san diego distributed solar pv impact study - epic report...

91
SAN DIEGO DISTRIBUTED SOLAR PHOTOVOLTAICS IMPACT STUDY Final Report February 2014

Upload: others

Post on 21-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

               SAN  DIEGO  DISTRIBUTED  SOLAR  PHOTOVOLTAICS  IMPACT  STUDY  

 

 

Final  Report  

February  2014

 

 

 

   

     

 

Page 2: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Contents  of  Report    

1. Overview    2. Achievement  of  Project  Goals  and  Objectives  3. Process  for  Feedback  and  Comments  

Appendices  

Appendix  A:  Black  &  Veatch  Report    Appendix  B:  Stakeholder  Comments    

 

 

   

Page 3: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

1.0 Overview    The   Energy   Policy   Initiatives   Center   (EPIC)   is   pleased   to   provide   this   San   Diego   Distributed   Solar  Photovoltaic   (PV)   Impact   Study   Draft   Report   to   the   San   Diego   Solar   Stakeholder   Collaboration   Group  (Stakeholder  Group).    This  report  represents  the  culmination  of  efforts  by  the  EPIC,  Black  &  Veatch,  and  Clean   Power   Research,   with   input   and   feedback   from   the   Stakeholder   Group,   to   investigate   certain  aspects  of  distributed  PV   in   the  San  Diego  Gas  &  Electric  Company   (SDG&E)   service   territory  over   the  next  decade  (Years  2012-­‐2021).    This  report  includes:  

• Appendix  A  –  Black  &  Veatch  Updated  Report  with  text  revisions  discussed  with  stakeholders    • Removed  the  word  “vetted”  due  to  several  stakeholder  suggestions    • Removed  some  cost  charts  that  caused  confusion    

• Appendix  B  -­‐  Stakeholder  Comments  on  the  Draft  Report,  with  responses  from  Black  &  Veatch  on  the  stakeholder  comments.    The  study  team  solicited  stakeholder  comments  on  the  report  at  a  teleconference  in  July  and  in  writing.    Written  comments  were  received  from  14  participants.      

The  Report   identifies  and  estimates  the  annual  costs  of  the  services  provided  by  SDG&E  to  distributed  PV  customers—i.e.  those  SDG&E  customers  who  have  chosen  to  install  a  PV  system  less  than  one  MW  on   their   property  behind   the  utility  meter   (whether  or   not   they  participate   in   the   SDG&E  Net   Energy  Metering  (NEM)  tariff).    It  also  identifies  and  quantifies  the  annual  value  of  the  services  provided  by  the  distributed  PV  customers  to  SDG&E.    This  work  was  performed  by  Black  &  Veatch  and  its  subcontractor  Clean  Power  Research  (collectively  referred  to  as  the  Study  Team)  under  contract  to  EPIC.  

This  study  is  limited  to  identifying  the  services  and  costs  associated  with  distributed  PV,  and  is  not  an  assessment  of  the  cost-­‐effectiveness  of  distributed  PV  or  the  NEM  tariff.    The  methodologies  used  in  this  analysis  are  designed  specifically  for  this  effort  and  were  presented  to  and  discussed  with  the  Stakeholder  Group  in  a  series  of  meetings  and  teleconferences  during  the  course  of  the  project.    Further,  neither  EPIC,  Black  &  Veatch,  nor  Clean  Power  Research  are  proposing,  recommending  or  advocating  which  parties  should  pay  for  or  benefit  from  these  costs,  nor  how  the  costs  could  or  should  be  allocated  among  utility  customers.    Rather,  this  is  explicitly  intended  to  be  a  “marginal  cost  of  service”  study.      

2.0 Achievement  of  Project  Goals  and  Objectives  

SDG&E  convened   the  Stakeholder  Group   to  bring   together   interested  parties   to  explore  how  to  make  distributed   solar   energy   sustainable   in   the   San   Diego   region.   One   of   the   main   findings   from   initial  meetings  of  the  Stakeholder  Group  was  the  need  for  a  detailed  analysis  of  to  identify  and  estimate  the  cost  of  the  services  associated  with  customer-­‐owned  distributed  PV—those  provided  by  the  utility  to  the  customer-­‐generator   and   those   provided   by   the   customer-­‐generator   to   the   utility.   EPIC  managed   the  study  for  SDG&E  on  behalf  of  the  Stakeholders,  and  engaged  Black  &  Veatch  and  its  subcontractor  Clean  Power  Research  as  technical  consultants  to  conduct  the  analysis.    

The  original  scope  of  the  effort  was  to  address  the  following  issues  and  achieve  the  following  objectives:    

Page 4: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

1. Develop  a   transparent  methodology  to  determine  and  quantify   the  costs  and  benefits   created  by  NEM  PV  to  the  electric  system  at  different  levels  of  penetration.  

2. Determine  whether  a  subsidy  or  cost  shift  exists  between  ratepayers  as  a  result  of  NEM  and  the  magnitude  of  the  cost.  

3. Determine  the  implications  of  the  impact  of  NEM  on  cost  of  service  utility  ratemaking.  

4. Understand  how   future  policy  changes,   including  changes   to   the  NEM   law,   the  phasing  out  of  AB1X,  and  changes  in  grid  architecture  could  affect  the  analysis.  

During  the  first  stakeholder  workshop,  the  initiative  was  re-­‐scoped  by  the  stakeholder  participants.    The  study  goals  and  objectives  were   revised   to   focus  not  on   the  cost-­‐effectiveness  of  NEM  on   the  SDG&E  system,  but  rather  to  determine  the  net  cost  of  having  distributed  PV  connected  to  the  electrical  system.    Specifically,  the  objectives  were  redefined  as  follows:    

1. Identify   the   services   that   utilities   provide   distributed   solar   PV   customers   (including   but   not  limited  to  standby,  power  quality,  reliability,  import  and  redelivery).  

2. Identify   the   services   that   distributed   solar   PV   customers   provide   to   the   electrical   system  (including  but  not  limited  to  locational,  capacity,  energy,  and  environmental  (RPS).  

3. Develop  a  transparent  methodology  determine  the  cost  (both  positive  and  negative)  for  each  of  the   services   identified   at   different   levels   of   penetration   (measured   as   a   percentage   of   total  energy   consumption   and/or   peak   demand).     For   purposes   of   this   study,   services   should   be  defined   comprehensively   to   include   those   with   direct   costs   to   the   system   and   to   the   extent  possible  those  with  external,  non-­‐energy-­‐related  costs  (e.g.,  societal  benefits).    

4. Determine  whether  the  existing  NEM  rate  structure  allows  the  utility  to  recover  the  costs  they  incur  for  PV  customers.    

5. Understand   how   future   scenarios   including   several   PV   penetration   conditions   and   Smart  Grid  infrastructure  affect  the  results  of  the  analysis.      

This  effort  has  succeeded  in  completing  the  first  three  objectives,  namely  the  identification  of  services  provided   by   utilities   to   distributed   PV   customers,   the   services   provided   by   the   PV   customers   to   the  utility,  and  estimating  the  cost  and  value  of  these  services.    Due  to  time  and  budget  considerations  the  final   two  objectives  of   this   analysis—determining  whether   the  existing  NEM   rate   structure   allows   the  utility   to   recover   the   costs   they   incur   for   PV   customers   and   understanding   how   future   scenarios  including   several   PV   penetration   conditions   and   Smart   Grid   infrastructure   affect   the   results   of   the  analysis—were  not  completed.        

Nonetheless,  we  believe  this  report  is  still  very  useful  and  informative.  Fundamental  to  NEM  policy  development  is  an  understanding  of  the  total  costs  and  value  of  distributed  PV.      This  report  is  one  of  the  first  attempts  to  identify  and  quantify  the  costs  and  value  of  the  services,  and  uses  the  best  information  available  to  the  Study  Team.      There  were  a  variety  of  findings  during  the  Study  process  

Page 5: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

regarding  data  availability  and  study  methodology,  and  several  new  methodologies  were  developed  to  examine  the  solar  production  of  thousands  of  distributed  systems  as  well  as  the  accounting  of  costs.    

This  issue  of  NEM  costs  is  becoming  increasingly  important  as  the  penetration  of  distributed  systems  increases  not  only  in  California  but  also  across  the  U.S.  and  the  world.    The  tools  and  methods  used  to  assess  these  costs  will  become  increasingly  refined  as  more  refined  data  on  distribution  systems  is  available  through  smart  metering  programs  and  as  the  actual  costs  of  system  operation  become  apparent  as  more  distributed  systems  are  installed.      

3.0 Process  for  Feedback  and  Comments  The   Distributed   Solar   PV   Impact   Study   was   completed   in   conjunction   with   the   San   Diego   Solar  Stakeholder   Collaboration   Group,   a   multi-­‐stakeholder   group   involving   a   broad   range   of   participants  including   utilities,   governmental   entities,   solar   developers   and   advocates,   public   interest   and  environmental  groups,  and  other  entities  with  a  shared  interest  in  the  sustainable  development  of  PV  in  the  San  Diego  region.    

The  study  team  led  a  series  of  workshops  to  gather  input  and  feedback  from  stakeholders  during  the  period  from  November  2012  through  March  2013.    Two  initial  workshops  were  held  in  person  at  the  SDG&E  Energy  Innovation  Center  in  San  Diego  in  November  2012  and  January  2013.  These  focused  on  the  study  objectives  and  scope.    Four  public  webinars  were  also  held  in  February  and  March  2013,  which  focused  on  the  details  of  the  proposed  study  methodology,  data  sources,  and  assumptions.    Throughout  the  process  stakeholder  comments  were  encouraged,  and  numerous  comments  were  received,  both  orally  during  the  workshops  and  in  writing.    Stakeholder  input  was  critical  in  developing  the  study  methodology  and  settling  on  key  assumptions  and  data  sources.    Through  the  study  process,  all  stakeholders  were  given  the  opportunity  to  comment  on  all  major  aspects  of  the  study.    EPIC  received  substantive  written  comments  from  the  individuals  and  organizations  listed  below.  

B.  Chris  Brewster,  homeowner  California  Center  for  Sustainable  Energy  California  Public  Utilities  Commission  Division  of  Ratepayer  Advocates  City  of  San  Diego  -­‐  Mayor's  Office  County  of  San  Diego  Environmental  Health  Coalition  Home  Energy  Systems    San  Diego  Consumers  Action  Network  San  Diego  Gas  &  Electric  Solar  Energy  Industries  Association  The  Vote  Solar  Initiative  

 

All  meeting  materials,  including  notes,  presentations,  and  stakeholder  comments  are  posted  on  the  EPIC  website   at:   http://www.sandiego.edu/epic/projects/?year=2012#6.     During   the   study   process,   EPIC  distributed  all   project  materials   related   to   the   San  Diego  Distributed  Solar  PV   Impact   Study,   including  meeting   notices,  meeting   notes,   draft   reports,   and   other   supplemental  materials,   to   all   organizations  and  individuals  on  the  Stakeholder  Group  mailing  list.    

Page 6: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

 

APPENDIX  A  

           SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY      

B&V  PROJECT  NO.  176941  

 

 

PREPARED  FOR  

   

FEBRUARY  2014  

®

®

Page 7: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

 BLACK  &  VEATCH  CORPORATION     ii  

   

Page 8: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  ACKNOWLEDGEMENTS   LN-­‐1    

Study  Team  

Black  &  Veatch    Tim  Mason,  Project  Manager  Dan  Wilson  Fred  Jennings  Jon  Previtali  Elizabeth  Waldren    

Clean  Power  Research  Ben  Norris  Tom  Hoff  

 

Acknowledgements:  

Scott  Anders,  University  of  San  Diego,  Energy  Policy  Initiative  Center    San  Diego  Solar  Stakeholder  Collaborative  Group    

   

Page 9: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Table  of  Contents   LN-­‐1    

Table  of  Contents    List  of  Tables  ..........................................................................................................................................................  3  List  of  Figures  ........................................................................................................................................................  4  Legal  Notice  ............................................................................................................................................................  2  Glossary  of  Terms  ................................................................................................................................................  3  1.0   Introduction  .............................................................................................................................................  5  

1.1   Background  ...................................................................................................................................................  5  1.2   Study  Objectives  .........................................................................................................................................  6  1.3   Stakeholder  Process  ..................................................................................................................................  7  1.4   Approach  .........................................................................................................................................................  8  1.5   Data  and  Data  Sources  ..........................................................................................................................  10  1.6   Relationship  to  Other  Initiatives  ......................................................................................................  11  1.7   Changes  from  July  Draft  Report  ........................................................................................................  11  

2.0   Methodology  .........................................................................................................................................  12  2.1   Overview  .....................................................................................................................................................  12  

2.1.1   Services  Provided  by  the  Utility  to  the  PV  NEM  Customer  ................................  12  2.1.2   Services  Provided  by  the  Distributed  PV  Customer  to  the  Utility  ..................  13  2.1.3   Utility  Costs  Not  Included  in  This  Study  ....................................................................  13  

2.2   PV  Fleet  Modeling  Methodologies  and  Data  ................................................................................  13  2.2.1   Background  .............................................................................................................................  14  2.2.2   Base  Fleet  Definition  ...........................................................................................................  15  2.2.3   Rating  Convention  ...............................................................................................................  16  2.2.4   Fleet  Production  Datasets  ................................................................................................  16  2.2.5   Evaluation  of  Solar  Resource  in  2012  .........................................................................  17  2.2.6   Effective  PV  Capacity  ..........................................................................................................  18  2.2.7   Resource  Adequacy  Capacity  ..........................................................................................  19  2.2.8   Peak  Load  Reduction  ..........................................................................................................  20  2.2.9   Effective  Capacity  in  Future  Years  ................................................................................  21  2.2.10   Fleet  Variability  .....................................................................................................................  22  

2.3   Services  ........................................................................................................................................................  26  2.3.1   Energy  .......................................................................................................................................  26  2.3.2   Resource  Adequacy  Capacity  ..........................................................................................  30  2.3.3   Ancillary  Services  .................................................................................................................  32  2.3.4   RPS  Procurement  .................................................................................................................  34  2.3.5   Grid  Management  .................................................................................................................  36  2.3.6   Transmission  Capacity  .......................................................................................................  38  2.3.7   Transmission  O&M  ..............................................................................................................  39  2.3.8   Distribution  Station  Capacity  ..........................................................................................  40  2.3.9   Distribution  Line  Capacity  ...............................................................................................  42  

Page 10: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Table  of  Contents   LN-­‐2    

2.3.10   Distribution  Voltage  Regulation  and  Reactive  Supply  .........................................  43  2.3.11   Distribution  O&M  .................................................................................................................  45  2.3.12   Interconnection  ....................................................................................................................  46  2.3.13   Metering/Billing/Administration/Customer  Service  ..........................................  51  

2.4   Societal  Costs  and  Benefits  of  Distributed  PV  .............................................................................  52  3.0   Results  ....................................................................................................................................................  57  

3.1   Cost  of  Service  Results  Summary  .....................................................................................................  57  3.1.1   Discussion  of  Results  ..........................................................................................................  58  

3.2   Detailed  Annual  Cost  of  Service  Results  ........................................................................................  62  Appendix  A.   Marginal  Loss  Methodology  .............................................................................................  A-­‐1    

Page 11: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Table  of  Contents   LN-­‐3    

List  of  Tables    Table  2.  Summary  of  PV  Fleet  Modeling  Methodology  and  Data  Sources  ......................................................  14  Table  3.  Example  System  Rating  Calculation  ...................................................................................................................  16  Table  4.  HFEM  and  HFET  Datasets  ..................................................................................................................................  17  Table  5.  Future  Year  Growth  Assumptions  ..................................................................................................................  22  Table  6.  Future  Year  Effective  Capacity  Values  ..........................................................................................................  22  Table  7.  List  of  Services  ........................................................................................................................................................  26  Table  8.  Utility  Costs  for  Energy  .......................................................................................................................................  29  Table  9.  Utility  Avoided  Costs  for  Energy  .....................................................................................................................  29  Table  10.  Net  Annual  Capacity  Cost  Calculations  ......................................................................................................  31  Table  11.  Utility  Costs  for  Resource  Adequacy  Capacity  ........................................................................................  31  Table  12.  Utility  Avoided  Costs  for  Resource  Adequacy  Capacity  .....................................................................  32  Table  13.  Utility  Costs  for  Ancillary  Services  ..............................................................................................................  34  Table  14.  Utility  Costs  for  RPS  Procurement  ...............................................................................................................  35  Table  15.  Utility  Avoided  Costs  for  RPS  Procurement  ............................................................................................  36  Table  16.  Utility  Costs  for  Grid  Management  ..............................................................................................................  37  Table  17.  Utility  Avoided  Costs  for  Grid  Management  ............................................................................................  37  Table  18.  Utility  Costs  for  Transmission  Capacity  ....................................................................................................  38  Table  19.  Utility  Avoided  Costs  for  Transmission  Capacity  ..................................................................................  39  Table  20.  Utility  Costs  for  Transmission  O&M  ...........................................................................................................  40  Table  21.  Utility  Costs  for  Distribution  Station  Capacity  .......................................................................................  41  Table  22.  Utility  Avoided  Costs  for  Distribution  Station  Capacity  .....................................................................  41  Table  23.  Utility  Costs  for  Distribution  Line  Capacity  .............................................................................................  42  Table  24.  SDG&E  Forecast  of  Distribution  Circuits  with  PV  Penetration  Greater  Than  25  

Percent  ..........................................................................................................................................................  44  Table  25.  Utility  Costs  for  Distribution  Voltage  Regulation  and  Reactive  Supply  ......................................  45  Table  26.  Utility  Costs  for  Distribution  O&M  ..............................................................................................................  46  Table  27.  NEM  Interconnection  and  Administrative  Program  Cost  Categories  ..........................................  47  Table  28.  Fixed  and  Variable  NEM  Program  and  Interconnection  Costs  ........................................................  49  Table  29.  Historical  and  Forecasted  Annual  NEM  PV  Installations  ...................................................................  50  Table  30.  Utility  Costs  for  Interconnection  ..................................................................................................................  51  Table  31.  Utility  Costs  for  Metering/Billing/Administration/Customer  Service  ........................................  52  Table  32.  Societal  Benefits  of  Distributed  PV  ..............................................................................................................  53  Table  33.  Societal  Costs  of  Distributed  PV  ...................................................................................................................  55  Table  34.  Summary  of  2012  Utility  Costs  and  Distributed  PV  Value  by  Service  ..........................................  57  Table  35  Detailed  Annual  Summary  of  Utility  Costs  ................................................................................................  63  Table  36  Detailed  Annual  Summary  of  Distributed  PV  Value  ..............................................................................  64  Table  37.  DLF  Sample  Data  ...............................................................................................................................................  A-­‐1    

Page 12: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Table  of  Contents   LN-­‐4    

List  of  Figures    Figure  2.  Electric  Grid  Diagram  with  Utility  and  PV  NEM  Customer  Services  Listed  ...................................  9  Figure  3.  SDG&E  Distributed  PV  Fleet  Capacity  Over  Time  ..................................................................................  16  Figure  6.  Map  of  Distributed  PV  Systems  and  Sample  Cities  in  SDG&E  Territory  ......................................  17  Figure  5.  AC  Capacity  Factors  for  10  Sample  PV  Systems  Through  SDG&E  Territory  (1998-­‐

2012)  ............................................................................................................................................................  18  Figure  6.  PV  Fleet  Output  Compared  to  Single  Representative  System  with  Different  Solar  

Resource  Datasets  and  SDG&E  Load,  Peak  Load  Day  (September  14,  2012)  ...............  19  Figure  7.  Peak  Day  Load  .......................................................................................................................................................  21  Figure  8.  15-­‐minute  SDG&E  Distributed  PV  Fleet  Power  Output  in  2012  ......................................................  23  Figure  9.  Absolute  Ramp  Rates  in  MW  per  Minute,  SDG&E  Distributed  PV  Fleet,  2012  ..........................  24  Figure  10.  Sorted  Absolute  Ramp  Rates  in  MW  per  Minute,  SDG&E  Distributed  PV  Fleet,  

2012  ..............................................................................................................................................................  24  Figure  11.  One-­‐minute  fleet  and  single  system  ramp  rates,  April  4,  2012.  ....................................................  25  Figure  12.  Sample  of  Hourly  Energy  Price  Data  in  2012  from  CAISO,  with  GHG  Costs  Added  ..............  28  Figure  13.  Sample  of  Forecasted  Hourly  Energy  Prices  in  2013-­‐2021  ............................................................  28  Figure  14.  CAISO  Grid  Management  Charge  Rates  Book  Fee  Table  ..................................................................  37  Figure  15  Utility  Cost  and  Distributed  PV  Value  for  Resource  Adequacy  Capacity  ($/kW-­‐

year)  ..............................................................................................................................................................  59  Figure  16  Transmission  Capacity  Value  ($/kW-­‐year)  ............................................................................................  60  Figure  17  Distributed  Substation  Capacity  Value  ($/kW-­‐year)  ..........................................................................  60  Figure  18  Annual  Interconnection  Costs  ($/kW-­‐year)  ...........................................................................................  62  Figure  19.  SDG&E  Distribution  Losses  versus  Customer  Loads  (2012)  ........................................................  A-­‐2    

 

 

   

Page 13: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Legal  Notice   LN-­‐2    

Legal  Notice    This   report   was   prepared   for   the   Energy   Policy   Initiative   Center   (EPIC)   by   Black   &   Veatch  Corporation   (Black   &   Veatch)   and   is   based   on   information   not   within   the   control   of   Black   &  Veatch.    In  preparing  this  report,  Black  &  Veatch  has  assumed  that  the  information,  both  verbal  and  written,   provided   by   others   is   complete   and   correct   without   independent   verification.     Black   &  Veatch   does   not   guarantee   the   accuracy   of   the   information,   data   or   opinions   contained   in   this  report  and  does  not  represent  or  warrant  that  the  information  contained  in  this  report  is  sufficient  or  appropriate  for  any  purpose.    This  report  should  not  be  construed  as  an  invitation  or  inducement  to  any  party  to  engage  or  otherwise  participate  in  any  transaction,  to  provide  any  financing,  or  to  make  any  investment.  

Any   information   shared   with   EPIC   prior   to   the   release   of   the   report   is   superseded   by   the  Report.    Black  &  Veatch  owes  no  duty  of  care  to  any  third  party  and  none  is  created  by  this  report.  Use  of  this  report,  or  any  information  contained  therein,  by  a  third  party  shall  be  at  the  risk  of  such  party   and   constitutes   a   waiver   and   release   of   Black   &   Veatch   its   directors,   officers,   partners,  employees  and  agents  by  such   third  party   from  and  against  all   claims  and   liability,   including,  but  not  limited  to,  claims  for  breach  of  contract,  breach  of  warranty,  strict  liability,  negligence,  negligent  misrepresentation,  and/or  otherwise,  and  liability  for  special,  incidental,  indirect,  or  consequential  damages,  in  connection  with  such  use.      

   

Page 14: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Glossary  of  Terms   3    

Glossary  of  Terms  This  document  provides  definitions  of  many  of  the  key  terms  used  in  this  study.    Except  where  explicitly  noted,  all  terms  used  in  this  study  conform  to  the  definitions  of  CAISO,  FERC,  and  EIA,  whose  glossaries  can  be  found  at  the  webpages  listed  below.    

CAISO  Glossary:  http://www.caiso.com/Pages/glossary.aspx    

FERC  Glossary:  http://www.ferc.gov/help/glossary.asp    

EIA  Glossary:  http://www.eia.gov/tools/glossary/index.cfm    

Term   Definition  

Distributed  PV   For  the  purpose  of  this  study,  this  refers  to  PV  systems  installed  on  the  customer  side  of  the  utility  meter  and  less  than  1  MW  in  size.      

Energy   Electric  energy  commodity  delivered  to  customer  metering  point,  including  all  losses;  this  can  originate  from  the  utility  grid  or  from  the  customer-­‐sited  PV  system.  

Resource  Adequacy  Capacity  

Generation  capacity  required  to  meet  total  utility  peak  load,  plus  an  operating  margin  of  15%.  

Ancillary  Services   Grid  services  required  to  maintain  reliability  of  the  bulk  power  system  by  responding  quickly  to  changes  in  frequency  or  load.    These  consist  of:  

• Regulation  Up  • Regulation  Down  • Spinning  Reserves  • Non-­‐spinning  Reserves  

Grid  Management   Grid  operator  capital  and  personnel  charges,  as  applied  by  CAISO  to  all  entities  using  the  CAISO-­‐controlled  high  voltage  transmission  system.  

Transmission  Capacity   High-­‐voltage  transmission  infrastructure  which  delivers  wholesale  electricity  from  the  generator  to  the  utility  distribution  system.      

Transmission  O&M   Operation  and  maintenance  of  transmission  infrastructure,  including  transmission-­‐level  reactive  power  and  the  reliability  of  transmission  infrastructure.  

Distribution  Station  Capacity  

Transformation  of  voltage  between  transmission  and  distribution  level;  reliability  of  this  equipment.  

Distribution  Line  Capacity   Poles,  towers,  overhead  and  underground  conductors,  conduit,  and  devices  that  make  up  the  distribution  system  past  the  distribution  substation,  along  with  the  reliability  of  these  components.  

Distribution  Voltage  Regulation  and  Reactive  

Regulation  of  voltage  along  the  distribution  system  and  at  customer  metering  

Page 15: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Glossary  of  Terms   4    

Term   Definition  

Supply   point  to  meet  CPUC  voltage  requirements.  

Distribution  O&M   Operations  and  maintenance  required  to  keep  the  distribution  grid  functioning;  this  includes  maintenance  of  substations,  wires  and  poles,  repair  and  replacement,  line  crews,  emergency  services,  etc.    

Interconnection   One-­‐time  costs  to  interconnect  customer-­‐owned  solar  PV,  including  grid  impact  studies,  inspections,  and  service  upgrades.  

Metering,  Billing,  Administration  and  Customer  Service  

The  customer-­‐related  services  that  allow  the  utility  to  track  customer  electricity  consumption  and  customer  PV  generation,  charge  customers  for  their  consumption,  and  resolve  customer  issues.  

PV  Fleet   A  group  of  distributed  PV  systems  within  a  particular  geographic  area;  for  the  purpose  of  this  study,  this  refers  to  all  customer-­‐sited  PV  systems  installed  in  the  SDG&E  service  territory.  

CAISO   The  California  Independent  System  Operator,  the  organization  that  controls  and  operates  the  high-­‐voltage  transmission  system  used  by  the  investor-­‐owned  utilities  in  the  state,  and  coordinates  the  state’s  wholesale  electricity  market.      

Day-­‐Ahead  Market   The  CAISO  day-­‐ahead  market  determines  hourly  market-­‐clearing  prices  and  unit  commitments,  analyzes  unit  must-­‐run  needs  and  mitigates  bids  if  necessary,  which  produces  the  least  cost  energy  while  meeting  reliability  needs.    

Hour-­‐Ahead  Scheduling  Process  

The  CAISO  market  subjects  bids  to  mitigation  tests  and  the  hour-­‐ahead  scheduling  process,  which  produces  schedules  for  energy  and  ancillary  services  based  on  submitted  bids.    It  produces  ancillary  services  awards,  and  final  and  financially  binding  intertie  schedules.    

Real-­‐Time  Market   The  CAISO  real-­‐time  market  is  a  spot  market  to  procure  energy  (including  reserves)  and  manage  congestion  in  the  real-­‐time  after  all  the  other  processes  have  run.    This  market  produces  energy  to  balance  instantaneous  demand,  reduce  supply  if  demand  falls,  offer  ancillary  services  as  needed  and  in  extreme  conditions,  curtail  demand.    

Locational  Marginal  Price   Locational  Marginal  Pricing  (LMP),  a  primary  feature  of  the  CAISO  market,  is  the  calculation  of  electricity  prices  at  thousands  of  pricing  points,  or  nodes,  within  California’s  electricity  grid.  It  provides  price  signals  that  account  for  the  additional  costs  of  electricity  caused  by  transmission  congestion  and  line  loss  at  various  points  on  the  electricity  grid.  LMPs  allow  CAISO  to  efficiently  determine  the  interaction  of  energy  supply  and  energy  demand.  

Effective  Load  Carrying  Capacity  

This  is  a  statistical  measure  of  effective  capacity.  The  ELCC  represents  the  increase  in  capacity  available  to  a  localized  grid  attributable  to  the  deployed  PV  capacity  on  that  grid.    The  ELCC  may  be  interpreted  in  terms  of  ideal  resource  equivalence;  e.g.,  a  100  MW  plant  with  a  45%  ELCC  may  be  considered  as  equivalent  to  a  45  MW  fully  dispatchable  unit  with  no  down  time.  

Page 16: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Introduction   5    

1.0 Introduction    Black  &  Veatch  Corporation  (Black  &  Veatch)  is  pleased  to  provide  this  San  Diego  Distributed  Solar  Photovoltaic   (PV)   Impact   Study   Draft   Report   to   the   San   Diego   Solar   Stakeholder   Collaboration  Group  (Stakeholder  Group).    This  report  represents   the  culmination  of  efforts  by   the  Stakeholder  Group,   the  University  of  San  Diego  (USD)  Energy  Policy   Initiatives  Center   (EPIC),  Black  &  Veatch,  and  Clean  Power  Research  to   investigate  certain  aspects  of  distributed  PV  in  the  San  Diego  Gas  &  Electric  Company  (SDG&E)  service  territory  over  the  next  decade  (Years  2012-­‐2021).    Specifically,  this   Report   identifies   and   estimates   the   annual   costs   of   the   services   provided   by   SDG&E   to  distributed  PV  customers—i.e.  those  SDG&E  customers  who  have  chosen  to  install  a  PV  system  less  than   one  MW  on   their   property   behind   the   utility  meter   (whether   or   not   they   participate   in   the  SDG&E  Net  Energy  Metering  (NEM)  tariff).    It  also  identifies  and  quantifies  the  annual  value  of  the  services  provided  by  the  distributed  PV  customers  to  SDG&E.    This  work  was  performed  by  Black  &  Veatch   and   its   subcontractor   Clean   Power   Research   (collectively   referred   to   as   the   Study   Team)  under  contract  with  USD  EPIC.  

The  study   team  stresses   that   this   study   is   limited   to   identifying   the  services  and  costs  associated  with  distributed  PV,  and  is  not  an  assessment  of  the  cost-­‐effectiveness  of  distributed  PV  or  the  NEM  tariff.     The  methodologies   used   in   this   analysis   are   designed   specifically   for   this   effort   and  were  presented  to  and  discussed  with    the  Stakeholder  Group  in  a  series  of  meetings  and  teleconferences  during   the   course  of   the  project.     Further,   neither  Black  &  Veatch  nor  Clean  Power  Research   are  proposing,  recommending  or  advocating  which  parties  should  pay  for  or  benefit   from  these  costs,  nor  how  the  costs  could  or  should  be  allocated  among  utility  customers.    That  is  the  role  of  utility  rate-­‐making,  and  this  is  explicitly  intended  to  be  a  “marginal  cost  of  service”  study.      

1.1 BACKGROUND  In   recent   years   there   has   been   significant   growth   in   the   number   of   solar   photovoltaic   (PV)  installations  by  retail  customers  in  California  on  their  homes  and  businesses.    The  growth  in  these  “behind-­‐the-­‐meter”  systems  has  been  the  result  of  a  multitude  of  factors,  including  (but  not  limited  to)  California  public  policy  preferences,  cash  grants  and  tax  credits  and  other   incentive  payments  for   PV   installation,   substantial   reductions   in   PV   equipment   costs,   and   the   development   of   an  industry  able  to  sell,  lease,  install  and  maintain  residential  and  commercial  PV  systems  at  prices  and  terms  that  allow  customers  to  save  money  on  their  electric  bills.    Within  SDG&E’s  service  territory,  nearly  all  PV  systems  of  this  type  participate  in  SDG&E’s  NEM  tariff.    NEM  allows  PV  customers  to  earn  credits  for  the  excess  power  they  send  back  to  the  grid,  to  offset  electricity  they  consume  from  the  grid  when  their  PV  system  is  not  generating.  In  California,  incentives  are  structured  so  that  over  the  course  of   the  year   the  PV  generation  balances  out   consumption  and   therefore   the  customer’s  bill  is  close  to  zero.      

It  is  anticipated  that  PV  installations  in  the  state  will  continue  to  grow  at  a  strong  pace  for  at  least  the   next   ten   years.     Based   on   the   current   installed   PV   capacity   in   SDG&E’s   service   territory   and  using   California   Energy   Commission   (CEC)   forecasted   growth   rates   distributed   PV   installations,  defined  here  as  PV  installation  of  less  than  one  megawatt  and  participating  in  the  San  Diego  Gas  &  Electric   Company   (SDG&E)   net   energy  metering   (NEM)   program,   there  will   be   nearly   50,000   PV  NEM   systems   in   the   SDG&E   service   territory   by   the   end   of   2021.     The   installed   capacity   of  distributed  PV  will  grow  from  149  MW  at  the  end  of  2012  to  334  MW  at  the  end  of  2021,  with  the  

Page 17: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Introduction   6    

annual   energy   generated   by   distributed   PV  more   than   doubling   over   that   time   period.     Figure   1  depicts  the  projected  growth  in  installations  and  capacity  through  2021.    

Figure  1.  Projected  Cumulative  Distributed  PV  Installations  and  Capacity,  2012-­‐2021  

           

Distributed   PV   systems   play   a   very   positive   role   in   California’s   electric   grid,   providing   energy  during   times  when   California’s   load   is   high,   reducing   fossil   fuel   consumption   and   the   correlated  pollution   and   carbon   emissions   of   conventional   generators,   reducing   the   need   for   additional  transmission   lines,   and   a   variety   of   other   benefits.     However,   the   use   of   these   systems   presents  challenges   to   the   utility   as   well,   such   as   an   increase   in   ancillary   service   costs   to   integrate   this  variable  energy  in  real  time,  additional  spending  on  equipment  and  operational  practices  to  ensure  that   PV’s   variable   output   does  not   cause  disturbances   to   the   electric   grid,   and   increased   costs   to  interconnect  and  administer  thousands  of  small  PV  generators  on  the  distribution  system.      

While   the  PV   installations  will  primarily  offset   customer  energy  requirements,  during  hours  with  low  load  and  high  PV  production  there  will  be  energy  flowing  from  the  PV  systems  back  through  the  utility’s  distribution  system,  and  potentially  to  the  high  voltage  transmission  system;  during  other  hours   there   will   be   low   or   zero   PV   production   (e.g.   at   night),   hence   distributed   PV   customer  requirements   will   be   served   with   energy   provided   by   SDG&E   during   these   times.     The   utility’s  electric  system  must  be  sufficiently  robust   to  accommodate   the  variable  nature  of  PV  production,  both   to   satisfy   customer   energy  demand   regardless   of   PV  output   and   to  maintain   overall   system  reliability  at  all  times.    

1.2 STUDY  OBJECTIVES  

SDG&E  convened  the  Stakeholder  Group  to  bring  together  interested  stakeholders  to  explore  how  to  make  distributed  solar  energy  sustainable  in  the  San  Diego  region.  One  of  the  main  findings  from  initial  meetings   of   the   Stakeholder   Group  was   the   need   for   a   detailed   analysis   of   to   identify   and  estimate  the  cost  of  the  services  associated  with  customer-­‐owned  distributed  PV—those  provided  by   the   utility   to   the   customer-­‐generator   and   those   provided   by   the   customer-­‐generator   to   the  utility.   EPIC   managed   the   study   for   SDG&E   on   behalf   of   the   Stakeholders,   and   engaged   Black   &  Veatch  and  its  subcontractor  Clean  Power  Research  as  technical  consultants  to  conduct  the  analysis.    

The   original   scope   of   the   effort   was   to   address   the   following   issues   and   achieve   the   following  objectives:    

-­‐

10,000  

20,000  

30,000  

40,000  

50,000  

60,000  

Distributed  PV  Systems  

Page 18: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Introduction   7    

1. Develop   a   transparent   methodology   to   determine   and   quantify   the   costs   and   benefits  created  by  NEM  PV  to  the  electric  system  at  different  levels  of  penetration.  

2. Determine  whether  a  subsidy  or  cost  shift  exists  between  ratepayers  as  a  result  of  NEM  and  the  magnitude  of  the  cost.  

3. Determine  the  implications  of  the  impact  of  NEM  on  cost  of  service  utility  ratemaking.  

4. Understand  how  future  policy  changes,  including  changes  to  the  NEM  law,  the  phasing  out  of  AB1X,  and  changes  in  grid  architecture  could  affect  the  analysis.  

During  the  first  stakeholder  workshop,  the  initiative  was  re-­‐scoped  by  the  stakeholder  participants.    The  study  goals  and  objectives  were  revised  to   focus  not  on   the  cost-­‐effectiveness  of  NEM  on  the  SDG&E   system,   but   rather   to   determine   the   net   cost   of   having   distributed   PV   connected   to   the  electrical  system.    Specifically,  the  objectives  were  redefined  as  follows:    

1. Identify  the  services  that  utilities  provide  distributed  solar  PV  customers  (including  but  not  limited  to  standby,  power  quality,  reliability,  import  and  redelivery).  

2. Identify   the   services   that   distributed   solar   PV   customers   provide   to   the   electrical   system  (including  but  not  limited  to  locational,  capacity,  energy,  and  environmental  (RPS).  

3. Develop   a   transparent   methodology   determine   the   cost   (both   positive   and   negative)   for  each  of  the  services  identified  at  different  levels  of  penetration  (measured  as  a  percentage  of   total   energy   consumption   and/or   peak   demand).     For   purposes   of   this   study,   services  should  be  defined  comprehensively  to  include  those  with  direct  costs  to  the  system  and  to  the  extent  possible  those  with  external,  non-­‐energy-­‐related  costs  (e.g.,  societal  benefits).    

4. Determine  whether   the  existing  NEM  rate  structure  allows   the  utility   to   recover   the  costs  they  incur  for  PV  customers.    

5. Understand   how   future   scenarios   including   several   PV   penetration   conditions   and   Smart  Grid  infrastructure  affect  the  results  of  the  analysis.      

This   effort   has   succeeded   in   completing   the   first   three   objectives,   namely   the   identification   of  services   provided   by   utilities   to   distributed   PV   customers,   the   services   provided   by   the   PV  customers  to  the  utility,  and  estimating  the  cost  and  value  of  these  services.    Due  to  time  and  budget  considerations  the  final  two  objectives  of  this  analysis—determining  whether  the  existing  NEM  rate  structure  allows  the  utility  to  recover  the  costs  they  incur  for  PV  customers  and  understanding  how  future   scenarios   including   several  PV  penetration   conditions  and  Smart  Grid   infrastructure  affect  the  results  of  the  analysis—could  not  be  completed.          

1.3 STAKEHOLDER  PROCESS  The   Distributed   Solar   PV   Impact   Study   was   completed   in   conjunction   with   the   San   Diego   Solar  Stakeholder  Collaboration  Group,  a  multi-­‐stakeholder  group  involving  a  broad  range  of  participants  including   utilities,   governmental   entities,   solar   developers   and   advocates,   public   interest   and  environmental  groups,  and  other  entities  with  a  shared  interest  in  the  sustainable  development  of  PV   in   the   San  Diego   region.     The   study   team   believes   that   a   collaborative   process   is   essential   to  

Page 19: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Introduction   8    

ensure  that  there  is  wide  consensus  on  the  study  goals,  methodology,  and  assumptions  and  support  for  the  resulting  conclusions.      

The  study  team  led  a  series  of  workshops  to  gather   input  and  feedback  from  stakeholders  during  the  period  from  November  2012  through  March  2013.    Two  initial  workshops  were  held  in  person  at   the  SDG&E  Energy  Innovation  Center   in  San  Diego   in  November  2012  and  January  2013;   these  focused  on  the  study  objectives  and  scope.    Four  public  webinars  were  also  held   in  February  and  March  2013,  which   focused  on   the  details   of   the  proposed   study  methodology,   data   sources,   and  assumptions.     Throughout   the   process   stakeholder   comments   were   encouraged,   and   numerous  comments  were   received,   both  verbally  during   the  workshops   and   in  writing.     Stakeholder   input  was  critical  in  developing  the  study  methodology  and  settling  on  key  assumptions  and  data  sources.    The  entire  stakeholder  group  was  given  the  opportunity  to  comment  on  all  major  items.          

All   meeting   materials,   including   notes,   presentations,   and   stakeholder   comments   are   posted   on  EPIC  website  at:  http://www.sandiego.edu/epic/research_reports/other.php#NEMStudy.      

1.4 APPROACH    The   study   team   developed   a   “bottom-­‐up”   approach   to   quantifying   the   cost   of   services   for  distributed  PV  customers.     First,  we   identified  all   of   the   individual   services  performed  by  SDG&E  that  are  required  to  serve  all  retail  customers,  and  then  identified  the  additional  services  that  are  required  to  allow  for  the  installation,  management  and  operation  of  distributed  PV.    This  step  also  included  identifying  all  of  the  services  that  are  provided  by  distributed  PV  customers  to  the  utility.    Table   1   provides   a   list   of   the   services   identified   in   this   study,   and   specifies   which   services   are  provided  by  the  utility  and  which  are  provided  by  the  distributed  PV  customer.      

Table  1.  List  of  Services  

Service   Services  Provided  by  Utility  to  PV  Customer  

Services  Provided  by  PV  Customer  to  Utility  

Energy   X   X  Resource  Adequacy  Capacity   X   X  Ancillary  Services   X    RPS  Procurement   X   X  Grid  Management   X   X  Transmission  Capacity   X   X  Transmission  O&M   X    Distribution  Station  Capacity   X   X  Distribution  Line  Capacity   X    Distribution  Voltage  Regulation  and  Reactive  Supply  

X    

Distribution  O&M   X    Interconnection   X    Metering/Billing/Administration/  Customer  Service  

X    

 

Figure   2   provides   a   schematic   diagram   of   the   electric   system,   from   generation   through  transmission   and   distribution   lines   to   the   customer.     Above   the   diagram   are   listed   the   services  

Page 20: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Introduction   9    

provided   by   the   utility   to   PV   NEM   customers,   while   below   the   diagram   are   listed   the   services  provided  by  the  PV  NEM  customer  to  the  utility.      

Services  Provided  by  Utility  to  PV  Customers  

Energy,  Resource  Adequacy  Capacity,  Ancillary  Services,  RPS  Procurement  

Transmission  Capacity  and      O&M,  Grid  Management    

Distribution  Substation  Capacity  and  O&M    

Distribution  Line    Capacity  and  O&M,    Voltage  Regulation  

Interconnection,  Metering/Billing,  Administration  

 Reduced  Energy  Generation,    Resource  Adequacy  Capacity,  and  RPS  Procurement  

Reduced  Transmission  Capacity    and  Grid  Management  Charges  

Reduced  Distribution  Substation  Capacity  

   

Services  Provided  by  PV  NEM  Customers  to  Utility  

Figure  2.  Electric  Grid  Diagram  with  Utility  and  PV  NEM  Customer  Services  Listed  

Once  the  services  were  identified,  the  study  team  determined  the  costs  associated  with  the  services  in  each  year  over  the  ten-­‐year  period  2012-­‐2021.    This  included  the  development  of  methodologies  to  quantify   the   current   costs   in  2012  and   to   forecast   those   costs   for   future  years.    Once   this  was  completed,  the  team  collected  data  and  developed  assumptions  required  for  the  cost  analysis.      The  methodologies  and  data  used  are  described  in  detail  in  Section  3  of  this  report.  

A   change   to   the   cost   calculation  methodology  was  made   after   the   stakeholder  meetings.     It   was  initially   decided   that   the   study  would   calculate   the   cost   of   services   provided   by   the   utility   to   PV  NEM  customers  on  an  average  basis  (while  the  cost  of  services  provided  by  the  PV  customer  to  the  utility  would  be  on  a  marginal  basis).    However,  it  was  later  decided  that  these  utility  costs  should  be  calculated  on  a  marginal  basis.    Thus,  all  cost  results  in  this  study  represent  the  marginal  costs  or  avoided  costs   to  SDG&E  of   serving  energy  at   the   time  when   the  PV   is  delivering  energy1.    This   is  appropriate,   since   the   goal   is   to   isolate   the   costs   to   serve   the   loads   that   are   being   served   by   PV  rather  than  the  utility  (the  “marginal”  customer  load),  in  addition  to  any  incremental  costs  specific  to  PV  customers.    The  marginal  cost  will  differ  from  the  average  cost  to  the  utility,  as  the  average  cost   will   include   historical   investments   made   at   different   levels   of   depreciation,   costs   that   are  

                                                                                                                         1  Technically,  the  energy  served  in  proportion  to  the  output  of  a  “typical”  PV  system,  which  is  defined  as  the  composite  output  of  all  distributed  PV  systems  in  the  service  territory.  

Page 21: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Introduction   10    

incurred  in  non-­‐solar  hours,  and  costs  incurred  for  serving  non-­‐solar  customers.    For  instance,  the  marginal   cost   of   generation   capacity   represents   the   long   term   costs   to   develop   a   new,   flexible-­‐operation   peaking   power   plant.       This   will   differ   substantially   from   the   SDG&E   average   cost   of  capacity,  which  includes  a  range  of  capacity  resources  with  different  characteristics  and  of  different  vintages   added   in   past   years   to   the   rate   base.     It   will   also   differ   from   the   short-­‐term   value   of  capacity,  which  reflects  current  market  conditions  for  near-­‐term  capacity.  

The  “average  cost”  approach  proved  impractical  for  two  reasons.    First,  the  study  team  was  unable  to   identify   data   sources   that   would   appropriately   reflect   the   average   costs   for   certain   utility  services,   such   as   “resource   adequacy   capacity”.     Secondly,   the   “average   cost”   approach   made   it  difficult  to  compare  results  for  the  cost  of  services  provided  by  the  utility  to  the  results  of  the  cost  of  services  provided  by  the  PV  customer.    The  use  of  marginal  costs  allows  for  an  “apples  to  apples”  comparison  of   the   results   for   the  costs  of  each  service  at   the  margin  without  addressing   the   rate  impacts.    The  results  of  this  analysis  now  show  the  marginal  cost  of  services  provided  by  the  utility  and  the  marginal  cost  of  services  provided  by  the  PV  customer.  

1.5 DATA  AND  DATA  SOURCES      The   study   team   used   real,   historical   data   where   possible.    Where   forecasted   data   was   required,  publicly   vetted   data   sources   were   used   to   the   extent   possible   and   practical.     For   instance,   the  SDG&E   load   forecast   and   distributed   PV   installation   forecast   information   is   from   the   California  Energy   Commission   (CEC)   Independent   Energy   Policy   Report   (IEPR)   proceeding,   while   2012  energy  and  ancillary  service  prices  are  from  the  California  Independent  System  Operator  (CAISO).    Where  utility-­‐specific  costs  were  not  provided  by  SDG&E,  the  team  relied  on  SDG&E’s  2012  General  Rate  Case  filing  with  the  California  Public  Utilities  Commission  (CPUC)  for  cost  estimates.    The  data  sources  used  for  each  service  are  described  in  section  3.3  below.      

The   study   team   relied   on   SDG&E   to   provide   utility-­‐specific   data   that   is   not   generally   publicly  available.    This  included  data  on  utility  retail  loads,  PV  system  interconnection  costs,  distributed  PV  program   costs   administrative   costs   and   projected  marginal   distribution   system   costs   for   voltage  regulation.    Black  &  Veatch  prepared  and  submitted  a  data  request  to  SDG&E  in  March  2013,  with  several   subsequent   follow-­‐up   requests.    Over   the  ensuing   several  months,   SDG&E  provided   some  limited  information  in  the  requested  format,  which  the  study  team  incorporated  into  this  analysis  where   possible   and   feasible.     For   instance,   Black   &   Veatch   approached   the   interconnection   cost  analysis  by  requesting  a  detailed  breakdown  of  costs  by  discrete   tasks  required   for   the  customer  interconnection  process  and  supporting  SDG&E  activities,  however  SDG&E  provided  generally  high-­‐level  information  on  organization  function  and  program  administration  costs.    Similarly,  instead  of  providing   forecasted   distribution   upgrade   costs   for   voltage   regulation   as   SDG&E   had   initially  offered   in   a   stakeholder   meeting,   they   provided   a   projection   of   the   PV   NEM   capacity   by   feeder  circuits   through   2020.     In   these   cases   where   the   study   team   did   not   receive   the   data   it   was  expecting,   we   used   the   information   that   was   provided   by   SDG&E   and   developed   additional  necessary   assumptions   based   on   our   professional   judgment.     The   result   of   this   is   that   the   study  results  will  not  mirror  SDG&E  costs  for  these  services,  nor  has  the  study  team  validated  the  SDG&E  cost  information.      

Though   some   cost   information   was   estimated   for   the   purpose   of   the   analysis,   the   study   team  believes  the  data  and  assumptions  used  in  this  study  fairly  represent  the  costs  to  provide  services  

Page 22: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Introduction   11    

to  distributed  PV  customers  and  the  value  of  services  provided  by  distributed  PV  customers.    The  study  team  has  tried  to  clarify  all  data  sources  in  this  report  and  where  Black  &  Veatch  has  made  assumptions  to  develop  the  data,  we  have  identified  how  this  was  completed.            

1.6 RELATIONSHIP  TO  OTHER  INITIATIVES  The   San  Diego  Distributed   Solar   PV   Impact   Study   is   designed   to   consider   the   costs   to   SDG&E   to  serve  distributed  PV  customers  and  the  value  of  services  provided  by  these  customers,  as  defined  by  the  Stakeholder  Group.    This  effort  is  occurring  in  parallel  with  a  CPUC  NEM  Cost-­‐Effectiveness  Evaluation  under  CPUC  Rulemaking  12-­‐11-­‐005.    That  effort,  while  similar  to  this  study  to  the  extent  that   both   are   attempting   to   identify   the   costs   and   value   of   PV   NEM,   are   different   in   several  important  respects.    First,  this  analysis  is  focused  on  the  costs  associated  with  distributed  PV,  and  does   not   assess   the   cost-­‐effectiveness   of   the   NEM   tariff,   which   would   require   additional  considerations,   such   as   the   life-­‐cycle   cost   and   value   of   PV.     Second,   this   study   includes   only   PV  systems,  while   the   CPUC   study   includes   distributed  wind   generators   and   other   technologies   that  are  eligible   for  the  NEM  tariff.    Finally,  all  major  assumptions  used  in  this  study  have  been  vetted  and   approved   by   the   Stakeholder   Group   for   use   in   this   analysis.     These   assumptions   were  developed  independent  of  the  CPUC  effort  and  while  they  are  believed  to  be  similar,  they  may  differ  from  the  NEM  Cost-­‐Effectiveness  Evaluation  initiative.      

1.7    CHANGES  FROM  JULY  DRAFT  REPORT    This  report  has  been  slightly  revised  from  the  July  Draft  report.  The  following  changes  have  been  made,  based  on  stakeholder  feedback  during  the  presentation  of  the  draft  report  and  written  comments  received  after  the  release  of  the  draft  report:  

• The  Executive  Summary  was  removed.  • The  draft  report  indicated  that  stakeholders  had  “vetted”  the  methodology  used  for  the  

analysis;  due  to  several  stakeholder  suggestions,  this  language  was  changed  to  indicate  that  all  methodologies  were  “presented  to  and  discussed  with  the  Stakeholder  Group  in  a  series  of  meetings  and  teleconferences  during  the  course  of  the  project.”  

• Several  stakeholder  organizations  asked  to  have  their  names  removed  from  the  list  of  stakeholders  in  the  draft  report,  so  the  list  of  stakeholders  was  removed  from  this  revised  report.  

• The  charts  showing  Comparison  of  Utility  Cost  and  Distributed  PV  Value  by  Year  (Figure  2  and  Figure  17  in  the  draft  report)  were  removed  from  this  revised  report,  because  they  caused  confusion  for  stakeholders  rather  than  clarifying  the  study  results.  

No  substantive  changes  have  been  made  with  regard  to  the  study  methodology  or  results,  as  any  further  analysis  has  been  precluded  by  budget  constraints.      

 

   

Page 23: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   12    

2.0 Methodology  This   section   describes   the  methodology   used   in   the   study,   including   an   overview   of   the   services  quantified   and   those   excluded,   a   discussion   of   how   the   distributed   PV   fleet   modeling   was  conducted,  and  a  detailed  explanation  of  each  individual  service.    It  also  describes  the  societal  costs  and  benefits  of  distributed  PV,  which  were  not  quantified  as  part  of  this  analysis.      

2.1 OVERVIEW    

2.1.1 Services  Provided  by  the  Utility  to  the  PV  NEM  Customer  Services   provided   by   the   utility   to   the   distributed   PV   customer   are   for   usage   of   electric   grid  infrastructure,   and   for   energy   deliveries   when   the   customer   is   not   generating   electricity,   or   is  delivering  excess  PV  generation  to  the  utility.      Utilities  have  developed  and  maintain  infrastructure  required   to   serve   customer   energy   needs,  which   is   necessary  whether   there   is   customer   energy  generation  or  not.    This  generally  includes  the  electric  generation  facilities  used  to  meet  customer  energy   requirements   and   the   transmission   and   distribution   facilities   used   to   deliver   energy   to  customers,   as   well   as   other   services,   such   as   the   procurement   of   renewable   energy   to  meet   the  state’s  33%  Renewable  Portfolio  Standard  (RPS)  requirement.    For  brevity,  these  services  are  often  referred  to  as  “utility  costs”  below.        

Additionally,   there   are   four   services   that   involve   incremental   costs   specific   to   distributed   PV  customers:  incremental  ancillary  services  to  balance  PV  variability,  distribution  voltage  regulation  and  reactive  supply,  interconnection,  and  metering/billing/administration/customer  service.      

As   noted   above   in   section   2.3,   a   change   to   the   cost   calculation  methodology  was  made   after   the  stakeholder  meetings.     It  was   initially  decided   that   the   study  would   calculate   the   cost  of   services  provided  by  the  utility  to  distributed  PV  customers  on  an  average  basis  (while  the  cost  of  services  provided  by   the  PV  customer   to   the  utility  would  be  on  a  marginal  basis).    However,   it  was   later  decided   that   these  utility  costs  should  be  calculated  on  a  marginal  basis.    Thus,  all   cost   results   in  this   study   represent   the  marginal   costs   or   avoided   costs   to   SDG&E  of   serving   energy   at   the   time  when  the  PV  is  delivering  energy.    This  is  appropriate,  since  the  goal  is  to  isolate  the  costs  to  serve  the   loads   that   are   being   served   by   PV   rather   than   the   utility   (the   “marginal”   customer   load),   in  addition  to  any  incremental  costs  specific  to  PV  customers.    The  marginal  cost  will  differ  from  the  average  cost  to  the  utility,  as  the  average  cost  will  include  historical  costs  as  well  as  marginal  costs.    For  instance,  the  marginal  cost  of  generation  capacity  represents  the  long  term  costs  to  develop  a  new,  flexible-­‐operation  peaking  power  plant.      This  will  differ  substantially  from  the  SDG&E  average  cost  of  capacity,  which  includes  a  range  of  capacity  resources  with  different  characteristics  and  of  different  vintages.     It  will  also  differ   from  the  short-­‐term  value  of  capacity,  which  reflects  current  market  conditions  for  near-­‐term  capacity.  

The  “average  cost”  approach  proved  impractical  for  two  reasons.    First,  the  study  team  was  unable  to   identify   data   sources   that   would   appropriately   reflect   the   average   costs   for   certain   utility  services,   such   as   “resource   adequacy   capacity”.     Secondly,   the   “average   cost”   approach   made   it  difficult  to  compare  results  for  the  cost  of  services  provided  by  the  utility  to  the  results  of  the  cost  of  services  provided  by  the  PV  customer.    The  use  of  marginal  costs  allows  for  an  “apples  to  apples”  comparison  of   the   results   for   the   cost  of   each   service.    The   results  of   this  analysis  now  show   the  

Page 24: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   13    

marginal  cost  of  services  provided  by  the  utility  and  the  marginal  cost  of  services  provided  by  the  PV  customer.  

2.1.2 Services  Provided  by  the  Distributed  PV  Customer  to  the  Utility    Just  as  there  is  value  to  the  services  provided  by  utilities  to  customers,  customer-­‐owned  PV  systems  provide  services  to  the  utility  and  electric  grid  that  have  value.    These  services  include  not  only  the  energy  produced  by  the  system,  but  also  the  reduction  in  transmission  and  distribution  line  losses  since   that   energy  does  not   need   to  be  delivered   to   the   customer.     Further,   to   the   extent   that   the  distributed  PV   fleet  as  a  whole  can  reduce  additional  procurement  of  resource  adequacy  capacity  and   renewable   energy,   and   avoid   the   need   for   a   certain   amount   of   marginal   transmission   and  distribution  capacity,  these  avoided  costs  are  included.    The  costs  of  these  services  are  defined  by  future  avoided  O&M  expenses  and  future  avoided  capital  costs.      For  brevity,  these  costs  are  often  referred  to  “utility  avoided  costs”  below.      

2.1.3 Utility  Costs  Not  Included  in  This  Study  There  are  a  number  of  other  costs  incurred  by  utilities  on  behalf  of  ratepayers  that  are  included  in  customer   rates   which   are   not   included   in   this   study.     These   other   billed   costs   (Nuclear  Decommissioning,   Competitive   Transition   Charge,   DWR   Bond   Charges,   and   Public   Purpose  Programs)  are  not   impacted  by  distributed  PV  and  are  therefore  excluded  from  this  analysis.  The  allocation  of   these  costs  will  be  accomplished   through   the  ratemaking  process.    Furthermore,   the  societal  costs  and  benefits  of  distributed  PV  are  described  qualitatively   in  section  3.4,  but  are  not  quantified  in  this  study.      

2.2 PV  FLEET  MODELING  METHODOLOGIES  AND  DATA    Table  2  summarizes  the  methodology  and  data  sources  used  to  model  the  distributed  PV  fleet  in  the  SDG&E  service  territory.    The  subsequent  sections  describe  the  details  of  this  modeling,  which  was  performed  by  Clean  Power  Research  (CPR).      

Page 25: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   14    

Table  2.  Summary  of  PV  Fleet  Modeling  Methodology  and  Data  Sources  

  Methodology   Data  Source    

Fleet  Modeling   Fleet  Definition.  The  “Base  Fleet”  consists  of  all  behind-­‐the-­‐meter  PV  systems  in  SDG&E  in  service  at  the  end  of  2012.  This  includes  all  systems  installed  under  CSI,  SGIP,  MASH,  SASH,  ERP,  and  NSHP  programs.  

CPR  PowerClerk  data  and  other  program  data  

Base  Fleet  Capacity.  Calculate  Base  Fleet  capacity  in  MW-­‐AC.  This  is  defined  as  MW-­‐DC-­‐STC  x   loss   factor  x  CEC  efficiency  as  of   the  end  of  2012.  

CPR  PowerClerk  data  and  other  program  data  

Hourly   Fleet   Energy   at   Meter   (HFEM).   Calculate   2012   hourly  production  of  Base   Fleet  at   the   customer  meter.   The   fleet   grew  between   beginning   and   end   of   2012,   so   this   would   be   a  simulation   of   what   the   end-­‐of-­‐year   fleet   would   have   done   for  every  hour  of  year  had  it  been  installed.    

CPR  FleetView  modeling  

Distribution  Loss  Factors  (DLFs).  Use  SDG&E’s  reported  secondary  DLF   values   for   each   hour   of   2012   to   represent   marginal  distribution  losses.  

SDG&E  2012  Hourly  Distribution  Loss  Factors    

Hourly   Fleet   Energy   at   Transmission   (HFET).   Apply   the  marginal  distribution   loss   factors   to   the   HFEM   to   obtain   hourly   energy  (MWh)  avoided  at  transmission  level.  

HFEM  and  Distribution  Loss  Factors    

Effective   Load   Carrying   Capability   (ELCC).   Calculate   Base   Fleet  ELCC  for  2012  using  hourly  SDG&E  loads  and  HFET  dataset.  This  is  the  “effective”  kW  rating  of  fleet  at  the  transmission  system  due  to  match  between  PV  fleet  output  and  load,  including  distribution  losses.  

HFET  and  SDG&E  2012  Hourly  Loads  (CEC  Data  Request)  

Fleet  Variability.   Calculate   the  15-­‐minute   change   in   fleet  output  of   the  Base  Fleet   for  all  of  2012,  at   transmission   level   (including  marginal  distribution  loss  factors).    

CPR  FleetView  modeling  

 

2.2.1 Background  The   cost   of   service   calculations   required   a   “typical”   PV   production   time   series   (i.e.   an   hourly   PV  output  profile)  for  evaluation.  This  time  series  is  used,  for  example,  to  calculate  the  annual  energy  produced  by  PV  and  the  match  between  hourly  PV  output  and  hourly  utility  customer  loads.  

Rather   than  assume  a  single,  defined  PV  system  (e.g.,  a   fixed,  south-­‐facing  system  with  30-­‐degree  tilt   located   in   downtown  San  Diego),   the   actual   SDG&E  distributed  PV   fleet  was  used.   The   actual  fleet,  by  definition,  represents  the  actual  PV  resource  on  the  system,  and  comprises  the  diversity  of  geographical   location,   tracking  attributes,   and   configuration  details   that  would  be   lost  by  picking  only   a   single   representative   system.   Furthermore,   its   production   shape   represents   the   best  

Page 26: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   15    

estimate  for  the  shape  of  the  SDG&E  distributed  PV  fleet  in  the  future,  based  on  the  assumption  that  future  systems  will  be  built  with  similar  geographic  distributions  and  configurations  as  the  existing  fleet.  

Fleet  modeling   is  performed  using  FleetView™,   a   fleet   simulation   tool  developed  by  Clean  Power  Research.  FleetView   incorporates  as-­‐built  PV  system  attributes   from  various   incentive  programs2  and  simulates  them  using  SolarAnywhere®.  SolarAnywhere  includes  a  database  of  solar  irradiance  and  other  meteorological  factors3  as  well  as  a  PV  output  simulation  engine.    

2012  was  taken  as  the  evaluation  year  because  it  was  the  most  recent  complete  year,  incorporating  the  most  recent  load,  PV  systems,  CAISO  costs,  and  other  factors.  The  year  was  shown  (as  described  below  in  section  3.2.5)  to  be  a  typical  year  in  terms  of  annual  PV  production.  

2.2.2 Base  Fleet  Definition  As  shown  in  Figure  3,  the  SDG&E  distributed  PV  fleet  changes  are  ongoing,  and  the  fleet  as  it  existed  at  the  end  of  2012  was  selected  as  the  base  fleet.  This  base  fleet  comprised  a  total  of  17,318  known  grid-­‐connected  distributed  PV  systems  in  the  SDG&E  service  territory  with  a  total  rated  capacity  of  149  MW-­‐AC  (according  to  the  rating  convention  described  in  section  3.2.3).  

Simulations  used  the  meteorological  data  for  2012  and  presumed  the  existence  of  the  base  fleet  for  the  full  year.   In  actuality,  some  of  the  systems  included  in  the  base  fleet  (e.g.,  systems  installed   in  December   2012)   had   not   been   installed   for   the   full   simulation   year.   This   is   intentional   since   the  purpose  of  the  simulations  was  to  obtain  the  correct  production  profile  for  a  static,  representative  PV  fleet.  

                                                                                                                         2  To  calculate  the  Base  Fleet  capacity  for  this  study,  PV  systems  that  were  installed  under  the  California  Solar  Initiative  (CSI),  Multi-­‐Family  Affordable  Solar  Housing  (MASH),  Single-­‐Family  Affordable  Solar  Housing  (SASH),  Self-­‐Generation  Incentive  Program  (SGIP),  Emerging  Renewables  Program  (ERP),  and  New  Solar  Homes  Partnership  (NSHP)  programs  were  included.  These  programs  together  comprise  all  incentive  programs  under  which  distributed  PV  systems  in  SDG&E  territory  have  been  installed  since  1998.    ERP  and  NSHP  are  managed  by  the  California  Energy  Commission,  and  the  others  are  managed  by  the  California  Public  Utilities  Commission.          3  SolarAnywhere  Enhanced  Resolution  was  used,  with  a  resolution  of  approximately  1  km  x  1  km  x  30  minutes.  

Page 27: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   16    

Figure  3.  SDG&E  Distributed  PV  Fleet  Capacity  Over  Time  

 

2.2.3 Rating  Convention  All   system   and   fleet   ratings   use   the   MW-­‐AC   (or   kW-­‐AC)   rating   convention4.   This   convention  incorporates  the  module  PTC  rating,  inverter  losses,  and  other  systems  losses  (such  as  wiring  and  module  mismatch  losses).    

An  example  of  the  rating  method  is  shown  in  Table  3  for  a  sample  system.  FleetView  includes  the  data  necessary  to  simulate  each  system.  Typically  this  includes  the  model  specification  (make  and  model),   the   number   of  modules,   and   the   inverter   specification   (make   and  model).   The   CEC   PTC  module  ratings  and  inverter  efficiencies  are  taken  from  a  look-­‐up  table.  All  systems  are  assumed  to  have  an  85%  loss  factor  (15%  losses).  The  fleet  rating  is  the  sum  of  the  individual  system  ratings.  

Table  3.  Example  System  Rating  Calculation  100  W-­‐DC   DC  module  rating  (PTC)  

                                           X  100             Number  of  modules  X  94.2%   Inverter  load-­‐weighted  efficiency  X  85.0%   Other  loss  factor  

8.01  kW-­‐AC   System  rating      

2.2.4 Fleet  Production  Datasets  Two   time   series   datasets   were   developed,   each   of   which   represents   hourly   PV   fleet   energy  production  as  shown  in  Table  4.    

                                                                                                                         4  This  convention  is  not  to  be  confused  with  the  CEC-­‐AC  method  for  rating,  which  does  not  include  system  losses.  

Page 28: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   17    

Table  4.  HFEM  and  HFET  Datasets  Hourly  Fleet  Energy  at  Meter  (HFEM)  

This  is  the  aggregate  fleet  hourly  output  for  2012,  normalized  on  a  per  MW-­‐AC  basis.  This  data  represents  energy  produced  by  the  systems  as  measured  at  the  system  metering  point  (i.e.  at  the  customer  load).  

Hourly  Fleet  Energy  at  Transmission  (HFET)  

This  is  a  related  data  set  of  hourly  fleet  power,  but  it  includes  the  effect  of  distribution  loss  savings  that  result  from  fleet  production.  It  is  equivalent  to  the  reduction  of  power  delivered  through  the  transmission  system  to  the  SDG&E  distribution  system  delivery  point.  This  set  is  also  normalized  on  a  per  MW-­‐AC  basis.  

   The  details  of  loss  calculations  used  in  preparing  the  HFET  dataset  are  included  in  Appendix  A.  

2.2.5 Evaluation  of  Solar  Resource  in  2012  Since   2012  was   selected   as   the   base   year,   it  was   of   interest   to   determine  whether   this   year  was  unusual  in  terms  of  solar  resource.  To  evaluate  this  question,  SolarAnywhere  was  used  to  simulate  10   sample   PV   systems,   scattered   throughout   the   SDG&E   territory,   over   the   period   1998-­‐2012.  These  systems  were  each  modeled  as   fixed,   south-­‐facing  systems  with  a  30-­‐degree   tilt   angle,   and  the   annual   energy   production   was   used   to   calculate   AC   capacity   factors5.     Figure   4   shows   the  locations  of  these  sample  cities  relative  to  all  PV  systems  in  the  base  fleet.  

Figure  4.  Map  of  Distributed  PV  Systems  and  Sample  Cities  in  SDG&E  Territory6  

 

Capacity  factors  are  shown  for  each  year  and  each  location  in  Figure  5.  The  average  capacity  factor  for   all   sites   and  all   years  was  24.8%,  and   this   agrees  with   the  10-­‐city   average   capacity   factor   for  

                                                                                                                         5  High  resolution  (1  km  x  1  km  x  30  minute)  data  was  used  from  2003-­‐2012,  but  this  was  not  available  for  1998-­‐2002,  so  standard  resolution  (10  km  x  10  km  x  1  hour)  data  was  used  for  this  period.  There  were  short  periods  of  time  missing  from  several  years  of  the  simulation,  especially  2008.  To  account  for  this,  adjustments  were  made  to  the  number  of  hours  used  to  calculate  the  capacity  factor  for  that  year.  6  Map  created  in  Google  Earth.  

Page 29: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   18    

2012,  also  24.8%.  Therefore,  we  conclude  that  2012  may  be  considered  a  typical  year  on  an  energy  basis.  

Figure  5.  AC  Capacity  Factors  for  10  Sample  PV  Systems  Through  SDG&E  Territory  (1998-­‐2012)  

 

2.2.6 Effective  PV  Capacity    As   a   non-­‐dispatchable   resource,   PV   system   or   fleet   ratings   are   not   directly   comparable   to   the  ratings  of  dispatchable  resources,  such  as  fossil-­‐based  thermal  resources.  To  calculate  the  costs  of  capacity-­‐related   services,   then,   an   equivalent   “dependable”   or   “effective”   capacity   must   be  determined.  

Two  measures  of  effective  capacity  are  computed   in  this  study,  each  based  on  the  ability  of  PV  to  match  load  but  based  on  two  separate  methodologies.  The  two  measures  are:  

n Resource   Adequacy   Capacity   (RAC),   used   for   effective   generation   capacity   (this   includes  Effective  Load  Carrying  Capability,  which  is  used  for  effective  transmission  capacity);  and  

n Peak  Load  Reduction  (PLR),  used  for  effective  distribution  capacity  

 Calculating  effective  PV  capacity  requires  accurate  hourly  load  data.    SDG&E  provided  actual  hourly  retail   load   for   the   year   2012,   and   this  was   the   basis   for   all   effective  PV   capacity   calculations.     In  addition,  it  is  important  to  use  PV  output  that  is  time-­‐correlated  with  load  data  (rather  than  “typical  year”   output   data),   and   also   to   simulate   the   output   of   the   full   PV   fleet   rather   than   a   single  representative  PV  installation  because  the  profile  can  different  significantly  from  the  representative  system  profile.    This  is  demonstrated  in  Figure  6,  which  shows  the  differences  in  the  output  profile  of  the  full  SDG&E  PV  fleet,  a  representative  south-­‐facing  system  with  SolarAnywhere  resource  data,  

Page 30: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   19    

and  a  representative  system  with  TMY2  resource  data,  along  with  SDG&E  load  on  the  peak  load  day  in  2012.      

 Figure  6.  PV  Fleet  Output  Compared  to  Single  Representative  System  with  Different  Solar  Resource  

Datasets  and  SDG&E  Load,  Peak  Load  Day  (September  14,  2012)  

 

2.2.7 Resource  Adequacy  Capacity  RAC  is  the  sum  of  the  Effective  Load  Carrying  Capability  (ELCC)  and  the  reserve  margin.  ELCC  is  a  statistical  measure  of  capacity  in  which  hourly  PV  fleet  production  is  compared  against  utility  load  with  the  highest  load  hours  weighted  most  heavily.  The  ELCC  calculation  results  in  the  rating  of  a  baseload  plant  having  the  same  loss  of  load  probability  as  the  PV  fleet  on  an  annual  basis.  ELCC  can  be  thought  of  as  the  contribution  of  PV  towards  meeting  the  peak  load.  

ELCC  is  calculated  in  MW,  but  may  also  be  expressed  as  a  percentage  of  system  or  fleet  rating.    

The  reserve  margin  (assumed  to  be  15%  of  expected  peak  load)  is  the  additional  capacity  to  meet  reliability  standards  over  and  above  the  amount  necessary  to  meet  expected  peak  load.  The  reserve  margin   is  necessary  because  of  uncertainty   in   forecasting  peak   load  for  planning  purposes  and  to  handle   unexpected   outages   of   generating   resources.   Since   PV   reduces   the   system   peak   by   the  amount  of  the  ELCC,  the  required  capacity  for  reserve  resources  is  also  reduced.  Since  the  assumed  reserve  is  15%  of  peak  load,  and  PV  is  able  to  reduce  the  peak  load  by  the  ELCC  amount,  then  PV  reduces  the  amount  of  required  reserves  by  15%  of  ELCC.  

Page 31: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   20    

RAC  is  the  combination  of  ELCC  and  reserve  margin.  For  example,  if  a  PV  system  is  rated  at  100  kW-­‐AC,   the  ELCC  is  determined  to  be  50%  of  rated  capacity,  and  the  reserve  margin   is  15%,  then  the  RAC  would  be  calculated  as:  

RAC  =  100  kW  x  50%  x  (1.15)  =  57.5  kW  

Using  these  methods,  the  RAC  of  the  SDG&E  distributed  PV  fleet  was  calculated  to  be  53.8%  of  its  rating  in  2012.  

2.2.8 Peak  Load  Reduction  A  separate  measure  of  effective  capacity  is  the  PLR.  This  is  calculated  as  the  difference  between  the  peak  load  (at  the  peak  hour)  without  PV  versus  the  “net”  peak  load  after  PV  energy  production  has  been   incorporated   into   the   load  profile.  The  net  peak  may  occur  at   the  same  hour  as   the  original  peak,  or  it  may  shift,  depending  on  load  shapes  and  PV  production  shapes.    

PLR  may  be  expressed  in  MW,  or  it  may  be  expressed  as  a  percentage  of  system  or  fleet  rating.  

Using  these  methods,  the  PLR  of  the  SDG&E  distributed  PV  fleet  was  calculated  to  be  49.8%  of   its  capacity  rating  in  2012.  

Figure  7   illustrates  PLR  by  showing  the  net  retail   load  and  total  retail   load  profiles   for  SDG&E  on  the  peak  load  day  of  September  14,  2012,  and  the  74  MW  of  peak  load  reduction  (at  transmission)  attributable   to   distributed   PV   during   the   peak   load   hour.   The   retail   load   and   distribution   loss  factors   are   used   to   calculate   the   load   at   the   transmission   level   by   applying   the   loss   calculations  described   in   the   Appendix.   This   results   in   the   “Net   Retail   Load”   curve.   Then,   the   load   that   was  served  directly  by  PV  is  added  along  with  the  corresponding  loss  savings.  This  gives  the  load  that  would   have   been   realized   at   transmission   had  PV  not   been  present   on   the   system,   shown   in   the  figure  as  “Total  Retail  Load.”  

Page 32: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   21    

Figure  7.  Peak  Day  Load  

 

2.2.9 Effective  Capacity  in  Future  Years  Effective   capacity   depends   upon   the   hourly   profile   of   the   utility   load   and   the   PV   fleet   output.   As  more   PV   is   installed   on   the   SDG&E   distribution   system,   the   net   load   shape   changes,   so   effective  capacity  must  be  re-­‐calculated  for  future  years.  Under  this  study,  new  load  shapes  were  developed  for  each  year  from  2013  through  2021  based  on  the  load  profile  in  2012.  From  these,  RAC  and  PLR  values  were  calculated  for  each  year.  

Table   5   shows   the   assumptions   used   for   the   analysis.   Fleet   capacity   and   load   growth   rates  correspond   to   data   provided   by   SDG&E,   based   on   forecasts   from   the   CEC   as   part   of   the   2013  Integrated   Energy   Policy   Report   proceeding.   New   hourly   loads   for   each   year   are   calculated   by  starting  with   the  2012   time  series  as   the  base   load   shape,   applying  a   factor   for   load  growth,   and  subtracting   the   expect   PV   production   based   on   HFEM   and   the   amount   of   differential   PV   fleet  capacity.    

Page 33: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   22    

Table  5.  Future  Year  Growth  Assumptions  

  2012   2013   2014   2015   2016   2017   2018   2019   2020   2021  Fleet  Capacity  Growth  Rate  

  9.1%   12.3%   14.9%   16.4%   2.2%   3.3%   7.0%   10.2%   10.2%  

Fleet  Capacity  (MW-­‐AC)  

149   162   182   209   244   249   257   275   303   334  

Differential  Fleet  Cap  -­‐  2012  (MW)  

0   14   33   61   95   100   109   127   155   186  

Inter-­‐year  growth  rate  

  0.952   1.012   1.019   1.021   1.022   1.020   1.023   1.022   1.023  

Load  Scale  Factor   1.000   0.952   0.963   0.981   1.002   1.024   1.045   1.068   1.092   1.116  

 

The  values  of  future  year  effective  capacity  are  shown  in  Table  6.  ELCC,  RAC,  and  PLR  are  calculated  using  the  methods  described  above,  but  using  the  future  year  load  shapes.  Also  shown  are  the  peak  load  and  the  PV  penetration  level  (defined  as  the  PV  fleet  capacity  as  a  percentage  of  SDG&E  peak  load).  

Table  6.  Future  Year  Effective  Capacity  Values  

  2012   2013   2014   2015   2016   2017   2018   2019   2020   2021  Peak  Load  (MW)   4081   3869   3907   3970   4040   4132   4216   4308   4396   4486  

Penetration  (%)   3.6%   4.2%   4.7%   5.3%   6.0%   6.0%   6.1%   6.4%   6.9%   7.5%  

ELCC   46.8%   46.0%   45.3%   44.3%   43.1%   43.1%   42.9%   42.4%   41.5%   40.6%  

Margin   7.0%   6.9%   6.8%   6.6%   6.5%   6.5%   6.4%   6.4%   6.2%   6.1%  

RAC   53.8%   53.0%   52.1%   51.0%   49.6%   49.5%   49.3%   48.8%   47.8%   46.7%  

PLR   49.8%   49.5%   49.6%   49.6%   49.7%   49.8%   49.9%   50.0%   50.1%   50.2%  

 

2.2.10 Fleet  Variability  Determining  the  cost  of  ancillary  services  (described  below  in  section  3.3.3)  requires  the  simulation  of  the  output  of  the  PV  fleet  on  a  15-­‐minute  basis,  which  represents  PV  fleet  output  variability.  This  PV  fleet  power  dataset  was  produced  as  follows.    

Cloud  motion  vectors  are  calculated  at  half-­‐hour  intervals,  and  these  are  used  to  create  interpolated  values  of  clear  sky   index   for  each  minute   in   the   interval.  These  clear  sky   indices  are   then  used   in  combination   with   clear   sky   irradiance   (based   on   values   calculated   for   each   minute)   to   give   1-­‐minute  irradiance  at  ground  level  for  each  grid  square.  To  ensure  data  continuity,  this  process  was  done   in   the   forward   and   backward   directions   and   the   results   were   blended   with   appropriate  weighting  factors.  

Using   this   data,   the   1-­‐minute   power   output   profile   of   each   PV   system   can   be   simulated,   and   the  results  summed  for  every  system  in  the  fleet.  For  the  study,  only  15-­‐minute  data  was  required,  so  the   1-­‐minute   aggregate   fleet   data   was   sampled   at   15-­‐minute   intervals.   The   resulting   dataset   is  shown  in  Figure  8.      

Page 34: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   23    

Figure  8.  15-­‐minute  SDG&E  Distributed  PV  Fleet  Power  Output  in  2012  

 

Ramp  rates  (in  MW  per  minute)  were  then  determined  by  calculating  the  change  in  fleet  power  for  each  interval  and  dividing  by  15  minutes.  Upon  inspection,  the  highest  ramp  rate  (and  many  of  the  top  ramp  rates)  was  found  in  the  hour  or  so  immediately  after  sunrise,  and  this  was  determined  to  be  caused  by  missing  data  in  the  forward  motion  vector.  The  problem  was  that  the  vectors  were  not  possible  to  compute  without  a  clear  image  in  daylight  hours.  These  high  ramp  rates  were  therefore  artificial,  and  all  ramp  rates  were  set  to  zero  during  any  periods  of  missing  data.  

Figure  9  shows   the  absolute  value  of   ramp  rates   for   the   fleet,  and   these  are  sorted  by  magnitude  and   re-­‐plotted   in  Figure  10.  The  maximum  ramp   rate   is  2.04  MW  per  minute,   or  1.3%  of   system  rating  per  minute.  There  are  a   large  number  of  ramp  rates  of  zero,  corresponding  to  night  hours.  There  are  also  a  number  of  ramp  rates  between  zero  and  one  MW  per  minute.  

Page 35: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   24    

Figure  9.  Absolute  Ramp  Rates  in  MW  per  Minute,  SDG&E  Distributed  PV  Fleet,  2012  

 

 

 

Figure  10.  Sorted  Absolute  Ramp  Rates  in  MW  per  Minute,  SDG&E  Distributed  PV  Fleet,  2012  

 

 

 

 

Page 36: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   25    

For  comparison  purposes,  Figure  11  shows  one-­‐minute  ramp  rates  for  a  single  system7  versus  the  entire   fleet.  The   figure   is   for  all  daytime  hours  during   the  single  day   in  2012  (April  4)  having   the  largest  PV  fleet  ramping  event.  Both  curves  are  per  unit  of  rated  capacity.  This  chart  illustrates  the  significant   effect   of   geographic   diversification   on   fleet   variability.   The   highest   ramp   rate   for   the  single   system  on   that   day  was   -­‐25.7%  of   rated  output  per  minute,   as   compared   to   only   -­‐2.8%  of  rated  output  for  the  entire  PV  fleet.  

 

Figure  11.  One-­‐minute  fleet  and  single  system  ramp  rates,  April  4,  2012.  

 

 

   

                                                                                                                         7  This  system  is  fixed,  south-­‐facing  at  a  30-­‐degree  tilt  angle,  located  at  the  capacity-­‐weighted  fleet  centroid  (32.96235  deg.  latitude,  -­‐117.12409  deg.  longitude).  

Page 37: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   26    

2.3 SERVICES  Table   7   provides   a   list   of   the   services   identified   in   this   study,   and   specifies   which   services   are  provided   by   the   utility   and   which   by   the   PV   customer.     The   sections   below   describe   the  methodology,  data  sources,  and  results  for  each  service,  and  provide  a  discussion  of  the  results.    It  should   be   noted   that   the   cost   of   each   service   was   calculated   on   either   an   energy   ($/kWh)   or   a  capacity  ($/kW-­‐year)  basis,  depending  on  the  nature  of  the  service,  and  results  for  each  service  are  presented  accordingly.      

Table  7.  List  of  Services  

Service   Services  Provided  by  Utility  to  PV  Customer  (Utility  Costs)  

Services  Provided  by  PV  Customer  to  Utility  

(Utility  Avoided  Costs)  Energy   X   X  Resource  Adequacy  Capacity   X   X  Ancillary  Services*   X    RPS  Procurement   X   X  Grid  Management   X   X  Transmission  Capacity   X   X  Transmission  O&M   X    Distribution  Station  Capacity   X   X  Distribution  Line  Capacity   X    Distribution  Voltage  Regulation  and  Reactive  Supply*  

X    

Distribution  O&M   X    Interconnection*   X    Metering/Billing/Administration/  Customer  Service*  

X    

 *These  services  reflect  incremental  costs  incurred  by  the  utility  specifically  for  PV  customers.  

2.3.1 Energy  This  service  reflects  both  the  hourly  value  of  energy  delivered  to  the  customer  and  the  hourly  value  of  energy  provided  by  the  distributed  PV  fleet  ($/MWh  at  proxy  customer  location),  based  on  actual  2012  CAISO  real-­‐time  market  prices  and  CAISO  market  forecast  prices  for  2013-­‐2021.    This  hourly  value   includes   the   cost   of   generation,   transmission   losses,   and   congestion   on   the   transmission  system.    Mission  2  substation  is  defined  as  the  SDG&E  system  delivery  point.    Since  the  California  Air  Resources  Board  (CARB)  greenhouse  gas  (GHG)  cap-­‐and-­‐trade  system  did  not  take  effect  until  2013,   an   approximate  GHG   cost  was   added   to   the   hourly   energy   prices   in   2012  prices;   prices   in  2013-­‐2021  already  included  GHG  costs.      

2.3.1.1 Methodology  Actual   2012   hourly   energy   prices   were   obtained   from   the   CAISO’s   Open   Access   Same-­‐time  Information  System   (OASIS)  website.8     5-­‐minute   locational  marginal  prices   (LMPs)   from   the   real-­‐time   market   were   downloaded   for   all   of   2012   for   the   Mission   2   substation   (the   Pnode  

                                                                                                                         8  http://oasis.caiso.com    

Page 38: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   27    

“MISSION_2_N035”)   and   an   average   price   in   $/MWh  was   calculated   for   each   hour   of   2012.     The  annual  average  of  all  hourly  LMPs  in  2012  was  $34.66/MWh.  

Since   these   2012   hourly   energy   prices   did   not   include   GHG   costs,   the   study   team   estimated   CO2  emissions   of   the   marginal   unit(s)   providing   energy   in   SDG&E’s   portion   of   the   CAISO   market   in  2012.    It  was  assumed  this  unit  was  a  natural  gas-­‐fired  GE  LMS  100  unit  with  an  average  heat  rate  of  9.2  MBtu/MWh.      This  heat  rate  was  multiplied  by  the  standard  combustion  value  of  natural  gas  (0.053  metric   ton   CO2   per  MBtu   of   natural   gas)   and   the   GHG   emissions   allowance   clearing   price  from   the   CARB   February   2013   cap-­‐and-­‐trade   market   auction   ($13.62/metric   ton)   to   obtain   the  average  GHG  cost  of  $6.66/MWh.    This  value  was  then  added  to  the  hourly  CAISO  LMPs  in  2012  to  obtain   the   total   hourly   energy   price;   the   average   total   hourly   energy   price   in   2012   was  $41.31/MWh.      

In  2012-­‐2013,  during  CAISO’s  Transmission  Planning  Process  (TPP),  hourly  market  price  forecasts  were  prepared  for  the  years  2017  and  2022.    (Those  are  the  only  years  simulated  by  CAISO).    These  hourly   forecasted   prices   did   include   GHG   costs.     Hourly   prices   for   2013-­‐2016  were   interpolated  from   the   2012   and   2017  prices,   and   prices   for   2018-­‐2021  were   interpolated   from   the   2017   and  2022.    We  note  that  simulated  market  prices  for  interim  years  will  likely  be  impacted  by  resource  additions  and  retirements,  though  it  is  believed  interpolated  prices  represent  an  appropriate  proxy  for   hourly   prices   in   each   intermediate   year.     Average   total   hourly   energy   prices   rose   from  $41.31/MWh  in  2012  to  $53.92/MWh  in  2021.      

These  hourly  energy  prices  for  2012-­‐2021  were  multiplied  by  hourly  PV  fleet  energy  production  in  each  year  (HFET,  as  described  above)  to  obtain  the  total  annual  cost  in  dollars  of  energy  provided  by  the  distributed  PV  fleet.    Utility  avoided  per-­‐unit  cost   is  calculated  by  dividing  the  total  annual  cost  by  annual  PV  fleet  generation  to  obtain  $/kWh.    These  per-­‐unit  energy  costs  were  also  used  as  a  proxy  for  the  cost  of  energy  delivered  from  the  utility  to  the  customer.      

2.3.1.2 Data  Data  sources  for  this  service  were:  

1) CAISO  5-­‐minute  LMPs  for  2012  for  Pnode  “MISSION_2_N035”  from  OASIS  

Page 39: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   28    

 

Figure  12.  Sample  of  Hourly  Energy  Price  Data  in  2012  from  CAISO,  with  GHG  Costs  Added  

 

2) CAISO  2012-­‐2013  TPP  Energy  Price  Forecast  for  2017  and  2022  

 

Figure  13.  Sample  of  Forecasted  Hourly  Energy  Prices  in  2013-­‐2021  

 

Page 40: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   29    

3) CARB  GHG  allowance  clearing  price  from  February  2013  cap-­‐and-­‐trade  market  auction  

4) Hourly  Fleet  Energy  at  Transmission  results  

2.3.1.3 Results  Annual  utility  costs  for  this  service  over  the  ten-­‐year  study  period  are  shown  in  Table  8.  

Table  8.  Utility  Costs  for  Energy  

Year   Cost/kWh  

2012   $                                0.0531  2013   $                                0.0521  2014   $                                0.0512  2015   $                                0.0503  2016   $                                0.0495  2017   $                                0.0485  2018   $                                0.0498  2019   $                                0.0511  2020   $                                0.0525  2021   $                                0.0536  

 

Annual  utility  avoided  costs   for   this  service  over   the   ten-­‐year  study  period  are  shown   in  Table  9.    Utility  costs  and  utility  avoided  costs  are  the  same  for  this  service  because  the  marginal  cost  to  the  utility   of   delivering   energy   to   the   customer   is   equal   to   the  marginal   value   of   the   PV   generation  during  the  hours  when  PV  is  producing  power.      

Table  9.  Utility  Avoided  Costs  for  Energy  

Year   Cost/kWh  

2012    $                                0.0531    2013    $                                0.0521    2014    $                                0.0512    2015    $                                0.0503    2016    $                                0.0495    2017    $                                0.0485    2018    $                                0.0498    2019    $                                0.0511    2020    $                                0.0525    2021    $                                0.0536    

 

2.3.1.4 Discussion  The   energy   forecast   cost   represents   the   marginal   value   of   generation   for   energy   generated   or  procured  by  SDG&E,  as  well  as  the  market  value  for  renewable  energy  generation.    The  CAISO  real-­‐time  or  “spot”  market  prices  are  believed  to  be  the  most  appropriate  prices  to  reflect  the  value  of  PV  generation.      The  real-­‐time  market  prices  were  selected  over  the  day-­‐ahead  market  or  the  hour-­‐ahead  market  because  distributed  PV  output  is  variable,  and  this  most  accurately  reflects  the  cost  of  energy  at  the  time  of  PV  generation.    We  note  that  the  price  differences  between  the  three  market  

Page 41: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   30    

timeframes   are   usually   small,   and   over   the   course   of   the   year   the   average  prices   in   each  market  tend  to  converge.      

GHG  costs  were  added   to   the  CAISO  2012  energy  prices   to  reflect   the  value  of  GHG   in   the  energy  prices.     GHG   costs   were   not   added   to   the   2017   or   2022   market   price   forecast   costs,   since   it   is  assumed  that  the  GHG  costs  are  included  in  the  dispatch  price  of  generators  in  those  years.      

The   estimated   value   of   GHG   in   2012  was   $6.66/MWh,  which   is   based   on   assumptions   about   the  operation  of   the   expected  marginal   unit     (GE  LMS  100  described   in   Section  3.3.2  below)   and   the  February  2013  CARB  auction  market  clearing  price  for  GHG  permits.    We  note  that  a    recent  report  from  CAISO  (First  Quarter  2013  Report  on  Market  Issues  and  Performance,  May  2013)9  estimated  that   market   prices   have   increased   $6.15-­‐6.21/MWh   due   to   CARB   GHG   costs,   so   the   study   team  believes  the  estimate  used  in  this  analysis  was  reasonable.      

2.3.2 Resource  Adequacy  Capacity  Utilities  are  required  to  meet  customer   loads  under  a  range  of  conditions  and  circumstances,  and  California   generators   are   required   to   maintain   available   resources   to   meet   CPUC   “Resource  Adequacy”  requirements  for  generation  during  times  of  system  peak  demand.    This  service  reflects  the  cost  of  providing  reliable  capacity  to  meet  system  load.      

This   study   assumes   the   marginal   capacity   resource   that   would   be   avoided   by   distributed   PV  capacity  would  be  a  natural   gas-­‐fired  GE  LMS  100  peaking  unit.    This  unit   is   appropriate   since   it  would  typically  be  operated  at  the  time  of  distributed  PV  generation,  but  is  a  flexible  resource  that  could  be  used  to  ramp  up  and  down  with  the  variability  of  the  PV  output.    This  is  a  state-­‐of-­‐the-­‐art  generator,  and  many  utilities  in  the  Southwestern  United  states  are  currently  planning  to  use  these  resources   to  meet  marginal   energy   requirements   in   the   future.    This  annual  net   cost   is  used  as  a  proxy   for   the  utility  cost   to  provide  resource  adequacy  capacity.    To  represent   the  capacity  value  provided  by  the  distributed  PV  fleet,  this  annual  net  cost  is  multiplied  by  the  RAC  factor  described  above,  which  captures  the  extent  to  which  PV  fleet  output  matches  the  utility  load  profile.      

2.3.2.1 Methodology  It  was  assumed  that  the  resource  adequacy  capacity  value  is  approximated  by  the  annual  net  cost  of  installing  and  operating  a  new  GE  LMS  100  unit.    Based  on  actual  project  data  assembled  by  Black  &  Veatch   in  2013,   the   levelized   installed  cost  of  a  GE  LMS  100  unit   in  California  was  assumed  to  be  $202.56/kW-­‐year.    A  fixed  operations  and  maintenance  (O&M)  cost  of  $22.33/kW-­‐year  in  2012  was  added   to   this   levelized   installed   cost,   and   the   fixed   O&M   cost   was   escalated   at   three   percent  annually   to   $29.14/kW-­‐year   in   2021.    Net   revenues   earned   by   the   unit   in   the   CAISO   energy   and  ancillary  service  markets  were  subtracted   in  each  year   (net   revenues  varied   from  $3/kW-­‐year   to  $10/kW-­‐year  during   the   study  period  depending   on  market   conditions).     Projected  net   revenues  are  based  on  the  projected  dispatch  of  a  similar  generating  unit  located  in  southern  California  using  regional  production   simulation  modeling  of   the  Western   Interconnection.     The  net   annual   cost   is  the  levelized  installed  cost,  plus  the  fixed  O&M  cost,  minus  the  net  revenues;  annual  values  for  each  

                                                                                                                         9  Available  at  http://www.caiso.com/Documents/2013FirstQuarterReport-­‐MarketIssues_Performance-­‐May2013.pdf      

Page 42: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   31    

are  shown  in  Table  10.    The  net  annual  cost  calculated  in  this  study  rose  from  $218.06/kW-­‐year  in  2012  to  $228.73/kW-­‐year  in  2021.      

The  net  annual  cost  of  a  GE  LMS  100  was  used  as  a  proxy   for   the  utility  cost   to  provide  resource  adequacy  capacity.    To  calculate  the  resource  adequacy  capacity  value  provided  by  the  distributed  PV  fleet,  the  net  annual  cost  was  multiplied  by  the  annual  RAC  value  described  above  in  section  3.2.  

2.3.2.2 Data  Data  sources  for  this  service  were:  

1) Black  &  Veatch  levelized  installed  cost  assumption  for  GE  LMS  100  unit  

2) Black  &  Veatch  fixed  O&M  cost  assumption  for  GE  LMS  100  unit  

3) Net  revenue  results  for  similar  unit  from  Black  &  Veatch  production  cost  model  

Table  10.  Net  Annual  Capacity  Cost  Calculations  

Year   Levelized  Installed  Cost($/kW-­‐Year)  

Fixed  O&M  Cost  ($/kW-­‐Year)  

Net  Revenues  ($/kW-­‐Year)  

Net  Annual  Capacity  Cost  ($/kW-­‐Year)  

2012    $                    202.56     $22.33     $6.84   $218.06    2013    $                    202.56     $23.00     $6.84   $218.73    2014    $                    202.56     $23.69     $6.84   $219.42    2015    $                    202.56     $24.41     $5.95   $221.02    2016    $                    202.56     $25.14     $9.66   $218.04    2017    $                    202.56     $25.89     $8.00     $220.48    2018    $                    202.56     $26.67     $8.00     $221.30    2019    $                    202.56     $27.47     $5.00     $224.64    2020    $                    202.56     $28.29     $6.00     $225.30    2021    $                    202.56     $29.14     $3.00     $228.73    

 

2.3.2.3 Results  Annual  utility  costs  for  this  service  over  the  ten-­‐year  study  period  are  shown  in  Table  11.  

Table  11.  Utility  Costs  for  Resource  Adequacy  Capacity  

Year   Cost/kW-­‐Year  

2012   $218.06    2013   $218.73    2014   $219.42    2015   $221.02    2016   $218.04    2017   $220.48    2018   $221.30    2019   $224.64    2020   $225.30    2021   $228.73    

 

Page 43: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   32    

Annual  utility  avoided  costs  for  this  service  over  the  ten-­‐year  study  period  are  shown  in  Table  12.    Utility  avoided  costs  for  resource  adequacy  capacity  are  equal  to  the  utility  costs  above  multiplied  by  the  RAC  factor  in  each  year.      

Table  12.  Utility  Avoided  Costs  for  Resource  Adequacy  Capacity  

Year   Cost/kW-­‐Year  

2012    $                                117.37    2013    $                                115.82    2014    $                                114.32    2015    $                                112.67    2016    $                                108.06    2017    $                                109.18    2018    $                                109.19    2019    $                                109.55    2020    $                                107.63    2021    $                                106.80    

 

2.3.2.4 Discussion  The  resource  adequacy  capacity  costs  reflect  the  “long-­‐term”  resource  adequacy  costs  of  developing  and  operating  a  state-­‐of-­‐the-­‐art  generating  unit  in  California.    It  is  important  to  distinguish  between  “near-­‐term”   and   “long-­‐term”   capacity   costs.     There   is   an   active   bilateral   market   for   capacity   in  California,  but  this  market  is  generally  limited  to  capacity  available  for  the  next  few  years.    As  there  is  more   generation   capacity   in   California   in   the   next   few   years   than   is   projected   to   be   required,  prices   in   this   market   are   much   lower   than   the   estimated   cost   for   development   of   long-­‐term  resources.    When  considering  the  value  of  new  resources,  utility  resource  planners  typically  use  the  long-­‐term  value  of  capacity  to  assess  the  value  of  an  alternative  resource.      

The  long-­‐term  capacity  costs  developed  by  Black  &  Veatch  are  higher  than  many  other  capacity  cost  estimates  for  the  California  market.    This  cost  estimate  is  based  on  Black  &  Veatch’s  experience  with  developing  LMS  100  units  and  our  understanding  of   the  cost   to  build  and  operate  a  new  peaking  resource  in  California.      

2.3.3 Ancillary  Services  “Ancillary  Services”  include  several  services  that  are  provided  by  the  grid  operator,  in  this  instance  the   CAISO,   that   are   necessary   to   maintain   system   reliability   and   meet   customer   load.     These  services  include  providing  Operating  Reserves  (“Regulation  Up”  and  Regulation  Down”),  which  are  designed   to   meet   minute-­‐to-­‐minute   load   variability,   and   Contingency   Reserves   (“Spinning  Reserves”   and   “Non-­‐Spinning   Reserves”),   which   are   designed   to   meet   load   requirements   in   the  event  of  a  system  emergency.          

A  certain  amount  of  Operating  Reserves  and  Contingency  Reserves  are  provided  by  the  utility  to  all  utility  customers,  while  Operating  Reserves  for  incremental  variability  due  to  PV  are  a  cost  incurred  by   the  utility   specifically   to   serve  PV  customers.     Since  PV  NEM  generation  will   likely  not   impact  system   contingencies,   we   are   only   including   Operating   Reserves   in   our   analysis   of   incremental  ancillary  service  costs  for  PV  customers.    This  cost  is  calculated  using  2012  hourly  ancillary  service  

Page 44: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   33    

prices   from   CAISO,   and   the   15-­‐minute   distributed   PV   fleet   output   simulated   by   Clean   Power  Research.    There  are  no  avoided  ancillary  service  costs  due  to  distributed  PV.      

2.3.3.1 Methodology  To   calculate   ancillary   service   costs   for   load   variability   alone,   an   estimate   was   made   based   on  information  from  the  CAISO  2012  Annual  Report  on  Market  Issues  and  Performance.10    This  report  showed   that   total   ancillary   service   costs   across  CAISO   territory   in  2012  were   approximately   one  percent   of   total   energy   costs.     So   total   SDG&E   ancillary   service   costs   for   load   variability   in   2012  were  calculated  as  one  percent  of  the  total  energy  costs   listed  above  in  section  3.3.1.    This  cost   in  2012  was  escalated  through  2021  in  proportion  to  forecasted  SDG&E  peak  load  growth.      

Hourly   2012   ancillary   service   prices   (for   regulation   up   and   regulation   down   services)   were  downloaded  from  CAISO’s  OASIS  website   for  the  AS_SP26  region  and  the  AS_CAISO_EXP  region   in  the  day-­‐ahead  market  (DAM).    Ancillary  services  are  purchased  in  the  day-­‐ahead,  hour-­‐ahead  and  real-­‐time  markets.     Prices   from   the  day-­‐ahead  market  were   chosen  because  procurement   in   that  market  is  most  robust,  with  minimal  procurement  in  the  hour-­‐ahead  and  real-­‐time  markets.    Prices  from   the   AS_SP26   and   AS_CAISO_EXP   regions  were   both   downloaded   because   the   total  marginal  ancillary   service   price   at   a   particular   location   and   time   is   the   sum   of   the   AS_SP26   and  AS_CAISO_EXP  price.        

To  calculate  the  incremental  ancillary  service  costs  introduced  by  the  distributed  PV  fleet,  the  15-­‐minute   “actual”   PV   fleet   output   for   2012   simulated   by   Clean   Power   Research   was   compared   to  forecasted  PV  fleet  output.    Because  ancillary  services  are  mostly  procured  in  the  day-­‐ahead  market  on  an  hourly  basis,  the  forecasted  PV  fleet  output  in  each  hour  was  set  equal  to  the  PV  fleet  output  in  that  same  hour  on  the  previous  day  (output  from  the  previous  day  gives  a  reasonable  estimate  of  output   on   the   current   day)11.     In   each   15-­‐minute   interval,   actual   output   is   subtracted   from  forecasted   output.     In   each   hour,   the  maximum   difference   between   15-­‐minute   forecasted   output  and  15-­‐minute  actual  output  in  the  positive  direction  is  defined  as  the  regulation  up  requirement,  and   the   maximum   difference   in   the   negative   direction   is   defined   as   the   regulation   down  requirement.    Hourly  regulation  up  and  down  prices  were  multiplied  by   the  hourly  requirements  and   summed   for   all   hours   to   calculate   the   annual   incremental   ancillary   service   cost   for   PV   fleet  variability.     The   2012   value   was   escalated   through   2021   in   proportion   to   forecasted   PV   fleet  capacity  growth.      

Utility  per-­‐unit  cost  for  the  base  ancillary  service  cost  is  calculated  by  dividing  the  total  annual  cost  by  annual  SDG&E  retail  load  to  obtain  $/kWh.    Utility  per-­‐unit  cost  for  incremental  ancillary  service  cost  for  PV  variability  is  calculated  by  dividing  the  total  annual  cost  by  annual  PV  fleet  generation  to  obtain  $/kWh.      

2.3.3.2 Data  Data  sources  for  this  service  were:  

                                                                                                                         10  Available  at  http://www.caiso.com/market/Pages/MarketMonitoring/MarketIssuesPerfomanceReports/Default.aspx.    11  in  practice,  a  more  robust  forecasting  system  would  be  used  that  incorporates  available  meteorological  data  

Page 45: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   34    

1) CAISO  2012  DAM  15-­‐minute  regulation  up  and  regulation  down  prices  for  region  AS_SP26  and  region  AS_CAISO_EXP  

2) 15-­‐minute  PV  fleet  output  

2.3.3.3 Results  Annual   utility   costs   for   this   service   over   the   ten-­‐year   study   period   are   shown   in   Table   13.     As  described   in   the   methodology   above,   incremental   ancillary   service   costs   for   PV   fleet   variability  were  calculated  in  addition  to  the  base  ancillary  service  costs  for  load  variability.    Per-­‐unit  costs  are  greater   for   PV   variability   than   for   load   variability   because   PV   fleet   output   is   generally   less  predictable  than  total  retail  load.      

Table  13.  Utility  Costs  for  Ancillary  Services  

Year   Ancillary  Service  Costs  for  Load  Variability  ($/kWh)  

Incremental  Ancillary  Service  Costs  for  PV  Variability  ($/kWh)  

2012   $0.0005   $0.0018  2013   $0.0005   $0.0018  2014   $0.0005   $0.0018  2015   $0.0005   $0.0018  2016   $0.0005   $0.0018  2017   $0.0005   $0.0018  2018   $0.0005   $0.0018  2019   $0.0005   $0.0018  2020   $0.0005   $0.0018  2021   $0.0005   $0.0018  

 

2.3.3.4 Discussion  Ancillary  service  costs  are  generally  small  in  comparison  to  energy  and  resource  adequacy  capacity  costs,   as  demonstrated  by   the   results   above.     Similarly,   the   incremental   variability   introduced  by  the   distributed   PV   fleet   increases   total   SDG&E   ancillary   service   costs   by   a   relatively   small  proportion—causing   a   5.5   percent   increase   with   a   fleet   of   about   150   MW   in   2012,   and   a   10.9  increase  with  a  fleet  of  over  330  MW  in  2021.      

This  methodology  assumes  that  ancillary  service  costs  increase  linearly  with  respect  to  SDG&E  load  and  the  distributed  PV  fleet  capacity  (i.e.  the  per-­‐unit  cost  remains  constant,  as  shown  in  Table  13  above).    However,  it  is  possible  that  ancillary  service  costs  will  increase  non-­‐linearly  in  the  future  as  distributed  PV  penetration  grows  and   the  proportion  of  wholesale  energy   from  utility-­‐scale  wind  and  solar  resources  rises  to  meet  the  state’s  RPS  requirement.        

2.3.4 RPS  Procurement  All  California  utilities  are  required  to  procure  33  percent  of  their  electricity  from  renewable  sources  by  2020  under  the  current  renewable  portfolio  standard  (RPS)   law.    This  service  reflects  the  cost  differential   between  wholesale   electricity   purchased   from   the   CAISO  market   and   electricity   from  renewable  resources  purchased  through  long-­‐term  power  purchase  agreements  (PPAs).    This  cost  differential   is   referred   to   as   the   “renewable   premium.”     Utility   costs   for   RPS   procurement   are  

Page 46: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   35    

approximated   using   average   historical   PPA   prices,   while   utility   avoided   costs   are   approximated  using  marginal  PPA  prices.      

2.3.4.1 Methodology  Utility  costs  and  utility  avoided  costs  for  RPS  procurement  were  both  approximated  using  marginal  PPA  prices.    The  study   team  investigated  a  number  of  data  sources,   including  Renewable  Auction  Mechanism   (RAM)   contracts   and   PPAs   signed   by   public   utilities   in   California,   but   the   prices   for  these  contracts  are  usually  confidential.     It  was  publicly   reported   that   the  average  price   from  the  first  RAM  auction  (which  closed  in  early  2012)  was  below  $89/MWh.    In  addition,  57  percent  of  all  solar  PV  project  PPAs  over  1  MW  signed  by  California   investor-­‐owned  utilities   in  2011  and  2012  were   below   $89/MWh.     In   late   2012,   the   City   of   Palo   Alto   signed   a   solar   PV   project   PPA   for  $77/MWh.     Taking   all   these   into   account,   the   study   team   estimated   a   marginal   PPA   price   of  approximately  $85/MWh.    This  is  assumed  to  represent  the  marginal  RPS  procurement  cost  for  the  utility.      

To  calculate  the  renewable  premium  for  marginal  RPS  procurement,  the  average  CAISO  total  energy  price  was  subtracted  from  the  base  price  of  $85/MWh  in  each  year.    The  remainder  was  multiplied  by  the  RPS  requirement  in  each  year  (which  rises  from  20  percent  in  2012  to  33  percent  in  2021).    The   renewable   premium   for   marginal   RPS   procurement   rises   from   $8.74/MWh   in   2012   to  $18.80/MWh  in  2021.      

2.3.4.2 Data  Data  sources  for  this  service  were:  

1) CPUC  RPS  contract  information,  RAM  filings,  and  City  of  Palo  Alto  Feed-­‐in  Tariff  information  

2) Average  annual  CAISO  energy  prices  for  2012-­‐2021  (described  above  in  section  3.3.1)  

2.3.4.3 Results  Annual  utility  costs  for  this  service  over  the  ten-­‐year  study  period  are  shown  in  Table  14.  

Table  14.  Utility  Costs  for  RPS  Procurement  

Year   Cost/kWh  

2012    $                    0.0087    2013    $                    0.0090    2014    $                    0.0101    2015    $                    0.0112    2016    $                    0.0124    2017    $                    0.0138    2018    $                    0.0152    2019    $                    0.0167    2020    $                    0.0183    2021    $                    0.0188    

 

Annual  utility  avoided  costs  for  this  service  over  the  ten-­‐year  study  period  are  shown  in  Table  15.    Utility   costs   and   utility   avoided   costs   for   this   service   are   the   same   since   both   are   based   on   the  marginal  renewable  PPA  price.      

Page 47: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   36    

Table  15.  Utility  Avoided  Costs  for  RPS  Procurement  

Year   Cost/kWh  

2012    $                    0.0087    2013    $                    0.0090    2014    $                    0.0101    2015    $                    0.0112    2016    $                    0.0124    2017    $                    0.0138    2018    $                    0.0152    2019    $                    0.0167    2020    $                    0.0183    2021    $                    0.0188    

 

2.3.4.4 Discussion  The   renewable   energy   market   is   extremely   competitive   in   California,   with   PPA   prices   for   RPS  contracts   dropping   significantly   in   the   last   several   years.     This   has   been   largely   driven   by   the  decreasing  price  of  PV  modules,  which  has  also  benefitted  the  distributed  PV  market.    Since  utility-­‐executed   PPA’s   signed   with   renewable   generator   in   California   are   confidential,   the   estimated  marginal   cost   here   is   based   on   limited   information.     This   information   is,   however,   indicative   of  current  market  prices.      

This   analysis   assumes   the   current   prices   are   an   appropriate   proxy   value   for   future   RPS  procurement.     While   prices   have   declined   dramatically   in   the   last   several   years   for   utility-­‐scale  renewables,   the   expiration   of   federal   investment   tax   credits   for   renewables   may   counter   that  decline.     Further,   marginal   RPS   procurement   costs   may   increase   or   decrease   more   dramatically  over  the  ten-­‐year  study  period,  depending  on  technological  progress,  economic  trends,  renewable  energy  market  dynamics,  or  other  factors.      

2.3.5 Grid  Management  This   service   reflects   the   cost   to   grid   users   (e.g.   utilities)   for   grid   operator   (CAISO)   capital   and  personnel   charges,   and   is   measured   in   $/MWh   transmitted   over   the   CAISO   high-­‐voltage  transmission  system  in  California.      

2.3.5.1 Methodology  The  CAISO-­‐approved  grid  management  charge  in  2012  is  $0.3895/MWh.12    This  charge  is  the  same  for   utility   costs   and   utility   avoided   costs.     It   is   escalated   at   three   percent   annually   for   inflation  through  2021.      

2.3.5.2 Data  The  data  source  for  this  service  was  the  2012  CAISO  Grid  Management  Charge  Rates  Book,  as  shown  in  Figure  14.      

                                                                                                                         12  http://www.caiso.com/Documents/2013FinalBudget-­‐GMCRatesBook.pdf  

Page 48: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   37    

 

Figure  14.  CAISO  Grid  Management  Charge  Rates  Book  Fee  Table  

2.3.5.3 Results  Annual  utility  costs  for  this  service  over  the  ten-­‐year  study  period  are  shown  in  Table  16.  

Table  16.  Utility  Costs  for  Grid  Management  

Year   Cost/kWh  

2012   $0.0004  2013   $0.0004  2014   $0.0004  2015   $0.0004  2016   $0.0004  2017   $0.0005  2018   $0.0005  2019   $0.0005  2020   $0.0005  2021   $0.0005  

 

Annual  utility  avoided  costs  for  this  service  over  the  ten-­‐year  study  period  are  shown  in  Table  17.  

Table  17.  Utility  Avoided  Costs  for  Grid  Management  

Year   Cost/kWh  

2012   $0.0004  2013   $0.0004  2014   $0.0004  2015   $0.0004  2016   $0.0004  2017   $0.0005  2018   $0.0005  2019   $0.0005  2020   $0.0005  2021   $0.0005  

 

2.3.5.4 Discussion  This  is  a  small  but  real  cost  of  delivering  electricity,  thus  it  must  be  accounted  for  within  the  cost  of  service.      

Page 49: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   38    

2.3.6 Transmission  Capacity  This  service  reflects  the  capital  cost  of  building  high-­‐voltage  transmission  lines  to  deliver  electricity  from  generators   to   customers.    The  projected  utility   costs   for  marginal   transmission  capacity  are  based   on   SDG&E’s   recently   constructed   Sunrise   Powerlink   project.    While   the   Sunrise   Powerlink  project   is   not   the   “marginal”   transmission   project   for   SDG&E,   there   is   no   planned   transmission  approved   for   SDG&E   that  would   represent   incremental   transmission   capacity.     In   the   absence   of  any   better   information,   Sunrise   Powerlink   will   serve   as   an   appropriate   proxy   for   new   SDG&E  transmission   capacity   since   it   is   a   high-­‐voltage   transmission   project   located   within   the   SDG&E  service  territory  and,  being  completed  and  energized  in  2012,  the  costs  are  current  and  indicative  of  the  cost  of  new  transmission.      

2.3.6.1 Methodology  Marginal  transmission  capacity  costs  were  calculated  by  taking  the  annual  revenue  requirement  for  the   Sunrise   Powerlink   transmission   line   in   2012   ($239,900,000),   and   dividing   it   by   forecasted  annual  SDG&E   load  over   the  study  period  (20,436,308,362  kWh)  and  8,760  hours  per  year.    This  yields   a   levelized  marginal   transmission   capacity   cost   of   $102.83/kW-­‐year,  which   represents   the  utility  cost  for  transmission  capacity.    This  is  escalated  at  three  percent  annually  for  inflation.          

This  cost  is  multiplied  by  the  ELCC  value  of  the  distributed  PV  fleet  in  each  year  to  obtain  the  utility  avoided  cost   for   transmission  capacity.    The  ELCC  value  represents   the  effective  capacity   that   the  PV  fleet  provides  at  the  transmission  level.    

2.3.6.2 Data  Data  sources  for  this  service  were:  

1) SDG&E  revenue  requirement  for  Sunrise  Powerlink  transmission  project  

2) Annual  ELCC  values  for  the  distributed  PV  fleet  calculated  by  Clean  Power  Research  

2.3.6.3 Results  Annual  utility  costs  for  this  service  over  the  ten-­‐year  study  period  are  shown  in  Table  18.  

Table  18.  Utility  Costs  for  Transmission  Capacity  

Year   Cost/kW-­‐year  

2012   $102.83  2013   $105.92  2014   $109.10  2015   $112.37  2016   $115.74  2017   $119.21  2018   $122.79  2019   $126.47  2020   $130.27  2021   $134.17  

 

Page 50: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   39    

Annual  utility  avoided  costs  for  this  service  over  the  ten-­‐year  study  period  are  shown  in  Table  19.    Utility   avoided   costs   are   equal   to   the   utility   costs   multiplied   by   the   annual   ELCC   value   for   the  distributed  PV  fleet.      

Table  19.  Utility  Avoided  Costs  for  Transmission  Capacity  

Year   Cost/kW-­‐year  

2012   $48.13  2013   $48.77  2014   $49.43  2015   $49.81  2016   $49.88  2017   $51.33  2018   $52.68  2019   $53.63  2020   $54.11  2021   $54.48  

 

2.3.6.4 Discussion  In  the  absence  of  any  identified  marginal  transmission  facilities,  the  Sunrise  Powerlink  project  cost  is  the  best  proxy  for  marginal  transmission  capacity  costs  for  several  reasons,  including:  1)  the  cost  data  are  current  since  the  project  was  completed  recently,  2)  cost  data  on  the  project  is  public  and  has  been  thoroughly  vetted  through  a  FERC  proceeding,  and  3)  the  project  is  a  major  transmission  line  that  provides  capacity  for  SDG&E.        

2.3.7 Transmission  O&M  This  service  reflects  the  cost  of  operating  and  maintaining  the  high-­‐voltage  transmission  system.    It  is  assumed   that   transmission  O&M  costs  are   fixed  based  on   transmission  capacity,   thus   they    are  not   avoided   by   PV   generation   on   the   distribution   system.     Thus,   there   is   a   utility   cost   for  transmission  O&M  but  not  a  utility  avoided  cost.    The  cost  is  based  on  the  SDG&E  transmission  O&M  revenue  requirement.      

2.3.7.1 Methodology  Transmission  O&M  costs  were  calculated  by  taking  the  total  annual  Transmission  Revenue  Requirement  amount  specified  in  SDG&E’s  TO3  Cycle  6  FERC  filing  in  2012  and  isolating  the  amount  specified  for  transmission  O&M  ($47,112,000).    This  amount  is  escalated  at  three  percent  annually  for  inflation.    Utility  per-­‐unit  cost  is  calculated  by  dividing  the  total  annual  cost  by  annual  SDG&E  peak  load  to  obtain  $/kW-­‐year.      

2.3.7.2 Data  The  data  source  for  this  service  was  the  SDG&E  Transmission  Revenue  Requirement  in  SDG&E  TO3  Cycle  6  FERC  filing  and  SDG&E  annual  retail  load.  

2.3.7.3 Results  Annual  utility  costs  for  this  service  over  the  ten-­‐year  study  period  are  shown  in  Table  20.  

Page 51: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   40    

Table  20.  Utility  Costs  for  Transmission  O&M  

Year   Cost/kW-­‐year  

2012    $                        11.55    2013    $                        12.56    2014    $                        12.83    2015    $                        13.02    2016    $                        13.19    2017    $                        13.35    2018    $                        13.52    2019    $                        13.66    2020    $                        13.82    2021    $                        13.99    

 

2.3.7.4 Discussion  While  reviewing  the  O&M  cost  data  reported  in  SDG&E’s  2012  Transmission  Revenue  Requirement  FERC   filing,  essentially  all  of   these  costs  were  deemed   to  be   fixed  based  on  existing   transmission  capacity,   i.e.   there   were   no   significant   variable   cost   components   The   study   team   found   no  conclusive   studies   or   evidence   that   distributed   PV   will   avoid   transmission   O&M   costs   for   the  existing  system.      

2.3.8 Distribution  Station  Capacity  The  addition  of  distributed  PV  will  reduce  demand  on  the  SDG&E  system,  and  it  is  assumed  this  will  likely  reduce  the  need  for  some  substation  capacity.    This  service  reflects  the  capital  cost  of  building  distribution   substations   in  SDG&E   territory,   including   substation   land,   structures  and  equipment.    Utility  costs  and  utility  avoided  costs  are  based  on  the  SDG&E  GRC  Phase  II  estimates  of  marginal  distribution  substation  capacity  costs;  utility  avoided  costs  include  the  PLR  factor  of  the  distributed  PV  fleet.      

2.3.8.1 Methodology  Substations  are  designed  to  meet  specific  requirements  and  can  vary  substantially   in  design  from  one   to   the   next,   hence   it   is   impossible   to   develop   a   “generic”   cost   for   distribution   substation  capacity.    To  develop  a  cost  to  reflect  the  avoided  substation  capacity,  the  study  team  assumed  the  marginal   cost  would  approximate   the  historical   costs   for   substation  capacity.    The  utility   cost   for  distribution  substation  capacity  is  based  on  an  estimate  in  the  2012  SDG&E  GRC  Phase  II  Testimony  of   $27.85/kW-­‐year.13     This   is   escalated   at   three   percent   annually   for   inflation.     For   the   utility  avoided  cost,   it   is  multiplied  by   the  Peak  Load  Reduction  (PLR)   factor  described  above   in  section  3.2.      

2.3.8.2 Data  Data  sources  for  this  service  were:  

1) Marginal  Distribution  Capacity  costs  in  SDG&E  2012  GRC  Phase  II  Testimony  

2) Peak  Load  Reduction  factors  calculated  by  Clean  Power  Research  

                                                                                                                         13  Taken  from  testimony  by  Robert  Ehlers.  

Page 52: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   41    

2.3.8.3 Results  Annual  utility  costs  for  this  service  over  the  ten-­‐year  study  period  are  shown  in  Table  21.  

Table  21.  Utility  Costs  for  Distribution  Station  Capacity  

Year   Cost/kW-­‐year  2012   $27.85  2013   $28.69  2014   $29.55  2015   $30.43  2016   $31.35  2017   $32.29  2018   $33.25  2019   $34.25  2020   $35.28  2021   $36.34  

 

Annual  utility  avoided  costs  for  this  service  over  the  ten-­‐year  study  period  are  shown  in  Table  22.  

Table  22.  Utility  Avoided  Costs  for  Distribution  Station  Capacity  

Year   Cost/kW-­‐year  2012   $13.86  2013   $14.21  2014   $14.65  2015   $15.11  2016   $15.59  2017   $16.09  2018   $16.60  2019   $17.14  2020   $17.69  2021   $18.26  

 

2.3.8.4 Discussion  The  study   team   investigated   the   issue  of   avoided  distribution  capacity  due   to  distributed  PV.    To  date,   there   has   been   no   conclusive   study   that   has   identified   which   distribution   system   cost  components   are   avoided   by   PV,   either   in   SDG&E   territory   or   elsewhere.     It   is   likely   that   this  depends   largely   on   the   characteristics   of   individual   distribution   circuits   as   well   as   the  characteristics  of  the  distributed  PV  systems  interconnected  to  each  circuit;  for  instance,  PV  would  not  avoid  capacity  on  a  distribution  circuit  with  a  night-­‐time  peak  load.    However,  the  study  team  acknowledged  that  there  is  likely  some  benefit  from  PV  in  terms  of  avoided  distribution  capacity.      

It   was   decided   for   the   purposes   of   this   study   that   PV   could   avoid   capacity   at   the   distribution  substation   level,   because   there   is   sufficient   aggregation   of   individual   PV   systems   to   provide  dependable   capacity.     It   was   decided   that   PV  would   not   avoid   capacity   at   the   line   level   because  there  is  a  high  probability  that  none  of  the  PV  systems  interconnected  to  a  particular  line  would  be  operating  during  peak  load.    This  is  why  the  PV  fleet  is  assumed  to  provide  avoided  utility  costs  for  distribution   substation   capacity,   but   not   for   distribution   line   capacity.     The   distribution   system,  

Page 53: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   42    

including  both   substations  and   lines,   are  designed   to  meet  peak   load,   so   the  avoided  distribution  substation  capacity  is  valued  only  to  the  extent  that  the  PV  fleet  reduces  peak  load.      

It  should  be  noted  that  this  study  made  a  simplifying  assumption  to  treat  all  of  SDG&E’s  territory  as  a   single   planning   region,   and   compared   the   total   SDG&E   hourly   load   profile   to   the   total   PV   fleet  output  profile  to  calculate  the  PLR  factor.    A  more  accurate  approach  would  have  been  to  compare  the  load  profile  and  PV  output  profile  within  each  distribution  planning  region  or  even  within  each  distribution   circuit,   and   to   calculate   a  PLR   factor   specific   to   each   area.     But   this  was  not   feasible  given  the  level  of  data  to  which  the  study  team  had  access.      

Avoided   distribution   capacity   costs   could   be   significantly   higher   or   lower   than   the   results   above  indicate,   and   it   is  very   likely   that   they  will   vary  based  on   location.    With  more  detailed,   location-­‐specific  data  on  the  distribution  system,  a  future  study  could  provide  a  more  precise  answer.        

2.3.9 Distribution  Line  Capacity  This   service   reflects   the   capital   cost   of   building   distribution   lines   in   SDG&E   territory,   including  poles,  towers,  overhead  and  underground  conductors,  conduit,  transformers,  and  all  other  devices  within  the  distribution  system  (except  substations).    Utility  costs  are  based  on  the  SDG&E  2012  GRC  Phase   II   estimates   of  marginal   distribution   line   capacity   costs.     It   is   assumed   that   distributed  PV  does  not  avoid  any  distribution  line  capacity  costs  (see  discussion  above  in  section  3.3.8.4).      

2.3.9.1 Methodology  Utility  costs  for  distribution  line  capacity  are  calculated  based  on  the  GRC  Phase  II  Testimony  on  Marginal  Distribution  Capacity  costs14  which  indicates  a  cost  of  $74.06/kW-­‐year  in  2012,  which  is  escalated  at  three  percent  annually  for  inflation.      

2.3.9.2 Data  

The  data  source  for  this  service  was  the  SDG&E  2012  GRC  Phase  II.  

2.3.9.3 Results  Annual  utility  costs  for  this  service  over  the  ten-­‐year  study  period  are  shown  in  Table  23.  

Table  23.  Utility  Costs  for  Distribution  Line  Capacity  

Year   Cost/kW-­‐year  

2012   $74.06  2013   $76.28  2014   $78.57  2015   $80.93  2016   $83.36  2017   $85.86  2018   $88.43  2019   $91.08  2020   $93.82  2021   $96.63  

                                                                                                                           14  Taken  from  testimony  by  Robert  Ehlers.  

Page 54: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   43    

2.3.9.4 Discussion  For   a   discussion   of   why   distributed   PV   is   assumed   not   to   avoid   distribution   line   capacity,   see  section  3.3.8.4.      

2.3.10 Distribution  Voltage  Regulation  and  Reactive  Supply  A  major   concern   of   utilities   in   integrating   customer-­‐sited   generation,   including  distributed  PV,   is  the  potential   impact  of  voltage  disturbances  that  can  occur  when  there   is  a  substantial  amount  of  energy  from  the  customer-­‐sited  generators  flowing  into  the  distribution  system  (e.g.  at  noon  on  a  sunny  day  with  low  load)  and  there  is  a  sudden  change  in  generation  (e.g.  when  a  cloud  passes  over  and  causes  a  brief  dip  in  PV  output).    If  these  voltage  fluctuations  are  large  enough  to  exceed  ANSI  standard   voltage   limits   on   a   particular   circuit,   they   can   cause   a   number   of   impacts,   including  damage  to  customer-­‐owned  electrical  equipment  or  even  power  outages.    While  voltage  fluctuation  is   a   very   real   concern,   the   potential   issues  will   depend   on   the   loading   of   individual   feeders   and  circuits,  and  it  is  difficult  to  generalize  about  when  there  will  be  a  problem  on  an  individual  circuit,  or   the  mitigation  measures   that  will   be   required   to   resolve   the   problem.     Historically,   the   FERC  model   interconnection   procedures   established   a   threshold—once   distributed   generation   exceeds  15   percent   of   the   peak   load   on   a   circuit,   fast-­‐track   interconnection   approval   is   not   allowed   and  additional   interconnection   studies   are   required;   this  was   based   on   an   assumption   that   above   15  percent   penetration   voltage   fluctuations   and   other   stability   problems   on   the   distribution   system  are  much  more  likely  to  manifest.  However,  recent  experience  in  California  and  in  Germany  (where  PV   penetration   is   already   very   high)   suggests   that   on   average   individual   circuits   will   begin   to  experience  problems  when  aggregate  PV  penetration  reaches  20-­‐30  percent  of  circuit  peak  load.    It  is  important  to  note,  though,  that  this  is  completely  dependent  on  the  characteristics  of  each  circuit  (load  profile,   PV   output   profile,   location   of   PV   on   the   circuit,   X/R   ratio   at   the   PV   location   on   the  circuit,  type  of  circuit,  circuit  minimum  load,  and  existing  voltage  regulation  equipment).      

This  service  reflects  the  incremental  cost  incurred  by  the  utility  to  install  new  equipment  to  ensure  proper   voltage   regulation   and   reactive   power   supply   on   the   distribution   system   due   to   stability  issued   caused   by   distributed   PV.     This   cost   is   expected   to   grow   over   time   as   the   amount   of  distributed  PV  installations  increases.      

2.3.10.1 Methodology  To   identify   potential   problems   with   the   distribution   system,   SDG&E   developed   a   projection   of  customer  solar  installations  by  circuit  for  the  738  distribution  circuits  (in  year  2020)  that  make  up  its  distribution  system.    This  is  based  on  the  total  expected  PV  capacity  forecasted  by  the  CEC  in  its  2012  demand  forecast  and  SDG&E  assumptions  about  load  conditions  on  each  circuit.      

Because  it  is  not  possible  to  know  exactly  what  mitigation  measures  are  required  without  detailed  modeling   of   each   circuit   (and   because   it   is   impossible   to   determine   how   the   utilization   of   each  circuit  will  be   impacted  by  changes   in   load  over  the  study  period  unrelated  to  the  addition  of  PV,  and  how  this  may  impact  the  need  for  mitigation)  a  simplifying  assumption  was  made  that  once  a  circuit   reaches   25   percent   PV   penetration,   the   installation   of   a   Static   VAR   Compensator   (SVC)   is  required  to  stabilize  voltage  fluctuations  and  maintain  reliability  on  that  circuit.      

Using  the  following  assumptions  as  a  basis  for  addition  of  dynamic  voltage  support  (e.g.  SVCs),  the  study  team  developed  cost  assumptions  for  the  installation  of  SVCs  on  each  circuit:  

Page 55: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   44    

n SVCs  systems  installed  will  be  sized  in  the  tens  of  kVARs  

n Typical  costs  for  these  systems  of  this  size  are  $200/kVAR  

n SVCs  will  provide  approximately  +/-­‐  5  percent  voltage  support  to  each  affected  feeder,  using  power  factor  of  0.95  leading/lagging  as  a  proxy    

 Table  24  shows  the  SDG&E  forecast  of  distribution  circuits  in  each  year  which  exceed  the  25  percent  penetration  threshold.    SDG&E’s  forecast  did  not  extend  past  2020,  so  the  increase  in  2021  is  assumed  to  be  equal  to  2020.    

Table  24.  SDG&E  Forecast  of  Distribution  Circuits  with  PV  Penetration  Greater  Than  25  Percent  

  2012   2013   2014   2015   2016   2017   2018   2019   2020   2021  

Cumulative  circuits  over  

25%  

49   56   70   93   103   107   109   120   135   150  

Annual  increase  in  circuits  over  

25%  

22   7   14   23   10   4   2   11   15   15  

 

In  each  year,   the  number  of  new  circuits  exceeding   the  25  percent   threshold   is  multiplied  by   the  kVAR  of  support  needed  on  each  circuit  and  the  $200/kVAR  cost  of  an  SVC;  this  yields  the  annual  incremental   cost   of   distribution   voltage   regulation   and   reactive   supply   for   distributed   PV   on  SDG&E’s  distribution  system.    Annual  incremental  costs  are  divided  by  the  capacity  of  PV  installed  in  each  year  to  obtain  $/kW-­‐year.    SDG&E’s  forecast  did  not  extend  past  2020,  so  costs  in  2021  are  assumed  to  be  equal  to  2020.      

2.3.10.2 Data  Data  sources  for  this  service  were:  

1) SDG&E  Data  Request  response  of  June  6,  2013  2) Black  &  Veatch  Assumption  of  Static  VAR  Compensator    Cost  -­‐  $200/kVAR  

2.3.10.3 Results  Though   it   is  difficult   to  project  exactly  when   these   costs  will  be   required,  using   the  methodology  above   provides   an   estimate   of   the   annual   utility   costs   for   this   service   in   each   year   of   the   study  period,  as  shown  in  Table  26.  

   

Page 56: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   45    

Table  25.  Utility  Costs  for  Distribution  Voltage  Regulation  and  Reactive  Supply  

Year   Total  Incremental  

SVC  Cost  ($/year)  

Cost/kW-­‐year  

2012   $1,516,817   $                                2.33  2013   $450,140   $                                2.33  2014   $716,047   $                                2.33  2015   $1,428,406   $                                2.33  2016   $1,265,108   $                                2.33  2017   $404,410   $                                2.33  2018   $224,035   $                                2.35  2019   $833,292   $                                2.35  2020   $1,477,697   $                                2.35  2021   $1,477,697   $                                2.60  

 

2.3.10.4 Discussion  Due  to  variability  in  the  amount  of  PV  assumed  to  be  installed  in  each  year  (and  thus  variability  in  the   number   of   circuits   exceeding   the   25   percent   penetration   threshold),   annual   costs   vary  significantly  throughout  the  study  period.      

2.3.11 Distribution  O&M  This   service   reflects   the   cost   of   operating   and   maintaining   the   distribution   system   in   SDG&E  territory.     Utility   costs   for   this   service   are   based   on   the   SDG&E  General   Rate   Case   (GRC)   annual  revenue  requirement   for  distribution   lines.     It   is   assumed   that  distributed  PV  does  not  avoid  any  distribution  O&M  costs,  since  these  are  fixed  costs  based  on  existing  distribution  capacity.      

2.3.11.1 Methodology  Utility  costs  for  distribution  O&M  were  based  on  the  Distribution  O&M  annual  revenue  requirement  from   the   SDG&E   2012   GRC   ($127,387,000).15     This   is   escalated   at   three   percent   annually   for  inflation.    Utility  per-­‐unit  cost  is  calculated  by  dividing  the  total  annual  cost  by  peak  SDG&E  retail  load  to  obtain  $/kW-­‐year.      

2.3.11.2 Data  The  data  source  for  this  service  was  the  Distribution  O&M  costs  in  SDG&E  2012  GRC  Testimony.  

2.3.11.3 Results  Annual  utility  costs  for  this  service  over  the  ten-­‐year  study  period  are  shown  in      

                                                                                                                         15  Taken  from  testimony  by  Scott  Furgerson.  

Page 57: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   46    

Table  26.  

   

Page 58: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   47    

Table  26.  Utility  Costs  for  Distribution  O&M  

Year   Cost/kW-­‐year  

2012    $                              31.22    2013    $                              33.96    2014    $                              34.69    2015    $                              35.20    2016    $                              35.66    2017    $                              36.11    2018    $                              36.56    2019    $                              36.95    2020    $                              37.37    2021    $                              37.82    

 

2.3.11.4 Discussion  As   with   distribution   capacity,   there   is   still   debate   about   whether   distributed   PV   avoids   any  distribution   O&M   costs.     After   reviewing   the   O&M   cost   data   reported   in   SDG&E’s   2012   GRC  testimony,   essentially   all   of   these   costs   were   deemed   to   be   fixed   based   on   existing   distribution  capacity,   i.e.   there   were   no   significant   variable   cost   components.     The   study   team   found   no  conclusive  studies  or  evidence  to  support  the  claim  that  PV  does  avoid  distribution  O&M  costs,  and  it  was  decided  that  there  is  no  avoided  utility  cost  for  distribution  O&M  due  to  PV.      

2.3.12 Interconnection  For  the  study  purpose,  the  team  considered  one-­‐time  costs  for  interconnecting  PV  NEM  customers  primarily  resulting   from  NEM  interconnection  application  processing,  PV  NEM   inspections,  meter  replacements   and/or   reprogramming.     Based   on   the   information   provided   by   SDG&E,   it   was  difficult   to  distinguish  one-­‐time   Interconnection   costs   from   the   fixed,   ongoing  overhead   costs   for  Metering,  Billing,  Administration  and  Customer  Service.    This  is   largely  because  many  of  the  same  staff  are  supporting  both  the  interconnection  of  new  systems  and  the  administration  of  the  installed  systems.        

2.3.12.1 Methodology  The   analytic   approach   began   with   parsing   the   SDG&E-­‐provided   cost   information   into   fixed   and  variable  components,  as  well  as  segregating  this  between  interconnection  and  administrative  costs.    SDG&E  provided  Black  &  Veatch  with  cost  information  by  program  rather  than  by  service  provided  to  customers,  as  described  in  Table  27.      SDG&E  did  not  provide  a  breakdown  of  their  functional/organizational  costs  specifically  into  fixed  and  variable   components.     In   response,   the  Black  &  Veatch   created  a  proxy  model  using   the   cost  explanations  provided  by  SGD&E  during  data  response  calls  along  with  the  team’s  experience  and  expertise  in  business  process  evaluations,  particularly  in  distributed  generation  cost  analyses.    The  proxy   model   helped   examine   the   relative   costs   related   to   interconnecting   a   new   PV   NEM  installation  (as  an  incremental  or  volume-­‐based  cost)  from  those  incurred  by  SDG&E  to  administer  and   manage   the   NEM   program   (fixed   costs   and   those   likely   to   be   averaged   across   all   NEM  customers).    The  breakdown  between  fixed  and  variable  costs  is  shown  in  Table  28.        

Page 59: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   48    

Table  27.  NEM  Interconnection  and  Administrative  Program  Cost  Categories      

Cost  Category   Description   Cost  Treatment  For  Model   Assumptions  

Recurring  or    

One-­‐Time  

NEM  1  kW  -­‐  1000  kW  (NEM  Team)  

SDG&E  has  comprehensive  team  with  10.5  FTE’s  to  manage  the  NEM  process  from  start  to  finish.    Includes  field  visits,  inspections,  and  acceptance.  Three  FTE’s  dedicated  to  managing  and  maintaining  GIS  functionality  and  interface  with  GIS  system.  

Fixed  annual  cost,  escalated  from  2012  rate  at  inflation.    Includes  labor  and  non-­‐labor  costs.  

Reliance  on  enhanced  software  (DIIS)  will  offset  NEM  connection  volume  increases.    SDGE  states  costs  may  increase  due  to  volume  

Recurring  annually    

2012  California  Solar  Initiative  

One  FTE  to  administer  and  support  the  program  for  SDG&E.  

Fixed  annual  cost,  escalated  from  2012  rate  at  inflation.    Includes  labor  and  non-­‐labor  costs.  

Uncertainty  in  program  continuation  over  10  years  suggests  this  level  of  effort  could  increase  or  decrease.      

Recurring  annually  

2012  New  Solar  Home  Partnership  Team  

Three  FTE’s  to  administer  and  support  the  program  for  SDG&E.  

Fixed  annual  cost,  escalated  from  2012  rate  at  inflation.    Includes  labor  and  non-­‐labor  costs.  

Uncertainty  in  program  continuation  over  10  years  suggests  this  level  of  effort  could  increase  or  decrease.      

Recurring  annually  

2012  NEM  (Field  Metering  Activity)  

This  is  field  meter  technician  effort  for  installing  new  meters  necessitated  by  bi-­‐directional  energy  flow.  In  2012,  SDG&E  did  a  change-­‐out  to  the  most  current  AMI  meters  which  support  NEM  energy  measurement  through  downloadable  software  instead  of  field  software/meter  changes.      

 

Using  the  2012  total  costs  and  the  year’s  volume  (5,261),  the  average  meter  change  cost  was  $80.77.    This  is  a  variable  (incremental)  cost  based  on  a  per  meter  unit.    SGD&E  estimates  that  10%  of  new  NEM  installations  will  still  require  a  visit  and  new  meter  due  to  signal  propagation  and  other  impediments.    Labor  and  non-­‐labor  costs  are  escalated  at  inflation.    

The  volume  of  new  NEM  installations  was  based  on  the  2012  volume  (5,261)  representing  38  MW,  or  7.22  kW  per  installation.    This  average  system  size  was  divided  into  the  CEC  solar  forecast  of  total  SDG&E  NEM  installed  MWs  for  each  of  the  years  2013  through  2021  to  estimate  the  number  of  installations,  then  priced  at  the  escalated  per  meter  cost.  

Recurring  annually  

Page 60: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   49    

Cost  Category   Description   Cost  Treatment  For  Model   Assumptions  

Recurring  or    

One-­‐Time  

2012  Distribution  Interconnection  Information  System  (DIIS)  

This  is  a  custom  application  developed  internally  by  SDG&E  IT  for  installation,  administration  and  implementation  process  for  customers  installing  distributed  generation.      

The  total  project  cost,  less  hardware,  is  depreciated  over  7  years  and  SDG&E  is  provided  a  return  (at  the  allowed  rate)  on  the  undepreciated  portion.    Hardware  is  depreciated  over  5  years  with  the  same  return.    The  hardware  is  then  replaced  (at  a  future  cost)  and  again  depreciated  over  the  last  five  years  of  the  study.  

 Software  and  hardware  maintenance  are  included  on  an  annual  basis.      

 

It  is  expected  to  diminish  if  not  eliminate  increasing  costs  to  SDG&E  for  handling  increasing  NEM  volumes  by  transferring  the  business  process  requirements  to  customer  self  service.    Initial  project  costs,  including  AFUDC  but  excluding  hardware  is  depreciated  over  7  years.    Hardware  is  depreciated  over  five  years  and  replaced  after  that.  

Annual  software  maintenance  costs  of  10  percent  are  included,  and  assumed  to  accommodate  upgrades,  enhancements  and  re-­‐versioning,  consistent  with  practices  and  costs  for  an  external  vendor.  The  allowed  rate  of  return  on  the  rate  base  is  assumed  at  11  percent.  

One-­‐time  project  cost  

 Recurring  annual  hardware  and  software  maintenance  

Page 61: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   50    

Table  28.  Fixed  and  Variable  NEM  Program  and  Interconnection  Costs  

Cost  Item   #  FTE's   %  Fixed   %  Variable   Application  

NEM  Team  Costs          

Labor  -­‐  GIS   3   100%   0%   Fixed  costs  -­‐  applied  to  all  NEM  customers,  cumulatively.  

Variable  costs  -­‐  applied  to  the  annual  NEM  interconnections  

 

Labor  -­‐  Non-­‐GIS   7.5   50%   50%  

Employee  Costs   prorated  on    labor  cost  

 

Purchased  Labor     10%   90%  

Materials     10%   90%  

Services     50%   50%  

Contributions/Dues     100%   0%  

Vehicles     10%   90%  

         

California  Solar  Initiative  

1   100%   0%   All  NEM  customers,  cumulatively  

New  Solar  Homes  Partnership  

3   100%   0%   All  NEM  customers,  cumulatively  

Metering  Field  Activity  Cost  Total  

    100%   Annual  NEM  interconnections  

DIIS  -­‐  Hardware  and  Software  Maintenance  

    100%   Cumulative  total  of  NEM  interconnections  beginning  in  2012  

DIIS  -­‐  Rate  Base  Earnings  

    100%   Cumulative  total  of  NEM  interconnections  beginning  in  2012  

 

2.3.12.2 Data  Black   &   Veatch   prepared   and   submitted   a   data   request   to   SDG&E   in   March   2013   seeking   cost  information  on  business  processes  associated  with  receiving,  processing  and  implementing  a  new  NEM  customer,  based  on  the  application  and  implementation  actions  identified  on  SGD&E’s  website  for  a  potential  NEM  customer  to   follow.    The   intent  was  to   identify   the  resource  costs  (e.g.,   labor,  materials,   fleet,  outside  services,   etc.)   required   for   individual  process   steps   in   the  workflow   from  initial  receipt  of  a  new  NEM  interconnection  request  to  acceptance  of  the  final,  inspected  PV  system  including  records  preparation   in   the  Customer   Information  System  and  billing  system(s).    SDG&E  provided   some   limited   information   in   the   requested   format,   but   also   provided   an   alternate   cost  breakdown   reflecting   a   centralized   organization   within   SDG&E   to   serve   NEM   customers.     After  

Page 62: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   51    

discussion   with   SDG&E,   the   study   team   elected   to   use   this   information.   Table   27   details   the  information  provided  by  SDG&E  by  SDG&E-­‐defined  cost  category.  

The  cost  framework  provided  in  Table  28  uses  the  total  annual  costs.    The  initial  interpretation  of  the  SDG&E  process  costs  planned   to  evaluate   those  costs  over   the  annual  NEM   installations,   thus  the  forecast  of  NEM  installations  was  of  obvious  importance  to  the  study.    Black  &  Veatch  received  a  data   response   from   SDG&E   indicating   that,   in   2012,   there   were   5,261   customer   installations  totaling  38  MWac  of  capacity.    This  yields  an  average  system  size  of  7.22  kW  per  installation.    This  was  used   to   forecast   the  quantity   of   annual  NEM   installations   for   future   years   based  on   the  MW  forecast  provided  by  the  CEC  in  2012.    The  installation  forecast  is  shown  in  Table  29.  

 

Table  29.  Historical  and  Forecasted  Annual  NEM  PV  Installations  

SDG&E  PV  NEM    Installations  by  Year     Cumulative  #  Installations  Year     PV  kW(ac)   Average  System  

Size  (kW)  Annual  #  

Installations    

Pre-­‐2012   125,370     7.96       15,741  

2012   38,000     7.22   5,261   21,002  

2013   15,000     7.22   2,077   23,079  

2014   22,000     7.22   3,046   26,125  

2015   30,000     7.22   4,153   30,278  

2016   38,000     7.22   5,261   35,539  

2017   6,000     7.22   831   36,370  

2018   9,000     7.22   1,246   37,616  

2019   20,000     7.22   2,769   40,385  

2020   31,000     7.22   4,292   44,677  

2021   31,000     7.22   4,292   48,969  

Total   365,370         33,228      

 Data  Sources:  

Pre-­‐2012:   MW   and   #   Installations   from   SDG&E   Distribution   System   Interconnection   Update,  May  14,  2012,  average  system  size  =  PV  MW(ac)/#  Installations  

2012:   MW  and  #   Installations   from  SDG&E  data  request  response  on  6/12/2013,  average  system  size  =  PV  MW(ac)/#  Installations  

Page 63: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   52    

2013-­‐2020:   MW   forecast   from   CEC;   Average   system   size   same   as   2012;   #   installations   =       PV  MW(ac)*Average  System  Size  (kW)  

2021:   MW   forecast   from   CEC;   Average   system   size   same   as   2012;   #   installations   =       PV  MW(ac)*Average  System  Size  (kW)  

2.3.12.3 Results  Annual  utility  costs  for  this  service  over  the  ten-­‐year  study  period  are  shown  in  Table  30.  

Table  30.  Utility  Costs  for  Interconnection  

Year   Total  Cost   Cost/Customer   Cost/kW-­‐year  

2012   $  1,319,185   $    251   $34.72  

2013   $  916,152   $    350   $61.08  

2014   $  929,249   $    247   $42.24  

2015   $  944,188   $    187   $31.47  

2016   $  959,873   $    151   $25.26  

2017   $  933,716   $    879   $155.62  

2018   $  945,322   $    608   $105.04  

2019   $  985,202   $    290   $49.26  

2020   $  1,025,924   $    197   $33.09  

2021   $  1,055,227   $    202   $34.04  

2.3.12.4 Discussion  Due  largely  to  program  staffing,  SDG&E  has  a  substantial  amount  of  fixed  costs  associated  with  PV  interconnection.      The  volatility  of  the  annual  forecast  of  new  NEM  installations,  detailed  on  Table  29,  clearly  has  a  significant  impact  on  the  per-­‐customer  and  per-­‐kW  cost.    In  years  where  economic  incentives   are   scheduled   to   be   discontinued,   the   NEM   application   volume   is   forecast   to   drop   off  substantially  and  there  are  simply  fewer  customers  over  which  to  apportion  costs.      

2.3.13 Metering/Billing/Administration/Customer  Service  This   service   reflects   the   annual   cost   of   metering   service   and   maintenance,   billing,   program  administration  and  customer  service  for  PV  customers.      

2.3.13.1 Methodology  Discussed  in  Section  3.3.12  above,  the  Metering,  Billing,  Administration  and  Customer  Service  costs  are  co-­‐mingled  with  the  SDG&E  Interconnection  costs.    Using  the  information  in  Table  28  and  Table  29,  Black  &  Veatch  developed  an  annual  estimate  for  these  costs  based  on  the  expected  level  of  PV  capacity  by  year.      

Page 64: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   53    

2.3.13.2 Data  Data  sources  for  this  service  were:  

1) The  cost  data  was  provided  by  SDG&E  through  a  data  request  response  on  May  30,  2013,  and  was  allocated  pursuant  to  Table  29  above.  

2) PV  capacity   is   from   the   installed   capacity  base  with  annual   growth  assumptions   from   the  CEC  2012  Demand  Forecast,  Light  Load  scenario.    

2.3.13.3 Results  Annual  utility  costs  for  this  service  over  the  ten-­‐year  study  period  are  shown  in  Table  31.  

Table  31.  Utility  Costs  for  Metering/Billing/Administration/Customer  Service  

Year   Total  Cost   Cost/kW-­‐year  

2012   $1,342,422   $9.01  

2013   $1,382,695   $8.54  

2014   $1,424,176   $7.83  

2015   $1,466,901   $7.02  

2016   $1,510,908   $6.19  

2017   $1,556,235   $6.25  

2018   $1,602,922   $6.24  

2019   $1,651,010   $6.00  

2020   $1,700,540   $5.61  

2021   $1,751,556   $5.24  

 

2.3.13.4 Discussion  SDG&E  provided  2012  program  administrative  costs,   to  which  Black  &  Veatch  applied  inflation  to  for  later  years.    Upon  discussion  with  SDG&E  the  study  team  learned  they  anticipate  some  annual  costs   to  maintain   existing   computer   systems   but   gave   no   indication   that  most   fixed   costs  would  increase  beyond   inflation.    As   the  number  of   installed   systems  and  capacity   increases   these   fixed  costs  may  be   allocated   over   a   larger   base,   resulting   in   an   effective   decrease   in   per   unit   costs   for  these  services.    

2.4 SOCIETAL  COSTS  AND  BENEFITS  OF  DISTRIBUTED  PV  All  of  the  preceding  sections  have  focused  on  the  costs  for  services  provided  by  the  utility  or  the  PV  customer,  which  have  a  direct  cost  or  benefit  for  utility  ratepayers.    However,  it  is  important  to  recognize  that  customer-­‐owned  distributed  PV  results  in  a  number  of  additional  costs  and  benefits  that  are  borne  by  society  as  a  whole,  not  the  utility.  Societal  costs  and  benefits  are  only  relevant  to  the  extent  that  they  are  not  included  in  the  prices  for  goods  and  services.    For  example,  

Page 65: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   54    

environmental  costs  have  been  included  in  the  avoided  costs  to  the  extent  that  regulations  require  a  market  price  for  CO2  or  for  other  environmental  impacts.    More  than  likely,  it  is  the  cost  such  as  the  implied  subsidies  for  PV  that  occurs  through  net  metering  that  represent  a  societal  cost.    In  particular,  there  are  the  effects  of  intra-­‐class  cross  subsidies  that  have  a  negative  impact  on  society  (The  societal  benefits  are  widely  known  and  documented,  but  the  societal  costs  are  often  not  mentioned—this  report  seeks  to  give  a  fair  representation  of  both.)    Though  these  societal  costs  and  benefits  do  not  have  a  direct  impact  on  the  cost  of  service  for  PV  customers,  they  are  crucial  in  considerations  of  whether  society  as  a  whole  should  invest  resources  in  additional  distributed  PV  capacity.    Because  the  cost  of  service  for  PV  customers  is  the  focus  of  this  study,  societal  costs  and  benefits  of  PV  are  not  quantified  here—numerous  other  studies  have  examined  those  issues.    Table  32  provides  descriptions  of  the  societal  benefits  of  distributed  PV,  and      

Page 66: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   55    

Table  33  provides  descriptions  of  the  societal  costs  of  distributed  PV.    These  lists  of  societal  costs  and  benefits  are  not  intended  to  be  comprehensive;  rather,  they  are  meant  to  capture  the  most  important  costs  and  benefits,  and  to  emphasize  that  there  are  other  factors  beyond  direct  utility  costs  that  should  be  taken  into  account  when  deploying  distributed  PV.      

Table  32.  Societal  Benefits  of  Distributed  PV  

Jobs  and  Economic  Development  

The  deployment  of  distributed  PV  creates  jobs  directly  for  PV  developers  and  installers,  as  well  as  jobs  in  PV  inspection  (often  performed  by  the  utility  but  sometimes  by  independent  contractors),  PV  equipment  manufacturing,  PV  equipment  distribution,  PV  operations  and  maintenance,  PV  decommissioning  and  recycling,  PV  project  finance,  PV  technical  consulting,  and  other  PV-­‐related  activities.    Some  studies  have  suggested  that  15-­‐30  direct  jobs  are  created  for  every  megawatt  of  distributed  PV  installed,16  and  the  jobs  created  generally  required  skilled  labor  and  pay  good  wages.    Distributed  PV  involves  jobs  in  many  areas,  including  engineering,  electrical  installation,  manufacturing,  roofing,  sales,  administration  and  accounting,  consulting,  and  finance.    These  new  jobs  and  additional  income  from  savings  on  customer  electricity  bills  create  indirect  jobs  in  other  industries  and  related  economic  development  benefits,  such  as  greater  opportunities  in  the  construction  industry,  which  has  been  particularly  hard  hit  by  job  losses  in  recent  years.    This  economic  activity  also  generates  revenue  for  state  and  local  jurisdictions  in  the  form  of  increased  sales  taxes  and  payroll  taxes.    Finally,  the  installation  of  distributed  PV  attracts  private  investment  in  local  jurisdictions  that  would  not  otherwise  take  place,  and  leverages  federal  tax  benefits  (in  the  form  of  the  Investment  Tax  Credit)  that  would  otherwise  flow  to  other  jurisdictions.17          

Improved  Recovery  After  Natural  Disasters  and  Other  Emergencies  

Natural  disasters  or  other  emergencies  often  disrupt  the  electric  grid  and  the  supply  of  other  fuels  in  the  affected  area,  and  this  lack  of  readily  available  energy  sources  can  hamper  recovery  efforts.    Distributed  PV  (either  grid-­‐connected  or  off-­‐grid)  can  provide  an  immediate  electricity  source  in  any  affected  area  without  relying  on  a  functional  electric  grid  or  imported  fuels  for  a  diesel  generator.    This  can  accelerate  recovery  after  the  disaster  and  in  some  cases  even  save  lives,  as  well  as  reduce  the  economic  impact  of  power  outages.    In  fact,  distributed  PV  is  becoming  increasingly  common  as  an  emergency  power  source  in  the  wake  of  major  storms  such  as  Hurricane  Sandy.      

                                                                                                                         16  Kammen,  Daniel,  University  of  California  –  Berkeley,  “Testimony  before  the  US  Senate  Hearing  on  Environment  and  Public  Works,”  Sept.  25  2007;  and  Navigant  Consulting,  Inc.,  “Economic  Impacts  of  Extending  Federal  Solar  Tax  Credits,”  Final  Report,  September  15,  2008.  http://seia.org/galleries/pdf/Navigant%20Consulting%20Report%209.15.08.pdf.    17  Petition  for  Societal  Cost-­‐Benefit  Evaluation  of  California’s  Net  Energy  Metering  Program,  June  6,  2013.    http://www.energy.ca.gov/2013_energypolicy/documents/2013-­‐06-­‐06_Petition_for_CEC_to_perform_net_metering_societal_cost-­‐benefit_study_TN-­‐71170.pdf    

Page 67: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   56    

Environmental  Benefits  

Conventional  fossil  fuel  plants  emit  various  pollutants  besides  GHGs,  including  sulfur  oxides,  nitrogen  oxides,  particulates,  mercury,  and  others.    While  most  of  these  emissions  are  regulated,  many  argue  that  utilities  are  not  paying  the  full  costs  for  the  environmental  damage  created  by  these  pollutants.    The  harm  caused  by  the  production  of  fossil  and  nuclear  fuels  (coal  mining,  uranium  mining  and  processing,  oil  drilling,  hydraulic  fracturing  for  natural  gas,  etc.)  and  the  waste  products  of  the  power  generation  process  (coal  ash,  nuclear  waste,  etc.)  is  also  not  taken  into  account.    By  avoiding  generation  from  conventional  fossil  fuel  plants  and  thereby  reducing  harmful  emissions  as  well  as  the  need  to  produce  fossil  fuels,  distributed  PV  reduces  the  costs  of  environmental  damage,  and  this  value  is  not  fully  captured  in  the  avoided  cost  of  energy.    On  a  per-­‐unit  basis,  distributed  PV  also  requires  less  water  and  other  resources  to  operate  and  maintain  than  conventional  fossil  fuel  plants,  and  this  benefit  is  not  usually  valued.      

Energy  Security  

Distributed  PV  also  has  a  known  up-­‐front  cost,  with  very  low  O&M  costs  and  no  fuel  costs;  since  it  does  not  depend  on  volatile  and  rising  fossil  fuel  prices,  and  instead  relies  on  an  energy  source  that  is  free  and  inexhaustible,  it  contributes  to  long-­‐term  energy  security.      

Improved  Human  Health  

The  production  of  fossil  and  nuclear  fuels,  the  waste  products  of  the  power  generation  process,  and  the  emissions  from  the  fossil  fuel  plants  all  have  negative  impacts  on  human  health.    These  impacts  can  take  the  form  of  increased  asthma  rates  due  to  air  pollutants,  injuries  during  coal  mining  accidents,  radiation  exposure  from  nuclear  fuels  and  nuclear  waste,  and  a  multitude  of  others.    By  reducing  these  impacts,  distributed  PV  generation  is  creating  a  societal  benefit  that  is  not  usually  valued  in  the  price  of  energy.      

   

Page 68: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   57    

Table  33.  Societal  Costs  of  Distributed  PV  

Recycling  and  Decommissioning    

Though  PV  modules  are  usually  guaranteed  to  last  20-­‐30  years,  and  may  last  longer  than  that,  all  PV  systems  have  a  finite  lifetime;  at  some  point,  the  PV  system  will  need  to  be  decommissioned  and  the  PV  equipment  will  need  to  be  recycled.    This  represents  a  real  cost  that  is  borne  by  the  PV  system  owner  rather  than  the  utility,  so  it  is  included  here.      

Operations  &  Maintenance  

O&M  costs  for  distributed  PV  are  generally  low,  but  not  negligible.    They  include  PV  panel  washing  (which  may  involve  significant  water  use  depending  on  the  system  location  and  technology  used),  repair  or  replacement  of  inverters  and  other  equipment,  any  system  monitoring  costs  beyond  utility  metering,  owner-­‐scheduled  inspections,  any  additional  insurance  or  administrative  costs,  and  other  O&M  costs.    Again,  these  costs  are  borne  by  the  system  owner  rather  than  the  utility,  so  they  are  considered  societal  costs  within  the  context  of  this  study.      

Safety  Risks    

The  installation  and  operation  of  distributed  PV  systems  involves  well-­‐known  safety  risks,  including  installers  falling  from  rooftops,  fire  hazards  from  incorrectly  installed  electrical  equipment,  and  electrocution  of  installers  or  system  owners  who  do  not  follow  proper  safety  precautions.    Over  time,  as  the  industry  has  grown  and  become  more  mature,  these  risks  have  been  addressed  and  today  they  are  considered  minimal.    However,  accidents  do  still  occur  and  the  costs  related  to  these  accidents  are  borne  by  installers,  system  owners,  and  sometimes  other  parties  as  well.    During  an  outage,  others  are  exposed  to  live  feeds  even  when  the  power  is  generally  out  of  service  unless  the  installation  includes  an  automatic  disconnect  from  the  grid.  

Environmental  and  Human  Health  Impacts  from  PV  Equipment  Manufacturing  

 Just  as  there  are  environmental  and  human  health  impacts  from  the  production  of  fossil  and  nuclear  fuels  and  the  waste  products  of  the  power  generation  process,  there  are  also  impacts  from  the  production  of  raw  materials  for  PV  equipment,  the  manufacturing  of  PV  equipment,  and  the  disposal  of  PV  equipment  at  the  end  of  its  useful  life.    On  a  per-­‐unit  basis,  these  are  generally  smaller  than  impacts  from  conventional  power  generation  technologies,  but  given  the  large  scale  of  the  global  PV  industry  the  total  impacts  of  PV  materials  are  significant.    In  addition,  it  should  be  noted  that  most  of  this  activity  now  occurs  outside  the  United  States,  so  the  costs  of  these  impacts  are  a  global  societal  cost.      

Lost  Jobs  and  Tax  Revenue    

As  noted  throughout  this  report,  increasing  deployment  of  distributed  PV  displaces  the  utility’s  energy  purchases,  generation  capacity,  transmission  and  distribution  capacity,  and  RPS  procurement.    This  displacement  could  eventually  lead  to  job  losses  for  the  utility  (at  utility-­‐

Page 69: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Methodology   58    

owned  generation  plants  or  in  transmission  and  distribution  engineering  and  O&M),  and  for  independent  power  producers  selling  into  the  market  if  their  plants  operate  less.    In  addition,  there  is  likely  some  lost  tax  revenue  for  local  communities,  because  utilities  often  pay  taxes  to  local  jurisdictions  based  on  energy  sales.      

 

   

Page 70: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Results   59    

3.0 Results    

Using   the   methodology   and   data   for   each   service   described   above   in   Section   3,   the   study   team  derived  results  on  an  annual  basis  for  each  service  under  utility  costs  and  each  service  under  utility  avoided  costs.      In  addition  to  these  costs,  there  are  a  number  of  other  costs  incurred  by  utilities  on  behalf  of  ratepayers  and  are  included  in  customer  rates  which  are  not  included  in  this  study.    These  other  billed  costs  (Nuclear  Decommissioning,  Competitive  Transition  Charge,  DWR  Bond  Charges,  and  Public  Purpose  Programs)  are  not  impacted  by  distributed  PV  and  are  therefore  excluded  from  this  analysis.  The  allocation  of  these  costs  will  be  set  through  the  ratemaking  process.    Furthermore,  the  societal  costs  and  benefits  of  distributed  PV  are  described  qualitatively   in  section  3.4,  but  are  not  quantified  in  this  study.      

3.1 COST  OF  SERVICE  RESULTS  SUMMARY  Table  34  quantifies  the  utility  cost  and  distributed  PV  value  for  each  service  during  the  first  year  of  the  analysis,  2012.    It  is  important  to  note  that  the  costs  in  Table  2  are  expressed  in  either  $/kWh  or  $/kW-­‐year,  as  appropriate  for  each  service.          

Table  34.  Summary  of  2012  Utility  Costs  and  Distributed  PV  Value  by  Service  

Service   Unit   Utility  Cost  

Distributed  PV                              Value  

Energy   $/kWh   $0.0531     $0.0531    

Resource  Adequacy  Capacity   $/kW-­‐year   $218.06   $117.37    

Ancillary  Services   $/kWh   $0.0023     $0.00  

RPS  Procurement   $/kWh   $0.0087     $0.0087  

Grid  Management   $/kWh   $0.0004     $0.0004  

Transmission  Capacity   $/kW-­‐year   $102.83     $48.13    

Transmission  O&M   $/kW-­‐year   $11.55     $0.00    

Distribution  Station  Capacity   $/kW-­‐year   $27.85     $13.86    

Distribution  Line  Capacity   $/kW-­‐year   $74.06     $0.00  

Distribution  Voltage  Regulation  and  Reactive  Supply  

$/kW-­‐year   $42.95     $0.00  

Distribution  O&M   $/kW-­‐year   $31.22     $0.00  

Interconnection   $/kW-­‐year   $42.34     $0.00  

Metering/Billing/Customer  Service/Administration  

$/kW-­‐year   $9.01     $0.00  

 

   

Page 71: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Results   60    

3.1.1 Discussion  of  Results  The  addition  of  distributed  PV  to  the  SDG&E  system  was  assumed  to  result  in  avoided  SDG&E  costs  for:  

n energy  

n resource  adequacy  capacity  

n RPS  procurement  

n transmission  capacity  

n distribution  station  capacity    

n CAISO  grid  management    

The  analysis  assumed  that  there  is  effectively  no  savings  or  increase  in  utility  costs  for:  

n distribution  line  capacity  

n transmission  O&M  services  

n distribution  O&M  services    

The  analysis   further  assumed  that  SDG&E  will   incur  an   incremental  cost   to  provide   the   following  services  for  distributed  PV  customers:  

n ancillary  services  (regulation  only)    

n distribution  voltage  regulation  and  reactive  supply  

n interconnection  

n metering/billing/administration/customer  service  

Below  is  a  discussion  of  some  of  the  services  which  drive  the  results  of  the  analysis.      3.1.1.1 Resource  Adequacy  Capacity  Discussed  in  detail   in  Section  3.3.2,  this  study  assumes  the  marginal  capacity  resource  that  would  be  avoided  by  distributed  PV  capacity  would  be  a  natural  gas-­‐fired  GE  LMS  100  peaking  unit.    This  unit  is  appropriate  since  it  would  typically  be  operated  at  the  time  of  distributed  PV  generation,  but  is  a  flexible  resource  that  could  be  used  to  ramp  up  and  down  with  the  variability  of  the  PV  output.    This   is   a   state-­‐of-­‐the-­‐art   generator,   and   many   utilities   in   the   Southwestern   United   states   are  currently  planning  to  use  these  resources  to  meet  marginal  energy  requirements  in  the  future.    This  annual  net  cost  is  used  as  a  proxy  for  the  utility  cost  to  provide  resource  adequacy  capacity.      

The  net  annual  capacity  cost  of  the  GE  LMS  100  unit  in  2012  is  $218/kW-­‐year,  escalating  over  time  with   inflation   and  market   dynamics.     Distributed   PV   has   a   resource   adequacy   value   of   about   54  percent   of   that   amount   due   to   the   fact   that   the   PV   resource   has   only   a   portion   of   its   potential  capacity   (MWac)   available   during   the   SDG&E’s   top   load  hours.     Further,   the   relative   value   of   the  distributed  PV  capacity  falls  over  time,  as   increasing  levels  of  PV  penetration  lead  to  “diminishing  returns”   in   terms  of   the  effective  capacity  provided  by  distributed  PV.  Figure  15  below  compares  the  utility  cost  of  resource  adequacy  capacity  with  the  value  of  the  distributed  PV  capacity  in  each  year.      

Page 72: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Results   61    

 

Figure  15  Utility  Cost  and  Distributed  PV  Value  for  Resource  Adequacy  Capacity  ($/kW-­‐year)  

 

3.1.1.2 Transmission  Capacity  and  Distribution  Station  Capacity    Distributed  PV  will  reduce  transmission  and  substation  development  requirements  since  the   load  will  be  served  with  distribution-­‐level  generation  rather  than  being  served  by  the  wholesale  power  market   which   requires   electricity   to   be   delivered   over   the   transmission   system   through  distribution   substations.     This   will   reduce   not   only   the   energy   demand   but   also   losses   on   the  transmission  and  distribution  system.    But   the  capacity  value  of   this  distributed  PV   is   lower   than  the  marginal  utility  cost  of  transmission  and  distribution  substation  capacity,  since  only  a  portion  of  the  distributed  PV  generation  capacity  is  available  to  meet  the  system  peak  demand  requirements.    Figure  16  compares  the  utility  cost  and  distributed  PV  value  for  transmission  capacity,  and  Figure  17  compares  the  utility  cost  and  distributed  PV  value  for  distribution  substation  capacity.    

$0.00

$50.00

$100.00

$150.00

$200.00

$250.00

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Utility  Cost

Customer  PV  Value  

Page 73: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Results   62    

 

Figure  16  Transmission  Capacity  Value  ($/kW-­‐year)  

 

 Figure  17  Distributed  Substation  Capacity  Value  ($/kW-­‐year)  

 

$0.00  

$20.00  

$40.00  

$60.00  

$80.00  

$100.00  

$120.00  

$140.00  

$160.00  

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Annual  Cost  ($/kW-­‐year)

Utility  Cost

Distributed  PV  Value  

$0.00  

$20.00  

$40.00  

$60.00  

$80.00  

$100.00  

$120.00  

$140.00  

$160.00  

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Annual  Cost  ($/kW-­‐year)

Utility  Cost

Distributed  PV  Value  

Page 74: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Results   63    

3.1.1.3 Distribution  System  Voltage  Regulation  and  Reactive  Supply  A  concern  with  adding   substantial   amounts  of  distributed  PV   to   the  distribution   system   is   that   it  will   cause   voltage   fluctuations   that   will   require   mitigation   in   order   to   ensure   reliable   electric  service   for   all   customers.     SDG&E   created   a   forecast   of   the   quantity   of   PV   on   each   distribution  circuit   over   the   ten-­‐year   study   period.     The   costs   presented   here   are   meant   to   be   indicative   of  potential  costs,  and  are  based  on  Black  &  Veatch’s  estimate  of  when  a  typical  circuit  on  average  may  require   mitigation   measures   (when   distributed   PV   reached   25%   penetration)   and   the   potential  mitigation   costs   to   stabilize   voltage   (which   are   based   on   the   installed   cost   of   a   Static   VAR  Compensator  or   SVC).      However,   these   are   generic   assumptions.     The   true   costs   for  distribution  system  voltage  regulation  and  reactive  supply  in  SDG&E  territory  will  likely  vary  from  the  results  of  this  study,  but  it  is  impossible  to  project  how  they  will  vary  or  when  they  may  be  incurred  without  a  more   granular   forecast   of   distributed   PV   penetration   and  without   performing   detailed  modeling  studies  for  individual  circuits.    

3.1.1.4 Interconnection  SDG&E  has  developed  substantial  infrastructure  capacity  to  implement  and  track  interconnections  of   distributed   PV   systems,   resulting   in   a   high   fixed   cost   for   installations.     The   variable   cost  component   of   interconnections,   which   are   largely   driven   by  meter   upgrades   for   a   portion   of   all  installations,   is   relatively   small.     Since   the   annual   fixed   and   variable   costs   are   divided   by   the  number   of   installations   per   year,   which   change   annually   based   on   CEC   distributed   PV   growth  assumptions,  the  annual  interconnection  costs  appear  to  be  highly  variable.    Figure  18  depicts  the  annual  interconnection  costs  per  kW  installed,  based  on  an  allocation  of  costs  over  the  number  of  annual  installations,  compared  to  the  average  cost  over  the  study  period.          

 

$0.00  

$20.00  

$40.00  

$60.00  

$80.00  

$100.00  

$120.00  

$140.00  

$160.00  

$180.00  

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Annual  Cost  ($/kW-­‐year)

Interconnection  Cost  ($/kW-­‐installed)

Page 75: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Results   64    

Figure  18  Annual  Interconnection  Costs  ($/kW-­‐year)  

 

3.2 DETAILED  ANNUAL  COST  OF  SERVICE  RESULTS  Table  35  shows  a  detailed  summary  of  the  annual  costs  of  the  services  provided  by  the  utility  to  the  PV  customer,  while  Table  36  shows  a  detailed  summary  of  the  annual  costs  of  the  services  provided  by  the  PV  customer  to  the  utility.    The  basis  for  each  service  is  shown  as  well  as  the  unit,  with  some  services  on  a  “variable”  energy  basis  ($/kWh)  and  some  on  a  “fixed”  capacity  basis  ($/kW-­‐year).      

Page 76: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Results   65    

Table  35  Detailed  Annual  Summary  of  Utility  Costs  

Service   Basis   Unit   2012   2013   2014   2015   2016   2017   2018   2019   2020   2021  

Energy   Variable  ($/SDG&E  

Annual  Load)  

$/kWh  $0.0531   $0.0521   $0.0512   $0.0503   $0.0495   $0.0485   $0.0498   $0.0511   $0.0525   $0.0536  

Resource  Adequacy  Capacity  

Fixed  ($/SDG&E  Peak  Load)  

$/kW-­‐year  

$218.06   $218.73   $219.42   $221.02   $218.04   $220.48   $221.30   $224.64   $225.30   $228.73  

Ancillary  Services  -­‐  Load  Variability  

Variable  ($/SDG&E  

Annual  Load)  

$/kWh  $0.0005   $0.0005   $0.0005   $0.0005   $0.0005   $0.0005   $0.0005   $0.0005   $0.0005   $0.0005  

Ancillary  Services  -­‐  Incremental  PV  Variability  

Variable  ($/PV  Fleet  Energy)  

$/kWh   $0.0018   $0.0018   $0.0018   $0.0018   $0.0018   $0.0018   $0.0018   $0.0018   $0.0018   $0.0018  

RPS  Procurement   Variable  ($/SDG&E  

Annual  Load)  

$/kWh  $0.0087   $0.0090   $0.0101   $0.0112   $0.0124   $0.0138   $0.0152   $0.0167   $0.0183   $0.0188  

Grid  Management   Variable  ($/SDG&E  

Annual  Load)  

$/kWh  $0.0004   $0.0004   $0.0004   $0.0004   $0.0004   $0.0005   $0.0005   $0.0005   $0.0005   $0.0005  

Transmission  Capacity   Fixed  ($/SDG&E  Peak  Load)  

$/kW-­‐year  

$102.83   $105.92   $109.10   $112.37   $115.74   $119.21   $122.79   $126.47   $130.27   $134.17  

Transmission  O&M   Fixed  ($/SDG&E  Peak  Load)  

$/kW-­‐year  

$11.55   $12.56   $12.83   $13.02   $13.19   $13.35   $13.52   $13.66   $13.82   $13.99  

Distribution  Station  Capacity  

Fixed  ($/SDG&E  Peak  Load)  

$/kW-­‐year   $27.85   $28.69   $29.55   $30.43   $31.35   $32.29   $33.25   $34.25   $35.28   $36.34  

Distribution  Line  Capacity   Fixed  ($/SDG&E  Peak  Load)  

$/kW-­‐year   $74.06   $76.28   $78.57   $80.93   $83.36   $85.86   $88.43   $91.08   $93.82   $96.63  

Distribution  Voltage  Regulation  and  Reactive  

Supply  

Variable  ($/PV  Fleet  Capacity)  

$/kW-­‐year   $2.33   $2.33   $2.33   $2.33   $2.33   $2.35   $2.35   $2.35   $2.35   $2.60  

Distribution  O&M   Fixed  ($/SDG&E  Peak  Load)  

$/kW-­‐year  

$31.22   $33.96   $34.69   $35.20   $35.66   $36.11   $36.56   $36.95   $37.37   $37.82  

Interconnection   Variable  ($/PV  Fleet  Capacity)  

$/kW-­‐year   $34.72   $61.08   $42.24   $31.47   $25.26   $155.62   $105.04   $49.26   $33.09   $34.04  

Metering/Billing/Customer  Service/Administration  

Variable  ($/PV  Fleet  Capacity)  

$/kW-­‐year   $9.01   $8.54   $7.83   $7.02   $6.19   $6.25   $6.24   $6.00   $5.61   $5.24  

 

Page 77: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Results   66    

Table  36  Detailed  Annual  Summary  of  Distributed  PV  Value  

Service   Basis   Unit   2012   2013   2014   2015   2016   2017   2018   2019   2020   2021  

Energy   Variable  (Cost/PV  Fleet  Energy)  

$/kWh   $0.0531   $0.0521   $0.0512   $0.0503   $0.0495   $0.0485   $0.0498   $0.0511   $0.0525   $0.0536  

Resource  Adequacy  Capacity  

Fixed  (Cost/PV  Fleet  

Capacity*RAC)  

$/kW-­‐year  

$117.37   $115.82   $114.32   $112.67   $108.06   $109.18   $109.19   $109.55   $107.63   $106.80  

Ancillary  Services   N/A   N/A   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00  RPS  Procurement   Variable  (Cost/PV  

Fleet  Energy)  $/kWh   $0.0087   $0.0090   $0.0101   $0.0112   $0.0124   $0.0138   $0.0152   $0.0167   $0.0183   $0.0188  

Grid  Management   Variable  (Cost/PV  Fleet  Energy)  

$/kWh   $0.0004   $0.0004   $0.0004   $0.0004   $0.0004   $0.0005   $0.0005   $0.0005   $0.0005   $0.0005  

Transmission  Capacity   Fixed  (Cost/PV  Fleet  

Capacity*ELCC)  

$/kW-­‐year  

$48.13   $48.77   $49.43   $49.81   $49.88   $51.33   $52.68   $53.63   $54.11   $54.48  

Transmission  O&M   N/A   N/A   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00  Distribution  Station  

Capacity  Fixed  (Cost/PV  

Fleet  Capacity*PLR)  

$/kW-­‐year  

$13.86   $14.21   $14.65   $15.11   $15.59   $16.09   $16.60   $17.14   $17.69   $18.26  

Distribution  Line  Capacity   N/A   N/A   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00  Distribution  Voltage  

Regulation  and  Reactive  Supply  

N/A   N/A   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00  

Distribution  O&M   N/A   N/A   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00  Interconnection   N/A   N/A   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00  

Metering/Billing/Customer  Service/Administration  

N/A   N/A   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00   $0.00  

 

 

 

Page 78: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Appendix  A   A-­‐1    

Appendix  A. Marginal  Loss  Methodology  The  method  described  here  shows  how  the  HFEM  time  series,  the  hourly  SDG&E  Distribution  Loss  Factors  (DLFs),  and  hourly  load  data  were  used  to  calculate  the  HFET  time  series.  

DISTRIBUTION  LOSS  FACTORS  SDG&E  publishes  hourly  Distribution  Loss  Factors  (DLFs)18  at  four  voltage  levels  for  use  by  Energy  Service  Providers  to  adjust  actual  meter  data  before  submission  to  the  ISO.  A  sample  of  DLF  data  is  shown  in  Table  37.  

Table  37.  DLF  Sample  Data  

DLF  Version  Type  

UDC   YYYYMMDDHH   DLF  Type  

Sub-­‐Trans  DLF  

Primary  DLF  

Secondary  DLF  

Transmission  

DLF001   SDGE   2013040107   F   1.008459   1.010721   1.044651   1.0065  

DLF001   SDGE   2013040108   F   1.008561   1.01071   1.044614   1.0065  

DLF001   SDGE   2013040109   F   1.008619   1.010709   1.044637   1.0065  

 

The  DLF  for  any  hour  t  is  the  system-­‐wide  ratio  of  power  at  the  transmission  level  𝑃!!to  the  power  at  the  customer  meter  𝑃!!  (after  losses):    

𝐷𝐿𝐹! =𝑃!!

𝑃!!   (1)  

 

For  example,  if  the  consumption  during  a  given  hour  was  3000  MW  and  the  DLF  was  1.05,  then  the  corresponding  power  that  would  have  to  be  delivered  at  transmission  to  the  substations  would  be  3,000  x  1.05  =  3,150  MW.  

For  simplicity,  all  distributed  PV  systems  are  assumed  to  connect  at  secondary  voltage,  so  only  the  secondary  DLFs  are  used.  

MARGINAL  LOSS  MODEL  SDG&E  provided  hourly  retail  loads  for  each  hour  (𝑃!!),  so  the  hourly  loads  at  transmission  can  be  obtained  by  re-­‐arranging  equation  (1)  to  give:  

𝑃!! =𝑃!!

𝐷𝐿𝐹!    

 

                                                                                                                           18  http://www.sdge.com/customer-­‐choice/customer-­‐choice/distribution-­‐loss-­‐factors    

Page 79: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Appendix  A   A-­‐2    

Losses  𝑃!!can  then  be  calculated  as  follows:  

𝑃!! = 𝑃!! − 𝑃!!      

Figure  19   shows  hourly   losses  plotted   against   customer   loads   for   each  hour   of   2012  using   these  relationships.    

Figure  19.  SDG&E  Distribution  Losses  versus  Customer  Loads  (2012)  

 

The  solid  red  curve   is  a  best-­‐fit  quadratic   loss  model  of   the   form  F(X)  =  A  +  BX2  with  coefficients  selected  to  minimize  RMS  error19.  The  model  form  represents  the  physical  case  of  a  constant  loss  at  zero  power  plus  a  loss  component  that  is  the  square  of  power  (i.e.,  the  square  of  the  current  when  voltage  is  kept  relatively  constant).  

The  values  for  A  and  B  are  determined  to  be  approximately  34.8  MW  and  1.44  x  10-­‐5  MW-­‐1.  In  other  words,   there   is   a   fixed   loss   of   34.8   MW   regardless   of   load,   and   this   loss   is   not   affected   by   the  presence  of  PV  on  the  system.  However,  PV  does  effect  the  second  term  of  the  model  by  reducing  the  load,  and  the  resultant  loss  savings  is  illustrated  in  the  chart  identified  as  “Reduced  Distribution  Losses”  that  correspond  to  the  “Load  Reduction  from  PV.”  

                                                                                                                         19  In  other  words,  values  for  A  and  B  are  selected  to  minimize:  

𝑅𝑀𝑆  𝐸𝑟𝑟𝑜𝑟 =𝐹(𝑋)! − 𝑃!! !!

!!!

𝑁  

Load  Reduction  from  PV  

Reduced  Distribution  

Losses  

Average  Loss  Model  

Marginal  Loss  Model  

Page 80: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

Energy  Policy  Initiatives  Center|  SAN  DIEGO  DISTRIBUTED  SOLAR  PV  IMPACT  STUDY  

BLACK  &  VEATCH  |  Appendix  A   A-­‐3    

The   chart   also   shows   the   error   that   could   be   introduced   by   using   average   losses   rather   than  marginal   losses.  Average   losses   are   indicated  by   the  dotted   red   line,   representing   the   losses   that  would  have  been  calculated  using  the  same  DLF  at  the  two  different  load  levels  (total  load  and  net  load  after  PV).  The  resulting  losses  are  less  than  the  marginal  losses,  and  this  would  have  translated  to  lower  avoided  utility  costs.  

CALCULATING  AVOIDED  MARGINAL  LOSSES  The  marginal  loss  model  is  used  to  quantify  the  reduction  in  distribution  losses  for  each  hour  based  upon   PV   fleet   production   and   load.   If   the   PV   fleet   generation   for   the   hour   is  𝑃!! ,   then   avoided  marginal  losses  is  given  by:  

𝐴𝑣𝑜𝑖𝑑𝑒𝑑  𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙  𝐿𝑜𝑠𝑠𝑒𝑠! = 𝐹 𝑇𝑜𝑡𝑎𝑙  𝐿𝑜𝑎𝑑! − 𝐹 𝑁𝑒𝑡  𝐿𝑜𝑎𝑑!  

= 𝐹 𝑃!! + 𝑃!! − 𝐹(𝑃!!)  

EXAMPLE  On  August  14,  2012  12:00  noon  PDT,  the  SDG&E  retail  load  at  the  meter  was  3386.594  MW  and  the  secondary  DLF  was  1.05748.  The  HFEM  had  a  value  of  0.766  MW  per  MW-­‐AC.  If  an  additional  MW  of  distributed  PV  capacity  were  added  to  the  system,  then  the  losses  that  would  be  avoided  by  that  incremental  capacity  can  be  calculated  as  follows.  

Net  Load  at  Meter  (with  PV)  =  3386.594  –  0.766  MW  =  3385.828  MW  

Modeled  Distribution  Losses  (without  PV)  =  F(3386.594)  =  199.808  MW  

Modeled  Distribution  Losses  (with  PV)  =  F(3385.828)  =  199.734  MW  

Avoided  Distribution  Losses  by  PV  Fleet  =  199.808  -­‐  199.734  =  0.075  MW  

In  this  example,  avoided  losses  are  calculated  as  0.075  /  0.766  =  9.8%  of  PV  output.    

 

 

 

Page 81: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

                                                                                           Appendix  B:  Report  Comments  

San  Diego  Distributed  PV  Impact  Study   1  

APPENDIX  B  

San  Diego  Draft  Report  Comments  and  Discussion    During   the   course   of   the   study,   the   Study   Team   (EPIC,   Black   &   Veatch   and   Clean   Power   Research)  solicited  comments  from  stakeholders  on  the  process,  methodologies  and  data  assumptions  used  in  the  study.    Many   comments  were   received   and   the   Study   benefitted   greatly   from   the   stakeholder   input.    Subsequent  to  the  publication  of  the  draft  report  in  July  2013  the  Study  Team  again  solicited  comments  from   stakeholders.     Additionally,   the   Study   team   received   comments   during   a   conference   call   and  webinar  presentation  of  the  results  conducted  on  July  17,  2013.      

The  comments  received  from  parties  ran  across  a  wide  range  of  subjects,  from  general  comments  on  the  Study  process  to  detailed  comments  on  the  methodologies  used  and  proposals  to  change  these.    When  stakeholder   comments   were   solicited   by   and   provided   to   the   Study   Team   in   July   and   August,   it   was  assumed  there  would  be  a  “Phase  2”  of  the  analysis  that  would  consider  and  include  these  comments  in  a   study  update.    Due   to  a   lack  of   funding,   this  process  was  suspended  without  updating   the   technical  analysis.      

This  document   includes  the  direct  comments  received  from  stakeholders,  along  with   responses  to  the  comments   by   the   Study   Team.     For   brevity   and   clarity,   the   comments   have   been   summarized   by   the  Study   Team.     Where   appropriate,   the   Study   Team   has   provided   a   response   to   the   comment   and  recommendations  how  the  comment  may  or  may  not  be  incorporated  into  any  further  analysis  based  on  this  Study.    The  comments  are  organized  into  General  Comments  (those  discussing  study  process  issues)  and  Study  Comments  (which  refer  directly  to  specific  portions  of  the  study  methodology).      

General  Comments    

Stakeholders  expressed  a  variety  of  concerns  and  desires   regarding  the  study  process  and  results   that  are  not  related  to  the  specific  technical  issues  in  the  report.      

Stakeholder  Participant  Review  of  Technical  Information    

Several   commenters   objected   to   the   Draft   Report’s   Executive   Summary   statement   “The  methodologies  used  in  this  analysis  are  designed  specifically  for  this  effort  and  were  vetted  by  the   Stakeholder   Group.”     Stakeholders   felt   that   much   of   the   information   had   not   been  sufficiently  vetted  and  the  phrase  should  be  re-­‐stated.    

Study  Team  Comment:  

Numerous  meetings  were  held  to  explain  the  methodologies  used   in  the  Study  to  stakeholders,  and  stakeholders  were  encouraged  to  review  and  comment  on  these  methodologies.    We  believe  the  review  process  was  appropriate  for  the  effort,  but  we  have  revised  the  report  to  state  “The  methodologies  used  in  this  analysis  are  designed  specifically  for  this  effort  and  were  presented  to  

Page 82: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

                                                                                           Appendix  B:  Report  Comments  

San  Diego  Distributed  PV  Impact  Study   2  

and  discussed  with  the  Stakeholder  Group  in  a  series  of  meetings  and  teleconferences  during  the  course  of  the  project.”      

Stakeholder  Identification    

Several   commenters   requested   they  be   removed   from  the   list  of   identified  Stakeholders   since  they  were  not  active  participants  in  the  process  or  disagree  with  the  results.        

Study  Team  Comment:  

The  Study  was  an  open,  public  process,  and  all  information  was  provided  to  all  entities  that  were  included  in  the  EPIC  list  of  San  Diego  Solar  Stakeholder  Collaborative  Group.    We  have  removed  the  names  of  groups  that  requested  that  they  not  to  be  identified  with  this  group  for  this  study.      

Study  Not  Completed  as  Proposed  

Several  commenters  expressed  concern  that  the  study  was  not  completed  as  originally  agreed  to  in  January,  2013  and,  as  it  stands,  is  of  limited  value.            

Study  Team  Comment:  

Due   to   the   iterative   nature   of   the   project,   the   initial   funding  was   insufficient   to   complete   the  study  as  proposed  and  SDG&E  ultimately  determined  not  to  fund  the  additional  effort  necessary  to  complete   the  original  scope.    That  said,  we  believe  the  study   is  successful   in   identifying  and  costing  the  services  provided  by  and  used  by  distributed  PV  NEM  customers,  and   in  developing    methodologies  to  value  these  services.      

Data  Adequacy  

Several  commenters  (CCSE,  Brewster)  expressed  concern  that  SDG&E  did  not  provide  sufficient  data   to   conduct   the   analysis   appropriately,   as   noted   in   the   report,   and   that   the   Study   Team  accepted  and  used  SDG&E-­‐provided  data  without  appropriate  review.        

Study  Team  Comment:  

The   Study   Team  provided   a   data   request   to   SDG&E   on  March   4,   2013.     SDG&E   only   provided  partial  data  on  April  25,  2013.       The  Study  Team  used  cost   information  provided  by  SDG&E  as  available   for   the  analysis.       In  our  experience  program  costs  and  accounting  are  utility-­‐specific  and   there  are  no   industry   “standards”   for   cost  accounting   to   turn   to   in   the  absence  of  SDG&E  data.      Regarding  the  validity  or  appropriateness  of  the  SDG&E  costs,  this  study  was  not  designed  to  audit  the  SDG&E  costs  to  determine  the  appropriateness  of  the  expenditures.    The  Study  Team  assumes   the   California   Public   Utilities   Commission   has   or   will   review   the   appropriateness   of  these  costs   in  rate-­‐making  and  cost  review  proceedings.  Rather,  our  task   is  to   identify  whether  those  costs  are  associated  with  serving  distributed  PV  customers.      

Page 83: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

                                                                                           Appendix  B:  Report  Comments  

San  Diego  Distributed  PV  Impact  Study   3  

Future  Load  Shapes,  Customer  Demand  and  Price  Information  

SDG&E  expressed  concern  that  the  analysis  did  not  consider  changes  to  its  electric  system  from  changes   in   customer   demand,   including   the   impacts   of   load   shifting,   electric   vehicle   (EV)  demand,  PV  output,  etc.      SDG&E  noted  that  this  impacts  7  of  18  services.  

Study  Team  Comment:  

This  assertion   is   incorrect.    The  study  used   the  March  2013  CAISO  hourly   simulation  of  market  prices,  which  was  developed  for  the  CAISO  2013-­‐2022  Transmission  Planning  Process  (TPP).    This  forecast  incorporated  the  latest  CEC-­‐developed  California  Energy  Demand  forecast  assumptions  on   loads   in  San  Diego  service  areas,   including   forecast  assumptions  of  PV  growth,  EV  demand,  etc.    The  Study  Team  notes  that  this  is  the  same  demand  forecast  SDG&E  used  in  its  recent  LTPP  at   the   CPUC,   so   expecting   this   analysis   to   use   other   forecast   information   is   unrealistic   and  contradicts  a  tenet  of  the  data  used  in  this  analysis  –  where  possible  we  used  public,  vetted  and  current  data.    The  Study  Team  also  notes  that  our  load  assumptions  and  proposed  data  sources  were   presented   during   our   first   and   several   later   stakeholder   meetings   and   presentations,  always  with  the  request  that  participants  review  and  comment  on  our  assumptions.    Prior  to  the  draft   report,   SDG&E   never   mentioned   the   load   forecast   as   an   issue,   nor   offered   to   provide  alternative  assumptions.    

Finally,  the  Study  Team  notes  that  it  requested  load  information  from  SDG&E  on  March  4,  2013.    In  response,  SDG&E  provided    SDG&E’s  retail  sales  (or  bundled  sales)  for  2011  as  well  as  SDG&E’s  2011  and  2012  total  system  sales  (which  include  wholesale  and  retail  sales).  This  information  did  not  disaggregate  commercial  and  residential  sales,  nor  provide  any  of  the  forecast   information  necessary  to  complete  the  analysis  as  SDG&E  describes.      

Comparison  of  this  Study  to  Others  NEM  Analyses  

Multiple   commenters   (Learn,   CCSE)   noted   the   differences   in   results   between   this   study   and  other  recent  studies  related  to  distributed  PV  and  NEM.      

Study  Team  Comment:  

We  agree  with  this  comment.    This  study  is  not  necessarily  measuring  the  same  things  as  other  studies  so  differences  are  expected.    This  study  measures  and  uses  a  methodology  to  value  those  items   that   stakeholders   “agreed   to”   in   January   2013.     Further,   the   Study   Team   does   not  necessarily  agree  with  the  methodologies  used  in  other  analyses,  nor  was  it  the  intention  of  this  effort  to  replicate  those  analyses.    

Consideration  of  Smart  Grid  

San  Diego  Consumer  Action  Network  (SDCAN)  questioned  the  lack  of  Smart  Grid  consideration  in  our  assumptions  of  future  system  operations.    

Page 84: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

                                                                                           Appendix  B:  Report  Comments  

San  Diego  Distributed  PV  Impact  Study   4  

Study  Team  Comment:  

“Smart  grid”  technologies  and  operations  offer  substantial  promise  in  managing  and  optimizing  distributed  generation.    Specifically,  we  see  this  as  a  series  of  efficiencies  and  improvements  in  current  practices  and  costs.    However,  there  is  no  single  definition  of  “smart  grid,”  nor  is  there  a  shared  vision  regarding  how  it  will  alter  the  future  electric  grid  operating  environment.    We  see  value  in  smart  grid  assessment  in  a  scenario  analysis,  as  long  as  there  are  specific  scenarios  based  on  a  documented  smart  grid  deployment  plan  from  SDG&E  with  sufficient  detail  on  the  cost  and  operational  impacts  of  these  technologies,  as  well  as  sufficient  detail  about  their  impact  on  the  grid  integration  costs  of  distributed  PV.            

Page 85: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

                                                                                           Appendix  B:  Report  Comments  

San  Diego  Distributed  PV  Impact  Study   5  

Study  Comments  

Numerous  stakeholders  commented  on  various  portions  of  the  methodology  in  the  draft  report.    Below  are   the   comments   received   on   the   respective   sections   of   the   report,   along   with   the   Study   Team’s  responses.  

1.3   Comparison  of  Costs  

Several  commenters  in  the  review  presentation  and  in  written  comments  expressed  concern  or  confusion   about   the   charts   included   in   the   report   attempting   to   compare   the   utility   costs   of  distributed  PV  to  distributed  PV  value  by  year  in  Figure  2  and  in  Figure  17  in  Section  4.1.      

Study  Team  Comment:  

The  goal  of  the  charts  was  to  provide  a  usable  and  meaningful  comparison  of  disparate  costs,  as  some  of  costs  are  expressed  on  a  capacity  basis  ($/MW)  and  some  on  an  energy  basis  ($/MWh).    As  this  led  to  more  confusion  than  clarity,  we  have  removed  these  charts  from  the  revised  report.    

2.3     Average  vs.  Marginal  Costs  

Commenters  including  CCSE  and  SDG&E  noted  that  it  would  be  a  more  appropriate  to  compare  marginal  costs  and  marginal  value  of  distributed  solar  to  average  utility  costs.    

Study  Team  Comment:  

We   agree   this   would   be   a   valid   approach   and   it   was   the   original   approach   adopted   for   this  analysis,  and  should  be  considered  for  future  analysis.    The  primary  issue  we  encountered  was  a  lack   of   meaningful   public   data   to   represent   average   utility   costs,   such   as   the   utility   average  capacity  costs  or  average  cost  of  transmission  capacity.          

3.3.1.1   Greenhouse  Gas  Adder  to  Energy  Prices  

  SDG&E  is  concerned  about  estimations  of  greenhouse  gas  (GHG)  costs  used  for  2012.    

         Study  Team  Comment:  

Greenhouse  gas  emissions  were  not  included  in  the  CAISO  dispatch  price  in  2012.    CAISO  does  not  publish  hourly  marginal  unit  information  or  unit  heat  rates,  so  fossil  generation  was  estimated.    We  estimated  the  marginal  unit  during  periods  of  most  solar  generation  (mid-­‐day)  to  be  a  high-­‐efficiency  peaking  unit.    

3.1.3  Utility  Costs  

SDG&E   suggests   the   report   should   include   non-­‐marginal   costs   in   utility   rates,   and   that   the  reference  to  societal  costs  and  benefits  of  distributed  PV  should  be  deleted  in  this  section  of  the  report  to  avoid  conflating  utility  non-­‐marginal  costs  with  societal  costs.      

Page 86: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

                                                                                           Appendix  B:  Report  Comments  

San  Diego  Distributed  PV  Impact  Study   6  

         Study  Team  Comment:  

It   was   agreed   among   stakeholders   in   the   January   2013   stakeholder   meeting   that   the   study  would  consider  only  the  cost  of  services  impacted  by  the  PV  NEM  program.    Historic  costs  (e.g.,  Nuclear   Decommissioning,   Competitive   Transition   Charge,   DWR   Bond   Charges,   and   Public  Purpose  Programs)  are  not  impacted  by  PV  NEM,  and  we  are  not  considering  ratemaking  in  this  study.    It  was  agreed  at  the  same  meeting  that  societal  costs  and  benefits  of  PV  NEM  would  be  discussed   but   not   quantified   in   the   study   report.   This   section   of   the   report   is   not   meant   to  conflate  utility  non-­‐marginal  costs  with  societal  costs  and  benefits;  rather,  it  is  simply  listing  the  categories  of  costs  and  benefits  not  quantified  or  included  in  this  study.      

3.2.9   Peak  Load  Reduction    

SDG&E  requests  Peak  Load  Reduction  (PLR)  be  removed  from  a  table  “since  the  impact  on  peak  load   of   increased   solar   penetration   in   the   state,   both   centralized   and   distributed,   was   not  considered  in  the  study”.    

Study  Team  Comment:  

This  assertion  is  incorrect.  Noted  above,  the  load  forecast  incorporated  the  latest  CEC-­‐developed  California  Energy  Demand   forecast  assumptions  on   loads   in   San  Diego   service  areas,   including  assumptions  of  PV  growth,  EV  demand,  etc.    This  is  the  same  demand  forecast  the  SDG&E  used  for  its  most  recent  LTPP.    

3.3.1.1    Capacity  Resource    

SDG&E  questioned  the  B&V  assumption  that  the  next  (or  avoided)  capacity  resource  is  a  GE  LMS  100   Unit,   as   well   as   the   low   operation   and   limited  market   revenue   earned   by   this   resource.    SDG&E  cites  a  CAISO  2012  analysis   that   showed  a   combustion   turbine  peaker  dispatched  at  a  higher  level.    

Study  Team  Comment:  

The   B&V   assumption   of   an   LMS   100   unit   as   the   avoided   capacity   resource   was   presented   in  numerous  meeting  throughout  this  process,  with  no  objection  by  SDG&E  or  other  stakeholders.    B&V   proposed   this   unit   since   it   is   the   most   efficient,   flexible   and   state-­‐of-­‐the   art   peaking  generation  resource,  and  in  our  experience  the  unit  that  is  mostly  considered  by  utilities  looking  to   expand   peaking   capacity   and   integrate   renewable   generation   resources.   We   note   that   in  selecting  this  unit  as  the  capacity  resource,  we  consulted  SDG&E’s  most  recent  (2012)  Long-­‐term  Procurement   Plan   filing   (p.69).     In   that   document   SDG&E   did   not   identify   a   specific   capacity  resource   for   its   needs   but   provided   this   description   of   the   requirements   of   a   future   resource:    “Thus,   what   is   needed   is   peaking   capacity   that   will   operate   infrequently,   but   can   be   started  quickly  when  loads  increase  and  then  shut  down  as  loads  decrease.    These  peaking  facilities  are  expected  to  operate  at  low  annual  capacity,  but  serve  as  a  back-­‐up  and  to  facilitate  intermittent  renewable   power.”   (http://www.cpuc.ca.gov/NR/rdonlyres/6072C3B5-­‐755A-­‐4E60-­‐B5C7-­‐

Page 87: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

                                                                                           Appendix  B:  Report  Comments  

San  Diego  Distributed  PV  Impact  Study   7  

947DE06FE8FC/0/SDGE2010LTPP1AB57BundledProcurementPlan.pdf)    The  GE  LMS  100  is  ideally  suited  to  meet  all  of  these  requirements.    The  expected  dispatch  of  the  resource  is  based  on  Black  &   Veatch’s   2012   Energy   Market   Perspective   forecast   of   this   specific   type   of   unit   located   in  Southern  California.    

3.3.2,  3.3.6,  3.3.8   Capacity  Costs  –  Generation,  Transmission,  Distribution  

SEIA   discussed   in   detail   that   the   report   is   flawed   to   provide   the   capacity   values   for   Generation,  Transmission  and  Distribution  on  a  $/MWh  basis.      

         Study  Team  Comment:  

Black  &  Veatch  did  not  calculate  capacity  values  for  generation,  transmission  and  distribution  on  a  $/MWh  basis,  as  the  SEIA  comments  suggest.    Rather,  Black  &  Veatch  calculated  the  total  cost  of  service  and  divided  by  the  total  annual  energy  to  develop  an  aggregate  $/MWh  cost,  which  was   intended   to   help   stakeholders   better   understand   the   total   cost   of   service.     This   chart   has  been  removed  from  the  report  and  this  comment  is  moot.      

3.3.3   Ancillary  Services      

SEIA   proposes   removal   of   Ancillary   Services   since   these   are   provided   by   the   CAISO   on   a   load  basis,   and   distributed   PV   reduces   load.     Meanwhile,   SDG&E   expresses   concern   that   ancillary  services  will  increase  over  time.    Other  commenters  during  the  webinar  commented  that  it  may  make  sense  to  count  only  the  A/S  costs  due  to  incremental  variability  introduced  by  distributed  PV,  rather  than  counting  the  variability  due  to  load  as  well.      

                   Study  Team  Comment:  

The  issue  of  whether  distributed  PV  affects  to  the  quantity  and  cost  of  ancillary  services  (and  by  how  much)   is  deeply   contested.    The  Study  Team  agrees  with  SEIA   that  distributed  PV  has   the  potential  to  reduce  loads  and  thus  contingency  reserve  A/S  costs  (and  appreciates  SEIA’s  help  in  confirming   that   contingency   reserves   are   usually   procured   in   proportion   to   load   rather   than  based  on  the  largest  single  contingency  event).    On  the  other  hand,  the  inherent  variability  of  PV  output  has  been  proven  in  numerous  studies  to   increase  the  costs  of  operating  reserves.    Thus,  distributed   PV  may   avoid   some   ancillary   service   costs   while   increasing   other   ancillary   service  costs.        The  Black  &  Veatch  A/S  requirements  and  cost  assumptions  are  based  on  current  rules  and  market   prices,   as   there   is   no   consensus   on   how   ancillary   service   requirements   and   prices  may  change   in  the  future.    Future  studies  should  further   investigate  how  best  to  separate   load  variability  from  PV  variability  for  the  purpose  of  calculating  impacts  on  ancillary  service  costs.  

3.3.4.1    Renewable  Premium  

  SDG&E  expresses  concern  that  the  renewable  energy  premium  is  inappropriately  calculated.    

         Study  Team  Comment:  

Page 88: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

                                                                                           Appendix  B:  Report  Comments  

San  Diego  Distributed  PV  Impact  Study   8  

To  answer  SDG&E’s  specific  question,  the  avoided  cost  for  RPS  procurement  is  indeed  multiplied  by  20-­‐33  percent  as  they  suggest,  so  the  results  are  calculated  correctly.    In  a  broader  sense,  the  SDG&E  cost  premium  calculated  by  Black  &  Veatch  is  a  gross  estimate.    We  agree  this  could  and  should  be  a  more  refined  value,  but  most  of  the  data  that  is  required  to  calculate  this  for  SDG&E  is  contractual  data  held  confidentially  by  SDG&E  and  unavailable  to  us.      

   3.3.4.3   RPS  Procurement  Cost  

SEIA  proposes  to  value  the  NEM  solar  PV  output  at  100%  of  the  “renewable  premium”  for  RPS-­‐eligible   power,   rather   than   at   20-­‐33%   of   the   renewable   premium.     SEIA   argues   that   the   PV  customer,  by  installing  PV,  has  indicated  a  preference  for  100%  renewable  electricity  instead  of  the  20-­‐33%  renewable  electricity  provided  by  SDG&E.      

         Study  Team  Comment:  

The  purpose  of  this  analysis  is  to  quantify  the  utility  costs  avoided  by  distributed  PV  on  the  grid  (as  well  as  the  utility  costs  to  serve  PV  customers).    Since  net-­‐metered  generation  is  not   legally  eligible   to   count   toward   utility   RPS   requirements,   NEM   PV   does   not   directly   avoid   any   RPS  procurement  costs  incurred  by  SDG&E.  But  by  reducing  the  utility’s  load,  NEM  PV  does  indirectly  reduce  the  RPS  procurement  costs  by  eliminating  the  need  to  procure  RPS-­‐eligible  electricity  to  serve  20-­‐33%  of  the  load  that  was  reduced.  The  methodology  used  in  this  study  reflects  this  fact.    The  Study  Team  agrees  that  there  are  societal  benefits  associated  with  NEM  PV  not  captured  in  this   methodology,   but   believes   this   methodology   is   appropriate   for   the   costs   this   study   is  supposed  to  quantify.    Though  the  NEM  PV  customer  may  have  a  preference  for  100%  renewable  electricity,  this  study  is  focused  on  the  costs  and  value  of  distributed  for  the  entire  utility  system  rather  than  the  perspective  of  individual  customers.      

 3.3.6     Transmission  Capacity    

SDG&E   objects   to   using   the   Sunrise   Powerlink   transmission   project   as   a   proxy   for   avoided  transmission  capacity  costs,  noting  that  it  is  difficult  to  assess  what  transmission  costs  would  or  could  be  avoided  without  a  more  detailed  study.    SDG&E  proposed  “In  the  interest  of  time  and  cost,  SDG&E  recommends   that   rather   than  assuming   the  Sunrise  Powerlink   is  and  appropriate  proxy   for   transmission   that   would   be   displaced   by   NEM   PV,   the   study   consider   the   planned  transmission  projects  that  the  CAISO  Board  has  approved  in  its  2012-­‐2013  transmission  plan  for  the  San  Diego  area.”    

         Study  Team  Comment:  

The  transmission  upgrades  (and  costs)  in  the  2012-­‐2013  CAISO  plan  that  SDG&E  proposes  to  use  are   designed   to   improve   reliability   in   the   region,   and   will   not   necessarily   (directly)   increase  transmission   capacity.     (See   CAISO   2012-­‐2013   Transmission   Plan   -­‐  http://www.caiso.com/Documents/BoardApproved2012-­‐2013TransmissionPlan.pdf)    The  goal  of  the   Study   Team  analysis   is   to   identify   the   cost   of   avoided   transmission   for   increased   capacity.    

Page 89: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

                                                                                           Appendix  B:  Report  Comments  

San  Diego  Distributed  PV  Impact  Study   9  

Sunrise   is   an   appropriate   option   since   these   are   current   and   actual   costs   of   transmission   that  was  designed  to  increase  capacity  in  the  San  Diego  area.      

We  note  that  on  September  25,  2013  SDG&E  presented  the  results  of  its  2013  Grid  Assessment  at  a   CAISO   Stakeholder  meeting.     It   identified   four   transmission   alternatives   options   for  meeting  future  capacity  requirements.    The  capital  costs  of  these  alternatives  ranged  from  approximately  $1,103/kW   to   $4,068/kW,  which   is   approximately   in   line  with   the   transmission   capacity   costs  used   in   this   study.       (http://www.caiso.com/Documents/Presentation-­‐PreliminaryReliabilityAssessmentResults-­‐Sep26_2013.pdf)  

   3.3.6.1  Distribution  of  Peak  Circuits    

SDG&E  suggests  the  Utility  Avoided  Costs  for  Distribution  Station  Capacity  be  updated  to  reflect  the  distribution  of  circuit  peaks.    

         Study  Team  Comment:  

SDG&E  provided  the  Study  Team  the  projected  circuit  peaks,  but  did  not  provide  sufficient  time  of   day   information   to   develop   a   more   detailed   forecast,   such   as   that   suggested   by   SDG&E.  Additional   forecast  data   for   the   load  profile  of  each  distribution  substation  or   circuit  would  be  required  to  complete  this.    

3.3.7  and  3.3.11  Transmission  and  Distribution  O&M  Costs  

SEIA   contends   that   there   is   an   avoided   Transmission   O&M   cost   associated   with   reduced  Transmission  capacity  requirements,  and  the  marginal  distribution  capacity  costs  in  SDG&E’s  last  rate  case  include  distribution  O&M  costs.      SDCAN  seeks  to  incorporate  the  cost  (value)  of  Smart  Grid.    

         Study  Team  Comment:  

The   Study   Team   agrees   there   is   a   reasonable   argument   to   reduce   transmission   O&M   costs  commensurate  with   reduced   future   transmission   capacity   costs,   and  believes   this  modification  should  be  adopted  in  future  studies.      

The   distribution   O&M   costs   are   more   difficult   to   quantify.     Distributed   solar   may   reduce  distribution  substation  capacity  in  some  instances  and  therefore  reduce  fixed  O&M  costs,  but  it  may   increase  distribution   costs   if   the  amount   of   distributed  generation   is   greater   than   energy  demand  on  an  individual  circuit  or  if  the  variability  of  PV  output  causes  more  frequent  equipment  cycling  that  increases  variable  O&M  costs  over  time.    It  is  difficult  to  state  how  this  may  change  in   the   future.     However,   the   Study   Team   acknowledges   that   the   distribution   O&M   costs   are  already   included   in   the   SDG&E  marginal   distribution   costs   used   in   this   study,   and   that   future  studies  should  avoid  this  unintentional  double-­‐counting  of  costs.      

The  cost  and  operational  impact  of  smart  grid  technologies  is  unknown  at  this  time.        

Page 90: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

                                                                                           Appendix  B:  Report  Comments  

San  Diego  Distributed  PV  Impact  Study   10  

   3.3.8.4  Distinguishing  Impacts  based  on  Customer  Load    

SDG&E   suggests   the   study   distinguish   the   impact   of   NEM   on   commercial   and   industrial   (C&I)  customers  and  residential  customers  to  determine  distribution  system  benefits.        

         Study  Team  Comment:  

The   study   was   suspended   before   this   level   of   detail   could   be   examined.     That   said,   SDG&E  provided   Study   Team   the   projected   NEM   PV   impacts   by   circuit   through   2020,   but   did   not  distinguish  whether  the  customers  on  each  circuit  were  primarily  residential  or  C&I.    Additional  forecast  data  would  be  required  to  complete  this.    

3.3.9  and  3.3.10  Transmission  and  Distribution  O&M  Costs  

SEIA   contends   that   approximately   50%   of   SDG&E’s   NEM   PV   capacity  will   be   provided   by   C&I  customers  and  should  be  assumed  to  avoid  distribution  capacity  costs.          

         Study  Team  Comment:  

It   is   not   possible   to   predict   exactly   where   any   new   PV   capacity-­‐   residential   or   C&I   –   will   be  installed,   hence   it   is   difficult   to   estimate   the   impact   on   the   distribution   system.     A   substantial  amount  of  additional  data  and  analysis,  well  beyond  the  scope  of  this  study,  would  be  required  to  make  any   informed  estimate  of   the   impact  of   additional   distributed  PV   installations  on   the  peak  load  of  any  particular  circuit,  or  the  peak  loads  of  residential  vs.  C&I  circuits  generally.  

3.3.10   Interconnection  Procedures    

Black  &  Veatch  erred   in   referring   to  “FERC  Model   Interconnection  Procedures”.    We  meant   to  refer  to  the   Interstate  Renewable  Energy  Council   (IREC)  Model   Interconnection  Procedures.    A  reference   to   these   is:  http://www.irecusa.org/wp-­‐content/uploads/2013-­‐IREC-­‐Interconnection-­‐Model-­‐Procedures.pdf.    We  apologize  for  any  inconvenience  this  has  caused  participants.  

3.3.10.1  Voltage  Disturbance  Control  Devices  

  SDG&E  recommends  considering  the  impact  of  Smart  Inverters  with  PV  systems.    

         Study  Team  Comment:  

Inverter  technologies  are  rapidly  advancing  and  may  be  able  to  mitigate  voltage  and  frequency  fluctuations   in   the   future.    This  would  have   the   impact  of   reducing   the  grid   integration  cost  of  distributed  PV  on  SDG&E’s  distribution  system.  A  working  group  is  currently  drafting  a  standard  under  Rule  21   that  may  allow  or  even   require   “smart”   inverter   functionality   for  distributed  PV  installations  in  the  future.    However,  the  timing  and  details  of  this  standard  are  still  uncertain,  so  it   is   not   yet   clear   how  much   impact   smart   inverters  will   have   over   the   next   decade.     Thus,   it  seems  appropriate   that   a   future   study   could   examine   the  potential   impacts   of   smart   inverters  

Page 91: San Diego Distributed Solar PV Impact Study - EPIC Report ...catcher.sandiego.edu/items/usdlaw/sd-distributed... · ContentsofReport’! 1. Overview!! 2. Achievement!of!Project!Goals!andObjectives!

                                                                                           Appendix  B:  Report  Comments  

San  Diego  Distributed  PV  Impact  Study   11  

through  a  scenario  analysis  that  compares  distributed  PV  grid  integration  costs  with  and  without  smart  inverters.      

3.3.12  and  3.3.13  Interconnection,  Metering,  Billing  and  Administration    

SEIA  reiterates  that  only  incremental  costs  for  solar  customers  are  considered,  and  provides  an  alternative  methodology  for  allocating  administrative  costs.      

Study  Team  Comment:  

We  agree  that  the  costs  should  only   include  the  incremental  costs  to  serve  PV  NEM  customers.    Further,  we  are  clear  that  we  did  not  have  sufficient  detail  in  the  data  to  conclusively  determine  the  incremental  cost  of  installation,  administration,  metering  and  billing  for  PV  NEM  customers.    The  SEIA  approach  is  an  alternative  method,  though  it  is  unclear  how  this  better  represents  the  incremental  costs.  

3.4   Societal  Benefits    

SEIA  endorses  an  expanded  discussion  and  quantification  of  the  societal  benefits  of  PV  NEM.        

         Study  Team  Comment:  

It  was  an  agreement  among  stakeholders  in  the  January  2013  stakeholder  meeting  that  since  we  were  taking  a  ”cost-­‐of-­‐service”  approach,  only  direct  utility  costs  and  distributed  PV  value  were  quantified  in  the  analysis.  However,  other  studies  have  quantified  these  societal  benefits  and  it  may   be   useful   to   summarize   those   results   in   addition   to   following   the   strict   cost-­‐of-­‐service  approach  adopted  for  this  study.      

Transmission  Access  Charge  

One   commenter   on   the   webinar   asked   whether   the   study   had   included   transmission   access  charge  costs,  which  are  separate  from  the  grid  management  charge  for  CAISO.      

Study  Team  Comment:  

The  Study  Team  acknowledges  that  the  transmission  access  charge  was  not  accounted  for  in  this  analysis,  but   that   it  should  be  considered   in   future  studies  as  another  utility  cost   that  could  be  avoided  by  distributed  PV.