safety-critical systems

127
Safety-Critical Systems Prof. Dr. Jan Peleska Universit ¨ at Bremen — TZI Dr. Ing. Cornelia Zahlten Verified Systems International GmbH VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN

Upload: others

Post on 20-Jan-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Safety-Critical Systems

Safety

-Critica

lSystem

s

Pro

f.D

r.Jan

Pelesk

a

Univ

ersitat

Brem

en—

TZI

Dr.

Ing.C

orn

eliaZahlten

Verifi

edSystem

sIn

ternatio

nalG

mbH

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 2: Safety-Critical Systems

Overv

iew

1.T

he

Notion

ofD

epen

dab

ility

2.Safety

-Related

Stan

dard

san

dV

-Models

3.M

odellin

gSafety

-Critical

System

s

4.H

azardA

naly

sisan

dR

iskA

ssessmen

t

5.D

esignC

riteriafor

Safety

-Critical

System

s

6.V

alidation

,V

erification

and

Test

ofSafety

-Critical

System

s

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 3: Safety-Critical Systems

Overv

iew

1.T

he

Notion

ofD

epen

dab

ility

2.Safety

-Related

Stan

dard

san

dV

-Models

3.M

odellin

gSafety

-Critical

System

s

4.H

azardA

naly

sisan

dR

iskA

ssessmen

t

5.D

esignC

riteriafor

Safety

-Critical

System

s

6.V

alidation

,V

erification

and

Test

ofSafety

-Critical

System

s

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 4: Safety-Critical Systems

Dependability

–G

enera

lD

efinitio

n

Our

obje

ctiv

e:

Develo

pm

ent

and

verifi

catio

nof

safe

ty-

critic

al

reactiv

esy

stem

sth

at

contin

uously

inte

ract

with

their

enviro

nm

ent

and

contro

l(p

arts

of)

the

enviro

nm

ent

inord

er

toperfo

rmth

euse

r-require

dse

rvic

es

and

enfo

rce

the

require

dsa

fety

pro

pertie

s.

•D

ependability

:T

he

trustw

orthin

essof

acom

puter

system

such

that

reliance

canbe

justifi

ably

placed

onth

eserv

iceit

delivers.

•Serv

ice:

System

beh

aviou

ras

itis

perceived

by

itsusers.

•U

ser:

Anoth

ersy

stem(h

um

anor

physical)

interactin

gw

ithth

etarget

system

.

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 5: Safety-Critical Systems

Dependability

Attrib

ute

s

•A

vaila

bility

:read

iness

forusage

•R

elia

bility

:con

tinuity

ofserv

ice

•Safe

ty:

avoidan

ceof

catastrophic

conseq

uen

ceson

the

environ

men

t

•Security

:preven

tionof

unau

thorised

accessan

d/or

han

dlin

gof

inform

ation

Secu

rityattrib

utes:

–con

fiden

tiality

–in

tegrity

–availab

ility

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 6: Safety-Critical Systems

Dependability

–Faults

–Erro

rs–

Failu

res

•Failu

re:

delivered

service

no

longer

complies

with

specifi

cation

•Erro

r:part

ofth

esy

stemstate

which

islikely

tolead

tosu

bseq

uen

tfailu

re

•Fault:

cause

ofan

error

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 7: Safety-Critical Systems

Dependability

–Fault-T

ole

rance

versu

sFault-A

void

ance

Classifi

cationof

meth

ods

achiev

ing

dep

endab

ility:

•Fault-T

ole

rance:

prov

ide

aserv

icecom

ply

ing

with

the

specifi

cationin

spite

offau

lts

•Fault-A

void

ance

(Fault-P

reventio

n):

a-priori

preven

tionof

fault

occu

rrence

orin

troduction

•Fault-R

em

oval:

reduce

the

presen

ce(n

um

ber,

seriousn

ess)of

faults

•Fault-F

ore

castin

g:

estimate

the

presen

tnum

ber,

the

futu

rein

ciden

ce,an

dth

econ

sequen

ceof

faults

Our

Favourite

Appro

ach

:Fault-T

ole

rance

on

HW

level—

Fault-A

void

ance

on

specifi

catio

nand

SW

level!

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 8: Safety-Critical Systems

Dependability

—Safe

tyversu

sLiv

eness

Pro

pertie

s

Incom

puter

science,

specifi

cations

areclassifi

edas

contain

ing

•Safe

tyP

ropertie

sS:A

ny

sequen

ceof

events

ortran

sitions

etc.violatin

gS

contain

sa

prefi

xall

ofw

hose

infinite

exten

sions

violate

S.

(Salw

ays

hold

s)

•Liv

eness

Pro

pertie

sL:A

ny

arbitrary

finite

sequen

ceof

events

canbe

exten

ded

toan

infinite

sequen

cesatisfy

ing

L.

(Lfinally

hold

s)

For

safe

ty-c

riticalre

al-tim

esy

stem

s,all

dependability

re-

quire

ments

should

be

specifi

ed

as

safe

typro

pertie

s:Liv

e-

ness

pro

pertie

scan

only

guara

nte

eth

at

ase

rvic

ew

illFIN

ALLY

be

deliv

ere

d,w

hich

isnot

suffi

cie

nt

inth

econ-

text

ofhard

real-tim

esy

stem

s.

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 9: Safety-Critical Systems

Dependability

—C

lassifi

catio

nofSyste

mB

ehavio

ur

System

statesp

aceis

partition

edin

toth

reeareas.

System

execu

tionis

regarded

asseq

uen

ceof

statetran

sitions,

possib

lyaccom

pan

iedby

visib

leaction

s(in

put/ou

tput).

o

ooo

oo

oo

o

o

o

trace s

ho

win

g n

orm

al b

eh

avio

ur

o

o

o

o

o

o

trace s

ho

win

g a

ccep

tab

le b

eh

avio

ur

No

rmal B

eh

avio

ur

Excep

tion

al B

eh

avio

ur

Cata

stro

ph

ic B

eh

avio

ur

trace s

ho

win

g n

orm

al, e

xcep

tion

al

an

d c

ata

stro

ph

ic b

eh

avio

ur:

- transitio

n to

exceptio

nal b

ehavio

ur

- transitio

n to

cata

stro

phic

behavio

ur

(AL

AR

P R

eg

ion

)

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 10: Safety-Critical Systems

Overv

iew

1.T

he

Notion

ofD

epen

dab

ility

2.Safety

-Related

Stan

dard

san

dV

-Models

3.M

odellin

gSafety

-Critical

System

s

4.H

azardA

naly

sisan

dR

iskA

ssessmen

t

5.D

esignC

riteriafor

Safety

-Critical

System

s

6.V

alidation

,V

erification

and

Test

ofSafety

-Critical

System

s

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 11: Safety-Critical Systems

Safe

ty-R

ela

ted

Term

inolo

gy

•A

ccid

ent:

An

undesired

and

unplan

ned

event

that

results

ina

specifi

edlevel

ofloss.

•Severity

ofan

Accid

ent:

Specifi

cationof

the

levelof

losscau

sedby

the

acciden

t,e.

g.,neglectab

le–

min

or–

critical–

catastrophic

•H

azard

:Som

ethin

gth

athas

the

poten

tialto

do

harm

orcan

leadto

anaccid

ent.

Hazard

s“in

herit”

their

severityattrib

utes

fromth

em

ostharm

fulaccid

ents

they

may

cause.

•(S

yste

m)

Safe

tyR

equire

ments:

Asp

ecification

stating

the

acceptab

lerelation

s

hazard

severity

↔pro

bability

ofhazard

occurre

nce

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 12: Safety-Critical Systems

Safe

ty-R

ela

ted

Sta

ndard

s–

Com

mon

Understa

ndin

g

Safety

requirem

ents

shou

ldbe

derived

froma

Risk

Analy

sis,con

sisting

ofH

azard

Analy

sisan

dR

iskA

ssessm

ent.

•H

azard

Analy

sis:list

ofpossib

lehazard

s,th

eirim

pact

onth

een

viron

men

t,th

eirpossib

lecau

ses(e.

g.,seq

uen

cesof

faults

leadin

gto

ahazard

).T

ypically,

itcon

sistsof

the

followin

gitem

s:

–H

azard

List:

collectionof

the

iden

tified

hazard

s

–H

azard

-Severity

Matrix

:relates

hazard

sto

severity

–H

azard

-Pro

bability

Matrix

:relates

hazard

sto

the

prob

ability

ofth

eiroccu

rrence

–H

azard

Model:

descrip

tionof

the

possib

lecau

ses–

that

is,seq

uen

cesof

events

–lead

ing

toa

hazard

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 13: Safety-Critical Systems

•R

iskA

ssessm

ent:

quan

titativeor

qualitative

estimates

forth

eprob

ability

that

ahazard

will

occu

r

Accord

ing

toto

day’s

state

of

the

art,

ahazard

model

should

at

least

be

sem

i-form

al,

for

exam

ple

usin

gfa

ult-

trees,

event

tree

analy

sisofcause

-conse

quence

analy

sis.

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 14: Safety-Critical Systems

Safe

ty-R

ela

ted

Sta

ndard

s–

Com

mon

Understa

ndin

g

•relate

severityof

hazard

,prob

ability

ofoccu

rrence

and

system

beh

aviou

rin

Risk

Dia

gra

mor

Hazard

Risk

Index

•derive

required

effort

forvalid

ation,verifi

cationan

dtest

(VV

T)

ofsy

stemcom

pon

ents

fromth

erisk

diagram

and

the

impact

ofcom

pon

ent

failure

onhazard

occu

rrence

•V

VT

activities

forcom

pon

ents

with

high

estcriticality

shou

ldbe

perform

edby

Independent

Partie

s

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 15: Safety-Critical Systems

Safe

ty-R

ela

ted

Sta

ndard

s–

Risk

Dia

gra

m

no

rmal b

eh

avio

ur

excep

tion

al b

eh

avio

ur

(AL

AR

P re

gio

n)

cata

stro

ph

ic b

eh

avio

ur

(un

accep

tab

le re

gio

n)

(accep

tab

le a

rea)

pro

bab

ility o

f hazard

occu

rren

ce

severity

of h

azard

occasio

nally

low

pro

bability

impro

bable

impossib

le

pro

bable

frequently

critic

al

negle

cta

ble

min

or

cata

stro

phic

syste

m c

om

ponent

VV

T e

ffort

low

very

hig

h

hazard

caused

by c

om

ponent fa

ilure

/VV

T e

ffort re

quire

d

...

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 16: Safety-Critical Systems

Safe

ty-R

ela

ted

Sta

ndard

s–

Com

mon

Understa

ndin

g

If–

insp

iteof

allsafety

-relatedprecau

tions

–a

hazard

ous

situation

results

inan

acciden

t,th

endetailed

investigation

sare

perform

edw

ithth

eob

jectiveto

preven

tre-o

ccurren

ceof

similar

acciden

ts:

•R

oot

Cause

Analy

sisden

otesth

etask

toid

entify

the

crucial

causes

ofan

acciden

t.T

he

term“ro

otcau

se”in

dicates

that

the

crucial

causes

tolo

okfor

areth

oseat

the

begin

nin

gof

the

causal

chain

sfinally

resultin

gin

the

acciden

t.

•O

fsp

ecialin

terestis

the

subset

ofro

otcau

sesw

hose

occu

rrence

canbe

contro

lled

(that

is,preven

ted)

by

technical

ororgan

isational

measu

res.

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 17: Safety-Critical Systems

Safe

ty-R

ela

ted

Sta

ndard

s–

Com

mon

Understa

ndin

g

•R

oot

cause

analy

sispro

ceeds

accordin

gto

the

followin

gstep

s:

1.D

atacollection

2.C

ausal

factor(“cau

salch

ain”)

chartin

g

3.R

oot

cause

iden

tification

4.R

ecomm

endation

elaboration

5.R

ecomm

endation

implem

entation

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 18: Safety-Critical Systems

Safe

ty-R

ela

ted

Sta

ndard

s

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 19: Safety-Critical Systems

Safe

ty-R

ela

ted

Sta

ndard

s

Importan

tstan

dard

sfor

the

develop

men

tof

safety-critical

system

s:

•IE

C61508:

Sich

erheit

elektron

ischer

System

e

•IE

C61511:

Funktion

aleSich

erheit

–Sich

erheitstech

nisch

eSystem

efu

rdie

Prozessin

dustrie

•IE

C61513:

Kern

kraftw

erke–

Leittech

nik

fur

System

em

itsich

erheitstech

nisch

erB

edeu

tung

–A

llgemein

eSystem

anford

erungen

•E

N50129:

Bah

nan

wen

dungen

–Telekom

munikation

stechnik

,Sign

altechnik

und

Daten

verarbeitu

ngssy

steme

–Sich

erheitsrelevan

teelek

tronisch

eSystem

efu

rSign

altechnik

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 20: Safety-Critical Systems

Safe

ty-R

ela

ted

Sta

ndard

s

Importan

tstan

dard

sfor

the

develop

men

tof

safety-critical

system

s:

•E

N62061:

Sich

erheit

vonM

aschin

en–

Funktion

aleSich

erheit

sicherh

eitsbezogen

erelek

trischer,

elektron

ischer

und

program

mierb

arerelek

tronisch

erSteu

erungssy

steme

•IS

OC

D26262:

Road

vehicles

–Function

alsafety

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 21: Safety-Critical Systems

Safe

ty-R

ela

ted

Sta

ndard

sfo

rC

ivil

Airc

raft

Syste

ms

The

overalltest

pro

cessis

driven

by

the

followin

ghigh

-levelstan

dard

s

•A

irTra

nsp

ort

Asso

cia

tion

(ATA

)C

hapte

rs.A

system

aticdecom

position

ofa

concep

tual

aircraftin

toaircraft

system

s.System

descrip

tions

induce

the

fundam

ental

function

sreq

uired

inan

aircraft

Exam

ple

s.

–A

TA

-Chap

ter21.

Air

Con

dition

ing

–A

TA

-Chap

ter30.

Icean

dR

ainP

rotection

–A

TA

-Chap

ter32.

Lan

din

gG

ear

Note

.T

he

ATA

descrip

tionis

“slightly

outd

ated”

fromto

day

’spoin

tof

view

since

italread

ysu

ggestsa

function

↔sy

stemasso

ciationV

ERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 22: Safety-Critical Systems

Safe

ty-R

ela

ted

Sta

ndard

sfo

rC

ivil

Airc

raft

Syste

ms

Tech

nical

standard

ssu

chas

Radio

Tech

nic

alC

om

missio

nfo

rA

ero

nautic

s(R

TC

A)

and

Aero

nautic

alR

adio

Incorp

ora

ted

(AR

INC

)stan

dard

ssp

ecifyth

e(m

inim

al)req

uirem

ents

foreq

uip

men

tim

plem

entin

gaircraft

function

s

Exam

ple

s.

•A

RIN

C653:

Avion

icsA

pplication

Softw

areStan

dard

Interface

•A

RIN

C664:

Aircraft

Data

Netw

ork(A

vion

icsFull

Duplex

Sw

itched

Eth

ernet

(AFD

X))

•RT

CA

DO

-200A:Stan

dard

sfor

Pro

cessing

Aeron

autical

Data

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 23: Safety-Critical Systems

Safe

ty-R

ela

ted

Sta

ndard

sfo

rC

ivil

Airc

raft

Syste

ms

Tech

nical

standard

ssu

chas

Radio

Tech

nic

alC

om

missio

nfo

rA

ero

nautic

s(R

TC

A)

and

Aero

nautic

alR

adio

Incorp

ora

ted

(AR

INC

)stan

dard

ssp

ecifyth

e(m

inim

al)req

uirem

ents

foreq

uip

men

tim

plem

entin

gaircraft

function

s

Exam

ple

s.

•RT

CA

DO

-185B:M

inim

um

Operation

alPerform

ance

Stan

dard

sfor

Traffi

cA

lertan

dC

ollisionA

voidan

ceSystem

II(T

CA

SII)

•RT

CA

DO

-178B:Softw

areC

onsid

erations

inA

irborn

eSystem

san

dE

quip

men

tC

ertification

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 24: Safety-Critical Systems

Overv

iew

1.T

he

Notion

ofD

epen

dab

ility

2.Safety

-Related

Stan

dard

san

dV

-Models

3.M

odellin

gSafety

-Critical

System

s

4.H

azardA

naly

sisan

dR

iskA

ssessmen

t

5.D

esignC

riteriafor

Safety

-Critical

System

s

6.V

alidation

,V

erification

and

Test

ofSafety

-Critical

System

s

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 25: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalSyste

ms

Co

ntro

ller

sen

so

r ob

serv

ab

les

actu

ato

r ob

serv

ab

les

ob

serv

ab

les

Co

ntro

l (EU

C)

Eq

uip

men

t un

der

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 26: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalSyste

ms

•P

hysic

alM

odelsp

ecifies

how

the

Equip

ment

Under

Contro

l(E

UC

)beh

aves.T

his

model

shou

ldbe

indep

enden

tof

the

presen

ce/absen

ceof

acon

troller.

•(S

yste

m)

Hazard

Modeldescrib

esth

epossib

lecau

sesth

atm

aylead

toth

eid

entifi

edsy

stemhazard

s.

•C

ontro

ller

Model:

specifi

esreq

uirem

ents

fora

control

system

such

that

–E

UC

system

hazard

sw

illnot

occu

r(c

ontro

ller

safe

tyre

quire

ments)

–ad

dition

alnon

safety-related

EU

Cbeh

aviou

rw

illbe

ensu

red(u

ser

require

ments)

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 27: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalSyste

ms

Obse

rvatio

ns:

•System

safetyreq

uirem

ents

areoften

specifi

edby

separate

auth

orities,not

by

the

custom

er.

•C

ontroller

safetyreq

uirem

ents

have

tobe

specifi

edby

the

teamresp

onsib

lefor

the

controller.

•U

serreq

uirem

ents

specifi

edby

the

custom

erm

aybe

incon

flict

with

safetyreq

uirem

ents.

•It

has

tobe

verified

that

the

controller

safetyreq

uirem

ents

will

fulfi

lth

esy

stemsafety

requirem

ents.

The

specifi

catio

nofcontro

ller

safe

tyre

quire

ments

should

alw

ays

be

separa

ted

from

use

rre

quire

ments.

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 28: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Specifi

cationM

ethods

suitab

lefor

physical

model

and

controller

model

canbe

classified

accordin

gto

Method

DM

FM

UB

MT

BM

VV

TC

G

SA

/RT

/IM

++

·-

··

STAT

EC

HA

RT

++

··

·

SD

++

··

+

CSP

··

++

++

CC

·+

++

+

LO

TO

·+

-+

+

Z+

·

VD

M+

+

UM

L2.0

++

++

Hybrid

UM

L+

++

++

+

DM

=D

ata

Model,

FM

=Functio

nalM

odel,U

BM

=U

ntim

ed

Behavio

uralM

odel,

TBM

=

Tim

ed

Behavio

uralM

odel,

VV

T=

support

for

Valid

atio

nVerific

atio

nand

Test,C

G=

support

for

code

generatio

nfr

om

specific

atio

ns

,+

=good

support

,·=

weak

support

,-=

no

support

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 29: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1:

Physical

Model

and

Con

trollerM

odel

specifi

cationw

ithC

SP

–door

lock

ing

mech

anism

forlab

oratory:

When

lasersy

stemis

active,door

shall

be

locked

and

laboratory

shall

be

empty.

Physical

model

(EU

C):

EUC

=LASER

|||

(DOOR

[|

open,

close

|]

PERSON)

LASER

=switchOn

->

laserActive

->

switchOff

->

laserPassive

->

LASER

DOOR

=open

->

close

->

DOOR

PERSON

=open

->

enter

->

close

->

stayInLaboratory

->

open

->

leave

->

close

->

PERSON

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 30: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1(c

ontin

ued):

Hazard

ous

tracesare

the

ones

contain

ing

event

sequen

ces

<...,open,switchOn,

...

>

<...,open,enter,switchOn,

...

>

<...,open,enter,close,switchOn,

...

>

<...,open,enter,close,stayInLaboratory,switchOn,

...

>

<...,open,enter,close,stayInLaboratory,open,switchOn,

...

>

<...,open,enter,close,stayInLaboratory,open,leave,switchOn,

...

<...,switchOn,open,...>

<...,switchOn,laserActive,open,...>

<...,switchOn,laserActive,switchOff,open,...>

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 31: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1(c

ontin

ued):

Hazard

ous

tracesare

formally

specifi

edusin

gtra

ce

specifi

catio

ns

HA

ZA

RD

(tr)≡

∃u1,u2,u3

:tr

=u1

⌢〈o

pen〉

⌢u2

⌢〈o

pen〉

⌢u3

⌢〈c

lose〉

∧#

(u1

↾{open})

mod

2=

0∧

u2

↾{open}

=〈〉∧

((u1

↾{sw

itchO

n,la

serA

ctiv

e,sw

itchO

ff,la

serP

assiv

e}6=

〈〉∧

last(u

1↾{sw

itchO

n,la

serA

ctiv

e,sw

itchO

ff,la

serP

assiv

e})6=

laserP

assiv

e)∨

(u2

↾{sw

itchO

n,la

serA

ctiv

e,sw

itchO

ff}6=

〈〉)

∨(u

3↾{sw

itchO

n,la

serA

ctiv

e,sw

itchO

ff}6=

〈〉))

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 32: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1(c

ontin

ued):

The

develop

men

tob

jectivefor

the

controller

isto

ensu

refor

system

SYSTEM

=EUC

[|

I|]

CONTROLLER

with

some

suitab

lein

terfaceI

the

safetysp

ecification

SY

ST

EM

sat¬

HA

ZA

RD

(tr)

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 33: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1(c

ontin

ued):

Asu

itable

interface

is

I=

{open

,close,switch

On,la

serPassiv

e}

and

asu

itable

controller

canbe

specifi

edas

CONTROLLER

=open

->

C1

[]

switchOn

->

C2

C1

=close

->

open

->

close

->

CONTROLLER

C2

=laserPassive

->

CONTROLLER

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 34: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1(c

ontin

ued):

The

safetyverifi

cationis

typically

perform

edby

usin

ga

watch

dog

pro

cess

which

mon

itorsall

events

fromth

esy

stemalp

hab

etA

and

induces

adead

lock

asso

onas

asafety

violation

occu

rs:

A=

{switchOn,laserActive,switchOff,laserPassive,

open,close,enter,stayInLaboratory,leave}

WATCHDOG

=W(<>)

W(tr)

=if

(\text{HAZARD}(tr)

)then

STOP

else

([]

e:A

@e->

W(tr^<e>))

IfVERIFY

=SYSTEM

[|

A|]

WATCHDOG

isfree

ofdead

lock

s,th

isproves

the

safetyof

SYSTEM

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 35: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1–

state

-base

ddesc

riptio

nw

ithsp

ecifi

catio

nin

tem

pora

llo

gic

:

Sta

te-T

ransitio

nSyste

mS

TS

=(S

,s0 ,V

,T):

•V

:Set

ofvariab

lesy

mbols

•S

:Set

ofstates,

eachstate

s∈

Sa

valuation

s:V

→D

ofvariab

les(D

the

associated

variable

dom

ain)

•T

⊆S×

S:

The

transition

relation

Run

(executio

n)

of

ST

S:

State

sequen

ce〈s

0 ,s1 ,s

2 ,...〉w

ith

∀i≥

0:(s

i ,si+

1 )∈

T

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 36: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1–

modelle

das

ST

S:

•V

ariable

sym

bols

V=

{door,la

ser,dcn

t}

•A

uxiliary

variable

dcn

t(“d

oor-op

en/closed

counter”)

counts

how

oftenth

edoor

has

been

open

edor

closed

•D

omain

sD

=D

(door)

∪D

(laser)

∪D

(dcn

t),D

(door)

={op

en,closed

},D

(laser)

={p

assiv

e,on,a

ctive,o

ff},

D(d

cnt)

=N

0

•V

aluation

canbe

written

likes

={d

oor7→

open

,laser

7→on

,dcn

t7→

5}

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 37: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1–

modelle

das

ST

S–

transitio

nre

latio

n:

T⊆

S:

with

out

control,

Tallow

san

y(p

ossibly

unsafe)

transition

s(s,s

′)satisfy

ing

1.s0 (d

oor)=

closed∧

s0 (d

cnt)

=0∧

s0 (la

ser)=

passiv

e

2.s(la

ser)=

passiv

e⇒

s′(la

ser)∈{p

assiv

e,on}

3.s(la

ser)=

on⇒

s′(la

ser)∈{on

,activ

e}

4.s(la

ser)=

activ

e⇒

s′(la

ser)∈{a

ctive,o

ff}

5.s(la

ser)=

off

⇒s′(la

ser)∈{off

,passiv

e}

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 38: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1–

modelle

das

ST

S–

transitio

nre

latio

n:

(s(door)

=d∧

s(dcn

t)=

n)⇒

((s′(d

oor)=

d∧

s′(d

cnt)

=n)∨

(s′(d

oor)6=

d∧

s′(d

cnt)

=n

+1))

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 39: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1–

specifi

catio

nofsa

feru

ns

usin

gte

mpora

llo

gic

:

Recall

operators

ofLin

ear

Tem

pora

lLogic

(LT

L),

defi

ned

onru

ns

r=

〈s0 ,s

1 ,s2 ,...〉

ofS

TS

:

•Sta

tefo

rmula

sp

over

V:

logicform

ulas

with

freevariab

lesin

V,in

volvin

g∃,∀

,¬,∧

,∨,⇒

,⇐⇒

Inte

rpre

tatio

n:

phold

sin

states∈

Sif

itsvalu

ations(p

)is

true.

Exam

ple

:door

=op

en⇒

laser

6=activ

eis

interp

retedin

states

ass(d

oor)=

open

⇒s(la

ser)6=

activ

e

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 40: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1–

specifi

catio

nofsa

feru

ns

usin

gte

mpora

llo

gic

–Tem

pora

lopera

tors:

•G

lobally

p:

�p

(orG

p)

hold

sfor

run

riff

∀i≥

0:s

i (p)

•N

ext

p:©

p(or

Xp)

hold

sin

states

iof

run

riff

si+

1 (p)

istru

e

•Eventu

ally

(finally

)p:

♦p

(orF

p)

hold

sfor

run

riff

∃i≥

0:s

i (p)

•p

Until

q:pU

qhold

sfor

run

riff

(∃i≥

0:s

i (q))∧

(∀j

<i:s

j (p))

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 41: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1–

physic

alm

odelsp

ecifi

catio

nusin

gte

mpora

llo

gic

:

The

restrictions

abou

tth

ephysical

model

canbe

specifi

edas

follows:

1.s0 (d

oor)=

closed∧

s0 (d

cnt)

=0∧

s0 (la

ser)=

passiv

e

2.�

(laser

=passiv

e⇒

©(la

ser∈{p

assiv

e,on}))

3.�

(laser

=on

⇒©

(laser

∈{on

,activ

e}))

4.�

(laser

=activ

e⇒

©(la

ser∈{a

ctive,o

ff}))

5.�

(laser

=off

⇒©

(laser

∈{off

,passiv

e}))

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 42: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1–

physic

alm

odelsp

ecifi

catio

nusin

gte

mpora

llo

gic

:

∀d∈{op

en,closed

},n∈

N0

:�

(door

=d∧

dcn

t=

n⇒

©((d

oor=

d∧

dcn

t=

n)∨

(door

6=d∧

dcn

t=

n+

1)))

Obse

rve:

The

laboratory

isem

pty

ifan

don

lyif

dcn

tm

od

4=

0

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 43: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1–

hazard

specifi

catio

nusin

gte

mpora

llo

gic

:

Hazard

scan

be

characterised

by

formula

HA

ZA

RD

≡♦

((door

=op

en∨

dcn

tm

od

46=

0)∧la

ser6=

passiv

e)

Innatu

rallan

guage,

the

hazard

formula

expresses

•W

hen

everth

elaser

isnot

inpassive

state,it

ishazard

ous

ifth

edoor

isop

en.

•W

hen

everth

elaser

isnot

inpassive

state,it

ishazard

ous

ifsom

ebody

isin

side

the

laboratory

(thou

ghth

edoor

may

be

closed).V

ERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 44: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1–

safe

tysp

ecifi

catio

nusin

gte

mpora

llo

gic

:

The

associated

safetycon

dition

isth

enegation

ofth

ehazard

characterisation

:

¬H

AZA

RD

≡�

((door

=op

en∨

dcn

tm

od

46=

0)⇒

laser

=passiv

e)

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 45: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1–

state

-base

ddesc

riptio

n–

Form

alm

odelfo

rim

ple

menta

tions:

Tim

e-Discrete

Input-O

utp

ut

Hybrid

System

s

TD

IOH

SH

=(L

oc,Init,V

,I,O

,Tra

ns):

•L

oc:

Location

s

•V

:variab

lesy

mbols,

I,O

⊂V

,I∩

O=

•G

uard

:quan

tifier-free

pred

icatesover

V

•Init

:L

oc→

Guard

:in

itialisationcon

straints

•A

ssign

the

setof

allpairs

(~x:=

~t)w

ith

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 46: Safety-Critical Systems

–~x

=(x

1 ,x2 ,...)

vectorof

allvariab

lesin

V−

I

–~t

=(t

1 ,t2 ,...)

∈T

|V−

I|

–T

terms

overV

•T

rans⊆

Loc

×G

uard

×A

ssign×

Loc

:Tran

sitions

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 47: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

–Specifi

catio

nM

eth

ods

Exam

ple

1–

I/O

-safe

TD

IOH

S:P

rograms

adhere

toth

efollow

ing

pro

gra

mm

ing

model:

•P

rocessin

gis

perform

edin

aseq

uen

tialtask

operatin

gin

am

ainlo

opw

ithth

efollow

ing

pro

cessing

phases:

–In

put

phase

:In

puts

areread

and

copied

to(glob

al,static,

heap

orstack

)variab

les–

these

variables

arecalled

pro

cessin

gvaria

ble

s

–P

rocessin

gphase

:T

he

control

decision

sare

computed

,op

erating

onpro

cessing

variables

only

–O

utp

ut

phase

:T

he

pro

cessing

variables

contain

ing

pre-com

puted

outp

ut

values

arecop

iedto

their

correspon

din

gou

tputs

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 48: Safety-Critical Systems

Modellin

gSafe

ty-C

riticalC

ontro

llers

Exam

ple

1–

EU

Cand

Contro

ller:

EQ

UIP

ME

NT

UN

DE

R C

ON

TR

OL

DO

OR

SY

ST

EM

LA

SE

R

CO

NT

RO

LL

ER

do

orO

pen

:b

oo

l

do

or:

{op

en

,clo

sed

}

laserU

nlo

cked

:b

oo

lla

ser:

{passiv

e,o

n,a

ctiv

e,o

ff}d

oo

rReq

uest:

bo

ol

doorO

pen =

= tru

e

opened w

hen u

nlo

cked v

iaD

oor c

an o

nly

be

pre

ss a

request b

utto

n.

To o

pen d

oor, u

sers

US

ER

laserS

witc

h:

{on

,off}

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 49: Safety-Critical Systems

Exam

ple

1–

Contro

ller

Code:

1//Processingvariables(initialisedbyfalse/passive/closed)

2dop:bool;dx:{open,closed};lu:bool;l:{passive,on,active,off};

3dcnt:int;doorOld:bool;dr:bool;

4while(true)

{

5//Inputphase------------------------------------------------

6dx=

door;l

=laser;dr=

doorRequest;

7//Processingphase-------------------------------------------

8if(

dx!=doorOld){

doorOld=

dx;dcnt++}

9dop=dx

or(dcnt%4!=

0)or

(drandl==

passive);

10

lu=

notdop;

11

//Outputphase-----------------------------------------------

12

doorOpen=dop;laserUnlocked=

lu;

13

//Safetymonitor---------------------------------------------

14

if(

(dcnt%4!=0

ordoorOpenor

door==open)andlaser!=passive)

15

EMERGENCY_SHUTDOWN();//

Switchoffpowersupplytolaser

16

}

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 50: Safety-Critical Systems

Exam

ple

1–

Contro

ller

Code

Safe

tyP

roof:

First

prove

auxiliary

prop

ertyth

atdcn

tis

updated

asreq

uired

forth

ephysical

model,

i.e.,

accordin

gto

formula

∀d∈{op

en,closed

},n∈

N0

:�

(door

=d∧

dcn

t=

n⇒

©((d

oor=

d∧

dcn

t=

n)∨

(door

6=d∧

dcn

t=

n+

1)))(∗)

This

pro

offollow

sfrom

the

program

prop

ertyw

hich

hold

sat

line

8

∀d∈{op

en,closed

},n∈

N0

:�

(door

=d∧

dcn

t=

n∧©

(door

6=d⇔

doorO

ld6=

dx))

soth

ein

cremen

tdcnt++

inlin

e8

establish

es(*).

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 51: Safety-Critical Systems

Exam

ple

1–

Contro

ller

Code

Safe

tyP

roof:

Verifi

cationob

jective:Show

that

¬H

AZA

RD

hold

sat

the

end

ofeach

outp

ut

phase.

Pro

ofrelies

onphysic

alpro

perty

ofele

ctro

-mech

anic

al

door/

lase

rsa

fety

syste

m:

�(la

ser6=

passiv

e⇒

laserU

nlo

cked)

(1)

We

will

prove

that

pro

gra

mensu

res

�(d

oorO

pen

⇒¬

laserU

nlo

cked)

(2)�

(dcn

t%46=

0⇒

¬la

serUnlo

cked)

(3)�

(door

=op

en⇒

doorO

pen

)(4)

Prop

erties(1),(2),(3),(4)

obviou

slyim

ply

¬H

AZA

RD

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 52: Safety-Critical Systems

Exam

ple

1–

Contro

ller

Code

Safe

tyP

roof:

For

I/O-safe

TD

IOH

Sth

epro

ofof

aprop

erty�

φis

equivalen

tto

show

ing

that

φis

anin

variant

ofth

eprogram

’sm

ainw

hile-lo

op.

We

therefore

have

toprove

that

the

followin

gprop

ertiesare

invarian

ts:

doorO

pen

⇒¬

laserU

nlo

cked(2

′)dcn

t%46=

0⇒

¬la

serUnlo

cked(3

′)door

=op

en⇒

doorO

pen

(4′)

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 53: Safety-Critical Systems

Exam

ple

1–

Contro

ller

Code

Safe

tyP

roof:

Pro

ofis

based

onop

erational

seman

ticsof

while

langu

ages.

Prop

erties(2’),

(3’),(4’)

hold

when

initially

enterin

gth

ew

hile

loop

atlin

e4,

due

tovariab

lein

itialisations.

Now

suppose

that

(2’),(3’),

(4’)hold

inlin

e5

(sℓ

den

otesth

evariab

lestate

before

execu

tionof

line

ℓ):

s5|=

doorO

pen

⇒¬

laserU

nlo

cked

s5|=

dcn

t%46=

0⇒

¬la

serUnlo

cked

s5|=

door

=op

en⇒

doorO

pen

Ithas

tobe

show

nth

atth

enth

eseprop

ertiesalso

hold

atlin

e13

inprogram

states13 .

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 54: Safety-Critical Systems

Exam

ple

1–

Contro

ller

Code

Safe

tyP

roof:

Prop

erty(2’)

follows

fromth

eassign

men

tan

dseq

uen

ceru

lesof

the

operation

alsem

antics,

applied

tolin

es10

—12:

s12

=s10⊕

{lu

7→¬

s10 (d

op)}

s13

=s12⊕

{doorO

pen

7→s12 (d

op),la

serUnlo

cked7→

s12 (lu

)}

which

implies

s13 (la

serUnlo

cked)

s10 (d

op)

and,sin

ces12 (d

op)=

s10 (d

op),

s13|=

doorO

pen

⇒¬

laserU

nlo

cked

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 55: Safety-Critical Systems

Exam

ple

1–

Contro

ller

Code

Safe

tyP

roof:

Prop

erty(3’)

follows

fromth

eassign

men

tan

dseq

uen

ceru

lesof

the

operation

alsem

antics,

applied

tolin

es9

—12:

s10

=s9⊕{dop7→

(s9 (d

x)=

open

)∨

s9 (d

cnt)%

46=

0∨

(s9 (d

r)∧

s9 (l)

=passiv

e)}s12

=s10⊕

{lu

7→¬

s10 (d

op)}

s13

=s12⊕

{doorO

pen

7→s12 (d

op),la

serUnlo

cked7→

s12 (lu

)}

which

implies

s13|=

dcn

t%46=

0⇒

doorO

pen

and

therefore

s13|=

dcn

t%46=

0⇒

¬la

serUnlo

cked

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 56: Safety-Critical Systems

Exam

ple

1–

Contro

ller

Code

Safe

tyP

roof:

Prop

erty(4’)

follows

fromth

eassign

men

tan

dseq

uen

ceru

lesof

the

operation

alsem

antics,

applied

tolin

es6

—12:

s10

=s9⊕{dop7→

(s6 (d

oor)

=op

en)∨

s9 (d

cnt)%

46=

0∨

(s9 (d

r)∧

s9 (l)

=passiv

e)}s12

=s10⊕

{lu

7→¬

s10 (d

op)}

s13

=s12⊕

{doorO

pen

7→s12 (d

op),la

serUnlo

cked7→

s10 (lu

)}

which

impliess

13|=

door

=op

en⇒

dop

and

therefore

s13|=

door

=op

en⇒

doorO

pen

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 57: Safety-Critical Systems

Overv

iew

1.T

he

Notion

ofD

epen

dab

ility

2.Safety

-Related

Stan

dard

san

dV

-Models

3.M

odellin

gSafety

-Critical

System

s

4.H

azardA

naly

sisan

dR

iskA

ssessmen

t

5.D

esignC

riteriafor

Safety

-Critical

System

s

6.V

alidation

,V

erification

and

Test

ofSafety

-Critical

System

s

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 58: Safety-Critical Systems

Risk

Analy

sis

Risk

Analy

sis:con

sistsof

two

steps:

Hazard

Analy

sisan

dR

iskA

ssessm

ent

Hazard

Analy

sis:W

hich

condition

scau

sea

hazard

?

Risk

Asse

ssment:

What

areth

eprob

abilities

that

ahazard

occu

rs,prov

ided

the

hazard

analy

sisis

consisten

tan

dcom

plete?

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 59: Safety-Critical Systems

Modellin

gTech

niq

ues

for

Haza

rdA

naly

sis

Overv

iew

ofte

chniq

ues:

•FM

EA

:Failu

rem

odes

and

effects

analy

sis

•FM

EC

A:Failu

rem

odes,

effects

and

criticalityan

alysis

•H

AZO

P:H

azardan

dop

erability

studies

•ETA

:E

vent

treean

alysis

•FTA

:Fau

lttree

analy

sis

•FSM

:Fin

itestate

mach

ines

with

reachab

ilityan

alysis

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 60: Safety-Critical Systems

Haza

rdA

naly

sis–

FM

EC

A

Obje

ctiv

e:

Investigate

the

possib

lew

ays

(=m

odes)

acom

pon

ent

may

failan

dch

eckw

heth

erth

iscan

leadto

ahazard

.

Advanta

ges:

System

atican

alysis

ofeach

possib

lecom

pon

ent

failure

and

itshypoth

eticrelation

ship

toa

hazard

Disa

dvanta

ges:

•In

vestigationof

man

ycom

pon

ents

which

have

no

effect

onhazard

occu

rrence

•N

oan

alysis

ofsim

ulta

neous

faults

inseveral

compon

ents

Recom

mendatio

n:

Use

tocom

plem

ent

FTA

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 61: Safety-Critical Systems

Haza

rdA

naly

sis–

FM

EC

A

Item

Failu

re

Mode

Cause

of

failu

re

Possib

le

Effects

Prob.

Crit

icalit

yPossib

leA

ctio

ns

to

Reduce

Fail-

ure

Rate

or

Ef-

fects

Air

craft

Sm

oke

Detector

Sm

oke

threshold

too

hig

h

(1)

De-

fect

hum

idity

sensor

(2)

Arit

h-

metic

error

inthreshold

calc

u-

latio

nsoftware

Sm

oke

incom

-partm

ent

rem

ain

sunde-

tected

10−

6/1000·

flight

hours

B(1)

Use

redundant

sm

oke

detectors

(2)

Perfo

rm

detec-

tor

tests

(3)

Let

detector

issue

pre

-thre

shold

warnin

g:

This

in-

dic

ates

that

the

detector

becom

es

“blin

d”

so

that

hig

her

sm

oke

intensit

ies

are

requir

ed

to

lead

to

asm

oke

ala

rm

Air

craft

Sm

oke

Detector

Sm

oke

threshold

too

low

–see

above

–Ille

gal

sm

oke

ala

rm

s

10−

6/1000·

flight

hours

C(A

ir-

craft

cannot

start

or

contin

ue

flight)

–see

above

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 62: Safety-Critical Systems

Haza

rdA

naly

sis–

Fault

Tre

es

inte

rme

dia

te e

ven

t

exte

rna

l even

t

un

de

ve

lop

ed

eve

nt

co

nd

ition

ing

even

t

ba

sic

eve

nt

AN

D g

ate

OR

gate

INH

IBIT

ga

te

PR

IOR

ITY

AN

D

ga

te

EX

CL

US

IVE

OR

ga

te

E1

E2

1E

22

E2

3

CE

E3

1E

33

E3

2

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 63: Safety-Critical Systems

Deriv

ing

Safe

tyR

equire

ments

from

Hazard

Analy

sis

Ifhazard

analy

sishasbeen

perfo

rmed

usin

gfa

ult

trees,

ev-

ery

setofconditio

nsensu

ring

thatth

ero

otofth

efa

ult

tree

will

never

be

reach

ed

repre

senta

suffi

cie

ntse

tofsa

fety

re-

quire

ments.

•ro

ot-hazard

E0

givesrise

toin

itialreq

uirem

entnot(E

0)

tobe

refined

by

the

requirem

ents

derived

fromlow

er-levelnodes

inth

etree

•O

R-gates

E1,...,E

ngive

riseto

requirem

ent

not(E

1)

AN

D...A

ND

not(E

n)

•A

ND

-gatesE

1,...,En

giverise

toreq

uirem

ent

not(E

1)

OR

...O

Rnot(E

n)

•refi

nem

ent

ofreq

uirem

ents

stops

when

the

leavesof

the

fault

treehave

been

reached

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 64: Safety-Critical Systems

Deriv

ing

Safe

tyR

equire

ments

from

Hazard

Analy

sis

Exam

ple

for

fault-tre

esh

ow

nabove.

Ste

p1:

term

repla

cem

ent

accord

ing

tofa

ult-tre

e

E1

⇐⇒

E21

and

E22

and

E23

⇐⇒

(E31

and

not(C

E))

and

E22

and

(E32

or

E33)

Ste

p2:

transfo

rmin

todisju

nctiv

enorm

alfo

rm

⇐⇒

(E31

and

not(C

E)

and

E22

and

E32)

or

(E31

and

not(C

E)

and

E22

and

E33)

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 65: Safety-Critical Systems

Deriv

ing

Safe

tyR

equire

ments

from

Hazard

Analy

sis

Exam

ple

for

fault-tre

esh

ow

nabove.

Ste

p3:

dete

rmin

ere

sultin

gsa

fety

require

ments

by

negatio

nofdisju

nctiv

enorm

alfo

rm

Safe

tyR

equire

ment

1:

not(E

31and

not(C

E)

and

E22

and

E32)

Safe

tyR

equire

ment

2:

not(E

31and

not(C

E)

and

E22

and

E33)

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 66: Safety-Critical Systems

Deriv

ing

Safe

tyR

equire

ments

from

Hazard

Analy

sis

Definitio

nofC

ut

Sets:

Each

(min

imal)

collectionof

elemen

tarycon

dition

sjoin

tlylead

ing

toa

hazard

iscalled

acu

tset.

Definitio

nofSin

gle

-Poin

tFailu

re:

Cut

setcon

tainin

gon

lyon

eelem

ent

Cut

sets

deriv

ed

from

fault-tre

esh

ow

nabove:

givenby

disju

nctive

norm

alform

as

{E31,

not(C

E),E

22,E32}

{E31,

not(C

E),E

22,E33}

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 67: Safety-Critical Systems

Deriv

ing

Safe

tyR

equire

ments

from

Hazard

Analy

sis

Exam

ple

1(c

ontin

ued):

FTA

forlab

oratoryw

ithlaser

Ha

za

rd

lase

r != p

assiv

eP

ers

on

in la

se

r ran

ge

do

or =

= o

pe

nP

ers

on

in la

bo

rato

ry

dcn

t%4

!= 0

lase

rUn

locke

dla

se

rSw

itch

==

on

do

orO

pe

nD

oo

r op

en

d b

y u

se

r

co

ntro

llab

le e

ve

nt

co

ntro

llab

le e

ve

nt

un

co

ntro

llab

le e

ve

nt

un

co

ntro

llab

le e

ve

nt

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 68: Safety-Critical Systems

Deriv

ing

Safe

tyR

equire

ments

from

Hazard

Analy

sis

Exam

ple

1(c

ontin

ued):

Cut

setsfor

laboratory

with

laserderived

fromFTA

above:

C1

={doorO

pen

,laserU

nlo

cked,D

oor

open

edby

user,

laserS

witch

==

on}

C2

={dcn

t%46=

0,laserU

nlo

cked,la

serSw

itch=

=on}

All

uncon

trollable

events

areassu

med

toalw

ays

hap

pen

inord

erto

contrib

ute

toa

hazard

situation

.T

herefore

the

controller

has

toen

sure

that

event

combin

ations

C′1=

{doorO

pen

,laserU

nlo

cked}

C′2=

{dcn

t%46=

0,laserU

nlo

cked}

cannever

occu

r:

Safety

Req

uirem

ent

1≡

�(¬

(doorO

pen

∧la

serUnlo

cked))

Safety

Req

uirem

ent

2≡

�(¬

(dcn

t%46=

0∧

laserU

nlo

cked))

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 69: Safety-Critical Systems

Deriv

ing

Safe

tyR

equire

ments

from

Hazard

Analy

sis

Exam

ple

1(c

ontin

ued):

Inord

erto

prove

that

the

control

program

forth

elab

oratoryin

troduced

above

reallyfu

lfills

safetyreq

uirem

ents

1an

d2

above

we

have

tosh

owth

at

INV≡

¬(d

oorO

pen

∧la

serUnlo

cked)∧

¬(d

cnt%

46=

0∧

laserU

nlo

cked)

isan

invarian

tof

the

program

’sw

hile

loop

.O

bserve

that

the

fault

treean

alysis

above

relieson

the

addition

alfact

that

door

=op

en⇒

doorO

pen

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 70: Safety-Critical Systems

Contro

ller

Hazard

Analy

sis

Safety

mech

anism

shave

tobe

ensu

redeven

inpresen

ceof

intern

alsy

stemfau

lts.

Ase

cond

inte

rnalhazard

analy

sisis

necessa

ryto

show

that

the

syste

mdesig

nconta

ins

the

pro

per

mech

anism

sto

tol-

era

tefa

ults

with

out

vio

latin

gth

eesse

ntia

lsa

fety

require

-m

ents.

Intern

alhazard

analy

sissh

ould

takein

toaccou

nt:

•fau

lts/errors/failures

ofhard

ware

compon

ents

•erron

eous

beh

aviou

rof

SW

compon

ents

•corru

pted

data

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 71: Safety-Critical Systems

Risk

Asse

ssment

-G

enera

lD

efinitio

ns

Unre

liability

:

Defi

ne

the

Unre

liability

Functio

nQ

(t),th

atis,

the

prob

ability

fora

compon

ent

tofail

inin

terval[0,t],

as

Q(t)

=

t

0

f(u

)du

where

f(t)

isa

Pro

bability

Density

Functio

n(P

DF),

the

failu

redensity

.M

athem

aticallysp

eakin

g,Q

(t)is

aC

um

ula

tive

Density

Functio

n(C

DF).

Obviou

sly

Q(∞

)=

0

f(u

)du

=1

since

f(t)

isa

PD

F.

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 72: Safety-Critical Systems

Risk

Asse

ssment

-G

enera

lD

efinitio

ns

Defi

ne

the

Relia

bility

Functio

nR

(t)as

the

prob

ability

fora

compon

entnot

tofail

inin

terval[0,t],

that

is,

R(t)

=1−

Q(t)

IfQ

(t)is

defi

ned

asab

ovew

ithden

sityfu

nction

f(t),

then

R(t)

=1−

t

0

f(u

)du

=

0

f(u

)du−

t

0

f(u

)du

=

t

f(u

)du

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 73: Safety-Critical Systems

Risk

Asse

ssment

-G

enera

lD

efinitio

ns

Q(t)

may

be

determ

ined

approx

imately

by

testing

alarge

num

ber

Nof

iden

ticalcom

pon

ents

and

setting

Q(t)

=n

f(t)

N,

where

nf(t)

≤N

isth

enum

ber

ofcom

pon

ents

which

failedin

interval

[0,t].

Con

versely,R

(t)m

aybe

determ

ined

approx

imately

by

testing

alarge

num

ber

Nof

iden

ticalcom

pon

ents

and

setting

R(t)

=n(t)

N,

where

n(t)

≤N

isth

enum

ber

ofcom

pon

ents

stillfu

nction

ing

correctlyat

aftera

time

interval

oflen

gtht

has

passed

.

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 74: Safety-Critical Systems

Risk

Asse

ssment

-G

enera

lD

efinitio

ns

Failu

reD

ensity

:

Indicates

tenden

cy(“con

stant”,

“strongly

/weak

lyin

creasing/d

ecreasing”)

ofunreliab

ilityat

time

poin

tt:

f(t)

=dQ

(u)

du

(t)

fordiff

erentiab

leunreliab

ilityfu

nction

Q.

This

implies

dR

(u)

du

(t)=

1−

Q(u

)

du

(t)

=−

dQ

(u)

du

(t)

=−

f(t)

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 75: Safety-Critical Systems

Risk

Asse

ssment

-G

enera

lD

efinitio

ns

Failu

reR

ate

:

Prob

ability

forsy

stemto

failin

interval

[t,t+

∆t],

prov

ided

that

no

failure

occu

rredbefore

t:

Failu

reR

ate=

F(t

+∆

t)−

F(t)

∆tR

(t)

Hazard

Rate

:

Lim

itof

failure

ratefor

∆t→

0:

z(t)

=lim

∆t→

0

F(t

+∆

t)−

F(t)

∆tR

(t)=

f(t)

R(t)

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 76: Safety-Critical Systems

Risk

Asse

ssment

-G

enera

lD

efinitio

ns

Mean

Tim

eTo

Failu

re:

Expected

value

ofth

etim

eth

esy

stemw

illop

eratebefore

the

occu

rrence

ofth

efirst

failure.

MT

TF

=

0

R(u

)du

Mean

Tim

eTo

Repair:

Average

repair

time.

Mean

Tim

eB

etw

een

Failu

res:

MT

BF

=M

TT

R+

MT

TF

prov

ided

that

the

system

sis

“asgo

od

asnew

”after

eachrep

air(i.e.

MT

TF

stays

the

same).

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 77: Safety-Critical Systems

Risk

Asse

ssment

-G

enera

lD

efinitio

ns

Availa

bility

:

Prob

ability

forth

esy

stemto

function

correctlyat

agiven

time.

Availab

ility=

MT

TF

MT

TF

+M

TT

R=

MT

TF

MT

BF

Unavaila

bility

:Unavailab

ility=

1−

Availab

ility

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 78: Safety-Critical Systems

Relia

bility

Modellin

g-

Com

bin

atio

nalM

odels

Ase

ries

com

bin

atio

nofcom

ponents

12

3n

inp

ut

ou

tpu

t

IfR

i (t)is

the

reliability

ofcom

pon

ent

i,an

dth

ecom

pon

ents

arein

dep

enden

t,th

esy

stemreliab

ilitycom

putes

to

R(t)

=

n∏i=

1

Ri (t)

Exam

ple

:A

seriescom

bin

ationof

100in

dep

enden

tcom

pon

ents

with

Ri (t)

=0.999

foreach

i,yield

sa

lowsy

stemreliab

ilityof

R(t)

=0.999

100

=0.905.

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 79: Safety-Critical Systems

Relia

bility

Modellin

g-

Com

bin

atio

nalM

odels

Apara

llelcom

bin

atio

nofcom

ponents

12n

inp

ut

ou

tpu

t IfR

i (t)is

the

reliability

ofcom

pon

ent

i,an

dth

ecom

pon

ents

arein

dep

enden

t,th

esy

stemreliab

ilitycom

putes

to

R(t)

=1−

n∏i=

1 (1−

Ri (t))

Exam

ple

:A

parallel

combin

ationof

3in

dep

enden

tcom

pon

ents

with

Ri (t)

=0.999

foreach

i,yield

sa

system

reliability

of

R(t)

=1−

(1−

0.999)3

=0.999

999999

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 80: Safety-Critical Systems

Relia

bility

Modellin

g-

Com

bin

atio

nalM

odels

Serie

s-para

llelcom

bin

atio

ns

234

1

57

68

9

inp

ut

ou

tpu

t

From

the

above

formulas,

the

system

reliability

iseasily

computed

intw

ostep

s,usin

gth

efollow

ing

abstraction

:

1in

pu

t1

01

1

9

ou

tpu

t

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 81: Safety-Critical Systems

N-m

odula

rR

edundancy

Use

Nred

undan

tcom

pon

ents.

The

system

will

function

correctlyif

atleast

m<

Nm

odules

areop

erational.

Exam

ple

:N

=3,m

=2

indep

enden

t,voter

correct.

123

vo

ter

mu

ltica

st

relia

ble

2 / 3

R(t)

=R

1 (t)R2 (t)R

3 (t)+

(1−

R1 (t))R

2 (t)R3 (t)

+R

1 (t)(1−

R2 (t))R

3 (t)+

R1 (t)R

2 (t)(1−

R3 (t))

For

R1 (t)

=R

2 (t)=

R3 (t)

=0.95

hold

sR

(t)=

0,993,

but

R1 (t)

=R

2 (t)=

R3 (t)

=0.40

yields

R(t)

=0,352

.

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 82: Safety-Critical Systems

Failu

reD

istributio

ns

Exponentia

lpro

bability

density

functio

n

f(u

)=

λe−

λu

Sin

ced(−

e−

λu)

du

(t)=

f(t),

this

distrib

ution

leads

toa

failure

prob

ability

(the

so-calledexponentia

lfa

ilure

law

)

Q(t)

=

t

0

f(u

)du

=−

e−

λt−

(−e−

λ0)

=1−

e−

λt

and

areliab

iltyR

(t)=

e−

λt

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 83: Safety-Critical Systems

Failu

reD

istributio

ns

Exponentia

lpro

bability

density

functio

nand

hazard

rate

The

expon

ential

PD

Flead

sto

ahazard

rateof

z(t)

=f(t)

R(t)

=λe−

λt

e−

λt

Inte

rpre

tatio

n:

The

expon

ential

PD

Fis

approp

riatefor

system

compon

ents

durin

gth

eirm

ostreliab

lephase

oflife

(the

use

ful

lifesta

ge),

where

the

hazard

ratedoes

not

dep

end

ontim

e,but

iscon

stant.

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 84: Safety-Critical Systems

Failu

reD

istributio

ns

Exponentia

lpro

bability

density

functio

nand

MT

TF

The

expon

ential

PD

Flead

sto

anM

TT

F

MT

TF

=

0

R(u

)du

=

0

e−

λudu

=lim

t→∞

(−1λe−

λt)−

(−1λe−

λ0)

=1λ

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 85: Safety-Critical Systems

Failu

reD

istributio

ns

Experim

enta

ldete

rmin

atio

nofexponentia

lP

DF

Sin

ceR

(t)=

e−

λt

we

candeterm

ine

anap

prox

imate

value

ofλ,if

testsof

the

form

R(t

i )=

n(t

i )

N,i

=1,...,m

(Na

largenum

ber

ofid

entical

compon

ents,

n(t

i )th

enum

ber

ofcom

pon

ents

stillop

erable

attim

eti )

canbe

perform

ed:

Solve

optim

isationprob

lem

min

imise

Φ(λ

)=

def

m∑i=

1 (R(t

i )−

e−

λti)

2

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 86: Safety-Critical Systems

Failu

reD

istributio

ns

Experim

enta

ldete

rmin

atio

nofexponentia

lP

DF

Alo

calm

inim

um

ofΦ

(λ)

canbe

found

by

solvin

geq

uation

/dλ(u

)=

0,th

atis,

m∑i=

1

ti e

−λ

ti(R

(ti )−

e−

λti)

=0

The

root

λ0∈

Rw

ithdΦ

/dλ(λ

0 )=

0can

be

approx

imated

,for

exam

ple,

by

usin

gN

ewton

’sm

ethod.

Φis

am

axim

um

likelih

ood

estim

ato

rif

the

errorsoccu

rring

inth

em

easurem

ent

oftihave

norm

aldistrib

ution

.

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 87: Safety-Critical Systems

Failu

reD

istributio

ns

Experim

enta

ldete

rmin

atio

nofexponentia

lP

DF

If,how

ever,th

eti -m

easurem

ents

arerath

eruniform

elydistrib

uted

and/or

contain

freakvalu

es,oth

erestim

atorsare

preferab

le,e.

g.

Ψ(λ

)=

def

m∑i=

1

|R(t

i )−

e−

λti|

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 88: Safety-Critical Systems

Failu

reD

istributio

ns

The

Weib

ull

PD

Fis

used

forsitu

ations

where

time-d

epen

den

thazard

rateshave

tobe

consid

ered.

The

general

formof

the

Weib

ull

distrib

ution

has

three

freeparam

eters:

f(u

)=

βη

(

u−

γ

η

)

β−

1

e−

u−

γ

η

!

β

which

isdefi

ned

foru−

γ≥

0,β>

0,η>

0,γ∈

R

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 89: Safety-Critical Systems

Failu

reD

istributio

ns

The

failure

prob

ability

F(t)

forth

egen

eralW

eibull

PD

Fis

F(t)

=

t

0

βη

(

u−

γ

η

)

β−

1

e−

u−

γ

η

!

β

du

=1−

e−

t−

γ

η

!

β

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 90: Safety-Critical Systems

Failu

reD

istributio

ns

The

param

etersare

called

•sc

ale

para

mete

•sh

ape

para

mete

r(slo

pe)

β

•lo

catio

npara

mete

rγ:

γ6=

0is

used

ifth

eex

perim

ent

does

not

startat

u=

0,but

atan

ytim

eγ∈

R

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 91: Safety-Critical Systems

Failu

reD

istributio

ns

•For

experim

ents

starting

attim

eu

=0

we

canuse

the

two-p

ara

mete

rW

eib

ull

PD

Fby

setting

γ=

0:

f(u

)=

βη

(

)

β−

1

e−

!

β

•For

experim

ents

starting

attim

eu

=0

with

know

nparam

eterβ

=C

we

getth

eone-p

ara

mete

rW

eib

ull

PD

F

f(u

)=

(

)

C−

1

e−

!

C

•For

experim

ents

starting

attim

eu

=0

with

know

=1

we

getth

eex

pon

ential

PD

Fw

ithλ

=1η

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 92: Safety-Critical Systems

Failu

reD

istributio

ns

The

MT

TF

forth

eth

ree-param

eterW

eibull

PD

Fis

MT

TF

=

0

βη

(

u−

γ

η

)

β−

1

e−

u−

γ

η

!

β

du

+η·Γ

(

1β+

1

)

with

the

gam

ma

functio

nΓ(n

)defi

ned

as

Γ(n

)=

0

e−

uu

n−

1du

Observe

that

forγ

=0,η

=1λ,β

=1

this

coincid

esw

ithth

eM

TT

Fof

the

expon

ential

PD

F,sin

ceΓ(1)

=1

and

Γ(x

+1)

=x·Γ

(x),

soΓ(2)

=1.

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 93: Safety-Critical Systems

Failu

reD

istributio

ns

The

Weib

ull

hazard

rate

isgiven

by

z(t)

=βη

(

t−

γ

η

)

β−

1

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 94: Safety-Critical Systems

Overv

iew

1.T

he

Notion

ofD

epen

dab

ility

2.Safety

-Related

Stan

dard

san

dV

-Models

3.M

odellin

gSafety

-Critical

System

s

4.H

azardA

naly

sisan

dR

iskA

ssessmen

t

5.D

esignC

riteriafor

Safety

-Critical

System

s

6.V

alidation

,V

erification

and

Test

ofSafety

-Critical

System

s

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 95: Safety-Critical Systems

Desig

nC

riteria

for

Safe

ty-C

ritical

Syste

ms

•Partitio

nin

g:

Fau

ltsan

derrors

caused

by

non

-criticalpro

cessessh

ould

not

be

able

toaff

ectth

ebeh

aviou

rof

criticalpro

cesses.T

his

isach

ievedby

–m

emory

protection

forreach

able

address

ranges

–rob

ust

interfaces

tocritical

pro

cesses(ab

stractdata

types

usin

gpartition

edsh

aredm

emory,

validity

check

sfor

data)

–lim

itedresou

rces(C

PU

,IO

-chan

nels,

mem

ory)

fornon

-criticalpro

cesses

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 96: Safety-Critical Systems

Desig

nC

riteria

for

Safe

ty-C

riticalSyste

ms

•Sta

te-B

ase

dB

ehavio

ur:

Critical

system

beh

aviou

rsh

ould

not

dep

end

oneven

ts(i.

e.sh

ortsign

alsor

pulses

which

may

be

lost)but

onstate:

–in

put

messages

arestored

instate

space

–rep

etitionof

the

same

input

shou

ldnot

leadto

statech

anges

(e.g.,

send

absolu

tevalu

esin

steadof

delta-valu

esreferrin

gto

prev

ious

state/message)

–after

system

crash,last

statesh

ould

be

recoverable

fromen

viron

men

tan

d/or

stable

storage

Afte

rsy

stem

initia

lisatio

n,

there

should

be

no

more

dy-

nam

icm

em

ory

allo

catio

nat

run-tim

e.

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 97: Safety-Critical Systems

Desig

nC

riteria

for

Safe

ty-C

riticalSyste

ms

•H

ard

Real-T

ime

Behavio

ur:

Real-tim

ebeh

aviou

rsh

ould

be

based

ondisc

rete

time

sem

antic

s:

–late

messages

areeq

uivalen

tto

lostm

essages

–fixed

-cycle/fi

xed

transm

issionlen

gthfram

eproto

colsfor

comm

unication

–ap

plication

ssh

ould

operate

infixed

time

frames

–fixed

hou

sekeep

ing

phase

reservedfor

I/Opro

cessing

and

safetycon

trolm

echan

isms

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 98: Safety-Critical Systems

Desig

nC

riteria

for

Safe

ty-C

riticalSyste

ms

•U

seofO

pera

ting

Syste

m:

Preferab

ly,th

eop

erating

system

shou

ldon

lybe

used

toserv

iceH

Win

terrupts

forI/O

pro

cessing.

–ap

plication

ssh

ould

operate

accordin

gto

the

statem

achin

eprogram

min

gparad

igm,w

ithrou

nd

robin

sched

ulin

gor

coop

erativem

ulti

taskin

g

–use

shared

mem

ory(p

rotectedby

abstract

data

types

and

partition

ing)

forpro

cesscom

munication

instead

ofsign

als,m

essagequeu

es,pip

esetc

–use

tightly

coupled

multi-p

rocessor

system

sw

ithsim

ple

pro

cess-to-CP

Uallo

cationin

steadof

complex

sched

ulin

gpolicies

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 99: Safety-Critical Systems

–on

multi-p

rocessor

system

suse

activew

aitan

dpollin

gm

echan

isms

instead

ofsem

aphores,

signals

and

alarms

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 100: Safety-Critical Systems

Desig

nC

riteria

for

Safe

ty-C

riticalSyste

ms

•Fault-T

ole

rance:

For

safety-critical

system

s,at

leastsafety

requirem

ents

must

hold

evenin

presen

ceof

faults

caused

by

environ

men

tor

by

the

system

itself.

–sp

ecifysta

ble

safe

state

s

–design

robust

mech

anism

s(H

W/S

W)

which

guaran

teetran

sitionin

tostab

lesafe

statein

caseof

errorsth

atm

ight

otherw

iselead

tocatastrop

hic

beh

aviou

r

–use

activ

ere

plic

atio

ntech

niq

ues

toen

sure

safetyreq

uirem

ents,

ifstab

lesafe

statecan

not

be

found

(forex

ample

inth

econ

trolof

aircraften

gines)

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 101: Safety-Critical Systems

–ex

ploit

data,

code

and

HW

redundan

cyto

iden

tifyfau

ltycom

pon

ents

–use

fail-stopcom

pon

ents

oroth

erwise

use

Byzan

tine

agreemen

tproto

colsto

reachcon

sent

betw

eencorrectly

operatin

gcom

pon

ents

toisolate

faulty

ones

–use

watch

dog

mech

anism

sw

hich

guaran

teeth

aterro

rsare

reveale

d“as

soon

as

possib

le”

Obse

rve

thateven

fully

verifi

ed

SW

may

lead

toerro

neous

syste

mbehavio

ur

due

totra

nsie

nt

HW

erro

rs.A

sa

con-

sequence,

SW

div

ersity

(code

and

data

)is

mandato

ryif

HW

redundancy

isnot

availa

ble

.

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 102: Safety-Critical Systems

Desig

nC

riteria

for

Safe

ty-C

riticalSyste

ms

Inste

ad

ofre

-inventin

gevery

new

safe

ty-c

riticalcontro

ller

from

scra

tch,

use

Colla

bora

tions,

Desig

nPatte

rns

and

Fra

mew

ork

sw

ithpro

ven

generic

corre

ctn

ess

pro

pertie

s .

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 103: Safety-Critical Systems

Desig

nC

riteria

for

Safe

ty-C

riticalSyste

ms

Colla

bora

tion:

Descrip

tionof

acollection

ofco

operatin

gob

jectsby

specifi

cationof

their

•sta

ticpro

pertie

s:

–arch

itecture

ofth

eco

operatin

gob

jects

–roles

ofth

eob

jects

–relation

ship

sbetw

eenob

jects

•dynam

icpro

pertie

sre

gard

ing

the

messa

ge

flow

(interaction

s)betw

eenob

jects:

–seq

uen

cing

–sy

nch

ronisation

–tim

ing

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 104: Safety-Critical Systems

Desig

nC

riteria

for

Safe

ty-C

riticalSyste

ms

Desig

nPatte

rn:

•gen

eric“sm

all”collab

oration(a

“mech

anism

”)

•usab

lein

diff

erent

application

contex

ts

•gen

ericparam

etersare

Nam

e,D

ataT

ype,

Num

ber

ofO

bjects,

Meth

ods

etc.

Exam

ple

sfo

rD

esig

nPatte

rns:

•R

eader-W

riter-R

ingbuffer

Patte

rn:

generic

model

forth

easy

nch

ronou

sFIF

Ocom

munication

betw

eenread

eran

dw

ritertask

sw

ithou

tsem

aphore

utilisation

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 105: Safety-Critical Systems

•M

odel-V

iew

-Contro

ller

Patte

rn:

generic

model

forth

ein

teractionbetw

een

–ap

plication

objects

(“models”)

–visu

alisationob

jects(“v

iews”)

–in

teractioncon

trolob

jects(“con

troller”)

•In

dex-S

tack

/D

ata

-Arra

yPatte

rn:

dynam

icdata

man

agemen

tw

ithou

tutilisation

ofop

erating

system

data

allocation

facilities

•M

ultip

lexer/

Concentra

tor

Patte

rn:

generic

pro

cesscom

munication

model

guaran

teeing

dead

lock

-freecom

munication

netw

orks

under

bou

ndary

condition

sw

hich

aretriv

ialto

check

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 106: Safety-Critical Systems

Desig

nC

riteria

for

Safe

ty-C

riticalSyste

ms

Fra

mew

ork

:

•gen

eric“large”

collaboration

•tay

loredfor

specifi

cfield

sap

plication

Exam

ple

sfo

rFra

mew

ork

s:

•Funds

Tra

nsfe

rFra

mew

ork

:gen

ericm

odel

fortran

sactionm

anagem

ent

ofban

kaccou

nts

•Safe

tyA

rchite

ctu

reFra

mew

ork

:gen

ericarch

itecture

forsafety

-criticalfail-stop

controllers

with

out

controller

redundan

cy(ex

plain

edin

more

detail

below

)

•M

aste

r-Sta

ndby

Fra

mew

ork

:gen

ericarch

itecture

forfau

lt-tolerant

2-redundan

tm

aster/slavesy

stem

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 107: Safety-Critical Systems

•N

-Modula

rR

edundancy/V

ote

rFra

mew

ork

(n≥

3):n-red

undan

tfau

lt-tolerant

system

sw

ithactive

replication

–su

itable

forhard

real-time

application

s

•N

-Modula

rR

edundancy/B

yzantin

eA

gre

em

ent

Fra

mew

ork

(n≥

4):n-red

undan

tfau

lt-tolerant

system

sw

ithactive

replication

–su

itable

forhard

real-time

application

s–

protects

against

Byzan

tine

compon

ent

failures

–gu

arantees

agreemen

tbetw

eennon

-faulty

compon

ents

•T

ime-F

ram

eC

om

munic

atio

n/Sch

edulin

gFra

mew

ork

:gen

ericm

odel

forsch

edulin

gan

dcom

munication

ina

netw

orkof

controllers

with

hard

real-time

requirem

ents

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 108: Safety-Critical Systems

Exam

ple

:Safe

tyA

rchite

ctu

reFra

mew

ork

. . . . . . . . . . . .

US

ER

-INT

ER

FA

CE

LA

YE

R

SA

FE

TY

LA

YE

R

SY

ST

EM

INT

ER

FA

CE

LA

YE

R

WA

TC

HD

OG

SO

FT

WA

RE

SH

AR

ED

ME

MO

RY

INT

ER

FA

CE

(PE

RS

IST

EN

T)

SH

AR

ED

ME

MO

RY

INT

ER

FA

CE

(PE

RS

IST

EN

T)

CO

NF

IG-

DA

TA

SA

FE

TY

-CR

ITIC

AL

CO

NT

RO

LL

ER

US

ER

S

SY

ST

EM

AU

DIT

ING

EX

TE

RN

AL

SY

ST

EM

S

EX

TE

RN

AL

AU

DIT

ING

SY

ST

EM

EX

TE

RN

AL

HW

WA

TC

HD

OG

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 109: Safety-Critical Systems

Exam

ple

:Safe

tyA

rchite

ctu

reFra

mew

ork

SA

FET

YLA

YER

•takes

safety-critical

control

decision

s

•im

plem

ents

(parallel

netw

orkof)

real-time

statem

achin

es–

this

canbe

generated

autom

aticallyfrom

formal

specifi

cations

!

•in

puts

forstate

mach

ines:

abstracted

events

and

states

•ou

tputs

ofstate

mach

ines:

abstracted

control

comm

ands

and

statech

anges

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 110: Safety-Critical Systems

Exam

ple

:Safe

tyA

rchite

ctu

reFra

mew

ork

SY

ST

EM

INT

ER

FA

CE

LA

YER

•con

tains

hard

ware-sp

ecific

drivers

foreach

extern

alin

terface

•im

plem

ents

interface-sp

ecific

proto

cols

•tran

sforms

concrete

inputs

fromex

ternal

system

sin

toab

stracteven

ts

•tran

sforms

abstract

control

comm

ands

fromSA

FE

TY

LA

YE

Rin

tocon

cretein

terfacedata

forasso

ciatedex

ternal

system

s

•updates

statein

formation

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 111: Safety-Critical Systems

Exam

ple

:Safe

tyA

rchite

ctu

reFra

mew

ork

USER

INT

ER

FA

CE

LA

YER

•in

terprets

statein

formation

storedin

shared

mem

oryan

ddisp

lays

user

data

•in

terprets

user

inputs,

generates

associated

abstract

events

forSA

FE

TY

LA

YE

Ran

dupdates

statein

formation

storedin

shared

mem

ory

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 112: Safety-Critical Systems

Exam

ple

:Safe

tyA

rchite

ctu

reFra

mew

ork

SH

AR

ED

MEM

ORY

INT

ER

FA

CES

•prov

ides

persisten

tstorage

ofeven

tlists

and

statein

formation

=⇒

possib

ilityto

restarta

software

layerin

the

prop

ersy

stemstate

aslon

gas

the

operatin

gsy

stemw

orks

correctly

•partition

sstate

space

by

usin

gseveral

separate

shared

mem

orysegm

ents

CO

NFIG

-DA

TA

•con

tains

pro

ject-specifi

ccon

figu

rationdata

=⇒

statem

achin

esof

the

SA

FE

TY

LA

YE

RS

canbe

develop

edas

generic

specifi

cations

and

instan

tiatedw

ithsp

ecific

configu

rationdata

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 113: Safety-Critical Systems

Exam

ple

:Safe

tyA

rchite

ctu

reFra

mew

ork

SO

FT

WA

RE

WA

TC

HD

OG

•ch

ecks

lifeflags

ofeach

software

layer

•ch

ecks

integrity

constrain

tsof

statein

formation

and

code,

soth

atin

ternal

errorsare

revealedas

soon

aspossib

le

EX

TER

NA

LH

AR

DW

AR

EW

AT

CH

DO

G

•ch

ecks

basic

safetycon

straints

onhard

ware

interface

level

•uses

hard

ware

(and

possib

lysim

ple

software)

which

isin

dep

enden

tof

possib

lycorru

pt

controller

beh

aviou

r

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 114: Safety-Critical Systems

Exam

ple

:Safe

tyA

rchite

ctu

reFra

mew

ork

AU

DIT

ING

SY

ST

EM

•record

ssafety

-relateduser

interaction

s,even

ts,action

san

din

ternal

statetran

sitions

•usefu

lm

ainly

fordeb

uggin

gfau

ltycon

trollerbeh

aviou

r

EX

TER

NA

LA

UD

ITIN

GSY

ST

EM

•record

ssafety

-relatedI/O

onhard

ware

interface

level

•uses

hard

ware

(and

possib

lysim

ple

software)

which

isin

dep

enden

tof

possib

lycorru

pt

controller

beh

aviou

r–

e.g.

netw

orksn

oop

ing

mech

anism

•m

andatory

forlegally

validpro

ofof

correctcon

trollerbeh

aviou

r

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 115: Safety-Critical Systems

Overv

iew

1.T

he

Notion

ofD

epen

dab

ility

2.Safety

-Related

Stan

dard

san

dV

-Models

3.M

odellin

gSafety

-Critical

System

s

4.H

azardA

naly

sisan

dR

iskA

ssessmen

t

5.D

esignC

riteriafor

Safety

-Critical

System

s

6.V

alidation

,V

erification

and

Test

ofSafety

-Critical

System

s

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 116: Safety-Critical Systems

Valid

atio

n,V

erifi

catio

nand

Test

(VV

T)

ofSafe

tyP

ropertie

s

•V

alid

atio

n:

determ

ine

that

the

requirem

ents

areth

erigh

treq

uirem

ents

and

that

they

arecom

plete

•V

erifi

catio

n:

evaluate

develop

men

tpro

ducts

toen

sure

their

consisten

cyw

ithresp

ectto

applicab

lereferen

cedocu

men

ts

•Test:

execu

teim

plem

ented

system

compon

ents

by

prov

idin

gsp

ecific

data

atth

eir(in

put)

interfaces,

while

mon

itoring

the

compon

ent

beh

aviou

r.

Obse

rve

that

the

test

ofliv

eness

pro

pertie

sw

ould

be

im-

possib

le,

since

you

never

know

when

tosto

pw

aitin

gfo

rth

erig

ht

resu

lt!V

ERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 117: Safety-Critical Systems

Haza

rd-A

naly

sis-Driv

en

Sele

ction

of

VV

T-M

eth

ods

The

fundam

enta

lV

VT

pro

ble

m...

•tim

ean

dbudget

restrictions

do

not

allowfor

exhau

stiveverifi

cation,valid

ationan

dtest

coveragew

ithresp

ectto

every

system

requirem

ent

and

itspra

ctic

also

lutio

n:

•use

conventio

nalaccepta

nce

testin

gto

make

sure

that

requirem

ents

were

reallyim

plem

ented

•use

maxim

um

covera

ge

insp

ectio

n/m

odel

check

ing/te

sting

forth

osereq

uirem

ents

whose

violation

wou

ldlead

toid

entifi

edhazard

s

•in

vesteffort

pro

portio

nalto

hazard

severity

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 118: Safety-Critical Systems

Haza

rd-A

naly

sis-Driv

en

Sele

ction

of

VV

T-M

eth

ods

Recall:

Syste

mH

azard

Analy

sis

•R

oot

hazard

srefer

toth

ephysical

model

(EU

C)

•H

azardan

alysis

implies

safetyreq

uirem

ents

forth

esafety

controller

Contro

ller

Hazard

Analy

sis

•R

oot

hazard

is“C

ontroller

violates

itssafety

requirem

ents”

•Softw

arem

odules

asleaves

ofth

ehazard

analy

sis(e.g.

fault

treean

alysis)

•Tree

structu

reis

induced

by

the

controller

design

structu

re

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 119: Safety-Critical Systems

Haza

rd-A

naly

sis-Driv

en

Sele

ction

of

VV

T-M

eth

ods

VV

T-A

ppro

ach

:Sele

ct

VV

Tm

eth

ods

(insp

ectio

ns,

revie

ws,

tests

and

form

alverifi

catio

n)

on

the

basis

ofth

econtro

ller

hazard

analy

sis!

Today

’sm

ostprom

ising

VV

Tm

ethods:

•in

teractive,stru

ctured

insp

ectio

ns

ofreq

uirem

ents,

design

and

code

•form

alverifi

cationof

requirem

ents,

design

and

code

by

modelch

eck

ing

•au

tomated

hard

ware

-in-th

e-lo

op

test

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 120: Safety-Critical Systems

Haza

rd-A

naly

sis-Driv

en

Sele

ction

of

VV

T-M

eth

odsRe

vie

ws

&

Ins

pe

ctio

ns

Th

rea

t An

aly

sis

Fo

rma

l Ve

rifica

tion

SW

-Te

st

Ha

rdw

are

-in-th

e-

Lo

op

-Te

st

- Re

qu

irem

en

ts

- De

sig

n

- Co

de

- Fa

ult-T

ree

An

aly

sis

- FM

EA

Fa

ilure

Mo

de

s

an

d E

ffects

An

aly

sis

- Co

de

Ab

stra

ctio

n

- Mo

de

l Ch

eckin

g

- Co

de

Ve

rifica

tion

- Mo

du

le T

est

-SW

-Inte

gra

tion

Te

sts

on

Pro

ce

ss/T

hre

ad

Le

ve

l

- Su

b-S

yste

m T

est

on

Co

ntro

ller

Le

ve

l

- Syste

m T

est

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 121: Safety-Critical Systems

Haza

rd-A

naly

sis-Driv

en

Sele

ction

of

VV

T-M

eth

ods

Exam

ple

:D

eriv

ete

stconfigura

tion

and

test

case

from

fault-tre

edisc

usse

din

Sectio

n4.

Assu

me

that

events

CE

and

E32

aregen

eratedby

the

environ

men

tan

dth

ereforecan

not

be

preven

tedby

the

controller.

Revise

dre

quire

ments:

Safe

tyR

equire

ment

1’:

(not(C

E)

and

E32)

⇒not(E

31and

E22)

Safe

tyR

equire

ment

2’:

(not(C

E)

and

not(E

32))⇒

not(E

31and

E22

and

E33)

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 122: Safety-Critical Systems

Haza

rd-A

naly

sis-Driv

en

Sele

ction

of

VV

T-M

eth

ods

Exam

ple

–contin

ued.

Rev

isedreq

uirem

ents

leadto

atest

configu

rationw

here

•C

Ean

dE

32can

be

contro

lled

by

the

testsy

stemsim

ulatin

gth

eop

erational

environ

men

tof

the

system

under

test

•req

uirem

ents

1’an

d2’

canbe

check

ed

by

the

testsy

stem

•test

coverageto

be

achieved

canbe

setpro

portio

nalto

severity

ofhazard

E1

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 123: Safety-Critical Systems

Rem

ark

:W

hen

touse

...

•in

spectio

ns:

logicalch

ecks

ofseq

uen

tialalgorith

ms

localised

inisolated

function

s

•m

odelch

eck

ing:

logicalch

eckof

synch

ronisation

mech

anism

s,distrib

uted

algorithm

san

dcom

munication

proto

colsin

volvin

gseveral

parallel

pro

cesses

•hard

ware

-in-th

e-lo

op

test:

check

ofth

eprop

erin

tegrationof

logicallycorrect

software

onth

etarget

system

hard

ware

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 124: Safety-Critical Systems

ModelC

heck

ing

•sp

ecification

SP

EC

isex

pressed

inon

eof

various

formalism

sallow

ing

todescrib

esy

stems

ofparallel

comm

unicatin

g(tim

ed)

statem

achin

es

•correctn

esscon

dition

tobe

checked

isex

pressed

by

logicalform

ula

F

•m

odel

checker

perform

sex

hau

stivestate

analy

sisto

investigate

wheth

erF

hold

sin

everystate

ofS

PE

C

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 125: Safety-Critical Systems

Com

ponents

ofTest

Auto

matio

nSyste

mfo

rR

eactiv

eRT

-Syste

ms

Sp

ecific

atio

ns

. . . .additio

nal

syste

m

Test M

on

itor

Test D

river

Test G

en

era

tor

Test E

valu

ato

r

inte

rface

monito

ring c

hannels

Syste

m U

nd

er T

est

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 126: Safety-Critical Systems

Conclu

sion

The

followin

gm

easures

will

consid

erably

improve

the

costeff

ectiveness

and

the

trustw

orthin

essof

the

develop

men

tpro

cessfor

safety-critical

control

system

s:

Develo

pm

ent

pro

cess

rela

ted

measu

res:

•derivation

ofsafety

requirem

ents

fromform

alhazard

analy

sis

•elab

orationan

dsy

stematic

use

ofsafety

-relateddesign

pattern

san

dfram

ework

s

•“d

esignfor

testability

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN

Page 127: Safety-Critical Systems

Conclu

sion

Quality

assu

rance

rela

ted

measu

res:

•design

ofV

VT

measu

resdriven

by

hazard

analy

sis

•com

bin

ed/com

plem

entary

use

of

–in

teractive,stru

ctured

insp

ections

–form

alverifi

cationby

model

check

ing

–au

tomated

testing

•use

ofap

plication

-dep

enden

tquality

measu

res

Managem

ent

pro

cess

rela

ted

measu

res:

•use

ofsafety

-centered

V-m

odels

•total

quality

man

agemen

tcam

paign

sto

increase

safetyaw

areness

VERIF

IEDS

YST

EM

SIN

TERN

AT

ION

AL

GM

BH

,BREM

EN