robust multivariable control - linköping...

27
Robust Multivariable Control Lecture 10 Anders Helmersson [email protected] ISY/Reglerteknik Linköpings universitet Anders Helmersson [email protected] Robust Multivariable Control AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Upload: truongtruc

Post on 17-May-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Robust Multivariable ControlLecture 10

Anders [email protected]

ISY/ReglerteknikLinköpings universitet

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Today’s topic

Repetition

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Systems

Systems: Linear time-invariant (LTI)

G(s) =[

A BC D

]= D + C(sI−A)−1B

Similarity transformations introduces new states, x = Tx:

G(s) =[

TAT−1 TBCT−1 D

]

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Inverse of systems

The inverse of a system can be written as

G−1(s) =[

A BC D

]−1

=

[A− BD−1C −BD−1

D−1C D−1

]

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

H∞-norm

The H∞-norm is the maximum (sup)of σ(G(jω)) for stable systems.

10−1

100

101

−40

−30

−20

−10

0

10

20Singular Values

omega (rad/sec)

sigm

a (d

B)

Energy:y� G �

u

‖y‖2 ≤ γ‖u‖2

γ = ‖G‖∞

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

How to find ‖G‖∞

Assume that D = 0:

H =

[A γ2BBT

−CTC −AT

]If γ > ‖G‖∞, then H has no imaginary eigenvalues.

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Detectability and stabilizability

A system is detectable if all unstable modes are observable

A system is stabilizable if all unstable modes are controllable.

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Balanced realization

A system is on balanced form if the controllability and observabilityGramians are equal:

ATΣ + ΣA + CTC = 0

andAΣ + ΣAT + BBT = 0.

Used for model reduction.

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Stability

- f+ - P

?�f+�K

6

The closed loop system is stable if[I KP I

]−1

∈ RH∞

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Youla parametrization

If G is stable then Q ∈ RH∞ parametrizes all stabilizing controllers:

- Q - G

- −G - i+

u y

?

r

K = Q(I + GQ)−1

Q = K(I−GK)−1

Q ∈ RH∞

Related to IMC = Internal model control.

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Riccati equations

The Riccati equation

ATX + XA + XRX + Q = 0

has the solution such that A + RX stable when X = x2x−11 where

H =

[A R−Q −AT

]has stable eigenvalues

[x1x2

]H2 (LQR):

H =

[A −B2BT

2−CT

1 C1 −AT

]H∞ (no eigenvalues on the imaginary axis and x1 nonsingular):

H =

[A γ−2B1BT

1 − B2BT2

−CT1 C1 −AT

]

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Coprime factorization

Coprime factorization:

G = M−1N︸ ︷︷ ︸LCF

= NM−1︸ ︷︷ ︸RCF

where M (M) and N (N) are stable.

The factorization is normalized if

M(−s)∗M(s) + N(−s)∗N(s) = I

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Parrott’s theorem

γ = minX

∥∥∥∥[ A BC X

]∥∥∥∥ = max{∥∥[ A B

]∥∥ ,∥∥∥∥[ A

C

]∥∥∥∥}One such X:

X =[

0 C] [ γI A

AT γI

]† [ B0

]

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

LMIs

F(x) = F0 +n

∑i=1

xiFi where Fi = FTi .

The set of F(x) � 0 is convex.

Schur complement [S GT

G R

]≺ 0

is equivalent to S−GTR−1G ≺ 0 and R ≺ 0.

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

The elimination lemma

The problemQ + UKVT + VKTUT ≺ 0.

has a solution K, if and only if

UT⊥QU⊥ ≺ 0, where U⊥ = null UT

andVT⊥QV⊥ ≺ 0, where V⊥ = null VT

are both satisfied.

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

SVD and Bounded Real Lemma

The maximum singular value σ(D) = ‖D‖ < γ is equivalent to[−γI DT

D −γI

]≺ 0.

‖G‖∞ < γ is equivalent to that there exists a P = PT � 0 such that PA + ATP PB CT

BTP −γI DT

C D −γI

≺ 0

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Design

Design methods:

SISO methods: LQR, PID, Lead-lag.

MIMO-metoder: H∞, loop shaping, µ-synthesis.

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Design – standard structure in closed loop

y- K -

uG -

TwWT - z2r

-KSw

WKS - z3

?

ri+rSw

� w

- WS - z1

KS ≤ W−1KS T ≤ W−1

T S ≤ W−1S

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Structure

Structure: What do I want to achieve?

Standard structure

MIMO: amplitude and phase margins at the input can beprovided by adding extra inputs and outputs.

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

H∞-design

Everything must be specified, non-forgiving, nothing is for free.

Sometimes a controller with too high bandwidth is obtained – tryto relax the requirements and reduce the bandwidth.

Full rank on D12 and D21 means direct terms in WKS (andw→ y).

Results in high-order controllers.

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Loop shaping

Design W1 and W2 such that W1GW2 satisfies the desired loop gain.

Use ncfsyn for synthesis (ε ≥ 0.2− 0.3).

- i+ - W2 - K∞ - W1 - G -r6

K

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Alternative formulation

- h+ - K r6W−1

1

6

z2 w2

?

W1

?

- h+ - G - h+ - W2 - z1

w1

?

W−12

?

r6

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Small gain theorem

For analysis, the small gain theorem is an important tool.

- G

∆ � G and ∆ are stable.{‖∆‖∞ ≤ 1/γ

‖G‖∞ < γ⇒ closed loop system is stable.

∆ can be nonlinear with limited power gain (induced L2-norm).

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Pull out the parameters

G

- -δ1

- -δ21

- -δ2 ⇔

G

-

- δ1

-

- δ1

- δ1

-

- δ2

Here we have repeated uncertainties, δ1.

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

D-scalings: D∆ = ∆D, D invertible

�G�

- ∆

D �

G� D−1�

- ∆

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

µ-design

(i) Find a K such that ‖F`(G, K)‖∞ is minimized (H∞-synthesis).

(ii) Find a D (with fixed K) such that∥∥DF`(G, K)D−1

∥∥∞ is

minimized.

(iii) Find a K (with fixed D) such that∥∥DF`(G, K)D−1

∥∥∞ is

minimized (H∞-synthesis).

(iv) Repeat (ii) and (iii) till convergence or tillγ =

∥∥DF`(G, K)D−1∥∥

∞ becomes sufficiently small.

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET

Model reduction

H∞-design often results in high-order controllers, sometimes 50 to100 states (weights + G).

Unrealistic to implement.

Steps of reduction:

Use balancing and truncation for removing states that are barelyvisible.

Remove past poles (significantly higher than the bandwidth).Replace by a constant term.

Use more advanced methods, such as weighted modelreduction or hinfstruct.

Anders Helmersson [email protected] Multivariable Control

AUTOMATIC CONTROLREGLERTEKNIK

LINKÖPINGS UNIVERSITET