saccharomyces - thinking writingthinkingwriting.qmul.ac.uk/wishees/collections/queenmary/biology...

15
Introduction 1.1 The Importance of Homeostasis in Maintaining Cellular Function. Organisms need to be able to maintain nearly constant internal environments in order to survive, grow and function effectively (Guyton & Hall, 2006). Homeostatic mechanisms resist changes to the organism's internal environment. These complex mechanisms are specific to each individual factor, and act via one of two distinct pathways: positive and negative feedback. In the yeast species, Internal pH, water potential and temperature (Walker, 1998) are among the many factors whereby homeostatic maintenance is vital for normal cell function. Like other organisms, yeasts have various physiological requirements to permit normal growth and survival. Yeast requires substrates and enzymes for cell function, and these are found in aqueous solution (Walker, 1998). Without high water concentrations, enzymatic activity would cease and therefore impair normal cell function. Different yeast strains exhibit different tolerance levels to changes in water potential of the yeast growth media. For example, Saccharomyces cerevisiae ( S. cerevisiae) requires a water potential between -5 to -20 (Mpa) for normal cell growth (Jennings, 1995). 6

Upload: phamthuan

Post on 13-Feb-2018

216 views

Category:

Documents


1 download

TRANSCRIPT

Introduction

1.1TheImportanceofHomeostasisinMaintainingCellularFunction.

Organismsneedtobeabletomaintainnearlyconstantinternalenvironmentsinordertosurvive,

growandfunctioneffectively(Guyton&Hall,2006).Homeostaticmechanismsresistchangesto

theorganism'sinternalenvironment.Thesecomplexmechanismsarespecifictoeachindividual

factor,andactviaoneoftwodistinctpathways:positiveandnegativefeedback.Intheyeast

species,InternalpH,waterpotentialandtemperature(Walker,1998)areamongthemanyfactors

wherebyhomeostaticmaintenanceisvitalfornormalcellfunction.

Likeotherorganisms,yeastshavevariousphysiologicalrequirementstopermitnormalgrowth

andsurvival.Yeastrequiressubstratesandenzymesforcellfunction,andthesearefoundin

aqueoussolution(Walker,1998).Withouthighwaterconcentrations,enzymaticactivitywould

ceaseandthereforeimpairnormalcellfunction.Differentyeaststrainsexhibitdifferenttolerance

levelstochangesinwaterpotentialoftheyeastgrowthmedia.Forexample,Saccharomyces

cerevisiae(S.cerevisiae)requiresawaterpotentialbetween-5to-20(Mpa)fornormalcell

growth(Jennings,1995).

6

InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae.

Yeastgrowthmediawithhighlevelsofexternalundissociatedorganicacidshaveaninhibitory

effectonyeastgrowthasaresultoftranslocationacrossthecellmembrane,loweringthe

intracellularpH(Walker,1998).YeastcellsinstationaryphaseareabletomaintainaconstantpH

whenextracellularpHisdecreasing(Vallietal,2004).

Oneofthemostimportantphysiologicalfactorsinfluencingyeastgrowthistemperature(Walker,

1998).Yeastspeciespossessoptimumgrowthranges,withbothminimumandmaximumgrowth

temperatures.Deviationfromthesephysiologicalparametersleadstotheonsetofmechanisms

thatmaintainhomeostasis,thusprotectingtheorganismfromirreversibledamage.

1.2TheUniversalEukaryoticHeatShockResponse

Itiswellknownthatlivingeukaryoticcellspossessmechanismstoprotectthemselvesagainst

changesinexternalenvironment(Mageretal,1993).Theseeukaryoteselicitacomplexresponse

tothermalstressinordertoprotectthecellproteomefromdegradation.Firstobservedin

DrosophilaMelanogasterbyRitosain1962,thisresponseisknownastheheatshockresponse

(HSR).Wheneukaryoticorganismsaresubjectedtothermalstressi.e.temperaturesabove

optimumgrowthandsurvival,cellularproteinsandnucleicacidsbecomedamagedashydrogen

bondingandhydrophilicinteractionsaredisrupted(Walker,1998).

Cellssubjectedtosub-lethaltemperaturesrespondbyincreasingthesynthesisofheatshock

proteins(Craig,1985)duetoincreasedtranscriptionofheatshock(HS)genesTheseHSgenesare

presentinalllivingorganisms(Khalawanetal,1997).HSgenesareinducedbytheactivationof

heatshocktranscriptionfactors(HSF)(Sorger&Pelham1988)thatbindtoheatshockelements

(Pelham&Beinz1982)atthepromoterregionsoftheHSgenes(Pelham,1982).Anumberof

7

InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae.

otherstressingagentsarefoundtoinducemanyofthesameHSgenes,includingexposureto

increasedethanolconcentrations,exposuretoheavymetal-ionconcentrations,(Parsell&

Lindquist,1993)oxidativeandosmoticstress(Mager,Ferreira,1993).

TheseHSgenesencodehighlyconserved,ubiquitousheatshockproteins(Hsps)thatactas

molecular'chaperones'.TheseHspsbindtocellularproteinstocopewithdenaturationinduced

bythermalstress(Federetal,1999).Theyactby"folding,trafficking,maturing,anddegrading"

cellularproteins(Hashikawa,etal2004).Heatshockproteinsdisplayavarietyoffunctions.Hsps

functiongenericallyby"assistingpolypeptidestoself-assemblebyinhibitingalternativeassembly

pathwaysthatproducenonfunctionalstructures"(Ellisetal,1991).Hspsacttomaintainnormal

cellularfunctions,andareinducedatdifferenttemperaturesindifferentorganisms(Lindquist,

1986).

1.3TheMolecularResponseInducedByHeatStress

Theheatshockfactors(HSF)andheatshockelements(HSE)involvedintheHSRarehighly

conservedtranscriptionalsequencespresentinnature(Hahnetal,2004).S.cerevisiaecontains

manyofthesameHSgenesasotherorganisms.Thehsp70geneappearstohavebeenconserved

throughoutevolutionandispresentamongstvariousorganisms,includingbothDrosophilaandS.

cerevisiae(Lindquist,1984).S.cerevisiaehasthereforebeenutilisedasamodeleukaryotic

organismtoattempttounderstandthemolecularmechanismsinvolvedinactivation,durationof

responseandthefunctionsofheatshockproteins.

Theheatshockresponseiscontrolledatthetranscriptionallevel.InS.cerevisiae,themolecular

responsehasbeenhighlycharacterised.Investigationsonamolecularlevelhavehighlighteda

8

InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae.

numberofcomplexprocessesandeventsdetailingthewholeresponse.Thephosphorylationstate

oftheheatshocktranscriptionfactorinS.cerevisiae(ScHsf1)isfoundinthenucleusboundtoHSE

undernormalconditions(Pelham&Jakobsen,1988).TwotranscriptionaldomainsnamelyAR1

andAR2locatedontheCandN-terminalofScHsf1haveactivationdomainsthatarerepressed

undernormalconditions.Ithasbeenfoundthathyper-phosphorylationoftheC-terminalofthese

activationdomainsresultsinactivationofScHsf1andsoinductionofHSgenes(Hashikawaetal,

2004).ScHsf1belongstoafamilyofwingeddomainproteins(Littlefieldetal,1999).These

'wingeddomains'areknowntointeractwithDNA.Morespecifically,'wingeddomains'interact

upstreamofthetranscriptionstartsitesofgenesencodingHsps;thesepromotersarecalledHSE.

ThesewingeddomainsareimportantforoptimalbindingtoHSEs(Ciceroetal,2001).Anincrease

intheexpressionofHspgenes,resultinaconcomitantincreaseinHspmRNAs,whichmaythen

subsequentlybetranslatedintoHsps.ThesynthesisofHspmRNAandHspspeak10-20minutes

aftercellsaresubjectedtoheatshock(Broachetal,1992).

Hspspossessavarietyoffunctionsinprotectingthecellfromproteindegradation.Thenamesand

functionsofthemajorHspsinS.cerevisiaehavebeensummarizedinthetablebelow.

FunctionsoftheMajorHeatShockProteinsinS.cerevisiae.

HeatShockProtein Hsp104

Hsp83 Hsp70Family

Hsp60

ProposedPhysiologicalFunction Acquisitionofstresstolerance.Constitutivelyexpressed inrespiring,notfermentingcellsandonentryinto stationaryphase. Chaperone(s)function. Interactwithdenatured,aggregatedproteinsandassists insolubilisingthemwithsimultaneousrefolding(i.e. chaperones(s)function).Alsoinvolvedinpost- translationalimportpathways. SimilartoHsp70,Thischaperoninfamilyfacilitatepost- translationalassemblyofproteins.Hsp60facilitatesthe

9

InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae.

foldingandassemblyofunfoldedproteinsinanATP- dependentmannerbydirectlybindingtotheunfolded protein(Craig,1994). Cellularrolestillelusive,butmaybeinvolvedinentry intostationaryphaseandtheinductionofsporulation. Hsp30mayregulateplasmamembraneATPase.

SmallHsps Hsp30 Hsp26 Hsp12

Table1.FunctionsofmajorheatshockproteinsinS.cerevisiae.Adaptedfrom:Walker,G

(1998).YEASTPhysiologyandBiotechnology.WestSussex,England:Wiley&SonsLtd.151

DespitedetailedmolecularcharacterisationoftheresponseinS.cerevisiaethetriggerfor

activationofthetranscriptionfactorhasnotyetbeendiscovered.Asaresult,theregulatorofthe

molecularHSRisunknown.

1.4TemperatureastheDirectInduceroftheHeatShockResponse.

TheHSRisaresponsetosub-lethaltemperatureasameansofprotectionfromthermaldamage

(Sorger&Pelham1988).S.cerevisiaecharacterisesanormaltemperaturerangebetween35-43°C

(Walker,1998)containingminimum,maximumandoptimumtemperatures(Tmin,Tmax,andTopt).

Itisthereforereasonabletoinferthatthermalstressingagentsareresponsibleforinductionof

theHSR.Exposuretosub-lethaltemperatures,resultinproteindenaturationanddamage.Cells

respondtothepresenceofthermallydenaturedproteinsandinducearesponsetosynthesise

Hsps.Untilthelateeightiesthe'classical'viewwasinfactthattemperatureitselfwasthoughtobe

thedirectinduceroftheHSR(Lindquist,1986).Severalstudiesprovidedevidenceinfavourof

this.IfthereweresecondarymessengersinvolvedinHsptranscriptionotherthantemperature,

thentemperaturewoulddamagethesesecondarymessengersandhenceaffecttranscription.

VariousstudiesdemonstratedthelackofsecondarymessengersininductionoftheHSR.When

10

InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae.

heatshockedcellsaresubjectedtonormaltemperatures,theydonotimmediatelyceaseto

synthesiseHsps(Lindquist,1981).Thelackofasecondarymessengerintranscriptional

regulationcontributedtotheideaoftemperatureastheprimarytranscriptionaltrigger.

1.5TheTransientNatureoftheHeatShockResponse,andtheAbilitytobeinducedby

OtherStressAgents.

Despitethereasonableargumentthattemperatureactsasthetrigger/induceroftheheatshock

response,thediscoveryofakeyphenomenonintheHSRcontradictedthis'classicallyheld'view

(Lindquist,1986).TheHSRwasdiscoveredtobehaveintransientmanner(Miller,etal,1990).

Whensubjectedtosub-lethaltemperatures,theHSRwasfoundtodiminishwithinonehourof

inductionandreturntonormalproteinsynthesis(Milleretal,1990).MorespecificallyintheS.

cerevisiaetranscriptionfactor(ScHsf1)theN-terminalregionoftheAR2domainofScHsf1was

foundtohaveseparablepropertiestotheC-terminalregion,inthatitwasabletoinducea

transientresponse(Sorger,1990).Thediscoveryofthisphenomenonchallengedtheideaof

temperatureasadirecttriggeroftheHSR.TheveryfactthatthenatureoftheHSRistransient,

suggeststhatthetriggerfortheHSRis'short-lived'.

Temperature,bydefinitioncannotactasthetriggerfortranscriptionalactivationoftheHSR.

TemperatureisaconstantfactorintheHSR.Ifindeedtemperaturedoesactasadirect

transcriptionaltrigger,itshouldlogicallyresultinaconstantheatshockresponse,andtherefore

nodiminutionoftheresponseshouldbeobserved.However,thisisnottheobservedresponse

(Miller,etal1979).Asaresult,itislogicaltosuggesttemperaturepossiblyplaysanindirectrole

inHSRinductionbutnotadirectrole.Thisdiscoverychallengedexistingideasandfurthermore

11

InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae.

developedresearchtargetswiththeaimofdiscoveringthe'directtrigger'ofthisuniversalstress-

response.

(Milleretal,1979)presentedevidencetocharacterizeatransientHSR.Itcanthereforebeargued

thatthemechanismthatsensestemperaturebecomesdesensitizedovertime.Another

phenomenondescribed,indicatesthatorganismsexposedtomildheatshockexhibitinduced

thermotolerance(Parsell&Lindquist,1993).S.cerevisiaecellssubjectedtobriefheatshockat

mildtemperatures,exhibitresistancetothermaldenaturationatotherwiselethaltemperatures.

CellssubjectedtoHSat37°CdisplayatransientHSR.Whenbrieflyexposedtolethal

temperatures,thesecellsexhibitresistancetothermaldamageasaresultofinduced

thermotolerance(McAlister&Finkelstein,1980)

Furthermoreinthepresenceofethanol,theHSRincreasesinsensitivityasthetemperature

requiredformaximalHSinductionisdecreased(Curran&Khalawan,1994).Plasmamembrane

ATPaseactivityinfluencestheHSR(Panaretou&Piper,1990)aswellasosmoticstress(Varelaet

al,1992).MorespecificallyHsp-104hasshowntoplayanimportantroleinthermotolerance,

includingcellswithmutatedHsf1.(Lindquistetal,1996).Neitherthetransientresponseor

ethanolsensitivephenomenonsupportstheclassicalideathatorganismsresponddirectlyto

thermallydenaturedproteins,toinducetheHSR.Instead,theseconceptssuggestthatthe'primary

sensor'thatdetectscellularproteindenaturationisanactive,adaptabletrigger(Chatterjeeetal,

1997)thatisabletochangetovarysensitivityoftheHSRtothesametemperature

(thermotolerance).

12

InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae.

1.6Evidencetosuggesttheheatshockresponseislipidmediated(S.cerevisiae).

InductionoftheHSRinvolvesphosphorylationandthereforeactivationofSchsf1.HSisalso

inducedattemperaturesspecifictoeachindividualcell(Carratuetal,1996).Howeverthe

phosphorylatingagentisunknown.ThemolecularstructureofthecellmembraneinS.

cerevisiaewasinvestigatedasapotentialregulatorofHSRinduction.Commonphysiological

responsestoachangeinexternalenvironmentalconditionsconsistoflipidmembrane

reorganizationandmodification(Rogers&Glasser,1993).Responsestotemperaturechanges

areknowntoinvolvefattyaciddesaturation.(Lee&Cossins,1990).S.cerevisiaewasuseda

modeltodeterminewhethertheHSRislipidmediated.Exposureofatemperaturesensitive

strainofS.cerevisiaetosaturatedfattyacids(SFA)resultedinanincreasedtranscriptionofHS

genetranscriptionat37°C,andadditionofunsaturatedfattyacids(UFA)downregulatedHS

genetranscription(Carratuetal,1996).

Furtherinvestigationsdevelopedthesefindingstolinkcellularlipidconformationsas

responsiblefordesensitisationandthereforethetransientnatureoftheHSR.Unsaturated

fattyacid(UFA)levelsweremonitoredduringsub-lethalheatshockatvaryingtemperatures

(Chatterjeeetal,1997).Followingashiftintemperatureofyeastcellsfromoptimumtosub-

lethaltemperatures,anincreaseincellularfattyacidunsaturationisassociatedwithan

increasedtemperatureatwhichmaximalHSoccurs.Unsaturatedfattyacidlevelsandthe

maximalHSRbothdeclinewhenreacclimatizedfromsub-lethaltooptimumtemperatures

(Khalawanetal,1996).ThesefindingsdemonstratedthatdensitisationoftheHSRwaslinked

toUFAcellularlevels.FurthermorefindingssuggestedthekineticsofUFAlevelswere

consistentwiththekineticsfordownregulationofHSgeneinduction,thetransientresponse

(Khalawanetal,1996).

13

InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae.

WithevidenceproposinglinksbetweenUFAlevelsandHSinduction,itcanbereasonedthat

UFAlevelsplayaregulatoryroleintheHSR.InS.cerevisiaetheOLE1geneencodesthedelta-9

desaturaseenzymeresponsibleforfattyaciddesaturation(Stukey,etal,1990).IfUFA

desaturationactsasthe'primarysensor'inHSgenetranscription,knockoutoftheOLE1gene

wouldresultinaninabilityoffattyacidstobecomeunsaturated.Ifthecellularlipidsremain

saturatedandifdesaturationisthetriggerforHSdownregulation,aconstantlysaturatedFA

cellularprofilewouldresultintheinabilityoftheHSRtobedownregulated.TheHSRwould

remainconstant,thereforehighlightingUFAlevelsasresponsibleformediatingthetransient

natureoftheHSR.

1.7YeastCharacteristicsandCellMembranePhysiology

"Yeastsareascomycetousorbaidomycetousfungithatreproducevegetativelybybuddingor

fission,andthatformsexualstateswhicharenotenclosedinafruitingbody."(Boekhoutand

Kurtzman,1996).Yeastcellmembranesactsasimpermeablebarriersagainsthydrophilic

moleculestopreventthemixingofthecytoplasmandexternalenvironment.Around7.5nthick,

thecellmembraneiscomposedofalipidbilayer(Walker,1998).Aswithalleukaryotic

membranes,thelipidbilayercontainsglobularproteinsdispersedthroughoutalipidmembrane,

toformafluidmosaicstructure(Nicholson&Singer,1972).Thecellmembraneconsistsof

discontinuousamphipathiclipidbilayers,withthepolarhydrophobictailsfacinginternally,and

theirnon-polarhydrophilicheadsfacingoutwards.

Bothintegralandmembranespanningproteinsarefounddispersedthroughoutthemembrane.

Proteinsplayaroleintransportthroughactingascarrierorchannelproteins(Guyton&Hall,

14

InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae.

2006).Forexample,theprotonpumpingplasmamembraneATPase,utilizesATPtoexpelcellular

proteinstocreateanelectrochemicalgradientfornutrientuptake(Cooteetal,1994).Thelipid

bilayerisprimarilycomposedofphospholipids,mainlyphosphatidylcholineandsterols(Walker,

1998).Thephosphatidylcontentincreasedbyapproximately10-foldinS.cerevisiae(Walker,

1998).Sterolsstabilizethelipidbilayerwhereasphospholipidsaddfluidity(Walker,1998).The

selectivepermeability,mediatedbycertainproteinsandlipidsexhibitinghydrophobicand

hydrophilicinteractions(Nicholson&Singer,1972)ofthesemembranesservetocontrolwhat

canenterandleavethecell.

LipidComponentsOfThePlasmaMembrane

Figure1.Lipidcomponentsoftheplasmamembrane.Theouterleafletconsistspredominantlyof phosphatidylcholine,sphingomyelin,andglycolipids,whereastheinnerleafletcontains phosphatidylethanolamine,phosphatidylserine,andphosphatidylinositol.

Cholesterolisdistributedinbothleaflets.Thenetnegativechargeoftheheadgroupsof phosphatidylserineandphosphatidylinositolisindicated.

Adaptedfrom:Cooper,GM(2000).StructureofthePlasmaMembrane,TheCell:AMolecular Approach.2nded.SunderlandMA:SinauerAssociates.1.

15

InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae.

Thecellmembranehasavastrangeoffunctions,ofwhichthemainonesarementionedbelow

withrelevantexamples.

MainFunctionsoftheCellMembraneinS.cerevisiae.

RelevantExamplesWhereThisIs Shown AphysicalbarriertopreventthemixingofPlasmamembraneprotonpump(ATPase) aqueousandcytoplasmicmolecules,andtoisvitalinexpellingcellularproteinsin controlwhatentersandleavesthecell.ordertocreatetheelectrochemical Membraneproteinsmediatethisresponse.gradientneededforuptakeofessential solutes(e.gH+K+Ca2+ CellSignalling.InS.cerevisiaePhosphatidylinositol4,5-bisphosphateis phosphoinositidephopsphorylationformsresponsibleforrolesincellular moleculesthatarefurtherbrokendowntoproliferation. formmoleculesthatactassecondary messengersinmajorsignalingpathways.

Exocytosis Secretoryvesiclesaresecretedbythe GolgiapparatusandtheEndoplasmic Reticulum.Thesevesiclesfusewiththe plasmamembranetoexpeltheunwanted molecule. Endosomesinternalizestructures requiredbythecell.Invaginationsfrom thecellmembraneare'pinched'awayto formvesiclesthatarethentransported throughthecytoplasm.InS.cerevisiae thisprocessisimportantininternalizing matingpheromes.

FunctionsOfTheYeastCellMembrane

Endocytosis

Table2:MainFunctionsoftheCellMembraneinS.cerevisiae..Source:Walker,G(1998).YEAST

PhysiologyandBiotechnology.WestSussex,England:Wiley&SonsLtd.19-21.

1.8PrinciplesofOsmosis

16

InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae.

Osmosisiscommonlyknownasthemovementofparticlesthroughasemi-permeablemembrane,

fromareasofhighwaterpotential(lowsoluteconcentration)toareasoflowwaterpotential(high

soluteconcentration).Thefactthatthecellmembraneissemi-permeableallowstheexistenceof

thisphenomenon.(Roseetal).

Duetothesmallsizeofwatermolecules,theyexistathighconcentrationsinsolution.Purewater

existsataconcentrationof55.4Mat20°C)(Roseetal).Thishighconcentrationdoesn'tappearto

bedramaticallyalteredinsolutionsmixedwithothersolutes.Itistheassociationofwater

moleculeswiththesesolutesthatchangethestateofwater.(Roseetal).Achangeinthestateof

wateraffectstheamountofthermodynamicallyavailablewater.Thewaterpotentialisdefinedas

"thefunctionoftheconcentrationofsoluteparticles."(Roseetal).

OsmoticpotentialsinS.cerevisiaewerededucedbydegradingthecellwalltoformprotoplasts.

Investigationshighlightedthataprotoplastconcentrationof0.5M,equivalenttoawaterpotential

of-1.5mpawassufficienttomaintainnormalturgorpressure,andnormalcellularstructure.(Rose

etal).Externalwaterpotentialandcellularosmoticpotentialformthebasisofturgorpressure:

pressureofthecellconstituentsagainstthecellwalloftheorganism.

1.9UsingOsmosistoInduceStructuralChangestoYeastCellMembranes

Evidence(seesection1.7)clearlyillustratesthatthecellmembraneofyeasts,andalleukaryotes

arevitalinperformingessentialcellularfunctions.Lipidsformanintegralpartofthecell

membrane,structureandfunction.Evidence(seesection1.6)suggeststhetransientHSRislipid

mediated,(Chatterjeeetal,1997).Changingthestructureoftheyeastcellmembranewould

disruptlipidstructureandmetabolism.IftheHSRislipidmediated,thenchangestocellularlipid

17

InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae.

content,wouldhaveaneffectontheHSR.Toexperimentallyinducethesestructuralchanges,cells

couldbesubjectedtoosmoticshock,followedbyHStomonitorchangesintheHSR.

1.10UtilisingGeneDeletionTechniquesToMeasureHeatShockRegulation

Homologousrecombinationistheabilityofanorganismtoexchangenucleotidesequences

betweensimilarsectionsofDNA.Thischaracteristichasbeenexploitedtoformthebasisofgene

deletiontechnology.Homologousrecombinationcanbeutilisedtopinpointregulationofcellular

responsesonamolecularlevel.MethodsweredevelopedtoenablefragmentsofDNAtobe

integratedintothegenomeofcells(Tropp,2004)toknockoutaparticulargene:eitherviagene

replacementorgeneinsertion(Tropp,2004).Genereplacementinvolvesthereplacementofthe

wholecodingsequenceofatargetgenewithaselectablemarker.Thisresultsingeneknockout

anddisruptionofgenefunction.Knockoutgenesarereplacedwithacodingsequencethatcanbe

detected.SequencehomologybetweentherecipientgeneandtheDNAfragmentenabletheDNA

constructtointegrateatthegeneyouwishtoreplace.

ConstructionoftheDNAfragmentcanbepreparedviaPCRmethods.Primerscontain

approximately'50bpofhomologytothegeneofinterestand20bofhomologytotheselectable

marker'(Tropp,2004)resultinginaPCRproductwith50bpofsequencehomologytothegene

targetedforknockout.

TheOLE1genecanbesubjectedtogenedeletionviathesamemethodology.Usingtheamplified

HIS4genethathasbeendesignedtosharesequencehomologywiththeOLE1gene,theOLE1gene

canbedeleted.InsertionoftheHIS4DNAfragmentintotheS.cerevisiaeDBY747lacZstrainresults

18

InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae.

inhomologousrecombinationtoreplacetheOLE1gene.TheHIS4geneencodestheaminoacid

histidine.TheoriginalDBY747lacZstraincannotgrowonmedialackinghistidine,leucine,or

tryptophanastheplasmiddoesnotcontainthegenesabletosynthesisetheaminoacids.

However,replacementoftheOLE1genewithHIS4resultsintheabilityoftherecombinant

plasmidtosynthesishistidine.Thisresultsinthefollowingphenotypes:

1.Wild-typeDBY747lacZphenotype:His-Leu-Tryp-

2.Mutant-DBY747lacZphenotype:His+Leu-Tryp-

HIS4isthenusedasadetectablemarkerasitisknownthatthemutant-DBY747lacZstraincan

synthesiseitsownhistidine,andcanthereforegrowonmedialackinghistidine,onlyrequiring

leucineandtryptophan.

HavingsuccessfullyknockedouttheOLE1gene,themutantstaincanbetestedforexpected

behaviourstoindicatewhetherofnotthetransientnatureoftheHSRislipidmediated(see

section1.6).

1.11AimsandHypotheses

Theaimsofthisprojectaretwofold.Evidencesuggeststhatthetransientnatureoftheheatshock

responseappearstobelipidmediated.'Knockingout'theOLE1generesponsibleforthistransient

natureandmonitoringforanexpectedchangeinheatshockactivity,couldestablishwhetherthis

isthecase,onamolecularlevel.Secondly,cellsunderosmoticstressundergophysiological

changesacrossthecellmembraneandinothercellcomponents.Iftheheatshockresponseislipid

mediated,structuralchangestotheselipidsasaresultofosmoticstressshouldinduceachangein

thedynamicsoftheHSR.

19

InvestigatingtheRegulationoftheHeatShockResponseinSaccharomycesCerevisiae.

Theprojectaimsleadstothefollowingtwohypotheses:

1.DoestheknockoutoftheOLE1geneaffecttheheatshockresponse?Ifso,istheOLE1gene

responsibleforthetransientnatureoftheHSR?

2.IstheHSRaffectedwhenlipidstructureandmetabolismaredisruptedinS.cerevisiaevia

osmoticpressurechanges?