satellite communication

25
Syed Absar kazmi (G1220119) 1 INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA KULLIYYAH OF ENGINEERING DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING Course Code: ECE 6233 (Design Project) Course Title : Satellite Communication Submission Due: December 12, 2014 Prof Rafiqul Islam Syed Absar kazmi (G1220119) [email protected] 0060182391572 1. Estimate the Rain Fade for earth-to-satellite microwave Down links for the following frequency bands (LP-V, LP-H, CP): a. C-band (4 GHz) b. Ku-band (12 GHz) c. Ka-band (20 GHz) d. V-band (30 GHz) 2. Make a table and compare the estimated rain fades for above four bands with three different polarizations. 3. Design and estimate the downlink budget for the above frequency bands by highlighting the following two parameters: C/N ratio during clear air C/N ratio during rain 4. Predict the BER for QPSK modulation and above environmental conditions. 5. For Malaysian Students use the earth station in Kuala Lumpur and MEASAT3 as satellite

Upload: engr-syed-absar-kazmi

Post on 18-Jul-2015

45 views

Category:

Engineering


1 download

TRANSCRIPT

Syed Absar kazmi (G1220119)

1

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

KULLIYYAH OF ENGINEERING

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

Course Code: ECE 6233 (Design Project)

Course Title : Satellite Communication

Submission Due: December 12, 2014

Prof Rafiqul Islam

Syed Absar kazmi (G1220119)

[email protected]

0060182391572

1. Estimate the Rain Fade for earth-to-satellite microwave Down links for the following

frequency bands (LP-V, LP-H, CP):

a. C-band (4 GHz)

b. Ku-band (12 GHz)

c. Ka-band (20 GHz)

d. V-band (30 GHz)

2. Make a table and compare the estimated rain fades for above four bands with three different

polarizations.

3. Design and estimate the downlink budget for the above frequency bands by highlighting the

following two parameters:

C/N ratio during clear air

C/N ratio during rain

4. Predict the BER for QPSK modulation and above environmental conditions.

5. For Malaysian Students use the earth station in Kuala Lumpur and MEASAT3 as satellite

Syed Absar kazmi (G1220119)

2

6. For International Students use your capital as earth station and any communication satellite used by

your country.Use all values and prediction procedures proposed by International Telecommunication

Union (ITU-R).

Assume the standard transmit powers and gains for satellite and earth station antennas.

Introduction

In this Assignment, will design and analyze the downlinks and link budget for C-band, Ku

band, Ka-band and V-Band. Rain attenuation for all bands are calculated and compared. The

location of the earth station that we are considering isIslamabad ,Pakistan (33.7167° N,

73.0667° E)

Parameters

Parameters Particulars

Satellite INTELSAT 906

City: Islamabad,Pakistan

Rain Rate for 0.01% of average year, R0.01%: 20 mm/hr

Height above mean sea-level, hs: 560m = .560 km

Isotherm Height, ho: 3 km

Elevation Angle, θ: 50o

Φ 33.71o (Latitude)

Syed Absar kazmi (G1220119)

3

C-band frequency: 4 GHz

Ku-band Frequency: 12 GHz

Ka-band Frequency: 20 GHz

V-band Frequency 30 GHz

Polarization: Horizontal, Vertical and circular

Location 33.7167° N, 73.0667° E

Table .(1)

Figure 2: Schematic of Earth-space path parameters

B = rain height, D = Earth-Space Link

Bands Frequencies KH αH KV αV KC αC

C-Band 4 GHz 0.0001071 1.6009 0.0002461 1.2476 0.0001766 1.344

Ku-Band 12 GHz 0.02386 1.1825 0.02455 1.1216 0.024205 1.1512

Ka-Band 20 GHz 0.09164 1.0568 0.09611 0.9847 0.097875 1.0207

V-Band 30 GHz 0.2403 0.9485 0.2291 0.9129 0.2347 0.931124

Table .(2)

Table 1: Coefficients used for estimating the rain attenuation

Table 1 shows the coefficients used for the estimation of rain attenuation for given frequency

bands C-band , Ka-band,Ku-band and V-band.Where as there are two coefficient for each

frequency band which are K and Alpha and for horizontal ,vertical and circular polarization

K and α values has been taken from the “RECOMMENDATION ITU-R P.838-3 Specific

attenuation model for rain for use in prediction methods “ for horizontal and vertical

pollarization they have given from 1-1000 GHz,Infact for circular polarization we need to

calculate the values by given equations

Syed Absar kazmi (G1220119)

4

where theta is the path elevation angle and t is the polarization tilt angle relative to the horizontal

(t = 45° for circular polarization).

Q1:Computing the Rain Fade for Horizontal ,Vertical and Circular polarization

a. C-Band (4GHz)

For Vertical Case C-band αand K are considered vertical coefficient untill 10 steps

Vertical Polarization

αV 1.2476

KV 0.0002461

Table .(3)

1) hr = ho + 0.36km

3 + 0.36 = 3.36 km

2) for θ≥5o

LS = 3.655km

3) Horizonal Projection,

LG = Ls cos θ = 3.655cos 50 = 2.34km

4) R0.01 = 20mm/hr “RECOMMENDATION ITU-R P.839-3 Rain

height model for prediction methods “

5) Specific attenuation

ΓR= k (R

0.01)

α = 0.0002461 (20)1.2476=0.010

Syed Absar kazmi (G1220119)

5

6) Horizontal Reduction factor

r0.01 = 1.46

7) Vertical adjustment factor, V0.01 for 0.01% of the time

ξ = tan-1 ( hr-hs)/LGr0.01= 36.62O

For ξ > θ, LR = 3655m=3.655km

If Φ <36o x = 36- Φ

V0.01 = 1.649

8) The effective path length:

LE = LRV0.01 = 3.655* 1.649

= 6.029 km

9) The predicted attenuation exceeded for 0.01% of an average year is

obtained from

A0.01

= γR

LE

= 0.11925 * 4.5 = 0.53 dB

Syed Absar kazmi (G1220119)

6

By using MATLAB tool , I have atained the attenuation for the given four bands and

three polarization

a. C-band, f = 4GHz

Polarization: Attenuation

Horizontal polarization: 0.048

Vertical polarization: 0.0403

Circular polarization: 0.039

Table .(4)

Table .(4) shows the numerical values of atmospheric attenuation for horizontal,vertical and

circular polarization for C-band downlink only which have some minor variation in

attenuation.

Attenuation

values M-file coding for

attenuatioin

Syed Absar kazmi (G1220119)

7

Ku-Band (12GHz)

Table .(5)

Table .(5) shows the numerical values of atmospheric attenuation for horizontal,vertical and

circular polarization for Ku-band downlink frequency 12GHz only ,which have some minor

variation among three polarizations however it is far more then the C-Band.

b. Ka-Band ( 20GHz)

Polarization: Attenuation

Horizontal polarization: 9.847

Vertical polarization: 8.693

Circular polarization: 9.134

Table .(6)

Table .(6) shows the numerical values of atmospheric attenuation for horizontal,vertical and

circular polarization for Ka-band downlink frequency 20 GHz only .However,it can be

concluded that increase in frequency the attenuation become higher.

c. V-Band ( 30 GHz)

Polarization: Attenuation

Horizontal polarization: 19.622

Vertical polarization: 17.515

Circular polarization: 18.369

Polarization: Attenuation

Horizontal polarization: 3.406

Vertical polarization: 3.063

Circular polarization: 3.197

Syed Absar kazmi (G1220119)

8

Table .(7)

Table .(7) shows the numerical values of atmospheric attenuation for horizontal,vertical and

circular polarization for V-band downlink only 30 GHz.however the values which are

obtained by matlab are the highest attenuation among all bands.Hence ,for counter measure

need high power to over come this fade or thos band is inappropriate for satellite modulation

due to high loss of power.

Question No 2

Make a table and compare the estimated rain fades for above four bands with three

different polarizations.

Frequencies Horizontal

polarization: Vertical

polarization : Circular

polarization

C-Band (4GHz) 0.048 0.0403 0.039

Ku-Band (12GHz) 3.406 3.063 3.197

Ka-Band (20GHz) 9.847 8.693 9.134

V-Band (30 GHz) 19.622 17.515 18.369

Table .(2.1)

Analysis:

The results obtained in this assignment are based on the Intelsat 906 satellite considered

islamabad,pakistan as earth station characteristics whichoperate at Cand Ku-band and

projections are made into higher frequency bands Across all thefrequency bands from C-band

up to V-band, rainfall attenuation, elevation angle, and efective pathlength have been

determined for satellite link. It is noted that the severity of The degradation of the

propagating signal increases with increasing availability. However, the signal degradation

increases with an increase in operating frequency of the satellite link. It can be observed by

the the results of all frequency bands,variation in attenuation is too obvious which has less

impact on C-band as campared to rest of frequency bands.However , if we corelate the

different pollarizations like horizontal,vertical and circular ,we can analyze that horizontal

polarization has the highest attenuation among all frequency bands whereas , vertical with

least attenuation and circular in between them. Furthermore,by maintaining a low fade

marginrequirement for the C-band for all polarizations can only be attributed to its

significantly low local rain rate of 20mm/h. However ,for the higher frequency bands it

Syed Absar kazmi (G1220119)

9

remains in need of higher fade margins as compared to C band which is less prone to

degradation as campared to ku,ka and V-band.

Ultimately , it can be concluded that , its higly recommended to implicate the C-band for all

pollarization as it requires less fade margin for the consolidation of link and vertical

pollarization among all pollarizationn in all frequency band since it got the least attenuation

factor which will lead to enhance the performance. Moreover , since the attenuation factor is

much more than C-band in Ka , Kuand v-band ,therefore enough power is required to cope

the degrading of link to receive the appropriate signal strength.

Recommendation for Ka,Ku and V bands based on gradients

To cope the attenuation attrubutes which have a great impact on performace of link in Ku ,

Kaand v-bands some prerequisite need to accumodated

Power control,The transmitter power is adjusted to compensate for variations in signal

attenuation along the path,Signal Processing and Diversity

Question No 3

Design and estimate the downlink budget for the above frequency bands by highlighting the

following two parameters:

C/N ratio during clear air

C/N ratio during rain

(a) Down link budget for C-band

i. Downlink power budget for C-band Clear Air

Parameters values

Transmit power Pt 13 dBW

Transmiter gain Gt 20 dB

Reciever gain Gr 49.7 dB

Path loss Lp -196.5 dB

Syed Absar kazmi (G1220119)

10

Attenuation loss La -3dB

Other loses Lm -0.7dB

Table .(3.1)

Recieve power Pr = Pt + Gt + Gr – Lp – La – Lm

= 13+ 20 + 49.7 – -196.5 – 3 – 0.7

= -117.5 dBW = 1.77 pW

Down link Noise power budget

Table .(3.2)

Noise power N = -135.5 dBW

Carrier to noise ratio:

(C/N)clear air= Pr – N = -117.5 – (-135.5) = 18 dB

ii. C-band Budget in Rain

Rain attenuation A = 1 dB

G = 10-A/10 = 0.79

Tsky, rain = 270(1-0.79) = 56.7 K

Tsky, rain =T + DT = 56.7 + 110

s =166.7 K = 22.22 dB

Parameters values

Bolts constant K -228.6dBW/K/Hz

Temperature Ts 18.8 dBk

Bandwidth Bn 74.3 dBHz

Syed Absar kazmi (G1220119)

11

Pr (rain) = Pr(clear air) – A = -117.5 dBW – 1 dB = -118.5

dBW

= 1.41 pW

Ts (clear air) = 18.88 dB = 12.76 K

ΔN = 10log (56.7 /12.76) = 6.47dB + 1 (rain atten.)

= 7.4 dB

(C/N)RAIN = 18 (clear air) – 6.47 = 11.53 dB

(b) Down link budget for Ku-band

i. Clear Air

Transmit power Pt 18 dBW

Transmiter gain Gt 31 dB

Reciever gain Gr 46.7 dB

Path loss Lp -205.4 dB

Attenuation loss La -3dB

Other loses Lm -0.8 dB

Table .(3.3)

Pr = Pt + Gt + Gr – Po – Lp – La – Lm

= 18 + 31 + 46.7 – 20.5 – 3 – 0.8

= -113.5 dBW = 4.5 pW

Noise power budget

Parameters values

Bolts constant K -228.6 dBW/K/Hz

Temperature Ts 21.5 dBk

Bandwidth Bn 76.4 dBHz

Table .(3.4)

Syed Absar kazmi (G1220119)

12

N = -130.7 dBW

(C/N)clear air= Pr – N = -113.5 – (-130.7) = 17.2 dB

ii. Ku-band Budget in Rain

A = 7.05 dB

G = 10-A/10 = 0.197

Tsky, rain = 270(1-0.197) = 216.8 K

Tsky, rain = T + DT =216.8 + 10

= 326.8 K = 25 dB

Pr (rain) = Pr(clear air) – A = -113.5 dBW – 7.05 dB

= -120.55 dBW = 0.88pW

Ts (clear air) = 21.5 dB = 140 K

ΔN = 10log (326.8 /140) = 3.68 dB + 7.05 (rain atten.)

= 10.73 dB

(C/N)RAIN = 17.2 (clear air) – 10.73 = 6.47 dB

(c) Down link budget for Ka-band

i. Clear Air

Prameters Values

Transmit power Pt 56.02dBW

Transmiter gain Gt 85.87 dB

Reciever gain Gr 63.82 dB

Path loss Lp -402.5 dB

Syed Absar kazmi (G1220119)

13

Attenuation loss La -3dB

Other loses Lm -0.8 dB

Table .(3.5)

Pr = Pt + Gt + Gr – Po – Lp – La – Lm

= -200.59dBW= 8.7*10^-21 W

Noise power budget

Parameters values

Bolts constant K -228.6 dBW/K/Hz

Temperature Ts 21.5 dBk

Bandwidth Bn 76.4 dBHz

Table .(3.6)

N = -130.7 dBW

(C/N)clear air= Pr – N = -69.89 dB

ii. Ka-band Budget in Rain

A = 10 dB

G = 10-A/10 = 0.1 dB

Tsky, rain = 270(1-0.1) = 243K

Tsky, rain = T + DT =243+ 110

=353 K = 25.47 dB

Pr (rain) = Pr(clear air) – A = -200.59 dBW – 10 dB

= -210.59 dBW = 8.73*10^-22 W

Ts (clear air) = 21.5 dB = 140 K

ΔN = 10log (243 /140) = 2.4dB + 10(rain atten.)

Syed Absar kazmi (G1220119)

14

= 12.4 dB

(C/N)RAIN = -69.89 (clear air) – 12.4 = -82.29 dB

d. Down link budget for V-band

i. Clear Air

Parameters Values

Transmit power Pt 70 dBW

Transmiter gain Gt 85 dB

Reciever gain Gr 65 dB

Path loss Lp -500 dB

Attenuation loss La -3dB

Other loses Lm -0.8 dB

Table .(3.7)

Pr = Pt + Gt + Gr – Po – Lp – La – Lm

= -283.8 dBw = 4.17*10^-29 W

Noise power budget

Parameters values

Bolts constant K -228.6dBW/K/Hz

Temperature Ts 21.5 dBk

Syed Absar kazmi (G1220119)

15

Bandwidth Bn 76.4 dBHz

Table .(3.8)

N = -130.7 dBW

(C/N)clear air= -283.8 -130.7 = -153.1 dB

ii. V-band Budget in Rain

A = 15 dB

G = 10-A/10 = 0.03 dB

Tsky, rain = 270(1-0.03) = 261.9 K

Tsky, rain = T + DT =261.9 + 10

=371. 9K = 25.7 dB

Pr (rain) = Pr(clear air) – A = -153.1 dBW – 15 dB= -168.1

dBW

= 1.54*10^-17W

Ts (clear air) = 21.5 dB = 140 K

ΔN = 10log (261.9 /140) = 2.72dB + 15(rain atten.)

= 17.72 dB

(C/N)RAIN = -153.1 (clear air) – 17.72 = -170.82 dB

Syed Absar kazmi (G1220119)

16

Q4: Predict the BER for QPSK modulation and above environmental conditions

QPSK the spectral efficiency is 2 and the and the Eb/N0 =11.4 dB The corresponding BER is

5*10^-8

The environmental conditions:

Readings obtained from the above graph

(a) - C-Band

CNR Value corresponding BER

Syed Absar kazmi (G1220119)

17

Eb/N0 (clear air ) 18 almost zero

Eb/N0 (during rain) 11.53 3*10^-8

Table .(4.1)

(b) - Ku-Band

CNR Value corresponding BER

Eb/N0 (clear air ) 17.2 dB almost zero

Eb/N0 (during rain) 6.47 dB = 8*10^-3

Table .(4.2)

(c) - Ka-Band

CNR Value corresponding BER

Eb/N0 (clear air ) -69.89 out of range

Eb/N0 (during rain) -82.29 out of range

Table .(4.3)

(d) - V-band

CNR Value corresponding BER

Eb/N0 (clear air ) -153.1 out of range

Syed Absar kazmi (G1220119)

18

Eb/N0 (during rain) -170.82 out of range

Table .(4.4)

MATLAB CODE

%STEP 1:DEFINING THE PARAMETERS

hs=0.56; %the altitude of the ground station above sea level,

in km

theta=0.2778.*pi; %elevation angle

ho=3; %in km

fc=4; %C-Band

fku=12; %Ku-Band

fka=20; %Ka-Band

fv=30; %V-band

zeta=33.71 ; %the latitude of the ground station inDegreeN or S

tc=45; %the polarization tilt angle with respect to horizontal,

in degree

R=20; %from ITU-R recommendation 2012

p=[1 0.7 0.3 0.1 0.07 0.03 0.01 0.007 0.003 0.001]; %percentage

%STEP 2:DETERMINE THE RAIN HEIGHT AT THE GROUND STATION OF REGION

hR=(ho+0.36); %in km

%STEP3: CALCULATE THE SLANT-PATH LENGHT AND HORIZONTAL PROJECTION

Syed Absar kazmi (G1220119)

19

Ls=(hR-hs)./sin(theta); %the slant-path lenght

Lg=Ls.*cos(theta); %the horizontal projection

%STEP 4:CALCULATE THE SPECIFIC ATTENUATION coefficients

kcv=0.0002461; %k for VERTICAL IN C-BAND

kch=0.0001071; %k for HORIZONTAL IN C-BAND

acv=1.2476; %a for VERTICAL IN C-BAND

ach=1.6009; %a for HORIZONTAL IN C-BAND

kkuv=0.02455; %k for VERTICAL IN Ku-BAND

kkuh=0.02386; %k for HORIZONTAL IN Ku-BAND

akuv=1.1216; %a for VERTICAL IN Ku-BAND

akuh=1.1825; %a for HORIZONTAL IN Ku-BAND

kkav=0.09611; %k for VERTICAL IN Ka-BAND

kkah=0.09164; %k for HORIZONTAL IN Ka-BAND

akav=0.9847; %a for VERTICAL IN Ka-BAND

akah=1.0586; %a for HORIZONTAL IN Ka-BAND

kvv=0.2291; %k for VERTICAL IN V-BAND

kvh=0.2403; %k for HORIZONTAL IN V-BAND

avv=0.9129; %a for VERTICAL IN V-BAND

avh=0.9485; %a for HORIZONTAL IN V-BAND

%determine value for k and a in cicular for c-band,ku-band,ka-band

and v-band

kcc=(kch+kcv+((kch-kcv).*cos(theta).*cos(theta).*cos(2.*tc)))./(2);

%k for CIRCULAR IN C-BAND

acc=(kch.*ach+kcv.*acv+(kch.*ach-

kcv.*acv).*cos(theta).*cos(theta).*cos(2.*tc))./(2.*kcc);

Syed Absar kazmi (G1220119)

20

%a for CIRCULAR IN C-BAND

kkuc=(kkuh+kkuv+((kkuh-

kkuv).*cos(theta).*cos(theta).*cos(2.*tc)))./(2);

%k for CIRCULAR IN Ku-BAND

akuc=(kkuh.*akuh+kkuv.*akuv+(kkuh.*akuh-

kkuv.*akuv).*cos(theta).*cos(theta).*cos(2.*tc))./(2.*kkuc); %a

for CIRCULAR IN kU-BAND

kkac=(kkah+kkav+((kkah-

kkav).*cos(theta).*cos(theta).*cos(2.*tc)))./(2);

%k for CIRCULAR IN Ka-BAND

akac=(kkah.*akah+kkav.*akav+(kkah.*akah-

kkav.*akav).*cos(theta).*cos(theta).*cos(2.*tc))./(2.*kkac); %a

for CIRCULAR IN Ka-BAND

kvc=(kvh+kvv+((kvh-kvv).*cos(theta).*cos(theta).*cos(2.*tc)))./(2);

%k for CIRCULAR IN V-BAND

avc=(kvh.*avh+kvv.*avv+(kvh.*avh-

kvv.*avv).*cos(theta).*cos(theta).*cos(2.*tc))./(2.*kvc);

%a for CIRCULAR IN V-BAND

%STEP 5:CALCULATE THE SPECIFIC ATTENUATION COEFFICIENTS

Ycv=kcv.*(R.^acv); %YR for VERTICAL IN C-BAND

Ych=kch.*(R.^ach); %YR for HORIZONTAL IN C-BAND

Ycc=kcc.*(R.^acc); %YR for CIRCULAR IN C-BAND

Ykuv=kkuv.*(R.^akuv); %YR for VERTICAL IN Ku-BAND

Ykuh=kkuh.*(R.^akuh); %YR for HORIZONTAL IN Ku-BAND

Ykuc=kkuc.*(R.^akuc); %YR for CIRCULAR IN Ku-BAND

Ykav=kkav.*(R.^akav); %YR for VERTICAL IN Ka-BAND

Ykah=kkah.*(R.^akah); %YR for HORIZONTAL IN ka-BAND

Ykac=kkac.*(R.^akac); %YR for CIRCULAR IN Ka-BAND

Yvv=kvv.*(R.^avv); %YR for VERTICAL IN v-BAND

Yvh=kvh.*(R.^avh); %YR for HORIZONTAL IN v-BAND

Yvc=kvc.*(R.^avc); %YR for CIRCULAR IN v-BAND

Syed Absar kazmi (G1220119)

21

%STEP 6: CALCULATE THE HORIZONTAL REDUCTION FACTOR

rcv=1./(1+0.78.*(sqrt((Lg.*Ycv)./fc))-0.38.*(1-exp(-2.*Lg)));

%r0.01 for VERTICAL IN C-BAND

rch=1./(1+0.78.*(sqrt((Lg.*Ych)./fc))-0.38.*(1-exp(-2.*Lg)));

%r0.01 for HORIZONTAL IN C-BAND

rcc=1./(1+0.78.*(sqrt((Lg.*Ycc)./fc))-0.38.*(1-exp(-2.*Lg)));

%r0.01 for CIRCULAR IN C-BAND

rkuv=1./(1+0.78.*(sqrt((Lg.*Ykuv)./fku))-0.38.*(1-exp(-2.*Lg)));

%r0.01 for VERTICAL IN Ku-BAND

rkuh=1./(1+0.78.*(sqrt((Lg.*Ykuh)./fku))-0.38.*(1-exp(-2.*Lg)));

%r0.01 for HORIZONTAL IN Ku-BAND

rkuc=1./(1+0.78.*(sqrt((Lg.*Ykuc)./fku))-0.38.*(1-exp(-2.*Lg)));

%r0.01 for CIRCULAR IN Ku-BAND

rkav=1./(1+0.78.*(sqrt((Lg.*Ykav)./fka))-0.38.*(1-exp(-2.*Lg)));

%r0.01 for VERTICAL IN Ka-BAND

rkah=1./(1+0.78.*(sqrt((Lg.*Ykah)./fka))-0.38.*(1-exp(-2.*Lg)));

%r0.01 for HORIZONTAL IN Ka-BAND

rkac=1./(1+0.78.*(sqrt((Lg.*Ykac)./fka))-0.38.*(1-exp(-2.*Lg)));

%r0.01 for CIRCULAR IN Ka-BAND

rvv=1./(1+0.78.*(sqrt((Lg.*Yvv)./fv))-0.38.*(1-exp(-2.*Lg)));

%r0.01 for VERTICAL IN V-BAND

rvh=1./(1+0.78.*(sqrt((Lg.*Yvh)./fv))-0.38.*(1-exp(-2.*Lg)));

%r0.01 for HORIZONTAL IN V-BAND

rvc=1./(1+0.78.*(sqrt((Lg.*Yvc)./fv))-0.38.*(1-exp(-2.*Lg)));

%r0.01 for CIRCULAR IN V-BAND

%STEP 7: CALCULATE THE VALUE OF ZETA

zcv=atand((hR-hs)./(Lg.*rcv)); %z for VERTICAL IN C-BAND

zch=atand((hR-hs)./(Lg.*rch)); %z for HORIZONTAL IN C-BAND

zcc=atand((hR-hs)./(Lg.*rcc)); %z for CIRCULAR IN C-BAND

zkuv=atand((hR-hs)./(Lg.*rkuv)); %z for VERTICAL IN Ku-BAND

zkuh=atand((hR-hs)./(Lg.*rkuh)); %z for HORIZONTAL IN Ku-BAND

Syed Absar kazmi (G1220119)

22

zkuc=atand((hR-hs)./(Lg.*rkuc)); %z for CIRCULAR IN Ku-BAND

zkav=atand((hR-hs)./(Lg.*rkav)); %z for VERTICAL IN Ka-BAND

zkah=atand((hR-hs)./(Lg.*rkah)); %z for HORIZONTAL IN Ka-BAND

zkac=atand((hR-hs)./(Lg.*rkac)); %z for CIRCULAR IN Ka-BAND

zvv=atand((hR-hs)./(Lg.*rvv)); %z for VERTICAL IN V-BAND

zvh=atand((hR-hs)./(Lg.*rvh)); %z for HORIZONTAL IN V-BAND

zvc=atand((hR-hs)./(Lg.*rvc)); %z for CIRCULAR IN V-BAND

%STEP 8: CALCULATE THE VALUE OF X

X=36-zeta;

%STEP 9: CALCULATE THE LR

Lrcv=(hR-hs)./(sin(theta)); %Lr0.01 for VERTICAL IN C-BAND

Lrch=(hR-hs)./(sin(theta)); %Lr0.01 for HORIZONTAL IN C-BAND

Lrcc=(hR-hs)./(sin(theta)); %Lr0.01 for CIRCULAR IN C-BAND

Lrkuv=(Lg.*rkuv)./(cos(theta)); %Lr0.01 for VERTICAL IN Ku-BAND

Lrkuh=(Lg.*rkuh)./(cos(theta)); %Lr0.01 for HORIZONTAL IN Ku-

BAND

Lrkuc=(Lg.*rkuc)./(cos(theta)); %Lr0.01 for CIRCULAR IN Ku-BAND

Lrkav=(Lg.*rkav)./(cos(theta)); %Lr0.01 for VERTICAL IN Ka-BAND

Lrkah=(Lg.*rkah)./(cos(theta)); %Lr0.01 for HORIZONTAL IN Ka-

BAND

Lrkac=(Lg.*rkac)./(cos(theta)); %Lr0.01 for CIRCULAR IN Ka-BAND

Lrvv=(Lg.*rvv)./(cos(theta)); %Lr0.01 for VERTICAL IN V-BAND

Lrvh=(Lg.*rvh)./(cos(theta)); %Lr0.01 for HORIZONTAL IN V-BAND

Lrvc=(Lg.*rvc)./(cos(theta)); %Lr0.01 for CIRCULAR IN V-BAND

%STEP 7: CALCULATE THE VERTICAL ADJUSTMENT FACTOR

Syed Absar kazmi (G1220119)

23

vcv=1./(1+sqrt(sin(theta)).*(31.*(1-exp(-

77.4./(1+X))).*(sqrt(Lrcv.*Ycv)./(fc.*fc))-0.45)); %V0.01

for VERTICAL IN C-BAND

vch=1./(1+sqrt(sin(theta)).*(31.*(1-exp(-

77.4./(1+X))).*(sqrt(Lrch.*Ych)./(fc.*fc))-0.45)); %V0.01

for HORIZONTAL IN C-BAND

vcc=1./(1+sqrt(sin(theta)).*(31.*(1-exp(-

77.4./(1+X))).*(sqrt(Lrcc.*Ycc)./(fc.*fc))-0.45)); %V0.01

for CIRCULAR IN C-BAND

vkuv=1./(1+sqrt(sin(theta)).*(31.*(1-exp(-

77.4./(1+X))).*(sqrt(Lrkuv.*Ykuv)./(fku.*fku))-0.45)); %V0.01 for

VERTICAL IN Ku-BAND

vkuh=1./(1+sqrt(sin(theta)).*(31.*(1-exp(-

77.4./(1+X))).*(sqrt(Lrkuh.*Ykuh)./(fku.*fku))-0.45)); %V0.01 for

HORIZONTAL IN Ku-BAND

vkuc=1./(1+sqrt(sin(theta)).*(31.*(1-exp(-

77.4./(1+X))).*(sqrt(Lrkuc.*Ykuc)./(fku.*fku))-0.45)); %V0.01 for

CIRCULAR IN Ku-BAND

vkav=1./(1+sqrt(sin(theta)).*(31.*(1-exp(-

77.4./(1+X))).*(sqrt(Lrkav.*Ykav)./(fka.*fka))-0.45)); %V0.01 for

VERTICAL IN Ka-BAND

vkah=1./(1+sqrt(sin(theta)).*(31.*(1-exp(-

77.4./(1+X))).*(sqrt(Lrkah.*Ykah)./(fka.*fka))-0.45)); %V0.01 for

HORIZONTAL IN Ka-BAND

vkac=1./(1+sqrt(sin(theta)).*(31.*(1-exp(-

77.4./(1+X))).*(sqrt(Lrkac.*Ykac)./(fka.*fka))-0.45)); %V0.01 for

CIRCULAR IN Ka-BAND

vvv=1./(1+sqrt(sin(theta)).*(31.*(1-exp(-

77.4./(1+X))).*(sqrt(Lrvv.*Yvv)./(fv.*fv))-0.45)); %V0.01

for VERTICAL IN V-BAND

vvh=1./(1+sqrt(sin(theta)).*(31.*(1-exp(-

77.4./(1+X))).*(sqrt(Lrvh.*Yvh)./(fv.*fv))-0.45)); %V0.01

for HORIZONTAL IN V-BAND

vvc=1./(1+sqrt(sin(theta)).*(31.*(1-exp(-

77.4./(1+X))).*(sqrt(Lrvc.*Yvc)./(fv.*fv))-0.45)); %V0.01

for CIRCULAR IN V-BAND

%STEP 8: DETERMINE THE EFFECTIVE PATH LENGTH

Syed Absar kazmi (G1220119)

24

Lecv=Lrcv.*vcv; %lE for VERTICAL IN C-BAND

Lech=Lrch.*vch; %LE for HORIZONTAL IN C-BAND

Lecc=Lrcc.*vcc; %LE for CIRCULAR IN C-BAND

Lekuv=Lrkuv.*vkuv; %LE for VERTICAL IN Ku-BAND

Lekuh=Lrkuh.*vkuh; %LE for HORIZONTAL IN Ku-BAND

Lekuc=Lrkuc.*vkuc; %LE for CIRCULAR IN Ku-BAND

Lekav=Lrkav.*vkav; %LE for VERTICAL IN Ka-BAND

Lekah=Lrkah.*vkah; %LE for HORIZONTAL IN Ka-BAND

Lekac=Lrkac.*vkac; %LE for CIRCULAR IN Ka-BAND

Levv=Lrvv.*vvv; %LE for VERTICAL IN V-BAND

Levh=Lrvh.*vvh; %LE for HORIZONTAL IN V-BAND

Levc=Lrvc.*vvc; %LE for CIRCULAR IN V-BAND

%STEP 9:CALCULATE THE ATTENUATION EXCEED FOR 0.01% OF AN AVERAGE YEAR

Acv=Ycv.*Lecv; %A0.01 for VERTICAL IN C-BAND

Ach=Ych.*Lech; %A0.01 for HORIZONTAL IN C-BAND

Acc=Ycc.*Lecc; %A0.01 for CIRCULAR IN C-BAND

Akuv=Ykuv.*Lekuv; %A0.01 for VERTICAL IN Ku-BAND

Akuh=Ykuh.*Lekuh; %A0.01 for HORIZONTAL IN Ku-BAND

Akuc=Ykuc.*Lekuc; %A0.01 for CIRCULAR IN Ku-BAND

Akav=Ykav.*Lekav; %A0.01 for VERTICAL IN Ka-BAND

Akah=Ykah.*Lekah; %A0.01 for HORIZONTAL IN Ka-BAND

Akac=Ykac.*Lekac; %A0.01 for CIRCULAR IN Ka-BAND

Avv=Yvv.*Levv; %A0.01 for VERTICAL IN V-BAND

Avh=Yvh.*Levh; %A0.01 for HORIZONTAL IN V-BAND

Avc=Yvc.*Levc; %A0.01 for CIRCULAR IN V-BAND

Syed Absar kazmi (G1220119)

25

References

1)-Estimation of Rain Attenuation at C, Ka, Ku and V Bands forSatellite Links in South Africa

2) Satellite Link Design (chapter 4)

3) BER vs CNR notes