s1.1 bet surface area and pore size - royal society of ... · pdf files1.1 bet surface area...

12
S1.1 BET surface area and pore size As shown in Table S1, most of the prepared HTlcs have high surface area (greater than 100 m 2 g –1 ), the only exception being Cu-Al HTlcs (59 m 2 g –1 Fig. S3 shows the nitrogen physisorption isotherms and BJH pore size distributions for the HTlcs, M ). 2+ (M 3+ )O and MO materials. The isotherms of HTlcs and most of the M 2+ (M 3+ )O systems has the characteristic type IV shape indicating that they are mesoporous materials. Compared to the M 2+ (M 3+ S1.2 The basic strengths and basicity of the catalysts )O systems, the pore size distributions of the HTlcs were narrower and the pore diameters were smaller. The BJH pore diameters and pore volumes confirmed that Cu(Fe)O was an non-porous material, which explained its low surface area. The BJH pore diameters and pore volumes also illustrated that most of the prepared MO were non-porous materials. CO 2 TPD measurements were performed to assess the base site strength and concentration. Fig.S4 shows the rate of CO 2 desorption, normalized to the sample loading, as a function of temperature for each M 2+ (M 3+ )O support and KF/M 2+ (M 3+ )O-cn catalyst. The desorption profiles for the M 2+ (M 3+ For all the KF/M )O supports showed one apparent desorption peak with a maximum at 100 °C. 2+ (M 3+ )O-cn samples, with the exception of KF/Co(Cr)O-cn, only a single apparent desorption feature with a maximum 100 °C was observed. Above 100 °C, there were no desorption peaks for KF/M 2+ (M 3+ )O-cn. The desorption profiles for KF/M 2+ (M 3+ )O-cn were similar to the corresponding supports, falsely implying that KF doping did not increase the basic strength of prepared KF/M 2+ (M 3+ )O-cn catalysts. However, both the Hammett indicators measurements are Electronic Supplementary Material (ESI) for Catalysis Science and Technology This journal is © The Royal Society of Chemistry 2011

Upload: phamdat

Post on 15-Mar-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: S1.1 BET surface area and pore size - Royal Society of ... · PDF fileS1.1 BET surface area and pore size As shown in Table S1, most of the prepared s have high surface area HTlc (greater

S1.1 BET surface area and pore size

As shown in Table S1, most of the prepared HTlcs have high surface area

(greater than 100 m2 g–1), the only exception being Cu-Al HTlcs (59 m2 g–1

Fig. S3 shows the nitrogen physisorption isotherms and BJH pore size

distributions for the HTlcs, M

).

2+(M3+)O and MO materials. The isotherms of HTlcs

and most of the M2+(M3+)O systems has the characteristic type IV shape indicating

that they are mesoporous materials. Compared to the M2+(M3+

S1.2 The basic strengths and basicity of the catalysts

)O systems, the pore

size distributions of the HTlcs were narrower and the pore diameters were smaller.

The BJH pore diameters and pore volumes confirmed that Cu(Fe)O was an

non-porous material, which explained its low surface area. The BJH pore diameters

and pore volumes also illustrated that most of the prepared MO were non-porous

materials.

CO2 TPD measurements were performed to assess the base site strength and

concentration. Fig.S4 shows the rate of CO2 desorption, normalized to the sample

loading, as a function of temperature for each M2+(M3+)O support and

KF/M2+(M3+)O-cn catalyst. The desorption profiles for the M2+(M3+

For all the KF/M

)O supports

showed one apparent desorption peak with a maximum at 100 °C.

2+(M3+)O-cn samples, with the exception of KF/Co(Cr)O-cn,

only a single apparent desorption feature with a maximum 100 °C was observed.

Above 100 °C, there were no desorption peaks for KF/M2+(M3+)O-cn. The desorption

profiles for KF/M2+(M3+)O-cn were similar to the corresponding supports, falsely

implying that KF doping did not increase the basic strength of prepared

KF/M2+(M3+)O-cn catalysts. However, both the Hammett indicators measurements are

Electronic Supplementary Material (ESI) for Catalysis Science and TechnologyThis journal is © The Royal Society of Chemistry 2011

Page 2: S1.1 BET surface area and pore size - Royal Society of ... · PDF fileS1.1 BET surface area and pore size As shown in Table S1, most of the prepared s have high surface area HTlc (greater

consistent with increase in base strength upon KF doping. This apparent anomaly

could arise from the high basic strength of KF/M2+(M3+)O-cn resulting in CO2 being

so strongly adsorbed on its surface that it is not desorbed below 500 °C. This

suggestion is consistent with the structure analysis in section 3.2. which showed that

KOH was formed on the surface of KF/M2+(M3+)O-cn catalysts (Eq. (1)-(5)). The

KOH formed would be expected to chemisorb CO2

KF/Co(Cr)O-cn did not show a desorption peak at about 100 °C, illustrating that

the number of base sites may be lower than that of the support alone. The reason for

this may be similar to that for KF/Cr

very strongly.

2O3

-cn (Eq. (6)).

Electronic Supplementary Material (ESI) for Catalysis Science and TechnologyThis journal is © The Royal Society of Chemistry 2011

Page 3: S1.1 BET surface area and pore size - Royal Society of ... · PDF fileS1.1 BET surface area and pore size As shown in Table S1, most of the prepared s have high surface area HTlc (greater

4000 3500 3000 2500 2000 1500 1000 500

Tran

smitt

ance

(a.u

.)

Wavenuber(cm-1)

Mg-Al HTlcs

Mg(Al)O

KF/Mg(Al)O

A

4000 3500 3000 2500 2000 1500 1000 500

Tran

smitt

ance

(a.u

.)

Wavenumber(cm-1)

Ni-Al HTlc

Ni(Al)O

KF/Ni(Al)OB

4000 3500 3000 2500 2000 1500 1000 500

Tran

smitt

ance

(a.u

.)

Wavenuber(cm-1)

Co-Al HTlcs

Co(Al)O

KF/Co(Al)OC

4000 3500 3000 2500 2000 1500 1000 500

Tran

smitt

ance

(a.u

.)

Wavenuber(cm-1)

Cu-Al HTlcs

Cu(Al)O

KF/Cu(Al)OD

4000 3500 3000 2500 2000 1500 1000 500

Tran

smitt

ance

(a.u

.)

Wavenumber(cm-1)

Mg-Fe HTlcs

Mg(Fe)O

KF/Mg(Fe)OE

4000 3500 3000 2500 2000 1500 1000 500

Tran

smitt

ance

(a.u

.)

Wavenuber(cm-1)

Cu-Fe HTlcs

Cu(Fe)O

KF/Cu(Fe)OF

4000 3500 3000 2500 2000 1500 1000 500

Tran

smitt

ance

(a.u

.)

Wavenumber(cm-1)

Ni-Fe HTlcs

Ni(Fe)O

KF/Ni(Fe)OG

4000 3500 3000 2500 2000 1500 1000 500

Tran

smitt

ance

(a.u

.)

Wavenuber(cm-1)

Zn-Cr HTlc

Zn(Cr)O

KF/Zn(Cr)OH

Electronic Supplementary Material (ESI) for Catalysis Science and TechnologyThis journal is © The Royal Society of Chemistry 2011

Page 4: S1.1 BET surface area and pore size - Royal Society of ... · PDF fileS1.1 BET surface area and pore size As shown in Table S1, most of the prepared s have high surface area HTlc (greater

4000 3500 3000 2500 2000 1500 1000 500

Tran

smitt

ance

(a.u

.)

Wavenuber(cm-1)

Co-Cr HTlcs

Co(Cr)O

KF/Co(Cr)OI

Fig. S1 FTIR spectra of HTlcs, M2+(M3+)O and KF/M2+(M3+

)O-cn.

Electronic Supplementary Material (ESI) for Catalysis Science and TechnologyThis journal is © The Royal Society of Chemistry 2011

Page 5: S1.1 BET surface area and pore size - Royal Society of ... · PDF fileS1.1 BET surface area and pore size As shown in Table S1, most of the prepared s have high surface area HTlc (greater

4000 3500 3000 2500 2000 1500 1000 500

Tran

smitt

ance

(a.u

.)

Wavenuber(cm-1)

Mg(OH)2

MgO

KF/MgOA

4000 3500 3000 2500 2000 1500 1000 500

Tran

smitt

ance

(a.u

.)

Wavenuber(cm-1)

Ni(OH)2

NiO

KF/NiOB

4000 3500 3000 2500 2000 1500 1000 500

Tran

smitt

ance

(a.u

.)

Wavenuber(cm-1)

Cu(OH)2

CuO

KF/CuOC

Fig. S2 FTIR spectra of M(OH)2

, MO and KF/MO-cn.

Electronic Supplementary Material (ESI) for Catalysis Science and TechnologyThis journal is © The Royal Society of Chemistry 2011

Page 6: S1.1 BET surface area and pore size - Royal Society of ... · PDF fileS1.1 BET surface area and pore size As shown in Table S1, most of the prepared s have high surface area HTlc (greater

0.0 0.2 0.4 0.6 0.8 1.00

40

80

120

160

0 10 20 30 40 50 60 70 80 90 1000.000

0.005

0.010

0.015

0.020

0.025

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption Desorption

Qua

ntity

Ads

orbe

d(cm

3 ·g-1

STP

)

Relative Pressure (P/Po)

Mg-Al HTlcs

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400

0 10 20 30 40 50 60 70 80 90 1000.000

0.001

0.002

0.003

0.004

0.005

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption Desorption

Qua

ntity

Ads

orbe

d(cm

3 ·g-1

STP

)

Relative Pressure (P/Po)

Mg(Al)O

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400

0 10 20 30 40 50 60 70 80 90 1000.000

0.005

0.010

0.015

0.020

0.025

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption DesorptionQ

uant

ity A

dsor

bed(

cm3 ·g

-1 S

TP)

Relative Pressure (P/Po)

Ni-Al HTlcs

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400

0 10 20 30 40 50 60 70 80 90 100

0.000

0.001

0.002

0.003

0.004

0.005

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption DesorptionQ

uant

ity A

dsor

bed(

cm3 ·g

-1 S

TP)

Relative Pressure (P/Po)

Ni(Al)O

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

0 10 20 30 40 50 60 70 80 90 100

0.000

0.001

0.002

0.003

0.004

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption DesorptionQ

uant

ity A

dsor

bed(

cm3 ·g

-1 S

TP)

Relative Pressure (P/Po)

Co-Al HTlcs

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

0 10 20 30 40 50 60 70 80 90 100

0.0000

0.0005

0.0010

0.0015

0.0020

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption DesorptionQ

uant

ity A

dsor

bed(

cm3 ·g

-1 S

TP)

Relative Pressure (P/Po)

Co(Al)O

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

0.000

0.001

0.002

0.003

0.004

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption Desorption

Qua

ntity

Ads

orbe

d(cm

3 ·g-1

STP

)

Relative Pressure (P/Po)

Cu-Al HTlcs

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 1000.0000

0.0004

0.0008

0.0012

0.0016

0.0020

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption DesorptionQ

uant

ity A

dsor

bed(

cm3 ·g

-1 S

TP)

Relative Pressure (P/Po)

Cu(Al)O

Fig.S3-continued

Electronic Supplementary Material (ESI) for Catalysis Science and TechnologyThis journal is © The Royal Society of Chemistry 2011

Page 7: S1.1 BET surface area and pore size - Royal Society of ... · PDF fileS1.1 BET surface area and pore size As shown in Table S1, most of the prepared s have high surface area HTlc (greater

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 1000.0000

0.0005

0.0010

0.0015

0.0020

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption Desorption

Qua

ntity

Ads

orbe

d(cm

3 ·g-1

STP

)

Relative Pressure (P/Po)

Mg-Fe HTlcs

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 1000.0000

0.0005

0.0010

0.0015

0.0020

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption Desorption

Qua

ntity

Ads

orbe

d(cm

3 ·g-1

STP

)

Relative Pressure (P/Po)

Mg(Fe)O

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400

0 10 20 30 40 50 60 70 80 90 100

0.000

0.001

0.002

0.003

0.004

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption Desorption

Qua

ntity

Ads

orbe

d(cm

3 ·g-1

STP

)

Relative Pressure (P/Po)

Ni-Fe HTlcs

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400

0 10 20 30 40 50 60 70 80 90 1000.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption Desorption

Qua

ntity

Ads

orbe

d(cm

3 ·g-1

STP

)

Relative Pressure (P/Po)

Ni(Fe)O

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 1000.0000

0.0005

0.0010

0.0015

0.0020

0.0025

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption DesorptionQ

uant

ity A

dsor

bed(

cm3 ·g

-1 S

TP)

Relative Pressure (P/Po)

Cu-Fe HTlcs

0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

0 10 20 30 40 50 60 70 80 90 1000.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption Desorption

Qua

ntity

Ads

orbe

d(cm

3 ·g-1

STP

)

Relative Pressure (P/Po)

Cu(Fe)O

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 1000.0000

0.0005

0.0010

0.0015

0.0020

0.0025

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption DesorptionQ

uant

ity A

dsor

bed(

cm3 ·g

-1 S

TP)

Relative Pressure (P/Po)

Zn-Cr HTlcs

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

pore

vol

ume

( cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption Desorption

Qua

ntity

Ads

orbe

d(cm

3 ·g-1

STP

)

Relative Pressure (P/Po)

Zn(Cr)O

Fig.S3-continued

Electronic Supplementary Material (ESI) for Catalysis Science and TechnologyThis journal is © The Royal Society of Chemistry 2011

Page 8: S1.1 BET surface area and pore size - Royal Society of ... · PDF fileS1.1 BET surface area and pore size As shown in Table S1, most of the prepared s have high surface area HTlc (greater

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

0 10 20 30 40 50 60 70 80 90 1000.000

0.002

0.004

0.006

0.008

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption Desorption

Qua

ntity

Ads

orbe

d(cm

3 ·g-1

STP

)

Relative Pressure (P/Po)

Co-Cr HTlcs

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption DesorptionQ

uant

ity A

dsor

bed(

cm3 ·g

-1 S

TP)

Relative Pressure (P/Po)

Co(Cr)O

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 1000.000

0.001

0.002

0.003

0.004

0.005

0.006

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption Desorption

Qua

ntity

Ads

orbe

d(cm

3 ·g-1

STP

)

Relative Pressure (P/Po)

MgO

0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 1000.0000

0.0004

0.0008

0.0012

0.0016

0.0020

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption Desorption

Qua

ntity

Ads

orbe

d(cm

3 ·g-1

STP

)

Relative Pressure (P/Po)

NiO

0.0 0.2 0.4 0.6 0.8 1.00

40

80

120

160 Fe2O3

0 10 20 30 40 50 60 70 80 90 100

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption Desorption

Qua

ntity

Ads

orbe

d(cm

3 ·g-1

STP

)

Relative Pressure (P/Po)0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

40

50

60

Co3O4

0 10 20 30 40 50 60 70 80 90 1000.00000

0.00004

0.00008

0.00012

0.00016

0.00020

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption Desorption

Qua

ntity

Ads

orbe

d(cm

3 ·g-1

STP

)

Relative Pressure (P/Po)

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 1000.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

pore

vol

ume

(cm

3 ·g-

1 ·nm

-1)

pore diameter (nm)

Adsorption Desorption

Qua

ntity

Ads

orbe

d(cm

3 ·g-1

STP

)

Relative Pressure (P/Po)

Cr2O3

Fig. S3 Physisorption isotherms and BJH pore size distribution for HTlcs,

M2+(M3+

)O and MO.

Electronic Supplementary Material (ESI) for Catalysis Science and TechnologyThis journal is © The Royal Society of Chemistry 2011

Page 9: S1.1 BET surface area and pore size - Royal Society of ... · PDF fileS1.1 BET surface area and pore size As shown in Table S1, most of the prepared s have high surface area HTlc (greater

100 200 300 400 500

0.00

0.01

0.02

0.03

0.04

0.05

TCD

Sign

al (a

.u.)

Temperature (oC)

KF/Mg(Al)O-cn

Mg(Al)O

100 200 300 400 500

0.00

0.01

0.02

0.03

0.04

TCD

Sign

al (a

.u.)

Temperature (oC)

KF/Ni(Al)O-cn

Ni(Al)O

100 200 300 400 500

0.000

0.005

0.010

0.015

0.020

0.025

TCD

Sign

al (a

.u.)

Temperature (oC)

KF/Co(Al)O-cn

Co(Al)O

100 200 300 400 500

0.00

0.01

0.02

TCD

Sign

al (a

.u.)

Temperature (oC)

Cu(Al)O

KF/Cu(Al)O-cn

100 200 300 400 500

0.00

0.01

0.02

0.03

0.04

0.05

TCD

Sign

al (a

.u.)

Temperature (oC)

KF/Mg(Fe)O-cn

Mg(Fe)O

100 200 300 400 500

0.000

0.005

0.010

0.015

0.020

0.025

TCD

Sign

al (a

.u.)

Temperature (oC)

Ni(Fe)O

KF/Ni(Fe)O-cn

100 200 300 400 500

0.000

0.002

0.004

0.006

0.008

0.010

TCD

Sign

al (a

.u.)

Temperature (oC)

KF/Cu(Fe)O-cn

Cu(Fe)O

100 200 300 400 500

0.000

0.005

0.010

0.015

TCD

Sign

al (a

.u.)

Temperature (oC)

Co(Cr)O

KF/Co(Cr)O-cn

Electronic Supplementary Material (ESI) for Catalysis Science and TechnologyThis journal is © The Royal Society of Chemistry 2011

Page 10: S1.1 BET surface area and pore size - Royal Society of ... · PDF fileS1.1 BET surface area and pore size As shown in Table S1, most of the prepared s have high surface area HTlc (greater

100 200 300 400 500

0.000

0.004

0.008

TCD

Sign

al (a

.u.)

Temperature (oC)

Zn(Cr)O

KF/Zn(Cr)O-cn

Fig.S4 TPD profiles of CO2 adsorbed on M2+(M3+)O and KF/M2+(M3+

)O-cn

materials.

Electronic Supplementary Material (ESI) for Catalysis Science and TechnologyThis journal is © The Royal Society of Chemistry 2011

Page 11: S1.1 BET surface area and pore size - Royal Society of ... · PDF fileS1.1 BET surface area and pore size As shown in Table S1, most of the prepared s have high surface area HTlc (greater

10 20 30 40 50 60 70 80

*

**

**

**

**

** *

*

*

*

** *

*

**

***

**

*

2θ / ο

0%

20%

40%

60%

80%

100%

Mg-Al HTlcsKMgF3

Fig. S5 XRD patterns of KF/Mg-Al HTlcs with different loading amount of KF.

Electronic Supplementary Material (ESI) for Catalysis Science and TechnologyThis journal is © The Royal Society of Chemistry 2011

Page 12: S1.1 BET surface area and pore size - Royal Society of ... · PDF fileS1.1 BET surface area and pore size As shown in Table S1, most of the prepared s have high surface area HTlc (greater

Table S1 Nitrogen physisorption data of HTlcs

Entry Catalyst Surface Area (m2 g-1

Pore Volume ) (cm3 g-1

Average pore ) width (Å)

1 Mg-Al HTlcs 140 0.16 45 2 Ni -Al HTlcs 272 0.55 73 3 Co-Al HTlcs 166 0.51 180 4 Cu-Al HTlcs 59 0.17 120 5 Mg-Fe HTlcs 164 0.85 278 6 Ni-Fe HTlcs 182 0.59 181 7 Cu-Fe HTlcs 139 0.47 122 8 Zn-Cr HTlcs 100 0.36 107 9 Co-Cr HTlcs 216 0.33 52

Electronic Supplementary Material (ESI) for Catalysis Science and TechnologyThis journal is © The Royal Society of Chemistry 2011