s anandakrishnan, e kirby penn state university · climate-cryosphere-tectonics* ! s...

22
Climate-Cryosphere-Tectonics* S Anandakrishnan, E Kirby Penn State University 1 * Change and Interactions among Climate, Hydrology, Surface Processes, and Tectonics: Sean Gulick (co-chair), Kelin Whipple, Beatrice Magnani

Upload: vobao

Post on 23-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Climate-Cryosphere-Tectonics* !

S Anandakrishnan, E Kirby Penn State University

1

* Change and Interactions among Climate, Hydrology, Surface Processes, and Tectonics:!

Sean Gulick (co-chair), Kelin Whipple, Beatrice Magnani

2

SEISMOLOGICAL GRAND CHALLENGES

IN UNDERSTANDING EARTH’S DYNAMIC

SYSTEMS

JANUARY 2009

LONG-RANGE SCIENCE PLAN FOR SEISMOLOGY WORKSHOP

SEPTEMBER 18–19, 2008, DENVER, CO

Grand Challenges

• Near-surface effects on Natural Hazards and Resources

• Ocean/Atmosphere/Cryosphere Interactions with the solid Earth

• Understanding Fault Slip

3

4

Satellite

Tide gauge

0.2m sea-level rise since 1880

Observed sea level change

Nuclear power plant Sizewell B

Cazenave et al. 2008. Church & White, 2006.

Modified from Levermann et al., 2013

5

Contributions to sea-level rise

Greenland contribution of last 20 years: ~10% and rising.

Van den Broeke et al. 2011

Ocean expansion

Mountain glaciers

Antarctica

Greenland

Modified from Levermann et al., 2013

Rignot  et  al.,  2008

Colors  are  ice  flow  speed  (purples  are  500  m/year).    Bo@om  end  of  Thwaites  and  PIG  are  more  like  a  few  km/year

Big  Red  Circles  are  total  loss  per  year

7

http://goo.gl/AAkYHl, Grinsted glaciology blog

8

Shapiro and Ritzwoller, 2004

Modified from Pollard et al., 2005

Grand Challenges

• Near-surface effects on Natural Hazards and Resources

• Ocean/Atmosphere Interactions with the solid Earth

• Understanding Fault Slip

9

Double Click Here

10

Double Click Here

11

Grounding Zone FeaturesThe Siple Coast Grounding Zone

Observations

MCDW

ICE SHELF

ICE ADVANCE

WINDS

SEA ICEWRSSW AASW

CDW

MELTING

FREEZING

GROUNDING LINE

CONTINENTAL SHELF

CONTINENTALSLOPE

HSSW ( + LSSW )

HSSW ( + LSSW )

ISWISW

Location of vertical section (Fig. 2)

C

T

AABWLeft: Circulation beneath the Ross Ice Shelf (Smethie and Jacobs, 2005). Right: Grounding line melt

rates versus thermal forcing (Rignot and Jacobs, 2002).

Horgan and others Whillans Ice Stream Grounding Zone

Ocean/ice interactions

• Ice shelf calving rates & mechanisms • Ice shelf cavity geometry • Ocean circulation and temperature structure

13

Over  a  mile  high…

Almost  a  mile  deep…

Glaciers matter

• Glaciers make spectacular features • Glaciers can modify their beds faster than

rivers can • Numbers range from m/yr (Taku, Nolan et al.,

1995; Hallet; Powell) to... • Zero (observations of parts of Laurentide; parts

of Antarctica)

15

Grand Challenges

• Near-surface effects on Natural Hazards and Resources

• Ocean/Atmosphere/Cryosphere Interactions with the solid Earth

• Understanding Fault Slip

16

17

Earthquakes to slow-slip

• `108

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

107

106

105

104

103

102

101

100

10–1

10–2

Dur

atio

n (s

)

Aseismic

Seismic

Slow slip

Regular earthquakes

Seismic moment (Nm)

San Andreas

earthquakes (9)

Shallow subduction

earthquakes (21)

Earthquakes (10–14)

Glacier (18)

Kii peninsula, Japan (3)

Shikoku, Japan (2)Hydrofractureearthquake (20)

Slow shallow earthquakes (1)

Kalpana, Hawaiiearthquake (17)

Landslide (26)

Landslide (25)

Glacier (2 4) Glacier (2 4)

Tsunami earthquakes (19)

Hawaii (7)

Superstition Hills, CA (5)

Transform swarms (8)

Shikoku, Japan (4 )

W ooded Island, Washingtonswarm and aseismic slip (6) After sequences, afterslip

(15, 16, 23)

New Zealand (22)

Slow events (19)

Geodetic

Deep

Shallow

Silent earthquakes

Shallow slow slip

Afterslip

Glacier

Seismic

‘Slow’ events

‘Fast’ earthquakes

Swarms

Aftershocks

Glacier

Landslide

Measur ements

Peng and Gomberg, 2010

18

50

¬5¬101.00.50.0

¬0.5

1086420

¬2¬4¬6¬8

E018

VNDA

a

Disp

lace

men

t (+

m)

Time (s)

10

¬1.0

Disp

lace

men

t (+

m)

40 60 80 100 120 140 160 180 200Time (min)

02202

0 5 10 15 20 25 30 35

600

500

400

300

200

100

0

b

c

Freq

uenc

y

Inter-event time (min)10 20 30 40 50 60 70 80 90

• Seismicity recorded in Antarctica

• Repeated, regular, likely same location, same mechanism.

Zoet et al., 2012

19

Nettles & Ekstrom, 2010

EA38CH18-Nettles ARI 29 March 2010 14:38

17:20

High probability

Medium probability

Low probability

17:3017:00 18:3018:00

17:00 17:40

Time (h:min)

Time (h:min)

All traces, stacked

Nor

mal

ized

env

elop

e am

plitu

de

Nor

mal

ized

dis

plac

emen

t

a

b

470 Nettles · Ekstrom

Ann

u. R

ev. E

arth

Pla

net.

Sci.

2010

.38:

467-

491.

Dow

nloa

ded

from

ww

w.a

nnua

lrevi

ews.o

rgby

Pen

nsyl

vani

a St

ate

Uni

vers

ity o

n 04

/18/

11. F

or p

erso

nal u

se o

nly.

• Earthquakes associated with iceberg calving

• Ice flow speed changes

Stick-Slip motion

• Whillans is the only such glacier ... yet...

20

B010

21

IRIS contributions

• Englacial and subglacial properties using active source methods

• Dynamics of flow (in collaboration with UNAVCO)

• Polar earth structure for mantle viscosity • Polar earth structure for heat flow • Glacier flow as a fault-rupture process • Poles as a low-noise observing “platform”

Looking forward

• Expand Polar broadband networks/arrays • Improve instrumentation for polar deployments. • Improve 3D active-source imaging capability • Glaciers as laboratories for understanding fault

processes

22