s. v. astashkln and yu. e. kim- interpolation of bilinear operators in marcinkiewicz spaces

Upload: jutyyy

Post on 06-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 S. V. Astashkln and Yu. E. Kim- Interpolation of Bilinear Operators in Marcinkiewicz Spaces

    1/9

    M a t h e ma t i c a l No t e s , Vo i. 6 0 , No . 4 , 1 9 9 6

    I n t e r p o l a t i o n o f B i l in e a r O p e r a t o r s i n M a r c i n k i e w i c z S p a c e sS . V . A s t a s h k l n a n d Y u . E . K i m UDC 517.982.27

    A B S T R A C T . A t h e o r e m o n i n t e r po l a ti o n o f b i li n ea r o p e r a t or s i n s y m m e t r i c M a r c i n k i e w i c z s p a c e s i s p r o v e d . I tf o l l o w s f r o m t h e g e n e r a l b i l i n e a r r e s u lt s f o r t h e P e e t r e a n d P e e t r e - G u s t a v s s o n i n t e r po l a t i o n f u n c to r s .K z Y W O R D S : M a r c i n k i e w i c z s p a c e s, P e e t r e in t e r p o la t i o n f u n c t or , b i l i ne a r o p e r a to r s .

    S i n c e t h e f u n c t o r s o f t h e r e a l i n t e r p o l a t i o n m e t h o d w h o s e p a r a m e t e r s a r e " w e i g h t e d " / - s pa c e s i n te r po l at eb i l in e a r o p e r a t o r s [ I] , w e c a n r e a d i l y o b t a i n t h e f o l l o w i n g i n t e r p o l a t i on t h e o r e m f o r t h e L o r e n t z s p a c e sA ( ~ 0 ) [2]. f f T i s a b i l i ne a r o p e r a t o r b o u n d e d f r o m A ( ~ o 0 ) x A ( ~ b 0 ) i n t o A ( 0 0 ) a n d f r o m A ( ~ o l ) x A ( ~ b l )i n t o A ( 0 1 ) , t h e n f or m a y q u a s i c o n c a v e f u n c t i o n p = p ( t ) t h e o p e r a t o r T i s b o u n d e d f r o m A ( ~ 0 p ) A ( ~ bp )i n t o A(Op) ,w h e r e

    T h e m a i n g o a l o f t h i s p a p e r i s t o p r o v e a s i m i l a r t h e o r e m f or M a r c i n k i e w i c z s p a c e s . B y a n a l o g yw i t h t h e a b o v e - d e s c r i b e d c a s e , it s e e m s n a t u r a l t o u s e r e a l i n t e r p o l a ti o n f u n c t o r s w i t h g o o p a r a m e t e r s .H o w e v e r , t h i s w o u l d n o t y i e l d t h e d e s i r e d r e su l t e v e n f o r a p o w e r l a w f u n c t i o n p ( t ) ( s e e T h e o r e m 3 i n [1]).M o r e o v e r , n o t e t h a t t h e f u n c t i o n s ~ 0 i , ~ bi , a n d 0 1 ( i = 0 , 1 ) m u s t s a t is f y c e r t a i n c o n d i t i o n s , s i n c e t heb i l in e a r i n t e r p o l a t i o n t h e o r e m f o r M a r c i n k i e w i c z s p a c e s i s n o t v a l i d i n t h e g e n e r a l s i t u a t i o n ( s e e R e m a r k 3"b e l o w ) . I n t h e p r e s e n t p a p e r , t h e t h e o r e m i s p r o v e d u n d e r t h e c o n d i t i o n t h a t t h e d i l a t a t i o n e x p o n e n t sf o r t h e s e f u n c t i o n s a r e n o n t r i v i al a n d t u r n s o u t t o b e a c o n s e q u e n c e o f t h e g e n e r a l b i l i n e a r i n t e rp o l a ti o nt h e o r e m s f o r t h e P e e t r e m a d P e e t r e - G u s t a v s s o n i n t e r p o la t i o n f u n c t o r s [3, 4].

    T h e p a p e r i s o r g a n i z e d a s f o l lo w s . I n t h e f ir st s e c t io n , w e g i v e s o m e d e f in i t i on s a n d n o t a t i o n a d o p t e di n i n t e r p o l a t i o n t h e o r y a n d p l a y i n g a n i m p o r t a n t p a r t in t h e s eq u e l . I n w w e o b t a i n t h e t h e o r e m s f or t h eP e e t r e a n d P e e t r e - - G u s t a v s s o n i n t e r p o l a t i o n f u n c t o r s . F in a l l y , w d e a l s w i t h a p p l i c a t i o n s : h e r e w e t r ea ti n t e r p o la t i o n o f b i l i ne a r o p e r a t o r s i n g c o s c q u e n c e s p a c e s a n d i n M a r c i n k i e w i c z s p a c e s .

    w I n t r o d u c t i o nL e t u s r e c a l l s o m e d e f i n i t io n s f r o m t h e i n t e r p o l a t i o n t h e o r y o f l i n e a r o p e r a t o r s ( s e e [ 2, 5 ] f o r d e ta i ls ) .A tr i p l e ( X 0 , X l , X) o f B a n a c h s p a c e s i s s a i d t o b e interpolational with r e . s p e c t to a triple (Yo, Y1, Y )

    i f m a y l i n e a r o p e r a t o r T c o n t i n u o u s f r o m X i i n t o Y / ( i = 0 , 1 ) i s n e c e s sa r i l y c o n t i n u o u s f r o m X i n t o Y .B y a n in terpolat ion functor w e m e a n a fu n c t o r F f r o m t h e c a t e g o r y o f B m a a c h c o u p l e s i n t o t h e c a t e g o r yo f B a n a c h s p a c e s s u c h t h a t f o r a n y c o u p l e s . ~ = ( X 0 , X I ) a n d I~ = ( Y 0 , Y I ) t h e t r i p l e ( X o , X 1 , F ( X ) )i s i n t e r p o l a t i o n a l w i t h r e s p e c t t o ( Y 0, Y x , F ( I Y ) ) 9

    I n w h a t f o l l o w s , p = p( t ) i s a p o s i t i v e q u a si co v a za v e f u n c t i o n . T h i s m e a n s t h a t p( t ) i s i n c r e a s i n g a n dp ( t ) / t i s d e c r e a s i n g f o r t > 0 ; t h e d i l a t a t i o n f u n c t i o n i s d e f i n e d b yp ( s t ) ( t > 0 )M ( t ) = s u p

    9 >o

    T h e n u m b e r s~ /p = l i r a In 3~4( t ) 6p = l i r a In sg[ (~ )t - . 0 + l n t ' t - .c o l n t

    T r a n s l a t e d f r o m M a t e m a t i c h e s l ~ i e Z a m e t k i , V o l . 6 0 , N o . 4 , p p . 4 8 3 - 4 9 4 , O c t o b e r , 1 9 9 6 .O r i g i n al ar t ic l e s u b m i t t e d N o v e m b e r I I , 1 9 9 4 .

    0 0 0 1 - 4 3 4 6 / 9 6 / 6 0 3 4 - 0 3 6 3 5 1 5 . 0 0 C ) 1 9 9 7 P l e n u m P u b l i s h i ng C o r p o r a t i o n 3 6 3

  • 8/3/2019 S. V. Astashkln and Yu. E. Kim- Interpolation of Bilinear Operators in Marcinkiewicz Spaces

    2/9

    a r e w e l l d e f i n e d [ 2 ] a n d a r e c a l l e d t h e u p p e r a n d t h e l o w e r d i l a t a t i o n e z p o n e n t o f p , r e s p e c t i v e l y . I f p i scon cav e , then 0 < 3'p < 6p < 1 .

    L e t u s d e f i n e t h e P e e t r e i n t e r p o l a t i o n f u n c t o r ( ]~ )p [3] a n d t h e P e e t r e - G u s t a v s s o n i n t e r p o l a t i o n f u n c t o r( )~ , p ) [ 4 ], w h i c h w e r e i n t r o d u c e d i n c o n n e c t i o n w i t h t h e i n t e r p o l a t i o n o f O r li c z s p a c e s .

    T h e s p a c e ( .'~ )p c o n t a i n s a ll z q X 0 + X ~ t h a t a d m i t a r e p r e s e n t a t i o n o f t h e f o r mo o

    x = ~ x , ( c o n v e r g e n c e i n X o + X , ) , w h e r e x , E X o 13 X , ( 1)a n d t h e s e q u e n c e s { z , / p ( 2 " ) } ~ : _ o o a n d { 2 " z , , / p ( 2 " ) } ~ : _ o o u n c o n d i t i o n a l l y c o n v e r g e i n X0 a n d X , ,r e s p e c t iv e l y . T h e n o r m o n t h i s s p a c e i s d e f i n ed b y I lzlJ , - - i n f c , w h e r e

    C = m a x s u p , s u p (2 )

    a n d t h e i n f i m u m is ta k e n o v e r a l l r e p r e s e n t a t i o n s o f z . B y ( . ~ , p ) w e d e n o t e t h e s e t o f a l l z E X 0 + X1a d m i t t i n g a r e p r e s e n t a t i o n o f t h e f o r m ( 1 ), w h e r e z , , E X 0 N X ~ a n d t h e s e q u e n c e s { z , , / p ( 2 ' * ) } ~ = _ ~a n d { 2 " z . / p ( 2 " ) } ~ = _ ~ w e a k l y u n c o n d i ti o n a l l y c o n v e rg e i n X 0 a n d Z i , r e s p e c t iv e l y [ 4] . T h e n o r m o n( ) ~ , p ) i s d e f i n e d b y [Ix [[ = i n f C , w h e r e

    ( F C Z i s a f i n i te s e t) a n d t h e i n f i m u m is ta k e n o v e r a ll r e p r e s e n t a t i o n s o f z .F i n a l l y , l e t u s r e c a l l t h e d e f i n i ti o n s o f r e a l i n t e r p o l a t i o n f u n c t o r s w i t h s p a r a m e t e r s . F o r a B a n a c h

    c o u p l e X = ( X 0 , X ~ ) a n d f o r t > 0 , w e d e fi n e t h e P e e t r e K : - a n d ~ ' - f u n c t i o n a l s [6 ] b y t h e f o r m u l a slc ( t ,z ;g)=in f{ l lzo l lxo+ tl lz l lx , ;zo+ z =z ,z x } ( z

    g)= m ={ll l lxo,tll l lx,} e No n x , ) .T h e s p a c e ( X 0 , X ~ )~ ,o o o f t h e K : - m e t h o d c o n s is t s o f a l l z q X 0 + X ~ s u c h t h a t t h e n o r m 9 g )I I l l = s u pi p (2 ) )

    i s f i n it e . T h e s p a c e ( X 0 , X 1 )p ~,~ o f t h e ~ ' - m e t h o d c o n s i st s o f a l l z E X 0 + X 1 a d m i t t i n g a r e p r e s e n t a t i o no f th e f o r m ( 1 ), w h e r e z , , E X 0 f3 X 1 , a n d t h e n o r m i s d e f i n e d a s f ol lo w s :

    [[z [[ = in f sup ~ ' (2 '* ' z " ; '~ ). p ( 2 , , ) 'w h e r e t h e i n f i m u m i s t a k e n o v e r a l l r e p r e s e n t a t i o n s o f z .

    w G e n e r a l i n t e r p o l a t io n t h e o r e m s f o r b i li n e a r o p e r a t o r sT h e o r e m 1 . L e t p = p ( t ) b e a q u a s i c o n c a v e fu n c t i o n o n t h e s e m i a x i s ( 0 , o o ) s a t i s f y i n g t h e c o n d i t i o n s

    I ) O < T p _ < 6 p < 1 ;2 ) t h e r e e x i s t s a n a > 0 s u c h t h a t f o r e a c h u > 0 a n d v > 0 t h e i n e q u a l i t yp( u ) . p@ )

  • 8/3/2019 S. V. Astashkln and Yu. E. Kim- Interpolation of Bilinear Operators in Marcinkiewicz Spaces

    3/9

    L e m m a 1 . Suppose tha t X a n d Y a r e Banach spaces, F C Z is f in i t e, {x ,} C X , {y ,,} C Y , a n d

    Y

    I f T i s a b it ineax opera tor cont inuous f rom X x Y in to a Banach s pa c e Z , t h e nX T(z.,y . ) H S C , C 2 11 TII.n E F Z

    (4 )

    P r o o L F i r s t , s in c e T i s c o n t i n u o u s a n d b i l i n e ar , i t f ol lo w s t h a t

    ~eF m ~ F ( e ' x " ' & " Y " ) z = ] T ( . ~ F e " z " , , , ~ e F' ' y ' ' ) z

  • 8/3/2019 S. V. Astashkln and Yu. E. Kim- Interpolation of Bilinear Operators in Marcinkiewicz Spaces

    4/9

    N o t e t h a t b y ( 3) w e h a v ea m , k < ~ . ( 8 )

    B y L e m m a 1 , f o r a r b i t r a r y f i n it e F C Z w e h a v e

    T \ P ( 2 ) ' P ( 2 , ' - k ) z 0 - r 1 7 7 P ~ .~.'06 , = + ' P ( 2 , ' - k ) v0I t fo l lows f rom (7) by vi r tue of the u n c o n d i t i o n a l c o n v e r g e n c e o f {u~ /p (2k )}~=_= a n d {vi/p(2i)}~=_ooi n X 0 a n d Y 0 , r e s p e c t iv e l y , t h a t {T(u k /p (2 k ) , V , ,, _k /p (2m -k ) ) }k =_ ~ u n c o n d i t i o n a l l y c o n v e r g e s i n Z 0 .ooI n v i e w o f ( 6 ), { a m , k T ( u j , / p ( 2 k ) , v m _ j p ( 2 ' ~ - k ) ) } k = - o o a l so c o n v e r g e s u n c o n d i t i o n a l l y i n Z 0 ; m o r e o v e r ,b y a p p l y i n g ( 7 ) o n c e m o r e , w e o b t a i n

    ~ Z 0 - i----O,1

    w h e r e C 1 a n d C 2 a r e d e f i n e d i n t h e s a m e w a y a s i n (2 ) . I n p a r t i c u l a r , i t f o ll ow s f r o m ( 8 ) t h a t f o r a r b i t r a r yf i n it e F C Z a n d a n y m E Z w e h a v e

    ]]k~EF (Ult v , , ,_k )l lzo < a , ,T, ,Ci C 2p (2"). (9)S i m i l a rl y , w e c a n p r o v e t h e u n c o n d i t i o n a l c o n v e r g e n c e o f t h e s e q u e n c e

    2m _k v . t 2m _k ~~~oa{ a , . , k T ( 2 k u k / p ( 2 k ) , , , , - k l P t 1 ) . tk=-=i n Z 1 a n d t h e e s ti m a t e s

    ]p ( 2 - , ) z , < - ~ I I T I I C , C 2 , ( 1 0 )] ~_ _T (vl , ,v , ,, -k)]

  • 8/3/2019 S. V. Astashkln and Yu. E. Kim- Interpolation of Bilinear Operators in Marcinkiewicz Spaces

    5/9

    M o r e o v e r , f r o m ( 8 ) a n d ( lO ) w e o b t a i n~ -( 2 m , w m ; 2 ) = m a x { l i w m l lz 0 , 2 ~ [ I w , - , - ,j lz , }

  • 8/3/2019 S. V. Astashkln and Yu. E. Kim- Interpolation of Bilinear Operators in Marcinkiewicz Spaces

    6/9

    N o w s u p p o s e t h a tOOZ '= u k ( u ~ 6 X 0 n X l ,

    k = - o oc o n v e r g e n c e in X o + X l )

    a n d { u l } s a t is f ie s t h e s a m e c o n d i t i o n s a s { u k } . W e w r i t e

    w " = ( m e z ) ,k = - o o

    O 0Z IW m ,

    ! r l l ~ - - O O

    w h e r e { v i} i s t h e s a m e a s a b o v e . T h e n , a s w a s a lr e a d y i n d i c a t e d , w e h a v eS ' = l im Z T ( u ~ v , )M . . -* ooN.-.*oo [k[~Mlil

  • 8/3/2019 S. V. Astashkln and Yu. E. Kim- Interpolation of Bilinear Operators in Marcinkiewicz Spaces

    7/9

    W e d e f i n e t h e s p a c e C o ( W ) i n a s i m i l a r w a y .h se q u e n c e { tn } .~ 1 76 i s s a i d t o b e s p a rs e f o r t h e f u n c t i o n p = p ( t ) i f f o r a n y A , B > 0 t h e s e t o f

    n E g s u c h t h a tA < p ( t . ) < B o r A

  • 8/3/2019 S. V. Astashkln and Yu. E. Kim- Interpolation of Bilinear Operators in Marcinkiewicz Spaces

    8/9

    b ) F u n c t i o n s p a c e s . R e c a l l t h a t f o r a p o s i ti v e q u a s i c o n c a v e f u n c t i o n ~ o n ( 0 , o o ) , t h e M a r c i n k i e w i c zspace M(~o) i s t h e B a n a c h s p a c e o f m e a s u r a b l e fu n c t i o n s o n ( 0 , ~ ) w i t h fi n i te n o r m

    I '] I I M ( ) = s u p [ c p ( t ) ] - ! x*(s) ds .t ) oB y M ~ w e d e n o t e t h e s et o f a ll x E M ( ~ ) s u c h t h a t

    P hl im [ ~ ( h ) ] - ' / z * ( t ) d t = O.h-- -*0 ,o o J0L e t a f u n c t i o n f b e d e f i n e d o n ( 0 , o o ) , a n d le t f > 0 . T h e n b y s w e de no t e t he s pa c e s162 w i t h

    " w e i g h t " { f ( 2 J ) } ~ = _ ~ . I n a s i m i l a r w a y , t h e s p a c e c o ( f ) i s de f ined .T h e o r e m 5 . L e t a b i l in e a r o p e r a t o r T b e c o n ti n u o u s fr o m M ~ 1 6 2 x M ~ i n t o M ~ a n d f ro m

    M o ( r x M ~ i n t o M ~ a n d l e t t h e f u n c t i o n s r = Of ( t ) , ~ i = qa i ( t) , an d Oi = O i ( t) ( i = 0 , 1 )p o s s e s s t h e f o l lo w i n g p r o p e r t ie s :1 ) 0 < % / , , < _ 6 r < 1 , O < 7 ,p , < ~,a , < 1, 0 < 7 o , < 6 o, < 1 ( i = 0 , 1 ) ;2) t h e s e q u e n c e s { r 1 6 2 a n d { ~ 1 ( 2 1 ) / ~ o ( 2 J ) } a r e s p a r s e f o r a n y q u a s i c o n c a v e f u n c t i o n p ( t )

    s a t i s f y i n g c o n d i t i o n s 1) , 2 ) o f T he o r e m 1 .T h e n T e x t e n d s t o a b i li n e a r o p e r a t o r c o n ti n u o u s f ro m M ( r x M ( ~ p ) i n t o M(Op).P r o o f . F o r q u a s ic o n c a v e f u n c ti o n s f 0 = f o ( t ) a n d f x = f z ( t ) , s e t

    . ~ o ( f ) = { M O ( f o ) , M O ( f ,) } , f f I ( f ) = { M ( f o ) , M ( f , ) } .I t is kn ow n [ 2 , 3 ] t h a t f o r t he L e be s g ue s pa c e s L ~ a n d L oo on t he s e m i a x i s ( 0 , oo ) a n d f o r x E L~ + Looo n e h a s

    H e n c e , f o r a n a r b i t r a r y q u a s i c o n c a v e fu n c t i o n f , w e c a n w r i t eM ( f ) = ( L 1 , L o o ) ~ ( , / l ) , M ~ = (L~,Loo)co(l/l).g

    B y v i r t u e o f t h e c o n d i t i o n s i m p o s e d o n t h e d i l a t a t i o n e x p o n e n t s o f O i , ~ 0 i , a n d 0= ( i = 0 , 1 ), i t f ol lo w sf r o m t h e r e i t e r a t i o n t h e o r e m [ 8 , 1 0 ] t h a t

    p ) ( L z , ,= p ) = ( L 1 L= L ~ o ) ( t ( ~ l O ) ) ~ ,

    A s w a s i n d i c a t ed i n t h e p r o o f o f T h e o r e m s 3 a n d 4 ,

    = ~ , = g ~ .

    i n v i e w o f t h e f o r m u l a ( M ~ ** = M ( O ) [2 , p p . 1 5 3 -1 5 9 ], w e o b t a i n t h e a s s e r t i o n o f T h e o r e m 2h u s ,f r o m T h e o r e m 5 . D

    R e m a r k 2 . F r o m R e m a r k Z o n e r e a d i l y o b t a i n s s u f fi ci e nt c o n d i t i o n s f o r t h e s e q u e n c e s { 0 , ( 2 i ) / r j ) }an d {~0z(2J)/cp0(21)} to be spa rse .

    370

  • 8/3/2019 S. V. Astashkln and Yu. E. Kim- Interpolation of Bilinear Operators in Marcinkiewicz Spaces

    9/9

    R e m a r k 3 . T h e c o n d i t i o n t h a t t h e d i l a t a t i o n e x p o n e n t s o f ~ o i, ~ b i, a n d O, a r e n o n t r i v i a l is e s s e n ti a l.I n d e e d , c o n s i d e r t h e t e n s o r p r o d u c t o p e r a t o r

    B ( = , y ) =T h e n B : L1 x L 1 ---* L1 a n d B : L o o x L oo - , L o o . T h e s p a c e s L t a n d L o o a r e t h e " e x t r e m e " M a r c i n k i e w i c zs p a c e s; n a m e l y , L 1 = M ( 1 ) a n d L o o = M(t). S h o u l d T h e o r e m 5 b e v a l id i n t h is c a s e , t h e o p e r a t o r Bw o u l d b e b o u n d e d f r o m M ( t ~ x M ( t ~ i n t o M ( t ~ ( 0 < 8 < 1 ), w h i c h is n o t t h e c a s e [1 1].

    R e m a r k 4 . W e c a n a p p ly T h e o r e m 5 t o s p ec if ic o p e r a t o r s s u c h a s t h e t e n s o r p r o d u c t o p e r a t o r B ( se et h e p r e c e d i n g r e m a r k ) o r t h e c o n v o l u t i o n o p e r a t o r

    s ( = , y ) ( t ) =

    References

    1 . S . V . As t a sh k in , "Rea l i n t e rpo l a t i on o f b i l i nea r ope ra to r s , " M a t . Z am e t k i [ M at h . Notes] , 52, No. 1 , 15-24 (1992) .2 . S . G . Kre in , Yu . I . Pe tun in , and E . M. Semenov , I n t e r po la t i on o f L i ne ar O pe r a t or s [ in Russian] , Nauka, Moscow (1978) .3 . F . P e e t r e , . " S u r l ' u t il i s a t io n d e s s u i te s i n c o n d i t io n e l le m e n t s o m m a b l e s d a n s l a t hd o r ie d e s e s p a c e s d ' i n t e r p o l a t io n , " R e n d .Sere . Ma t . U ni v . Padova. , 46, 173-190 (1971) .4 . F . G u s t a v s s o n a n d F . P e e t r e , " I n t e r p o l a t i o n o f O r l i cz S p a c es , " S t a d i a M a t h . , 60 , 33 -59 (1977) .5 . J . B e r g h a n d J . L 6 f s t r 6 m , In terpolat ion Spaces . An In t roduc t ion , S p r i n g e r- V e r l ag , B e r l i n - H e i d e l b e r g - N e w Y o r k ( 19 76 ).6 . F . P e e t r e , U A t h e o r y o f in t e r p o l a t i o n o f n o r m e d s p a c e s , " N ot e s M a t h . , 39, 1-86 (1969) .7 . S . F a n s o n , " M i n i m a l a n d m a x i m a l m e t h o d s o f i n t e r p o l a ti o n , " J . F unc t . A na l . , 44 , 50 -73 (1981) .8 . Y u . A . B r u d n y i a n d N . Y a . K r u g l y a k , R e a l In terpolat ion Fanc tor s , Depos i t ed i n VINITI , No . 2620-81 , Moscow (1981) .9 . V . I . O v c h i n n ik o v , ~ T h e m e t h o d o f o r b i t s i n i n te r p o l a t io n t h e o r y ," M a t h . R e p t . , 1 ,349-515 (1 .984) .

    1 0. V . I . D m i t r i e v a n d V . I . O v c h in n i k o v , " I n t e r p o l a t i o n i n t h e s p a c e s o f t h e r e a l m e t h o d , " D o k l . A k a d . N a a k S S S R [Sovie tMath. Dok] . ] , 246 , No . 4 , 794-797 (1979) .1 1. M . M i l m a n , " T e n s o r p r o d u c t s o f f u n c t io n s p a c e s ," B al l . A m e r . M a t h . Soc . , 82, No. 4 , 626-62 8 (1976) .

    S A M A R A S T A T E U N IV E R S IT Y

    T r a n s l a t e d b y V . E . N a z a i k i n s k i i

    371