sab2513 hydraulic chapter 5

Upload: tuan-jalai

Post on 04-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    1/32

    1

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    2/32

    Characteristics of Gradually Varying Flow (GVF) Flow depths vary gradually along the channel.

    Changes in flow depth occurs over a long distance.

    Water surface nearly horizontal

    2 conditions:

    (a) Backwater (b) Drawdown

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    3/32

    Analysis and derivation of GVF Equation

    Head loss is similar to uniform flow

    and

    Bed slope is small

    Channel is prismatic

    Constant roughness along the channel reach

    oRSACQ oSARnQ3

    21

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    4/32

    Differential Equation of GVF

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    5/32

    (5.1)

    Differentiate with respect to x:

    (5.2)

    Where;

    and

    g

    v

    dx

    d

    dx

    dy

    dx

    dz

    dx

    dE

    dx

    dz

    dx

    dH

    2

    2

    2

    2vH z E z y

    g

    ;fS

    dx

    dH oS

    dx

    dz

    dx

    dy

    dy

    dA

    gA

    Q

    dx

    dy

    gA

    Q

    dx

    d

    g

    v

    dx

    d3

    2

    2

    22

    22

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    6/32

    Since dA/dy = T

    Rewrite Eqn. (5.2),

    Rearrange the above Eqn.,

    (5.3)

    3

    2

    1gA

    TQ

    SS

    dx

    dy fo

    dx

    dy

    gA

    TQ

    dx

    dy

    g

    Q

    dx

    d3

    22

    2

    dx

    dy

    gA

    TQ

    dx

    dSS of

    3

    2

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    7/32

    If K = conveyance at any depth y and Ko = conveyancecorresponding to normal depth yo, then:

    So,

    ;

    f

    QK

    S

    2

    2

    K

    K

    S

    So

    o

    f

    o

    o

    QK

    S

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    8/32

    Rearrange the above Eqn.,

    (5.4)

    Eqn. (5.4) is useful in developing direct integrationtechniques and it is applicable for channel with any

    geometrical shape

    2

    0

    2

    3

    1

    1

    o

    KS

    Kdy

    Q TdxgA

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    9/32

    Differential Equation for Rectangular Channel

    Substitute relevant parameters and simplifying Eqn. (5.4)resulted;

    (5.5)

    Where;

    and

    3

    2

    1

    1

    y

    y

    K

    K

    Sdx

    dy

    c

    o

    o

    n

    ARK

    32

    oo

    QK

    S

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    10/32

    Differential Equation for Very Wide RectangularChannel (R = y)

    Substitute relevant parameters and simplifying Eqn. (5.5)

    resulted;

    ;for Mannings n (5.6)

    3

    310

    1

    1

    y

    y

    y

    y

    Sdx

    dy

    c

    o

    o

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    11/32

    Substitute relevant parameters and simplifying Eqn. (5.5)resulted;

    ;for Chezy (5.7)

    3

    3

    1

    1

    o

    o

    c

    y

    ydyS

    dx y

    y

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    12/32

    Computations of GVF

    Computation of GVF involves basically solution of dynamiceqn. of GVF

    Several methods of computation:

    (a) Direct Integration method

    (b) Numerical Integration method

    (c) Graphical integration method

    (d) Standard step method Numerical Integration method will be discussed

    The GVF differential equation is written in finite differenceform

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    13/32

    Numerical Integration Method

    The unknown length of channel to be determined is dividedinto several portions called segment

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    14/32

    Referring to the segment above:

    = length of the segment

    = changes of flow depth between segments, whichfixed in the calculation =

    = average flow depth in each segment =y

    x

    y

    1

    2

    1

    ii yy

    ab yy 2

    1

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    15/32

    Rectangular Channel (Eqn. 5.5)

    Substitute relevant parameters and simplifying Eqn. (5.4)resulted;

    (5.8)

    Where;

    and

    3

    2

    1

    1

    y

    y

    K

    K

    Sx

    y

    c

    o

    o

    ;32

    g

    qyc

    o

    ooo

    S

    Q

    n

    RAK

    32 3

    23

    2

    2

    yB

    yB

    n

    yB

    n

    RAK

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    16/32

    Very Wide Rectangular Channel (Eqn. 5.6)

    Substitute relevant parameters and simplifying Eqn. (5.6)resulted;

    For Manning; (5.9a)

    Where;

    3

    310

    1

    1

    y

    y

    y

    y

    Sx

    y

    c

    o

    o

    3

    2

    gqyc

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    17/32

    Very Wide Rectangular Channel (Eqn. 5.6)

    Substitute relevant parameters and simplifying Eqn. (5.7)resulted;

    For Chezy; (5.9b)

    Where;

    3

    3

    1

    1

    o

    o

    c

    y

    yy Sx y

    y

    32

    gqyc

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    18/32

    Differential Equation of GVF

    Y

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    19/32

    19

    A very wide rectangular channel with bed slope

    0.001, Mannings n 0.025 and discharge 2.5

    m3/s.m. Determine the backwater curve created by

    a low dam that has water depth of 2.0 m

    immediately upstream of the dam. The upstream

    computations may be carried out to a depth 1%

    greater than the normal depth. (Use numericalintegration method in your computations and divide

    the range of depth into 4 equal parts).

    Example 1

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    20/32

    20

    3

    10

    3

    1

    1

    yy

    yy

    Syx

    o

    c

    o

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    21/32

    21

    Solution

    Find yo, so from Manning Eqn.

    R = y

    n

    SAR

    Qo

    32

    n

    SyBy

    Qooo

    32

    n

    Syq

    oo3

    5

    53

    1000

    025.05.2

    oy

    q=Q/B

    myo 5.1

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    22/32

    22

    Solution

    Find yc, for numerical integration method

    32

    g

    qy

    c

    3

    2

    81.9

    )5.2(

    myc 86.0

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    23/32

    23

    Solution

    1% above yo, 1% of 5.101.0 oy

    my 52.1

    m02.0015.0 02.05.1 y

    ?L

    oy my 52.1 my 0.2

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    24/32

    24

    m52.1 m0.2m88.1m76.1m64.1

    4x 3x 2x 1x

    4 3 2 1y y y y

    divide the range of depth into 4 equal parts

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    25/32

    25

    Solution

    From Eqn (5.9a)

    where

    310

    3

    1

    1

    yy

    yy

    S

    y

    xo

    c

    o

    my 12.04

    52.12

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    26/32

    26

    Solution

    Or

    Where and

    3

    10

    3

    1

    1

    001.0

    12.0

    y

    y

    y

    y

    x

    o

    c

    BAx 120

    3

    1

    yy

    A c3

    10

    1

    yy

    B o

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    27/32

    27

    Solution

    Or

    Where and

    3

    10

    3

    1

    1

    001.0

    12.0

    y

    y

    y

    y

    x

    o

    c

    BAx 120

    3

    1

    yy

    A c3

    10

    1

    yy

    B o

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    28/32

    28

    xy A B

    2.00-1.88

    1.88-1.76

    1.76-1.64

    1.64-1.52

    L=

    Create Table!!!

    The length of backwater, L = m

    y

    ix

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    29/32

    29

    xy A B

    2.00-1.88 1.94 0.912 0.576 190.1

    1.88-1.76 1.82 0.895 0.475 226.1

    1.76-1.64 1.70 0.871 0.341 306.9

    1.64-1.52 1.58 0.839 0.159 632.9

    So, L= 1355.3m

    Create Table!!!

    The length of backwater, L = 1355m

    y

    ix

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    30/32

    30

    xy A B

    2.00-1.88

    1.88-1.76

    1.76-1.64

    1.64-1.52

    So, L=

    Create Table!!!

    The length of backwater, L = 1718m

    y

    ix

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    31/32

    31

  • 7/31/2019 SAB2513 Hydraulic Chapter 5

    32/32

    32