satellite link budget_course_sofia_2017_lisi

51
An Introduction to Satellite Link Budget Dr. ing. Marco Lisi ([email protected]) Space Challenges, Sofia, 2017

Upload: marco-lisi

Post on 24-Jan-2018

124 views

Category:

Engineering


19 download

TRANSCRIPT

Page 1: Satellite Link Budget_Course_Sofia_2017_Lisi

An Introductionto

Satellite Link Budget

Dr. ing. Marco Lisi([email protected])

Space Challenges, Sofia, 2017

Page 2: Satellite Link Budget_Course_Sofia_2017_Lisi

“(…) et homines dum docent discunt”

Lucius Annaeus Seneca (c. 4 BC – A.D. 65)Epistulae Morales ad Lucilium, Liber I, 7-8

2

Page 3: Satellite Link Budget_Course_Sofia_2017_Lisi

Outline• What is a “budget”?• The RF link• Antenna directivity and gain• Power Flux Density• EIRP• Free Space Path Loss and Friis equation• Slant range• Atmospheric attenuation• Signal to noise ratio• Shannon’s theorem• Antenna noise temperature• Noise Factor, Noise Figure, G/T• Eb/N0, BER• Link budget procedure

3

Page 4: Satellite Link Budget_Course_Sofia_2017_Lisi

What is a Budget?

4

Page 5: Satellite Link Budget_Course_Sofia_2017_Lisi

The Basic RF Link

5

Page 6: Satellite Link Budget_Course_Sofia_2017_Lisi

Antenna Directivity (1/2)

6

Page 7: Satellite Link Budget_Course_Sofia_2017_Lisi

Antenna Directivity (2/2)

7

Page 8: Satellite Link Budget_Course_Sofia_2017_Lisi

Definition of Directivity• The directive gain of an antenna measures the power

density the antenna radiates in one direction, versus the power density radiated by an ideal isotropic radiator (which emits uniformly in all directions) radiating the same total power;

• The directive gain, D(θ, φ), depends on the direction;

• The directivity D of an antenna is the maximum value of its directive gain;

• The directivity is usually expressed in dBi, which is ten time the logarithm (base 10) of the ratio defined before:

D (dBi) = 10𝑙𝑙𝑙𝑙𝑙𝑙10 (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑑𝑑𝑝𝑝𝑑𝑑 𝑑𝑑𝑑𝑑 𝑝𝑝𝑑𝑑𝑝𝑝 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑑𝑑𝑝𝑝𝑑𝑑 𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑

)8

Page 9: Satellite Link Budget_Course_Sofia_2017_Lisi

Directivity Formula

D = 𝟒𝟒𝝅𝝅 𝑨𝑨𝒆𝒆𝝀𝝀𝟐𝟐

where:

Ae = is the equivalent area of the antenna (in case of anaperture antenna like a reflector or a patch is thephysical area of the antenna multiplied by the radiationefficiency, η)

λ = the electromagnetic wave wavelength;

9

Page 10: Satellite Link Budget_Course_Sofia_2017_Lisi

Directivity ≠ Gain

10

G = ηohmic D

in dB: G (dB) = D (dBi) - Lohmic (dB)

Page 11: Satellite Link Budget_Course_Sofia_2017_Lisi

Power Flux Density

11

Page 12: Satellite Link Budget_Course_Sofia_2017_Lisi

Effective Isotropic Radiated Power

12

EIRP (Effective Isotropic Radiated Power):

The amount of power that would have to be applied to an isotropic antenna to equal the amount of power that is being transmitted in a particular direction by the actual antenna

EIRP = PtGt (watts)

Page 13: Satellite Link Budget_Course_Sofia_2017_Lisi

Received Power (1/2)

13

PtGt watts PFD = EIRP/(4πR2)

Page 14: Satellite Link Budget_Course_Sofia_2017_Lisi

Received Power (2/2)

14

Ae = ηAr

Pr= PFD * Ae

Page 15: Satellite Link Budget_Course_Sofia_2017_Lisi

Friis Transmission Equation

15

Pr = PtGtGr𝝀𝝀

𝟒𝟒𝝅𝝅𝝅𝝅

𝟐𝟐

FSPL = Lp = 𝟒𝟒𝝅𝝅𝝅𝝅𝝀𝝀

𝟐𝟐

FSPL: Free Space Path Loss

Power Received = 𝑬𝑬𝑬𝑬𝝅𝝅𝑬𝑬 ∗𝝅𝝅𝒆𝒆𝑹𝑹𝒆𝒆𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝑨𝑨𝑹𝑹𝑨𝑨𝒆𝒆𝑹𝑹𝑹𝑹𝑨𝑨 𝑮𝑮𝑨𝑨𝑹𝑹𝑹𝑹

𝑬𝑬𝑨𝑨𝑨𝑨𝑷𝑷 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳

Page 16: Satellite Link Budget_Course_Sofia_2017_Lisi

GEO Satellite to Earth Slant Range

16

Page 17: Satellite Link Budget_Course_Sofia_2017_Lisi

Friis Equation in Decibels

17

Pr = EIRP + Gr – Lp dBW

Each term must be in decibel notation:

• EIRP = 10 log (PtGt) dBW

• Gr = 10 log (4πAe/λ2) dB

• Lp = 20 log (4πR/λ) dB

Page 18: Satellite Link Budget_Course_Sofia_2017_Lisi

Iso-gain or Iso-EIRP Contours

18

On the antenna footprint it is possible to trace the iso-gaincontours.In case of satellites for TV broadcasting, it is usually reportedthe EIRP (“Effective Isotropic Radiated Power”), in dBW, orthe corresponding needed diameter of the ground antenna.

Page 19: Satellite Link Budget_Course_Sofia_2017_Lisi

What power levels are we speaking about?

19

• With reference to the previous iso-EIRP contour, let usassume the satellite is transmitting at Ku band (12 GHz)with an EIRP of 50 dBW;

• A user in Sofia is receiving with an antenna of 60centimeters in diameter (efficiency 60%), so GR = 35 dB;

• Assuming a slant range of 36,000 kilometers (optimistic),the Free Space Path Loss is equal to -205 dB;

PR [dBW] = EIRP [dBW] – FSPL [dB] + GR [dB] == 50 -205 +35 = - 120 dBW

PR [W] = 10−12010 = 10−12 = 1 picoW

Page 20: Satellite Link Budget_Course_Sofia_2017_Lisi

Additional Path Losses

20

aLtot = Lp + La

La = attenuation in atmosphere (mostly rain)

Page 21: Satellite Link Budget_Course_Sofia_2017_Lisi

Atmospheric Attenuation vs. Frequency

21

Page 22: Satellite Link Budget_Course_Sofia_2017_Lisi

Statistical Rainfall Maps (ITU)

22

Page 23: Satellite Link Budget_Course_Sofia_2017_Lisi

Satellite Communications Signal Path

23

Page 24: Satellite Link Budget_Course_Sofia_2017_Lisi

Now that I know Pr ?

24

Throw it away!

Page 25: Satellite Link Budget_Course_Sofia_2017_Lisi

Signal to Noise Ratio

25

Page 26: Satellite Link Budget_Course_Sofia_2017_Lisi

Signal to Noise Ratio

26

Page 27: Satellite Link Budget_Course_Sofia_2017_Lisi

Signal to Noise Ratio

27

Page 28: Satellite Link Budget_Course_Sofia_2017_Lisi

Shannon, Father of the Information Age

28

Page 29: Satellite Link Budget_Course_Sofia_2017_Lisi

Let us ask Shannon: why is Pr not enough?

29

Page 30: Satellite Link Budget_Course_Sofia_2017_Lisi

Shannon’s Theorem and Equation

30

• C = maximum possible data rate that can be transmitted without errors in a given communication channel (bits per second, bps);

• B = effective bandwidth of the channel (Hz);• S = total signal power (W);• N = total noise power (W).

Nota Bene: Shannon’s theorem tells you the best you canachieve, but NOT HOW you can achieve it!

Page 31: Satellite Link Budget_Course_Sofia_2017_Lisi

Shannon’s Limit

31

C/B = log2 (1+ S/N) = log2 𝟏𝟏 + 𝑬𝑬𝒃𝒃𝑵𝑵𝟎𝟎

𝑪𝑪𝑩𝑩

where (assuming R, transmission rate, bps equal to C, channel capacity, bps):

Eb = S/R = S/C [Joule per bit];N0 = noise power density [W/Hz];C/B = η = spectral efficiency [bits/seconds/Hz]

𝑬𝑬𝒃𝒃𝑵𝑵𝟎𝟎

= 𝑩𝑩𝑪𝑪𝟐𝟐 �𝑪𝑪 𝑩𝑩 − 𝟏𝟏 = 𝟐𝟐

𝜼𝜼−𝟏𝟏𝜼𝜼

Per η → 0 (B → ∞) Eb/N0 = - 1.59 dB

Page 32: Satellite Link Budget_Course_Sofia_2017_Lisi

Satellite Communications Signal Path

32

Page 33: Satellite Link Budget_Course_Sofia_2017_Lisi

Thermal (Johnson) Noise

33

• All single port components (e.g. a resistor) generate an electric noise, with an associated delivered power equal to:

Pn = kTB

where:Pn : noise power in watts [W];k : Boltzmann’s constant = 1.379*10-23 [J/K] ([W/(Hz*K)]);T : physical temperature of the component in Kelvin;B : measurement bandwidth, [Hz].

Page 34: Satellite Link Budget_Course_Sofia_2017_Lisi

C/N (S/N) at Receiver Input

34

NOTA BENE: “C” from now on means carrier power level, NOT the channel data rate in Shannon’s equation

Page 35: Satellite Link Budget_Course_Sofia_2017_Lisi

C/N (S/N) at Receiver Input

35

Page 36: Satellite Link Budget_Course_Sofia_2017_Lisi

Receiving System C/N

36

Page 37: Satellite Link Budget_Course_Sofia_2017_Lisi

Antenna Noise Temperature, Ta

• The temperature of a hypothetical resistor that wouldgenerate the same output noise power per unit bandwidthas that at the antenna output at a specified frequency;

• The antenna noise temperature depends on antenna coupling to all noise sources in its environment as well as on noise generated within the antenna.

37

Page 38: Satellite Link Budget_Course_Sofia_2017_Lisi

Sources of Antenna Noise

38

Page 39: Satellite Link Budget_Course_Sofia_2017_Lisi

Noise Factor and Noise Figure (1/2)

39

Page 40: Satellite Link Budget_Course_Sofia_2017_Lisi

Noise Factor and Noise Figure (2/2)

40

• Real electronic devices in a signal chain provide gain (or attenuation) which act on both the input signal and noise These devices add their own additional noise, resulting in

an overall degradation of S/N

• Noise Factor: Quantifies the S/N degradation from the input to the output of a system

F = (S/N)i / (S/N)o

• Noise Figure = 10 log (F)

Page 41: Satellite Link Budget_Course_Sofia_2017_Lisi

Noise Factor an Noise Temperature

41

• So = GA Si• No = GA Ni + NA• By convention, Ni = noise equivalent to 290 K

(Ni = N290 = kB 290 K)F = 1 + NA/(GA N290) = 1 + Te/To

• For cascaded devices:F = FA + (FB-1)/GA + (FC-1)/(GAGB) + …

• In terms of of system noise temperature degradation using cascaded components:

Tsys = TA + TB/GA + TC/(GAGB) + …

Page 42: Satellite Link Budget_Course_Sofia_2017_Lisi

Receiving System C/N

42

Page 43: Satellite Link Budget_Course_Sofia_2017_Lisi

Quick and Dirty G/T Calculation

43

1. Consider antenna gain G at antenna terminals (neglecting ohmic losses);

2. Consider LNA noise figure (neglect following elements in the receiver chain, if LNA gain is high enough);

3. Estimate all ohmic losses between antenna terminals and LNA input (feed line, band-pass filter, etc.);

4. Add losses in dB to LNA noise figure in dB;5. Calculate the equivalent noise temperature at antenna

interface from previous value;6. Get G/Ts in dB/K.

Page 44: Satellite Link Budget_Course_Sofia_2017_Lisi

Receiving System C/N

44

Page 45: Satellite Link Budget_Course_Sofia_2017_Lisi

Example of G/T Calculation

45

Page 46: Satellite Link Budget_Course_Sofia_2017_Lisi

Digital Modulations Techniques

46

Page 47: Satellite Link Budget_Course_Sofia_2017_Lisi

BER vs Eb/N0 for Digital Modulations

47

Page 48: Satellite Link Budget_Course_Sofia_2017_Lisi

Summary of Link Equations

48

Page 49: Satellite Link Budget_Course_Sofia_2017_Lisi

Link Margin (dB)

49

Page 50: Satellite Link Budget_Course_Sofia_2017_Lisi

Satellite (Down)Link Budget Procedure1. Select carrier frequency;2. Estimate satellite transmit power (including losses to antenna);3. Calculate transmit antenna gain towards ground station;4. Calculate space loss, determined by satellite orbit and ground

station location;5. Estimate propagation absorption loss (rain attenuation) for the

desired link availability;6. Estimate ground station antenna gain and noise temperature;7. Estimate cumulative noise figure and equivalent noise

temperature of the receiver chain at antenna interface;8. Calculate ground station G/TS;9. Calculate Eb/N0;10.Look up Eb/N0 required to achieve desired BER for the selected

modulation and coding technique (add 1-2 dBs for implementation losses);

11.Calculate link margin;12.Readjust design parameters to reach wanted positive margin.50

Page 51: Satellite Link Budget_Course_Sofia_2017_Lisi

Korean

Thank YouEnglish

Russian

DankeGerman

GrazieItalian

GraciasSpanish

ObrigadoBrazilian

PortugueseArabic

Traditional Chinese

Thai

MerciFrench

Japanese

БлагодаряBulgarian

תודהJewish