rigid retaining wall

Upload: obp213

Post on 04-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 rigid retaining wall

    1/11

    Foundation Engineering

    Foundation Engineering

    Prof. Mesut Pervizpour

    Earth Retaining StructuresFlexible Retaining Walls:

    Anchored sheet pile wallsBraced excavationsSlurr wallsStability of open cuts

    For NAVFAC and other online manuals

    1

    (including Army Corps of Eng, & FHWA)http://www.vulcanhammer.net/download/

    Lecture Outline

    HCantilever sheetpile wall (H < 3m)Design of:

    Cantilever Sheet Pile Walls

    Anchored Sheet Pile Walls

    Braced Excavation

    Anchored sheetpile (H > 3m) H

    Anchor

    Slurry Walls

    er Braced Excavation(H > 3m)

    2

  • 7/29/2019 rigid retaining wall

    2/11

    Cantilever Sheet Pile Wall:H

    Cantilever sheetpile wall (H < 3m)

    Used as a temporary or long term retaining structure

    o a ona suppor no rac ng or anc or

    Resistance by passive support of soil in the front (& flexural stiffness

    of the wall)

    Applications include: waterfront, bridge abutment, cellular cofferdam, cut-off walls in

    levees, dams, etc. Material: Steel, reinforced concrete, wood, aluminum, fiber lass, etc.

    Major issue: excessive corrosion

    Design approach: Use equilibrium (Moment)conditions to determine necessary depth ofem e men an e requ re sec on proper y o ewall

    Construction: driven

    in to ground using

    pile-driving (hammer

    or vibration)

    methods. Several ata time to assure

    3

    alignment

    Cantilever Sheet Pile Wall Design: Classical lateral earth pressure theories

    Drained strength parameters, effective

    If multilayer soil with clay, use total stressconditions for short term clay behavior

    iav: seepage pressure per volume

    stresses

    Assumption: Active in the back, passive

    in the front of the wallPivot

    Rotation

    wCB

    dba

    dbauu

    2

    2

    Include the pore water and seepage

    pressure effects ww

    dba

    dbadbaP

    2

    22

    2

    1

    . .

    ww

    da

    daadP

    2

    ddbbdbaa 223322

    wavdba

    i 2

    3

    2dazw

    ai

    dbaw

    23Resultant PWP = 0

    Use

    auB B

    AwB

    da

    dau

    2

    2

    da

    Pw

    uB Ba

    b

    effectivestresses

    4d zw

    w

    C

    zwC

    D

    d

  • 7/29/2019 rigid retaining wall

    3/11

    Cantilever Sheet Pile Wall Design:

    Lateral Earth Pressure Distribution in Sand

    Theoretical Earth PressureDistribution for Sands

    Actual Earth PressureDistribution for Sands

    Simplified Earth PressureDistribution for Sands

    H

    Sand Sand Sand

    Active

    Passive

    a

    p

    a

    Passive

    Activep p

    5

    Cantilever Sheet Pile Wall Design:

    Lateral Earth Pressure Distribution in Sand - Procedure

    Use Rankine or Coulomb for Ka and Kp for each soil layer reduce

    Kp by FS = 1.5 2.0 Kp = Kp/ FS

    Simplified Earth PressureDistribution for Sands

    Sand

    A

    raw ac ve pressure s r u on , ge a

    Slope of CD slope : (Kp Ka)

    Locate point C by plotting a line with slope from B (or set

    Ra

    H

    a p , p = p- a

    a = pa/(Kp Ka)

    Use equilibrium conditions 1) Fx = 0, 2) Mbottom = 0

    pa BCa

    Y-z

    RP

    y

    x a P P

    22

    Yp

    zppRR pppPP ''

    DE

    F

    z RP

    Plug in expression: Ra + RP RP = 0

    Ra + (pP+ pP) (z / 2) pP (Y / 2) = 0

    p

    6

    pp

    ACAp

    pp

    RYpz

    '

    2

    pp = (Kp Ka) Y

    pp = H Kp + (Kp Ka)(a+Y)

  • 7/29/2019 rigid retaining wall

    4/11

    Cantilever Sheet Pile Wall Design:

    Lateral Earth Pressure Distribution in Sand - Procedure

    Simplified Earth PressureDistribution for Sands

    A

    bottom =

    have a cubic polynomial in Y, Obtain Y in conjunction

    with expression of pp calculated for a trial value of Y.

    w =

    Depth of embedment D is: D = a + Ypa B

    Ca

    -RP

    a

    y

    Approximate Values for D:

    DE

    F

    z RP

    (N for last 0.3m)

    r

    (relative density) (depth)

    0 45 10 Very looseLoose 2.0 H1.5 H

    pppp

    7

    11 3031 50Over 50

    Medium denseDense

    Very dense

    1.25 H1.0 H0.75 H

    Cantilever Sheet Pile Wall Design:

    Lateral Earth Pressure Distribution in Sand - Procedure

    Sand

    pa BC

    Ra

    ya

    D

    E

    RP

    RM of R

    p

    due to blue area.RRp

    Mo = 0 = Ra (Y + y) + M of Rp M of RpY-z

    z

    pp

    Fpp

    M of Rp due to pink area.

    RaNet Moment : M(Rp) M(Rp)

    M(Rp) = (pp+pp)(z/2)(z/3) = (pp+pp)(z2/6)

    O

    RP Y + y

    M(Rp) = pp (Y/2)(Y/3) = pp(Y2/6)

    Mo = 0 = Ra (Y + y) + (pp+pp)(z2/6) pp(Y

    2/6)

    C = (Kp Ka)

    8

    RpRp RP

    0'32''

    6'

    ypRpC

    YCp

    RYp

    Y pap

    a

    p

    a

    p

    a

    pp = (Kp Ka) YIf no GWT: pp = H Kp + (Kp Ka)(a+Y)

  • 7/29/2019 rigid retaining wall

    5/11

    Cantilever Sheet Pile Wall Design:Lateral Earth Pressure Distribution in Sand General Expression

    RRRRR R1

    R

    Sand

    H

    hw = H

    2

    1

    2

    1wa hKR

    R3

    paa

    RAH hwwaw2

    23 '21

    wa hHKR

    4Y-z

    z

    P

    RP

    D ap

    a

    KK

    pR

    '2

    2

    4

    pp pp

    '

    wwaa hHhKp '

    0'32''

    6'

    23

    ypRpC

    YCp

    yRY

    pY pa

    p

    a

    p

    a

    p

    aap

    apa

    KK

    pa

    '

    9

    aYKhDHKKhp awppwp '''

    Cantilever Sheet Pile Wall Design:Lateral Earth Pressure Distribution in Sand General Expression

    Obtain sheet ile t e b solvin for its section modulus thru M :

    Max. moment at V=0: Mo = Mmax Divide the Maximum moment by the allowable

    section modulus

    Select appropriate sheet pile section from tables RAa

    RP1

    3

    1max

    xRxyRM pa

    V = 0 Ra = Rp1

    V = 0M = Mmax

    3

    max

    xRxyRM aa

    3

    2max

    xyRM a

    Fx = 0 Ra = R 1

    aapp R

    xxKKR

    2'

    1

    R2

    a

    aKK

    RyRM

    '

    2

    3

    2

    max

    10

    ap

    a

    KKx

    '

  • 7/29/2019 rigid retaining wall

    6/11

    Cantilever Sheet Pile Wall Design:Lateral Earth Pressure Distribution in Sand General Expression

    Summar rocedure:

    Calculate active pressure diagram in backfill and obtain paCalculate slope C = (Kp Ka) , note Kp may be the reduced valueCalculate distance a = / K K

    Calculate Ra and y (or ybar)

    Calculate pp (use estimated D): aYKhDHKKhp awppwp '''

    Calculate Y:

    Repeat calculation by updated D.

    0'32''

    6'

    23

    ypRpC

    YCp

    yRY

    pY pa

    p

    a

    p

    a

    p

    a

    nce o ta ne na , aven t app e yet: FS = .

    Calculate Mmax:

    a

    a

    RyRM

    '

    22max

    Determine section modulus and select sheet pile.ap

    11

    Cantilever Sheet Pile Wall Design:

    Simplified Earth PressureDistribution Layered Sand

    a

    p

    p

    12

  • 7/29/2019 rigid retaining wall

    7/11

    Cantilever Sheet Pile Wall Design:

    a era ar ressure s r u on o an ever ee e a s n a

    Active and Passive stresses for cohesive soils are:

    aaa KcKz 2 ppp KcKz 2

    Undrained conditions (c = cu or su, and = 0 Ka = Kp = 1) should be used for

    s or erm s a y ana ys s

    Lon term stabilit anal sis should be based on the drained stren th arameters

    (c = c, and = )

    13

    Cantilever Sheet Pile Wall Design:

    Lateral Earth Pressure Distribution in Clays

    Simplified Earth PressureDistribution short term

    Simplified Earth PressureDistribution long term

    H

    Hc

    H

    Hc

    a a

    su -

    p p

    p

    4su + H

    c2

    14

    ere c s e cr ca e g :a

    cK

    Note: if backfill granular, then use granulardistribution for backfill segment!

  • 7/29/2019 rigid retaining wall

    8/11

    Cantilever Sheet Pile Wall Design:Short-termLateral Earth Pressure Distribution in Cohesive Soils

    HcCLAY

    Granular

    Ra

    eH=q q= eHpay

    Ray

    p

    D

    p

    D

    4su - eH4su + eH

    p

    =2 - =2qu + q4su - eH

    4su + eH

    p

    =2 - =2qu + q

    Immediately after consolidation: c = 0.5qu

    , = 0

    Establish ressure distribution, and solve

    15

    Cantilever Sheet Pile Wall Design:

    Short-termLateral Earth Pressure Distribution in Cohesive Soils

    H

    Granulare erm ne z rom x=

    Ra + [ Rp Rp] = 0

    and [ Rp Rp] =

    a

    CLAY

    eH=q

    R

    pay

    = c-q + c+q . z c-q = cz c-q

    Ra + 4cz (4c-q)D = 0

    RDqc a4

    Rpz

    Dc4

    Calculate moment about bottom Mo=0

    4su - eH4su + eH

    =2qu - q=2qu + q

    032

    82

    4

    cDqcyDRa

    08

    24

    2

    2 cz

    DRDc3

    a

    Substitute expression for z & obtain:

    0418

    242

    2

    2

    aa RDqcc

    yDRDqc

    16

    Obtain solution by trial & error and increase D by 20-40%

  • 7/29/2019 rigid retaining wall

    9/11

    Cantilever Sheet Pile Wall Design:Short-termLateral Earth Pressure Distribution in Cohesive Soils

    Granular Obtain Mmax at V = 0

    xcR 4F =0

    Ra

    H

    y qcR

    xa

    4

    V=0

    x

    2

    4max

    xxqcyxRM a

    max

    qc

    Ry

    qc

    RRM aaa

    42

    1

    4max

    17

    Cantilever Sheet Pile Wall Design Example:

    a) Embedment depth D (note use DSF = 1.3D) Sand

    A

    max

    RaH=15 = 135pcf

    = 32oCalculate:= 32o

    Ka=Kp=Pa= Hka

    C= (Kp-Ka)=pa B

    Oa

    Y-zRP

    y

    = 132.4pcfo

    D

    a= Pa/C =

    Ra = Pa H + Pa a =

    Find , use Mo :y

    pp

    DE

    F

    z RP

    pp

    =

    = 30o

    3

    2

    2

    1

    32

    1 aaPa

    HHPyR aaa

    Ka=Kp=

    '22.7 yAssume Y, calculate pp and iterate for Y:

    appp KaYKaYHKp ''' 0'32'

    21

    '6

    '

    2 23

    ypRR

    Yy

    RYR

    Y paa

    aa

    pppFor Y = 17.5

    Assumed Y 12 15 18 17.5 17.4

    Pp 9433 10003 10563 10470 10451

    18

    Calculated Y -2355 -1391 374 17 -50

  • 7/29/2019 rigid retaining wall

    10/11

    Cantilever Sheet Pile Wall Design Example (cont.):Use Y = D = Y + a = Ddesign =

    Mmax :

    xyRM a

    2max

    aRx '

    2

    ap

    19

    Cantilever Sheet Pile Wall Design Example:

    a) Embedment depth D (note use DSF = 1.3D)max

    HH=16.5

    = 101pcf

    Granular

    6.6pa1

    R1

    R2a

    CLAY

    eH=q

    Rp

    y == 32o9.9

    =Ka=Kp= pa2

    R3

    Rpz

    DD

    = 0C = 982pcf

    4su - eH4su + eH

    =2qu - q=2qu + q

    20

  • 7/29/2019 rigid retaining wall

    11/11

    Cantilever Sheet Pile Wall Design Example, (cont.):

    Calculate depth of embedment D:

    044

    1

    3

    824

    22

    aa RDqcc

    cyDRDqc

    R

    Calculate Maximum Moment:

    qcx a

    4

    2

    4max

    xxqcyxRM a

    21