safe.nrao.edu web viewlo input -- supply a local oscillator tone nominally at 1450 mhz with +5 dbm...

3
Instructions for powering up and providing the necessary inputs to the PAF Digital Downconverter A single blade of the PAF Digital Downconverter comprises 8 independent receiver channels. Below is a photograph of a single blade as seen from the "front." Oriented as shown, the RF coaxial inputs are on the left, the fiber outputs are on the right, and the bias, M&C, and LO are at the top. Location of Inputs and Outputs: There is a single Micro-D connector at the top with 3 power pins for bias and 7 control pins for setting the internal attenuators and reading out the monitor points via an SPI bus. As this is a somewhat specialized connector, a test cable will be supplied with these lines labeled (part no. A104082-001 from Omnetics. For the final instrument on the telescope, I would recommend a shielded version with EMI backshell.)

Upload: hoangthuy

Post on 31-Jan-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: safe.nrao.edu  Web viewLO input -- Supply a local oscillator tone nominally at 1450 MHz with +5 dBm power. ... There are 8 RF power monitor points and 16 IF power monitor points

Instructions for powering up and providing the necessary inputs to the PAF Digital Downconverter

A single blade of the PAF Digital Downconverter comprises 8 independent receiver channels. Below is a photograph of a single blade as seen from the "front." Oriented as shown, the RF coaxial inputs are on the left, the fiber outputs are on the right, and the bias, M&C, and LO are at the top.

Location of Inputs and Outputs:

There is a single Micro-D connector at the top with 3 power pins for bias and 7 control pins for setting the internal attenuators and reading out the monitor points via an SPI bus. As this is a somewhat specialized connector, a test cable will be supplied with these lines labeled (part no. A104082-001 from Omnetics. For the final instrument on the telescope, I would recommend a shielded version with EMI backshell.)

The main RF inputs are the eight SMA connectors on the left side. There are also 8 SMP (press-in) connectors in between these (not visible in the above photo), which are intended as calibration inputs. As shipped, these will be plugged with gold-colored dust-covers. It is recommended that these dust plugs be left in place when the calibration ports are unused. Also, at the very bottom of the left edge is a ninth SMA input, offset from the main row, which is the sample clock input (black cable coming in from the left in the above photo).

Page 2: safe.nrao.edu  Web viewLO input -- Supply a local oscillator tone nominally at 1450 MHz with +5 dBm power. ... There are 8 RF power monitor points and 16 IF power monitor points

At the top of the module next to the Micro-D connector are two more SMA launchers, one for LO input, and the other for LO output (these are labeled). When several blades are used, the LO is daisy-chained from one to the next. For testing a single blade, the LO output should be terminated.

Nominal signal levels:

+5V bias -- This supplies the analog circuitry and M&C functions. The expected current draw is about 2.7A.

+3.5V bias -- This supplies the digital and photonic circuitry. The expected current draw on this supply is about 6.8A. Be aware, however, that there is an internal sequencer that will delay the full current draw for about a second. A small fan is required to keep the module from overheating when this supply is used. The chassis should get warm to the touch, but not hot. (Feels roughly like body temperature.) NOTE: this supply is not required to test the M&C functions.

GND -- This is the main ground return. It is connected to the chassis. Note that with both positive supplies turned on, it will draw almost 10A of current.

LO input -- Supply a local oscillator tone nominally at 1450 MHz with +5 dBm power. The LO output port should be terminated.

RF input -- For testing, a laboratory L-Band (1.2-1.7 GHz) preamp with about 30 dB of gain (not critical) should be connected to this input. This is essentially a stand-in for the cryogenic gain stage on the PAF, and brings the noise level up to a point that it can be digitized. The input to this amp may be terminated, or it may be connected to a synthesizer for providing CW diagnostic inputs. If a synthesizer is used, please put about 90 dB of attenuation between it and the preamp to avoid over-driving the receiver. (I use a 60 dB and 30 dB pad, with the synthesizer set to 0 dBm output.)

Sampler clock input -- This is the SMA connector at the end of the row of RF inputs (not to be confused with the serial SPI clock or "SCLK" line on the Micro-D connector.) Supply a 155.52 MHz tone with about 300 mV amplitude, or approximately 1 mW of power (not critical). NOTE: This signal is not required to test the M&C functions.

IF diagnostic outputs -- These are the 16 SMP connectors on the right side of the module (not visible in the photograph). These are 10 dB-coupled versions of the I and Q analog outputs for each channel just before the samplers. The module will be delivered with gold-colored dust plugs on these outputs. Pull the dust plugs straight out with a pair of pliers (my fingers are not strong enough!) To minimize self-interference, these should be replaced before operating on the telescope (I find a #10 socket-head machine screw is the perfect insertion tool.) If SMP cables are not readily available, I would recommend part no. SCA72086-xx from Fairview Microwave. The IF band is low-pass, from DC to about 75 MHz, and with the above inputs, it should be visible on a laboratory spectrum analyzer. With these test points, it should be possible to verify all M&C functions, including attenuator settings, without having to power up the digital circuitry or supply the sampler clock, as noted above, nor having to connect to the optical fibers.

Nominal monitor point readings:There are 8 RF power monitor points and 16 IF power monitor points. The bus protocol for accessing these and the appropriate software scaling factors were communicated separately from this document. Their actual values will depend somewhat on the gain and noise figure of the laboratory preamp used, as well as the setting of the attenuators, but in our setup the RF power typically reads as -45 dBm and the I and Q outputs read approximately -28 dBm when the attenuators are set to mid-range. Note that the attenuators are in the RF path following the monitor point, so changing the attenuator values will affect the I/Q monitors, but not the RF monitor.

Word of caution: Permanent output fiber connectors have not been spliced on yet. The ends have been stripped to allow use of a bare-fiber adapter for test and calibration purposes. They are very delicate and one should avoid handling them. It is not a very big deal if the stripped ends break off, however I would prefer not to shorten them

Page 3: safe.nrao.edu  Web viewLO input -- Supply a local oscillator tone nominally at 1450 MHz with +5 dBm power. ... There are 8 RF power monitor points and 16 IF power monitor points

any more than necessary. As extra incentive, keep in mind that one could hardly engineer a more perfect splinter than a short rod of glass 125 m in diameter!