scalable, performant, and resilient large-scale...

17
Scalable, performant, and resilient large-scale applications of molecular process engineering M. Horsch, 1 P. Gralka, 2 C. Niethammer, 3 N. Tchipev, 4 J. Vrabec, 5 H. Hasse 1 1 University of Kaiserslautern, Laboratory of Engineering Thermodynamics, 2 University of Stuttgart, Visualization Research Centre, 3 High Performance Computing Centre Stuttgart, 4 TU München, Scientific Computing in Computer Science, 5 University of Paderborn, Thermodynamics and Energy Technology Leibniz Supercomputing Centre, Garching SuperMUC Status Workshop, 27 th April 2016

Upload: vuongcong

Post on 21-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Scalable, performant, and resilient large-scale applications of molecular

process engineering

M. Horsch,1 P. Gralka,2 C. Niethammer,3 N. Tchipev,4 J. Vrabec,5 H. Hasse1

1University of Kaiserslautern, Laboratory of Engineering Thermodynamics,2University of Stuttgart, Visualization Research Centre,3High Performance Computing Centre Stuttgart,4TU München, Scientific Computing in Computer Science,5University of Paderborn, Thermodynamics and Energy Technology

Leibniz Supercomputing Centre, GarchingSuperMUC Status Workshop, 27th April 2016

Molecular Process Engineering

From Physics(qualitative accuracy)

To Engineering(quantitative reliability)

• Physically realistic modelling of intermolecular interactions

• Separate contributions due to repulsive and dispersive as well as electrostatic interactions

• No blind fitting, but parameters of effective pair potentials are adjusted to experimental data

• Physical realism facilitates reliable interpolation and extrapolation

227th April 2016 M. T. Horsch, P. Gralka, C. Niethammer, N. Tchipev, J. Vrabec, and H. Hasse

Pair potentials for low-molecular fluids

327th April 2016 M. T. Horsch, P. Gralka, C. Niethammer, N. Tchipev, J. Vrabec, and H. Hasse

Geometry

Rigid bond lengths and angles

Electrostatics

Point polarities(charge, dipole, quadrupole):Position and magnitude

Dispersion and repulsion

Lennard-Jones potential:Size and energy parameters

Scalable MD simulation: SkaSim

427th April 2016 M. T. Horsch, P. Gralka, C. Niethammer, N. Tchipev, J. Vrabec, and H. Hasse

Methods for heterogeneousor fluctuating particledistributions

Scalable MD simulation with ls1 mardyn

527th April 2016 M. T. Horsch, P. Gralka, C. Niethammer, N. Tchipev, J. Vrabec, and H. Hasse

Methods for heterogeneousor fluctuating particledistributions

large systems “1”: molecular dynamics http://www.ls1-mardyn.de/

Linked-cell data structuresuitable for spatial domaindecomposition

(non-blocking, over- lapping MPI send/ receive operations)

Traversal of the linked cells

627th April 2016 M. T. Horsch, P. Gralka, C. Niethammer, N. Tchipev, J. Vrabec, and H. Hasse

sliding window

large systems “1”: molecular dynamics http://www.ls1-mardyn.de/

Cells enter and leave a «sliding window» as they are touched for the firstor the last time during each time step:

Optionally, forces acting on molecules are only stored until their cell leaves the sliding window.

Traversal of the linked cells

727th April 2016 M. T. Horsch, P. Gralka, C. Niethammer, N. Tchipev, J. Vrabec, and H. Hasse

Optionally, forces acting on molecules are only stored until their cell leaves the sliding window.

hyperthreaded sliding window

Hyperthreading and vectorization:

Efficient vectorization:

● Optimization by hand, using advanced vector extensions (AVX).

● Conversion from array of structures (AoS) to structure of arrays (SoA).

Strong scaling of ls1 mardyn on SuperMUC

827th April 2016 M. T. Horsch, P. Gralka, C. Niethammer, N. Tchipev, J. Vrabec, and H. Hasse

Scaling of ls1 mardyn examined on SuperMUC up to 146 016 cores.

ideal strong scaling

observed strong scaling

number of cores

homogeneous LJTS liquidwith 4.8 billion molecules

128

1024

8192

65536

spee

dup

(fr

om 1

28

core

s)

128 512 2048 8192 32768 131072

Weak scaling of ls1 mardyn on SuperMUC

927th April 2016 M. T. Horsch, P. Gralka, C. Niethammer, N. Tchipev, J. Vrabec, and H. Hasse

number of cores

spe

edu

p

weak scalingwith 31.5 million

molecules per core

MD world record simulation on SuperMUC

1027th April 2016 M. T. Horsch, P. Gralka, C. Niethammer, N. Tchipev, J. Vrabec, and H. Hasse

Up to N = 4 · 1012

on SuperMUC

number of cores

spe

edu

p

weak scalingwith 31.5 million

molecules per core

MD world record achieved from simulations of a homogeneous LJTS liquid.

PRACE ISC Prize

Large-scale production simulations

1127th April 2016 M. T. Horsch, P. Gralka, C. Niethammer, N. Tchipev, J. Vrabec, and H. Hasse

Technically / scientifically relevant simulations of large systems alwaysdeal with heterogeneous systems (e.g. at vapour-liquid interfaces).

Large-scale production simulations

1227th April 2016 M. T. Horsch, P. Gralka, C. Niethammer, N. Tchipev, J. Vrabec, and H. Hasse

homogeneous cavitation

CO2 (T = 280 K and ρ = 17.2 mol/l), 3CLJQ

100 million interaction sites, 110 592 cores

MD simulation of homogeneous cavitation

1327th April 2016 M. T. Horsch, P. Gralka, C. Niethammer, N. Tchipev, J. Vrabec, and H. Hasse

homogeneous cavitation

liquid carbon dioxide, 220 K, 23.9 mol/l

Canonical MD simulation of cavitation in carbon dioxide.

Evaluation of local density at180 x 180 x 180 grid points:

Liquid phase detected for more than 5 neighbors within a radius of 6.9 Å around the grid point.

≤ 5 ?(6 mol/l)

Long-range correction for planar interfaces

1427th April 2016 M. T. Horsch, P. Gralka, C. Niethammer, N. Tchipev, J. Vrabec, and H. Hasse

Long-range correction from the density profile, following Janeček.

Example: Vapour-liquid interfaces.

Full evaluation of all pairwise interactions is too expensive ... ... instead, short-range interactions are evaluated for neighbours.

short range(explicit)

long range(correction)

cutoff radius

Long-range correction for planar interfaces

1527th April 2016 M. T. Horsch, P. Gralka, C. Niethammer, N. Tchipev, J. Vrabec, and H. Hasse

Long-range correction from the density profile, following Janeček.

Computationally efficient correction scheme for polarity and dispersion.

Angle-averaging expression for multi-site models, following Lustig.

Two-centre LJ fluid (2CLJ)

Janeček-Lustig term

no angle averaging

no correction at all

1 nm

cutoff radius / σ

surf

ace

tens

ion

/ εσ

-2

T = 0.979 ε

Example: Vapour-liquid interfaces.

Computing project pr83ri (2013 – 2015)

1627th April 2016 M. T. Horsch, P. Gralka, C. Niethammer, N. Tchipev, J. Vrabec, and H. Hasse

LJTS

T = 0.8 εθpl = 90°

Simulation of capillary waves andfluctuations of liquid droplets

Computing project pr48te (2016 – 2018)

1727th April 2016 M. T. Horsch, P. Gralka, C. Niethammer, N. Tchipev, J. Vrabec, and H. Hasse

Scalable, performant, and resilient large-scale applicationsof molecular process engineering (Sparlampe)

Approved in March 2016

Efficient long-range corrections forspherical and arbitrary geometries

Increased resiliency by data re-duction and reconstruction fromlocal radial distribution functions