rpas activities at universitat politècnica de valència … presentations... · antena gps y...

34
Joan Vila Carbó Universitat Politècnica de Valencia (UPV) Workshop Ongoing Postgraduate and PhD research in RPAS domain RPAS activities at Universitat Politècnica de València (UPV) miércoles, 9 de marzo de 16

Upload: phunghanh

Post on 12-Sep-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

Joan Vila CarbóUniversitat Politècnica de Valencia (UPV)

WorkshopOngoing Postgraduate and PhD research in RPAS domain

RPAS activities at Universitat Politècnica de València(UPV)

miércoles, 9 de marzo de 16

RPAS Activities at UPV

2

RPASactivitiesat UPV

Coursesand

Teaching

Researchlines

Collaborationwith industry

miércoles, 9 de marzo de 16

RPAS Activities at UPV

3

RPASactivitiesat UPV

Coursesand

Teaching

Researchlines

Collaborationwith industry

miércoles, 9 de marzo de 16

J. Vila Carbó

Courses and teaching

Master in Aeronautical Engineering Elective subject: RPAS applications- Image transmission and processing applications

RPAS-pilot Diploma

4

http: rpas.upv.es

DIPLOMA DE EXTENSIÓN UNIVERSITARIA EN PILOTAJE DE SISTEMAS DE AERONAVES TRIPULADOS

POR CONTROL REMOTO (RPAS)

miércoles, 9 de marzo de 16

J. Vila Carbó

RPAS-pilot diploma

RPAS licenseThere is no specific RPAS official license yet, but the course contents are thought to meet requiring demands that could be established.Course contents meet current AESA requirements.Double diploma- UPV Diploma on RPAS‣ UPV specific title

- E-ATO-072: Aeroclub Castellón‣ AESA theory and practice certificates

StaffUniversity staffAirline pilots (Air Nostrum)Flight instructors

5

miércoles, 9 de marzo de 16

J. Vila Carbó

RPAS-pilot diploma

Contents32 creditsLevel is similar to PPL or higher.Theory: Aircraft basic knowledge, Flight principles, Navigation, Communications, Operational procedures, Air law & Regulations, Meteorology, Human factors.Practice: Multicopters, fixed wing, simulator.

6

MAGISTER V.1

A. - Generalidades MARCA: FLYTECHNIC

MODELO: MAGISTER RPAS V.1

Número de serie: MT 159

A.1. - Descripción de la aeronave

x Avión con peso máximo al despegue inferior a 2Kg.

x Avión escuela, instrucción de vuelo de pilotos RPAS.

x Construcción: Plano principal en Elapor. Superficies de cola de polipropileno corrugado de 3mm

de espesor. Fuselaje de EPP, polipropileno expandido y fibra de vidrio.

x Características: Motor tractor que le confiere máxima estabilidad a bajas velocidades. Para el

despegue se utiliza el sistema de lanzado a mano o catapulta.

x Superficies de mando: alerones, elevador, timón de dirección y flaps.

x Pilotaje: Diseñada para volar en 1ª persona. Dispone de sistema de transmisión de video con

antena GPS y telemetria proyectada en la pantalla de la estación remota.

x Vuelo: Especialmente diseñada para la formación de pilotos.

A.2. - Motor, hélice , regulador de velocidad y batería. Grupo propulsor.

x Número de motores: uno. Tipo: eléctrico Brushless tres polos. Potencia: 275 W, 1000 Kv.

x Regulador de velocidad: 30 Amperios, BEC 5V, 3 A.

x Hélice: diámetro 10”, paso 4,7” x Batería propulsor: Litio Polímero 3S1P, tensión nominal 11,1 V, capacidad 3000 mAh.

A.3. - Plano de tres vistas.

PHANTOM V.1

A. - Generalidades MARCA: DJI MODELO: PHANTOM V.1 Número de serie: PH646041414 A.1. - Descripción de la aeronave

x Aeronave multirrotor en configuración X4, con peso máximo al despegue inferior a 2 kg. x Control de eje de cabeceo /pitch, desplazamiento lateral (roll) y guiñada (yaw). x Controladora de estabilización giroscópica y GPS. x Comandado por transmisor de radio control en 2,4 GHz , 7canales. x Dispone de 5 modos de vuelo: Modo estabilizado GPS, Modo de vuelta a casa, Modo Bloqueo de

dirección y Modo de sensor de Altitud. x Sistema de protección por pérdida de enlace radio y bajo nivel de batería.

A.2. - Motor, hélice , regulador de velocidad y batería. Grupo propulsor.

x Número de motores: CUATRO. Tipo: eléctrico Brushless tres polos. Potencia: 250 W, 980 Kv. x Regulador de velocidad: 15 Amperios x Hélice: diámetro 8”, paso 4,7” x Batería propulsor: Litio Polímero 3S1P, tensión nominal 11,1 V, capacidad 2200 mAh.

A.3. - Plano de tres vistas.

miércoles, 9 de marzo de 16

RPAS Activities at UPV

7

RPASactivitiesat UPV

Coursesand

Teaching

Researchlines

Collaborationwith industry

miércoles, 9 de marzo de 16

J. Vila Carbó

Collaboration with industry

Hybrid VTOL UAVCollaboration with Quaternium

8

Increased endurance:2 hours / full payload4 hours / no payload

1120 mmMTOW 20.0 kgWeight 11.3 kgPayload 5.0 kgCruise speed 80 km/h

http://www.quaternium.com/portfolio/hybrix-uav/combines:petrol engine & batteries

miércoles, 9 de marzo de 16

J. Vila Carbó

Collaboration with industry

Hybrid VTOL UAVCollaboration lines with UPV

- Improving robustness of Navigation System‣ Redundant navigation

- Improving the C2 link‣ Improving range‣ Reducing channels (C2, Telemetry, Video).

9

miércoles, 9 de marzo de 16

J. Vila Carbó

Collaboration with industry

Hybrid VTOL UAVRedundant autopilot configuration

10

switch

MotorPWMoutputs

Telemetry

CAN Failure sources must be carefully investigated to avoid common mode failures:

• Power supply glitches

• Electromagnetic noises

• Vibrations

• ...

miércoles, 9 de marzo de 16

RPAS Activities at UPV

11

RPASactivitiesat UPV

Coursesand

Teaching

Researchlines

Collaborationwith industry

miércoles, 9 de marzo de 16

J. Vila Carbó

RPAS research lines at UPV

12

MissionplanningforRPAS

Con$ngency management

...Mission plandefini$on

Mission plannerarchitecture

miércoles, 9 de marzo de 16

J. Vila Carbó

Mission planning

RPAS missionFlight phases: Take-off -> En-route -> Operations -> En-route -> LandingExample:

13J. Vila Carbó

Navegación aérea Ing. Aeroespacial

LETL

LECHCMA169040

CMA

SOBROF15B

SOPET

SOPET1R

OPERATIONS AREA

SGO

PASILLOS

PASILLON

LEVC

IAF

CASINOS

LOITER PTL1

LOITER PTL2

lunes, 7 de marzo de 16miércoles, 9 de marzo de 16

J. Vila Carbó

Mission planning

Mission plan definitionBased on extending flight plans based on ARINC-424 Path Terminators.- Take-off, En-route, Landing phases‣ Flight plans for these phases must be submitted to ATC if the flight is in

controlled areas.‣ Mission plans can be implemented using a subset of ARINC-424 path

terminators specifications.

- Operations phase‣ Flight plans do not need to include detailed operations since they usually take

place out of controlled airspace. ATC, only needs authorizations and coordinates of operations area.

‣ Mission plans need to specify RPAS specific operations (SCAN, LOITER, SEARCH, ...). A possible approach is using Extended Path Terminators (EPT).

‣ Flexibility for defining specific maneuvers required by the payload.

14

miércoles, 9 de marzo de 16

J. Vila Carbó

Mission planning

Mission plan definition

15

Waypoint declaration

List of EPT

List of EPT

Main plan

Alternative plan 1 (contingency) * Activation conditions

List of EPT

Alternative plan n (contingency) * Activation conditions

Mission plan

...

miércoles, 9 de marzo de 16

J. Vila Carbó

Mission planning

Extended Path Terminators

16

miércoles, 9 de marzo de 16

J. Vila Carbó

Mission planning

Mission plan definitionList of EPT

17

5.0%

CF MD047 - +2900 250 017 N - R

WP1 WP2 ALT1

-

ALT2SPDlimit Course

Flyover Radius

Turndirection

-

LimitValue

5.0%

Vertical angle

TF RBO - +8000 250 (42) Y - R- -

TF PINAR - +13000 - (77) Y - R- - 3.3%

IF PISAV - +4000 230 - N - --F110 - -

TF MG413 - +3000 - - N - R- - -

TF MG412 - +2000 - - N - -- - -

TF MG411 - +1700 - - N - -- - -

TF RWY31 - +84 - - Y - -- - 5.2%

...

SF WP23 - +2000 - 45 Y - R- - 3.3%

...

Pathterminator

miércoles, 9 de marzo de 16

J. Vila Carbó

Mission planning

Software architecture

18

Missionlayer

Events

Extended Path Terminators

Sequencinglayer

Control modes

Guidancelayer

Refs. for control system

ControlSystem

Mission plan Pilot commands

CommandsMission Plan

Cont

ingen

cy

Dise

ngag

emen

t

Strategicoperation

Tacticaloperation

Development platform

miércoles, 9 de marzo de 16

J. Vila Carbó

Mission planningMission layer

Strategic operation.Main goal: determining the next EPT to execute and send it to the Sequencing layer.Mission Plan and Pilot Commands processingAutomatic Modes management:

- Mission mode- Manual mode- Contingency mode

Contingency Procedure managementEvent handling:

- Contingency (C2 link loss, RA alert)- A/P disengagement- Preemptive event handling: a contingency

event preempts the execution of the current EPT.

19

Missionmode

Contingencymode

Manualmode

A/P DisengagementWP not reachableFlight envelope protection

ContigencyC2 link loss

Events

RA / Collision avoidance

miércoles, 9 de marzo de 16

J. Vila Carbó

Flight Management

SystemsFMSMission planning

Sequencing layerDecompose EPT into LNAV and VNAV maneuvers

20

TRACK (Distance, Bearing)

SF WP23 - - - 45 Y - R- - 3.3%

CIRCLE (Track)

TRACK (Distance, Bearing)

CIRCLE (Track)

LNAV

Direct maneuver Dubins path

VNAV

WP in direct reachability zone

WP out of direct reachability zone

VSPEED (Altitude)

Climb at constant SPD Climb at constant VS

No specifiedFPA

ALTITUDE ()

THRSPD()

VPATH (Altitude)

ALTITUDE ()

THRVS()

RequiredFPA

miércoles, 9 de marzo de 16

J. Vila Carbó

Flight Management

SystemsFMSMission planning

Guidance layerTactical operationProvides automatic control modes for the:- Roll- Pitch - Autothrottle

Automatic control modes provide the target references for the control loops.Provides flight envelope protection and raises A/P disengagement.

21

miércoles, 9 de marzo de 16

J. Vila Carbó

RPAS research lines at UPV

22

MissionplanningforRPAS

Con$ngency management

...Mission plandefini$on

Mission plannerarchitecture

miércoles, 9 de marzo de 16

J. Vila Carbó

Contingency management

Contingency alertsWe restrict our attention to the following alerts:- C2 link loss is the most RPAS specific failure- A/P disengagement- RA (Resolution Advisory) alert - GPS loss

23

miércoles, 9 de marzo de 16

J. Vila Carbó

Contingency management

Contingency alertsWe restrict our attention to the following alerts:- C2 link loss is the most RPAS specific failure- A/P disengagement- RA (Resolution Advisory) alert - GPS loss

Combinations of contingency alerts“Nested” alerts.They severely constrain the possible contingency procedures: most of them may imply flight termination.

24

miércoles, 9 de marzo de 16

J. Vila Carbó

Contingency management

25

ConCngencymanagementmustbeconsistentwith

ICAORPASManual

miércoles, 9 de marzo de 16

J. Vila Carbó

Contingency management

Identification of lost C2 link condition11.6.13 Degradations in the C2 link transaction time and availability from whatever cause will, if severe enough, result in a lost C2 link condition. 11.6.14 Temporary interruptions to C2 link transmissions can occur at times 11.6.15 While the C2 link is not available, the RPA is flying in a state where it is “not under the command” ... there will be a time period beyond which continued flight in this manner may not be considered acceptable.

- It is therefore important to determine the point at which a C2 link should be declared as being lost, (e.g. by display of a lost C2 link SSR code) at which point the lost C2 link procedure is initiated...

- This time period Tsloss may need to be standardized...

11.6.20 ... Repeated, intermittent degradation of the C2 link, even if only for a short duration, should be assessed by the remote pilot with regard to the acceptability of continuing the planned flight.

26

miércoles, 9 de marzo de 16

J. Vila Carbó

Contingency management

Lost C2 link contingency options

11.7.2 The general principles of remaining predictable to other airspace users and minimizing the time of flight while not under command should be adhered to.

11.6.21 ... During the flight, based on position and latest meteorological information, the remote pilot should update the current alternate aerodrome in the RPA FMS so that in the event of a lost C2 link, the RPA’s expected route will be predictable. 11.6.22 ...the criteria for selecting lost C2 link alternate flight options will need to be agreed by ATC on a case-by-case basis until ATC has confidence in the process. It may be possible to use the Mode S data link to provide the information to ATC.

27

miércoles, 9 de marzo de 16

J. Vila Carbó

Contingency management

Lost C2 link contingency options11.6.23 There are five basic contingency options to be considered by the RPAS operator, - a)  continue original flight plan- b)  land at nearest appropriate designated landing site- c)  direct return to departure aerodrome or departure site - d)  flight termination- e)  climb to altitude to attempt to regain the C2 link

28

alternative planalternative plan

specific op.specific op.

miércoles, 9 de marzo de 16

J. Vila Carbó

RPAS research lines at UPV

Thanks for your kind attention!

29

miércoles, 9 de marzo de 16

J. Vila Carbó

Extra slides

30

miércoles, 9 de marzo de 16

J. Vila Carbó

Collaboration with industry

Redundant autopilotArbitration - election of the ACTIVE autopilot is based on:- Mutual monitoring of the A/P‣ Periodical “I’m alive” messages sent to CAN bus by each A/P.

- EKF health monitoring‣ EKF estimates attitude, velocity, position using sensor fusion (IMU, GPS, baro,

airspeed)‣ Health monitoring is based on the evaluated level of noise

- GPS health monitoring‣ It depends on number of satellites and comparison with EKF estimations.

Switch design is also a key issue- It must be simple and not subject to common mode failures

31

miércoles, 9 de marzo de 16

J. Vila Carbó

Flight Management

SystemsFMS

Sequencing layerDecompose an EPT into their corresponding maneuvers for the:- LNAV profile,- VNAV profile

LNAV and VNAV maneuvers are independent.Decompose maneuvers into a sequence of elementary control modes.- The sequence of elementary maneuvers is a function of the final state

(position and attitude) which the maneuver is pursuing, and the RPAS current state.

Control modes have an associated termination condition.- Termination conditions are used to disengage the currently armed control

mode and engaging the next control mode in the sequence.

32

miércoles, 9 de marzo de 16

J. Vila Carbó

Flight Management

SystemsFMS

33

DTK

TRACK

TRACKCIRCLE

CIRCLE

miércoles, 9 de marzo de 16

J. Vila Carbó

Flight Management

SystemsFMS

34

DTK

TRACK

TRACK

CIRCLE

CIRCLE

HEADING

miércoles, 9 de marzo de 16