rp lecture 0

Upload: benni-wewok

Post on 03-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Rp Lecture 0

    1/48

    Polymer Rheology

    P Sunthar

    Department of Chemical EngineeringIndian Institute of Technology, Bombay

    Mumbai 400076, [email protected]

    05 Jan 2010

    http://localhost/var/www/apps/conversion/tmp/scratch_2/[email protected]://find/http://localhost/var/www/apps/conversion/tmp/scratch_2/[email protected]
  • 7/29/2019 Rp Lecture 0

    2/48

    Introduction Phenomenology Modelling

    Outline of the Lecture

    1 Introduction

    2 Phenomenology

    3 Modelling

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 2 / 44

    http://find/
  • 7/29/2019 Rp Lecture 0

    3/48

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    Outline of this Section

    1 IntroductionNature of Polymeric LiquidsPolymer Rheology

    2 Phenomenology

    3 Modelling

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 3 / 44

    http://find/
  • 7/29/2019 Rp Lecture 0

    4/48

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    Questions to Ask for a New Phenomena

    Fundamental Questions

    What makes the phenomena different ?

    How to represent in terms of a mathematical model ?

    Are there distinct laws or rules for the behaviour ?

    Are there other known phenomena that obey similar laws ?

    What role has this played in the current state of theuniverse ?

    Application oriented questions

    Can it be employed for betterment of quality of life?

    Consequences to processes that manipulate the material ?

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 4 / 44

    http://find/
  • 7/29/2019 Rp Lecture 0

    5/48

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    Polymeric Liquids

    Definition

    Liquids that contain Polymers

    Liquids: Materials that flow

    Simple Liquids

    Definition: Material that does not support shear stress atrest

    Complex fluids

    Liquid (viscous) and Solid (elastic) like behaviourDynamic properties are not thermodynamic constantsEg: Viscosity = f(), = f(t).

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 5 / 44

    d h l d ll f l d l h l

    http://find/
  • 7/29/2019 Rp Lecture 0

    6/48

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    Chemical Nature

    Long chain monomers joined by chemical bonds

    Large molecular weights: 1000 to 109

    Linear or branchedNatural (DNA, Proteins) or Synthetic

    Linear

    Branched

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 6 / 44

    I t d ti Ph l M d lli N t f P l i Li id P l Rh l

    http://find/
  • 7/29/2019 Rp Lecture 0

    7/48

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    Physical Nature

    Linearity of large portions: L dFlexibility: Not rigid long rods

    Is NOT: Suspension ofpolystyrene beads

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 7 / 44

    I t d ti Ph l M d lli N t f P l i Li id P l Rh l

    http://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    8/48

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    States of Polymeric Liquids

    Polymer Melts

    T> Tg. Eg HDPE

    ConcentratedSolution

    Semi-dilute solution

    Dilute Solution, Eg:Polystyrene incyclohexane

    Polymer Melt

    Semi-DiluteSolution

    Concentrated

    Solution

    Dilute Solution

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 8 / 44

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    http://find/
  • 7/29/2019 Rp Lecture 0

    9/48

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    Role of Temperature

    Noodle SoupWhat is the difference between apolymeric liquid to us and a hugebowl of noodles to a Giant?

    Noodles are linear, Soup is like asolvent.

    Difference Random lineartranslating motion

    Noodles is a zero temperature(Frozen) system

    Polymeric liquid is a finitetemperature system

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 9 / 44

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    http://find/
  • 7/29/2019 Rp Lecture 0

    10/48

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    Role of Temperature

    Noodle SoupWhat is the difference between apolymeric liquid to us and a hugebowl of noodles to a Giant?

    Noodles are linear, Soup is like asolvent.

    Difference Random lineartranslating motion

    Noodles is a zero temperature(Frozen) system

    Polymeric liquid is a finitetemperature system

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 9 / 44

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    http://find/
  • 7/29/2019 Rp Lecture 0

    11/48

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    Role of Temperature

    Noodle SoupWhat is the difference between apolymeric liquid to us and a hugebowl of noodles to a Giant?

    Noodles are linear, Soup is like asolvent.

    Difference Random lineartranslating motion

    Noodles is a zero temperature(Frozen) system

    Polymeric liquid is a finitetemperature system

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 9 / 44

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    http://find/
  • 7/29/2019 Rp Lecture 0

    12/48

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    Role of Temperature

    Noodle SoupWhat is the difference between apolymeric liquid to us and a hugebowl of noodles to a Giant?

    Noodles are linear, Soup is like asolvent.

    Difference Random lineartranslating motion

    Noodles is a zero temperature(Frozen) system

    Polymeric liquid is a finitetemperature system

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 9 / 44

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    http://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    13/48

    gy g y q y gy

    Need for Study of Polymeric Liquids

    Polymer Processing

    Reactors and MixersExtrusion MouldingFilmsFibre Spinning

    Consumer Products

    ShampooPastesPrinting InksPaintsLamination and Coating

    Food Additives

    GumsGlycerine

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 10 / 44

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    http://find/
  • 7/29/2019 Rp Lecture 0

    14/48

    gy g y q y gy

    Nobel in Physics

    Pierre-Gilles de Gennes \d-zhen\19322007

    Nobel in Physics: 1991

    Nobel for generalising theory of phase

    transitions to polymers and liquidcrystals.

    Scaling Theory in Polymeric liquids

    Reptation in Polymer Melts

    Coil-stretch transitions in Extensionalflows

    Polymer induced Turbulent dragreduction

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 11 / 44

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    http://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    15/48

    Polymer Rheology

    Industrial Flows are Complex

    GeometryPolydisperse and Multi-component

    Understand Response to Simple flows (Viscometric)

    Shear

    ElongationalUnderstand Response of Simple Materials (reproducible)

    Single or two component systemsMonodisperse molecular weightDilute Systems

    Melts (Pure polymer)

    Rheology

    Science of Deformation and Flow

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 12 / 44

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    http://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    16/48

    Polymer Rheology

    Industrial Flows are Complex

    GeometryPolydisperse and Multi-component

    Understand Response to Simple flows (Viscometric)

    Shear

    ElongationalUnderstand Response of Simple Materials (reproducible)

    Single or two component systemsMonodisperse molecular weightDilute Systems

    Melts (Pure polymer)

    Rheology

    Science of Deformation and Flow

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 12 / 44

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    http://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    17/48

    Rheology Core: Viscosity and Elasticity

    What is Deformation?

    Relative displacements withinmaterialMeasured by Deformation(Strain): Resisted by Elasticity

    G =xy

    What is Flow?

    Continuous Relative motion

    Measured by rate ofDeformation (Strain rate): Resisted by viscosity

    =xy

    Deformation

    Flow

    Shear

    Elongation

    Elongation

    Shear

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 13 / 44

    Introduction Phenomenology Modelling Nature of Polymeric Liquids Polymer Rheology

    http://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    18/48

    Polymers, Soft Matter, Complex Fluids

    Liquid Viscosity Modulus

    (Pa.s) G (Pa)Water 103 109

    An Oil 0.1 108

    A polymer solution 1 10

    A polymer melt 105

    104

    A glass > 1015 > 1010

    Soft Materials

    Elasticity has Entropic Origin (Not Energetic origin as forsolids)G proportional to kBTtimes number concentration offlexible unitsPhysical feel of softness, intermediate G

    Complex mechanical response and microstructureP Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 14 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    http://find/
  • 7/29/2019 Rp Lecture 0

    19/48

    Outline of this Section

    1 Introduction

    2 Phenomenology

    Visual PhenomenaLinear viscoelasticityNonlinear Phenomena

    3 Modelling

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 15 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    http://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    20/48

    Weissenberg Rod Climbing Effect

    Rod rotating in a polymericliquid

    Fluid climbs the rod

    Common fluids that show

    Gum solutionsBatter (with egg white)

    Due to Normal stress differences

    psidot, Youtube:npZzlgKjs0I

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 16 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    http://www.youtube.com/watch?v=npZzlgKjs0Ihttp://www.youtube.com/watch?v=npZzlgKjs0Ihttp://www.youtube.com/watch?v=npZzlgKjs0Ihttp://www.youtube.com/watch?v=npZzlgKjs0Ihttp://video/weissenberg-effect.mpeghttp://video/weissenberg-effect.mpeghttp://find/
  • 7/29/2019 Rp Lecture 0

    21/48

    Extrudate or Die Swell

    POLYOXTM

    (PEO, PEG) SolutionEjected from a syringe

    Significant increased diameterupon exit

    Also known as Barus EffectNewtonian fluids diameter doesnot change significantly

    Due to Normal stress differences

    psidot, Youtube:KcNWLIpv8g

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 17 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    http://www.youtube.com/watch?v=KcNWLIpv8ghttp://www.youtube.com/watch?v=KcNWLIpv8ghttp://www.youtube.com/watch?v=KcNWLIpv8ghttp://www.youtube.com/watch?v=KcNWLIpv8ghttp://video/die-swell.mpeghttp://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    22/48

    Tubeless Syphon

    Elongational flowStresses hold up against gravityand surface tension

    After initial pouring (suction) afree-surface syphon ismaintained.

    Also known as Fano Flow

    psidot, Youtube:aY7xiGQ-7iw

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 18 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    http://www.youtube.com/watch?v=aY7xiGQ-7iwhttp://www.youtube.com/watch?v=aY7xiGQ-7iwhttp://www.youtube.com/watch?v=aY7xiGQ-7iwhttp://www.youtube.com/watch?v=aY7xiGQ-7iwhttp://video/tubeless-syphon.mpeghttp://video/tubeless-syphon.mpeghttp://find/
  • 7/29/2019 Rp Lecture 0

    23/48

    Drop Formation

    Jet and Drop breakup

    Elongational flow

    Dilute PEO solutionElongational stresses holdagainst surface tension andgravity driven breakup

    Satellite drop

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 19 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    T b l D R d i

    http://images/peo-water-drop.htmlhttp://find/
  • 7/29/2019 Rp Lecture 0

    24/48

    Turbulent Drag Reduction

    Small amounts of polymers (ppm) to water

    Fluid drag in pipelines reduced significantlyTransportation of liquids.2

    Firefighting: Farther throw

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 20 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    C i Fl

    http://find/
  • 7/29/2019 Rp Lecture 0

    25/48

    Contraction Flow

    Sudden contraction low Re Flow

    Elongational flow

    Lip-vortices

    Corner Vortices

    Newtonian

    Polymeric

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 21 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    R l ti Ti

    http://find/
  • 7/29/2019 Rp Lecture 0

    26/48

    Relaxation Times

    Observable microscopic time scale,

    Simple liquids 1015 secTime for large scale changes in polymer configurations

    Microseconds to minutes

    Similar order of macroscopic observation period andprocessing rates

    Configurations altered by thermal energy

    Elasticity

    is an Elastic time scale

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 22 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    Di i l N b

    http://find/
  • 7/29/2019 Rp Lecture 0

    27/48

    Dimensionless Numbers

    Macroscopic time scales

    Kinematic (rate of deformation)time scale

    for shear flows for extensional flows

    Dynamic time scale, tdTime to traverse a geometry orsectionPulsatile flowMay not be known apriori

    Weissenberg NumberFor Viscometric flows(with kinematictimescale)

    Wi = or (1)

    Deborah Number

    For complex flows (with

    dynamic timescale)

    De =

    td(2)

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 23 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    M l l W i ht D d f R l ti Ti

    http://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    28/48

    Molecular Weight Dependence of Relaxation Time

    Large scale motion depends on M

    Scaling dependence for a class of liquids

    Class Scaling

    Dilute solution in poor solvent M1.0Dilute solution in -conditions M1.5Dilute solution in good solvent M1.8Semi dilute solution chain

    M2

    Entangled Melts rep M3.4

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 24 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    Linear Response

    http://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    29/48

    Linear Response

    Response to small imposed deformation

    Linearity means additive responseLinearity of Response inViscous propertiesElastic properties

    Linear Viscoelastic Properties

    Mainly Polymer physics

    Liquid Viscosity Relaxation time Modulus (Pa.s) (s) G (Pa)

    Water 103 1012 109

    An Oil 0.1 109 108

    A polymer solution 1 0.1 10A polymer melt 105 10 104

    A glass > 1015 105 > 1010

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 25 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    Rheological Tests

    http://find/
  • 7/29/2019 Rp Lecture 0

    30/48

    Rheological Tests

    Oscillatory

    Controlled StressControlled Strain

    Stress RelaxationAfter step strainAfter cessation of shear flow

    Creep (Constant stress applied)

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 26 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    Zero shear rate viscosity

    http://find/
  • 7/29/2019 Rp Lecture 0

    31/48

    Zero-shear rate viscosity

    Linear response (

    0)

    Micro-structural information

    Dilute: c < c

    Intrinsic Viscosity (inverseconcentration)

    []0 lim0

    [] lim0

    limc0

    sc s

    []0 M

    Semi-dilute: c < c < c

    sp0 = 0 sEntangled: c > c

    1

    2

    14/3

    SemiDilute

    Entangled

    Dilute

    log c

    log

    sp0

    c

    c

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 27 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    Small Amplitude Oscillatory Tests

    http://find/
  • 7/29/2019 Rp Lecture 0

    32/48

    Small Amplitude Oscillatory Tests

    G: Elastic Modulus; G: Viscous

    Rubbery/PlateauGlassy

    Viscous Transition to Flow

    log()

    log(G

    )

    log

    (G

    )

    1

    G

    G

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 28 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    Plateau Modulus with Molecular Weight

    http://find/
  • 7/29/2019 Rp Lecture 0

    33/48

    Plateau Modulus with Molecular Weight

    Increased M

    IncreasedEntanglements

    Rubber like network

    Entanglements are likecross-links

    Crosslinked Polymer

    Entangled Melt

    Unentangled Melt

    log()

    log(G

    )

    G0N

    log()

    log(G

    )

    M

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 29 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    Characteristic Relaxation Time

    http://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    34/48

    Characteristic Relaxation Time

    Low Frequency response always Viscous

    G

    > G

    Wait long enough, even Mountains will flow!

    Low frequency scaling for all polymeric liquids (Maxwellmodel)

    G G22

    G 0 Cross over frequency or Characteristic relaxation time

    =

    G

    G

    Zero-shear rate viscosity estimate

    0 G

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 30 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    Stress Relaxation

    http://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    35/48

    Stress Relaxation

    Small step strain is linearResponse G(t) = xy/

    G(t) Fourier Transform G()Small t large : ElasticLarge t small : Viscous (flow)0 = Area under the G(t) curve

    0 G(0)for exponentially decaying tail:expt/

    Reptation

    Rouse

    t

    G(t)

    G0N

    e

    rep

    Reptation

    RouseMonomer

    log t

    log

    G(t)

    G0N

    0 e

    rep

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 31 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    Shear Thinning

    http://find/
  • 7/29/2019 Rp Lecture 0

    36/48

    Shear Thinning

    Decrease in viscosity upon shear

    More pronounced inconcentrated solutions thandilute

    Intermediate shear rates: PowerLaw Fluid

    Worm-like Micelles LivingPolymers abrupt changes

    Cylindrical micelles

    Breaking and formingLarge shear rates most aresmall fragments

    2

    2

    5 1

    4

    0Dilute Solution

    Concentrated solution

    Wormlike Micelle

    log

    log

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 32 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    Normal Stresses

    http://find/
  • 7/29/2019 Rp Lecture 0

    37/48

    Normal Stresses

    Simple liquids: Normal stress isthe pressure

    Complex fluids: Microstructureleads to flow induced anisotropy

    Normal Stresses:

    N1 = xx yyN2 = yy zz

    Shear thinning for 1 = N1/2N2 is usually 0 for polymericliquids

    log

    log

    ,

    N1

    N1

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 33 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    Extensional Viscosity

    http://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    38/48

    Extensional Viscosity

    Stretching and Compressing flowfield

    Contraction flowStagnation pointsSpinning of fibres

    Break up of jets to dropsBlow moulding

    Elongational viscosity E

    Experiments: Transient (not

    Steady) +

    E Tensile StressGrowth Coefficient

    Strain ( t) hardening

    log t

    log

    + E

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 34 / 44

    Introduction Phenomenology Modelling Visual Linear Nonlinear

    Trouton Ratio

    http://find/
  • 7/29/2019 Rp Lecture 0

    39/48

    Ratio of extensional to shearviscosity

    TR =E()

    (3 )Newtonian Liquids: TR = 3

    Solutions

    Branched Melts

    Linear Melts

    log , log

    log

    logE

    E

    3

    3

    100

    1000

    Melts

    Inelastic liquid

    Dilute Solution

    log , log

    logTR

    1/2

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 35 / 44

    Introduction Phenomenology Modelling Solution Viscosity Normal Stresses Extensional Viscosity

    Outline of this Section

    http://find/
  • 7/29/2019 Rp Lecture 0

    40/48

    1 Introduction

    2 Phenomenology

    3 ModellingBasicsShear ThinningNormal Stresses

    Extensional Viscosity

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 36 / 44

    Introduction Phenomenology Modelling Solution Viscosity Normal Stresses Extensional Viscosity

    Dilute Solution and Colloidal Suspensions

    http://find/
  • 7/29/2019 Rp Lecture 0

    41/48

    p

    Spherical particles only on the

    averageLike Porous particles (fluid canpass through)

    Suspension viscosity (Einstein)

    = s (1 + 2.5 )

    Dilute polymer solution

    = s1 + U

    R

    UR = 1.66 Zimm theory

    UR 1.5 Molecular simulationsand Experiments

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 37 / 44

    Introduction Phenomenology Modelling Solution Viscosity Normal Stresses Extensional Viscosity

    Tube Model

    http://find/
  • 7/29/2019 Rp Lecture 0

    42/48

    Chains cannot cross each other

    Entanglement is like a crosslinkMotion between entanglements

    Pervaded volume: Tube [SamEdwards, 1967]

    Primitive path

    Melt

    Entanglement

    Tube

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 38 / 44

    Introduction Phenomenology Modelling Solution Viscosity Normal Stresses Extensional Viscosity

    Reptation and other Relaxation Times

    http://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    43/48

    p

    Smallest time 0: Monomer

    relaxationIntermediate e: Rouserelaxation betweenentanglements

    Largest rep

    : Reptation orrelaxation along the lengthof the tube [P G de Gennes,1971]

    Diffusion time of polymer

    is reptation time

    Monomer

    Rouse

    Reptation

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 39 / 44

    Introduction Phenomenology Modelling Solution Viscosity Normal Stresses Extensional Viscosity

    Relaxation Modulus and Reptation

    http://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    44/48

    Relaxation after step strain

    Initial monomer relaxation 0

    Plateau region, relaxationbetween entaglements

    eTerminal region, reptation rep

    Viscosity related to reptation time

    0

    rep G(0)

    Reptation

    Rouse

    t

    G(t)

    G0N

    e

    rep

    Reptation

    RouseMonomer

    log t

    log

    G(t)

    G0N

    0 e

    rep

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 40 / 44

    Introduction Phenomenology Modelling Solution Viscosity Normal Stresses Extensional Viscosity

    Shear Thinning in Melts

    http://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    45/48

    Entangled state (rubber like) high viscosity

    Entanglements are constraints for motion

    Shear flow releases some constraints

    High shear rate chains align along flow

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 41 / 44

    Introduction Phenomenology Modelling Solution Viscosity Normal Stresses Extensional Viscosity

    Understanding Normal Stress Difference

    http://find/http://goback/
  • 7/29/2019 Rp Lecture 0

    46/48

    Anisotropy in microstructureEquilibrium: spherical pervadedvolume

    Shear Flow: Stretch and Tumble

    Shear pervaded volume: inclinedellipsoidal

    Restoring force in normal planesare different

    Normal stress difference

    Shear

    Equilibrium

    yy

    xx

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 42 / 44

    Introduction Phenomenology Modelling Solution Viscosity Normal Stresses Extensional Viscosity

    Extensional Viscosity in Dilute Solutions

    http://find/
  • 7/29/2019 Rp Lecture 0

    47/48

    Equilibrium: Spherical pervaded

    volumeSmall extension rates < 0.5,small deformation

    Large extension rates: stretchingof chain, larger stress

    Equilibrium

    Small Extn.

    LargeExtn.

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 43 / 44

    Introduction Phenomenology Modelling Solution Viscosity Normal Stresses Extensional Viscosity

    Extensional Viscosity in Melts

    http://find/
  • 7/29/2019 Rp Lecture 0

    48/48

    Reptation

    Entanglements and Confining

    tubeTube orientation

    Rouse time: Chain Stretching

    Reptation Orientation Stretching

    Fully

    Stre

    tched

    log

    log

    E

    1rep

    1e

    P Sunthar (IIT Bombay) Polymer Rheology ComFlu 2009 44 / 44

    http://find/http://goback/