robert porjesz - coimce.com

60
1 © 2014 Baker Hughes Incorporated. All Rights Reserved. © 2014 BAKER HUGHES INCORPORATED. ALL RIGHTS RESERVED. TERMS AND CONDITIONS OF USE: BY ACCEPTING THIS DOCUMENT, THE RECIPIENT AGREES THAT THE DOCUMENT TOGETHER WITH ALL INFORMATION INCLUDED THEREIN IS THE CONFIDENTIAL AND PROPRIETARY PROPERTY OF BAKER HUGHES INCORPORATED AND INCLUDES VALUABLE TRADE SECRETS AND/OR PROPRIETARY INFORMATION OF BAKER HUGHES (COLLECTIVELY "INFORMATION"). BAKER HUGHES RETAINS ALL RIGHTS UNDER COPYRIGHT LAWS AND TRADE SECRET LAWS OF THE UNITED STATES OF AMERICA AND OTHER COUNTRIES. THE RECIPIENT FURTHER AGREES THAT THE DOCUMENT MAY NOT BE DISTRIBUTED, TRANSMITTED, COPIED OR REPRODUCED IN WHOLE OR IN PART BY ANY MEANS, ELECTRONIC, MECHANICAL, OR OTHERWISE, WITHOUT THE EXPRESS PRIOR WRITTEN CONSENT OF BAKER HUGHES, AND MA Y NOT BE USED DIRECTLY OR INDIRECTLY IN ANY WAY DETRIMENTAL TO BAKER HUGHES’ INTEREST. Seismic reservoir characterisation Unconventional reservoir (shale gas) Robert Porjesz

Upload: others

Post on 06-Jan-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Robert Porjesz - coimce.com

1

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

© 2014 BAKER HUGHES INCORPORATED. ALL RIGHTS RESERVED. TERMS AND CONDITIONS OF USE: BY ACCEPTING THIS DOCUMENT, THE RECIPIENT AGREES THAT THE DOCUMENT TOGETHER WITH ALL INFORMATION INCLUDED THEREIN IS THE

CONFIDENTIAL AND PROPRIETARY PROPERTY OF BAKER HUGHES INCORPORATED AND INCLUDES VALUABLE TRADE SECRETS AND/OR PROPRIETARY INF ORMATION OF BAKER HUGHES (COLLECTIVELY " INFORMATION"). BAKER HUGHES RETAINS ALL RIGHTS

UNDER COPYRIGHT LAWS AND TRADE SECRET LAWS OF THE UNITED STATES OF AMERICA AND OTHER COUNTRIES. THE RECIPIENT FURTHER AGREES TH AT THE DOCUMENT MAY NOT BE DISTRIBUTED, TRANSMITTED, COPIED OR REPRODUCED IN WHOLE OR

IN PART BY ANY MEANS, ELECTRONIC, MECHANICAL, OR OTHERWISE, WITHOUT THE EXPRESS PRIOR WRITTEN CONSENT OF BAKER HUGHES, AND MA Y NOT BE USED DIRECTLY OR INDIRECTLY IN ANY WAY DETRIMENTAL TO BAKER HUGHES’ INTEREST.

Seismic reservoir characterisation

Unconventional reservoir (shale gas)

Robert Porjesz

Page 2: Robert Porjesz - coimce.com

2

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Overview

Introduction

Conventional seismic modelling – Reservoir rock physics

– Seismic data for sweet spots

– Sample case history

Unconventional (azimuthal) seismic modelling – Reservoir rock physics

– Seismic data for sweet spots

– Sample case history

Integration with – Quantitative mineralogy

– Microseismic

Financial impact/concluding thoughts

Page 3: Robert Porjesz - coimce.com

3

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Overview

Introduction

Conventional seismic modelling – Reservoir rock physics

– Seismic data for sweet spots

– Sample case history

Unconventional (azimuthal) seismic modelling – Reservoir rock physics

– Seismic data for sweet spots

– Sample case history

Integration with – Quantitative mineralogy

– Microseismic

Financial impact/concluding thoughts

Page 4: Robert Porjesz - coimce.com

4

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Introduction

Reservoir modelling/drilling plan, operational decision making

– Without seismic

Actual data

Model data

<25%

Page 5: Robert Porjesz - coimce.com

5

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Introduction / objectives

Actual data

Model data

<5%

Reservoir modelling/drilling plan, operational decision making

– With seismic

Page 6: Robert Porjesz - coimce.com

6

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Introduction

Seismic reservoir characterisation

No seismic

With seismic

But not only seismic

Page 7: Robert Porjesz - coimce.com

7

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Shale Gas in the US – Extensive drilling

Since 1997, more than 13,500 gas wells completed in the Barnett shale

Page 8: Robert Porjesz - coimce.com

8

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

Jan-81 Jan-83 Jan-85 Jan-87 Jan-89 Jan-91 Jan-93 Jan-95 Jan-97 Jan-99 Jan-01 Jan-03 Jan-05 Jan-07 Jan-09 Jan-11 Jan-13

Ma

xim

um

ga

s 6

mo

. p

rod

uctio

n (

MC

F)

Date

Horizontal Vertical Directional

The shale learning curve

Barnett Shale Development

Multistage

Completions

Page 9: Robert Porjesz - coimce.com

9

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

70% of unconventional wells in the U.S.

do not reach their production targets.*

60% of all fracture stages

are ineffective.**

73% of operators say they do not know

enough about the subsurface*

*Source: Welling & Company, 2012 **Source: Hart’s E&P, 2012

Uncertainty

9

Page 10: Robert Porjesz - coimce.com

10

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Shale resources are not homogenous

Shale development is capital-intensive

Lateral wells with multi-stage completions are expensive

Economic success rates are low with current approaches

Stimulation requires a significant amount of water

We can’t drill everywhere

The need for Shale Science

DRILL / COMPLETE SMART

Page 11: Robert Porjesz - coimce.com

11

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Shale Play Seismic Characterization in a nutshell

Shale Characterization

How will the fractures propagate ?

Is the rock brittle ? “Brittleness”

Stress

Reservoir Quality

Gas in Place Porosity Saturation TOC

y = -0.061x + 2.6671R² = 0.6511

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0 2 4 6 8 10 12 14

Bul

k D

ensi

ty (G

RI),

g/c

c

Total Organic Carbon (TOC), wt %

BASIC ROCK PROPERTIES(GRI Method)

All JIP Wells

Johnson Trust 1 #2 (Bossier)

Johnson Trust 1 #2 (Haynesville)

Johnson Trust 1 #2 (Haynesville Lime)

585 Samples

Page 12: Robert Porjesz - coimce.com

12

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Overview

Introduction

Conventional seismic modelling – Reservoir rock physics

– Seismic data for sweet spots

– Sample case history

Unconventional (azimuthal) seismic modelling – Reservoir rock physics

– Seismic data for sweet spots

– Sample case history

Integration with – Quantitative mineralogy

– Microseismic

Financial impact/concluding thoughts

Page 13: Robert Porjesz - coimce.com

13

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Unconventional reservoir rock physics

What the (seismic driven) rock physics is?

What are the benefits/objectives of applying rock physics analysis for reservoir

modelling?

Page 14: Robert Porjesz - coimce.com

14

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Unconventional reservoir rock physics

What the (seismic driven) rock physics is?

Kimmeridge Oil Shale Photo: Dr. Ramues Gallois (2011)

Page 15: Robert Porjesz - coimce.com

15

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Unconventional reservoir rock physics

What are the benefits/objectives of applying rock physics analysis for reservoir

modelling?

Kimmeridge Oil Shale Photo: Dr. Ramues Gallois (2011)

Page 16: Robert Porjesz - coimce.com

16

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Unconventional reservoir rock physics

What the (seismic driven) rock physics is?

http://www.kgs.ku.edu/Publications/Oil/primer03.html

Pores / Fluid

Rock Matrix

• Rock frame bulk modulus • Porosity • Fluid saturation • Temperature • Pressure • Share modulus • Density • ….

Page 17: Robert Porjesz - coimce.com

17

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Unconventional reservoir rock physics

What the (seismic driven) rock physics is?

vp, vs, r

• Rock frame bulk modulus • Porosity • Fluid saturation • Temperature • Pressure • Share modulus • Density • ….

Rock physics

Page 18: Robert Porjesz - coimce.com

18

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Unconventional reservoir rock physics

What the (seismic driven) rock physics is?

Page 19: Robert Porjesz - coimce.com

19

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Unconventional reservoir rock physics

Page 20: Robert Porjesz - coimce.com

20

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Shale Play Seismic Characterization in a nutshell

Shale Characterization

How will the fractures propagate ?

Is the rock brittle ? “Brittleness”

Stress

Reservoir Quality

Gas in Place Porosity Saturation TOC

y = -0.061x + 2.6671R² = 0.6511

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0 2 4 6 8 10 12 14

Bul

k D

ensi

ty (G

RI),

g/c

c

Total Organic Carbon (TOC), wt %

BASIC ROCK PROPERTIES(GRI Method)

All JIP Wells

Johnson Trust 1 #2 (Bossier)

Johnson Trust 1 #2 (Haynesville)

Johnson Trust 1 #2 (Haynesville Lime)

585 Samples

Page 21: Robert Porjesz - coimce.com

21

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Pre-stack Inversion

)21(3 KEDyn

Stat

Dyn

E

Ek

2

S

P

V

V

22

2

Workflow

• Seismic Data Conditioning • Seismic Interpretation • Well – Seismic Ties • Extract Wavelets • Model Building • Inversion

r

2VP

r

sV

Page 22: Robert Porjesz - coimce.com

22

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Pay Probability Map – Haynesville Shale Gas

Page 23: Robert Porjesz - coimce.com

23

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Multi Attribute - Production map

HIGH

LOW

HIGH

LOW

HIGH

LOW

HIGH

LOW

WPTOC (mean) Lambda Rho (min)

BRITINDX (max) S-impedance (mean)

Page 24: Robert Porjesz - coimce.com

24

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Multi Attribute - Production map

WPTOC (mean)

Lambda Rho (min)

BRITINDX (max)

S-impedance (mean)

Page 25: Robert Porjesz - coimce.com

25

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

NO

N-E

CO

NO

MIC

Interpolation of Production Values

25

EC

ON

OM

IC

Page 26: Robert Porjesz - coimce.com

26

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Calibrated Production Map E

CO

NO

MIC

N

ON

-EC

ON

OM

IC

Page 27: Robert Porjesz - coimce.com

27

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Overview

Introduction

Conventional seismic modelling – Reservoir rock physics

– Seismic data for sweet spots

– Sample case history

Unconventional (azimuthal) seismic modelling – Reservoir rock physics

– Seismic data for sweet spots

– Sample case history

Integration with – Quantitative mineralogy

– Microseismic

Financial impact/concluding thoughts

Page 28: Robert Porjesz - coimce.com

28

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Shale Play Seismic Characterization in a nutshell

Shale Characterization

How will the fractures propagate ?

Is the rock brittle ? “Brittleness”

Stress

Reservoir Quality

Gas in Place Porosity Saturation TOC

y = -0.061x + 2.6671R² = 0.6511

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0 2 4 6 8 10 12 14

Bul

k D

ensi

ty (G

RI),

g/c

c

Total Organic Carbon (TOC), wt %

BASIC ROCK PROPERTIES(GRI Method)

All JIP Wells

Johnson Trust 1 #2 (Bossier)

Johnson Trust 1 #2 (Haynesville)

Johnson Trust 1 #2 (Haynesville Lime)

585 Samples

Page 29: Robert Porjesz - coimce.com

29

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

13600

13800

14000

14200

14400

14600

14800

15000

0 45 90 135 180

Imp

ed

an

ce

Azimuth

Azimuthal Impedance

P-wave Azimuthal Anisotropy

Azimuth F High

stress

Page 30: Robert Porjesz - coimce.com

30

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

AVAz methods:

– The near offset Rüger equation

– Azimuthal Fourier coefficients

– Simultaneous elastic inversion of Fourier Coefficients

Slide 30

Fractured media characterisation

Page 31: Robert Porjesz - coimce.com

31

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

AVAz methods:

– The near offset Rüger equation

– Azimuthal Fourier coefficients

– Simultaneous elastic inversion of Fourier Coefficients

Slide 31

Fractured media characterisation

Page 32: Robert Porjesz - coimce.com

32

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

A popular method to perform azimuthal AVO is the near offset approximation (Rüger and Tsvankin, 1997)

Where • R(,f): Data for a given angle of incidence and azimuth f • A: Intercept • Biso: Isotropic gradient • Bani: Anisotropic gradient • fiso : Azimuth of isotropy plane

Bani is often associated to the crack density (Hudson et al., 1981) and fiso is the fracture orientation.

Slide 32

fff 22 sin]sin[),( isoaniiso BBAR

The near offset Rüger equation

Page 33: Robert Porjesz - coimce.com

33

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

AVAz methods:

– The near offset Rüger equation

– Azimuthal Fourier coefficients

– Simultaneous elastic inversion of Fourier Coefficients

Slide 33

Fractured media characterisation

Page 34: Robert Porjesz - coimce.com

34

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

2nd order Fourier coefficients directly

related to the anisotropic gradient Bani

4th order Fourier coefficients provide

additional fracture information

Combination of Fourier coefficients

provide fracture properties

(e.g. weaknesses, compliances) and

unambiguous fracture strike

Azimuthally invariant part contains

both isotropic and fracture properties

(Downton, SEG 2011)

Slide 34

))(4cos())(2cos(),( 420 symsympp rrrR fffff

Page 35: Robert Porjesz - coimce.com

35

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

f1

1

2

fN

n

2

1

n 2 1 f2

n

1

u2 v2 u4 v4

2

u2 v2 u4 v4

n

u2 v2 u4 v4

Azimuthal angle stacks Azimuthal Fourier Coefficients

0 50 100 150 200 250 300 350-3

-2

-1

0

1

2

3

4

5x 10

-3

Am

pli

tud

e

Azimuth (degrees)

Amplitude vs. Azimuth (40 degrees)

Page 36: Robert Porjesz - coimce.com

36

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

AVAz methods:

– The near offset Rüger equation

– Azimuthal Fourier coefficients

– Simultaneous elastic inversion of Fourier Coefficients

Fractured media characterisation

Page 37: Robert Porjesz - coimce.com

37

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

SEI of azimuthal angle stacks

δT: tangential weakness

δN: normal weakness

Φsym: symmetry axis

TWT, Ip, Is, ρ

δT, δN, Φsym

Inversion minimizes a three term cost function:

f1

1

fN n

2

1

n

f2

n

… 2 1

2 (Downton and Roure, 2010)

f1 f2 fN …

Data misfit Lateral continuity Prior model

Page 38: Robert Porjesz - coimce.com

38

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

δT: tangential weakness

δN: normal weakness

Φsym: symmetry axis

g: (Vs/Vp)^2

TWT, g

δT, δN, Φsym

Inversion minimizes a three term cost function:

1

u2 v2 u4 v4

2

u2 v2 u4 v4

n

u2 v2 u4 v4

θ1 θ2 θN …

Data misfit Lateral continuity Prior model

(Roure and Downton, 2012)

SEI of Fourier coefficients

Page 39: Robert Porjesz - coimce.com

39

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Interpretation Crossplot

Static Young’s Modulus

H- h

H

Zone 1: Ductile (RED) Zone 2: Aligned Fractures (YELLOW) Zone 3: Hydraulic Fractures (GREEN) Zone 4: Transition (GREY)

Dif

fere

nti

al H

ori

zon

tal S

tres

s R

atio

Page 40: Robert Porjesz - coimce.com

40

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Plate orientation: direction of H

Combining Stress & Brittleness Seismic Predictions

BRITTLE

Plate size: H

hHDHSR

Young’s Modulus

low

high Hmax

hmin

Hmax

Pressure

hmin = Closure Stress

low high

DHSR

Page 41: Robert Porjesz - coimce.com

41

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Predicted average production calibrated to horizontal well length

1 2

3 4

5 6 7

9 10

11

12 13 14

15 16

17

18

20

21

19

22

23 24

25 26

27 28

High

Low

Page 42: Robert Porjesz - coimce.com

42

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Overview

Introduction

Conventional seismic modelling – Reservoir rock physics

– Seismic data for sweet spots

– Sample case history

Unconventional (azimuthal) seismic modelling – Reservoir rock physics

– Seismic data for sweet spots

– Sample case history

Integration with – Quantitative mineralogy

– Microseismic

Financial impact/concluding thoughts

Page 43: Robert Porjesz - coimce.com

43

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Introduction

Seismic reservoir characterisation

No seismic

With seismic

But not only seismic

Quantitative mineralogy

Page 44: Robert Porjesz - coimce.com

44

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Cuttings Based Spectral Gamma Curve

75 µm 75 µm

Page 45: Robert Porjesz - coimce.com

45

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Well log and XRD lithology with up-scaled and normalized RoqSCAN® carbonate data (X’s)

Page 46: Robert Porjesz - coimce.com

46

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Vertical Data Summary Log

Imported logs Comments Siliciclastics &

carbonates

Provenance &

marine

indicators Porosity

data Bulk minerals Heavy

minerals

Roq

SC

AN

SG

R

Re

do

x &

org

anic

pro

xie

s

Ro

qF

RA

C

Cuttings Based Spectral Gamma Curve

Page 47: Robert Porjesz - coimce.com

47

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Input to seismic attribute mapping and completions characterization

1000 ft

Page 48: Robert Porjesz - coimce.com

48

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

RoqFRAC® (‘Brittleness’ Index) vs. Dynamic Young’s Modulus

Page 49: Robert Porjesz - coimce.com

49

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Introduction

Seismic reservoir characterisation

No seismic

With seismic

But not only seismic

Microseismic

Page 50: Robert Porjesz - coimce.com

50

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Page 51: Robert Porjesz - coimce.com

51

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Page 52: Robert Porjesz - coimce.com

52

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Page 53: Robert Porjesz - coimce.com

53

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Page 54: Robert Porjesz - coimce.com

54

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Correlation between SRV and Seismic-Derived Attributes

For each stage: 1) Compute SRV 2) Compute average of seismic

attribute inside SRV

Young’s Modulus

SRV

R = 0.68 (76 stages)

DHSR

SRV

R = - 0.60 (76 stages)

Page 55: Robert Porjesz - coimce.com

55

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Overview

Introduction

Conventional seismic modelling – Reservoir rock physics

– Seismic data for sweet spots

– Sample case history

Unconventional (azimuthal) seismic modelling – Reservoir rock physics

– Seismic data for sweet spots

– Sample case history

Integration with – Quantitative mineralogy

– Microseismic

Financial impact/concluding thoughts

Page 56: Robert Porjesz - coimce.com

56

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Original 13 stages Frac design and calibrated production map

Page 57: Robert Porjesz - coimce.com

57

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Targeted, 9 stages Frac design and calibrated production map

Optimized locations for frac stages

Page 58: Robert Porjesz - coimce.com

58

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Well Economics

($10.0)

($8.0)

($6.0)

($4.0)

($2.0)

$0.0

$2.0

$4.0

$6.0

$8.0

$10.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Cu

mu

lati

ve C

ash

Flo

w (

$M

M)

Month

Base Case Test Case 1 Test Case 2

Original design

13 stages

9 stage design vs

original 13 stages

Optimized

9 stage design vs

original 13

Page 59: Robert Porjesz - coimce.com

59

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Final comments

The shale reservoir characterization workflow demonstrated

utilizes a combination of detailed well analysis, pre-stack

seismic inversion, and seismic anisotropy.

There is no single silver bullet; multi-attribute analysis is

required.

Validation will help refine seismic processes, mineralogy and

microseismic analysis show promising correlations.

Sweet Spot maps and volumes are statistically derived.

Judicious validation should be applied.

Page 60: Robert Porjesz - coimce.com

60

© 2

014

Bak

er H

ughe

s In

corp

orat

ed. A

ll R

ight

s

Res

erve

d.

Thank you