s/c packaging assembly challenges using organic substrate...

26
Presented by S/C Packaging Assembly Challenges Using Organic Substrate Technology Bernd Appelt ASE Group Nov. 17, 2009

Upload: dotram

Post on 04-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Presented byS/C Packaging Assembly Challenges

Using Organic Substrate TechnologyBernd Appelt

ASE Group

Nov. 17, 2009

Overview

The Packaging Challenge

Chip Substrate Interactions

Stiffeners for FC-BGA Packages

PoP Packaging

PBGA & CSP Substrates

33

Packaging Challenges

Pitch perspective: um

50

110

500

150

CTE perspective: ppm/C

2.820

17

Underfill, Overmold / Lid omitted for simplicity

Die

Substrate

PCB

CTE mismatch: reliability & warpage concern

Increasing interconnect density

Decreasing substrate thickness

4

Packaging Challenges

Warpage

Control

Thermal

Performance Pb-free

System-level

Package

Reliability

Extreme

Low-k

(ELK)

Form

Factor

Next-generation

Package Solutions

5

Packaging Challenges from ELK

Assembly challenges from ELK:

• Die separation process

• Underfill selection for ELK and bump protection

• Pb-free bump: Higher stress on ELK layers

• Fine-pitch bump application

CSI (Chip Substrate Interaction)

Structure:

– SnPb -> Pb-free -> Cu pillar

– FSG -> LowK -> ELK

– pitch -> fine pitch -> finer pitch

– thick -> thin -> thinnest -> coreless

Cost

– unit -> strip (FC)

– std -> MAP -> LMAP -> XLMAP -> XXLMAP

– mold blocks: 4 -> 3 -> 2 -> 1

– UF & MC -> MUF

7

Design Optimization for ELK Devices

PI

PassivationELK

Pb-free

solder

Die

Substrate

Core

Global model Sub-model

Cu pillar

bump

Design and material optimized for:

• Polyimide (PI)

• Under Bump Metallurgy (UBM)

• Bump & pre-solder

• Underfill

High stress

at ELK

8

0

1

2

3

4

A1 A2 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3 G1 G2 G3 H1 H2 H3

∆W

(k

J/m

3)

Intel Atom 45 nm

Cu pillar+SnAg solder cap on ENIG substratesQuality factor responses

D

B

E

FC

G

H

DOE Matrix by Taguchi Method L18(21 x 37)

Factor Item Level 1 Level 2 Level 3

B Passivation opening 10 20 30

C Soldermask opening 60 80 100

D UBM diameter 60 80 100

F Solder cap thickness 5 15 25

G Die pad thickness 1 5 8

H Polyimide thickness 1 5 8

E 30 40 50

Underfill filled

Cu pillar thickness

A without with

Copper Pillar Bump Construction

Copper Pillar Bump Design Preference

Effect on TC reliability: Underfilled > Solder

cap thickness > Soldermask opening >

Copper pillar thickness

Thicker solder cap

Thicker Copper pillar

Larger soldermask opening

9

Solder bump Cu pillar bump

max. 113.2oC max. 112.7oC

max. 29.2 kA/cm2 max. 20.3 kA/cm2

Bump

temperature

Current crowding

0.5oC

30

%

Cumulative EM failure probability chart

5x~10x

SnP

bCu

pillar

Cu pillar bump (left) and SnPb (right)

2006 ECTC, pp. 1611-1615 (Intel, 65 nm)

Copper Pillar Bump vs. Solder Bump

Advantages of Copper Pillar Bump

Good heat dissipation

Good electromigration reliability

Fine pitch

10

Smaller contact

is better

Larger contact

is better

• White bumps (ELK delam beneath UBM) observed upon flip chip bond

• Strategy against white bumps:

Thin die – but leads to great warpage

PI implementation – stress buffer

Thin UBM – less stiff

SnPb is better than Pb-free

No significant improvement with low-CTE substrate

Different trends for different

bump structures

Modeling for Robust N40/N32 ELK Flip Chip

11

Modulus

Tg

Pb-free

low-k delam

bump crack

hi-Pb

low-k

eutectic

low-k strengthening

by seal rings

bump composition

change

Underfill Selection Rules

• High Tg/High E: Good for bumps

• Low Tg/low E: Good for low-K

• Window is small for Pb-free

• Window can be expanded:

• Seal rings in chip

• Bump composition change

Underfill Selection for Low-k Flip Chip

12

Warpage Control Challenges

(@125 C)

(@25 C)

Fine ball pitch makes the warpage control more challenging

Die warpage variation impacts the performance of TIM above die

Die warpage variation Substrate warpage verification

(@260 C)

Critical warpage for SMT

13

Warpage Modeling

-50 0 50 100 150 200 250

0

2

4

6

8

10

12

14

16

Yo

un

g's

mo

du

lus (

GP

a)

Temperature (oC)

Underfill A

Underfill B

Underfill C

Underfill D

Underfill E

Underfill F

Substrate process T1

Die bond process T2

Underfill process T3

Temp-dependent

material properties

Advanced FEA modeling incorporating various process temperatures

has been utilized for warpage optimization

Temperature (oC)

Wa

rpa

ge

(m

)

0 50 100 150 200 250-150

-125

-100

-75

-50

-25

0

25

50

75

100

125

150

EMA Average

FEA-175

FEA-150-165-175

Non-process model

Process model

Stiffeners for FC-BGA Packages

External

– After die attach

• Single piece

• Two piece

– Before die attach

• Custom

• Open tool

Internal

• Cu / Invar / Cu

• Stainless

14

15

0 15 30 45 60 75 90 105 120

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Max

imu

m w

arp

age

(mm

)

Time (min)

0

2.0 mm

2.8 mm

3.5 mm

HFCBGA 27x27 mm2 (DLA-0)

HFCBGA 27x27 mm2 (DLA-3.5mm)

Solder bump strain energy

density

Strain energy density of solder bump

Lid with wider ring leads to smaller warpage

No direct-lid-attach (DLA) is preferred for solder bump

TC reliability

For different package sizes, trends of the maximum

warpage and stress are similar

Lid and Stiffener Ring Effect for Flip Chip

Lid

substrate

underfill

TIM

chip

DLA

Time histories of maximum

warpage

DLA-3.5mm

DLA-0

2.5x

3.5x

• Good Warpage

• Bad Reliability

• Bad Warpage

• Good Reliability

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

31 x 31 mm 27 x 27 mm

DW

ave

(M

Pa)

DLA=0 DLA=2.0 mm DLA=2.8 mm DLA=3.5 mm

PoP Packaging

co-planarity

– substrate thickness: thick -> thin

– die thickness: thick -> thin

– CTE core: std -> low

– area ratio substrate / die

– MC modulus

stacked package height

cost

16

17

Substrate Development Trends

Low-CTE substrate core

CTE: 12 ppm/C < 10 ppm/C

High interconnect density

Bump pitch: 150 m 130 m

(alternative solutions for pre-solder?)

Stacked via: 3 stacked 4 stacked

Thin substrate

Core thickness: 400 um 200 um 100 um Coreless

800-m core 400-m core Coreless

Pre-solder

CoreBlind via

18

BGA Warpage Reduction Guideline

Warpage due to CTE mismatch

Cooling to room temp. Convex shape

Determine the position of

neutral surface

C.L: Centerline

N.S: Neutral surface

Substrate

Silicon

C.L

N.S

C.L

N.S

Moment

Shrinkage

Thick substrate small warpage Thin substrate big warpage

Substrate with Low CTE, High Modulus and Great Thickness are

preferred to reduce package warpage

Shrinkage from each

component

Force/Moment balance to

determine warpage

Dependent on package modulus

and thicknessDependent on package CTE

3D- packaging

micro-bump assembly for TSV

19

•TSV Middle-End High AR Microbump 1st article prototype of 20um size/ 56um height

Joined fine pitch micro bumps

40u

m

Wire Bond Challenges for lowK

Cu wire

– higher force

– CUP

– fine pitch: 1 mil -> 0.8 mil -> 0.7 mil

After ball shear test

Al

– High energy transformation

capillary.

– Parameter optimization.

– Ball shape control.

– Ball shear inspection.

CUP Design & LowK Wafer

PBGA & CSP Packaging

Structure:

– 2L thin: 130µ -> 110µ -> 100µ -> 90µ

– L/S pitch: 50/50 -> 40/40 -> 30/30 -> 20/20

Cost, cost, cost, …

– strip size: std -> MAP -> LMAP – XLMAP

– 2L -> 1L

– 4L -> 2L

– NiAu -> ENEPIG

21

22

Maximum warpage for different BT/Soldermask thickness

Detailed modeling of substrate

Thicker BT - Reduces substrate warpage

Thinner BT - Soldermask thickness has significant impact on substrate warpage

Warpage contours

Warpage of Bare Laminate Substrate

Chip side (soldermask thickness=30um)

-400

-300

-200

-100

0

100

200

300

400

0 100 200 300 400

BT thickness (um)

Max

imum

war

pag

e (u

m)

Ball side (soldermask thickness=15um)

Ball side (soldermask thickness=30um)

Ball side (soldermask thickness=45um)

23

Package Outline

Total

Thickness

Mold Cap

Thickness(A)

Substrate

Thickness(B)

Stand

Off(C)

0.6 mm Max. 0.3 mm 0.095mm 0.17mm Max.

Ball

Size

0.25mm / 0.25 mm

0.8 mm Max. 0.45 mm 0.095mm 0.23mm Max.0.3mm / 0.275 mm

1 mm Max. 0.54 mm 0.095mm 0.29mm Max.0.35mm / 0.3mm

BPO

a-S3 Package outline & X-section

A

B

C

0.5 mm Max. 0.25 mm 0.085mm 0.14mm Max.0.25mm / 0.3 mm

24

Save the package size

Save the wire

Enhance the BLR performance

Allow more lead count

Package

type

Package

size

Ball/ Lead

count

Ball

pitch

Max.

wire length

3D total

wire length

QFN 9x9mm 64 0.5mm 3500um 213 mm

LGA (S3) 9x9mm 64 0.5mm 323um 47 mm

BGA (S3) 8x8mm 105 0.5mm 323um 47 mm

BGA (S3) 6x6mm 64 0.65mm 1183um 88 mm

Feasibility study cases—3 (for Middle lead count QFN)

a-S3 option-1

a-S3 option-2

a-S3 option-3

25

Summary

Meeting the challenges from ELK and Pb-free bumps,

chip-package-system co-design is essential

As the interconnect pitch decreasing, warpage control

is getting critical

Advanced modeling is the one of the keys for warpage

control

Materials properties need to be planned & developed

methodically

26

Thank You

www.aseglobal.com