen der Substanzen in Fein¬

sprit.**) Das Silicagel wurde von Bender-Hobein bezogen. Sofern nichts besonderes ver¬

merkt ist, verwendete man unbehandeltes Silicagel.***) Berechnet für ein Tetraacetat C4qH.qO, a

der Chrysergonsäure.

pKMCS = ca. 9

C32H32°14 Ber. C 60,00

OCH3 Ber. 9,69%

CO-CH3 Ber. 2,34%

C-ÇH3 Ber. 4,69%

- 52 -

m. -Absorptionsspektrum (Nu): 3600 (schwach), 1755, 1685 und 1200 cm"

CO-CHg Ber. 7,40% Gef. 8,51% (für 4 Acetyle)

C-CHg Ber. 11,11% Gef. 11,40% (für 6 C-Methyle)

Acetylierung der Chrysergonsäure (PC) in Gegenwart von Bortrifluorid. 73 mg Chry-

sergonsäure wurden in 50 ml Acetanhydrid unter Zugabe von 12 Tropfen (ca. 0,15 ml)

ätherischer Bortrifluoridlösung suspendiert. Die genaue Einhaltung der Bortrifluorid-

menge ist wichtig, da sonst die Ausbeuten stark abfallen. Die Chrysergonsäure ging

unter starker Rotfärbung nach ca. 30 Minuten in Lösung. Nach 2 Std. Reaktionszeit

zerstörte man das Bortrifluorid durch Zugabe von Eis. Das Acetanhydrid wurde mit

Benzol azeotrop weitgehend eingedampft, und es wurde mit Chloroform aufgearbeitet.

Man erhielt 96 mg benzollösliches Reaktionsprodukt, das sich mit Benzol-Aether 4 : 1

aus einer Säule von 6 g Silicagel eluieren liess. Durch Anspritzen mit Methanol wur¬

den 55 mg Rohkristalle erhalten. Nach mehrmaligem Umlösen schmolz das Produkt

etwas unscharf bei 222 - 226 ; es lieferte mit Ferrichlorid eine braune Farbreaktion.

UV".-Absorptionsspektrum: 248/4,41; 255/4,41; 261/4,37 und 313/4, 20 (mu/log £ )

IR. -Absorptionsspektrum (Nu): 1775 (Schulter), 1755 und 1740 cm".

H 4,99% Gef. C 59,52 H 4,70%

Gef. 6,88% (für 2 Methoxyle)

Gef. 3,72% (für 2 Methoxyle)

Gef. 7,47% (für 4 Acetyle)

Verätherung von Chrysergonsäure (IX) mit Diazomethan. 55 mg Chrysergonsäure

wurden in 20 ml Aceton suspendiert und man versetzte mit 10 ml frisch destillierter

ätherischer Diazomethanlösung, wobei die Säure in einigen Minuten in Lösung ging.

Nach 15 Minuten Reaktionszeit wurde die Diazomethanlösung eingedampft. Man erhielt

56 mg amorphes Reaktionsprodukt, das auf 4 g Silicagel chromatographiert wurde.

Die Hauptfraktion liess sich mit Aether-Essigester 4 : 1 aus der Säule eluieren. Sämt¬

liche Fraktionen waren amorph.

UV.-Absorptionsspektrum: 327/4,47 (mu/log £ )

IR.-Absorptionsspektrum (Nu): 3460, 1730 cm.

Veräußerung von Chrysergonsäure (K) mit Diazomethan in Gegenwart von Bortrifluorid.

49 mg Chrysergonsäure wurden unter Zugabe von 6 Tropfen ätherischer Bortrifluorid¬

lösung in 20 ml Aceton suspendiert. Man destillierte 15 ml ätherische Diazomethan-

C40H40°18 Ber. C 59,40

OCH3 Ber. 7,65%

OÇH3 Ber. 3,70%

CO-CH3 Ber. 7,40%

Es liegt Verbindung X vor.

- 53 -

lösung in die Lösung über. Die Chrysergonsäure löste sich nicht. Nach einer Stunde

wurde das Bortrifluorid mit Wasser zerstört, und man schüttelte mit Chloroform

aus. Es wurde unverändertes Ausgangsmaterial isoliert.

Behandlung von Chrysergonsäure (IX) mit Methyljodid und Kaliumcarbonat. 320 mg

Chrysergonsäure wurden in 25 ml Aceton suspendiert und mit 7 ml Methyljodid und

305 mg Kaliumcarbonat 2V2 Stunden am Rückfluss gekocht. Nach dem Erkalten des

Reaktionsgemisches wurde das Kaliumcarbonat abfiltriert und das Lösungsmittelge¬

misch weitgehend eingedampft. Nach dem Ansäuren wurde mit einem Gemisch Aether-

Essigester (3 : 1) ausgeschüttelt. 345 mg Rohprodukt wurden an 18 g Silicagel chromato¬

graphies, wobei 40 mg kristallines Produkt mit Benzol-Aether 4 : 1 eluiert werden

konnten. Die späteren Fraktionen (Aether-Essigester) waren alle amorph. Die Aus¬

beute konnte durch Veränderung der Reaktionszeit oder der Menge an Kaliumcarbonat

nicht erhöht werden. Zur Analyse wurde eine Probe drei mal aus Methanol umgelöst,

wobei das Produkt bei 305 - 308° schmolz.

UV.-Absorptionsspektrum: 261/4,40; 362/3,64 (m u/log £)

IR.-Absorptionsspektrum (Nu): 3660, 3500, 3360; 1755, 1735 und 1640 cm

C32H32°14 Ber- C 60'00 H 5>04% Ber- c 59>88 H 5»41%

OCH3 Ber. 9,69% Gef. 9,46% (für 2 Methoxyle)

OCHg Ber. 4,69% Gef. 4,62% (für 2 Methoxyle)

Es liegt Verbindung XI vor.

Reduktion von Chrysergonsäure (IX) mit Natriumborhydrid. 202 mg Natriumborhydrid

wurden in 5 ml Dioxan vorgelegt und 101 mg Chrysergonsäure in 5 ml Dioxan suspen¬

diert zugetropft. Nachdem 3ty2 Stunden am Rückfluss gekocht worden war, wurde das

überschüssige Natriumborhydrid mit Schwefelsäure zerstört. Die Aufarbeitung mit

Chloroform lieferte unverändertes Ausgangsmaterial.

Reduktion von Chrysergonsäure (PC) mit Lithiumaluminiumhydrid. 503 mg Lithium¬

aluminiumhydrid wurden in 30 ml Dioxan vorgelegt und 103 mg Chrysergonsäure wur¬

den in 30 ml Dioxan suspendiert zugetropft. Man erhitzte 20 Stunden auf 100°. Das

Lithiumaluminiumhydrid wurde mit Essigester zerstört. Darauf wurde angesäuert und

mit einem Aether-Essigester 3 : 1-Gemisch ausgeschüttelt und mit gesättigter Koch¬

salzlösung gewaschen. Man erhielt 69 mg eines braunen Produktes, das nicht kristalli¬

siert werden konnte.

- 54 -

UV.-Absorptionsspektrum: 216/4,53; 257/4,18; 282/3,83 (Schulter) (mu/log 6 )*'IR. -Absorptionsspektrum (Nu): 3300 cm

69 mg Reduktionsprodukt wurden in 8 ml Acetanhydrid und 2 ml Pyridin gelöst

und 6 Stunden bei Zimmertemperatur stehen gelassen. Nach dem Eindampfen des

Lösungsmittelgemisches wurden 93 mg amorphes, fast farbloses Produkt erhalten.

Die Hauptfraktion Hess sich mit Benzol-Aether 4 : 1 aus einer Säule von 6 g Silicagel

eluieren. Sämtliche Fraktionen waren amorph.

UV.-Absorptionsspektrum: 217/4,45 (mu/logC) '

IR. -Absorptionsspektrum (Nu): 3500, 1765, 1735 cm"

Nitrierung von Chrysergonsäure (IX). 144 mg Chrysergonsäure wurden mit 5 ml

konzentrierter Salpetersäure 14 Stunden bei Zimmertemperatur stehen gelassen. Das

Reaktionsprodukt wurde mit kaltem Wasser übergössen, wobei farblose Nadeln aus¬

fielen. Nach dem Abfiltrieren liess sich der Rückstand aus Methylenchlorid Umkri¬

stallisieren. Nach mehrmaligem Umlösen erhielt man 30 mg eines Produktes vom

Smp. 250°.

UV. -Absorptionsspektrum: 262/4,48 und 338/4,45 (mu/log t )

IR.-Absorptionsspektrum (Nu): 3580, 1735, 1557, 1525 und 1310 cm

pKMCS = 5'95

C32H30O18N2 Ber. C 52,60 H 4,00 N 3,80%

Gef. C 52,33 H 4,14 N 3,85%

Es liegt Verbindung XII vor.

Behandlung der Chrysergonsäure (PC) mit methanolischer Salzsäure. 51 mg Chryser¬

gonsäure wurden zwecks Verätherung in 30 ml Methanol suspendiert, und man leitete

aus einem Kipp'schen Apparat Salzsäure bis zur Sättigung ein. Die Chrysergonsäure

löste sich nicht und erwies sich nach der Aufarbeitung als unverändertes Ausgangs¬

material.

Acetylierung der Chrysergonsäure (IX) in der Hitze. 1,5 g Chrysergonsäure wurden

mit 30 ml Acetanhydrid und 1, 5 ml Pyridin 31/2 Stunden am Rückfluss gekocht. Nach

dem Abdampfen des Lösungsmittels wurde der Rückstand mit wenig Wasser zerrieben

und filtriert. Das braune Acetat fiel nach längerem Stehen aus Essigester aus. Man

*) Da für das Reduktionsprodukt keine bestimmte Formel aufgestellt werden konnte,wurde zur Berechnung der Extinktion ein Molekulargewicht von 550 angenommen.

**) Berechnet als Tetraacetat des Reduktionsproduktes.

- 55 -

C24H22°10 Ber. C 61,27 H 4

OCH3 Ber. 6,60% Gef

OÇH3 Ber. 3,19% Gef

CO-ÇH3 Ber. 12,77% Gef

C-ÇH3 Ber. 12,77% Gef

Es liegt das Acetolyseprodukt (Xm) vor.

löste die noch stark verunreinigten Kristalle in Benzol und chromatographierte sie

an der fünfzigfachen Menge Silicagel, wobei sich 1,4 g gelbes Rohprodukt mit Benzol-

Aether 4 : 1 eluieren liess. Nach mehrmaligem Uirflösen aus Methanol wurden 500 mg

Produkt vom Smp. 198° erhalten. Zur Analyse wurde eine Probe noch zweimal um¬

kristallisiert; das reine Produkt schmolz bei 201.

UV.-Absorptionsspektrum: 290/3,29 und 235/4,04 (mu/log £); keine Maxima; nur

Schultern

IR.-Absorptionsspektrum (Nu): 1775, 1730, 1680 cm"

72% Gef. C 61,35 H 4,61%

6,14% (für 1 Methoxyl)

3,48% (für 1 Methoxyl)

13,43% (für 4 Acetyle)

12,60% (für 4 C-Methyle)

Alkalische Verseifung des Acetolyseproduktes (XIII). 22 mg Acetolyseprodukt wur¬

den in 20 ml 2 proz. wässrig-methanolischer Kaliumhydroxydlösung aufgelöst und

3l/2 Std. bei Zimmertemperatur stehen gelassen. Die Lösung färbte sich gelb und

später stark grün. Zur Aufarbeitung wurde angesäuert und mit Aether ausgeschüttelt.

Man erhielt 10 mg eines harzigen Produktes, das nicht untersucht wurde.

Saure Verseifung des Acetolyseproduktes (XM). 35 mg Acetolyseprodukt wurden mit

10 ml 3 proz. methanolischer Salzsäure 24 Stunden am Rückfluss gekocht. Nach der

üblichen Aufarbeitung erhielt man 31 mg eines amorphen, gelben Schaumes.

UV. -Absorptionsspektrum: 355/3,40 und 245/4,04 (mu/log 6 )

IR.-Absorptionsspektrum (Nu): 3300, 1720, 1700, 1620 cm

Verseifung des Acetolyseproduktes (Xin) mit Hydroxylaminhydrochlorid. 233 mg

Acetolyseprodukt wurden mit 30 ml Aethanol, 3 ml Pyridin und 1, 2 g Hydroxylamin¬

hydrochlorid zwei Stunden auf dem Wasserbad erhitzt. Das gelbe Reaktionsprodukt

wurde mit einem Aether-Essigester 3 : 1 Gemisch ausgeschüttelt. Man erhielt 215 mg

Rohprodukt, das aus Aethanol-Wasser umgelöst wurde. Nach mehrmaligem Umlösen

wurden 75 mg einer Verbindung vom Smp. 186° erhalten.

UV.-Absorptionsspektrum: 252/4,27 und 360/3,62 (mu/log £ ) (siehe Abbildung)

IR.-Absorptionsspektrum (Nu): 3280, 1725 und 1690 cm"

- 56 -

C18H16°7 Ber. C 62,79 H 4,6£1% Gef. C 62,81 H 4,

OCH3 Ber. 9,01% Gef. 10,38% (für 1 Methoxyl)

OCHg Ber. 4,36% Gef. 4,75% (für 1 Methoxyl)

CO-CHg Ber. 4,36% Gef. 4,46% (für 1 Acetyl)

C-CH3 Ber. 4,36% Gef. 4,98% (für 1 C -Methyl)

Es liegt Ergotin (XIV) vor.

Reacetylierung von Ergotin (XIV). 50 mg Ergotin wurden in 10 ml Acetanhydrid und

3 ml Pyridin aufgelöst. Nach drei Stunden wurde das Lösungsmittel eingedampft, und

man isolierte ein farbloses Acetat, das mit dem Acetolyseprodukt (XIII) auf Grund des

Smp., Misch, -smp. und des IR. -Absorptionsspektrums identisch war.

Hydrierung des Acetolyseproduktes (Xm) mit Palladiumkohle und Platinoxyd. Je 50 mg

Acetolyseprodukt wurden in 10 ml Eisessig aufgelöst und mit Palladiumkohle bzw. Pla¬

tinoxyd in Wasserstoffatmosphäre behandelt. Das Acetolyseprodukt nahm keinen Was¬

serstoff auf, und es konnte unverändertes Ausgangsmaterial isoliert werden.

Reduktion des Acetolyseproduktes (Xin) mit Natriumborhydrid. Diese wurde unter

denselben Bedingungen ausgeführt wie die Reduktion des Acetolyseproduktes mit Li¬

thiumaluminiumhydrid. Die Aufarbeitung lieferte ein braunes, amorphes Produkt, das

nicht weiter untersucht wurde.

Reduktion des Acetolyseproduktes (Xm) mit Lithiumaluminiumhydrid. 780 mg Lithium¬

aluminiumhydrid wurden in 70 ml Dioxan vorgelegt, und es wurden 233 mg Acetolyse¬

produkt in 10 ml Dioxan gelöst zugetropft. Man kochte drei Stunden am Rückfluss.

Nach der üblichen Aufarbeitung wurden 182 mg eines farblosen Schaumes erhalten,

der mit einem Gemisch von BenzolrAether =4:1 auf eine Säule von 10 g Silicagel

aufgezogen wurde. Die Hauptfraktion konnte mit Lösungsmittelgemisch von zunehmen¬

dem Aethergehalt aus der Säule eluiert werden. Es gelang nicht, das Reduktionspro¬

dukt in kristalliner Form zu erhalten.

UV.-Absorptionsspektrum: 280 m u (schwaches Maximum)

IR. -Absorptionsspektrum (Nu): 3300 cm"

150 mg Reduktionsprodukt lieferten bei der Acetylierung 180 mg eines Acetates,

das mit Benzol auf eine Silicagelsäule aufgezogen wurde. Man eluierte mit Benzol-

Aether 4 : 1 ein Produkt, das nach längerem Stehen in Methanol auskristallisierte. Es

wurden 17 mg reines Produkt vom Smp. 230° isoliert.

- 57 -

UV.-Absorptionsspektrum: kein Maximum.

IR. -Absorptionsspektrum (Nu): 1765 cm".

C24H22°8

OCHg

Ber.

Gef.

C 65,74

0,00%

CO-CHg Ber. 6,82%

Es liegt Veirbindung XVI vor.

H 5,06% Gef. C 65,53 H 5,05%

Gef. 6,24% (für 2 Acetyle)

Oxydation des Acetolyseproduktes (Xin) mit Chromsäure. 270 mg Acetolyseprodukt

wurden in 5, 7 ml Acetanhydrid und 5,7 ml Eisessig gelöst. Darauf wurden 11,4 ml

einer Lösung von 5 g Chromsäure in 3,5 ml Wasser, 25 ml Eisessig und 25 ml Acetan-

hydrid zugetropft '. Drei Stunden später wurden erneut 5,7 ml Chromsäurelösung

zugefügt. Nach weitern drei Stunden zerstörte man die überschüssige Chromsäure

mit Methanol. Das Lösungsmittel wurde weitgehend eingedampft und der Rückstand

mit einem Gemisch Aether-Essigester 3 : 1 aufgearbeitet. Man erhielt 150 mg farb¬

lose Kristalle, die aus Essigester umgelöst wurden. Smp. 300 unter Zersetzung.

UV.-Absorptionsspektrum: 238/4,15 (Schulter), 295/3,52 (m u/log t )

m. -Absorptionsspektrum (Nu): 1785, 1745, 1725 und 1687 cm"1= 473pKMCS = 4,32 Aequ.-Gew,

C24H20°12 Ber. C 57,60

OÇH3 Ber. 6,20%

OÇH3 Ber. 3,00%

CO-ÇHg Ber. 12,00%

Es liegt Verbindung XVII vor.

H 4,03% Gef. C 57,68 H 4,19%

Gef. 7,34% (für 1 Methoxyl)

Gef. 3,78% (für 1 Methoxyl)

Gef. 11,41% (für 4 Acetyle)

Veresterung des Oxydationsproduktes (XVII) mitDiazomethan. 64 mg Oxydationspro¬

dukt wurden in 10 ml Essigester gelöst und mit 10 ml ätherischer Diazomethanlösung

versetzt. Nach dem Eindampfen des Lösungsmittels wurden 73 mg Rohprodukt erhal¬

ten, das an 4 g Silicagel chromatographiert und mit Benzol-Aether 4 : 1 eluiert wurde.

Das Produkt wurde aus Methanol umkristallisiert und hatte einen Smp. von 205 .

UV.-Absorptionsspektrum: 216/4,60; 254/4,40; 355/3,67 (mp/log £ )

IR.-Absorptionsspektrum (Nu): 1775, 1730, 1680 cm"

C25H20°12 Ber> C 58'37 H 4»31% Gef- C 58>62 H 4fn%

*) Das Acetanhydrid musste vorsichtig beigefügt werden, da sich die Lösung stark er¬

wärmte. Diese Lösung durfte nur wenige Stunden aufbewahrt werden.

- 58 -

OCHg Ber. 5,84% Gef. 6,46% (für 2 Methoxyle)

CO-CH3 Ber. 11,67% Gef. 11,73% (für 4 Acetyle)

Es liegt Verbindung XVIII vor.

Eine Verseifung der Verbindung XVIII mit Hydroxylaminhydrochlorid analog aus¬

geführt wie beim Acetolyseprodukt, lieferte keine kristallines Reduktionsprodukt.

Oxydation von Acetolyseprodukt Xin mit Salpetersäure. 86 mg Acetolyseprodukt

wurden in 5 ml konzentrierter Salpetersäure aufgelöst und 20 Stunden bei Zimmer¬

temperatur stehen gelassen. Das Reaktionsgemisch wurde mit Wasser übergössen

und mit Aether ausgeschüttelt. Aus 55 mg Rohprodukt bildeten sich nach dem An¬

spritzen mit Aceton-Methanol 1 mg feine Nadeln vom Smp. 280°, die nicht weiter un¬

tersucht wurden.

Abbau des Acetolyseproduktes (XHI) mit wässrigem Bariumhydroxyd. 1,527 g Ace¬

tolyseprodukt wurden mit 6 g Bariumhydroxyd in 100 ml Wasser suspendiert. Das Ge¬

misch wurde während 61/2 Stunden am Rückfluss gekocht. Nach dem Erkalten wurde

angesäuert. Man schüttelte das Reaktionsprodukt mit insgesamt 2 Litern eines Lö¬

sungsmittelsgemisches Aether-Essigester 3 : 1 und 400 ml Wasser aus. Eine konti¬

nuierliche Extraktion der wässrigen Lösung erwies sich als überflüssig, weil diese

Extrakte kein brauchbares Material lieferten. Es wurden nach gründlicher Entfernung

von niederen Säuren durch Eindampfen mit Benzol 1,090 g amorphe Säure erhalten,

die ohne weitere Reinigung mit 70 ml ätherischer Diazomethanlösung während einer

Stunde behandelt wurden. Man erhielt 1,191 g benzollösliches Rohprodukt. Dieses

wurde an der fünfzigfachen Gewichtsmenge Silicagel chromotographiert. Mit Benzol:

Aether 9: 1 Hessen sich kristalline Verbindungen eluieren, die durch Anspritzen mit

Methanol 469 mg Rohkristalle vom Smp. 202° lieferten. Durch sehr sorgfältige frak¬

tionierte Kristallisation aus Methylenchlorid-Methanol gelang es, die Rohkristalle in

ihre Komponenten Aether A (XIX) (Smp. 238°) und Aether B (XXII) (Smp. 213°) zu

zerlegen. Man isolierte zunächst 80 mg Aether A und 250 mg Aether B. Das zurück¬

bleibende Gemisch konnte durch fortgesetzte Kristallisation weiter zerlegt werden.

Es gelang nicht, die beiden Komponenten durch Chromatographie zu trennen.

Wurden die amorphen Mutterlaugen ein zweites Mal derselben Behandlung mit

Bariumhydroxyd und Diazomethan unterworfen, konnten weitere Kristalle gewonnen

werden. Beide Aether lieferten mit Ferrichlorid eine violette Farbreaktion.

Aether A (XIX): Smp. 238°

UV. -Absorptionsspektrum: 214/4,48; 254/4, 28 und 352/3,50 (mp/log )

IR. -Absorptionsspektrum (Nu): 1740 cm"

- 59 -

Ber. 0,30% Gef. 0,36% (für 1 H akt.)

Ber. C 65,44 H 5,49% Gef. C 65,35 H 5,26%

Ber. 28,18% Gef. 26,21% (für 3 Methoxyle)

Ber. 13,64% Gef. 13,29% (für 3 Methoxyle)

Ber. 4,55% Gef. 4,51% (für 1 C-Methyl)

Gef. 0,00%

Behandlung von Ergotin (XIV) mit Methyljodid und Kaliumcarbonat. 312 mg Ergotin

wurden in 25 ml Aceton gelöst und mit 7 ml Methyljodid und 310 mg Kaliumcarbonat

4l/2 Stunden am Rückfluss gekocht. Nach dem Erkalten des Reaktionsgemisches wurde

das Kaliumcarbonat abfiltriert und das Lösungsmittelgemisch weitgehend eingedampft.

Nach dem Ansäuren wurde mit Aether-Essigester 3 :1 ausgeschüttelt, und man er¬

hielt 330 mg Rohprodukt, das in Benzol aufgelöst und an 16 g Silicagel chromatogra-

phiert wurde. Die Hauptfraktion liess sich mit Benzol-Aether 9 : 1 eluieren. Durch

Anspritzen mit Methanol bildeten sich 60 mg Rohkristalle; diese Hessen sich durch

fraktionierte Kristallisation in zwei Komponenten zerlegen, die sich mit den Aethern

A (XTX) und B (XXH) auf Grund des Smp., Mischsmp. und des IR. -Absorptionsspek¬

trums als identisch erwiesen.

Acetylierung des Aether A (XIX). 75 mg Aether A wurden in 7 ml Acetanhydrid und

3 ml Pyridin 12 Stunden stehen gelassen. Nach dem Eindampfen des Lösungsmittels

wurden 90 mg amorphes Acetat erhalten, das der chromatographischen Reinigung an

der 50-fachen Menge Silicagel unterworfen wurde. Das Produkt wurde mit Benzol-

Aether 4 : 1 eluiert; es konnte nicht kristallisiert werden. Zur Analyse wurde eine

Probe aus dem Chromatogramm im Hochvakuum getrocknet.

UV.-Absorptionsspektrum: 215/4,56; 242/4,22 und 312/3,78 (mu/log 6 )

IR. -Absorptionsspektrum (Nu): 1760, 1730 und 1670 cm"

C20H20°7 Ber- C 64'51 H 5»41% Gef- c 64»61 H 4»97%

CO-CH3 Ber. 4,03% Gef. 3,72%

Es liegt Verbindung XX vor.

Verseifung der Verbindung XX mit Hydroxylaminhydrochlorid. 15 mg Acetat XV wur¬

den mit 10 ml Aethanol, 1 ml Pyridin und 200 mg Hydroxylaminhydrochlorid zwei Stun¬

den auf dem Wasserbad erhitzt. Die übliche Aufarbeitung lieferte 11 mg eines kristal¬

linen Produktes, das sich mit dem Aether A (XIX) auf Grund des Smp., Mischsmp. und

des IR. -Absorptionsspektrums als identisch erwies.

Akt. H

C18H18°6

OÇH3

OCH3C-ÇH3CO-CH,

- 60 -

Alkalische Verseifung des Aethers A (XIX). 55 mg Aether A wurden in 10 ml 2-proz.

wässrig-methanolischer Kalilauge 1: 1 während 30 Minuten am Rückfluss gekocht.

Nach dem Ansäuren und der üblichen Aufarbeitung erhielt man eine Säure, die nach

mehrmaligem Umlösen aus Methanol bei 278° schmolz.

UV.-Absorptionsspektrum: 252/4,25 und 350/3,47 (m p/log £)IR. -Absorptionsspektrum (Nu): 2620, 1690 und 1625 cm"

pKMCS = 7»03' Aequ.-Gew. :-

H 5,10% Gef. C 64,42 H 4,98%

Gef. 8,14% (für 2 Methoxyle)

Gef. 4,36% (für 1 C-Methyl)

Gef. 0,00%

C17H16°6 Ber. C 64,55

OCH3 Ber. 9,50%

C-CH3 Ber. 4,75%

CO-CH3Es liegt die Säure XXI vor.

Alkalische Verseifung des Acetates XX. Die alkalische Behandlung des Acetates XX

lieferte eine Säure, die sich als identisch erwies mit dem oben beschriebenen Produkt

XXI vom Smp. 278°.

Veresterung der Säure XXI mit Diazomethan. 10 mg Säure XXI wurden mit 5 ml

ätherischer Diazomethanlösung behandelt. Man isolierte 10 mg eines kristallinen

Produktes, das sich mit dem Aether A (XIX) als identisch erwies.

Eigenschaften des Aethers B (XXII) und seiner Derivate. Sämtliche Reaktionen, die

beim Aether A (XIX) beschrieben sind, wurden beim Aether B parallel durchgeführt.

Man erhielt dabei folgende physikalische und analytische Daten:

Aether B (XXII): Smp. 213°.

UV.-Absorptionsspektrum: 213/4,45; 249/4,16 und 353/3, 50 (m/i/log £ ) (siehe

Abbildung)

IR. -Absorptionsspektrum (Nu): 1740 cm"

Gef. 0,33% (für 1 Hakt.)

H 5,49% Gef. C 65.45 H 5,31%

Gef. 13,82% (für 3 Methoxyle)

Gef. 4,18% (für 1 C-Methyl)

Gef. 0,00%

akt. H Ber. 0,30%

C18H18°6

OÇH3

Ber.

Ber.

C 65,44

13,64%

C-ÇH3 Ber. 4,55%

CO-CH3

- 61 -

J^MCS = 6> 65; Aequ. -Gew. = :

C17H16°6 Ber. C 64,55

OCHg Ber. 9,50%

C-CT3 Ber. 4,75%

CO-ÇH3

Acetylierung des Aethers B (XXIII); amorph

UV.-Absorptionsspektrum: 214/4,52; 245/4,20 und 308/3,85 (mu/log t )

IR.-Absorptionsspektrum (CHCI3): 1760, 1720 und 1670 cm"1

C20H20°7 Ber* C 64>51 H 5>41% Gef- c 64>78 H 5»22%

Alkalische Verseifung des Aethers B (XXII). Man isolierte die Säure B (XXIV), die

nach längerem Stehen aus Methylenchlorid auskristallisierte. Smp. : 248 (unscharf).

UV.-Absorptionsspektrum: 248/3,85 und 352/3,16 (mjj/log E )

IR.-Absorptionsspektrum (Nu): 2680, 1685 und 1645 cm"

H 5,10% Gef. C 64,53 H 4,77%

Gef. 8,57% (für 2 Methoxyle)

Gef. 4,49% (für 1 C-Methyl)

Gef. 0,00%

Reduktion von Aether A (XIX) mit Natriumborhydrid. Man legte 203 mg Natriumbor¬

hydrid in 20 ml Dioxan vor und fügte 99 mg Aether A in 20 ml Dioxan gelöst zu. Nach¬

dem 12 Stunden am RUckfluss gekocht worden war, wurde angesäuert und mit Aether

aufgearbeitet. Man isolierte 102 mg Rohprodukt, das an 6 g Silicagel chromatographiert

wurde. Mit einem Lösungsmittelgemisch Benzol:Aether 9 : 1 wurde ca. 30 mg unver¬

ändertes Ausgangsmaterial eluiert, während die Fraktionen mit zunehmendem Aether-

gehalt ein farbloses Produkt enthielten, das nach zweimaligem Umkristallisieren aus

Methanol bei 254 schmolz (unscharf; unter Zersetzung). Es wurden 4 mg reines Pro¬

dukt isoliert.

UV.-Absorptionsspektrum: 296/3,80 (mp/log £ )

IR. -Absorptionsspektrum (Nu):

C18H20°6 Ber" C 65'05 H 6'07% Gef- C 64'44 H 5>31%

Es liegt Verbindung XXV vor.

Reduktion von Aether A (XIX) mit Lithiumaluminiumhydrid. Man legte 138 mg Lithium¬

aluminiumhydrid in 15 ml Dioxan vor und fügte 55 mg Aether A in 10 ml Dioxan gelöst

zu. Nachdem 12 Stunden am Rückfluss gekocht worden war, säuerte man das Reak¬

tionsgemisch nach dem Erkalten an. Die Aufarbeitung mit Aether lieferte 52 mg eines

amorphen Produktes, das an 4 g Silicagel chromatographiert wurde. Die Hauptfraktion

- 62 -

wurde mit Benzol-Aether 1: 1 eluiert. Die Kristallisationsversuche blieben ohne Er¬

folg.

UV.-Absorptionsspektrum: 313/4,40 und 260/3,77 (mu/log E )

IR. -Absorptionsspektrum (Nu): 3300 cm"

Das Acetat und das mit Methyljodid und Kaliumcarbonat in Aceton verätherte

Derivat des Lithiumaluminiumhydrid-Reduktionsproduktes waren ebenfalls amorph.

Abbau des Acetolyseproduktes (XM) mit wässrig-methanolischem Kaliumhydroxyd.

2,144 g Acetolyseprodukt wurden in 140 ml 2-proz. wässrig-methanolischer Kalilauge

gelöst und während 15 Stunden in der Siedehitze gehalten. Nach dem Erkalten wurde

mit konzentrierter Schwefelsäure angesäuert, wobei eine gelbe Säure kristallin aus¬

fiel. Man liess die Lösung zwei Stunden bei +4 C stehen, und filtrierte ca. 2,4 g

Reaktionsprodukt ab, das viel Kaliumsulfat enthielt. Da das Produkt infolge seiner

extremen Schwerlöslichkeit weder durch Ausschütteln noch durch kontinuierliche Ex¬

traktion aus der wässrigen Lösung extrahiert werden konnte, wurde dieses in einem

Soxhlet mit einem Lösungsmittelgemisch Methylenchlorid-Methanol 1: 1 ausgezogen.

Nach dem Einengen des Lösungsmittels wurden 800 mg Säure abgenutscht. Die Säure

lieferte mit Ferrichlorid eine violette Farbreaktion. Zur Analyse wurde mehrmals

aus Methylenchlorid-Methanol umkristallisiert; Smp. > 365 .

UV.-Absorptionsspektrum: 233/4,31; 270/4,29; 297/4,26 und 377/3,56 (mu/log £ );

siehe Abbildung

IR. -Absorptionsspektrum (Nu): 3100, 1705 und 1645 cm"

pKMCS = 6'01' Ae1u--Gew- = 269

C15H10°5 Ber" C 66'67 H 3>73% Gef> C 66'19 H 3»40%

C-CH3 Ber. 5,55% Gef. 5,46% (für 1 C-Methyl)

OCHg Gef. 0,00%

CO-CHg Gef. 0,00%

Es liegt die Säure XXVII vor.

Acetylierung der Säure XXVII. 83 mg Säure XXVII wurden in einem Gemisch von

9 ml Acetanhydrid und 3 ml Pyridin während 14 Stunden stehen gelassen. Nach dem

Absaugen des Lösungsmittels am Vakuum erhielt man 107 mg eines gelblichen Schau¬

mes, der an saurem Silicagel ' chromatographiert wurde, wobei sich die Hauptfrak¬

tion mit Benzol-Aether 1 : 1 eluieren liess. Nach längerem Stehen in wenig Methanol

18) H. Brockmann und H. Muxf eld, Ber.deutsch.ehem.Ges. 89, 1393(1956).

- 63 -

erhielt man Kristalle vom Smp. > 340.Das farblose Präparat lieferte eine negative

Ferrichloridprobe.

UV. -Absorptionsspektrum: 253/4,52; 268 (Schulter); 343/3, 78 (mu/log 6 )

IR.-Absorptionsspektrum (Nu): 2400, 1770, 1725/30 und 1660 cm-1

pKMCS = 5'88 Aequ.-Gew. = 321

C-CH, Ber. 9,61% Gef. 8,86% (für 2 C-Methyle)

CO-CH3 Ber. 4,80% Gef. 5,85% (für 1 Acetyl)

Es liegt das Säureacetat XXVIII vor.

Veresterung der Säure XXVII mit Diazomethan. 300 mg Säure XXVII wurden in 20 ml

Aceton aufgeschlemmt und mit 50 ml destillierter aetherischer Diazomethanlösung

während 30 Minuten stehen gelassen. Nach dem Absaugen des Lösungsmittels am Va¬

kuum wurden 330 mg Reaktionsprodukt erhalten, das mit Benzol auf eine Säule von

25 g Silicagel aufgezogen wurde. Die Hauptfraktion konnte mit Benzol : Aether 9 :1

eluiert werden. Der Ester wurde aus Methanol umkristallisiert. Die Reinigung des

Produktes bereitete Schwierigkeiten, da es von einem roten Begleitkörper durchsetzt

war. Nach mehrmaligem Umlösen wurden 77 mg eines grünlichen Esters vom Smp.

292 erhalten, das mit Ferrichlorid eine violette Farbreaktion lieferte.

UV.-Absorptionsspektrum: 234/3,73; 272/3,78; 297/3,80 und 380/3,18 (mu/log e )

IR. -Absorptionsspektrum (Nu): 1730 und 1645 cm"

C16H12°5 Ber' C 67'60 H 4»26% Gef« c 67>63 H 4»01%

OCH3 Ber. 5,28% Gef. 5,46% (für 1 Methoxyl)

C-CH3 Ber. 5,28% Gef. 5,48% (für 1 C-Methyl)

CO-CH3 Gef. 0,00%

Es liegt Verbindung XXDX vor.

Alkalische Verseifung der Verbindung XXDC. 77 mg Säureester (XXDC) wurden mit

25 ml 2-proz. wässrig-methanolischem Kaliumhydroxyd 1: 1 während 2ty2 Stunden

auf dem Wasserbad erhitzt. Die nach dem Ansäuern ausgefallene schwerlösliche Säure

wurde abgenutscht und aus Methylenchlorid-Methanol umkristallisiert. Man erhielt

60 mg Rohkristalle, die sich mit der Säure vom Smp. > 360° auf Grund des IR. -Ab¬

sorptionsspektrums als identisch erwiesen.

Veresterung der Säure XXVn mit Dimethylsulfat und Kaliumhydroxyd. 107 mg Säure

XXVII wurden mit 3 ml Aethanol und 0,1 ml 50-proz. Natronlauge erhitzt und, nach¬

dem sich die Säure gelöst hatte, mit 0,5 ml Dimethylsulfat versetzt. Nach 10 Minuten

- 64 -

fügte man weitere 6 ml Aethanol, 0,04 ml Natronlauge und 3 ml Dimethylsulfat hinzu.

Man kochte drei Stunden am Rückfluss. Nach dem Erkalten wurde angesäuert und wie

üblich aufgearbeitet. Man erhielt 111 mg eines gelben, benzollöslichen Rohproduktes,

das mit Benzol-Aether 9: 1 aus der Silicagelsäule eluiert wurde. Nach mehrmaligem

Umlösen aus Methanol isolierte man 30 mg eines Produktes, das bei 210 sinterte

und bei 250 vollständig schmolz. Die schwach positive Ferrichloridprobe deutete

auf phenolische Verunreinigungen hin.

UV.-Absorptionsspektrum: 233/4,34; 270/4,45; 288/4,26 und 376/3,64 (m/i/logC )

IR. -Absorptionsspektrum (Nu): 1730 und 1645 cm"

C17H14°5 Ber* C 68'45 H 4>73% Ber- c 68>15 H 4,10%

Es liegt Verbindung XXX vor.

Die Analysen wurden in der mikroanalytischen Abteilung des organisch-chemi¬

schen Laboratoriums der ETH unter der Leitung von Herrn W. Manser ausgeführt.

Die IR. -Absorptionsspektren wurden von Frl. V. Klopfstein und Herrn R. Dohner

aufgenommen.

Die pK-Bestimmungen verdanke ich Herrn Dr. W. Simon.

Für diese wertvolle Mithilfe möchte ich den Genannten meinen besten Dank aus¬

sprechen.

- 65 -

Zusammenfassung

Bei der Konstitutionsaufklärung zweier Farbstoffe des Mutterkorns, der Seca-

lonsäure und der Chrysergonsäure, wurde durch Acetolyse eine kristalline Verbin¬

dung der Bruttoformel C94H22<">10 ernalten> Die Sauerstoffunktionen dieses Abbau¬

produktes konnten als eine Carbomethoxygruppe, zwei Methylketongruppierungen und

drei phenolische Acetate charakterisiert werden.

Der weitere alkalische Abbau des Acetolyseproduktes, dem provisorisch das

Grundgerüst XIV zugeordnet werden konnte, führte zu Derivaten des 2,2 '-Dihydroxy-

diphenyls (XIX) und des Dibenzfurans (XXVII).

Lebenslauf

Ich wurde am 14. August 1930 in Bern geboren. Dort besuchte ich die Primar¬

schule, das Städtische Progymnasium und das Städtische Gymnasium und bestand im

Herbst 1950 die Maturitätsprüfung Typus B. Im Herbst 1951 immatrikulierte ich mich

an der Abteilung für Chemie der Eidgenössischen Technischen Hochschule, wo ich im

Sommer 1956 mein Studium mit dem Diplom als Ingenieur-Chemiker abschloss. Seit¬

her arbeitete ich unter der Leitung von Herrn Prof. Dr. O. Jeger am organisch¬chemischen Institut der Eidgenössischen Technischen Hochschule an der vorliegenden

Arbeit.

Zürich, im Juni 1959 Hansrolf Loeffel