s-246: energy the ocean environment · table 6a: meter net hydrographic data 26 table 6b: meter net...

35
1 CRUISE REPORT S-246: ENERGY & THE OCEAN ENVIRONMENT SCIENTIFIC ACTIVITIES UNDERTAKEN ABOARD THE SSV ROBERT C. SEAMANS Honolulu, HI - Palmyra Atoll - Kona, HI - Honolulu, HI 26 March - 3 May, 2013 Sea Education Association Woods Hole, Massachusetts

Upload: others

Post on 10-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

1

CRUISE REPORT

S-246: ENERGY & THE OCEAN ENVIRONMENT

SCIENTIFIC ACTIVITIES UNDERTAKEN ABOARD THE

SSV ROBERT C. SEAMANS

Honolulu, HI - Palmyra Atoll - Kona, HI - Honolulu, HI

26 March - 3 May, 2013

Sea Education Association

Woods Hole, Massachusetts

Page 2: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

2

Citation:

Goodwin, D.S., 2013. Final Report for S.E.A. Cruise S246. Sea Education Association, Woods Hole, MA

02543, USA. www.sea.edu.

To obtain unpublished data, contact the SEA Data Archivist:

Dr. Erik Zettler

Sea Education Association

P.O. Box 6

Woods Hole, MA 02543

508-540-3954 or 800-552-3633 (phone)

508-457-4673 (fax)

[email protected] (email)

www.sea.edu (website)

Page 3: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

3

Table of Contents

Table 1: Ship's company 4

Data Description 5

Figure 1: Final cruise track 5

Figure 2a: Surface water temperature, salinity, chlorophyll & CDOM

fluorescence 6

Figure 2b: Surface wind vectors 7

Figure 2c: Surface water chlorophyll concentration, nitrate & phosphate

concentrations, pH & total alkalinity 8

Figure 3a: Surface current vectors, entire cruise track 9

Figure 3b: Surface current vectors, Hawaiian Islands region 10

Figure 4a: Hydrographic sections (temperature, salinity & density) 11

Figure 4b: Hydrographic sections (dissolved oxygen, chlorophyll &

photosynthetically available radiation) 12

Figure 5: ADCP upper ocean current magnitude & direction sections 13

Table 2: Summary of oceanographic sampling stations 14

Table 3: Surface station data 17

Table 4: Hydrocast station data 19

Table 5a: Neuston tow hydrographic data 24

Table 5b: Neuston tow biological data 25

Table 6a: Meter net hydrographic data 26

Table 6b: Meter net biological data 27

Table 7a: Zooplankton 100 count data 28

Table 7b: Zooplankton 100 count data (continued) 29

Table 8: Phytoplankton net data 30

Table 9: Secchi disk data 30

Table 10: ARGO float deployment data 30

Table 11: SPAR deployment data 31

Table 12: Student research projects 32

Student Research Project Abstracts 33

Page 4: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

4

Table 1: S246 Ship's Company, SSV Robert C. Seamans

Nautical Staff & Faculty

Beth Doxsee Captain

Jay Amster Chief Mate

Saphrona Stetson Second Mate

Ashley Meyer Third Mate

Jimmy O'Hare Chief Engineer

James Joslin Relief Chief Engineer

Will Scheurich Assistant Engineer

Abby Cazeault Steward

Lauren Hill Assistant Steward

Sam Levang Sailing Intern

Chris Stohlman Sailing Intern

Paul North Sailing Intern

Laura Page Sailing Intern

Sofia Nakhnikian-Weintraub Sailing Intern

Erin Bryant Ocean Science & Public Policy Faculty

Scientific Staff

Deb Goodwin Chief Scientist

Carla Scocchi First Assistant Scientist

Julia Twichell Second Assistant Scientist

Ed Sweeney Third Assistant Scientist

Students

Arianna Abram University of Toronto / Boston University

Larkin Bernardi Hamilton College

Dennis Claffey Northeastern University

Nikiforos Delatolas Cornell University

Chloe Holzinger Eckerd College

Laura Jack Northeastern University

Jillian Lyles Cornell University

Katie Lyon Marlboro College

Mary McGee Colgate University

Alexandra Simpson Cornell University

Brianna Sparre University of Technology, Sydney (Australia)

Marina Stevenson Brown University

Abby Stryker Muhlenberg College

Josh Sturtevant Bates College

Page 5: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

5

Data Description

During the S246 (U.S. State Department Cruise F2012 – 083) six-week passage from Honolulu, HI to Palmyra Atoll

and Kona, HI, concluding in Honolulu (Figure 1), SSV Robert C. Seamans and her crew transited several

oceanographic provinces, the differences among which formed the partial basis for our research program. From the

nutrient-rich coastal waters of the Hawaiian Islands, we sailed south-southwest to enter the central North Pacific

Subtropical Gyre. For just over two weeks we traveled through and explored the warmer, saltier and nutrient-poor

waters of the gyre. Our first port stop at Palmyra Atoll, a small protected system managed by the Nature

Conservancy and U.S. Fish and Wildlife, provided the opportunity to sample near-shore reef and lagoon

environments within the North Equatorial Current as well as learn about island-based ecological and resource

challenges. Several days at Palmyra afforded us excellent snorkeling and coral atoll exploration and thought-

provoking conversation with research station personnel. A slight venture to the south found the highly productive

biological communities and unique hydrographic conditions of the Equatorial Countercurrent. We then traveled

northeast through the North Pacific Subtropical Gyre to return to Hawaiian waters and our final port stop, Kona;

here, students and crew visited multiple alternative energy industry sites (OTEC, solar, algal biofuel, geothermal,

wind farm) and Hawaii Volcanoes National Park.

This semester focused on marine renewable energy and technologies and thus had a suite of unique academic and

program objectives. Port stops were dedicated to learning about local energy needs, resources and opportunities

while many student research projects explored some aspect of ocean energy (environmental impacts, energy

transfer, resource assessments, etc). The Ocean Science and Public Policy professor joined the ship’s company for

the Kona port stop and final leg of the voyage back to Honolulu.

Oceanographic data were collected along the

entirety of the cruise track during 63 stations

comprised of 130 individual deployments

(summarized in Table 2; detailed in Tables 3 - 11) as

well as related chemical analyses for nutrients,

extracted chlorophyll, seawater pH and alkalinity

(Tables 3 and 4). Furthermore, continuous surface

water measurements (sea surface temperature,

salinity, in vivo chlorophyll fluorescence, CDOM

fluorescence and transmissivity by the ship's flow-

through system; Figure 2), water depth and sub-

bottom profiles (CHIRP system), upper ocean

currents (ADCP; Figures 3 and 5), and

meteorological data were gathered. CTD casts with

additional complementary instrumentation obtained

vertical water column profiles of temperature,

salinity, chlorophyll fluorescence and

photosynthetically available radiation (PAR; Figure

4). As part of a collaboration with NOAA’s Pacific

Marine Environmental Laboratory, two ARGO

floats were deployed in the Equatorial Current

region (Table 10). Lengthy CTD, CHIRP, ADCP

and flow-through data are not fully presented here;

all unpublished data can be made available by

arrangement with the SEA Data Archivist (contact

information, p. 2).

Data supported both ongoing SEA research projects

and a diverse suite of student-designed investigations (Table 12 and abstracts p. 33). Research topics included:

impacts of ocean acidification on water chemistry and pteropods; examination of forced upwelling prospects and

effects in the North Pacific Subtropical Gyre; opportunities for solar and wind energy alternatives on commercial

ships traveling the region; and site and resource evaluation for both autonomous wave-driven buoys and ocean

Figure 1. Final cruise track for S246 based on hourly

(local time) positions. The voyage began and concluded in

Honolulu, HI, with Palmyra Atoll and Kona, HI port stops.

Page 6: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

6

thermal energy conversion (OTEC) within the central Pacific region. The resulting student manuscripts are available

upon request from Deb Goodwin, S246 Chief Scientist.

Page 7: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

7

Figure 2a. Surface water temperature (°C), salinity (psu), chlorophyll fluorescence (volts) and CDOM

fluorescence (volts) for S246 as measured by flow through system sensors.

The ship’s flow through system sensors included a SeaBird Thermosalinograph (S/N 0022), WETLabs C-Star

CDOM fluorometer (S/N WSCD-1257), and Turner Designs Model 10-AU in vivo chlorophyll-a fluorometer

(S/N 6467-RTX).

Page 8: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

8

Figure 2b. Surface wind vectors (m/s) for S246, southbound leg on left and northbound leg on right. Wind

speeds measured by an anemometer located at the top of the foremast.

Page 9: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

9

Figure 2c. Surface water phosphate concentration (uM), nitrate concentration (uM), pH, total alkalinity

(Meq/L) and chlorophyll concentration (ug/L) for S246 as measured by laboratory analyses on discrete

surface station water samples.

Extracted chlorophyll-a samples were filtered through 0.45 μm filters and measured with a Turner Designs

Model 10-AU fluorometer. Seawater pH was determined using m-cresol purple indicator dye and

spectrophotometry. Nutrients (PO4 and NO3) were assessed with colorometric spectrophotometry. Alkalinity

was measured by Gran titration.

Page 10: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

10

Figure 3a. Surface current vectors (mm/s) for the S246 cruise track. Note that 500 mm/s is approximately

1.0 knot.

Page 11: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

11

Figure 3b. Surface current vectors (mm/s) for the Hawaiian Islands portion of the S246 cruise track. Note

that 500 mm/s is approximately 1.0 knot.

Page 12: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

12

Figure 4a: Hydrographic along-track sections for S246. Data merged for both north and south legs and

shown latitudinally. Oceanographic regions indicated below density section apply to all plots.

Data gathered during hydrocast stations utilizing a SeaBird 19PlusV2 CTD (S/N 4043).

Page 13: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

13

Figure 4b: Hydrographic along-track sections for S246. Data merged for both north and south legs and

shown latitudinally. Oceanographic regions indicated below PAR section apply to all plots; note varied depth

axis scales.

Data gathered during hydrocast stations utilizing Seapoint Chlorophyll fluorometer (S/N SCF3149), SeaBird

Dissolved Oxygen sensor (model 43; S/N 1120), and Biospherical Instruments/SeaBird PAR sensor (S/N 4179).

Page 14: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

14

Figure 5: ADCP upper ocean current magnitude and direction along-track sections for S246. Data merged

for both north and south legs and shown latitudinally. Note that 500 mm/s is approximately 1.0 knot.

Oceanographic regions indicated below current direction section apply to all plots.

Page 15: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

15

Table 2: Summary of oceanographic sampling stations for S246.

Station

Number

(S246-)

Date Time

(Local)

Log

(nm)

Latitude

(deg N)

Longitude

(deg W) NT MN PN HC SPAR SD

Surface

Station General Locale

001 29-Mar-13 2335 51.1 20.50 -158.02 X SS-001 Hawaiian Waters

002 30-Mar-13 1050 122.4 19.11 -158.40 X SS-002 Hawaiian Waters

003 30-Mar-13 2258 143.3 18.50 -158.50 X X SS-003 N. Pacific Subtropical Gyre

004 31-Mar-13 1010 199.8 17.52 -158.75 X X X SS-004 N. Pacific Subtropical Gyre

005 31-Mar-13 2214 255.5 16.53 -158.81 X X SS-005 N. Pacific Subtropical Gyre

006 1-Apr-13 0802 290.5 15.85 -158.61 X N. Pacific Subtropical Gyre

007 1-Apr-13 1016 300.9 15.68 -158.57 X X X SS-006 N. Pacific Subtropical Gyre

008 1-Apr-13 1701 315.6 15.33 -158.70 X N. Pacific Subtropical Gyre

009 2-Apr-13 0015 350.1 14.79 -158.96 X SS-007 N. Pacific Subtropical Gyre

010 2-Apr-13 0800 389.0 14.30 -159.17 X N. Pacific Subtropical Gyre

011 2-Apr-13 1009 390.8 14.16 -159.23 X X X SS-008 N. Pacific Subtropical Gyre

012 2-Apr-13 1636 415.1 13.75 -159.42 X N. Pacific Subtropical Gyre

013 2-Apr-13 2224 448.8 13.23 -159.63 X X SS-009 N. Pacific Subtropical Gyre

014 3-Apr-13 0833 494.4 12.43 -159.78 X N. Pacific Subtropical Gyre

015 3-Apr-13 1119 508.0 12.19 -159.84 X X SS-010 N. Pacific Subtropical Gyre

016 3-Apr-13 1648 535.8 11.89 -159.99 X N. Pacific Subtropical Gyre

017 3-Apr-13 2331 563.0 11.24 -160.18 X X SS-011 N. Pacific Subtropical Gyre

018 4-Apr-13 0758 599.6 10.64 -160.57 X N. Pacific Subtropical Gyre

019 4-Apr-13 0955 611.0 10.48 -160.57 X X X X SS-012 N. Pacific Subtropical Gyre

020 4-Apr-13 1655 636.2 10.08 -160.76 X N. Pacific Subtropical Gyre

021 4-Apr-13 2240 668.3 9.64 -160.90 X X SS-013 N. Equatorial Current

022 5-Apr-13 1142 716.9 8.92 -161.09 X X SS-014 N. Equatorial Current

023 5-Apr-13 1754 749.0 8.36 -161.28 X N. Equatorial Current

024 6-Apr-13 0806 776.6 7.96 -161.55 X N. Equatorial Current

025 6-Apr-13 1150 784.3 7.86 -161.59 X N. Equatorial Current

026 6-Apr-13 1603 807.9 7.44 -161.67 X N. Equatorial Current

027 6-Apr-13 2229 847.0 6.86 -161.83 X X SS-016 N. Equatorial Current

028 11-Apr-13 1239 942.8 5.58 -162.07 X SS-018 Palmyra Waters

029 11-Apr-13 2352 989.1 4.96 -162.10 X SS-019 N. Equatorial Current

030 12-Apr-13 0904 1031.0 4.29 -162.03 X N. Equatorial Countercurrent

031 12-Apr-13 1026 1033.5 4.29 -162.02 X X X SS-020 N. Equatorial Countercurrent

032 12-Apr-13 1357 1039.0 4.58 -161.97 X N. Equatorial Countercurrent

Page 16: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

16

Table 2: Summary of oceanographic sampling stations for S246 (continued).

Station

Number

(S246-)

Date Time

(Local)

Log

(nm)

Latitude

(deg N)

Longitude

(deg W) NT MN PN HC SPAR SD

Surface

Station General Locale

033 12-Apr-13 1728 1054.0 4.95 -162.01 X N. Equatorial Countercurrent 034 12-Apr-13 2300 1075.6 4.95 -162.01 X X SS-021 N. Equatorial Countercurrent 035 13-Apr-13 1020 1135.1 5.67 -161.80 X SS-022 N. Equatorial Current 036 13-Apr-13 2249 1202.4 6.73 -161.72 X X SS-023 N. Equatorial Current 037 14-Apr-13 0750 1262.8 7.68 -161.46 X N. Equatorial Current 038 14-Apr-13 1008 1271.8 7.82 -161.53 X X X SS-024 N. Equatorial Current 039 13-Apr-12 1615 -- 7.54 -161.35 X N. Equatorial Current 040 14-Apr-13 2357 1332.8 7.03 -161.06 X SS-025 N. Equatorial Current 041 15-Apr-13 0818 1377.3 7.80 -160.98 X N. Equatorial Current 042 15-Apr-13 1010 1389.3 7.99 -160.93 X X SS-026 N. Equatorial Current 043 15-Apr-13 1313 1398.5 8.15 -160.90 X N. Equatorial Current 044 15-Apr-13 1731 1405.7 8.21 -160.92 X N. Equatorial Current 045 15-Apr-13 2205 1432.2 8.59 -160.84 X X SS-027 N. Equatorial Current 046 16-Apr-13 0800 1492.0 9.49 -160.59 X N. Equatorial Current 047 16-Apr-13 1010 1506.0 9.49 -160.56 X X SS-028 N. Equatorial Current 048 16-Apr-13 1213 1506.4 9.69 -160.60 X N. Equatorial Current 049 16-Apr-13 1530 1525.4 9.99 -160.58 N. Equatorial Current 050 16-Apr-13 2217 1563.6 10.49 -160.60 X X SS-029 N. Equatorial Current 051 17-Apr-13 1004 1625.8 11.42 -160.41 X X X SS-030 N. Equatorial Current 052 17-Apr-13 1235 1628.1 11.43 -160.44 X N. Pacific Subtropical Gyre 053 17-Apr-13 1637 1643.2 11.64 -160.39 X N. Pacific Subtropical Gyre 054 17-Apr-13 2213 1681.3 12.23 -160.23 X SS-031 N. Pacific Subtropical Gyre 055 18-Apr-13 0759 1735.4 13.03 -160.00 X N. Pacific Subtropical Gyre 056 18-Apr-13 0957 1740.0 13.14 -160.03 X X X SS-032 N. Pacific Subtropical Gyre 057 18-Apr-13 1655 1778.2 13.65 -159.82 X N. Pacific Subtropical Gyre 058 18-Apr-13 2148 1801.7 14.05 -159.74 X X SS-033 N. Pacific Subtropical Gyre 059 19-Apr-13 1028 1866.4 14.93 -159.29 X X X SS-034 N. Pacific Subtropical Gyre 060 19-Apr-13 1715 1867.4 14.94 -159.33 X N. Pacific Subtropical Gyre 061 20-Apr-13 1040 1976.9 16.62 -158.75 X N. Pacific Subtropical Gyre 062 21-Apr-13 2116 2117.2 18.86 -157.87 X N. Pacific Subtropical Gyre 063 22-Apr-13 1056 2182.6 19.61 -156.70 X X N. Pacific Subtropical Gyre

Page 17: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

17

Note that during station 049 light attenuation spheroids were utilized during class, station 061 was the styrocast with accompanying deep vertical

MN, and at station 062 the 2MN was deployed; squid jigging occurred during stations 029, 034 and 036. ARGO floats were deployed in closest

proximity to stations 016 and 057.

In Table 2, abbreviations for oceanographic equipment deployed are: NT – neuston tow; MN – 1 meter net (oblique tow); 2MN - 2 meter net

(oblique tow); PN – phytoplankton net; HC – hydrocast with 12 Niskin bottles, CTD and optical instrumentation; SPAR – surface

photosynthetically available radiation sensor; SD – secchi disk; and ARGO – NOAA Pacific Marine Environmental Laboratory ARGO float.

General Locales are categorized by traditional oceanic biomes.

Page 18: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

18

Table 3: Surface station data for S246.

Station

Number

(S246-)

Date Time

(Local)

Log

(nm)

Latitude

(deg N)

Longitude

(deg W)

Sea Surface

Temperature

(°C)

Salinity

(ppt)

Chlorophyll

Fluorescence

(volts)

CDOM

Fluorescence

(volts)

Chl-a

(μg/L) PO4 (μM)

NO3

(μM) pH

Total

Alkalinity

(Meq/L)

SS-001 30-Mar-13 0000 51.0 20.49 -158.01 24.7 34.96 1.2 43.0 0.066

SS-002 30-Mar-13 1120 122.4 19.10 -158.40 24.8 34.72 1.3 43.0 0.094 0.355 0.319 8.01 3074.00

SS-003 31-Mar-13 0020 145.1 18.44 -158.48 24.9 34.89 1.2 43.0 0.063

SS-004 31-Mar-13 1105 199.8 17.49 -158.74 25.0 34.82 1.2 41.0 0.143 0.575 0.325 8.01 2522.25

SS-005 31-Mar-13 2352 255.7 16.48 -158.75 25.0 34.81 1.8 44.0 0.082

SS-006 1-Apr-13 1127 300.9 15.65 -158.58 25.2 34.58 1.2 41.0 0.089 0.776 0.379 8.03 2106.01

SS-007 2-Apr-13 0040 350.9 14.83 -158.95 25.1 34.65 1.2 44.0 0.079

SS-008 2-Apr-13 1025 390.9 14.15 -159.23 26.0 34.26 1.2 39.0 0.062 0.365 0.403 8.04 2401.85

SS-009 3-Apr-13 0000 451.1 13.16 -159.62 26.3 34.29 1.5 41.0 0.122

SS-010 3-Apr-13 1128 507.7 12.18 -159.84 26.6 34.31 1.8 43.0 0.100

SS-011 3-Apr-13 2243 563.2 11.23 -160.19 26.7 34.26 1.6 43.0 0.054

SS-012 4-Apr-13 1016 611.0 10.47 -160.57 26.9 34.35 1.2 41.0 0.163 0.424 0.228 8.04 2201.60

SS-013 4-Apr-13 2323 669.2 9.61 -160.89 27.3 34.53 4.1 46.0 0.223

SS-014 5-Apr-13 1029 716.9 8.91 -161.09 27.6 34.65 2.3 47.0 0.310 0.355 1.004 8.05 2294.77

SS-015 6-Apr-13 1039 776.6 7.95 -161.58 27.7 34.74 2.2 47.0 0.323 0.455 6.892 7.96 2187.08

SS-016 6-Apr-13 2306 847.7 6.84 -161.83 27.8 34.67 4.9 47.0 0.285

SS-017 7-Apr-13 1020 910.0 5.90 -161.88 27.8 34.65 2.1 47.0 0.227 0.338 4.324 8.00 2125.97

SS-018 11-Apr-13 1226 942.0 5.59 -162.07 28.0 34.82 1.9 45.2 0.244 4.119 8.01 2317.15

SS-019 12-Apr-13 0007 989.6 4.95 -162.10 28.0 34.86 5.0 48.0 0.247

SS-020 12-Apr-13 1111 1033.5 4.29 -162.03 28.0 34.86 1.9 48.3 0.266 0.468 5.846 8.01 2330.46

SS-021 12-Apr-13 2350 1076.0 4.93 -162.01 28.1 34.85 4.9 45.0 0.242

SS-022 13-Apr-13 1035 1135.1 5.67 -161.79 27.9 34.66 3.1 48.0 0.287 0.463 4.436 8.03 2399.43

SS-023 13-Apr-13 2315 1202.4 6.74 -161.71 27.9 34.84 4.2 45.4 0.185

SS-024 14-Apr-13 1019 1271.8 7.81 -161.52 27.7 34.84 1.9 56.7 0.213 0.368 4.151 8.01 2610.58

SS-025 15-Apr-13 0007 1332.8 7.02 -161.05 27.9 34.79 4.5 47.0 0.206

SS-026 15-Apr-13 1025 1389.3 7.98 -160.92 27.5 34.81 1.9 46.0 0.404 0.394 1.501 8.09 2340.75

SS-027 15-Apr-13 2238 1432.4 8.57 -160.94 27.5 34.76 4.0 47.3 0.209

SS-028 16-Apr-13 1024 1506.0 9.68 -160.56 27.2 34.70 1.5 45.7 0.158 0.338 0.880 8.03 2373.42

SS-029 16-Apr-13 2246 1563.9 10.42 -160.60 27.0 34.53 1.7 42.5 0.143

SS-030 17-Apr-13 1020 1625.8 11.41 -160.40 26.8 34.47 1.2 39.6 0.217 0.316 0.896 8.01 2277.22

SS-031 17-Apr-13 2222 1681.3 12.22 -160.23 26.7 34.47 1.4 42.6 0.084

SS-032 18-Apr-13 1008 1740.0 13.13 -160.02 26.4 34.39 1.2 39.0 0.059 0.386 0.885

SS-033 18-Apr-13 2218 1802.1 14.03 -159.74 26.5 34.42 1.4 42.8 0.118

SS-034 19-Apr-13 1038 1866.4 14.93 -159.29 25.6 34.69 1.2 39.8 0.072 0.256 0.862 8.06

Page 19: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

19

All surface stations gathered data from a SeaBird Thermosalinograph (S/N 0022) and three auxiliary instruments (WETLabs WetStar

transmissometer (S/N CST1187-PR), WETLabs C-Star CDOM fluorometer (S/N WSCD-1257), and Turner Designs Model 10-AU in vivo

chlorophyll-a fluorometer (S/N 6467-RTX). Extracted chlorophyll-a samples were filtered through 0.45 μm filters and measured with a Turner

Designs Model 10-AU fluorometer. Seawater pH was determined using m-cresol purple indicator dye and spectrophotometry. Nutrients (PO4 and

NO3) were assessed with colorometric spectrophotometry. Alkalinity was measured by Gran titration.

Page 20: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

20

Table 4: Hydrocast station data for S246. Station locations as in Table 2.

Station

Number

(S246-)

Date Time

(Local) General Locale Bottle

Bottle

Depth

(m)

Dissolved

Oxygen

(mL/L)

PO4

(μM)

NO3

(μM) pH

Temperature

(°C)

Salinity

(psu)

Density

(kg/m3)

002-HC 30-Mar-13 1050 Hawaiian Waters 1 1033.86 1.09 7.46 4.10 34.53 27.41

002-HC 30-Mar-13 1050 Hawaiian Waters 2 992.10 1.02 4.26 34.52 27.39

002-HC 30-Mar-13 1050 Hawaiian Waters 3 794.12 0.84 5.12 34.46 27.24

002-HC 30-Mar-13 1050 Hawaiian Waters 4 793.16 0.85 3.29 62.90 7.43 5.12 34.46 27.24

002-HC 30-Mar-13 1050 Hawaiian Waters 5 596.02 0.82 5.99 34.34 27.04

002-HC 30-Mar-13 1050 Hawaiian Waters 6 496.67 1.41 2.96 50.60 6.68 34.18 26.82

002-HC 30-Mar-13 1050 Hawaiian Waters 7 397.53 2.91 7.68 8.67 34.12 26.48

002-HC 30-Mar-13 1050 Hawaiian Waters 8 298.20 3.83 1.43 30.13 11.43 34.17 26.06

002-HC 30-Mar-13 1050 Hawaiian Waters 9 198.91 4.23 18.61 34.90 25.06

002-HC 30-Mar-13 1050 Hawaiian Waters 10 99.91 4.75 23.67 35.41 24.05

002-HC 30-Mar-13 1050 Hawaiian Waters 11 50.25 4.69 24.37 35.16 23.66

002-HC 30-Mar-13 1050 Hawaiian Waters 12 49.58 4.69 8.07 24.43 35.16 23.64

004-HC 31-Mar-13 1010 N. Pacific Subtropical Gyre 1 860.42 1.06 7.37 4.67 34.51 27.33

004-HC 31-Mar-13 1010 N. Pacific Subtropical Gyre 2 859.22 1.06 4.67 34.51 27.33

004-HC 31-Mar-13 1010 N. Pacific Subtropical Gyre 3 794.17 1.00 4.96 34.49 27.28

004-HC 31-Mar-13 1010 N. Pacific Subtropical Gyre 4 792.64 1.00 3.45 61.92 7.37 4.96 34.49 27.28

004-HC 31-Mar-13 1010 N. Pacific Subtropical Gyre 5 596.15 0.83 5.82 34.38 27.09

004-HC 31-Mar-13 1010 N. Pacific Subtropical Gyre 6 496.82 1.20 3.36 55.66 6.53 34.24 26.89

004-HC 31-Mar-13 1010 N. Pacific Subtropical Gyre 7 398.19 1.95 7.45 7.91 34.17 26.64

004-HC 31-Mar-13 1010 N. Pacific Subtropical Gyre 8 298.40 3.50 10.36 34.15 26.23

004-HC 31-Mar-13 1010 N. Pacific Subtropical Gyre 9 199.37 4.05 0.80 13.77 15.34 34.43 25.46

004-HC 31-Mar-13 1010 N. Pacific Subtropical Gyre 10 100.16 4.60 23.61 35.26 23.96

004-HC 31-Mar-13 1010 N. Pacific Subtropical Gyre 11 49.68 4.72 24.39 35.25 23.72

004-HC 31-Mar-13 1010 N. Pacific Subtropical Gyre 12 48.03 4.72 8.03 24.40 35.25 23.72

007-HC 1-Apr-13 1016 N. Pacific Subtropical Gyre 1 942.75 0.81 7.37 4.80 34.53 27.33

007-HC 1-Apr-13 1016 N. Pacific Subtropical Gyre 2 942.31 0.81 4.80 34.53 27.33

007-HC 1-Apr-13 1016 N. Pacific Subtropical Gyre 3 794.87 0.77 5.41 34.51 27.24

007-HC 1-Apr-13 1016 N. Pacific Subtropical Gyre 4 794.06 0.77 3.75 61.92 7.39 5.42 34.51 27.24

007-HC 1-Apr-13 1016 N. Pacific Subtropical Gyre 5 595.18 0.67 6.65 34.49 27.07

007-HC 1-Apr-13 1016 N. Pacific Subtropical Gyre 6 496.38 0.41 7.85 34.53 26.94

007-HC 1-Apr-13 1016 N. Pacific Subtropical Gyre 7 398.53 0.38 3.17 50.45 7.38 8.93 34.55 26.78

007-HC 1-Apr-13 1016 N. Pacific Subtropical Gyre 8 298.71 0.38 2.10 26.45 10.34 34.56 26.56

007-HC 1-Apr-13 1016 N. Pacific Subtropical Gyre 9 199.42 3.77 14.60 34.40 25.60

Page 21: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

21

Table 4: Hydrocast station data for S246 (continued).

Station

Number

(S246-)

Date Time

(Local) General Locale Bottle

Bottle

Depth

(m)

Dissolved

Oxygen

(mL/L)

PO4

(μM)

NO3

(μM) pH

Temperature

(°C)

Salinity

(psu)

Density

(kg/m3)

007-HC 1-Apr-13 1016 N. Pacific Subtropical Gyre 10 98.94 4.61 23.10 35.25 24.10

007-HC 1-Apr-13 1016 N. Pacific Subtropical Gyre 11 49.83 4.75 24.32 35.23 23.73

007-HC 1-Apr-13 1016 N. Pacific Subtropical Gyre 12 49.59 4.74 8.04 24.34 35.22 23.71

011-HC 2-Apr-13 1009 N. Pacific Subtropical Gyre 1 1046.58 0.87 7.40 4.28 34.55 27.41

011-HC 2-Apr-13 1009 N. Pacific Subtropical Gyre 2 992.26 0.84 4.48 34.54 27.38

011-HC 2-Apr-13 1009 N. Pacific Subtropical Gyre 3 793.36 0.61 5.44 34.51 27.25

011-HC 2-Apr-13 1009 N. Pacific Subtropical Gyre 4 792.19 0.60 3.64 59.50 7.38 5.45 34.51 27.24

011-HC 2-Apr-13 1009 N. Pacific Subtropical Gyre 5 595.16 0.54 6.51 34.49 27.09

011-HC 2-Apr-13 1009 N. Pacific Subtropical Gyre 6 497.11 0.51 3.11 43.35 7.30 34.48 26.97

011-HC 2-Apr-13 1009 N. Pacific Subtropical Gyre 7 397.67 0.68 7.42 8.31 34.46 26.81

011-HC 2-Apr-13 1009 N. Pacific Subtropical Gyre 8 297.88 1.19 2.27 40.64 9.64 34.37 26.52

011-HC 2-Apr-13 1009 N. Pacific Subtropical Gyre 9 198.65 3.57 13.47 34.31 25.77

011-HC 2-Apr-13 1009 N. Pacific Subtropical Gyre 10 100.21 4.69 22.86 35.18 24.12

011-HC 2-Apr-13 1009 N. Pacific Subtropical Gyre 11 50.16 4.60 25.61 34.63 22.88

011-HC 2-Apr-13 1009 N. Pacific Subtropical Gyre 12 49.32 4.60 8.06 25.61 34.63 22.88

019-HC 4-Apr-13 0955 N. Pacific Subtropical Gyre 1 1031.28 1.03 7.43 4.74 34.55 27.36

019-HC 4-Apr-13 0955 N. Pacific Subtropical Gyre 2 991.49 0.96 4.93 34.55 27.34

019-HC 4-Apr-13 0955 N. Pacific Subtropical Gyre 3 794.44 0.67 5.87 34.54 27.21

019-HC 4-Apr-13 0955 N. Pacific Subtropical Gyre 4 794.61 0.67 3.36 58.29 7.41 5.88 34.53 27.21

019-HC 4-Apr-13 0955 N. Pacific Subtropical Gyre 5 595.14 0.43 7.58 34.57 27.00

019-HC 4-Apr-13 0955 N. Pacific Subtropical Gyre 6 495.98 0.32 3.24 38.97 8.67 34.61 26.87

019-HC 4-Apr-13 0955 N. Pacific Subtropical Gyre 7 398.19 0.37 7.46 9.61 34.67 26.77

019-HC 4-Apr-13 0955 N. Pacific Subtropical Gyre 8 298.29 0.14 2.41 40.94 10.32 34.70 26.67

019-HC 4-Apr-13 0955 N. Pacific Subtropical Gyre 9 199.18 0.08 11.31 34.74 26.52

019-HC 4-Apr-13 0955 N. Pacific Subtropical Gyre 10 99.38 3.43 16.92 34.60 25.23

019-HC 4-Apr-13 0955 N. Pacific Subtropical Gyre 11 50.59 4.50 26.49 34.74 22.69

019-HC 4-Apr-13 0955 N. Pacific Subtropical Gyre 12 50.06 4.50 8.07 26.49 34.73 22.68

022-HC 5-Apr-13 1015 N. Equatorial Current 1 1043.03 1.15 7.44 4.48 34.57 27.40

022-HC 5-Apr-13 1015 N. Equatorial Current 2 990.65 1.12 4.67 34.56 27.37

022-HC 5-Apr-13 1015 N. Equatorial Current 3 794.59 0.71 5.65 34.54 27.25

022-HC 5-Apr-13 1015 N. Equatorial Current 4 793.57 0.70 2.90 67.80 5.65 34.54 27.24

022-HC 5-Apr-13 1015 N. Equatorial Current 5 596.39 0.24 7.32 34.55 27.03

022-HC 5-Apr-13 1015 N. Equatorial Current 6 497.42 0.23 2.44 63.12 8.30 34.59 26.91

Page 22: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

22

Table 4: Hydrocast station data for S246 (continued).

Station

Number

(S246-)

Date Time

(Local) General Locale Bottle

Bottle

Depth

(m)

Dissolved

Oxygen

(mL/L)

PO4

(μM)

NO3

(μM) pH

Temperature

(°C)

Salinity

(psu)

Density

(kg/m3)

022-HC 5-Apr-13 1015 N. Equatorial Current 7 396.50 0.17 7.42 9.40 34.66 26.79

022-HC 5-Apr-13 1015 N. Equatorial Current 8 296.60 0.18 2.42 51.96 10.33 34.71 26.67

022-HC 5-Apr-13 1015 N. Equatorial Current 9 197.87 0.09 11.34 34.73 26.51

022-HC 5-Apr-13 1015 N. Equatorial Current 10 99.46 4.00 24.90 34.98 23.36

022-HC 5-Apr-13 1015 N. Equatorial Current 11 49.53 4.46 27.25 35.01 22.65

022-HC 5-Apr-13 1015 N. Equatorial Current 12 49.44 4.47 27.25 35.00 22.65

031-HC 12-Apr-13 1051 N. Equatorial Countercurrent 1 1180.60 1.69 7.49 3.95 34.58 27.46

031-HC 12-Apr-13 1051 N. Equatorial Countercurrent 2 991.95 1.70 4.66 34.56 27.37

031-HC 12-Apr-13 1051 N. Equatorial Countercurrent 3 793.66 1.73 5.45 34.55 27.27

031-HC 12-Apr-13 1051 N. Equatorial Countercurrent 4 793.79 1.72 2.49 5.45 34.55 27.27

031-HC 12-Apr-13 1051 N. Equatorial Countercurrent 5 595.87 1.20 6.52 34.56 27.15

031-HC 12-Apr-13 1051 N. Equatorial Countercurrent 6 496.52 1.09 2.65 56.40 7.42 34.58 27.04

031-HC 12-Apr-13 1051 N. Equatorial Countercurrent 7 397.02 1.00 7.48 8.44 34.62 26.92

031-HC 12-Apr-13 1051 N. Equatorial Countercurrent 8 297.60 0.65 2.18 54.04 9.38 34.66 26.80

031-HC 12-Apr-13 1051 N. Equatorial Countercurrent 9 198.31 0.51 10.99 34.69 26.54

031-HC 12-Apr-13 1051 N. Equatorial Countercurrent 10 99.71 4.22 27.23 35.10 22.73

031-HC 12-Apr-13 1051 N. Equatorial Countercurrent 11 49.16 4.40 27.59 35.07 22.59

031-HC 12-Apr-13 1051 N. Equatorial Countercurrent 12 47.17 4.41 27.59 35.07 22.59

035-HC 13-Apr-13 1020 N. Equatorial Current 1 987.38 1.43 7.44 4.48 34.57 27.40

035-HC 13-Apr-13 1020 N. Equatorial Current 2 986.93 1.43 4.50 34.57 27.40

035-HC 13-Apr-13 1020 N. Equatorial Current 3 793.70 1.07 5.56 34.56 27.27

035-HC 13-Apr-13 1020 N. Equatorial Current 4 793.06 1.07 2.92 79.59 5.59 34.55 27.26

035-HC 13-Apr-13 1020 N. Equatorial Current 5 594.75 0.60 6.65 34.57 27.13

035-HC 13-Apr-13 1020 N. Equatorial Current 6 496.67 0.58 2.78 62.16 7.46 34.59 27.04

035-HC 13-Apr-13 1020 N. Equatorial Current 7 397.88 0.63 7.44 8.69 34.63 26.89

035-HC 13-Apr-13 1020 N. Equatorial Current 8 297.70 1.03 2.04 67.80 9.55 34.67 26.77

035-HC 13-Apr-13 1020 N. Equatorial Current 9 199.51 0.94 10.62 34.66 26.59

035-HC 13-Apr-13 1020 N. Equatorial Current 10 99.82 3.43 21.84 34.93 24.22

035-HC 13-Apr-13 1020 N. Equatorial Current 11 49.67 4.40 27.57 35.04 22.57

035-HC 13-Apr-13 1020 N. Equatorial Current 12 48.06 4.40 27.57 35.04 22.57

038-HC 14-Apr-13 1008 N. Equatorial Current 1 927.28 0.84 7.33 5.02 34.56 27.33

038-HC 14-Apr-13 1008 N. Equatorial Current 2 927.36 0.84 5.02 34.55 27.33

038-HC 14-Apr-13 1008 N. Equatorial Current 3 794.59 0.84 5.61 34.55 27.26

Page 23: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

23

Table 4: Hydrocast station data for S246 (continued).

Station

Number

(S246-)

Date Time

(Local) General Locale Bottle

Bottle

Depth

(m)

Dissolved

Oxygen

(mL/L)

PO4

(μM)

NO3

(μM) pH

Temperature

(°C)

Salinity

(psu)

Density

(kg/m3)

038-HC 14-Apr-13 1008 N. Equatorial Current 4 793.60 0.84 2.90 67.54 5.61 34.55 27.25

038-HC 14-Apr-13 1008 N. Equatorial Current 5 596.07 0.62 6.88 34.56 27.09

038-HC 14-Apr-13 1008 N. Equatorial Current 6 496.41 0.50 2.68 62.30 8.04 34.60 26.96

038-HC 14-Apr-13 1008 N. Equatorial Current 7 397.81 0.48 7.32 9.09 34.65 26.84

038-HC 14-Apr-13 1008 N. Equatorial Current 8 297.71 0.26 2.50 45.00 10.06 34.70 26.71

038-HC 14-Apr-13 1008 N. Equatorial Current 9 198.89 0.17 11.27 34.75 26.53

038-HC 14-Apr-13 1008 N. Equatorial Current 10 99.00 3.79 23.65 34.98 23.74

038-HC 14-Apr-13 1008 N. Equatorial Current 11 48.86 4.43 27.27 35.07 22.69

038-HC 14-Apr-13 1008 N. Equatorial Current 12 48.01 4.45 27.28 35.08 22.69

042-HC 15-Apr-13 1010 N. Equatorial Current 1 1045.94 1.11 7.41 4.22 34.57 27.43

042-HC 15-Apr-13 1010 N. Equatorial Current 2 992.20 1.02 4.51 34.57 27.40

042-HC 15-Apr-13 1010 N. Equatorial Current 3 793.62 1.03 5.11 34.55 27.32

042-HC 15-Apr-13 1010 N. Equatorial Current 4 793.31 1.03 2.86 63.34 5.11 34.55 27.32

042-HC 15-Apr-13 1010 N. Equatorial Current 5 595.72 0.62 6.64 34.55 27.12

042-HC 15-Apr-13 1010 N. Equatorial Current 6 496.04 0.33 2.54 52.47 8.03 34.59 26.96

042-HC 15-Apr-13 1010 N. Equatorial Current 7 398.36 0.22 7.46 9.38 34.66 26.80

042-HC 15-Apr-13 1010 N. Equatorial Current 8 298.39 0.19 1.79 57.97 10.37 34.71 26.67

042-HC 15-Apr-13 1010 N. Equatorial Current 9 198.93 0.12 11.30 34.75 26.53

042-HC 15-Apr-13 1010 N. Equatorial Current 10 100.26 3.86 24.26 35.03 23.59

042-HC 15-Apr-13 1010 N. Equatorial Current 11 49.98 4.46 27.15 35.03 22.70

042-HC 15-Apr-13 1010 N. Equatorial Current 12 49.48 4.45 27.15 35.03 22.70

051-HC 17-Apr-13 1004 N. Equatorial Current 1 1150.37 1.18 7.47 4.26 34.56 27.42

051-HC 17-Apr-13 1004 N. Equatorial Current 2 992.89 0.92 4.84 34.55 27.35

051-HC 17-Apr-13 1004 N. Equatorial Current 3 794.25 0.66 5.74 34.54 27.23

051-HC 17-Apr-13 1004 N. Equatorial Current 4 793.97 0.66 3.00 79.85 5.74 34.54 27.23

051-HC 17-Apr-13 1004 N. Equatorial Current 5 596.40 0.47 7.32 34.56 27.03

051-HC 17-Apr-13 1004 N. Equatorial Current 6 496.22 0.48 2.68 62.95 8.07 34.58 26.94

051-HC 17-Apr-13 1004 N. Equatorial Current 7 397.62 0.33 7.42 9.15 34.64 26.82

051-HC 17-Apr-13 1004 N. Equatorial Current 8 298.60 0.32 2.50 58.23 9.90 34.67 26.72

051-HC 17-Apr-13 1004 N. Equatorial Current 9 197.75 0.64 11.30 34.59 26.40

051-HC 17-Apr-13 1004 N. Equatorial Current 10 99.69 4.12 23.89 34.92 23.62

051-HC 17-Apr-13 1004 N. Equatorial Current 11 49.38 4.48 26.41 34.69 22.68

051-HC 17-Apr-13 1004 N. Equatorial Current 12 48.95 4.50 26.42 34.69 22.67

Page 24: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

24

Table 4: Hydrocast station data for S246 (continued).

Station

Number

(S246-)

Date Time

(Local) General Locale Bottle

Bottle

Depth

(m)

Dissolved

Oxygen

(mL/L)

PO4

(μM)

NO3

(μM) pH

Temperature

(°C)

Salinity

(psu)

Density

(kg/m3)

056-HC 18-Apr-13 0957 N. Pacific Subtropical Gyre 1 1085.75 1.10 4.34 34.55 27.40

056-HC 18-Apr-13 0957 N. Pacific Subtropical Gyre 2 991.38 0.97 4.66 34.54 27.36

056-HC 18-Apr-13 0957 N. Pacific Subtropical Gyre 3 794.65 0.73 5.59 34.52 27.23

059-HC 19-Apr-13 1028 N. Pacific Subtropical Gyre 1 1129.74 1.02 7.45 3.96 34.55 27.44

059-HC 19-Apr-13 1028 N. Pacific Subtropical Gyre 2 990.42 0.70 4.50 34.54 27.37

059-HC 19-Apr-13 1028 N. Pacific Subtropical Gyre 3 793.64 0.53 5.39 34.51 27.25

059-HC 19-Apr-13 1028 N. Pacific Subtropical Gyre 4 792.69 0.54 2.90 66.62 5.40 34.51 27.25

059-HC 19-Apr-13 1028 N. Pacific Subtropical Gyre 5 595.71 0.47 6.55 34.50 27.09

059-HC 19-Apr-13 1028 N. Pacific Subtropical Gyre 6 496.61 0.51 2.70 59.54 7.38 34.48 26.96

059-HC 19-Apr-13 1028 N. Pacific Subtropical Gyre 7 397.40 0.42 7.46 8.61 34.50 26.80

059-HC 19-Apr-13 1028 N. Pacific Subtropical Gyre 8 297.72 0.75 2.28 51.42 10.01 34.45 26.53

059-HC 19-Apr-13 1028 N. Pacific Subtropical Gyre 9 198.64 3.89 14.65 34.38 25.57

059-HC 19-Apr-13 1028 N. Pacific Subtropical Gyre 10 100.20 4.65 23.79 35.27 23.92

059-HC 19-Apr-13 1028 N. Pacific Subtropical Gyre 11 49.14 4.70 24.40 35.22 23.69

059-HC 19-Apr-13 1028 N. Pacific Subtropical Gyre 12 48.21 4.73 24.40 35.22 23.69

063-HC 22-Apr-13 1056 N. Pacific Subtropical Gyre 1 913.01 0.97 4.44 34.51 27.36

063-HC 22-Apr-13 1056 N. Pacific Subtropical Gyre 2 911.84 0.98 4.44 34.51 27.36

063-HC 22-Apr-13 1056 N. Pacific Subtropical Gyre 3 794.10 0.92 4.86 34.48 27.29

063-HC 22-Apr-13 1056 N. Pacific Subtropical Gyre 4 792.67 0.92 4.86 34.48 27.29

063-HC 22-Apr-13 1056 N. Pacific Subtropical Gyre 5 596.14 0.73 5.41 34.36 27.12

063-HC 22-Apr-13 1056 N. Pacific Subtropical Gyre 6 496.52 0.88 6.05 34.25 26.96

063-HC 22-Apr-13 1056 N. Pacific Subtropical Gyre 7 397.52 1.47 7.19 34.19 26.76

063-HC 22-Apr-13 1056 N. Pacific Subtropical Gyre 8 298.85 2.58 8.68 34.15 26.50

063-HC 22-Apr-13 1056 N. Pacific Subtropical Gyre 9 199.35 3.75 11.75 34.18 26.00

063-HC 22-Apr-13 1056 N. Pacific Subtropical Gyre 10 99.52 4.05 17.21 34.71 25.25

063-HC 22-Apr-13 1056 N. Pacific Subtropical Gyre 11 49.26 4.81 22.27 35.19 24.29

063-HC 22-Apr-13 1056 N. Pacific Subtropical Gyre 12 48.12 4.82 22.31 35.19 24.27

All hydrocasts gathered data from a SeaBird 19PlusV2 CTD (S/N 4043) and three auxiliary instruments (Seapoint Chlorophyll fluorometer (S/N

SCF3149), SeaBird Dissolved Oxygen sensor (model 43; S/N 1120), and Biospherical Instruments/SeaBird PAR sensor (S/N 4179)). Extracted

chlorophyll-a samples were filtered through 0.45 μm filters and measured with a Turner Designs Model 10-AU fluorometer. Seawater pH was

determined using m-cresol purple indicator dye and spectrophotometry. Nutrients (PO4 and NO3) were assessed with colorometric

spectrophotometry. Alkalinity was measured by Gran titration. A blank space indicates that no sample was collected for that analysis.

Page 25: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

25

Table 5a: Neuston tow hydrographic data for S246. Station locations as in Table 2.

Station

Number

(S246-)

Date Time

(Local)

Moon

Phase

(%)

Sea Surface

Temperature

(°C)

Chlorophyll

Fluorescence

(volts)

Salinity

(psu)

Tow

Area

(m2)

Zooplankton

Biomass

(mL)

Zooplankton

Density

(mL/m2)

General Locale

001-NT 29-Mar-13 2335 94R 24.8 1.2 34.95 850.5 24.0 0.0282 Hawaiian Waters

003-NT 31-Mar-13 0014 79R 24.9 1.2 34.86 2252.4 17.5 0.0078 N. Pacific Subtropical Gyre

005-NT 31-Mar-13 2322 79R 25.0 1.7 34.79 2130.0 14.0 0.0066 N. Pacific Subtropical Gyre

009-NT 2-Apr-13 0015 58R 25.1 1.2 34.65 1333.4 10.5 0.0079 N. Pacific Subtropical Gyre

013-NT 2-Apr-13 2351 58R 26.3 1.5 34.29 2723.6 7.0 0.0026 N. Pacific Subtropical Gyre

015-NT 3-Apr-13 1119 47R 26.6 1.7 34.31 2021.8 5.2 0.0026 N. Pacific Subtropical Gyre

017-NT 3-Apr-13 2234 47S 26.7 1.6 34.25 2595.4 9.0 0.0035 N. Pacific Subtropical Gyre

021-NT 4-Apr-13 2301 36R 27.3 4.3 34.53 1148.2 40.0 0.0348 N. Equatorial Current

027-NT 6-Apr-13 2242 16S 27.8 4.9 34.66 1385.9 30.0 0.0216 N. Equatorial Current

029-NT 11-Apr-13 2352 1S 28.0 4.3 34.86 2177.9 22.0 0.0101 N. Equatorial Current

034-NT 12-Apr-13 2352 4S 28.2 4.7 34.85 1127.1 39.0 0.0346 N. Equatorial Countercurrent

036-NT 13-Apr-13 2305 9S 27.9 4.2 34.84 3022.8 71.0 0.0235 N. Equatorial Current

040-NT 14-Apr-13 2357 23S 27.9 4.3 34.80 1393.0 33.0 0.0237 N. Equatorial Current

045-NT 15-Apr-13 2222 31S 27.5 4.1 34.75 1373.3 59.0 0.0430 N. Equatorial Current

050-NT 16-Apr-13 2232 31R 27.0 1.7 34.54 2051.1 26.0 0.0127 N. Equatorial Current

054-NT 17-Apr-13 2213 40R 26.7 1.3 34.47 1521.7 10.0 0.0066 N. Pacific Subtropical Gyre

058-NT 18-Apr-13 2204 50R 26.5 1.3 34.43 1210.1 15.0 0.0124 N. Pacific Subtropical Gyre

063-NT 22-Apr-13 1234 86S 25.3 1.2 35.38 1227.9 18.0 0.0147 N. Pacific Subtropical Gyre

Moon phase indicates either risen (R) or set (S). Tow area calculated using distance (meters) between successive minutes' GPS positions. Neuston

net opening 1.0m wide by 0.5m tall, with a 333μm mesh net. Zooplankton density recorded as wet volume displacement per tow area (ml/m2).

Page 26: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

26

Table 5b: Neuston tow biological data for S246 (continued). Station locations as in Table 2.

Station

Number

(S246-)

Phyllosoma

(#)

Leptocephali

(#)

Halobates

(#)

Myctophids

(#)

Sargassum

natans (g)

Sargassum

fluitans (g)

Plastic

Pellets (#)

Plastic

Pieces (#) Tar (#)

Nekton

>2cm (mL)

Gelatinous

>2cm (mL)

001-NT 0 0 2 0 0 0 1 4 0 0.0 13.0

003-NT 0 0 30 2 0 0 0 8 0 0.8 3.0

005-NT 0 0 10 5 0 0 0 5 0 0.5 0.0

009-NT 0 0 22 7 0 0 0 0 0 0.5 1.9

013-NT 0 0 30 25 0 0 0 2 0 0.0 0.5

015-NT 0 0 10 0 0 0 0 6 0 0.2 2.0

017-NT 0 0 0 1 0 0 0 0 0 0.2 0.5

021-NT 0 0 0 0 0 0 0 1 0 0.0 112.0

027-NT 0 0 1 17 0 0 0 0 0 7.5 13.0

029-NT 0 0 51 44 0 0 0 0 0 0.4 18.0

034-NT 0 0 14 14 0 0 0 0 0 0.0 197.5

036-NT 1 0 26 64 0 0 0 5 0 8.0 22.0

040-NT 0 0 1 38 0 0 0 0 0 0.0 40.5

045-NT 0 0 0 1 0 0 0 0 0 0.0 7.5

050-NT 0 0 0 0 0 0 0 1 0 0.0 5.0

054-NT 0 1 1 0 0 0 0 2 0 0.0 8.0

058-NT 0 0 0 0 0 0 0 0 0 0.0 1.5

063-NT 0 0 16 0 0 0 9 0 0 0.0 2.0

Eel larvae (leptocephali), spiny lobster larvae (phyllosoma), marine water striders (halobates) and Lantern fish (myctophids) sorted from net

contents and counted. Micronekton and gelatinous micronekton removed using a 1cm mesh sieve; biovolume (ml) recorded. Qualitative

descriptions of micronekton removed from zooplankton biomass are available. Floating plastic and tar removed from net contents, sorted and

recorded as numbers collected per tow.

Page 27: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

27

Table 6a: Meter net hydrographic data for S246. Station locations as in Table 2.

Station

Number

(S246-)

Date Time

(Local)

Sea Surface

Temperature

(°C)

Chlorophyll

Fluorescence

(volts)

Salinity

(psu)

Maximum

Tow Depth

(m)

Tow

Length

(m)

Tow

Volume

(m3)

Zooplankton

Biomass

(mL)

Zooplankton

Density

(mL/m3)

General Locale

003-MN 30-Mar-13 2258 24.9 1.2 34.76 ~150 1697.0 1332.2 91.0 0.0683 N. Pacific Subtropical Gyre

005-MN 31-Mar-13 2214 25.1 1.3 34.80 ~200 2651.4 2081.4 49.0 0.0235 N. Pacific Subtropical Gyre

013-MN 2-Apr-13 2224 26.3 1.5 34.27 ~120 2857.7 2243.3 116.0 0.0517 N. Pacific Subtropical Gyre

017-MN 3-Apr-13 2331 26.7 1.5 34.25 ~150 3104.4 2437.0 83.0 0.0341 N. Pacific Subtropical Gyre

021-MN 4-Apr-13 2240 27.3 4.2 34.54 ~140 3841.1 3015.3 93.0 0.0308 N. Equatorial Current

027-MN 6-Apr-13 2229 27.8 5.0 34.60 ~130 1868.7 1467.0 39.0 0.0266 N. Equatorial Current

034-MN 12-Apr-13 2300 28.1 4.5 34.85 ~180 2377.3 1866.3 91.0 0.0488 N. Equatorial Countercurrent

036-MN 13-Apr-13 2249 27.9 4.4 34.84 ~130 1907.9 1497.7 156.0 0.1042 N. Equatorial Current

045-MN 15-Apr-13 2205 27.5 4.1 34.75 ~150 1864.4 1463.6 185.0 0.1264 N. Equatorial Current

050-MN 16-Apr-13 2217 27.0 1.5 34.53 ~150 2482.9 1949.1 101.0 0.0518 N. Equatorial Current

058-MN 18-Apr-13 2148 26.5 1.3 34.43 ~150 2251.0 1767.1 40.0 0.0226 N. Pacific Subtropical Gyre

062-2MN 21-Apr-13 2116 25.2 1.2 34.90 ~200 3271.5 7590.0 94.0 0.0124 N. Pacific Subtropical Gyre

All tows used a 1m net (0.785m2) with 333µm mesh except station 062, which used the 2m net (2.49 m

2) with 1000µm mesh. Tow length

calculated using distance between successive minutes' GPS positions; tow volume from tow length and net area. Tow depth estimated by Chief

Scientist from total wire deployed, ship speed and angle at which wire entered the water. Zooplankton density recorded as wet volume

displacement per tow volume (ml/m3).

Page 28: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

28

Table 6b: Meter net biological data for S246 (continued). Station locations as in Table 2.

Station

Number

(S246-)

Phyllosoma

(#)

Leptocephali

(#)

Halobates

(#)

Myctophids

(#)

Plastic

Pellets (#)

Plastic

Pieces (#) Tar (#)

Nekton

>2cm (mL)

Gelatinous

>2cm (mL)

003-MN 0 0 0 6 0 0 0 0.0 7.0

005-MN 0 0 0 0 0 1 0 0.5 0.0

013-MN 0 0 2 12 0 0 0 0.6 3.0

017-MN 0 0 1 2 0 0 0 12.0 4.0

021-MN 0 1 0 0 0 0 0 13.1 65.0

027-MN 0 0 0 0 0 0 0 19.5 51.0

034-MN 0 0 0 3 0 0 0 5.0 38.0

036-MN 0 3 0 2 0 0 0 5.0 20.0

045-MN 0 2 0 2 0 0 0 3.0 9.0

050-MN 0 0 0 4 0 0 0 7.0 4.0

058-MN 0 0 0 3 0 0 0 1.0 7.0

062-2MN 0 0 2 5 0 0 0 15.1 29.0

Eel larvae (leptocephali), spiny lobster larvae (phyllosoma), marine water striders (halobates) and Lantern fish (myctophids) sorted from net

contents and counted. Micronekton and gelatinous micronekton removed using a 1cm mesh sieve; biovolume (ml) recorded. Qualitative

descriptions of micronekton removed from zooplankton biomass are available. Floating plastic and tar removed from net contents, sorted and

recorded as numbers collected per tow.

Abbreviations for zooplankton categories in Tables 7a and 7b: Cnid – cnidarian medusa; Siph – siphonophore bracts and floats; Cten –

ctenophores; Pter – pteropods; Nud - nudibranchs; Other Snail – pelagic snails; Ceph – cephalopods; Poly – polychaetes; Chaet – chaetognaths;

Cop – copepods; Gam Amp – gammarid amphipods; Hyp Amp – hyperiid amphipods; Crab (larv) – Crab zoea and megalops; Shr (larv) – shrimp

larval stage; Lob (larv) – lobster larval stage; Mys – mysids; Euph – euphausiids; Stom (larv) – stomatopod larval stage; Ost – ostracods; Clad –

cladocerans; Iso – isopods; Salp – salps and doliolids; Fish (larv) - larval fish.

Page 29: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

29

Table 7a: Zooplankton 100 count data for S246. Station locations as in Table 2.

Station

Number

(S246-)

Date Time

(Local) Cnid Siph Cten Pter Nud

Other

Snail Ceph Poly Chaet Cop

Gam

Amp

Hyp

Amp

Crab

(larv)

001-NT 29-Mar-13 2335 1 0 0 20 0 0 0 0 2 76 0 1 0

003-MN 30-Mar-13 2258 0 0 0 1 0 1 0 0 9 81 0 0 0

003-NT 31-Mar-13 0014 0 0 0 6 0 4 0 0 0 59 0 8 1

005-MN 31-Mar-13 2214 1 1 0 6 0 3 0 0 1 64 1 9 0

005-NT 31-Mar-13 2322 0 0 0 2 0 0 0 0 0 82 0 1 0

009-NT 2-Apr-13 0015 0 3 0 4 0 4 0 0 0 55 1 1 0

013-MN 2-Apr-13 2224 0 2 0 2 0 2 0 0 4 77 0 0 0

013-NT 2-Apr-13 2351 0 0 0 0 0 6 0 0 7 78 1 3 0

015-NT 3-Apr-13 1119 0 19 0 0 0 2 0 0 3 55 0 1 0

017-MN 3-Apr-13 2231 0 0 0 2 0 0 0 0 0 66 0 21 0

017-NT 3-Apr-13 2334 0 4 0 2 0 0 0 0 5 60 6 1 0

021-MN 4-Apr-13 2240 0 1 0 0 0 0 0 1 6 64 4 4 1

021-NT 4-Apr-13 2301 0 1 0 3 0 3 0 0 3 49 0 15 0

027-MN 6-Apr-13 2229 0 0 0 0 0 0 0 0 3 72 2 6 0

027-NT 6-Apr-13 2242 0 5 0 2 0 0 0 0 1 42 5 19 0

029-NT 11-Apr-13 2352 0 0 0 3 0 0 0 0 1 75 0 0 0

034-MN 12-Apr-13 2300 0 2 0 0 0 0 0 0 1 52 1 12 0

034-NT 12-Apr-13 2352 0 1 0 2 0 0 0 0 2 75 0 5 0

036-MN 13-Apr-13 2249 0 1 0 17 0 0 0 0 0 44 7 16 0

036-NT 13-Apr-13 2305 1 19 0 3 0 0 0 0 2 47 0 14 0

040-NT 14-Apr-13 2357 0 2 0 3 0 1 0 0 0 31 0 23 0

045-MN 15-Apr-13 2205 0 0 0 3 0 0 0 0 5 83 0 2 0

045-NT 15-Apr-13 2222 0 0 0 3 0 0 0 0 2 37 0 11 0

050-MN 16-Apr-13 2217 0 0 0 3 0 0 0 0 4 71 0 2 0

050-NT 16-Apr-13 2232 0 4 0 0 0 0 0 0 12 59 0 6 0

054-NT 17-Apr-13 2213 0 1 0 3 0 0 0 0 4 63 0 5 0

058-MN 18-Apr-13 2148 0 3 0 7 0 0 0 0 14 55 1 2 0

058-NT 18-Apr-13 2204 0 1 0 6 0 0 0 0 4 79 0 1 0

062-2MN 21-Apr-13 2116 0 4 0 1 0 1 0 1 6 64 2 3 0

063-NT 22-Apr-13 1234 0 4 0 0 0 17 0 0 4 41 12 0 0

Page 30: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

30

Table 7b: Zooplankton 100 count data for S246 (continued).

Station

Number

(S246-)

Date Time

(Local)

Shr

(larv)

Lob

(larv) Mys Euph

Stom

(larv) Ostr Clad Iso Salp

Fish

(larv)

Fish

eggs Other

Shannon-

Weiner

Diversity

Index

001-NT 29-Mar-13 2335 0 0 5 0 0 0 0 0 0 0 0 0 0.373

003-MN 30-Mar-13 2258 0 0 6 0 0 2 0 0 0 0 0 0 0.316

003-NT 31-Mar-13 0014 2 0 17 0 0 5 0 0 0 0 0 0 0.599

005-MN 31-Mar-13 2214 1 0 4 4 0 3 0 0 0 0 2 0 0.637

005-NT 31-Mar-13 2322 0 0 11 2 0 1 0 0 1 0 0 0 0.304

009-NT 2-Apr-13 0015 0 0 8 17 0 10 0 0 0 0 0 0 0.662

013-MN 2-Apr-13 2224 0 0 2 2 0 9 0 0 0 0 0 0 0.407

013-NT 2-Apr-13 2351 0 0 1 2 0 6 0 0 1 0 0 0 0.462

015-NT 3-Apr-13 1119 0 0 0 3 0 13 0 0 0 3 1 0 0.606

017-MN 3-Apr-13 2231 5 0 1 0 0 6 0 0 0 1 0 0 0.473

017-NT 3-Apr-13 2334 0 0 11 10 0 0 0 0 1 0 0 0 0.607

021-MN 4-Apr-13 2240 1 0 10 3 0 3 0 0 2 0 0 0 0.615

021-NT 4-Apr-13 2301 0 0 20 6 0 0 0 0 0 0 0 1 0.663

027-MN 6-Apr-13 2229 0 1 4 4 0 2 0 0 0 0 4 2 0.511

027-NT 6-Apr-13 2242 1 0 11 10 0 0 0 0 1 0 3 0 0.770

029-NT 11-Apr-13 2352 1 0 11 5 0 0 0 0 0 0 0 4 0.416

034-MN 12-Apr-13 2300 3 0 8 14 0 0 1 1 7 0 0 0 0.701

034-NT 12-Apr-13 2352 0 0 26 1 0 0 0 0 0 0 0 0 0.423

036-MN 13-Apr-13 2249 7 0 7 1 0 0 0 0 0 0 0 0 0.698

036-NT 13-Apr-13 2305 4 0 9 6 0 0 0 0 3 0 0 0 0.755

040-NT 14-Apr-13 2357 16 0 13 9 0 2 0 0 0 0 0 0 0.775

045-MN 15-Apr-13 2205 0 0 1 1 0 2 0 0 0 1 0 2 0.346

045-NT 15-Apr-13 2222 1 0 37 0 0 0 0 0 8 0 1 0 0.632

050-MN 16-Apr-13 2217 1 0 0 5 0 11 0 0 0 0 0 3 0.486

050-NT 16-Apr-13 2232 0 0 3 7 0 3 0 0 0 0 0 0 0.555

054-NT 17-Apr-13 2213 1 0 13 2 0 2 1 0 1 0 0 4 0.622

058-MN 18-Apr-13 2148 1 0 0 5 0 11 0 0 1 0 0 0 0.653

058-NT 18-Apr-13 2204 0 0 1 0 0 7 0 1 0 0 0 0 0.371

062-2MN 21-Apr-13 2116 2 0 3 12 0 0 0 0 0 1 0 0 0.603

063-NT 22-Apr-13 1234 0 0 0 0 0 0 0 13 7 1 1 0 0.748

Page 31: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

31

Table 8: Phytoplankton net data for S246. Station locations as in Table 2.

Station

Number

(S246-)

Date Time

(Local)

Sea Surface

Temperature

(°C)

Chlorophyll

Fluorescence

(volts)

Salinity

(psu) General Locale Sample Type

004-PN 31-Mar-13 1026 25.1 1.2 34.81 N. Pacific Subtropical Gyre Drifted Surface

007-PN 1-Apr-13 1114 25.1 1.2 34.57 N. Pacific Subtropical Gyre Drifted Surface

011-PN 2-Apr-13 1102 26.0 1.2 34.26 N. Pacific Subtropical Gyre Drifted Surface

019-PN 4-Apr-13 1004 26.9 1.2 34.85 N. Pacific Subtropical Gyre Drifted Surface

022-PN 5-Apr-13 1040 27.6 2.2 34.84 N. Equatorial Current Drifted Surface

031-PN 12-Apr-13 1025 28.0 2.1 34.87 N. Equatorial Countercurrent Drifted Surface

038-PN 14-Apr-13 1029 28.7 1.9 34.84 N. Equatorial Current Drifted Surface

042-PN 15-Apr-13 1012 27.5 1.9 34.81 N. Equatorial Current Drifted Surface

047-PN 16-Apr-13 1045 27.2 1.5 34.70 N. Equatorial Current Drifted Surface

051-PN 17-Apr-13 1033 26.8 1.2 34.47 N. Equatorial Current Drifted Surface

056-PN 18-Apr-13 1005 26.4 1.2 34.38 N. Pacific Subtropical Gyre Drifted Surface

059-PN 19-Apr-13 1120 25.7 1.1 34.69 N. Pacific Subtropical Gyre Drifted Surface

Table 9: Secchi disk data for S246. Station locations as in Table 2.

Station

Number

(S246-)

Date Time

(Local)

Sea Surface

Temperature

(°C)

Salinity

(psu)

Chlorophyll

Fluorescence

(volts)

CDOM

Fluorescence

(volts)

Cloud

Cover

Wave

Height

(m)

Wind

Speed

(Beaufort

Force)

Secchi

Depth

(m)

Calculated

1% Level

(m)

General Locale

019-SD 4-Apr-13 1135 26.9 34.36 1.2 41.9 40% 4 3 29.0 78 N. Pacific Subtropical Gyre

031-SD 12-Apr-13 1037 28.0 34.86 2.0 49.4 30% 8 4 24.0 64 N. Equatorial Countercurrent

Table 10: ARGO float deployment data for S246.

Date Time

(Local)

Latitude

(deg N)

Longitude

(deg W)

Float Serial

Number

Wave Height

(m)

Winds

(Beaufort

Force)

Sea Surface

Temperature

(°C)

Salinity

(psu)

3-Apr-2013 1502 11.92 -159.94 F1086 (#5904269) 2 5 26.6 34.26

18-Apr-2013 1528 13.51 -159.93 F0188 (#5904271) 2 5 26.7 34.41

Both ARGO floats were constructed by and will receive continued support from NOAA Pacific Marine Environmental Laboratory ARGO

Program (http://floats.pmel.noaa.gov/). Float tracking and processed data may be accessed through the float database at the provided website.

Page 32: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

32

Table 11: Surface Photosynthetically Available Radiation Sensor data for S246. Station locations as in

Table 2.

Station

Number

(S246-)

Date Time

(Local)

Cloud

Cover

(%)

Average SPAR

(µEinsteins/m2/sec)

1% Light Value

(µEinsteins/m2/sec)

General Locale

004-SPAR 31-Mar-13 1223 90 1900.5 19.01 N. Pacific Subtropical Gyre

006-SPAR 1-Apr-13 0802 30 1635.9 16.36 N. Pacific Subtropical Gyre

007-SPAR 1-Apr-13 1202 65 2015.5 20.16 N. Pacific Subtropical Gyre

008-SPAR 1-Apr-13 1701 95 640.9 6.41 N. Pacific Subtropical Gyre

010-SPAR 2-Apr-13 0800 40 1162.5 11.63 N. Pacific Subtropical Gyre

011-SPAR 2-Apr-13 1217 40 2332.0 23.32 N. Pacific Subtropical Gyre

012-SPAR 2-Apr-13 1636 40 1694.2 16.94 N. Pacific Subtropical Gyre

014-SPAR 3-Apr-13 0833 95 799.8 8.00 N. Pacific Subtropical Gyre

015-SPAR 3-Apr-13 1157 80 1900.9 19.01 N. Pacific Subtropical Gyre

016-SPAR 3-Apr-13 1649 90 1376.6 13.77 N. Pacific Subtropical Gyre

018-SPAR 4-Apr-13 0758 30 1046.2 10.46 N. Pacific Subtropical Gyre

019-SPAR 4-Apr-13 1201 25 2423.6 24.24 N. Pacific Subtropical Gyre

020-SPAR 4-Apr-13 1655 90 696.6 6.97 N. Pacific Subtropical Gyre

023-SPAR 5-Apr-13 1754 30 661.3 6.61 N. Equatorial Current

024-SPAR 6-Apr-13 0806 45 1479.8 14.80 N. Equatorial Current

025-SPAR 6-Apr-13 1150 45 2361.8 23.62 N. Equatorial Current

026-SPAR 6-Apr-13 1603 50 1955.8 19.56 N. Equatorial Current

028-SPAR 11-Apr-13 1239 15 No Data No Data Palmyra Waters

030-SPAR 12-Apr-13 0904 70 1849.1 18.49 N. Equatorial Countercurrent

032-SPAR 12-Apr-13 1357 25 2284.5 22.85 N. Equatorial Countercurrent

033-SPAR 12-Apr-13 1728 15 1990.1 19.90 N. Equatorial Countercurrent

037-SPAR 14-Apr-13 0750 70 1331.3 13.31 N. Equatorial Current

038-SPAR 14-Apr-13 1215 55 1984.9 19.85 N. Equatorial Current

039-SPAR 14-Apr-13 1615 35 1895.1 18.95 N. Equatorial Current

041-SPAR 15-Apr-13 0818 30 2267.1 22.67 N. Equatorial Current

043-SPAR 15-Apr-13 1313 10 2234.9 22.35 N. Equatorial Current

044-SPAR 15-Apr-13 1731 70 731.5 7.32 N. Equatorial Current

046-SPAR 16-Apr-13 0800 85 706.1 7.06 N. Equatorial Current

048-SPAR 16-Apr-13 1213 40 2520.2 25.20 N. Equatorial Current

051-SPAR 17-Apr-13 1023 55 2219.8 22.20 N. Equatorial Current

052-SPAR 17-Apr-13 1235 35 2366.6 23.67 N. Equatorial Current

053-SPAR 17-Apr-13 1635 31 2130.4 21.30 N. Equatorial Current

055-SPAR 18-Apr-13 0759 5 2317.7 23.18 N. Pacific Subtropical Gyre

056-SPAR 18-Apr-13 1201 30 2340.6 23.41 N. Pacific Subtropical Gyre

057-SPAR 18-Apr-13 1655 80 1178.2 11.78 N. Pacific Subtropical Gyre

059-SPAR 19-Apr-13 1231 20 2015.4 20.15 N. Pacific Subtropical Gyre

060-SPAR 19-Apr-13 1715 50 1366.5 13.67 N. Pacific Subtropical Gyre

All SPAR deployments gathered data from a Biospherical Instruments/SeaBird Electronics QSR2100 sensor

(S/N 10301) positioned on top of the science lab for at least 20 minutes.

Page 33: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

33

Table 12: Student Research Projects for S246

Temporal and spatial change in carbonate chemistry along N-S transect

in the subtropical Pacific Chloe Holzinger and Dennis Claffey

Pteropod shell degradation and ocean acidification in the equatorial

Pacific Katie Lyon and Marina Stevenson

Chemical and biological analysis of forced upwelling in the North

Pacific Subtropical Gyre Abby Stryker and Laura Jack

Feasibility of Ocean Thermal Energy Conversion in the

northern equatorial Pacific Arianna Abram and Josh Sturtevant

The potential for renewable wave energy as a means for powering

autonomous buoys in the equatorial Pacific

Nikiforos Delatolas and Alexandra

Simpson

Alternative energy sources and fuel use assessment for cruise and cargo

ships in the equatorial Pacific

Larkin Bernardi, Mary McGee, Jillian

Lyles and Brianna Sparre

Page 34: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

34

Student Research Project Abstracts

Temporal and spatial change in carbonate chemistry along N-S transect in the subtropical Pacific – Chloe

Holzinger and Dennis Claffey

This study uses data from the S246 cruise to assist in gaining a better understanding of the current carbonate

chemistry conditions throughout the region, and to provide carbonate chemistry data along the transect for current

and future studies. Data from past Sea Education Association (SEA) cruises to the same region are used in

conjunction with data gathered from this study to build a timeline tracking any change in seawater carbonate

chemistry of the area over time. There is very little spatial variation at the sea surface for the S246 cruise track. At

400m the NEC, an upwelling zone, generally shows greater signs of acidification, whereas the ER shows signs of

less acidification. At 1200m, pH, DIC, and pCO2 levels from the three regions start to converge. These different

patterns are indicative of the different predominant processes at each depth: at the surface, the carbonate chemistry

is most influenced by the atmospheric and biotic characteristics of the region; at 400m the most influential factor is

whether or not the region is an upwelling zone, and at 1200m the most influential factor is that all samples are from

the same water mass, the SIW. These trends were expected at the start of the study, and are well representative of

the driving physical processes of the region. Variation exists in the carbonate chemistry conditions of the area over

time, is consistent spatially, and does not consistently trend towards more or less acidic. Variation was concluded to

not be due to increasing global ocean acidification.

Pteropod shell degradation and ocean acidification in the equatorial Pacific – Katie Lyon and Marina Stevenson

This study aimed to understand ocean acidification through a biological lens by examining pteropod shell

degradation in the equatorial Pacific. Pteropods, zooplanktonic mollusks with aragonite shells, are particularly

susceptible to the effects of ocean acidification because aragonite saturation levels decrease with an increased

oceanic uptake of carbon dioxide. We took samples of pteropods at 0m and 150m at stations across the S-246 cruise

track and examined collected pteropods for evidence of shell degradation. Shell degradation varied between genera,

with Limacina showing the highest percentage of degradation and Quadridendata showing the highest percentage of

degraded individuals. The percentage of degraded individuals was highest in the North Equatorial Countercurrent.

There was no significant difference between pteropods collected at the surface and at depth. Shell degradation did

not correlate significantly to temperature, salinity, pH, dissolved inorganic carbon, or partial pressure of carbon

dioxide. Our results show that shell degradation varies between pteropod genera but has no significant correlation to

factors for which a relationship was predicted. The equatorial Pacific is an understudied region even though

pteropod biodiversity is highest in the tropics, and further research in this area is needed to understand how ocean

acidification affects this part of the world’s oceans. Our study was a step towards establishing a baseline of

degradation for pteropods in this region; future cruises could expand on our data by adding a temporal aspect.

Chemical and biological analysis of forced upwelling in the North Pacific Subtropical Gyre – Abby Stryker and

Laura Jack

Forced upwelling has been proposed as a method to sequester CO2 from the atmosphere by creating a phytoplankton

bloom by forcing deep nutrient rich waters up to the nutrient deprived, low productivity surface. An optimal location

for such a site would be an area of low productivity and high nutrient differences from surface and deep water. The

Redfield ratio (16 N:1 P) was used to determine the optimal nutrient concentrations for creating an algal bloom at a

proposed forced upwelling site. This study analyzed nutrients, chlorophyll-a concentrations, and phytoplankton

populations at the surface, in addition to nitrate and phosphate concentrations at 300 meter and 500 meter depths. At

the surface, diatoms were found to be most common near the equatorial region, the area found to have the highest

nitrate and phosphate concentrations, while dinoflagellates and cyanobacteria were most common within the NPSG

where the lowest nitrate and phosphate concentrations were found along this cruise track. In all areas a high nutrient

gradient from surface to depth was found along this cruise track. The low surface productivity within the NPSG,

combined with the vertical nutrient gradient creates optimal locations for a forced upwelling system. A bloom of

dinoflagellates and cyanobacteria would be expected as a result of forced upwelling in this region.

Feasibility of Ocean Thermal Energy Conversion in the northern equatorial Pacific – Arianna Abram and Josh

Sturtevant

Ocean Thermal Energy Conversion (OTEC) is a renewable energy technology that utilizes the vast resource of the

ocean’s thermal energy to produce electricity. Thermal gradients between the sea surface and deep ocean greater

than 20oC/km make tropical regions ideal for OTEC. Small Island Developing States (SIDS) in these equatorial

regions could benefit from the energy independence OTEC provides. Secondary benefits include freshwater and

Page 35: S-246: ENERGY THE OCEAN ENVIRONMENT · Table 6a: Meter net hydrographic data 26 Table 6b: Meter net biological data 27 ... Sofia Nakhnikian-Weintraub Sailing Intern Erin Bryant Ocean

35

nutrient-rich deep waters, however environmental impacts limit OTEC’s practicality. This study assessed the

feasibility of OTEC in the North Equatorial Pacific region aboard Sea Education Association’s SSV Robert C.

Seamans from Hawaii to Palmyra Atoll. Temperature, nutrient, pH, and pCO2 data was collected along the S246

cruise track in spring 2013. Past cruises were also examined to determine temperature variation through time.

Thermal gradients from surface to one kilometer ranged from 20.3o C to 23.4

o C. Gradients and sea surface

temperature increased with proximity to the equator. El Nino Southern Oscillation (ENSO) and seasonality

fluctuations between 2008 and 2013 display sea surface temperature variability as great as 4o C. Diurnal fluctuations

were 0.4o C. Phosphate levels were seven times more concentrated at depth; nitrate were 25-140 times more

concentrated at depth. Average pH levels were 8.03 at the surface 7.42 at depth. Average pCO2 levels were 429.18

uatm at the surface and 2250.37 uatm at depth. This study concluded that OTEC is feasible in this region with

consideration to environmental impacts. Long-term studies are suggested to more fully understand climactic changes

and environmental impacts associated with OTEC.

The potential for renewable wave energy as a means for powering autonomous buoys in the equatorial Pacific –

Alexandra Simpson and Nikiforos Delatolas

This paper uses wave data from the National Buoy Data Center to provide an assessment of the potential for the

North Pacific Ocean to support wave powered oceanographic buoys. Using an idealized equation for calculating

wave power, wave height and periodicity information provide a realistic estimate for sizing the available energy

resource. The study found that the region would provide a minimum of 1000 Watts, enough power to operate the

existing infrastructure of the TAO Buoy array using a point source wave energy converter. Specific to the Hawai’i

region, the data set provides an understanding of the temporal variation in wave power. This illustration of annual

power availability will aid in the development of an oceanographic buoy that operates entirely under the renewable

resource of wave energy.

Alternative energy sources and fuel use assessment for cruise and cargo ships in the equatorial Pacific - Larkin

Bernardi, Jillian Lyles, Mary McGee and Brianna Sparre

Emissions from merchant shipping vessels make up a significant proportion of anthropogenic greenhouse gas

emissions worldwide, and fuel costs constitute a major portion of the operational costs for shipping companies.

Using wind and solar data collected from SEA Pacific cruise tracks aboard the SSV Robert C. Seamans, in

conjunction with data from satellites, an assessment of the available resources was possible. Such an assessment

reveals patterns in the availability of these resources and quantifies the variability on both a temporal and spatial

scale. Hourly wind data collected continuously using an anemometer aboard SEA research vessels was the basis for

both average wind strengths and directions, while satellite data was used to supplement any gaps in SEA”s spatial or

temporal record. Synthetically Available Photovoltaic Radiation (SPAR) data was also collected along SEA research

cruises and analyzed with data from satellites to give a more complete picture. Availability of resources was used to

determine the feasibility of wind and solar technologies, including SkySails, wind turbines, rigid sails and

photovoltaic cells. Various vessel types were examined to determine each technology’s role in powering the

auxiliary systems on various types of vessels. Wind and solar energy in the areas of interest were found to be

plentifully available, with a consistency that would allow relatively accurate predictions to be made about the

potential financial returns of implementing suggested wind and solar technologies.