robustness analysis of cfrp structures under thermomechanical … · 2019. 10. 24. · sucohs...

21
SuCoHS project, Grant Agreement N° 769118 EASN2019 Athens, 2019-09-06 Martin Liebisch 1 , Tobias Wille 1 , Georgios Balokas 2 , Benedikt Kriegesmann 2 1 German Aerospace Center (DLR) 2 Hamburg University of Technology (TUHH) Robustness analysis of CFRP structures under thermomechanical loading including manufacturing defects

Upload: others

Post on 01-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • SuCoHS project, Grant Agreement N° 769118

    EASN2019 Athens, 2019-09-06

    Martin Liebisch1, Tobias Wille1, Georgios Balokas2, Benedikt Kriegesmann2 1German Aerospace Center (DLR) 2Hamburg University of Technology (TUHH)

    Robustness analysis of CFRP structures under thermomechanical loading including manufacturing defects

  • 10/10/2019 2

    Motivation

    Robustness analysis of CFRP structures under thermomechanical loading including manufacturing defects

    Exploitation of thermal and mechanical potentials

    Robust design

    Stiffness/

    Strength

    Temperature

    Current Design

    Point

    Thermal Potential

    Me

    ch

    an

    ica

    l P

    ote

    nti

    al

    Future Design Curve

    Current

    Composite

    SHEFEX II at re-entry

    Aircraft tailcone section with

    APU marked in orange

    Future aircraft concept

    (September 2010): www.spiegel.de

    http://www.google.de/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=2ahUKEwig1Z6n_LDhAhWEb1AKHb5JDh8QjRx6BAgBEAU&url=http://www.spiegel.de/fotostrecke/konzepte-fuer-die-luftfahrt-september-2010-flugzeuge-der-zukunft-fotostrecke-59417-2.html&psig=AOvVaw1Yb_fysPShifBI2UCKST1J&ust=1554279408639012

  • 10/10/2019 3

    General aspects

    Surrogate-boosted Monte Carlo

    Design of Experiments

    Deterministic analyses

    Surrogate model creation

    Probabilistic analysis

    Various assessment aspects

    Robust design

    Tolerance restrictions

    Maintenance scheduling

    Parameter 1

    Para

    mete

    r 2

    Design of Experiments

    Design points

    Analysis results

    Surrogate model

    Defintion

    Phase DOE Deterministic

    Analyses

    Probabilistic

    Analysis

    Surrogate

    creation

    Timeline of the analysis procedure

    uncertainty propagation

    inverse uncertainty

    quantification

    Surrogate-boosted Monte Carlo

    1) Balokas et al., Neural network assisted multiscale analysis for the elastic prediction

    of 3D braided composites under uncertainty, Comp.Struct. 183, 550-562, 2018.

    2) Kriegesmann et al., Fast probabilistic design procedure for axially compressed

    composite cylinders, Comp. Struct., 93, 3140-3149, 2011.

    Statistical result

    Output measure

  • 10/10/2019 4

    Curing analysis

    Material curing properties

    Process conditions

    Thermal analysis

    Thermal material properties

    Manufacturing Defects

    Thermal loading

    Thermal deformation

    analysis

    Mech. material properties

    Manufacturing defects

    Boundary Conditions

    Mechanical load analysis

    Mech. material properties

    Manufacturing defects

    Boundary conditions

    Mechanical load Conditions Preforming defect

    analysis

    Individual

    FE-Analysis

    Relevant topic & Parameter input

    Legend

    Deterministic FE-analysis procedure

    Process simulation

    Preform behavior

  • 10/10/2019 5

    Preforming defects I - Motivation & Objectives

    Typical manufacturing induced deviations:

    Fuselage section cycle time distribution:

    According to reference 1)

    Twisted tow

    Gap

    Overlap

    41%

    32%

    27%

    Layup

    Inspection & rework

    Anything else

    According to reference 2)

    1) B. Denkena, C. Schmidt, K. Völtzer, and T. Hocke, “Thermographic online monitoring system for Automated Fiber

    Placement processes,” Compos. Part B Eng., vol. 97, pp. 239–243, 2016.

    2) T. Rudberg, J. Nielson, M. Henscheid, and J. Cemenska, “Improving AFP Cell Performance,” SAE Int. J. Aerosp., vol.

    7, no. 2, pp. 2014-01-2272, 2014

    3) R. Hein und F. Heinecke. „Digitaler Zwilling - ein dynamisches Abbild und nicht nur eine digitale Kopie“. In:

    Innovationsbericht 2018 (2018), S. 93.

    DLR‘s AFP facility called GroFi at ZLP Stade, according to reference 3)

  • 10/10/2019 6

    Preforming defects II – Implemented defects

    Parameters:

    • Location

    • Width, Length

    • Wavelength

    • Amplitude

    • Defect impact factor

    • Defect shape propagation

    • Optional: Contour

    Undulation

    Parameters:

    • Location

    • Width, Length

    • Defect impact factor

    • Defect shape propagation

    • Resin properties

    • Optional: Contour

    Gap

    Parameters:

    • Location

    • Width, Length

    • Defect impact factor

    • Defect shape propagation

    • Optional: Contour

    Overlap

    Parameters:

    • Location

    • Angle

    Angle deviation

    Parameters:

    • Location

    • Thickness

    Thickness deviation

    Parameters:

    • Location

    • Properties

    Material deviation

    Defects, which have to be analyzed using a detailed

    geometric representation

    Defects, which can be directly considered via finite

    element properties

    Preforming defect

    analysis 1) Heinecke, F.; Willberg, C. Manufacturing-Induced Imperfections in Composite Parts Manufactured via Automated

    Fiber Placement. J. Compos. Sci. 2019, 3, 56.

  • 10/10/2019 7

    Name Symbol comment

    Deformation

    u,

    v,

    w

    Local value; f(x,y,z)

    Residual stresses

    σres, x σres, x σres, x

    Local value; f(x,y,z)

    Cure defects are a result of

    The materials resulting degree of cure

    Thermal expansion and chemical shrinkage

    Orthotropic material behavior

    Curing analysis I

    Name Symbol comment

    Cure times t1, t2, … Depend on the

    materials cure cycle Cure temperatures T1, T2, …

    Materials cure behavior Pcure Property development Curing

    analysis

    Te

    mp

    era

    ture

    Time

    Nominal

    Variation 1

    Input parameters of the curing analysis Output parameter from curing analysis serves as

    input parameters for the thermomechanical analysis

    Process parameters and

    an exemplaric variation

    Geometrical imperfection

    that results from curing

  • 10/10/2019 8

    Local defects

    Geom. Imperfection,

    Residual stresses

  • 10/10/2019 9

    Simplifications

    Symmetric behavior wrt to hotspot

    One-sided heating

    Spatially constant conditions at back side

    Requirements

    Spatially constant heating

    Spatially distributed heating

    Variations of the thermal load in

    Shape

    Magnitude

    Thermal load conditions I

    𝑇𝑎𝑖𝑟 𝑥, 𝑦 = ∆𝑇 ⋅ 𝑒𝑏𝑥⋅𝑥+Δ𝑥

    2− 𝑏𝑦⋅𝑦+Δ𝑦

    2

    + 𝑇𝑐𝑜𝑛𝑠𝑡

    Name Symbol

    convective sink

    temperature TConv,cooled

    Functional relation for

    temperature

    distrbution

    Tconst. ΔT

    Δx, Δy bx, a

    Heat transfer

    coefficient

    kconv,heated kconv,cooled

    x y

    T in °C

    𝑎 = 𝑏𝑥𝑏𝑦

    Thermal loading function derived

    from typical gaussian function

    Shape parameter

    Exemplaric temperature

    distribution

    200°C

    180°C

    190°C

    185°C

    195°C

    Parameters used to define thermal loading

    conditions

  • 10/10/2019 10

    Exemplaric thermal load distributions

    Thermal load conditions II

    Circular shape, high width

    Circular shape, small width

    Ellipsoidal, centered

    Ellipsoidal, offset to center 200°C

    180°C

    190°C

    185°C

    195°C

  • 10/10/2019 11

    Temperature dependent behavior of thermal properties

    Orthotropic behavior of UD-CFRP plies

    Fitting based on experimental data

    Linear temperature dependency assumed

    Thermal material properties I

    Name Symbol

    Thermal

    conductivity

    λ11

    λ22

    λ33

    Heat capacity cp

    Density ρ

    Overview to thermal properties

    parameter space

    More general overview; no details

    Maybe some bullet points which

    dependency or specific behavior will

    be considered later on

    1) Hein, R. (2019): Vorhersage und In-Situ Bewertung fertigungsbedingter Deformationen und Eigenspannungen von Kompositen.

    Dissertation, TU Braunschweig. Insitut für Faserverbundleichtbau und Adaptronik, DLR Braunschweig.

    Temperature [°C]

    Th

    erm

    al C

    on

    du

    cti

    vit

    y [

    Wm

    -1K

    -1]

    He

    at

    cap

    ac

    ity [

    Jg

    K-1

    ]

  • 10/10/2019 12

    Temperature

    distribution

  • 10/10/2019 13

    Temperature dependent behavior of mechanical properties

    Load direction has to be distinguished

    Strength properties are more sensitive to temperature effects than elastic properties

    Mechanical material properties II

    Temperature dependency of mechanical

    properties for unidirectional EP-CF

    100%

    80%

    60%

    40%

    20%

    0%

    Temperature

    No

    rma

    lize

    d p

    rop

    ert

    y

    Tension strength

    Compression strength

    Shear strength

    Young‘s modulus fibre direction

    Young‘s modulus transverse direction

    Name Symbol

    Thermal expansion

    coefficients

    α11,

    α22,

    α33

    Young’s modulus E11,

    E22,

    Shear Modulus

    G12,

    G13,

    G23

    Poisson ratio ν12,

    Strength

    S1T,

    S2T,

    S1C,

    S2C,

    S12, Overview to mechanical material

    properties parameter space

  • 10/10/2019 14

    Boundary and load conditions

    Thermal strain locking (in-plane)

    0% 100% Fully locking of thermal

    expansion

    Additional stresses reduces

    buckling load

    Ideal thermal expansion

    possible

    Deformation only due to

    temperature gradients

    Picture of the panel and the FE-model!?

    Test conditions

    Realistic conditions

    Name Symbol

    Thermal Strain locking TSLL

    TSLT Load direcftion φ 𝜀𝑇

    𝑡ℎ

    Constantly heated

    Structure

    Not heated structure

    Thermal expansion

    allowed

    Evtl als 1/… darstellen

    um 100% bei

    freierausdehnung zu

    erlauben

  • 10/10/2019 16

    Overview

    Exemplaric results: Implementation panel

    Only thermal load conditions varied

    Axial thermal strain locking 0% (free)

    One-sided thermal

    loading

    Axial compression

    loading

    Constant ambiance

    conditions at backside

  • 10/10/2019 17

    Implementation panel at room temperature (RT)

    Results

    0

    20

    40

    60

    80

    100

    Ax

    ial

    forc

    e [

    kN

    ]

    0.0 0.5 1.5 2.5 3.5 1.0 2.0 3.0 4.0

    Axial displacement [mm]

    1

    2

    3

    1

    2

    3

    Local Buckling

    Global Buckling

    1) Zimmermann, R.; Klein, H.; Kling, A. (2006): Buckling and postbuckling of stringer stiffened fibre composite

    curved panels – Tests and computations. In: Composite Structures 73 (2), S. 150–161.

  • 10/10/2019 18

    Results

    Constant temperature applied to the whole part Temperature 𝑬𝑳 𝑻

    𝑬𝑳,𝑹𝑻

    𝑬𝑻 𝑻𝑬𝑻,𝑹𝑻

    25°C 100 % 100 %

    180°C 96.7 % 84.0 %

    195°C 85.8 % 62.8 %

    210°C 53.3 % 33.3 %

    0

    20

    40

    60

    80

    100

    Ax

    ial

    forc

    e [

    kN

    ]

    0.0 0.5 1.5 2.5 3.5 1.0 2.0 3.0 4.0

    Axial displacement [mm]

    RT

    180°C

    195°C

    210°C

    RT

    180°C 195°C 210°C

    Material stiffness reduction in dependence on

    the used analysis temperature

    Similar deformation behavior at different thermal

    load conditions

  • 10/10/2019 19

    Thermal behavior and thermal deformation

    Results

    T [°C]

    220

    200

    210

    T [°C]

    Thermal load distribution Stationary temperature distribution Thermal deformation

    Elastic properties at the

    hotspot compared to RT:

    EL = 90%; ET = 70%

    U [mm]

  • 10/10/2019 20

    Comparison of behavior at RT and thermal loads

    Results

    0

    20

    40

    60

    80

    100

    Ax

    ial

    forc

    e [

    kN

    ]

    0.0 0.5 1.5 2.5 3.5 1.0 2.0 3.0 4.0

    Axial displacement [mm]

    Hinweis auf Buckling

    als Design-Kriterium

    Reduction of

    Buckling-Load 1

    2

    3

    No thermal loads

    Thermal loaded

    3

    2

    1

    Comparison of the structural deformation due to axial

    compression lod: at const. room temperature (left)

    and at spatial temperature distribution (right)

  • 10/10/2019 21

    Probabilistic analysis of the implementation panel

    Sensitivity studies and parameter range definition

    Robustness analysis

    Inverse tolerance quantification

    Apply the probabilistic analysis to SuCoHS use cases

    Update material models by novel material solutions

    Experimental validation

    Outlook: next steps

  • 10/10/2019 22

    This project has received funding from the European Union’s Horizon 2020 research and

    innovation programme under grant agreement N° 769178.

    www.sucohs-project.eu

    https://www.linkedin.com/company/sucohs-project/

    https://www.google.de/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=2ahUKEwj_w9rev5zdAhXDbFAKHYQkBu8QjRx6BAgBEAU&url=https://de.wikipedia.org/wiki/Datei:Bombardier_Logo.svg&psig=AOvVaw0Ys0Cq9Iqf5WIyVW76v8yI&ust=1535983814770656http://www.l-up.com/index.phphttps://www.google.de/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=2ahUKEwiW6IDTv5zdAhVNalAKHT9sBhIQjRx6BAgBEAU&url=https://twitter.com/nlr_nl&psig=AOvVaw1vLAHfpDCyfB1JIEu1FRdp&ust=1535983790016837http://www.sucohs-project.eu/http://www.sucohs-project.eu/http://www.sucohs-project.eu/https://www.linkedin.com/company/sucohs-project/https://www.linkedin.com/company/sucohs-project/https://www.linkedin.com/company/sucohs-project/