sanspro penjelasan.docx

50
TECHNICAL INFORMATION Useful Information for Civil Engineer Revision 1: 01 Jan 2006 Revision 2: 20 Feb, 4 Aug 2006 Disclaimer: ----------- Nathan Madutujuh, ESRC or PT AMCK does not responsible for any damage or loss due to the use of any information from this program. A. LOADING 1. Material Weight Reinforced Concrete = 2500 kg/m3 Plain Concrete = 2100 kg/m3 Steel = 7850 kg/m3 Sand = 1800 kg/m3 Fill Earth = 2000 kg/m3 Brick wall 15cm = 250 kg/m2 Aerated Concrete Wall = 600 kg/m3

Upload: mttaib

Post on 21-Jan-2016

169 views

Category:

Documents


1 download

DESCRIPTION

structural

TRANSCRIPT

Page 1: SANSPRO PENJELASAN.docx

TECHNICAL INFORMATION

Useful Information for Civil Engineer

Revision 1: 01 Jan 2006

Revision 2: 20 Feb, 4 Aug 2006

Disclaimer:

-----------

Nathan Madutujuh, ESRC or PT AMCK does not responsible for any damage or loss

due to the use of any information from this program.

A. LOADING

1. Material Weight

Reinforced Concrete = 2500 kg/m3

Plain Concrete = 2100 kg/m3

Steel = 7850 kg/m3

Sand = 1800 kg/m3

Fill Earth = 2000 kg/m3

Brick wall 15cm = 250 kg/m2

Aerated Concrete Wall = 600 kg/m3

Mortar = 2000 kg/m3

Ceiling = 20 kg/m2

Page 2: SANSPRO PENJELASAN.docx

Granite tile = 2600 kg/m3

Aggregate = 1450 kg/m3

Sand stone = 1850 kg/m3

Boulder stone = 1800 kg/m3

Water = 1000 kg/m3

Glass = 2500 kg/m3

Partition wall = 50 kg/m2

Hotmix = 2200 kg/m3

Ceramic tile + purlin = 50 kg/m2

Metal sheet roof tile = 10 kg/m2

Batubara = 1300-1400 kg/m3

Batubara = 1250-2200 kg/m3

Batubara (Bituminous) = 1250 kg/m3

Batubara (Lignit) = 1500 kg/m3

Batubara (Antrasit) = 1500 kg/m3

Batubara (Grafit) = 2200 kg/m3

2. Dead Load

Warehouse = 2500 kg/m2

Archive = 800 kg/m2

Roof + M&E = 500 kg/m2

Page 3: SANSPRO PENJELASAN.docx

3. Live Load

Schools = 200 kg/m2

Library = 300 kg/m2 (Reading)

Library = 600 kg/m2 (Stack Room)

Hospitals Room = 200 kg/m2

Apartment = 200 kg/m2

Balcony = 300 kg/m2

Corridor, stair = 300 kg/m2

Reviewing Stands = 500 kg/m2

Restroom = 250 kg/m2

Office = 250 kg/m2

Computer Lab = 500 kg/m2

Stores, Retail = 500 kg/m2

Theatre = 250 kg/m2

Theatre = 500 kg/m2 (Moveable seats)

Theatre = 600 kg/m2 (Stage Area, Warehouse)

Toilet = 250 kg/m2

Roof, No Access = 100 kg/m2

Roof Deck = 250 kg/m2

Roof + M/E = 500 kg/m2 (No Roof Tank)

Heavy parking = 800 kg/m2

Light parking = 400 kg/m2

Garages = 400 kg/m2 (Storage, repair)

Garages = 250 kg/m2 (Private cars)

Page 4: SANSPRO PENJELASAN.docx

Manufacturing = 400 kg/m2 (Light)

Manufacturing = 600 kg/m2 (Heavy)

Printing Plant = 750 kg/m2 (Machine)

Printing Plant = 500 kg/m2 (Office)

Storage = 200 kg/m2 (Residential)

Storage = 600 kg/m2 (Light)

Storage = 1200 kg/m2 (Heavy)

Pedestrian Bridges / Walkways = 500 kg/m2

Sidewalks and driveways = 1200 kg/m2

Impact Factor = 1.2-1.4

4. Live Load Reduction Factor :

Room Function Beam and Slab Frame and Girder Mass Calculation

Office, Apartment 1.0 0.9 0.3

Garage, Parking 1.0 0.9 0.5

Warehouse, Library 1.0 1.0 0.8

Beban air hujan:

Rata-rata selama 1981-2010, Ekstrim utk thn 2012

Curah Hujan per bulan (Jabar) : Rata-rata = 290 mm/bln, Ekstrim (2012) = 700 mm/bln

Jumlah hari hujan per bulan : Rata-rata = 7-24 hr/bln, Ekstrim (2012) = 2-30 hr/bln

Page 5: SANSPRO PENJELASAN.docx

5. Column Axial, Live Load Reduction Factor due to Accumulated Floors above

Number of floors above Live Load Reduction (Accumulated)

1 1.0

2 1.0

3 0.90

4 0.80

5 0.70

6 0.60

7 0.50

>= 8 0.40

6. Allowable Deflection

Live Load Only : L/360

DL + LL : L/240

B. CONCRETE STRUCTURES

1. Preliminary Design

Height to width Ratio for Highrise Building

Page 6: SANSPRO PENJELASAN.docx

H/B < 5-9

-------------------------------------------

Building Type Material Max Floor

-------------------------------------------

Load Bearing Brick wall 4

-------------------------------------------

Rigid Frame Concrete 20

Shearwall Concrete 35

Frame+Shearwall Concrete 50

Frame Tube Concrete 55

Tube-in-Tube Concrete 60

Modular Tube Concrete 80

-------------------------------------------

-------------------------------------------

Building Type Material Max Floor

-------------------------------------------

Rigid Frame Steel 20

Braced Frame Steel 40

Belt Truss Steel Composite 60

Frame Tube Steel Composite 80

Mega Brace Steel Composite 100

Bundled Tube Steel Composite 110

Page 7: SANSPRO PENJELASAN.docx

Mega Truss Tube Steel Composite 140

-------------------------------------------

Main lateral structural system should be at both directions

Load bearing brick wall is only for floor <= 4

a. Floor System

Note: L/Tp = Span/Thickness

=============================================================================================

Floor Types L/tp Explanation

=============================================================================================

REINFORCED CONCRETE

One-way Slabs on Beams/Walls 37 Solid slab span between two support lines

Construction: Simple Formwork

Span: 4-8m

Reinforcement: simple, not very efficient,

good for prestressing

usage: cross-wall, cross-frame residential

Page 8: SANSPRO PENJELASAN.docx

highrise

Example: 0.2m slab for 7.4m span

One-way Pan Joists and Beams A thin mesh-reinforced slab supported by

closely spaced joists span to major beams

Span: up to 12.5m

Size: 6cm slab, 15-50cm joists,

spaced 50-75cm, up to 12.5m span

Construction: sepcial reusable form

Reinforcement: efficient, good for prestressing

usage: large span

One way slab on Beams and Girders A not very thin slab supported by

closely spaced beams span to major beams

Span: Up to 14m

Size: 7.5-15cm slab, 30-60cm beam,

spaced 100-200cm, up to 14m span

Construction: standard beam formwork

Reinforcement: efficient

usage: large span

Two-way Flat Plate Uniformly thick, two-way slab supported

directly by columns or short walls

Span: Up to 8m (11m for posttensioned)

Size: 15-30cm slab for Span 8m to 12m

Page 9: SANSPRO PENJELASAN.docx

Construction: standard table formwork

Reinforcement: not efficient

usage: Residential/Office with clearance factor

Need additional reinforcement near void/edge

Two-way Flat Slab Uniformly thick, two-way slab supported

by column capitals/drop panels then

to columns or short walls

Capitals increased shear capacity

Drop panel increased shear capacity and also

negative moment capacity

Span: 10m - 12m

Size: 18-20cm slab for Span 10m to 12m,

Drop panel thickness 40-50cm

Construction: standard table formwork

Reinforcement: not efficient

usage: Residential/Office with clearance factor,

Flat plate with heavy load

Need additional reinforcement near void/edge

Waffle Flat Slabs A slab supported by square grid of

closely spaced two-way joists with solid panel

near columns acting as drop panels

Span: 8m to 12m

Construction: need special formwork

Page 10: SANSPRO PENJELASAN.docx

Reinforcement: efficient

Appearance: good

Two-way Slab and Beam The slab spans two-way between orthogonal beams

Span: 4m to 6m

Construction: need standard beam and slab formwork

Reinforcement: efficient

Good to distribute load to four directions

Usage: For Length to width ratio < 2.0 (almost Square slab)

=============================================================================================

STEEL FRAMING

One-way Slabs on Beams/Walls 37 Solid slab or concrete on metal deck or

precast slab span between two support lines

Construction: Simple Formwork

Need Crane for precast concrete

Span: 4-8m

Reinforcement: simple, not very efficient,

good for prestressing

usage: cross-wall, cross-frame residential

highrise

Example: 0.2m slab for 7.4m span

Page 11: SANSPRO PENJELASAN.docx

Beams can be two-way or three-way system

Steel metal deck can be made composite with beams

=============================================================================================

RECOMMENDATIONS:

----------------

1. Two-Way Frame System

- Two-way slabs on beams

2. One-Way Beam System

- One way slab

- Precast slab

- Concrete and Metal deck

3. No beams

- Two-way Flat plate or flat slab

b. Beam and Slab Size

Page 12: SANSPRO PENJELASAN.docx

Ordinary Concrete Slab L/H Range L (m)

- One way 28-32 3-8

- Two way 30-36 7-12

- Waffle slab 20-24 10-14

Ordinary Concrete Girder L/H

- One way 12-14

- Two Way 14-16

- Cantilevers 4-6

- Arch Beam 30-40 20-50

hr = 8-12

Ordinary Concrete beam 16-20

Prestressed Concrete Girder 20-24

Prestressed Concrete Beam 24-28

Prestressed Concrete Slab L/H Range L (m)

- One way 40-44 7-12

- Two way 44-48 12-15

- Waffle slab 28-32 12-24

- Hollow core slab 36-40 10-20

Steel Wide Flange Girder

Page 13: SANSPRO PENJELASAN.docx

- One-way 20 5-20

- Two-way 24 5-20

- Arch beam 40-50 27-68

hr = 8-16

Steel Trussed Girder 20

c. Column Size

Required Concrete Area, Ac = Ptotal/(0.3*fc')

Column Size = Sqrt(Ac)

Approximation column rebar using axial load only design (very rough):

Interior Column: 1.5 ton/m2

Exterior Column: 2.0 ton/m2

Corner Column: 2.5 ton/m2

d. Reinforcement

ASTM A706

ASTM A615M 300,400

Fya <= Fy + 120 MPa

Fu/Fy >= 1.25

Page 14: SANSPRO PENJELASAN.docx

Stirrups Diameter:

Minimum Dbv Main Bar

----------------------------

10mm <= 32mm

13mm > 32mm

Spacing of longitudinal bars <= 350 mm

Spacing of side rebars <= 350 mm

Minimum Column Rebar = 1.0 % <= 6.0%

Minimum Beam Rebar = 1.4*bw*d/Fy <= 2.5% (top or bottom rebar)

Splice:

Farther than 2*h from column face

Must be enclosed by stirrups with spacing <= 4/4 or 100mm

Hook: 135 deg, 75mm, 6*db

90 deg, 75mm, 12*db

Beam Rebars:

Page 15: SANSPRO PENJELASAN.docx

Rebar Mminor/Mmajor ratio >= 0.5

Rebar Mmin / Mmax ratio >= 0.25

Lo = 2*h, first h -> Vc = 0

---------------------------------------------------------------------------

Notes Standard Seismic Area

---------------------------------------------------------------------------

Section width, b - b >= 250mm

Section height, h - Ln >= 4*d

Section ratio, b/h - b/h >= 0.3

Stirrups, ends d/2, 16*db, 48*dbv, 60cm d/4, 8*db, 24*dbv, 30cm

Stirrups, mid d/2 d/2

---------------------------------------------------------------------------

Column Rebars:

Lo = h, L/6, 450mm (PBI=500mm)

---------------------------------------------------------------------------

Notes Standard Seismic Area

---------------------------------------------------------------------------

Section width, b - bmin >= 300mm

Section ratio, b/h - b/h >= 0.4

Stirrups, ends b/2, 12*db, 48*dbv, 30cm b/4, 6*db, 24*dbv, so

Stirrups, mid b/2, 6*db, 15cm b/2, 6*db, 15cm

Page 16: SANSPRO PENJELASAN.docx

---------------------------------------------------------------------------

so = 100 + (350-hx)/3 >= 100, <= 150mm

hx = spacing of stirrups leg, typically 350mm

hx = 350mm -> so = 100mm

hx = 250mm -> so = 100 + 100/3 = 133 mm

hx = 150mm -> so = 100 + 200/3 = 150 mm

Seismic Stirrups Calculation:

Vc = 0 for V > Vmax/2, and N <= Ag*fc'/20

at distance <= h (beam) or Lo/2 (column)

So, for first distance h or Lo/2: Calculate using Vc = 0

and for next h or Lo/2 distance : Calculate using Vc

Special stirrups requirements:

For concentrated load location,

For beam carrying large torsional load,

Stirrups spacings <= 100mm

Torsional Reinforcement:

Page 17: SANSPRO PENJELASAN.docx

For beam carrying cantilever beams or large torsional load

Side rebars should use same diameter as main rebar

Side rebar spacing <= 150mm

PEDOMAN PELAKSANAAN STRUKTUR

PEKERJAAN BETON

1.Mutu Aggregat harus memenuhi syarat

2.Test beton dilakukan dengan kubus atau silinder, di Unpar/ITB

3.Ukuran aggregat <= b/5, 0.75*clearspc, tp/3

4.Kadar Fly Ash <= 15%

5.Bila dilakukan dengan kubus, faktor konversi dibawah ini digunakan:

fc' cylinder = 0.83 fc' kubus, K <= K-225

fc' cylinder = 0.87 fc' kubus, K >= K-300

6.Pengujian kekuatan masing-masing mutu beton yang dicor setiap harinya haruslah dari :

1.Minimum 1 sample per hari

2.Minimum 1 sample per 20 m3 beton

3.Minimum 1 sample per 5 ready mix truck

7.Setiap sampel diambil sebanyak 4 buah, yang akan diuji pada hari ke-3, ke-14, dan ke-28 (2 buah).

Umur beton Kuat Tekan

3 hr 50% fc'

Page 18: SANSPRO PENJELASAN.docx

7 hr 80% fc'

14 hr 90% fc'

21 hr 95% fc'

28 hr 100% fc'

8.Beton memenuhi syarat bila :

1.fc,average >= fc rencana

2.fc >= fc – 35 kg/cm2

9.Selimut Beton

Fungsi Komponen Cover

Langsung diatas tanah 70 mm

Exterior 50 mm

Balok dan Kolom 40 mm

Pelat dan Wall 20 mm

Shell 15-20 mm

10.Slump Beton

Balok, Kolom, Wall 25 – 100 mm

Perkerasan dan Pelat 25 – 75 mm

Bored Pile 160- 180 mm

Page 19: SANSPRO PENJELASAN.docx

DPT 25 – 100 mm

11. FAKTOR AIR SEMEN

SNI-T-15-1990-03:11, Tabel 5

-------------------------------------------------------------------------

No. Kondisi Lingkungan Korosif Jumlah semen FAS (Max)

-------------------------------------------------------------------------

1 Dalam Ruangan No 275 0.6

Korosif 325 0.52

2 Luar Ruangan Tidak Terlindung 325 0.6

Terlindung 275 0.6

3 Dalam Tanah Basah/Kering 325 0.55

Air tanah sulfat 300 0.5

4 Dalam Air Tawar 300 0.5

-------------------------------------------------------------------------

5 Dalam Air Payau Type II, Type V 330 0.5

6 Dalam Air Laut Type II, Type V 370 0.45

-------------------------------------------------------------------------

12. FLY ASH

Fly Ash dapat ditambahkan dengan akibat:

Page 20: SANSPRO PENJELASAN.docx

1. Mutu beton dapat naik

2. Kadar maksimum 15-20%

3. Penambahan Fly Ash akan memperlambat setting, efeknya 0.5-0.8 dari beton

Class F Fly Ash = 0.5

Blast Furnace Fly Ash = 0.65-0.8

13. MASS CONCRETE

Tebal pengecoran > 1.0 m memerlukan penanganan panas akibat pengecoran

Suhu di dalam beton bisa naik sampai 70-80 degC.

Untuk menghindari retak maka perbedaan panas didalam dan di permukaan beton harus < 21 degC

Bila tebal > 1.0 m maka suhu didalam dan dipermukaan perlu dimonitor untuk

mendapatkan perbedaannya.

Persiapan dilakukan diawal dengan :

1. Menggunakan Fly Ash (untuk memperlambat reaksi kimia / setting, sehingga produksi panas melambat)

2. Menggunakan air es pada waktu pengecoran (Kurang efektif)

3. Menggunakan selimut berupa lapisan pasir + terpal atau Styrofoam tebal 10cm

sehingga suhu permukaan ikut naik sehingga perbedaannya dengan suhu di dalam beton menjadi berkurang

Temp awal beton maks sebelum cor = 32 degC

Temp maks pada beton = 71 degC

Perbedaan temp dalam dan permukaan beton <= 21 - 36 degC

Page 21: SANSPRO PENJELASAN.docx

Kenaikan temperatur beton : 13 degC per 100 kg/m3 cement

Isolasi untuk menjaga perbedaan temp tidak terlalu besar

- Styrofoam 1"

- Plastic cor

- Pasir 10cm

PEDOMAN PELAKSANAAN STRUKTUR

PEKERJAAN BESI BETON

1.Besi beton tidak boleh berkarat

2.Penyimpanan besi beton harus dilindungi dari hujan dan tidak boleh bersentuhan dengan tanah

3.Ukuran diameter harus memenuhi syarat dengan toleransi +/- 0.5mm

4.Test dilakukan setiap 20 ton besi, untuk tiap diameter yang digunakan

5.Test yang dilakukan : Test Tarik dan Test Pembengkokan, yang dlakukan di Lab Unpar atau ITB

6.Persyaratan Pembengkokan

Page 22: SANSPRO PENJELASAN.docx

1.Diameter Pembengkokan Min, D <= 25 = 6 Db

2.Diameter Pembengkokan Min, D > 25 = 8 Db

7.Persyaratan Uji Tarik:

1.Fy,aktual <= Fy,rencana + 20 Mpa

2.Fu/Fy >= 1.25

2. Thermal effects on Podium Floor

3. Flat Slab Design

4. Post-tensioned Flat Slab Design

C. STEEL STRUCTURE

1. General

Direction Convention for kx,ky,Lux,Luy:

kx = Buckling Length Factor for Buckling around X-X (Major of I) Axis

ky = Buckling Length Factor for Buckling around Y-Y (Minor of I) Axis)

Lur = Minimum Lateral Unbraced Length Ratio (Lumin/L)

Page 23: SANSPRO PENJELASAN.docx

Lux = Lateral Unbraced Length Ratio in X-X direction (Lux/L)

Luy = Lateral Unbraced Length Ratio in Y-Y direction (Luy/L)

2. Torque for Bolt Installation

Selecting Bolt

Bolt Fu (MPa) Fy (MPa)

-----------------------------

A307 420 340

A325 830 660

A490

4.8 420 340

8.8 830 660

8.8s 830 660

Use Bolt Diameter : 3/4", 7/8", 1" (20, 22, 24 mm)

Hole diameter : Dh = Db + 1/16" = Db + 1.5mm

Plate Thickness : >= 10 mm

Slip-Critical connections : for Reversal, fatique, large impact, vibration load

Bolt Usage

-----------------------------------

M12 Stairways, small purlin, cold-formed

M16 Light steel, towers, platform, canopy, purlins, small beams

Page 24: SANSPRO PENJELASAN.docx

M20 Medium and heavy structures, buildings

M24 Large and heavy structures

Bolt A307

--------------------------------------------------

D (in.) D (mm) Torque (ft-lb) Torque (N-m)

--------------------------------------------------

1/4 6.35 5.0 6.8

3/8 9.525 14.0 19.0

1/2 12.7 40.0 54.2

5/8 15.875 50.0 67.8

3/4 19.05 110.0 149.2

1 25.4 250.0 339.0

--------------------------------------------------

Bolt A325

--------------------------------------------------

D (in.) D (mm) Torque (ft-lb) Torque (N-m)

--------------------------------------------------

1/4 6.35 11.0 14.9

3/8 9.525 37.5 50.9

1/2 12.7 95.0 128.8

5/8 15.875 190.0 257.6

3/4 19.05 335.0 454.3

1 25.4 750.0 1017.0

Page 25: SANSPRO PENJELASAN.docx

--------------------------------------------------

3. Gable Frame (Factory) Design

Rafter and Column size estimation (rough):

Light Metal Roof : WF depth = (L + 5) in mm, L in meter

Medium Metal Roof : WF depth = (L*1.2 + 5) in mm, L in meter

4. Tower Design and Construction

If Designing tower with height more than 100m, please consider:

1. Construction method

2. Allowable wind speed during construction

3. Allowable wind speed for unfinished module

4. Exposure Category

5. Important Factor

6. Base plate bolts must use double nuts

Some Failures Causes:

1. Chemical anchor pulled out

2. Unstable unfinished module during erection

3. Erection equipment

Page 26: SANSPRO PENJELASAN.docx

4. Anchor bolts failed

5. Broken of horizontal bracings

5. Cold Formed Steel Truss

If using truss with both supports modeled as hinges, horizontal reactions must

be transferred to beams or columns or resisted by a horizontal tie rod.

D. GEOTECHNICAL DESIGN

0. Soil Stiffness Modulus (Es)

(Used for spring stiffness for raft foundation)

Es = c.Nspt (in kPa unit)

Es = c*qc (in qc unit)

Soil Type SPT CPT

=========================================================

Sand (NC) 500(N+15) 2 to 4 qc

Sand (Saturated) 250(N+15)

Sand (OC) 18000 + 750 N 6 to 30 qc

gravelly sand 1200(N+6)

and Gravel 600(N+6), N <= 15

600(N+6)+2000, N>15

Page 27: SANSPRO PENJELASAN.docx

Clayey Sand 320(N+15) 3 to 6 qc

Silty Sand 300(N+6) 1 to 2 qc

Soft Clay 3 to 8 qc

Clay IP > 30, Organic 100 to 500 Su

IP < 30, Stiff 500 to 1500 Su

=========================================================

1. Pile Driving Criteria

Pile Driving Criteria:

1. Desired Length

2. Maximum Blows (400..2300 blows, depends on pile size and site condition)

3. Blows per set (1.0 s/d 2.5mm) per blows, or 10mm - 25mm per 10 blows

4. Hammer Weight Wr : 1.5, 3, 5, 7, 9 ton, Max Ratio Wr/Wp = 0.5 - 1.0

5. Drop of hammer : 500mm to 1500mm

Driving Method:

1. Drop Hammer

2. Diesel Hammer

3. Hydraulic Hammer

1. Drop Hammer

Page 28: SANSPRO PENJELASAN.docx

2. Diesel Hammer

Source: Kobe Diesel Pile Hammmer, K 13 : Weight of ram = 13 KN

Spun Pile Type of Diesel Hammer

(mm) Single Pile Jointed Pile

-----------------------------------------------------------

300 K 13 K 13

350 K 13 K 13 / K 25

400 K 25 K 25 / K 35

450 K 25 / K 35 K 35

500 K 35 K 35 / K 45 / KB 45

600 K 45 / KB 45 K 45 / KB 45 / KB 60

Hiley Formula for Diesel Hammer:

f. En (Wr + e^2*Wp)

Rd = -------------------- * ---------------

S + 0.5*(C1+C2+c3) (Wr + Wp)

Where:

Rd = Ultimate bearing capacity of pile (ton)

f = Relative efficiency of hammer (1.0 for diesel, 0.75 for drop hammer)

En = Hammer Energy from Manufacturer

Page 29: SANSPRO PENJELASAN.docx

En = 2 * Wr * H for Diesel hammer

En = Wr * H for Drop Hammer

Wr = Ram Mass (ton)

H = Drop Height (m)

e = Coeficient of Restitution

e = 0.5 for concrete pile

e = 0.5 for steel pile

e = 0.25 for wodden pile

Wp = Pile mass (ton)

S = Set (Pile Penetration) per blow (m)

C1 = Elastic Compression of Cushion and cap (m)

C2 = Elastic Compression of Pile (m)

C3 = Elastic Compression of Soil (m)

p1 = Pressure on cushion of pile butt

p2 = Pressure on concrete pile

p3 = pressure on soil

Values of C1,C2,C3 for Diesel Hammer:

Item Easy Medium Hard Very Hard

-----------------------------------------------------------------------------

p1,2,3 35 kg/cm2 70 kg/cm2 105 kg/cm2 140 kg/cm2

C1 0.003 0.006 0.01 0.013

C2 0.002 * L 0.004 * L 0.006 * L 0.008 * L

Page 30: SANSPRO PENJELASAN.docx

C3 0 - 0.0025 0.0025 0.0025 0.0025

3. Hydraulic Hammer

Source: IHC HYDROHAMMER Manual, S = Striking energy in KJ

Spun Pile Type of Diesel Hammer

(mm) Single Pile Jointed Pile

-----------------------------------------------------------

300 S 35 S 35

350 S 35 S 35

400 S 35 S 35 / S 60 / S 70

450 S35 / S60 / S70 S 60 / S 70

500 S 60 / S 70 S 60 / S 70 / S 90

600 S 60 / S 70 S 60 / S 70 / S 90

Hiley Formula for Hydraulic Hammer:

f. En f.En

Rd = -------------------- = --------------------------------

S + 0.5*(C1+C2+c3) S + 0.5*((C1 + C*Sqrt(En + C3))

Where:

Rd = Ultimate bearing capacity of pile (ton)

Page 31: SANSPRO PENJELASAN.docx

f = Relative efficiency of hammer (2.5)

En = Energy readout on Hydrohammer control panel (KJ)

S = Set (Pile Penetration) per blow (mm)

C = Factor depending on type of Hydrohammer and pile cross section area

Hammer Weight = 0.5 - 1.0 of Pile Weight

Stopping the Driving of Pile (Set = mm/blow for last 30cm)

Pile Type Max Blow/25mm Set (mm/Blow) set (mm/10 Blows)

------------------------------------------------------------------------------

Timber Pile 4-5 Blows / 25mm 5 50

Concrete Pile 6-8 Blows / 25mm 4 40

Steel Pile 12-15 Blows / 25mm 2 20

To achieve end bearing : Set = 25.4mm / 10 Blows = 2.5mm / Blow

Number of strokes = 500 - 3000 strokes (depend on pile size, depth, soil condition)

To avoid damage = 500 - 2000 strokes (depend on pile size, depth, soil condition)

Kobe Diesel Hammer

Type Wr (kN) Stroke (m)

-------------------------------

Page 32: SANSPRO PENJELASAN.docx

K150 147 2.59

K45 44.0 2.80

K42 41.2 2.59

K32 31.4 2.59

K25 24.5 2.80

K13 12.7 2.59

2. Pile Test

PDA Test can give also Pile Integrity (PIT) and Pile Length Info

PDA Test cost 10 times more than PIT Test

PDA Test depend on hammer weight (2.5 ton to 7 ton)

PDA Test should reach ultimate load of pile (not rebound)

Axial Test load should be 200% of allowable axial load and stop if reaching

more than 1" or the pile concrete capacity is reached.

Lateral Test Load should be 2xHe and stop if reaching 1/4" for first cycle

and 1/2" for second cycle. The test load also depends on the desired lateral

resistance and lateral capacity of pile. It is good to have simulation analysis

using soil spring to determine maximum load that can be accepted by pile.

Typical Values for several Pile size:

Page 33: SANSPRO PENJELASAN.docx

Pile Type Size Lateral Test Load

==========================================

Precast Pile PC28 2 x 3.5 ton

Precast Pile PC32 2 x 5 ton

Precast Pile 45X45 2 x 7.5 ton

Spun Pile D50 2 x 10 ton

Bored Pile D60 2 x 12.5-15 ton

Final Set

Penurunan tiang setiap N pukulan.

Untuk menentukan berhentinya pemancangan, biasanya ditentukan batas nilai set

Final Rebound

Total rebound, kenaikan kepala tiang setelah sejumlah pukulan tertentu

LOADING TEST UNTUK BORED PILE

Pengujian tiang dapat dilakukan pada used dan unused pile

Pengujian Aksial Tekan :

1. Jumlah Pengujian Aksial = 1 % dari per Jenis tiang

Page 34: SANSPRO PENJELASAN.docx

2. Pengujian Statik = 75%, Pengujian Dinamik = 25% dgn PDA

Tiang yang diuji statik dapat diuji PDA juga untuk korelasi pada pengujian PDA lainnya

3. Bila pengujian tidak di C.O.L maka selimut tiang dari permukaan hingga C.O.L perlu diloose

thdp tanah keliling dengan :

a. Double Casing

b. Goegandel (semacam Geomembrane) minimal 2 lapis

c. Metode lainnya

4. Bila pengujian tidak di C.O.L maka harus dipasang telltale yaitu pada elevasi COL,

elevasi bottom tulanggan tiang bor dan 1/2 panjang efektif tiang

5. Tiang uji tekan pertama disarankan untuk dipasang sepasang VWSG pada 5 elevasi

Pengujian Aksial Tarik :

Hanya diperlukan bila gaya tarik atau uplift akibat gempa atau tekanan air tanah

Pengujian Lateral:

1. Dilakukan 1x per tiap jenis tiang

2. Uji Lateral harus dilakukan pada COL

Page 35: SANSPRO PENJELASAN.docx

Quality Test:

Untuk kontrol kualitas pekerjaan dapat dilakukan pengujian tambahan berupa:

1. PIT Test untuk mengecek kualitas pengecoran, keutuhan tiang, panjang tiang

Jumlahnya 10% dari tiap jenis tiang, harga sekitar 500rb/test

2. PDA Test untuk mengetahui daya dukung tiang dan kebersihan ujung tiang

Harga sekitar 4-5jt/test

Jumlahnya terserah.

3. Pile Load Capacity

Type Size (cm) T (cm) Axial (ton) Lateral (ton.m) Mcr (t.m) Mult (t.m)

---------------------------------------------------------------------------------------------

Bored Pile 30 35 1.45

(KETIRA) 40 60 6.80

50 90 16.20

60 120 31.70

Large Bored Pile

80 150-250

Page 36: SANSPRO PENJELASAN.docx

100 250-400

Mini Pile T28 20-30 1.1-1.5

(KETIRA) T32 30-40 1.8-2.4

S20 30-35 1.7

S25 45-50 3.4

Mini Pile T28, 3 D13 23 1.1-1.5

(PT BEP) T32, 3 D16 37 1.8-2.4

K-450, U-39

Rectangular 45 150

Spun Pile 30 6.0 65-70 2.5-4.0 3.75-8.0

(Wika, K-600) 35 6.5 85-93 4.83-13.25 3.5-6.0 5.25-12.0

40 7.5 111-121 7.89-21.30 5.5-9.0 8.25-18.0

45 8.0 135-150 8.87-27.95 7.5-12.5 11.25-25.0

50 9.0 170-185 13.80-39.93 10.5-17.0 15.75-34.0

60 10.0 230-252 21.30-63.83 17.0-29.0 25.5-58.0

3. Soil Parameters

4. Basement Floor Design for Expansive Soil

Page 37: SANSPRO PENJELASAN.docx

Expansive soil is soil that expands when the water content changes, and shrinks otherwise.

If the water content kept constant, no expansion will occur.

Expansive soil can cause heavy uplift load on basement floor, from 0.5-20 ton/m2

Alternative design for expansive soil:

1. Using thick slab

2. Using thin slab + tension pile

3. Using thin suspended slab + Continous watering to keep water level constant

4. Replacing top soil with non-expansive soil

If Suspended slab used, consider also how to construct the basement slab.

To avoid costly formwork, one can use 10cm polystyrene compressible for formwork.

5. Differential Settlement Between Tower and Podium

1. If the differential settlement is less than 1" or L/250

no special treatment

2. If more, and soil permeability is high (sandy, sand), then use

delayed strip (delay casting concrete at one strip between tower

and podium slab) at least 6 months to one year.

3. If diff settlement is less than 100mm and and soil permeability is

low (clay with high plasticity), then use slab with gradual thickness

change from tower to podium. Use spring to model pile and to get

Page 38: SANSPRO PENJELASAN.docx

more even load distribution at the border of tower and podium.

4. If differential settlement is more than 100mm for point 3,

use dilatation or separation between poidum and tower.

6. Earth Pressure on Basement Wall due to Earthquake

1. Use Mononobe Theory to get Kae (Active Soil Pressure Coefficient)

at earthquake

2. Reference: Soil Dynamics, Brajas

7. Liquefaction Potential of Soil

1. Earthquake Magnitude > 6.0

2. High Ground Water Level (near coastal or beach)

3. Fine sand layer depth <= 15m

4. Fine sand layer Nspt <= 30 or 22, qc <= 157 tsf (15 MPA)

5. Particle smaller than 0.005mm <= 15%

6. Liquid Limit < 35%

7. Water content > 0.9 LL

8. Saturation 80-85%

Foundation for liquifaction:

1. Thick Raft Foundation

2. Deep Sloof for stiffener

Page 39: SANSPRO PENJELASAN.docx

3. Good pile to pilecap connection (50 D embedded length + 75mm + Sengkang masuk kedalam pilecap)

4. Pile rebar extend passing the liquifieable layer

Methods of Soil Improvement:

1. Soil Dynamic Compaction

2. Stone column, vibro compacted

3. Deep Vibro Compacted until 20-30m

4. Cement based pressurized grouting

E. COST ASPECTS

1. Generally concrete structure cost less than steel structure, except for

span > 15m and for roof structure (light load)

2. Concrete Equivalent Thickness for typical structure

Range from 0.2-0.25 m3 / m2

3. Concrete Rebar density

Range from :

120-150 kg/m2 Medium Rise Residential/Office/Hotel

150-180 kg/m2 Highrise Residential/Office/Hotel

Page 40: SANSPRO PENJELASAN.docx

180-200 kg/m2 Mall, Exhibition Hall

4. To get optimum concrete rebar density, use optimum beam depth:

Larger beam depth

- Low rebar density

- More weight

- More lateral earthquake load

Lower Beam depth

- Higher rebar density

- Less weight

5. Reducing Beam Reinforcement:

- Use Rigid End Zone with alpha = 0.5 for beams

- Use Cracked Inertia factor = 0.7-1.0

- Use Slab Thickness for calculating mid-span moment

(Cracked Inertia factor = 0.70 if slab thickness included)

- Use Moment redistribution factor:

Reduce top/negative moment by 10-15%

Increase Positive moment by 15-20%

- Use right concrete cover:

Page 41: SANSPRO PENJELASAN.docx

Beam < 15x20 2.5cm

Beam < 30x50 3.0cm

Beam >= 30x50 4.0cm

Slab 2.0-2.5cm

6. Use Concrete Biaxial Columns

- Use Rigid End Zone with alpha = 0.5 for columns

- Use Cracked Inertia factor = 0.7

- Use right concrete cover:

Column < 20x20 2.5cm

Column < 40x40 3.0cm

Column >= 40x40 4.0cm

7. Use Uniaxial Concrete Column

- If possible, use Uniaxial Column placed at direction of major

moment

============================

Notes on TPKB Requirements:

============================

1. Flast slab buildings

Page 42: SANSPRO PENJELASAN.docx

- Always has edge beams

- Max floor = 20

- Single System, R = 4.5

2. Dual System

- If column contribution >= 25% : R = 5.5

- If column contribution < 25%, but > 10% : R = 4.5

- All columns must be connected with beams

3. Drift

Drift max = 0.020 hx to 0.010 hx

4. Foundation Capacity Design

- DL + LL <= Pijin

- DL + LL + EQ <= 1.5 Pijin

- DL + LL + w*EQ <= 2.5 Pijin