rigid body motionchenx/notes/rgb.pdfย ยท columns of ๐‘„are called principle axes. the rigid body...

35
Rigid Body Rotation Speaker: Xiaolei Chen Advisor: Prof. Xiaolin Li Department of Applied Mathematics and Statistics Stony Brook University (SUNY)

Upload: others

Post on 09-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Rigid Body Rotation

Speaker: Xiaolei Chen Advisor: Prof. Xiaolin Li

Department of Applied Mathematics and Statistics

Stony Brook University (SUNY)

Page 2: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Content

Introduction

Angular Velocity

Angular Momentum and Inertia Tensor

Eulerโ€™s Equations of Motion

Euler Angles and Euler Parameters

Numerical Simulation

Future work

Page 3: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Introduction

Question: How many degrees of freedom in the rigid

body motion?

Answer: In total, there are 6 degrees of freedom.

1) 3 for the translational motion

2) 3 for the rotational motion

Translational Motion: center of mass velocity

Rotational Motion: angular velocity, euler angles, euler

parameters

Page 4: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Angular Velocity

In physics, the angular velocity is defined as the rate of

change of angular displacement.

In 2D cases, the angular velocity is a scalar.

Equation: ๐‘‘๐œƒ

๐‘‘๐‘ก= ๐‘ค

Linear velocity: ๐‘ฃ = ๐‘ค ร— ๐‘Ÿ

Page 5: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Angular Velocity

In the 3D rigid body rotation, the angular velocity is a

vector, and use ๐‘ค = (๐‘ค1, ๐‘ค2, ๐‘ค3) to denote it.

Page 6: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Angular Momentum

In physics, the angular momentum (๐ฟ) is a measure of the

amount of rotation an object has, taking into account its

mass, shape and speed.

The ๐ฟ of a particle about a given origin in the body axes is

given by

๐ฟ = ๐‘Ÿ ร— ๐‘ = ๐‘Ÿ ร— (๐‘š๐‘ฃ)

where ๐‘ is the linear momentum, and ๐‘ฃ is the linear velocity.

Linear velocity: ๐‘ฃ = ๐‘ค ร— ๐‘Ÿ๐ฟ = ๐‘š๐‘Ÿ ร— ๐‘ค ร— ๐‘Ÿ = ๐‘š(๐‘ค๐‘Ÿ2 โˆ’ ๐‘Ÿ(๐‘Ÿ โˆ™ ๐‘ค))

Page 7: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Angular Momentum

Each component of the angular Momentum is

๐ฟ1 = ๐‘š(๐‘Ÿ2 โˆ’ ๐‘ฅ2)๐‘ค1 โˆ’๐‘š๐‘ฅ๐‘ฆ๐‘ค2 โˆ’๐‘š๐‘ฅ๐‘ง๐‘ค3

๐ฟ2 = โˆ’๐‘š๐‘ฆ๐‘ฅ๐‘ค1 +๐‘š(๐‘Ÿ2 โˆ’ ๐‘ฆ2)๐‘ค2 โˆ’๐‘š๐‘ฆ๐‘ง๐‘ค3

๐ฟ3 = โˆ’๐‘š๐‘ง๐‘ฅ๐‘ค1 โˆ’๐‘š๐‘ง๐‘ฆ๐‘ค2 +๐‘š(๐‘Ÿ2 โˆ’ ๐‘ง2)๐‘ค3

It can be written in the tensor formula.๐ฟ = ๐ผ๐‘ค

๐ผ =

๐ผ๐‘ฅ๐‘ฅ ๐ผ๐‘ฅ๐‘ฆ ๐ผ๐‘ฅ๐‘ง๐ผ๐‘ฆ๐‘ฅ ๐ผ๐‘ฆ๐‘ฆ ๐ผ๐‘ฆ๐‘ง๐ผ๐‘ง๐‘ฅ ๐ผ๐‘ง๐‘ฆ ๐ผ๐‘ง๐‘ง

, ๐ผ๐‘Ž๐‘ = ๐‘š(๐‘Ÿ2๐›ฟ๐‘Ž๐‘ โˆ’ ๐‘Ž๐‘)

Page 8: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Inertia Tensor

Moment of inertia is the mass property of a rigid body

that determines the torque needed for a desired

angular acceleration about an axis of rotation. It can be

defined by the Inertia Tensor (๐ผ), which consists of nine

components (3 ร— 3 matrix).

In continuous cases,

๐ผ๐‘Ž๐‘ = ๐‘‰

๐œŒ ๐‘‰ ๐‘Ÿ2๐›ฟ๐‘Ž๐‘ โˆ’ ๐‘Ž๐‘ ๐‘‘๐‘‰

The inertia tensor is constant in the body axes.

Page 9: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Inertia Tensor

Page 10: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Eulerโ€™s Equations of Motion

Apply the eigen-decomposition to the inertial tensor and

obtain

๐ผ = ๐‘„ฮ›๐‘„๐‘‡ , ฮ› = ๐‘‘๐‘–๐‘Ž๐‘” ๐ผ1, ๐ผ2, ๐ผ3

where ๐ผ๐‘– are called principle moments of inertia, and the

columns of ๐‘„ are called principle axes. The rigid body rotates in angular velocity (๐‘ค๐‘ฅ, ๐‘ค๐‘ฆ, ๐‘ค๐‘ง) with respect to the

principle axes.

Specially, consider the cases where ๐ผ is diagonal.

๐ผ = ๐‘‘๐‘–๐‘Ž๐‘” ๐ผ1, ๐ผ2, ๐ผ3 , ๐ฟ๐‘– = ๐ผ๐‘–๐‘ค๐‘– , ๐‘– = 1,2,3

The principle axes are the same as the ๐‘ฅ, ๐‘ฆ, ๐‘ง axes in the

body axes.

Page 11: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Eulerโ€™s Equations of Motion

The time rate of change of a vector ๐บ in the space axes

can be written as๐‘‘๐บ

๐‘‘๐‘ก๐‘ 

=๐‘‘๐บ

๐‘‘๐‘ก๐‘

+๐‘ค ร— ๐บ

where ๐‘‘๐บ

๐‘‘๐‘ก ๐‘is the time rate of change of the vector ๐บ in

the body axes.

Apply the formula to the angular momentum ๐ฟ๐‘‘๐ฟ

๐‘‘๐‘ก๐‘ 

=๐‘‘๐ฟ

๐‘‘๐‘ก๐‘

+๐‘ค ร— ๐บ

Page 12: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Eulerโ€™s Equations of Motion

Use the relationship ๐ฟ = ๐ผ๐‘ค to obtain๐‘‘(๐ผ๐‘ค)

๐‘‘๐‘ก+ ๐‘ค ร— ๐ฟ =

๐‘‘๐ฟ

๐‘‘๐‘ก๐‘ 

= ๐œ

The second equality is based on the definition of torque.๐‘‘๐ฟ

๐‘‘๐‘ก=๐‘‘(๐‘Ÿ ร— ๐‘)

๐‘‘๐‘ก= ๐‘Ÿ ร—

๐‘‘๐‘

๐‘‘๐‘ก= ๐‘Ÿ ร— ๐น = ๐œ

Eulerโ€™s equation of motion

๐ผ1 ๐‘ค1 โˆ’๐‘ค2๐‘ค3 ๐ผ2 โˆ’ ๐ผ3 = ๐œ1๐ผ2 ๐‘ค2 โˆ’๐‘ค3๐‘ค1 ๐ผ3 โˆ’ ๐ผ1 = ๐œ2๐ผ3 ๐‘ค3 โˆ’๐‘ค1๐‘ค2 ๐ผ1 โˆ’ ๐ผ2 = ๐œ3

Page 13: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Euler Angles

The Euler angles are three angles introduced to describe

the orientation of a rigid body.

Usually, use ฯ•, ๐œƒ, ๐œ“ to denote them.

Page 14: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

The order of the rotation steps matters.

Euler Angles

Page 15: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Euler Angles

Three rotation matrices are

๐ท =๐‘๐‘œ๐‘ ๐œ™ ๐‘ ๐‘–๐‘›๐œ™ 0โˆ’๐‘ ๐‘–๐‘›๐œ™ ๐‘๐‘œ๐‘ ๐œ™ 0

0 0 1

๐ถ =1 0 00 ๐‘๐‘œ๐‘ ๐œƒ ๐‘ ๐‘–๐‘›๐œƒ0 โˆ’๐‘ ๐‘–๐‘›๐œƒ ๐‘๐‘œ๐‘ ๐œƒ

๐ต =๐‘๐‘œ๐‘ ๐œ“ ๐‘ ๐‘–๐‘›๐œ“ 0โˆ’๐‘ ๐‘–๐‘›๐œ“ ๐‘๐‘œ๐‘ ๐œ“ 0

0 0 1

Page 16: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Then, the rotation matrix is

๐ด = ๐ต๐ถ๐ท =

๐‘๐‘œ๐‘ ๐œ“๐‘๐‘œ๐‘ ๐œ™ โˆ’ ๐‘๐‘œ๐‘ ๐œƒ๐‘ ๐‘–๐‘›๐œ™๐‘ ๐‘–๐‘›๐œ“ ๐‘๐‘œ๐‘ ๐œ“๐‘ ๐‘–๐‘›๐œ™ + ๐‘๐‘œ๐‘ ๐œƒ๐‘๐‘œ๐‘ ๐œ™๐‘ ๐‘–๐‘›๐œ“ ๐‘ ๐‘–๐‘›๐œ“๐‘ ๐‘–๐‘›๐œƒโˆ’๐‘ ๐‘–๐‘›๐œ“๐‘๐‘œ๐‘ ๐œ™ โˆ’ ๐‘๐‘œ๐‘ ๐œƒ๐‘ ๐‘–๐‘›๐œ™๐‘๐‘œ๐‘ ๐œ“ โˆ’๐‘ ๐‘–๐‘›๐œ“๐‘ ๐‘–๐‘›๐œ™ + ๐‘๐‘œ๐‘ ๐œƒ๐‘๐‘œ๐‘ ๐œ™๐‘๐‘œ๐‘ ๐œ“ ๐‘๐‘œ๐‘ ๐œ“๐‘ ๐‘–๐‘›๐œƒ

๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘–๐‘›๐œ™ โˆ’๐‘ ๐‘–๐‘›๐œƒ๐‘๐‘œ๐‘ ๐œ™ ๐‘๐‘œ๐‘ ๐œƒ

This matrix can be used to convert the coordinates in the

space axes to the coordinates in the body axes.

The inverse is ๐ดโˆ’1 = ๐ด๐‘‡.

Assume ๐‘ฅ is the coordinates in the space axes, and ๐‘ฅโ€ฒ is the

coordinates in the body axes.

๐‘ฅโ€ฒ = ๐ด๐‘ฅ๐‘ฅ = ๐ด๐‘‡๐‘ฅโ€ฒ

Euler Angles

Page 17: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Euler Angles

The relationship between the angular velocity and the

euler angles is๐‘ค1

๐‘ค2

๐‘ค3

=00 ๐œ™+ ๐ท๐‘‡

๐œƒ00

+ ๐ท๐‘‡๐ถ๐‘‡00 ๐œ“= ๐ฝโˆ’1

๐œ™ ๐œƒ ๐œ“

๐ฝโˆ’1 =0 ๐‘๐‘œ๐‘ ๐œ™ ๐‘ ๐‘–๐‘›๐œƒ๐‘ ๐‘–๐‘›๐œ™0 ๐‘ ๐‘–๐‘›๐œ™ โˆ’๐‘ ๐‘–๐‘›๐œƒ๐‘๐‘œ๐‘ ๐œ™1 0 ๐‘๐‘œ๐‘ ๐œƒ

๐œ™ ๐œƒ ๐œ“

=

โˆ’๐‘ ๐‘–๐‘›๐œ™๐‘๐‘œ๐‘ก๐œƒ ๐‘๐‘œ๐‘ ๐œ™๐‘๐‘œ๐‘ก๐œƒ 1๐‘๐‘œ๐‘ ๐œ™ ๐‘ ๐‘–๐‘›๐œ™ 0

๐‘ ๐‘–๐‘›๐œ™๐‘๐‘ ๐‘๐œƒ โˆ’๐‘๐‘œ๐‘ ๐œ™๐‘๐‘ ๐‘๐œƒ 0

๐‘ค1

๐‘ค2

๐‘ค3

Page 18: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Euler Parameters

The four parameters ๐‘’0, ๐‘’1, ๐‘’2, ๐‘’3 describe a finite about an arbitrary axis. The parameters are defined as

Def: ๐‘’0 = ๐‘๐‘œ๐‘ ๐œ‘

2

And ๐‘’1, ๐‘’2, ๐‘’3 = ๐‘›sin(๐œ‘

2)

Page 19: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Euler Parameters

In this representation, ๐‘› is the unit normal vector, and ๐œ‘ is the rotation angle.

Constraint: ๐‘’02 + ๐‘’1

2 + ๐‘’22 + ๐‘’3

2 = 1

๐ด =

๐‘’02 + ๐‘’1

2 โˆ’ ๐‘’22 โˆ’ ๐‘’3

2 2(๐‘’1๐‘’2 + ๐‘’0๐‘’3) 2(๐‘’1๐‘’3 โˆ’ ๐‘’0๐‘’2)

2(๐‘’1๐‘’2 โˆ’ ๐‘’0๐‘’3) ๐‘’02 โˆ’ ๐‘’1

2 + ๐‘’22 โˆ’ ๐‘’3

2 2(๐‘’2๐‘’3 + ๐‘’0๐‘’1)

2(๐‘’1๐‘’3 + ๐‘’0๐‘’2) 2(๐‘’2๐‘’3 โˆ’ ๐‘’0๐‘’1) ๐‘’02 โˆ’ ๐‘’1

2 + ๐‘’22 โˆ’ ๐‘’3

2

Page 20: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Euler Parameters

The relationship between the angular velocity and the

euler parameters is ๐‘’0 ๐‘’1 ๐‘’2 ๐‘’3

=1

2

โˆ’๐‘’1 โˆ’๐‘’2 โˆ’๐‘’3๐‘’0 ๐‘’3 โˆ’๐‘’2โˆ’๐‘’3 ๐‘’0 ๐‘’1๐‘’2 โˆ’๐‘’1 ๐‘’0

๐‘ค1

๐‘ค2

๐‘ค3

The relationship between the euler angles and the euler

parameters is

๐‘’0 = cos๐œ™ + ๐œ“

2cos

๐œƒ

2, ๐‘’1 = cos

๐œ™ โˆ’ ๐œ“

2sin

๐œƒ

2

๐‘’2 = sin๐œ™ โˆ’ ๐œ“

2sin

๐œƒ

2, ๐‘’3 = sin

๐œ™ + ๐œ“

2cos

๐œƒ

2

Page 21: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Numerical Simulations

Question: How to propagate the rigid body?

Answer: There are three ways. But not all of them work

good in numerical simulation.

1) Linear velocity

2) Euler Angles

3) Euler Parameters

Page 22: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Numerical Simulations

Propagate by linear velocity๐‘‘๐‘Ÿ

๐‘‘๐‘ก= ๐‘ฃ = ๐‘ค ร— ๐‘Ÿ

๐‘Ÿ๐‘› โ†’ ๐‘Ÿ๐‘›+1

Directly use the last step location information.

Propagate by euler angles or euler parameter

1) Implemented by rotation matrix.

2) The order of propagate matters.

3) e.g. ฮ”๐ด โˆ™ ๐ด = ฮ”๐ตฮ”๐ถฮ”๐ท โˆ™ ๐ต๐ถ๐ท โ‰  ฮ”๐ต โˆ™ ๐ต ฮ”๐ถ โˆ™ ๐ถ ฮ”๐ท โˆ™ ๐ท

Inverse back to the initial location by the old parameters

and propagate by the new parameters.

Page 23: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Numerical Simulations

Update angular velocity by the Eulerโ€™s equation of

motion with 4-th order Runge-Kutta method.

Initial angular velocity: ๐‘ค1 = 1,๐‘ค2 = 0,๐‘ค3 = 1

Principle Moment of Inertia:

๐ผ1 = ๐ผ2 = 0.6375, ๐ผ3 = 0.075

Analytic Solution

๐‘ค1 = cos(๐ผ3 โˆ’ ๐ผ1๐ผ1

๐‘ค3๐‘ก)

๐‘ค2 = sin(๐ผ3 โˆ’ ๐ผ1๐ผ1

๐‘ค3๐‘ก)

Page 24: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Numerical Simulations

Page 25: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Numerical Simulationspropagate by linear velocity

If the rigid body is propagated in the tangent direction,

numerical simulations showed the fact that the rigid

body will become larger and larger.

Solution: propagate in the secant direction.

Page 26: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Numerical Simulationspropagate by linear velocity

Page 27: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Numerical Simulationspropagate by linear velocity

Page 28: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Numerical Simulationspropagate by euler angles

Use the relationship between the euler angles and the

angular velocity to update the euler angles in each time

step.

This keeps the shape of the rigid body. However, the

matrix has a big probability to be singular when ๐œƒ = ๐‘›๐œ‹.

Example: if we consider the initial position is where the

three euler angles are all zero, then ๐œƒ = 0 and this leads

to a singular matrix.

Solution: no solution.

Page 29: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Numerical Simulationspropagate by euler parameters

Use the relationship between the euler parameters and the angular velocity to update the euler parameters in each step.

This keeps the shape of the rigid body. Also, it is shown in numerical simulation that the matrix can never be singular.

Based on the initial euler angles ๐œ™ = ๐œƒ = ๐œ‘ = 0 and the relationship between euler parameters and euler angles, the initial values of the four euler parameters are

๐‘’0 = 1, ๐‘’1 = ๐‘’2 = ๐‘’3 = 0

Page 30: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Numerical Simulationspropagate by euler parameters

Page 31: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Numerical Simulationspropagate by euler parameters

Page 32: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Numerical Simulationspropagate by euler parameters

Page 33: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Numerical Simulationspropagate by euler parameters

Page 34: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

Future Work

different shapes of rigid body

outside force to the rigid body

fluid field in the simulation

parachutists motion in the parachute inflation

Page 35: Rigid Body Motionchenx/notes/RGB.pdfย ยท columns of ๐‘„are called principle axes. The rigid body rotates in angular velocity ( , , )with respect to the principle axes. Specially,

References

Classical Mechanics, Herbert Goldstein, Charles Poole anb John Safko

http://www.mathworks.com/help/aeroblks/6dofeuleran

gles.html

http://mathworld.wolfram.com/EulerParameters.html

http://www.u.arizona.edu/~pen/ame553/Notes/Lesson%

2010.pdf

Wikipedia