roblog -...

21
RobLog Cognitive Rob ot for Automation of Log istic Processes Call Identifier: FP7-ICT-2009-6 Objectives: CognitIve Systems and Robotics 2.1 Work package: 2 Delivery date (project month): 15 Nature: R/O Deliverable due date: February 02, 2012 Actual submission date: February 15, 2012 Start date of project: February 02, 2011 Duration: 36 months Lead contractor for this deliverable: UNIPI Revision [draft, 1, 2...] 1 Project co-funded by the European Commission within the Seventh Framework Programme Dissemination Level PU Public X PP Restricted to other programme participants (including the Commission Services RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) Deliverable D2.3 Gripping principles

Upload: others

Post on 26-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

RobLog

Cognitive Robot for Automation of Logistic Processes

Call Identifier: FP7-ICT-2009-6

Objectives: CognitIve Systems and Robotics 2.1

Work package: 2

Delivery date (project month): 15

Nature: R/O

Deliverable due date: February 02, 2012 Actual submission date: February 15, 2012

Start date of project: February 02, 2011 Duration: 36 months

Lead contractor for this deliverable: UNIPI Revision [draft, 1, 2...] 1

Project co-funded by the European Commission within the Seventh Framework Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Deliverable D2.3 Gripping principles

Page 2: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

RobLog FP7-ICT-2009-6 Executive Summary

The grasping system we have to design to achieve the goal of the project has to deal with different objects from large, weight, porous and flexible objects, to long rigid, delicate ones. The high variability of their shapes, surfaces and weights makes the design of the gripper a real challenge. Moreover the extreme packing of the goods into a contained negatively affect the unloading of the goods. Furthermore, parcels, tiers and sacks can be fall down from the high piles and the gripper could be face with tangled parts, with an anomalous and unforeseen positioning etc.. Grasping so different objects with even opposite characteristics is a tough task both from a theoretical point of view and from an applicative one. The problem of designing a reliable gripper able to deal with a high variability of flexible and deformable objects as in RobLog is even more challenging if an integrated design has to address robustness and cost constraints. To approach such challenges in a systematic way, we propose some methods to develop and then assess several design alternatives.

The deliverable is organized as follows:

Section 1: Analyses of the grippers First of all we catalogue more than 80 papers about grippers into a taxonomy whose organisation has been described in the deliverable 2.1. The taxonomy has been organized in a datasheet and DB in order to better analyse, clusterize and find (maybe in future also select) the grippers.

Section 2: Detailed analysis of relevant gripper and grasping principles The most interesting grippers are analysed in depth and a synthetic card for each gripper has been developed. The goal is to present each key gripper in a standard way in order to simplify the description and increase the knowledge sharing within the group and also within the consortium. It could be considered a first step towards the goal of writing a book similar to the “Mechanical Hands-Illustrated” by Ichiro Kato.

Section 3: Systems that grasp objects but are not considered grippers In order to overcome fixation and to explore also lateral ideas we approached the problem by using a crossover strategy i.e. by using design by analogy. The idea behind is to find in common day life objects used for grasping, holding, fixing, maintain a firm contact as a source of novel ideas. The study of the RobLog gripper/hand is hence performed by analysing industrial grippers, robotic hands and animal feet and “grippers”. Since the study of the status of the art of gripper and hands is huge, a codified methodology to describe the grasping systems in the same way has been developed and used during the analysis.

The deliverable and in particular the tables will be updated longer than the due date of the deliverable since a CIRP keynote paper on Grasping is planned for the year 2014. Last update: March 30, 2012.

Page 3: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

RobLog FP7-ICT-2009-6

0 Introduction The aim of the deliverable is to illustrate the grasping principles found in literature and to understand which can be used for handling coffee sacks, boxes and tires1 (and for sure also the teddy bear). As shown in the deliverable “D2.1 Functional analysis of the gripping system: parts taxonomy, technical specifications, gripping concepts” industrial grippers, robotic hands and grasping systems (not called gripper in current day life) have been organised into a series of databases.

Figure 1: Grasping principles (evolved from [Tichem et al., 2003])

The main difference with respect to Tichem’s work is the introduction of needle gripper that simultaneously belongs to both friction and jaw grippers but have been set apart since they are intrusive with respect to the object to be handled. Such a principle is of particular interest in Roblog Project especially for coffee and cocoa sacks.

1 No tires anymore in the project, but at the beginning (before D1.1 was finalized) Pisa investigates also tires handling. Therefore, for giving evidence of the work done, hereinafter sometimes we will cite tires.

Page 4: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

RobLog FP7-ICT-2009-6

1 Analyses of the grippers As introduced in D2.1 Functional analysis of the gripping system. we explored the space of both hands and industrial gripper. For what concern industrial grippers (feeders and fixturing devices that can share common features with grippers) we prepared a database organised as described in D2.1 and that we briefly cite also here:

1. Gripper characteristics 1.1 Physical principle: the physical principle exploited for the grasping is selected from a list (please refer to Figure 1)

1.2 Architectural level: degrees of freedom: the presence of one or more degrees of freedom in the gripper allows to handle different objects with different performances.

1.3 Hierarchical structures: hierarchical structures, compliant structures, adaptable structures allow a high level of surface in contact.

1.4 Actuation level2: the used principle of actuation varying from standard actuation systems (pneumatic, hydraulic, electric, etc..) or SMA, SMP, EAP, PZT

1.5 Fingertip level: SMA, SMP, EAP, rheopetic and tixotropic liquids as well as Jamming “activators” generate new possibilities for grasping. Compliant materials as memory form foam or soft rubbers can also be used.

1.6 Surface level: Passive Surfaces (micro and nano texture, paintings, coatings over the surface can generate strong force gradients) or Active Surfaces (the material is activated by chemical, mechanical, thermal processes. Its properties are radically different from those of unactivated areas) or Actuated Surfaces (the surface can not have any particular feature, but it is actuated: the surface can be moved, stretched, inflated, etc.).

1.7 Sensing level2: the kind of sensor used to detect the presence of the object, the forces of the gripper, the sticking/slipping conditions.

2. Characteristics of the grasped objects, in particular their size and weight.

2 introduced in February 2012 after the CIRP keyonote paper, proposed by Fantoni has been accepted for the year 2013. The table presents also some missing information in other cells since such information have been recently added.

Page 5: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

Grasping principleActuation level

Fingertip level

Sensing level

L W H

Air feeder F Air No No No Yes Yes Low Micro Micro MicroMichele Turitto, Yves‐André Chapius and Svetan Ratchev , 2006, Pneumatic Contactless Feeder for Microassembly, Precision assembly technologies for mini and 

Automated feeding of micro parts based on piezoelectric vibrations F Near‐field levitation No No No No Yes Low Micro Micro Micro

Böringer, K.F., Cohn M., Goldberg K., Howe R., Pisano A.,. “Parallel microassembly withelectrostatic force fields”, Proceedings of IEEE International Conference on Robotics 

Automated feeding of micro parts based on piezoelectric vibrations F Friction No No No No Yes Low Micro Micro Micro

Fantoni, G., Santochi, M., 2005, “A modular contactless feeder for microparts”,Annals of the CIRP, vol.54/1, pp. 23‐26.

Brush feeder  F Eulero No No No Yes Yes Light cm cm cmKruger J, Lien TK, Verl A 2009, Cooperation of Human and Machines in Assembly Lines.CIRP Annals‐Manufacturing Technology 58(2):628–646.

Brush feeder  F Eulero No No No Yes Yes Light cm cm cmFantoni, G.; Santochi, M., 2010, “Development and testing of a brush feeder”, Annals of the CIRP, vol.59/2

Brush feeder  F Eulero Yes Yes No Yes Yes Light cm cm cm Mead D.E. (1970) Vibratory Pile Feeder, US3667590.

Dielectrophoresis F Electrostatic No No Yes No Yes Low Micro Micro MicroGiovinazzo F. (2007) Vibratory Conveyor With Non‐biased Oscillations, US20070017784.

Electrophoresis F Electrostatic No No Yes No Yes Low Micro Micro MicroVan Brussel, H., Peirs, J., Reynaerts, D., Delchambre, A., Reinhart, G., Roth, N., Weck,M., Zussman, E., 2000, Assembly of Microsystems, Annals of the CIRP, vol. 49/2.

Electrostatic “permanent” traps and magazines F Electrostatic No NoYes (Trans Yes No Low Micro Micro Micro

Van Brussel, H., Peirs, J., Reynaerts, D., Delchambre, A., Reinhart, G., Roth, N., Weck,M., Zussman, E., 2000, Assembly of Microsystems, Annals of the CIRP, vol. 49/2.

Electrostatic Sorting F Electrostatic No No No Yes Yes Low Micro Micro MicroFantoni, G.; Porta, M. Santochi, M., 2007, An electrostatic sorting device for microparts, Annals of the CIRP, vol.56/2, pp. 21‐24.

Electrostatic Traps F Electrostatic Low Micro Micro MicroHesselbach, J., Büttgenbach, S., Wrege, J., Bütefisch, S., Graf, C., 2001, Centering electrostatic microgripper and magazines for microassembly tasks, Microrobotics and 

Electrostatically based feeders  F Electrostatic No No No Yes No Low Micro Micro MicroU. Gengenbach, J. Boole, “Electrostatic feeder for contactless transport of miniature and Microparts”, Microrobotics and Micro‐manipulation, Proceeding of SPIE, 2000, pp.

Electrostatically based feeders  F Electrostatic No No No Yes No Low Micro Micro MicroGan‐Mor, S., Law, E.,. “Frequency and Phase ‐Lag Effects on Transport of Particulates by an AC Electric Field”, IEEE Transactions on Industry Applications, Vol. 28, 1992, 

Electrostatically based feeders  F Electrostatic No No No Yes No Low Micro Micro MicroMoesner, F. M., Higuchi, T., “Electrostatic Devices for Particle Microhandling”, IEEETransactions on Industry Applications, Vol. 35, No. 3, 1999, pp.530‐536

Electrostatically based feeders  F Electrostatic No No No Yes No Low Micro Micro MicroBöringer, K.F., Cohn M., Goldberg K., Howe R., Pisano A.,. “Parallel microassembly withelectrostatic force fields”, Proceedings of IEEE International Conference on Robotics 

Electrostatically based feeders  F Electrostatic No No No Yes No Low Micro Micro MicroFantoni, G., Santochi, M., 2005, A modular contactless feeder for microparts, Annals ofthe CIRP, vol.54/1, pp. 23‐26.

Electrostatically based feeders  F Electrostatic No No No Yes No Low Micro Micro MicroJ. Hesselbach, J. Wrege, A. Raatz, 2007, Micro Handling Devices Supported by Electrostatic Forces, Annals of the CIRP, vol 56/1, pp. 45‐48

Externally‐resonated micro vibromotor for microassembly  FForce closure/form closure No No No Yes Yes Low Micro Micro Micro

Kazuhiro Saitoua  and Soungjin J. Wou, 1998, Externally‐resonated linear microvibromotor for microassembly, Proc. SPIE Microrobotics and Micromanipulation  3519,

Feeder based on hydrophillic and hydrophobic areas FHydrophillic and hydrophobic areas No No No Yes No Low Micro Micro Micro

del Corral, C., Zhou, Q., Albut, A., Chang, B., Franssila, S., Tuomikoski, S., Koivo, H.N.,2003, Droplet Based Self‐Assembly of SU‐8 Microparts, 2nd VDE World 

Feeder based on hydrophillic and hydrophobic areas FHydrophillic and hydrophobic areas No No No Yes No Low Micro Micro Micro

Böhringer, K. F., Srinivasan, U., Howe, R. T., 2001, Modeling of capillary forces andbinding sites for fluidic self‐assembly, The International Conference on Micro Electro 

Feeding by bouncing and falling F Gravity No No No No Yes Light cm cm cmMike Brokowski, Michael Peshkin Ken Goldberg, 1993, Curved fences for part alignment, IEEE International Conference on Robotics and Automation 

Feeding by falling F Gravity No No No No Yes Medium dm  dm dm www.autech‐automation.com

Gravity traps F Gravity No No No No Yes Light cm cm cmBoothroyd, G. and Dewhurst, P. (1983). Design for Assembly { A Designers Handbook. Department of Mechanical Engineering, University of Massachusetts, Amherst, Mass 

Object Characteristics

Paper

Principle

Active surfaces

Degrees of freed

om

Material

Weigh

t of the

 grasped

 ob

ject

Size of the

 graspe

d ob

ject

Type

 of sen

sor*

Type

Nam

e

Hierarchical streu

cture

Actua

tion

 principle*

Architecture level Surface level

Gripper Characteristics

Actua

ted surfaces

Page 6: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

Grasping principleActuation level

Fingertip level

Sensing level

L W H

Object Characteristics

Paper

Principle

Active surfaces

Degrees of freed

om

Material

Weigh

t of the

 grasped

 ob

ject

Size of the

 graspe

d ob

ject

Type

 of sen

sor*

Type

Nam

e

Hierarchical streu

cture

Actua

tion

 principle*

Architecture level Surface level

Gripper Characteristics

Actua

ted surfaces

Microcilia F Friction No No No Yes Yes Low Micro Micro MicroFully Programmable MEMS Ciliary Actuator Arrays for Micromanipulation Tasks, (withJ. Suh, R. B. Darling, K.‐F. Böhringer, H. Baltes, and G.Kovacs), the IEEE International 

Nodal lines over vibrating plates  F Nodal lines No No No No Yes Light cm cm cmKarl Böhringer, K, Bhatt, V, Goldberg, K, 1995, Sensorless Manipulation UsingTransverse Vibrations of a Plate, IEEE International Conference on Robotics and 

Lamb and Rayleigh wave F SAW No No No No Yes Medium cm cm MicroReinhart G, Loy M, 2008, Flexible Feeding of Complex Parts. 2nd CIRP Conference on Assembly Technologies and Systems, Toronto, Canada.

Lamb and Rayleigh wave F SAWHélin, P., Druon, C., Sadaune, V., 1996, A Microconveyor Using Surface Acoustic Wavesin the HF Band, Proc. Mecatronics ’96, 580‐582.

Underwater traps and pockets  F Underwater No No none No No No Low Micro Micro Micro

Underwater traps and pockets  F Underwater No No none No No No Low Micro Micro MicroYeh H.‐J.J., Smith, J.S., 1994, Fluidic Self‐Assembly of Microstructures and its Application to the Integration of GaAs on Si, Proc. IEEE MEMS, 279‐284.

Acoustic G Acoustic waves No No none No No Yes Low Micro Micro MicroReinhart, G.; Höppner, J.: The Use of AcousticLevitation Technologies for Non‐ContactHandlingPurposes. In: Annals of the German Academic Society for Production 

Bernoulli G Bernoulli No No none No No No Medium m  m  mmDini, G., Fantoni, G.; Failli, F., 2009, “Grasping leather plies by Bernoulli grippers”,Annals of the CIRP, vol.58/2

Bernoulli G Bernoulli Yes Yes Gravity No No Yes Light cm cm cmAnders Pettersson, Novel(Q) robotics to handle food ‐ sensitive and hygienic grippers, New food, 2008, Issue 2

Centering  G Form closure No No Thermal Yes No Yes Low Micro Micro MicroL.H. Shu, T.A. Lenau, H.N. Hansen, L. Alting,  Biomimetics Applied to Centering in Microassembly, Annals of the CIRP Vol. 52/1/2003

Coanda G Coanda noneLien, T.K., Davis, P.G.G., 2008, A Novel Gripper for Limp Materials Based on Lateral Coanda Ejectors, CIRP Annals, 57/1: 33‐36.

Cryogenic GSurface tension & liquid‐solid transition No No none Yes No Yes Low Micro Micro Micro

El‐Khoury, M., 1998, Ice gripper handles micro‐sized components, Design News, September, pp. 8.

Cryogenic GSurface tension & liquid‐solid transition No No none Yes No Yes Light cm cm cm

El‐Khoury, M., 1998, Ice gripper handles micro‐sized components, Design News, September, pp. 8.

Electrostatic  G Electrostatic Yes Yes none Yes No Yes Light cm cm cm www.sri.com

Electrostatic  G Electrostatic No No none No Yes No Low Micro Micro MicroHesselbach, Jürgen; Wrege, Jan; Raatz, Annika, 2007, Micro Handling Devices Supported by Electrostatic Forces, CIRP Annals ‐ Manufacturing Technology , Elsevier 

Electrostatic  G Electrostatic No No No Low Micro Micro MicroFantoni, G., Biganzoli, F., 2004, Design of a Novel Electrostatic Gripper, InternationalJournal of Manufacturing Science and Production, 6/4:163–179

Electrostatic  G Electrostatic No No No Low Micro Micro MicroEnikov, E.T., Lazarov, K.V., 2001, Optically transparent gripper for microassembly, SPIE,vol. 4568, pp. 40‐49. 

Electrowetted  GElectrostatic & Surface tension No No Yes Low Micro Micro Micro

Monkman, G.J., 2003, Electroadhesive Microgrippers, Assembly Automation vol. 24/1, MCB University Press. 

Flexible vacuum cups G Vacuum Yes Yes Yes Yes Yes Medium m  m  mmFailli, F., Dini, G., 2004, An Innovative Approach to the Automated Stacking andGrasping of Leather Plies, CIRP Annals, 53/1: 31‐34.

G VacuumSchmalz, K., 1994, Vacuum Grippers on Robots and Handling Systems, proc. of 25thInt. Symp. on Industrial Robots, 59‐65.

G VacuumOzcelik, B., Erzincanli, F., 2005, Examination of the Movement of a Woven Fabric in theHorizontal Direction using a Non‐contact End‐effector, Int. J. Manuf. Technol., 25: 527‐

Gecko like  G Van der Waals Yes Yes Yes Yes No Light cm cm cm

Gecko like  G Van der Waals No No No Yes No Low Micro Micro MicroAutumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Pang Chan, W., Kenny, T. W., Fearing,R., Full, R. J., (2000), Adhesive force of a single gecko foot‐hair, Letter to Nature, 

Page 7: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

Grasping principleActuation level

Fingertip level

Sensing level

L W H

Object Characteristics

Paper

Principle

Active surfaces

Degrees of freed

om

Material

Weigh

t of the

 grasped

 ob

ject

Size of the

 graspe

d ob

ject

Type

 of sen

sor*

Type

Nam

e

Hierarchical streu

cture

Actua

tion

 principle*

Architecture level Surface level

Gripper Characteristics

Actua

ted surfaces

Laser G Laser pressure No No No No Yes Low Micro Micro MicroKoyano, K., Sato, T., 1996, Micro object handling system with concentrated visual fields and new handling skills, Proc. of the IEEE Int. Conference on Robotics and 

Laser G Laser pressure No nano Micro MicroHigurashi, E., Ukita, H., Tanaka, H., Ohguchi, O., 1994, Rotational control of anisotropicmicro‐objects by optical pressure, Proc. IEEE MEMS, 291‐296.

Laser G Laser pressure No nano Micro MicroMorishima, K., Arai, F., Fukuda, T., Matsuura, H., Yoshikawa, K., 1998, Bio‐Micromanipulation System for High Throughput Screening of Microbes in 

Liquid  G Surface tension No No No No No Low Micro Micro Micro

liquid+deformable membrane G Surface tension No Yes Yes No Yes Low Micro Micro MicroPagano, C., Ferraris, E., Malosio, M., Fassi, I., 2003, Micro‐handling of parts in presenceof adhesive forces, CIRP Seminar on Micro and Nano Technology 2003, Copenhagen, 

liquid+deformable membrane G Surface tension No Yes Yes No Yes Low Micro Micro MicroBiganzoli, F., Pagano, C., Fassi, I., (2005), Development of a gripping system based on capillary force, The 6th IEEE International Symposium on Assembly and Task Planning: 

Liquid+structured+actuated* G Surface tension No Yes Yes Yes Yes Low Micro Micro Micro

Liquid‐liquid manipulation*  G Surface tension No No No No No Low Micro Micro Micro

Magnetic  G Magnetic No No Yes No Yes High dm dm dm

Spines GMechanical engagement Yes Yes Yes Yes No   Light cm cm cm

Thermal glue  G Surface tension No No Yes No Yes Medium cm cm cmSven Rathmann, Annika Raatz, Jürgen Hesselbach: Concepts for Hybrid Micro Assembly Using Hot Melt Joining. IPAS 2008: 161‐169  

Thermal glue  G Chemical No No Yes No Yes Medium cm cm cm

Ultrasound  G Ultrasound No No No No Yes Low Micro Micro MicroG. Reinhart, J. Hoeppner, Non‐Contact Handling Using High‐Intensity Ultrasonics, CIRP Annals ‐ Manufacturing Technology, Volume 49, Issue 1, 2000, Pages 5‐8 

UniversalGripper  G Friction Yes Yes Yes Yes Yes Medium cm cm cmBrown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M., Lipson, H.,Jaeger, H. (2010) "Universal robotic gripper based on the jamming of granular 

UniversalGripper  G Surface tension Yes Yes Yes Yes Yes Medium cm cm cmJohn R. Amend, Jr., Eric M. Brown, Nicholas Rodenberg, Heinrich M. Jaeger,and HodLipson, 2011, A Positive Pressure Universal Gripper Based on the Jamming of Granular 

Acceleration or vibration R Acceleration No No No No Yes Low Micro Micro Micro Jamming of Granular Material

Conductive Coatings  R Electrostatic No No Yes Yes No Low Micro Micro MicroJohn R. Amend, Jr., Student Member, IEEE, Eric M. Brown, Nicholas Rodenberg,Heinrich M. Jaeger,

EAP based Releasing  R Surface tension No No Yes Yes Yes Low Micro Micro Micro and Hod Lipson, Member, IEEE

EAP based Releasing  R Acceleration No No Yes Yes Yes Low Micro Micro MicroArai, F., Andou, D., Fukuda, T., Nonoda, Y., Oota T., 1995, Micro Manipulation Basedon Micro Physics ‐Strategy Based on Attractive Force Reduction and Stress 

Hard materials R Hertz No No Yes Yes No Low Micro Micro Micro

Hydrophobic Coatings  R Surface tension No No Yes Yes No Low Micro Micro MicroFearing, R.S., (1995), Survey of Sticking Effects for Micro Parts Handling, Proc. IROS’95, IEEE/RSJ Int. Conf on Intelligent Robots and System, 2:236‐241

Invert voltage  R Electrostatic No No No Yes Yes Low Micro Micro Micro

Liquid+structured+actuated* R Surface tension No Yes Yes Yes Yes Low Micro Micro MicroTichem, M., Lang, D., Karpuschewski, B, (2003), A classification scheme for quantitative analysis of micro‐grip principles, Proc. of the Int. Precision Assembly 

Page 8: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

Grasping principleActuation level

Fingertip level

Sensing level

L W H

Object Characteristics

Paper

Principle

Active surfaces

Degrees of freed

om

Material

Weigh

t of the

 grasped

 ob

ject

Size of the

 graspe

d ob

ject

Type

 of sen

sor*

Type

Nam

e

Hierarchical streu

cture

Actua

tion

 principle*

Architecture level Surface level

Gripper Characteristics

Actua

ted surfaces

Micro heater R Air No No No Yes Yes Low Micro Micro Micro

Rough surfaces  R Surface tension No No Yes Yes No Low Micro Micro MicroGegeckaite A, Hansen HN, De Chiffre L, Pocius P (2007) Handling of Micro Objects: Investigation of Mechanical Gripper unctional Surfaces. Proceedings of 7th EUSPEN 

Superhydrophobic Coatings  R Surface tension No No Yes Yes No Low Micro Micro MicroA.A.G. Bruzzone (2), H.L. Costa, P.M. Lonardo (1), D.A. Lucca (1), 2008, Advances in engineered surfaces for functional performance, Annals of the CIRP  

Tilting the gripper R Van der Waals No No No No Yes Low Micro Micro Micro

Varying roughness by vibration R Surface tension No No No Yes Yes Low Micro Micro Micro

Varying the gripper curvature R Surface tension No No Yes No Yes Low Micro Micro Micro

Puf of air R AirWestkämper, E., Schraft, R.D., Bark, C., Vögele, G., Weisener, T., 1996, Adhesive Gripper ‐ a new approach to handling MEMS, Proc. Actuator 96, 100‐103.

Retracting liquid R Surface tensionMicro Assembly, Micro System Technologies 98, 6th Int. Conf. On Micro Electro, Opto, Mechanical Systems and Components, 237‐242.

Baloon assisted vaccum G Vacuum http://www.univeyor.co.uk

Opposed pins G Multiple pins http://www.venamachinery.com

Opposed pins G Multiple pinshttp://www.buckandhickman.com/find/category‐is‐SS+Spanners+and+Sockets/category‐is‐SS02+Sockets/product‐is‐1321281

Pins M Multiple pins http://polynet.dk/flexform/ (2010/04/01)Pins M Multiple pins ECM

Omnigripper G Multiple pins Yes NO no Yes No Medium dm dm dmP. B. Scott, “The ‘Omnigripper’: a form of robot universal gripper,” Robotica vol. 3, pp.153‐158, Sept. 1985.

spines G needle ? ? no yes no medium dm cm cm

Kim, S., Spenko, M. et al.: "Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot, 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10‐14 April 2007.

spines G needle yes Yes no yes no medium dm cm cm

S. Kim, A. T. Asbeck, M. R. Cutkosky, W.R. Provancher, 2005, SpinybotII: Climbing Hard Walls with Compliant Microspines, Proceedings of the 12th International Conference on Advanced Robotics, (ICAR ’05) 

gecko G van der WaalsM. Lanzetta, M.R. Cutkosky, Shape Deposition Manufacturing of Biologically Inspired Hierarchical Microstructures,   CIRP Annals of Manufacturing Technology, 2008 

gecko G van der Waals yes yes no yes no low mm mm mm Parness, A., 2009, Micro‐structured adhesives for climbing applications, PhD Thesis

tree frog G Surface tension Yes Yes No Yes No low mm mm mm

W Federle, W.J.P Barnes, W Baumgartner, P Drechsler and J.M Smith Wet but not slippery: boundary friction in tree frog adhesivetoe pads J. R. Soc. Interface 2006 3, 689‐697 

tree frog G Surface tension Yes Yes No Yes No low mm mm mm

Ingo Scholz, W. Jon P. Barnes, Joanna M. Smith and Werner Baumgartner, Ultrastructure and physical properties of an adhesive surface, the toe pad epithelium of the tree frog, Litoria caerulea White 

tree frog G Surface tension no No no yes no medium dm dm dm

B N J Persson, (2007), Wet adhesion with application to tree frog adhesive toe padsand tires IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER, 19 376110 (16pp) doi:10.1088/0953‐8984/19/37/376110

Page 9: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

Grasping principleActuation level

Fingertip level

Sensing level

L W H

Object Characteristics

Paper

Principle

Active surfaces

Degrees of freed

om

Material

Weigh

t of the

 grasped

 ob

ject

Size of the

 graspe

d ob

ject

Type

 of sen

sor*

Type

Nam

e

Hierarchical streu

cture

Actua

tion

 principle*

Architecture level Surface level

Gripper Characteristics

Actua

ted surfaces

piezofeeder F stick‐slip no no no no yes Low mm mm mmJ. Fleischer (2), S. Herder, U. Leberle, 2011, Automated supply of micro parts based on the micro slide conveying principle, Annals of the CIRP,  60/1/2011,  P.13

Moving slabs T stick‐slip no no No no yes high m m m Interessante il CARGOFLOOR http://www.cargofloor.nl/en/site/en_videoafwerking

Roll chain in wedge‐shaped fork T rolling no no no no yes high dm dm dmFantoni G., Tilli J., Tincani V. 2011, Dispositivo di movimentazione carichi tramite rullinie perno scanalato, brevetto n PI 2011°000067

Roll chains T rolling no no no no yes high m m m http://www.denipro.com

* The two columns have been added in February after the CIRP keyonote paper has been accepted for the year 2013. The table presents also some missing information in other cells since such information have been recently added.Such a report has to be considered as a continuous work in progress that could beneffit from the contributions of all the participants to the project

Page 10: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

RobLog FP7-ICT-2009-6

2 Grippers’ card The more innovative and recent grippers and those that can be adapted to achieve the grasping of the selected goods have been catalogued. A standard card has been prepared and it has been filled with both functional and structural information about the gripper. The less innovative or well known grippers or those already described in G.J. Monkman, S. Hesse, R. Steinmann, H. Schunk, 2007, “Robot Grippers”, Wiley-VCH or in I. Kato, 1983, Mechanical Hands-Illustrated, English version edited by Sadamoto Kuni IFS (Publications) Ltd, Kempton Bedford, U.K have not been reprocessed since the two cited books are good references with structured information.

Page 11: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

Surface-Adapting Gripper (SAVG)

It was designed to handle work pieces possessing

single-surface hold-sites. The manipulator locates

the SAVG so that the cup assembly is above the

attempted hold-site. The SAVG cup assembly is

unlocked and translated until contact is sensed.

Upon contact the vacuum cup is actuated. Descent

continues until the cup assembly adapts to the

holdsite, thereby limiting airflow to the cup. The

acquired workpiece is removed from the bin. When

the workpiece is a sufficient distance from the bin

the locking feature is activated. A final check for

gripping is made to ensure that the workpiece is not

lost in the removal and locking process.

Blue = functional verbs

Underlined = key components

Crossed = not considered functions/component

Components:

1. Gripping and surface adapting mechanism

2. Contact sensing

3. Locking mechanism

4. Control units with grip and lock sensing

The surface adapting mechanism was a silicone

vacuum feed tube surrounded by a compression

spring.

There is a support ring to insure a consistent pose of

the workpiece relative to the hand.

Page 12: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

Generality and Simple Hands

The aim of this project is develop robot grippers that

are simple, yet also general and practical. The main

problem in classic robotic manipulation is picking a

single part from a bin full of randomly placed parts

rather than attempting to choose a part, estimate its

pose, and calculate a stable grasp, we propose to

execute a blind grasp, let the gripper and object(s)

settle into a stable configuration, and only then

address the problem of determining whether a single

object was captured and estimating the object pose.

We propose to use machine learning techniques to

recognize the presence of a single object, and to

estimate its pose, from joint encoder values.

Lifting the object clear of the clutter is still an issue,

but the idea does suggest a practical compromise to

address the problem of grasping in clutter: use very

thin fingers, approaching the object along their

lengths. We can train a system for recognizing the

number of markers grasped by the hand, based on the

position of the fingers after the grasp. If accurate

enough, it could be easily turned into a system able to

singulate objects from a bin by retrying when failed.

However, the intention of this experiment is not to get

higher percentage in singular grasping, but to be able

to identify that situation. The actual designed policy is

based on an helicoidal motion of the hand when

approaching the bin, combined with some vibration

for dealing with clutter once inside it.

1. Circular low-friction palm and fingers so that

for irregular objects there are only a few

stable grasp configuration

2. Three thin cylindrical fingers arranged

symmetrically about the palm with joint

encoder for pose estimation

3. The large offsets option: each finger coupled

to the actuator through a soft, large deflection

spring.

4. Dc motor that thought a series of gears,

transmit the power to the three fingers

Page 13: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

Jamming Gripper

The Jamming Gripper includes some granular material

contained in a flexible membrane in order to achieve

its gripping behavior.

The latex balloon membrane is connected to the base

thank to the collar, producing an airtight seal.

The collar is an important element of the design

because it helps guide the gripper as it conforms to the

target. The membrane is filled with granular material.

Vacuum is provided with an off-board vacuum pump.

The properties of the jamming gripper derive from the

fact that loose grains in a bag steady at the threshold

between flowing and rigid states. This behavior

enables the gripper to deform around the target in the

unjammed, malleable configuration, then convert into

the hard configuration when jamming is initiated.

Thus, increasing the particle confinement slightly by

turning-on the vacuum pump, enables the gripper to

amplify the rigidity while almost completely maintain

its shape around the target.

To release or to reset the gripper, the pressure inside

can be delayed with the atmosphere or by providing a

positive pressure using the high-pressure port.

Object can also be ejected by using the positive

pressure.

Blue = functional verbs

Underlined = key components

Crossed = not considered functions/component

Structural description:

1. Interface with the robot; inlet and outlet air

regulation systems are integrated in this part

2. Holds the Latex Balloon (3) and improves the

grasping performances. Helps guide the

gripper as it conforms to an object

3. Contains the material (4), and is the interface

with the grasped object

4. Is the main adaptable part of the system. Once

that air is evacuated material inside becomes

stiff, thanks also to the Balloon (3)

5. The Air Filter avoids the suction of the

material grains (4) from the balloon (3)

6. Vacuum line port evacuates air from the inside

of the balloon

7. High-pressure port is used to reset the gripper

shape

Page 14: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

Omnigripper

Universal gripper comprising two slightly separated

fingers, each consisting of an array of 8 by 16

closely spaced pins which can lift vertically up end

down independently of each other. By translating

the gripper over an object, some pins are pushed out

of the way, so creating ‘customized’ fingers which

mould round and fit the part. To grasp object, either

the two (slightly separated) fingers can be brought

together to grip an object externally, or else they can

be moved slightly apart for an internal grip. In

addition, feedback from each pin of the gripper can

provide tactile information about an object. It's

possible attach two or more grippers onto the one

wrist, so that by rotation any of the grippers can be

brought into play. A mechanism exist to ensure that

all the pins are totally out to the fully extended

position. An interesting aspect is that it can be made

to pick up more than one object simultaneously.

Blue = functional verbs

Underlined = key components

Crossed = not considered functions/component

1. Base: it is the backbone of the gripper which

connects the wrist.

2. Finger: there are 2 and are arranged in linear

motion for the translational grasping pieces.

3. Pin: there are 8x16 for each finger.

Electrical controls are arranged in a feedback to

indicate the position of the rods, so that the

outer contour of the object can be rebuilt by a

computer.

Page 15: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

UB Hand

The high-dexterous robotic now developed

compared to functional results at times

surprising, there are still many critical

aspects, including the extreme complexity

of construction and assembly, low

integrability sensory systems,

The biological model of the human hand

appears, however, as a structure

endoskeleton, in which an articulated chain

inside (the bones connected by ligaments)

is actuated by bodies willing around

(muscles and tendons), the all enclosed by

a peripheral structure highly deformable 1. With the aim of developing a new

generation of robotic hand have set

the following project objectives:

Develop a structure of type endo-

skeletal system, to permit the

provision of external layers of suitable

thickness yielding, able to mimic the

functionality of the soft tissues of the

human hand, as well as sensors

distributed around the structure; 2. Endoskeleton achieve this by adopting

the concept of "compliant

mechanism", creating a serial chain of

rigid movable members together with

the presence of yielding traits (hinges)

and not for the presence of kinematic

pairs, resulting in the actuation of

these organs through flexible joints

guided inside the structure itself.

Blue = functional verbs

Underlined = key components

Crossed = not considered functions/component

1. Hinges

2. Tendon

3. Phalanx: can be built for example all in

Teflon or with three distinct material

Page 16: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

Analogy Functional decompositionglue contact - increase P- deform – import- stay(little) – attachPressure-sensitive tape contact – attach

termhal glue increase temperature - transform solid in liquid – contact - increase P - deform - import - stay - transform liquid in solid - attachsticky hands contact - deform - increase surface - mate (fine) - attach tongue's anteatervelcro contact - couple - guide - move - nest - block movement (hold)suction cup contact - deform - mate - export air - decrease pressure - connect vacuum cup contact - export air - decrease pressure -deform- connectvacuum cleaner import air - import material - store materialtrunkmagnet create magnetic force - attract - connectosmosiscobweb contact - transform c.e. in e.e. - store e.e. - deform - mate - attach - transform e.e. in c.e. -blockcotton swab Similar to toothbrushice contact - decrease T - transform liquid in solid - join

Analogy Functional decompositionrope position – bring close - set d - contact - move- orient- deform - mate –fastentrunk "belt "collar "finger "

butterfly net/landing/netmove - allow passage of air - deform – position – contact – import material - deform(net) –deform(butterfly) - block material – contain – move

fish trap "net "parachute move – guide air - import air- deform(parachute)- block air –contain - obstacle movement

Grasping and Handling

Systems that grasp objects but are not considered grippers

Adhesion

Pagina 1

Page 17: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

umbrella (the other way round) "spoon position - move - import material - block material – containsocket position - guide - connect - blockpen drive usb "headphone jack "safety belt "lock "whip hit - transform c.e. in e.e. - move part - mate - deform - contact – fastenbolas "cat 9 tails "lace "zip "snap link "ring binder "

Analogy Functional decompositionpliers position -bring close- contact – deform(pincer) – deform(part) – increase friction – blocktweezers "pliers for fireplace "chela "nails "teeth "mouth of crocodille "scissor "silk epil "clip contact - increase P - bring apart - move - decrease P - bring close - contact -deform - blockplate hair "hair clamp increase P - compress spring - bring apart - position - decrease P - bring close - contact - deform - block mouse trap "chopsticks "brake bring close - contact – deform - increase friction - transform c.e. in t.e. - increase T - decrease velocity - block wheel tea strainer/paper filter "bicycle chain-trousers "

Analogy Functional decomposition

Pinching

Punching

Pagina 2

Page 18: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

feline teeth "arrow hit - transform c.e. in e. - deform - separate (o cut) - move (dentro) - inglobate - connectbullet hit - transform c.e. in e. - deform - separate (o cut) - move (dentro) - shape (o deform) - connecthook "nail "piercing contact increase P- separate - guide - move - export - block (dell'orecchino nell'orecchio)- connectfork "hook of the mint Simiar to the arrow, but with an extra moveharpoon "

sewing machinefeed (wire)1- guide wire1 - move(needle+wire2) - feed 2- couple(wire dell'ago con el.rotante) - rotate - move wire - contact - increase fritction - connect(wire1e2)- connect tissues

corkscrew position - rotate - separate - move (dentro) - inglobate - connect handcuffs Fare ricerca sui diversi tipibiclycle lock "aperture diaphragm in a camera "tongue (of a buckle) "mouth of the boa "Body of a boa constrictor bring close - contact - deform - block McKibben vs rope new patentumbrella handle Accidental use, failure, misuse

rake move - allow passage of material -increase friction- position- contact – import – deform(leaves) – block – contain- move(material) pitchfork "life-ring position - allow (passaggio corpo) - guide - enclose - block - support -animals/insects coupling (dogs, pigs, flea, etc..) Tinexsewing "wrecking ball move - hit - transmit c.e.- deform - split - increase friction (tra palla e pezzo di muro) - connect

windscreen (it "captures" the insects) "windscreen wiper "auger move - position - rotate - contact - separate - translate - guide - import - store(terra) - move(terra)helical tip of beach umbrella "

Analogy Functional decompositiongear-trousers "helmet strap "

recently added systems

Pagina 3

Page 19: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

"spiral severe nesting of springs screw cap position - couple - contact - guide - rotate - translate- connect(filettature)- deform- arrest - blockscrew-bolt "cam "

rope blocking systems in boatmove cord- deform -increase fritciotn- rotate1-rotate2 - bring apart - allow passage of the cord - stop - rotate1-roatate2- bring close- deform- connect?- move cord- block

conveyor belt "pine cone "earthworm tube shape system to capture/inglobate/wrap objectsstent position-move-guide-increase T-modify shape-increase volume-deform-mate-connectpneumatic cushion position-move-guide-import air-modify shape-increase volume-deform-mate-connect

Pagina 4

Page 20: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

RobLog FP7-ICT-2009-6 3 Systems that grasp objects but are not considered grippers Moreover in order to overcome a rigid and convergent approach to the problem we decided to explore also devices or systems, used in everyday life, that acts (also for short time periods) as grippers. Since grippers are defined “a type of end of arm tooling used to move parts from one location to another”, we can try to apply such a definition to other systems not classified as grippers. Examples of convergent suggestions are seat belts, fish nets, mechanical vices; more divergent ideas are for examples umbrellas, stents, car latches etc.. Moreover, even accidental and unwanted events as the nesting between springs or the tangling of trousers into a gear systems or in the bicycle chain can be useful for inspiring novel solutions for grasping. Some of these concepts (e.g the stent, the umbrella, the sewing) have been the origin of some grippers designed, manufactured and tested during the first year of the project. Such grippers are described in D2.3 “In scale” grippers.

Page 21: RobLog - 52367068.fn.freenet-hosting.de52367068.fn.freenet-hosting.de/downloads/del_2.3---gripping-principl… · the Seventh Framework Programme Dissemination Level PU Public X PP

RobLog FP7-ICT-2009-6

4 Additional ideas grippers Moreover we worked also in conceiving new ideas, that, for reasons of time have not been implemented till now, but will be prototyped and tested in the near future. Figure 2 provides some cues of the two.

Figure 2 Additional ideas (just concepts): umbrella gripper on the left; broken beam on the right. Also

functioning schemes are provided.