rp 581 inspection effectiveness

Upload: arturo-de-la-fuente

Post on 02-Jun-2018

295 views

Category:

Documents


3 download

TRANSCRIPT

  • 8/10/2019 Rp 581 Inspection Effectiveness

    1/100

    DATE: 2-20-2012 API RP 581 Committee Meeting

    API Ballot Proposal:

    Removal of most of the language and all of the tables regarding inspection effectiveness from

    the main body of Part 1 and Part 2 of API RP 581.

    Reassembly of this information in a new annex of Part 2 that will discuss inspection

    effectiveness and provide the tables per API RBI damage mechanism as examples for the user

    to adapt and adopt to their specific knowledge and skills.

    Technical Basis:

    This will provide a good platform that emphasizes the user responsibility to understand and

    apply RBI principles. In particular, it will consider:

    a)

    Philosophy behind the new tables and how to use them;

    b)

    Owner-User responsibility of adoption/adaptation;

    c)

    Methodology to account for confidence in inspection

    d)

    Application to PoF

    Proposed By:

    API RBI Software User Group: Inspection Effectiveness Review Sub-Committee

  • 8/10/2019 Rp 581 Inspection Effectiveness

    2/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    1-1

    PART 1

    INSPECTION PLANNING USING API RBI TECHNOLOGY

  • 8/10/2019 Rp 581 Inspection Effectiveness

    3/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    1-2

    PART CONTENTS1

    SCOPE

    ........................................................................................................................................... 42

    REFERENCES

    ............................................................................................................................... 43

    DEFINITIONS

    ................................................................................................................................. 44

    API RBI CONCEPTS

    ..................................................................................................................... 44.1

    Probability of Failure

    ............................................................................................................ 44.2

    Consequence of Failure

    ....................................................................................................... 44.3

    Risk Analysis

    ........................................................................................................................ 44.4

    Inspection Planning Based on Risk Analysis

    .................................................................... 44.4.1

    Overview

    ........................................................................................................................ 44.4.2

    Risk Target

    .................................................................................................................... 44.4.3

    Inspection Effecti veness The Value of Inspection

    ................................................. 44.4.4

    Inspection Effecti veness Example

    ........................................................................... 54.4.5

    Inspection Planning

    ...................................................................................................... 54.5

    Nomenclature

    ........................................................................................................................ 64.6

    Tables

    ..................................................................................................................................... 6

    4.7

    Figures

    ................................................................................................................................... 75

    PRESSURE VESSELS AND PIPING

    ............................................................................................ 85.1

    Probability of Failure

    ............................................................................................................ 85.2

    Consequence of Failure

    ....................................................................................................... 85.3

    Risk Analysis

    ........................................................................................................................ 85.4

    Inspection Planning Based on Risk Analysis

    .................................................................... 86

    ATMOSPHERIC STORAGE TANKS

    ............................................................................................. 96.1

    Probability of Failure

    ............................................................................................................ 96.2

    Consequence of Failure

    ....................................................................................................... 96.3

    Risk Analysis

    ........................................................................................................................ 96.4

    Inspection Planning Based on Risk Analysis

    .................................................................... 97

    PRESSURE RELIEF DEVICES

    ................................................................................................... 107.1

    General

    ................................................................................................................................. 107.2

    Probability of Failure

    .......................................................................................................... 107.2.1

    Definition

    ..................................................................................................................... 107.2.2

    Calculation of Probabilit y of Failure to Open

    .......................................................... 107.2.3

    PRD Demand Rate

    ...................................................................................................... 107.2.4

    PRD Probabili ty of Failure on Demand

    ..................................................................... 10

    7.2.5

    Protected Equipment Failure Frequency as a Function of Overpressure

    ............ 117.2.6

    Calculation Procedure

    ................................................................................................ 117.2.7

    Overview

    ...................................................................................................................... 117.2.8

    Calculation of Probability of Leakage

    ....................................................................... 117.2.9

    Calculation Procedure

    ................................................................................................ 117.3

    Consequence of PRD Failure to Open

    .............................................................................. 117.4

    Consequence of L eakage

    .................................................................................................. 117.5

    Risk Analysis

    ...................................................................................................................... 117.6

    Inspection Planning Based on Risk Analysis

    .................................................................. 117.7

    Nomenclature

    ...................................................................................................................... 117.8

    Tables

    ................................................................................................................................... 127.9

    Figures

    ................................................................................................................................. 128

    HEAT EXCHANGER TUBE BUNDLES

    ...................................................................................... 138.1

    General

    ................................................................................................................................. 138.2

    Methodology Overview

    ...................................................................................................... 138.3

    Probability of Failure

    .......................................................................................................... 138.4

    Consequence of Failure

    ..................................................................................................... 138.5

    Risk Analysis

    ...................................................................................................................... 138.6

    Inspection Planning Based on Risk Analysis

    .................................................................. 138.6.1

    Use of Risk Target in Inspection Planning

    ............................................................... 138.6.2

    Example

    ....................................................................................................................... 13

  • 8/10/2019 Rp 581 Inspection Effectiveness

    4/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    1-3

    8.6.3

    Inspection Planning Without Inspection History (First Inspection Date)

    ............. 138.6.4

    Inspection Planning with Inspection History

    ........................................................... 138.6.5

    Effects of Bundle Life Extension Efforts

    .................................................................. 148.6.6

    Future Inspection Recommendation

    ........................................................................ 148.7

    Bundle Inspect/Replacement Decisions using Cost Benefit Analysis

    ......................... 148.8

    Nomenclature

    ...................................................................................................................... 148.9

    Tables

    ................................................................................................................................... 14

  • 8/10/2019 Rp 581 Inspection Effectiveness

    5/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    1-4

    1 SCOPE

    2 REFERENCES

    3 DEFINITIONS

    4 API RBI CONCEPTS

    4.1 Probability of Failure

    4.2 Consequence of Failure

    4.3 Risk Analysis

    4.4 Inspection Planning Based on Risk Analysis

    4.4.1 Overview

    4.4.2 Risk Target

    4.4.3 Inspection Effectiveness The Value of Inspection

    An estimate of the probability of failure for a component is dependent on how well the independent variables ofthe limit state are known [10]. Using guidelines for inspection effectiveness given in API RBI, Part 2, Annex B.2aIn the models used for calculating the probability of failure, the flaw size (e.g. metal loss for thinning or cracksize for environmental cracking) may have significant uncertainty especially when these parameters need to beprojected into the future. An inspection program may be implemented in order to obtain a better estimate of thedamage rate and associated flaw size.

    An inspection program is the combination of NDE methods (i.e. visual, ultrasonic, radiographic etc.), frequencyof inspection, and the location and coverage of an inspection in order to find a specific or set of damagemechanisms. Inspection programs vary in their effectiveness for locating and sizing damage, and thus fordetermining damage rates. Once the likely damage mechanisms have been identified, the inspection program

    should must be evaluated in order to determine the effectiveness in f inding the identified mechanisms.

    The effectiveness of an inspection program may be limited by:

    a) Lack of coverage of an area subject to deterioration,

    b) Inherent limitations of some inspection methods to detect and quantify certain types of deterioration,

    c) Selection of inappropriate inspection methods and tools,

    d) Application of methods and tools by inadequately trained inspection personnel,

    e) Inadequate inspection procedures,

    f) The damage rate under some conditions (e.g. start-up, shut-down, or process upsets) may increase thelikelihood or probability that failure may occur within a very short time; even if damage is not found during aninspection, failure may still occur as a result of a change or upset in conditions,

    g) Inaccurate analysis of results leading to inaccurate trending of individual components, (problem with astatistical approach to trending), and

    h) Probability of detection of the applied NDE technique for a given component type, metallurgy,temperature and geometry .

    It is important to evaluate the benefits of multiple inspections and to also recognize that the most recent

    inspection may best reflect the current state of the component under the current operating conditions. If theoperating conditions have changed, damage rates based on inspection data from the previous operatingconditions may not be valid. Determination of inspection effectiveness should consider the following:

    a) Equipment or component type,

    Formatted:para, No bullets or numbering

    Formatted:para, No bullets or numbering

  • 8/10/2019 Rp 581 Inspection Effectiveness

    6/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    1-5

    a) Active and credible damage mechanism(s),b) Susceptibility to and rate of damage,

    c) NDE methods, coverage and frequency, and

    d) Accessibility to expected deterioration areas.

    Inspection effectiveness may be introduced into the probability of failure calculation by using Bayesian analysisor more directly by modifying the model for the independent variables, the distribution function, and/or thedistribution function parameters. For example, if the model for metal loss is determined to be a lognormaldistribution, the distribution parameters, mean and coefficient of variation, may be changed based on the NDEmethod and coverage used during an inspection. Extending this concept further, a series of standard inspectioncategories may be defined, and the distribution parameters adjusted based on the NDE method and coveragedefined for each standard category.

    In API RBI, examples of the inspection effectiveness categories for various damage mechanisms and theassociated inspections recommended (i.e. NDE technique and coverage) for each damage mechanism areprovided inPart 2,Annex 2.C. These are provided as examples to the user and represent minimally acceptableinspections per damage mechanism, corresponding to various inspection effectiveness ratings. The usershould adopt and modify similar tables according to specific risk management plans and experience-basedinspection programs. In addition, the rules for combining the benefits of multiple inspections are also providedin Part 2

    By identifying credible damage mechanisms, determining the damage rate, and selecting an inspectioneffectiveness category based on a defined level of inspection, a probability of failure and associated risk may bedetermined using

    .

    Equations (1.8) or (1.9)

    4.4.4 Inspection Effecti veness Example

    . The probability of failure and risk may be determined using theseequations for future time periods or conditions as well as current conditions by projecting the damage rate andassociated flaw size into the futurean inspection program will become more effective.

    In API RBI, the inspection effectiveness is graded A through E, with an A inspection providing the most effectiveinspection available (90% effective) and E representing no inspection. A description of the inspection effectivelevels for general thinning damage is provided in Part 2

    To illustrate the method in which different inspection levels effect the damage factor and probability of failure,consider the example of the general thinning damage mechanism (procedures for modifying damage factorsbased on inspection effectiveness are provided in API 581 for all damage mechanisms). For general thinning,

    API RBI utilizes an approach based on a metal loss parameter,

    , Table 5.5.

    rtA . The damage factor is calculated as a

    function of this parameter and is based on the premise that as a pressure vessel or piping wall corrodes below

    the construction Code minimum wall thickness plus the specified corrosion allowance, the damage factor wi llincrease. An inspection program for general thinning will result in a reduction of the damage factor based on theeffectiveness of the inspection to quantify the corrosion rate. As an example, the general thinning damage

    factor,thin

    fD , for a component with an rtA equal to 0.5 is 1200 if there is no inspection (i.e. Inspection

    Effectiveness is E) as shown in Part 2, Table 5.5. If a B level inspection is performed, the damage factor isreduced to 600. If two B level inspections have been completed, the damage factor is further reduced to 200.

    When these damage factors are substituted into Equation (1.1),

    4.4.54.4.4 Inspection Planning

    it becomes apparent that an effective inspectionprogram can reduce the probability of failure of a component and the risk of loss of containment.

    In planning inspections using API RBI, a plan date is typically chosen far enough out into the future to include atime period covering one or several future maintenance turnarounds. Within this period, three cases arepossible based on predicted risk and the specified risk target.

    a) Case 1 Risk target is exceeded at a point in the future prior to the inspection plan date This is theclassical case and is represented inFigure 4.3. In this case, the results of an inspection plan will be thenumber of inspections required, as well as the type or inspection effectiveness required, to reduce the riskat the future plan date down below the risk target. The target date is the date where the risk target is

    expected to be reached and is the date of the recommended inspection.

    http://cbgshr01/KU4$/My%20Documents/Marathon%20Items/API%20Committee%20Items/API%20581/Documents/Part_02.pdfhttp://cbgshr01/KU4$/My%20Documents/Marathon%20Items/API%20Committee%20Items/API%20581/Documents/Part_02.pdfhttp://cbgshr01/KU4$/My%20Documents/Marathon%20Items/API%20Committee%20Items/API%20581/Documents/Part_02.pdfhttp://cbgshr01/KU4$/My%20Documents/Marathon%20Items/API%20Committee%20Items/API%20581/Documents/Part_02.pdf
  • 8/10/2019 Rp 581 Inspection Effectiveness

    7/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    1-6

    b) Case 2 Risk already exceeds the risk target at the time the RBI analysis is performed This case isshown in Figure 4.4and indicates that the current risk at the time of the RBI analysis exceeds the risktarget. An immediate inspection will be recommended at a level sufficient to reduce the risk at the futureplan date down below the risk target.

    c) Case 3 Risk at the future plan date does not exceed the risk target This case is shown in Figure 4.5and indicates that the predicted future risk at the plan date will not exceed the risk target and therefore, noinspection is recommended during the plan period. In this case, the inspection due date for inspectionscheduling purposes should be adjusted to the plan date indicating that an evaluation of the equipment forInspection or re-analysis of risk should be performed by the plan end date.

    The concept of how the different inspection techniques with different effectiveness levels can reduce risk isshown inFigure 4.3. In the example shown, a B Level inspection was recommended at the target date. This

    inspection level was sufficient since the risk predicted after the inspection was performed was determined to bebelow the risk target at the plan date. Note that inFigure 4.3,a D Levelinspection at the target date would not

    have been sufficient to satisfy the risk target criteria. The projected risk at the plan date would have exceededthe risk target.

    4.5 Nomenclature

    4.6 Tables

  • 8/10/2019 Rp 581 Inspection Effectiveness

    8/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    1-7

    4.7 Figures

    Figure 4.3 Case 1: Inspection Planning When th e Risk Target is Exceeded Between th e RBI Date andthe Plan Date and the Impact of Inspection at Various Levels of Effectiveness

    time

    Risk

    Installation

    Date

    RBI

    Date

    Target Date,

    InspectionPerformed

    Plan

    Date

    Risk Target

    Total Risk with

    Inspection at the

    Risk Target Date

    Total Risk without

    Inspection at the

    Risk Target Date

    A

    B

    C

    D

  • 8/10/2019 Rp 581 Inspection Effectiveness

    9/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    1-8

    5 PRESSURE VESSELS AND PIPING

    5.1 Probability of Failure

    5.2 Consequence of Failure

    5.3 Risk Analysis

    5.4 Inspection Planning Based on Risk Analysis

    The procedure to determine an inspection plan is provided inparagraph 4.4and is supplemented by Annex 2.C.This procedure may be used to determine both the time and type of inspection to be performed based on theprocess fluid and design conditions, component type and materials of construction, and the active damagemechanisms.

  • 8/10/2019 Rp 581 Inspection Effectiveness

    10/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    1-9

    6 ATMOSPHERIC STORAGE TANKS

    6.1 Probability of Failure

    6.2 Consequence of Failure

    6.3 Risk Analysis

    6.4 Inspection Planning Based on Risk Analysis

    The procedure to determine an inspection plan is provided inparagraph 4.4and is supplemented by Annex 2.C.This procedure may be used to determine both the time and type of inspection to be performed based on theprocess fluid and design conditions, component type and materials of construction, and the active damagemechanisms.

  • 8/10/2019 Rp 581 Inspection Effectiveness

    11/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    1-10

    7 PRESSURE RELIEF DEVICES

    7.1 General

    7.2 Probability of Failure

    7.2.1 Definition

    7.2.2 Calculation of Probabilit y of Failure to Open

    7.2.3 PRD Demand Rate

    7.2.4 PRD Probability of Failure on Demand

    a) General

    b) Categories of Service Severity

    c) Default Probability of Failure on Demand vs Time in Service

    d) Default Data for Balanced Bellows Pressure Relief Valves

    e) Default Weibull Parameters for Pilot-Operated Pressure Relief Valves

    f) Default Weibull Parameters for Rupture Disks

    g) Adjustment for Conventional PRVs Discharging to Closed System

    h) Adjustment for Overpressures Higher than Set Pressure

    i) Adjustment for Environmental Factors

    j) Presence of an Upstream Rupture Disk

    k) Use of Plant Specific Failure Data

    l) Modification of Failure on Demand Based on PRD Specific Testing Data

    1) Tracking Historical Inspection and Testing Data

    2) Determine the Effectiveness of Inspection Programs in Confirming Failure Rates

    Inspection programs vary in their effectiveness for determining failure rates. The definitions forinspection effectiveness used by API RBI are provided in Table 7.7

    Aan inspection and testing program should track the effectiveness of the inspection and the testingperformed for each pressure relief device. The concept of inspection effectiveness is similar to theconcept that is described in

    . The inspections effectiveness isbased on the inspections ability to adequately predict the failure (or pass) state of the PRD being

    inspected. Limitations in the ability of a program to improve confidence in the failure rate result from theinability of some test methods to detect and quantify damage.For pressure relief devices,

    paragraph 4.4.3

    Default confidence values, based on expert opinion, are provided in

    Annex 2.C of this documentfor fixed equipment. With Forinspection effectiveness for pressure relief devices, a measure of confidence in the Pass/Fail/Leakresult of the inspection effort is obtainedutilized. For a full discussion of inspection effectiveness asrelated to pressure relief devices, refer to Annex 2.C.

    Table 7.8, indicating the level ofconfidence each of the three levels of inspection effectiveness will accurately represent actual PRDperformance in an overpressure demand case. For example, the 90% effectiveness associated withpassing a highly effective bench test means that there is a 90% probability the valve would haveopened upon demand in its installed service. Therefore, it also carries a 10% probability that the PRDwould have failed upon demand during operation. The values shown in Table 7.8

    The conditional probabilities listed reflect the confidence that an inspection result will predict thedevices performance upon demand. For passing PRDs, the highest confidence is assigned when the

    PRD is bench tested without any prior cleaning (i.e. as-received condition.) Bench testing where thedevices are cleaned prior to testing, in-situ testing, and visual inspections provide some informationabout PRD performance, but are not considered as reliable as the as-received bench test.

    are called conditional

    probabilities.

  • 8/10/2019 Rp 581 Inspection Effectiveness

    12/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    1-11

    The philosophy is different for PRDs that fail an inspection. In the case of a highly effective bench testfailure, the 95% confidence translates to a 95% chance that the PRD would have failed upon demand inactual service. Unlike the passing test case, the usually effective in-situ test, or bench test where thevalve has been steamed out prior to testing, is assumed to have the same 95% confidence for failureupon demand in actual service.

    An ineffective test does not provide any information to predict PRD performance upon demand andtherefore the PRD does not receive any credit for the test/inspection date. The inspection still will getsome credit if an overhaul was performed in that the valve is assumed to be returned to service in like-new condition, and the in-service duration is calculated from the ineffective inspection date.

    3) Inspection Updating

    4) Example Bayesian Updating Calculation

    5) Updating Failure Rates after Modification to the Design of the PRD

    7.2.5 Protected Equipment Failure Frequency as a Function of Overpressure

    7.2.6 Calculation Procedure

    7.2.7 Overview7.2.8 Calculation of Probability of Leakage

    7.2.9 Calculation Procedure

    7.3 Consequence of PRD Failure to Open

    7.4 Consequ ence of Leakage

    7.5 Risk Analysis

    7.6 Inspection Planning Based on Risk Analysis

    7.7 Nomenclature

  • 8/10/2019 Rp 581 Inspection Effectiveness

    13/100

  • 8/10/2019 Rp 581 Inspection Effectiveness

    14/100

  • 8/10/2019 Rp 581 Inspection Effectiveness

    15/100

  • 8/10/2019 Rp 581 Inspection Effectiveness

    16/100

  • 8/10/2019 Rp 581 Inspection Effectiveness

    17/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-3

    PART CONTENTS1

    SCOPE

    ........................................................................................................................................... 82

    REFERENCES

    ............................................................................................................................... 83

    DEFINTIONS

    .................................................................................................................................. 84

    PROBABILITY OF FAILURE CALCULATIONS

    ........................................................................... 84.1

    Overview

    ................................................................................................................................ 84.2

    Calculation of Probability of Failure

    ................................................................................... 84.3

    Generic Failure Frequency

    .................................................................................................. 84.4

    Damage Factor

    ...................................................................................................................... 84.4.1

    Overview

    ........................................................................................................................ 84.4.2

    Damage Factor Combinatio n for Multipl e Damage Mechanisms

    ............................ 84.4.3

    Inspection Effectiveness Category

    ............................................................................. 84.5

    Management Systems Factor

    .............................................................................................. 84.5.1

    General

    ........................................................................................................................... 84.5.2

    Overview

    ........................................................................................................................ 84.5.3

    Aud it ing Tech nique

    ...................................................................................................... 84.5.4

    Calculation of the Management Systems Factor

    ....................................................... 84.6

    Nomenclature

    ........................................................................................................................ 84.7

    Tables

    ..................................................................................................................................... 95

    THINNING DAMAGE FACTOR

    ................................................................................................... 105.1

    Scope

    ................................................................................................................................... 105.2

    Screening Criteria

    ............................................................................................................... 105.3

    Required Data

    ..................................................................................................................... 105.4

    Basic Assumptions

    ............................................................................................................ 105.5

    Determination of t he Damage Factor

    ................................................................................ 105.5.1

    Overview

    ...................................................................................................................... 105.5.2

    Inspection Effectiveness

    ............................................................................................ 105.5.3

    Calculation of the Damage Factor

    ............................................................................. 105.6

    Nomenclature

    ...................................................................................................................... 105.7

    Tables

    ................................................................................................................................... 106

    COMPONENT LINING DAMAGE FACTOR

    ................................................................................ 157

    SCC DAMAGE FACTOR CAUSTIC CRACKING

    .................................................................... 167.1

    Scope

    ................................................................................................................................... 167.2

    Description of Damage

    ....................................................................................................... 167.3

    Screening Criteria

    ............................................................................................................... 16

    7.4

    Required Data

    ..................................................................................................................... 167.5

    Basic Assumptions

    ............................................................................................................ 167.6

    Determination of t he Damage Factor

    ................................................................................ 167.6.1

    Overview

    ...................................................................................................................... 167.6.2

    Inspection Effectiveness

    ............................................................................................ 167.6.3

    Calculation of the Damage Factor

    ............................................................................. 167.7

    Nomenclature

    ...................................................................................................................... 167.8

    References

    .......................................................................................................................... 167.9

    Tables

    ................................................................................................................................... 168

    SCC DAMAGE FACTOR AMINE CRACKING

    ......................................................................... 188.1

    Scope

    ................................................................................................................................... 188.2

    Description of Damage

    ....................................................................................................... 188.3

    Screening Criteria

    ............................................................................................................... 188.4

    Required Data

    ..................................................................................................................... 188.5

    Basic Assumptions

    ............................................................................................................ 188.6

    Determination of t he Damage Factor

    ................................................................................ 188.6.1

    Overview

    ...................................................................................................................... 188.6.2

    Inspection Effectiveness

    ............................................................................................ 18

    8.6.3

    Calculation of the Damage Factor

    ............................................................................. 18

  • 8/10/2019 Rp 581 Inspection Effectiveness

    18/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-4

    8.7

    Nomenclature

    ...................................................................................................................... 188.8

    References

    .......................................................................................................................... 188.9

    Tables

    ................................................................................................................................... 189

    SCC DAMAGE FACTOR SULFIDE STRESS CRACKING

    ..................................................... 209.1

    Scope

    ................................................................................................................................... 209.2

    Description of Damage

    ....................................................................................................... 209.3

    Screening Criteria

    ............................................................................................................... 209.4

    Required Data

    ..................................................................................................................... 209.5

    Basic Assumptions

    ............................................................................................................ 209.6

    Determination of t he Damage Factor

    ................................................................................ 209.6.1

    Overview

    ...................................................................................................................... 209.6.2

    Inspection Effectiveness

    ............................................................................................ 209.6.3

    Calculation of the Damage Factor

    ............................................................................. 209.7

    Nomenclature

    ...................................................................................................................... 209.8

    References

    .......................................................................................................................... 209.9

    Tables

    ................................................................................................................................... 2010

    SCC DAMAGE FACTOR HIC/SOHIC-H2 S .............................................................................. 2210.1

    Scope

    ................................................................................................................................... 22

    10.2

    Description of Damage

    ....................................................................................................... 2210.3

    Screening Criteria

    ............................................................................................................... 2210.4

    Required Data

    ..................................................................................................................... 2210.5

    Basic Assumptions

    ............................................................................................................ 2210.6

    Determination of t he Damage Factor

    ................................................................................ 2210.6.1

    Overview

    ...................................................................................................................... 2210.6.2

    Inspection Effectiveness

    ............................................................................................ 2210.6.3

    Calculation of the Damage Factor

    ............................................................................. 2210.7

    Nomenclature

    ...................................................................................................................... 2210.8

    References

    .......................................................................................................................... 2210.9

    Tables

    ................................................................................................................................... 2211

    SCC DAMAGE FACTOR CARBONATE CRACKING

    ............................................................. 2411.1

    Scope

    ................................................................................................................................... 2411.2

    Description of Damage

    ....................................................................................................... 2411.3

    Screening Criteria

    ............................................................................................................... 2411.4

    Required Data

    ..................................................................................................................... 2411.5

    Basic Assumptions

    ............................................................................................................ 2411.6

    Determination of t he Damage Factor

    ................................................................................ 2411.6.1

    Overview

    ...................................................................................................................... 2411.6.2

    Inspection Effectiveness

    ............................................................................................ 2411.6.3

    Calculation of the Damage Factor

    ............................................................................. 2411.7

    Nomenclature

    ...................................................................................................................... 2411.8

    References

    .......................................................................................................................... 2411.9

    Tables

    ................................................................................................................................... 2412

    SCC DAMAGE FACTOR PTA CRACKING

    ............................................................................. 2612.1

    Scope

    ................................................................................................................................... 2612.2

    Description of Damage

    ....................................................................................................... 2612.3

    Screening Criteria

    ............................................................................................................... 2612.4

    Required Data

    ..................................................................................................................... 2612.5

    Basic Assumptions

    ............................................................................................................ 2612.6

    Determination of t he Damage Factor

    ................................................................................ 2612.6.1

    Overview

    ...................................................................................................................... 2612.6.2

    Inspection Effectiveness

    ............................................................................................ 2612.6.3

    Calculation of the Damage Factor

    ............................................................................. 2612.7

    Nomenclature

    ...................................................................................................................... 26

    12.8

    References

    .......................................................................................................................... 2612.9

    Tables

    ................................................................................................................................... 2613

    SCC DAMAGE FACTOR CLSCC

    ............................................................................................ 28

  • 8/10/2019 Rp 581 Inspection Effectiveness

    19/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-5

    13.1

    Scope

    ................................................................................................................................... 2813.2

    Description of Damage

    ....................................................................................................... 2813.3

    Screening Criteria

    ............................................................................................................... 2813.4

    Required Data

    ..................................................................................................................... 2813.5

    Basic Assumptions

    ............................................................................................................ 2813.6

    Determination of t he Damage Factor

    ................................................................................ 2813.6.1

    Overview

    ...................................................................................................................... 2813.6.2

    Inspection Effectiveness

    ............................................................................................ 2813.6.3

    Calculation of the Damage Factor

    ............................................................................. 2813.7

    Nomenclature

    ...................................................................................................................... 2813.8

    References

    .......................................................................................................................... 2813.9

    Tables

    ................................................................................................................................... 2814

    SCC DAMAGE FACTOR HSC-HF

    ........................................................................................... 3014.1

    Scope

    ................................................................................................................................... 3014.2

    Description of Damage

    ....................................................................................................... 3014.3

    Screening Criteria

    ............................................................................................................... 3014.4

    Required Data

    ..................................................................................................................... 3014.5

    Basic Assumptions

    ............................................................................................................ 30

    14.6

    Determination of t he Damage Factor

    ................................................................................ 3014.6.1

    Overview

    ...................................................................................................................... 3014.6.2

    Inspection Effectiveness

    ............................................................................................ 3014.6.3

    Calculation of the Damage Factor

    ............................................................................. 3014.7

    Nomenclature

    ...................................................................................................................... 3014.8

    References

    .......................................................................................................................... 3014.9

    Tables

    ................................................................................................................................... 3015

    SCC DAMAGE FACTOR HIC/SOHIC-HF

    ................................................................................ 3215.1

    Scope

    ................................................................................................................................... 3215.2

    Description of Damage

    ....................................................................................................... 3215.3

    Screening Criteria

    ............................................................................................................... 3215.4

    Required Data

    ..................................................................................................................... 3215.5

    Basic Assumptions

    ............................................................................................................ 3215.6

    Determination of t he Damage Factor

    ................................................................................ 3215.6.1

    Overview

    ...................................................................................................................... 3215.6.2

    Inspection Effectiveness

    ............................................................................................ 3215.6.3

    Calculation of the Damage Factor

    ............................................................................. 3215.7

    Nomenclature

    ...................................................................................................................... 3215.8

    References

    .......................................................................................................................... 3215.9

    Tables

    ................................................................................................................................... 3216

    EXTERNAL CORROSION DAMAGE FACTOR FERRITIC COMPONENT

    ............................ 3416.1

    Scope

    ................................................................................................................................... 3416.2

    Description of Damage

    ....................................................................................................... 3416.3

    Screening Criteria

    ............................................................................................................... 3416.4

    Required Data

    ..................................................................................................................... 3416.5

    Basic Assumption

    .............................................................................................................. 3416.6

    Determination of t he Damage Factor

    ................................................................................ 3416.6.1

    Overview

    ...................................................................................................................... 3416.6.2

    Inspection Effectiveness

    ............................................................................................ 3416.6.3

    Calculation of the Damage Factor

    ............................................................................. 3416.7

    Nomenclature

    ...................................................................................................................... 3416.8

    Tables

    ................................................................................................................................... 3417

    CUI DAMAGE FACTOR FERRITIC COMPONENT

    ................................................................. 36

  • 8/10/2019 Rp 581 Inspection Effectiveness

    20/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-6

    17.1

    Scope

    ................................................................................................................................... 3617.2

    Description of Damage

    ....................................................................................................... 3617.3

    Screening Criteria

    ............................................................................................................... 3617.4

    Required Data

    ..................................................................................................................... 3617.5

    Basic Assumption

    .............................................................................................................. 3617.6

    Determination of t he Damage Factor

    ................................................................................ 3617.6.1

    Overview

    ...................................................................................................................... 3617.6.2

    Inspection Effectiveness

    ............................................................................................ 3617.6.3

    Calculation of the Damage Factor

    ............................................................................. 3617.7

    Nomenclature

    ...................................................................................................................... 3617.8

    Tables

    ................................................................................................................................... 3618

    EXTERNAL CLSCC DAMAGE FACTOR AUSTENITIC COMPONENT

    ................................. 3918.1

    Scope

    ................................................................................................................................... 3918.2

    Description of Damage

    ....................................................................................................... 3918.3

    Required Data

    ..................................................................................................................... 3918.4

    Basic Assumption

    .............................................................................................................. 3918.5

    Determination of t he Damage Factor

    ................................................................................ 3918.5.1

    Overview

    ...................................................................................................................... 39

    18.5.2

    Inspection Effectiveness

    ............................................................................................ 3918.5.3

    Calculation of the Damage Factor

    ............................................................................. 3918.6

    Nomenclature

    ...................................................................................................................... 3918.7

    Tables

    ................................................................................................................................... 3919

    EXTERNAL CUI CLSCC DAMAGE FACTOR AUSTENITIC COMPONENT

    .......................... 4119.1

    Scope

    ................................................................................................................................... 4119.2

    Description of Damage

    ....................................................................................................... 4119.3

    Screening Criteria

    ............................................................................................................... 4119.4

    Required Data

    ..................................................................................................................... 4119.5

    Basic Assumption

    .............................................................................................................. 4119.6

    Determination of t he Damage Factor

    ................................................................................ 4119.6.1

    Overview

    ...................................................................................................................... 4119.6.2

    Inspection Effectiveness

    ............................................................................................ 4119.6.3

    Calculation of the Damage Factor

    ............................................................................. 4119.7

    Nomenclature

    ...................................................................................................................... 4119.8

    Tables

    ................................................................................................................................... 4120

    HTHA DAMAGE FACTOR

    ........................................................................................................... 4320.1

    Scope

    ................................................................................................................................... 4320.2

    Description of Damage

    ....................................................................................................... 4320.3

    Screening Criteria

    ............................................................................................................... 4320.4

    Required Data

    ..................................................................................................................... 4320.5

    Basic Assumption

    .............................................................................................................. 4320.6

    Determination of t he Damage Factor

    ................................................................................ 4320.6.1

    Overview

    ...................................................................................................................... 4320.6.2

    Inspection Effectiveness

    ............................................................................................ 4320.6.3

    Calculation of the Damage Factor

    ............................................................................. 4320.7

    Nomenclature

    ...................................................................................................................... 4320.8

    Tables

    ................................................................................................................................... 4321

    BRITTLE FACTURE DAMAGE FACTOR

    ................................................................................... 4521.1

    Scope

    ................................................................................................................................... 4521.2

    Description of Damage

    ....................................................................................................... 4521.3

    Screening Criteria

    ............................................................................................................... 4521.4

    Required Data

    ..................................................................................................................... 4521.5

    Basic Assumption

    .............................................................................................................. 4521.6

    Determination of t he Damage Factor

    ................................................................................ 45

    21.6.1

    Overview

    ...................................................................................................................... 4521.6.2

    Inspection Effectiveness

    ............................................................................................ 4521.6.3

    Calculation of the Damage Factor

    ............................................................................. 45

  • 8/10/2019 Rp 581 Inspection Effectiveness

    21/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-7

    21.7

    Nomenclature

    ...................................................................................................................... 4521.8

    Tables

    ................................................................................................................................... 4522

    TEMPER EMBRITTLEMENT DAMAGE FACTOR

    ...................................................................... 4622.1

    Scope

    ................................................................................................................................... 4622.2

    Description of Damage

    ....................................................................................................... 4622.3

    Screening Criteria

    ............................................................................................................... 4622.4

    Required Data

    ..................................................................................................................... 4622.5

    Basic Assumption

    .............................................................................................................. 4622.6

    Determination of t he Damage Factor

    ................................................................................ 4622.6.1

    Overview

    ...................................................................................................................... 4622.6.2

    Inspection Effectiveness

    ............................................................................................ 4622.6.3

    Calculation of the Damage Factor

    ............................................................................. 4622.7

    Nomenclature

    ...................................................................................................................... 4622.8

    References

    .......................................................................................................................... 4622.9

    Tables

    ................................................................................................................................... 4623

    885 EMBRITTLEMENT DAMAGE FACTOR

    ............................................................................... 4723.1

    Scope

    ................................................................................................................................... 4723.2

    Description of Damage

    ....................................................................................................... 47

    23.3

    Screening Criteria

    ............................................................................................................... 4723.4

    Required Data

    ..................................................................................................................... 4723.5

    Basic Assumption

    .............................................................................................................. 4723.6

    Determination of t he Damage Factor

    ................................................................................ 4723.6.1

    Overview

    ...................................................................................................................... 4723.6.2

    Inspection Effectiveness

    ............................................................................................ 4723.6.3

    Calculation of the Damage Factor

    ............................................................................. 4723.7

    Nomenclature

    ...................................................................................................................... 4723.8

    References

    .......................................................................................................................... 4723.9

    Tables

    ................................................................................................................................... 4724

    SIGMA PHASE EMBRITTLEMENT DAMAGE FACTOR

    ........................................................... 4824.1

    Scope

    ................................................................................................................................... 4824.2

    Description of Damage

    ....................................................................................................... 4824.3

    Screening Criteria

    ............................................................................................................... 4824.4

    Required Data

    ..................................................................................................................... 4824.5

    Basic Assumption

    .............................................................................................................. 4824.6

    Determination of t he Damage Factor

    ................................................................................ 4824.6.1

    Overview

    ...................................................................................................................... 4824.6.2

    Inspection Effectiveness

    ............................................................................................ 4824.6.3

    Calculation of the Damage Factor

    ............................................................................. 4824.7

    Nomenclature

    ...................................................................................................................... 4824.8

    References

    .......................................................................................................................... 4824.9

    Tables

    ................................................................................................................................... 4825

    PIPING MECHANICAL FATIGUE DAMAGE FACTOR

    .............................................................. 4925.1

    Scope

    ................................................................................................................................... 4925.2

    Description of Damage

    ....................................................................................................... 4925.3

    Screening Criteria

    ............................................................................................................... 4925.4

    Required Data

    ..................................................................................................................... 4925.5

    Basic Assumption

    .............................................................................................................. 4925.6

    Determination of t he Damage Factor

    ................................................................................ 4925.6.1

    Overview

    ...................................................................................................................... 4925.6.2

    Inspection Effectiveness

    ............................................................................................ 4925.6.3

    Calculation of the Damage Factor

    ............................................................................. 5025.7

    Nomenclature

    ...................................................................................................................... 5025.8

    Tables

    ................................................................................................................................... 50

  • 8/10/2019 Rp 581 Inspection Effectiveness

    22/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-8

    1 SCOPE

    2 REFERENCES

    3 DEFINTIONS

    4 PROBABILITY OF FAILURE CALCULATIONS

    4.1 Overview

    4.2 Calculation of Probability of Failure

    4.3 Generic Failure Frequency

    4.4 Damage Factor

    4.4.1 Overview

    4.4.2 Damage Factor Combination for Multip le Damage Mechanisms

    4.4.3 Inspection Effectiveness Category

    Damage factors are determined as a function of inspection effectiveness. Inspection effectiveness discussionand example tables are provided in Annex 2.C of this document. The five inspection effectiveness categoriesused in API RBI are shown in Table 4.3

    Inspections are ranked according to their expected effectiveness at detecting damage and correctly predictingthe rate of damage. The actual effectiveness of a given inspection technique depends on the characteristics ofthe damage mechanism.

    . The inspection effectiveness categories presented are meant to beexamples and in order to provide a guideline for the user inforassigning actual inspection effectiveness. Theactual effectiveness of any inspection technique depends on many factors such as the skill and training ofinspectors, and the level of expertise used in selecting inspection locations.

    The effectiveness of each inspection performed within the designated time period is characterized for eachdamage mechanism. The number of highest effectiveness inspections will be used to determine the damagefactor. If multiple inspections of a lower effectiveness have been cond ucted during the designated time period,they can be approximated to an equivalent higher effectiveness inspection in accordance with the followingrelationships:

    a) 2 Usually Effective (B) Inspections = 1 Highly Effective (A) Inspection, or 2B = 1A

    b) 2 Fairly Effective (C) Inspections = 1 Usually Effective (B) inspection, or 2C = 1B

    c) 2 Poorly Effective (D) Inspections = 1 Fairly Effective (C) inspection, or 2D = 1C

    Note that these equivalent higher inspection rules shall not be applied to No Inspections (E).

    4.5 Management Systems Factor

    4.5.1 General

    4.5.2 Overview

    4.5.3 Auditin g Technique

    4.5.4 Calculation of the Management Systems Factor

    4.6 Nomenclature

  • 8/10/2019 Rp 581 Inspection Effectiveness

    23/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-9

    4.7 Tables

    Table 4.3 Inspection Effecti veness Categories

    Qualitative InspectionEffectiveness

    CategoryDescription

    Highly EffectiveThe inspection methods will correctly identify the true damage state in nearlyevery case (or 80100% confidence).

    Usually EffectiveThe inspection methods will correctly identify the true damage state most ofthe time (or 6080% confidence).

    Fairly EffectiveThe inspection methods will correctly identify the true damage state about halfof the time (or 4060% confidence).

    Poorly Effective The inspection methods will provide little information to correctly identify thetrue damage state (or 2040% confidence).

    IneffectiveThe inspection method will provide no or almost no information that willcorrectly identify the true damage state and are considered ineffective fordetecting the specific damage mechanism (less than 20% confidence).

  • 8/10/2019 Rp 581 Inspection Effectiveness

    24/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-10

    5 THINNING DAMAGE FACTOR

    5.1 Scope

    5.2 Screening Criteria

    5.3 Required Data

    5.4 Basic Assumpti ons

    5.5 Determinatio n of the Damage Factor

    5.5.1 Overview

    5.5.2 Inspection Effectiveness

    Inspections are ranked according to their expected effectiveness at detecting thinning and correctly predictingthe rate of thinning. The actual effectiveness of a given inspection technique depends on the characteristics ofthe thinning mechanism, (i.e., whether it is general or localized).

    Examples of inspection activities for general and localized thinning, respectively, that are both intrusive (requiresentry into the equipment), non-intrusive (can be performed externally), and buried components are provided inAnnex 2.C,Tables 5.57.1,7.2, and 7.3through 5.7, respectively. Examples of inspection activities for generaland localized thinning, regarding tank shell courses and bottoms are provided in Annex 2.C,Tables 7.4 to 7.6.Note that the effectiveness category assigned to the inspection activity differs depending on whether thethinning is general or localized.

    For localized thinning, selection of locations for examination must be based on a thorough understanding of thedamage mechanism in the specific process.

    The effectiveness of each inspection performed within the designated time period must be characterized inaccordance a manner similar to with the examples provided in Annex 2.C,Tables 5.57.1 through 5.107.6,asapplicable. The number and category of the highest effective inspection will be used to determine the damagefactor. If multiple inspections of a lower effectiveness have been conducted during the designated time period,they can be equated to an equivalent higher effectiveness inspection in accordance with paragraph 4.4.3

    5.5.3 Calculation of the Damage Factor

    . Notethat for tank bottoms, credit is given for only one inspection.

    5.6 Nomenclature

    5.7 Tables

    Table 5.5 Guidelines for Assi gning Inspectio n Effectiveness General Thinning

    InspectionCategory

    InspectionEffectiveness

    CategoryIntrusive Inspection Example Non-intrusive Inspection Example

    AHighly

    Effective

    50 to 100% examination of thesurface (partial internalsremoved), and accompanied bythickness measurements

    50 to 100% ultrasonic scanningcoverage (automated or manual) orprofile radiography

    BUsuallyEffective

    Nominally 20% examination (nointernals removed), and spotexternal ultrasonic thicknessmeasurements

    Nominally 20% ultrasonic scanningcoverage (automated or manual), orprofile radiography, or external spotthickness (statistically validated)

  • 8/10/2019 Rp 581 Inspection Effectiveness

    25/100

  • 8/10/2019 Rp 581 Inspection Effectiveness

    26/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-12

    Table 5.7 Guidelines for Assi gning Inspecti on Effectiveness Buried Components

    InspectionCategory

    InspectionEffectiveness Category

    Intrusive InspectionExample

    Non-intrusiveInspection Example

    Non-intrusiveInspection Example

    A Highly Effective

    100% internal inspectionvia state-of-the-art piggingand in-line inspectiontechnologies (UT, MFL,internal rotary UT, etc.)

    100% external inspectionof equipment that is onlypartially buried using anNDE crawler withcircumferential inspectiontechnology (MFL, lamb-wave UT)

    Complete excavation,100% external visualinspection, and 100%inspection with NDEtechnologies (UTthickness measurementsuch as handheld devicesat close-interval gridlocations, UT B-scan,automated ultrasonicscanning, guided-waveUT global search, crawlerwith circumferentialinspection technology

    such as MFL or lamb-wave UT, digitalradiography in more thanone direction)

    a. Cathodic Protection(CP) Systemmaintained andmanaged by NACEcertified personnel andcomplying with NACESP0169 [14

    b. Close Interval Survey(at excavation sites) toassess theperformance of the CPsystem locally

    ] includesStray current surveyson a regular basis

    c.a. Sample soil andwater resistivity andchemistrymeasurements alongentire structure

    BUsuallyEffective

    Internal inspection viapigging and in-lineinspection technologies(UT, MFL, internal rotaryUT, etc.) of selected areas/ sections, combined withstatistical analysis orextreme value analysis(EVA).

    External inspection ofequipment that is onlypartially buried using anNDE crawler withcircumferential inspection

    technology (MFL, lamb-wave UT) on selectedareas / sections,combined with statisticalanalysis or extreme valueanalysis (EVA).

    Excavation at Selectedlocations, 100% externalvisual, and 100%inspection with NDEtechnologies (UTthickness measurementsuch as handheld devicesat close-interval gridlocations, UT B-scan,automated ultrasonicscanning, guided-waveUT global search, crawlerwith circumferentialinspection technologysuch as MFL or lamb-

    wave UT, digitalradiography in more thanone direction)

    a. CP System maintainedand managed byNACE certifiedpersonnel andcomplying with NACESP0169 [14

    b. Close Interval Survey(at excavation sites) toassess theperformance of the CPsystem locally

    ] includesStray current surveyson a regular basis

    c. Sample soil and waterresistivity and

    chemistrymeasurements alongentire structure

    d.a. DC VoltageGradient (DCVG) todetermine coatingdamage

    C Fairly Effective

    Partly inspection byinternal smart pig orspecialized crawlerdevice, including arepresentative portion ofthe buried pipe. (

  • 8/10/2019 Rp 581 Inspection Effectiveness

    27/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-13

    Table 5.8 Guidelines f or Ass igning Inspection Eff ectiveness Tank Shell Course InternalCorrosion

    InspectionCategory

    InspectionEffectiveness

    Category

    Inspection

    A Highly Effective

    a. Intrusive inspection good visual inspection with pit depth gage measurementsat suspect locations.

    b.a. UT scanning follow up on suspect location and as general confirmation of wallthickness

    BUsuallyEffective

    a. External spot UT scanning based on visual information from previous internalinspection of this tank or similar service tanks.

    b.a. Internal video survey with external UT follow-up.

    C Fairly EffectiveEternal spot UT scanning based at suspect locations without benefit of any internalinspection information on tank type or service.

    D Poorly Effective

    External spot UT based at suspect locations without benefit of any internal inspection

    information on tank type or service.

    E Ineffective No inspection

    Table 5.9 Guid elines for A ssi gni ng Insp ecti on Effect iveness Tank Sh ell Course ExternalCorrosion

    InspectionCategory

    InspectionEffectiveness

    Category

    Inspection

    A Highly Effective

    a. Insulated >95% external visual inspection prior to removal of insulation

    b. Remove >90% of insulation at suspect locations, OR >90% pulse eddy currentinspection.

    c. Visual inspection of the exposed surface area with follow-up by UT or pitgauge as required.

    a. Non-Insulated - >95% v isual inspection of the exposed surface area withfollow-up by UT or pit gauge as required.

    B Usually Effective

    a. Insulated >95% external visual inspection prior to removal of insulationb. Remove >30% of insulation at suspect locations, OR >30% pulse eddy current

    inspection.

    c. Visual inspection of the exposed surface area with follow-up by UT or pitgauge as required.

    a. Non-Insulated - >50% v isual inspection of the exposed surface area withfollow-up by UT or pit gauge as required.

    C Fairly Effective

    a. Insulated >95% external visual inspection prior to removal of insulation

    b. Remove >10% of insulation at suspect locations, OR >10% pulse eddy currentinspection.

    c. Visual inspection of the exposed surface area with follow-up by UT or pitgauge as required.

    a. Non-Insulated - >25% v isual inspection of the exposed surface area withfollow-up by UT or pit gauge as required.

    D Poorly Effective

    a. Insulated >95% external visual inspection prior to removal of insulation

    b. Remove >5% of insulation at suspect locations, OR >5% pulse eddy currentinspection.

    c. Visual inspection of the exposed surface area with follow-up by UT or pitgauge as required.

    a. Non-Insulated - >10% v isual inspection of the exposed surface area withfollow-up by UT or pit gauge as required.

  • 8/10/2019 Rp 581 Inspection Effectiveness

    28/100

  • 8/10/2019 Rp 581 Inspection Effectiveness

    29/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-15

    6 COMPONENT LINING DAMAGE FACTOR

    6.1 Scope

    6.2 Screening Criteria

    6.3 Required Data

    6.4 Basic Assumpti ons

    6.5 Determinatio n of the Damage Factor

    6.5.1 Overview

    6.5.2 Inspection Effectiveness

    Inspections are ranked according to their expected effectiveness at detecting the specific damage mechanism.Examples of inspection activities that are both intrusive (requires entry into the equipment) and non-intrusive(can be performed externally), are provided inAnnex 2.C, Table 7.7.

    6.5.26.5.3 Calculation of the Damage Factor

    6.6 Nomenclature

    6.7 Tables

    6.8 Figures

  • 8/10/2019 Rp 581 Inspection Effectiveness

    30/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-16

    7 SCC DAMAGE FACTOR CAUSTIC CRACKING

    7.1 Scope

    7.2 Description of Damage

    7.3 Screening Criteria

    7.4 Required Data

    7.5 Basic Assumpti ons

    7.6 Determinatio n of the Damage Factor

    7.6.1 Overview

    7.6.2 Inspection Effectiveness

    Inspections are ranked according to their expected effectiveness at detecting caustic crackingthe specificdamage mechanism and correctly predicting the rate of damage.

    Examples of inspection activities for caustic cracking that are both intrusive (requires entry into the equipment)and non-intrusive (can be performed externally), are provided in Table 7.2Annex

    The effectiveness of each inspection performed within the designated time period must be characterized inaccordance with

    2.C, Table 7.8.

    Table 7.2. The number and category of the highest effective inspection will be used todetermine the damage factor. If multiple inspections of a lower effectiveness have been conducted during thedesignated time period, they can be equated to an equivalent higher effectiveness inspection in accordance withparagraph 4.4.3

    7.6.3 Calculation of the Damage Factor

    .

    7.7 Nomenclature

    7.8 References

    7.9 Tables

    Table 7.2 Guidelines fo r Assig ning Inspecti on Effectiveness Caustic Cracking

    InspectionCategory

    InspectionEffectiveness

    CategoryIntrusive Inspection Example Non-intrusive Inspection Example

    AHighly

    Effective

    Wet fluorescent Magneticparticle or dye penetrant testingof 25-100% of welds/cold bends;or Dye penetrant testing of 25-100% of welds/cold bends.

    Shear wave ultrasonic testing of 25-100% of welds/cold bends; orRadiographic testing of 50-100% ofwelds/cold bends.

    B

    Usually

    Effective

    Wet fluorescent Magneticparticle or dye penetrant testing

    of 10-24% of welds/cold bends;or Dye penetrant testing of 10-24% of welds/cold bends.

    Shear wave ultrasonic testing of 10-24% of welds/cold bends; or

    Radiographic testing of 25-49% ofwelds/cold bends.

  • 8/10/2019 Rp 581 Inspection Effectiveness

    31/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-17

    C Fairly Effective

    Magnetic particle or dyepenetrant testing of less than10% of welds/cold bends; or Dyepenetrant testing of less than10% of welds/cold bends.

    Shear wave ultrasonic testing of lessthan 10% of welds/cold bends; orRadiographic testing of less than 25%of welds/cold bends.

    DPoorly

    EffectiveVisual inspection Visual inspection for leaks

    E Ineffective No inspection No inspection

  • 8/10/2019 Rp 581 Inspection Effectiveness

    32/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-18

    8 SCC DAMAGE FACTOR AMINE CRACKING

    8.1 Scope

    8.2 Description of Damage

    8.3 Screening Criteria

    8.4 Required Data

    8.5 Basic Assumpti ons

    8.6 Determinatio n of the Damage Factor

    8.6.1 Overview

    8.6.2 Inspection Effectiveness

    Inspections are ranked according to their expected effectiveness at detecting the specific damage mechanism.Examples of inspection activities that are both intrusive (requires entry into the equipment) and non-intrusive(can be performed externally), are provided inAnnex 2.C, Table 7.9.

    8.6.2 Inspection Effectiveness

    Inspections are ranked according to their expected effectiveness at detecting amine cracking and correctlypredicting the rate of damage.

    Examples of inspection activities for Amine cracking that are both intrusive (requires entry into the equipment)and non-intrusive (can be performed externally), are provided in Table 8.2

    The effectiveness of each inspection performed within the designated time period must be characterized inaccordance with

    .

    Table 8.2. The number and category of the highest effective inspection will be used todetermine the damage factor. If multiple inspections of a lower effectiveness have been conducted during thedesignated time period, they can be equated to an equivalent higher effectiveness inspection in accordance withparagraph 4.4.3.

    8.6.3 Calculation of the Damage Factor

    8.7 Nomenclature

    8.8 References

    8.9 Tables

    Table 8.2 Guidelines fo r Assig ning Inspectio n Effectiveness Ami ne Cracki ng

    InspectionCategory

    InspectionEffectiveness

    CategoryIntrusive Inspection Example Non-intrusive Inspection Example

    AHighly

    Effective

    Wet fluorescent magnetic particletesting of 100% of repair weldsand 50-100% of other welds/cold

    bends.

    None

    BUsuallyEffective

    Wet fluorescent magnetic particletesting of 20-49% of welds/cold

    Shear wave ultrasonic testing of 50-100% of welds/cold bends; or Acoustic

  • 8/10/2019 Rp 581 Inspection Effectiveness

    33/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-19

    bends. Emission testing with follow-up shearwave UT.

    C Fairly Effective

    Wet fluorescent magnetic particletesting of less than 20% ofwelds/cold bends; or Drymagnetic particle testing of 50-100% of welds/cold bends; or Dyepenetrant testing of 50-100% ofwelds/cold bends.

    Shear wave ultrasonic testing of 20-49%of welds/cold bends.

    DPoorly

    Effective

    Dry magnetic particle testing ofless than 50% of welds/coldbends; or Dye penetrant testing ofless than 50% of welds/coldbends.

    Shear wave ultrasonic testing of lessthan 20% of welds/cold bends; orRadiographic testing; or Visualinspection for leaks.

    E Ineffective Visual inspection No inspection

  • 8/10/2019 Rp 581 Inspection Effectiveness

    34/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-20

    9 SCC DAMAGE FACTOR SULFIDE STRESS CRACKING

    9.1 Scope

    9.2 Description of Damage

    9.3 Screening Criteria

    9.4 Required Data

    9.5 Basic Assumpti ons

    9.6 Determinatio n of the Damage Factor

    9.6.1 Overview

    9.6.2 Inspection Effectiveness

    Inspections are ranked according to their expected effectiveness at detecting the specific damage mechanism.Examples of inspection activities that are both intrusive (requires entry into the equipment) and non-intrusive(can be performed externally), are provided inAnnex 2.C, Table 7.10.

    9.6.2 Inspection Effectiveness

    Inspections are ranked according to their expected effectiveness at detecting sulfide stress cracking andcorrectly predicting the rate of damage.

    Examples of inspection activities for sulfide stress cracking that are both intrusive (requires entry into theequipment) and non-intrusive (can be performed externally), are provided in Table 9.2

    The effectiveness of each inspection performed within the designated time period must be characterized inaccordance with

    .

    Table 9.2 The number and category of the highest effective inspection will be used todetermine the damage factor. If multiple inspections of a lower effectiveness have been conducted during thedesignated time period, they can be equated to an equivalent higher effectiveness inspection in accordance withparagraph 4.4.3

    9.6.3 Calculation of the Damage Factor

    .

    9.7 Nomenclature

    9.8 References

    9.9 Tables

    Table 9.2 Guidelines fo r Assig ning Inspecti on Effectiveness Sulfide Stress Cracking

    InspectionCategory

    InspectionEffectiveness

    CategoryIntrusive Inspection Example Non-intrusive Inspection Example

    AHighly

    Effective

    Wet fluorescent magneticparticle testing of 25-100% of

    weldments.

    Shear wave ultrasonic testing of 25-100% of weldments, transverse and

    parallel to the weld with the weld capremoved; or Acoustic Emission testingwith follow-up shear wave UT.

  • 8/10/2019 Rp 581 Inspection Effectiveness

    35/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-21

    BUsuallyEffective

    Wet fluorescent magneticparticle testing of 10-24% ofweldments; or Dry magneticparticle testing of 25-100% ofweldments; or Dye penetranttesting of 25-100% ofweldments.

    Shear wave ultrasonic testing of 10-24% of weldments; Radiographictesting of 50-100% of weldments.

    C Fairly Effective

    Wet fluorescent magneticparticle testing of less than 10%of weldments; or Dry magneticparticle testing of less than 25%of weldments; or Dye penetranttesting of less than 25% ofweldments.

    Shear wave ultrasonic testing of lessthan 10% of weldments; Radiographictesting of 20-49% of weldments.

    DPoorly

    EffectiveVisual inspection Radiographic testing of less than 20%

    of weldments.

    E Ineffective No inspection No inspection

  • 8/10/2019 Rp 581 Inspection Effectiveness

    36/100

    API RP 581 RISK-BASED INSPECTION TECHNOLOGY

    2-22

    10 SCC DAMAGE FACTOR HIC/SOHIC-H2

    10.1 Scope

    S

    10.2 Description of Damage

    10.3 Screening Criteria

    10.4 Required Data

    10.5 Basic Assumpti ons

    10.6 Determinatio n of the Damage Factor

    10.6.1 Overview

    10.6.2 Inspection Effectiveness

    Inspections are ranked according to their expected effectiveness at detecting the specific damage mechanism.Examples of inspection activities that are both intrusive (requires entry into the equipment) and non-intrusive(can be performed externally), are provided inAnnex 2.C, Table 7.11.

    10.6.2 Inspection Effectiveness

    Inspections are ranked according to their expected effectiveness at detect