scantling calculations

Upload: jrladdu

Post on 02-Jun-2018

247 views

Category:

Documents


5 download

TRANSCRIPT

  • 8/10/2019 Scantling Calculations

    1/70

  • 8/10/2019 Scantling Calculations

    2/70

  • 8/10/2019 Scantling Calculations

    3/70

  • 8/10/2019 Scantling Calculations

    4/70

  • 8/10/2019 Scantling Calculations

    5/70

    HALSS Feasibility Study Design Report- Appendix A 18 December 2006

    Watertight & Deep Tank transverse bulkheads (Vertical stiffeners) Center Hull Side Hull

    Top of the overflow of tank taken as 0.910 abv the Bulkhead Deck Bhd dk height: 17.100 22.500 m ABL

    WT Bulkhead plating3-2-9/5.1 t = sk (qh) /c + 1.5 mm but not less than 6 mm or s/200 + 2.5 mm, whichever is g

    1 DeepTank

    reater

    3-2-10/3. Bulkhead plating t = sk (qh) /254) + 2.5 mm but not < 6.5 mm or s/150 + 2.5 mm, whichever is greater.

    Therefore deep tank rules govern for the collision (Fore Peak) bulkhead.

    k = 1

    For WT bulkheads, h is from the bottom of the plate to the bulkhead deck at center, c = 254 for collision bulkhead, 290 others

    Deep Tank h = bottom of plate to a point 1.3m above the top of the tank (or 2/3 overflow ht). = 1.025

    PL Botm PL Top plate Top of Tk Watertight Bhd Deep Tank Bhd

    m ABL m ABL height S (m) s(mm) q m ABL h, m t, mm h, m t, mm

    4.000 7.000 3.000 3.000 800 1.00 0.662 22.500 18.500 9.7 19.800 11.4

    7.000 10.000 3.000 3.600 900 1.00 0.662 22.500 15.500 9.9 16.800 11.8

    10.000 14.500 4.500 4.500 900 1.00 0.662 22.500 12.500 8.9 13.800 10.7

    14.500 17.100 2.600 3.420 900 1.00 0.662 22.500 8.000 7.1 9.300 8.8

    17.100 22.500 5.400 3.820 900 1.00 0.662 22.500 5.400 7.0 6.700 8.5

    0.000 3.600 3.600 7.200 900 1.00 0.662 17.100 17.100 10.4 18.400 12.4

    3.600 6.750 3.150 6.300 957.76 1.00 0.662 17.100 13.500 9.9 14.800 11.8

    6.750 9.900 3.150 6.300 957.76 1.00 0.662 17.100 10.350 8.6 11.650 10.5

    9.900 13.500 3.600 7.200 900 1.00 0.662 17.100 7.200 7.0 8.500 8.5

    13.500 17.100 3.600 7.200 900 1.00 0.662 17.100 3.600 7.0 4.900 8.5

    Bulkhead stiffeners

    , k = (3.075 2.077)/(+ 0.272) where 1 2 q = 235/Y = 1.00 (.662=AH36, 1=mild stl)

    k

    SM = 7.8 c h s l Q cm3

    3-2-9/5.3 WT Bulkheads: Q=1, c = 0.30 for stiffeners having effective bracket attachments at both ends, or 0.43 for

    stiffeners w/ brackets at one end and horizontal girders at the other end, or 0.60 for stiffeners between horizontal girders

    h from middle of stiffener to same as PL, but if h < 6.10 m, h is to be 0.8 times the distance plus 1.22 m

    3-2-10/3.3 DeepTank Bulkheads: (3-2-1/5.5) Q = .72=AH36, .78=AH-32, 1=mild stl)

    For the end connections listed above, c = 0.594 or 0.747 or 1.00, respectively. H is to same point as plate.

    H - L c From To h, m s, m l, m Q SM, cm3 Att PL t SM, cm3 A, cm2 t,%

    S-IB 0.59 7.800 7.800 16.000 0.900 3.600 0.72 622.6 11.8 670.3 46.70 44%

    S - Dk 0.59 10.900 10.900 12.900 0.900 4.500 0.72 784.3 10.7 793.3 50.13 52%

    S - dk 0.59 15.400 15.400 8.400 0.900 3.420 0.72 295.0 8.8 312.9 32.30 41%

    S - dk 0.59 18.000 18.000 5.800 0.900 3.820 0.72 254.1 10.7 256.8 29.60 31%

    C -IB 0.59 7 64%

    C -Mid 0.5 .30 37%

    C -Mid 0.59 7.200 7.200 11.200 0.958 3.000 1 8.5 356.0 32.40 40%

    C -Strgr 0.59 9.900 17.100 4.900 0.900 8.5 777.1 50.13 66%

    C -top 0.59 10.800 10.800 7.600 0.900 8.5 215.8 23.60 31%

    C -top 0.59 13.950 13.950 4.450 0.900 3.000 0.72 120.2 8.5 125.6 17.80 23%

    3-2-10/3.7.1 Stringers supporting the bulkhead stiffeners

    .10

    .923.600 9.900 11.650 0.900 6.300 0.72 1388.2 11.8 1442.4 6

    9 4.500 4.500 13.900 0.958 3.000 0.72 399.7 10.5 399.7 37

    0.72 322.

    7.200 0.72 762.6

    3.000 0.72 205.4

    SM = 4.74 c h s l2

    cm3 c = 1.50

    h & s are similar to stiffeners. Where effective brackets are fitted, l may be modified as indicated in 3-2-6/7.1.

    3.7.2 Proportions: Girders and webs minimum depths = 0.145l(0.0833lif struts are fitted), plus 1/4 the depth of the stiffener

    slots, not < 3x the depth of the slots. 7.11

    The thickness is not to be less than 1% of the depth plus 3 mm but need not exceed 11.5 mm.

    From To h, m s, m l, m SM,cm3

    Min D,m min t,mm SM, cm3 A, cm2 t,mm

    5.660 11.650 15.145 3.600 5.990 22,888 0.969 9.7 23,117 298.10 70%

    4.600 15.100 8.550 3.000 10.500 33,087 1.623 11.5 33,720 394.20 111%9.900 9.900 8.500 6.750 7.925 42,161 1.249 11.5 42,145 434.75 55%

    9.900 9.900 8.500 6.750 15.000 151,040 2.275 11.5 155,808 147.00 15%

    9.900 9.900 8.500 6.750 15.000 151,040 2.275 11.5 151,542 733.50 77%

    4.600 15.100 8.550 22.500 13.500 410,206 2.058 11.5 410,521 1480.80 72%

    4.600 9.900 11.150 3.000 5.300 10,993 0.869 8.7 16,534 222.50 63%

    9.900 15.100 5.900 3.000 5.200 5,600 0.854 8.5 9,026 187.87 53%

    On CL Longitudinal bulkhead, typical web fr full height adds 111% to 11.8mm PL weight.

    A horizontal mid-height stringer with mid-span vertical adds (77%+72%)/2 + average(63%,53%) = 132% i.e. no benefit.

    Stringer scantlings are indicative only, giving approximate depth and cross-sectional area. 14PL webs would actually be

    12mm PL with stiffeners adding about 20%. Vertical at Fr 40, 61, would actually be a swash bulkhead.

    BP200*9

    BP160*9

    Side > 4th dk

    Side < 3d dk

    Centr IB

    Centr - Mid

    Centr - Strgr

    Centr - top

    Vert, Typ MT875x305x13/25.4

    Hull - Below

    Side < IB

    Side, >IB

    Side,

  • 8/10/2019 Scantling Calculations

    6/70

    HALSS Feasibility Study Design Report- Appendix A 18 December 2006

    Deck structure Plating, Longitudinal Stiffeners, Transverse Beams, Longitudinal Girders & Pillars

    Wheel-Load CALCULATIONS FROM 2006 ABS RULE 3-2-3/5.17.

    Flight Deck Net t incl stfnrs + webs+grdrs+cols (for wgt est) is 23.09 mm = 85% Use 12.5 mm AH-36

    t = 12.27 mm for sea-going conditions.

    t = kKn CW mm where k = 25.2 for tf units, K is obtained from 3-2-3/Figure 1. W = stat ic wheel load, in tf

    n = 1.0 where l/s2.0 and 0.85 where l/s = 1.0, interpolate for intermediate values. C=1.5 for oceangoing or 1.1 in port.For higher-strength steel, use thts = tms( 24 / Y ) = tms* 0.816 for AH- 36

    For wheel loading, the strength deck plating thickness is not to be less than 110% of that required above. See Notes.

    C-130J Tire pressure = 93 psi max= 6.200 Kg/cm2 135,000 Lb max = 61.224 t on 4 wheels

    Wheel dimensns 1 wheel

    Ka b a/s b/s C W, t Rule t thts

    900 762 483 0.84 15.306 15.03 12.27 4.159 Kg/cm2

    900 762 483 0.847 0.537 0.145 1.1 22.500 18.23 14.88 6.113 Kg/cm2

    0 483 0.567 0.537 0.155 1.1 15.306 16.04 13.10 6.214 Kg/cm2

    900 434 483 0.482 0.537 0.158 1.1 13.000 15.07 12.31 6.200 Kg/cm2

    Case - cm.

    484.0

    m

    Rule

    7 0.537 0.145 1.1

    900 51

    1 M = W a b/l= 15.31 73.2 847.0 Case 2 M = W a (b/l)2= 15.31 76.85 0.5533 650.8 t

    Use With attached PL, SM = 498.3 cm3 H-36 q = 0.72 SMr = q M / f =

    Stiffener Area As = 41.3 cm2 Equivalent t = As / s = 4.6 m

    3-2-7/ 3.1 SM = 7.8chsl2= 127.2 cm3 for c 0.879 = 1/(1.7090.651k), k = SMr Y / IA= 88%

    h = 2.290 m, s = 0.900 m,andl= 3.000 m.

    Deck transverse Webs & Longitudinal Girders (2006 ABS Rule 3-2-8 / 5.3 but also 3-2-7/ 5.3)

    SMr = 3513 cm3 Use MT600x203x12/19.1 Available SM = 3,500 cm3 w/ 3,000 12.5 m

    0% Margin Weight = 28.9% of PL Weight equivalent t= 3.6 m

    2-7/ 5.3: Case 1 M = W a b/l= 30.61 322.8 6928 t - cm. H-36 Q = 0.72 SMr = Q M / f = 3

    .

    m PL

    m

    3- ,513

    72=AH-36, 1=M.S.

    3 8 / 5.3 SMr = 4.74cbhl2

    , cm3, where c = 1.0

    Beam b, m h, m l, m Q SMr m depth, web thk Use SM, cm3 Equiv t d=700

    Tr.

    -2-

    in

    Webs 3.00 2.290 10.800 0.72 2,735 630 11.9 MT600x203x12/19. 3,500 3.61 3.46

    L.Girders C=1.33 10.70 2.290 9.000 0.72 9 9.2 MT600x450x12/31.,029 525 9,026 1.95 1.85

    Tire Pressurestiffener s

    MaxTO,lowPres

    MxGrsWt,HiPres

    MxTOW

    MxLdgW ,HiPres

    t,HiPres

    t

    BP260*12

    For Stiff

    longitudi

    eners, use ABS Rule 3-2-7/ 5.3, Beams with Containers. Allowable stresses (static loads, q=1) are 1.26 t / cm2 for

    nal stiffeners and 1.42 t / cm2 for transverse web frames, assuming fixed ends. Max shear = 1.055 tf / cm2 for both.

    x b/l= =xx xx

    x

    x

    mm mm mm

    Girders and transverses are to have a depth of not less tha b thickness at least 1 mm per 100 mm of depth plus 4

    mm, or 8.5 mm where the face area is = 190 cm

    2.

    mm mm mm

    n 0.0583l, and we

    88

    b/l=b/l=

  • 8/10/2019 Scantling Calculations

    7/70

    HALSS Feasibility Study Design Report- Appendix A 18 December 2006

    Columns (2006 ABS Rule 3-2-8/3.1 & 3.3):

    3.3 Calculated Load W = nbhs, where n = .715 t/m3,

    Transverse Column Spacing b = 10.800 m Longitudinal Column Spacing s = 9.000 m, and

    , i.e. 63.2 t per dk.

    For r 61.2 t, total = 231 t.

    3.1 Allow le e, in meters, r is the gyradius in cm,

    = 12m

    0.41

    Lower R

    60% o ck Loads: t = 12.68 mm for sea-going conditions.

    2 wheels

    Drive Ax

    60% 1 /cm2

    /cm2

    Columns tatic Load per column = 3 decks = 296.1 t, or h = 4.260 m, i.e. 296.1 t - use 300 t.

    Use l = 4.200 m, A = 206.5 cm2, r = 9.5 cm, Wa= 298 t.

    i.e. a W14 x 109# d = 363.7 tw = 13.3 bf = 371.0 tf = 21.8 mm.

    This has an equivalent plate thickness of 0.89 mm. for weight estimating.

    The allowable load provides enough margin for one C-130J directly on one stanchion.

    Stiffeners:

    Case 1 M = W a b/l= 19.05 45.72 738.1 Case 2 M = W a (b/L)2= 19.05 121.92 0.35236 818.3 t - cm.

    Use With attached PL, SM = 480.0 cm3 H-36 q = 0.72 SMr = q M / f = 467.6

    Stiffener Area As = 38.7 cm2 Equivalent t = As / s = 4.3 mm

    Rule 3-2-7/ 3.1 SM = 7.8chsl2= 150.8

    bridge-deck beams, i.e. column f of 3-2-7/Table 1 h = 0.910 m

    pilla s below the Main deck, use h = 2.440 m, i.e. 169.6

    ab Load Wa = (1.8480.918 l / r) A where lis the length from deck to girder faceplat

    and A is the column area in cm2. Use l = 2.800 m, A = 149.7 cm2, r = 7.7 cm, Wa= 227 t.

    i.e. a W12 x 79# d = 314.5 tw = 11.9 bf = 306.8 tf = 18.7 mm. s

    This has an equivalent plate thickness of 0.43 mm. for weight estimating.

    oRo Decks: Net t incl stfnrs + webs (for wgt est) is 23.72 mm = 90% Use 12.5 mm AH-36

    f MidTerm Sealift Cargo Handling Tru

    le Ld stiffener s a b a/s b/s K C W, t Rule t thts

    40 900 914 559 1.016 0.621 0.135 1.1 19.048 15.53 12.68 3.728 Kg

    900 554 224 0.615 0.248 0.173 1.5 5.497 12.50 10.21 4.441 Kg

    : Max S

    cm3 for c= 0.796 = 1/(1.709 0.651k), k = SMr Y / IA= 69%

    h = 3.000 m, s = 0.900 m,and l= 3.000 m.

    Deck transverses (2006 ABS Rule 3-2-8 / 5.3 but also 3-2-7/ 5.3)

    SMr = 3596 cm3 Use MT600x210x11/20. Available SM = 3,555 cm3 w/ 3,000 12.5 mm PL

    -1% Margin Weight = 28.2% of PL Weight equivalent t= 3.53 mm

    3-2-7/ 5.3: Case 1 M = W a = 19.05 372.4 7,092 t - cm. H-36 Q = 0.72 SMr = Q M / f = 3,596

    .72=AH-36, 1=M.S.

    Beam b, m h, m l, m Q SMr min depth, web thk Use SM, cm3 Equiv t

    Tr. Webs 3.00 3.000 10.800 0.72 3,583 630 10.3 MT600x210x11/20. 3,555 3.53

    L.Girders C=1.33 10.70 3.000 9.000 0.72 11,829 525 9.2 MT600x500x12/40. 11,936 2.50

    Transverse Strength Estimate

    Side Hull displacement at Crossover Deck draft (22.5m) = 9,499 t Double skin depth = 1.800 m

    Side Hull displacement at full load draft (12m) = 5,122 t109 t each.

    Weight of Side Hull + 85 t each.

    Design for a static lo over 91 web frames, or 85 t each.

    ABS Rule 3-2-7/ 5.3 Max Shear Stress = 1 tf / cm2 requires 80.77 cm2 or 4.49 mm PL.

    Loa 852 t - m

    ABS Rule 3 7 cm3

    SM = Depth x Flg area. hickness t = 8.00 mm PL.

    Shell plating should be thicker because it's in compression. Deck plating will never see a compressive load more than about

    22% of the above tensile load.

    CH-53

    BP260*11

    =

    Wheel dimensns

    sure

    t h for

    or the beams at the top of the pillar plus the sum of the heights given

    s ... above, which allows for reduced loads as above. The height for

    devoted to passenger or crew accommodation may be taken as the height given in 3-2-7/3 for

    the height h for any pillar under the first superstructure above the freeboard deck is not to be less than 2.44m. The heigh

    any pillar is not to be less than the height given in 3-2-7/3 f

    the same paragraph for the beams of all complete deckin

    any tween decks

    t plus one C-130J

    E stowed

    Tire Pres

    x

    x =

    x = =xx=

    Max Wave Load = 5,122 t, Frames 18 -64 or

    outboard decks+sponsons PL+framing = 7,755 t, Frames 0 -90 or

    ad of 7,755 t

    .055

    d is applied 10.000 m outboard of the side shell giving a maximum moment M =

    -2-7/ 5.3 Max Bending Stress = 1.42 / q = 1.972 tf / cm2 requires SM = 43,20

    Flg width = Fr spcg = 3.000 m, giving required t

    mm

    mm

    mm mm mm

    mm mm mm

    89

  • 8/10/2019 Scantling Calculations

    8/70

    HALSS Feasibility Study Design Report- Appendix B 18 December 2006

    Appendix B Weight Estimates

    The following is a brief summary of the Light Ship Weight Estimate.

    Center Extents Extents

    Length Effect Thickns No of Stiffng Weight VCG LCG Aft Fwd Aft Fwd

    or hgt, m W, m mm Pieces Allownc tonnes m ABL m-AP m-AP m-AP Fr # Fr #24.0 14.0 7.0 7.8 100% 288 39.5 24.0 12.0 36.0 4 12.0

    327.5 41.5 12.9 1.0 85% 2,546 30.3 163.8 0.0 327.5 0 109.2

    276.0 13.4 14.0 1.0 85% 750 30.3 138.0 0.0 276.0 0 92

    27.0 48.8 10.0 1.0 80% 186 27.0 271.8 261.0 288.0 87 96

    66.5 44.5 14.0 1.0 80% 586 24.2 293.0 261.0 327.5 87 109.2

    126.0 54.9 6.0 2.0 80% 1,172 25.6 198.0 135.0 261.0 45 87

    135.0 54.9 10.9 2.0 90% 2,413 24.7 67.5 0.0 135.0 0 45

    126.0 58.9 10.0 1.0 90% 1,106 22.0 198.0 135.0 261.0 45 87.0

    147.0 11.7 12.0 2.0 90% 616 20.8 73.5 0.0 147.0 0 49.0

    261.0 23.55 9.5 1.0 80% 825 16.9 117.5 0.0 261.0 0 87

    126.0 13.9 9.9 2.9 78% 703 10.3 198.0 135.0 261.0 45 87

    249.0 18.5 14.0 1.0 90% 961 3.3 135.6 36.0 285.0 12 95

    36.0 5.7 14.0 2.0 90% 86 5.6 84.0 66.0 102.0 22 34

    285.0 30.4 19.0 2.0 90% 4,918 10.0 151.5 9.0 294.0 3 98

    156.0 20.7 18.0 4.0 100% 3,642 13.3 120.0 42.0 198.0 14 66

    300.0 8.0 12.0 2.0 85% 836 28.0 150.0 0.0 300.0 0 100

    75.0 5.4 8.0 1.0 80% 46 19.8 103.5 66.0 141.0 22 4733.0 6.3 8.0 2.0 80% 47 14.0 118.5 102.0 135.0 34 45

    36.0 21.0 8.0 1.0 80% 85 8.9 56.4 33.0 69.0 11 23

    17.1 23.0 10.5 8.0 90% 492 8.6 148.5 12.0 285.0 4 95

    5.4 24.5 8.0 9.5 90% 150 19.8 148.5 12.0 285.0 4 95

    18.5 4.4 10.5 11.0 90% 140 13.3 111.0 54.0 168.0 18 56

    8.0 54.9 8.0 6.0 90% 314 26.5 141.0 12.0 27

    43.7 12.0 25.0 2.0 90% 391 5.0 33.9 12.0

    .0 6.0 27.0 4.0 95% 139 9

    keg (Shaft Alley)

    heads Abv 3d Dk 0.0 4 90

    55.7 4 18.6

    14 .0 6.0 3.0 9.0 1 3

    333.0 10.0 7.0 1.0 95% 357 30.3 166.5 0.0 333.0 0 111.0

    25.0 12.0 9.0 7. 95% 289 30.3 135.3 36.0 267.0 12 89

    81.0 12 27

    42.4 21.2 80.8

    5.0 16 45

    85.5 36.0 135.0 12 45

    33.0 30.0 36.0 10 12

    90 26.0 -1.5 -3.0 0.0 -1 025,349 18.21 137.37

    No

    2,300 2 4,600 10.0 85.5 72.0 99.0 24 33

    315 3 945 5.3 46.5 15.0 78.0 5 26

    240 4.0 960 7.0 124.5 117.0 132.0 39 44

    146 4.5 658 7.2 108.8 84.0 117.0 28 39

    106 3 317 5.3 18.8 12.0 39.0 4 13

    7,480 8.58 84.80

    101 1 101 12.5 118.5 111.0 126.0 37 42

    50 5.0 250 16.0 85.5 72.0 99.0 24 33

    20 7.0 140 16.0 69.0 66.0 72.0 22 24

    200 3.5 700 26.1 139.5 54.0 225.0 18 75

    1,191 21.65 118.10

    80 3 240 26.0 276.0 270.0 282.0 90 94

    80 0 0 0.0 0.0 0.0

    40 0 0 0.0 0.0 0.0

    15 1 15 24.0 45.0 36.0 54.0 12 181,200 125% 1,500 12.0 81.7 12.0 174.0 4 58

    1,755 14.02 107.92

    20 3 60 33.0 14.4 0.0 36.0 0 12

    0.4 1600 690 26.7 198.0 135.0 261.0 45 87

    1,800 1 1,800 17.1 140.0 0.0 333.0 0 111

    2,550 20.06 152.74

    11059.03649 12,976

    8.58 38,324 497.065

    Purifier Room Long'l Bulkheads

    2nd Dk Fr 87-96

    Passenger Dks 2 & 3

    3rd Dk (Shell PL) Fr 87-109

    Fuel Tank Lgl Bhds - ctr

    Stbd Main Deck outb'd of flight deck

    Outboard Sides above 3rd Deck

    CL Longl Bhd > 4th Dk

    4th Dk - ctr

    Crossover Dk outbd aft AH-36

    Subtotal Electrical

    Outfit & Machy Subtotal

    Lighting+House Elect & Distribution (1=crew, 3=Troops)

    Mooring & Anchor

    Joiner Work & furniture &c for troops

    Transverse Bulkheads - Ctr 17.1-22.5

    Tonnes each

    Transformers (3=Troops)

    Sta

    Switchbds & VFC

    Mn Engines - ctr - Sulzer 14 RTA 96 @ 80MW ea

    5MW D-G sets - Wartsila 12V32

    Foundations

    Masts & Spars

    Hinged Stern Ramp

    Note - Fixed ramps included in deck weights

    Subtotal Propulsion

    Propulsion Generators + (Gear+Motors)

    Side Eng + SSDG = Wartsila 18V46 @ 18MW ea

    From Esti-MateSubtotal Steel Weight

    Ctr Hull S

    Sponsons (P)+ Bow Sponson

    Sponsons (S) AH-36

    Rudder & Horn

    Propellers

    Deckhouse Decks & L. Bhds

    Flight Deck - AH-36 PL & Frs

    2nd Dk+3d=Cargo Dk AH-36

    Crossover Dk outbd + Pass Deck 3A

    Mn Propulsion Shafting (sides = 1/2 ctr)

    Bilge Keels (

    Moveable Ramps

    Sideport Doors

    Subtotal Outfit & Furnishings

    Rescue & Lifeboats

    Cargo Elevator

    Paint

    Pipe & Aux (25% = Troops)

    Subtotal Auxiliary Systems

    Total Lightship Weight =

    Transverse Bulk

    Double Bottom - ctr

    Double Bottom - wings

    Ctr Hull Shell PL

    Side Hull Shell PL

    Transverse Bulkheads - Ctr

  • 8/10/2019 Scantling Calculations

    9/70

    HALSS Design Report Appendix C - Maneuvering Assessment

    Appendix C Maneuverability Assessment for the HALSS

    References: This Report is developed in accordance with the following vesseldocumentation and reference material:

    1. Jun-Wu Zhang and David Andrews, Manoeuvrability Performance of aTrimaran Ship, RINA Conference on High Speed Craft Motions andManeuverability, Feb 1998

    2. Martin Renilson, Bob Scrace, Mike Johnson and Chris Richardsen, Trials toMeasure the Hydrodynamic Prtformance of RV Triton, RINA Conference onDesign and Operation of Trimaran Ships, London, UK

    3. Scrace, , R. J., QuinetiQ Report FST/CR02 4287/1.0, RV TRITON, Phase1a: Calm water manoeuvring trials. Final report (UC), Unclassified Limited Distribution

    4. Winnifred R. Jacobs, Estimation of Stability Derivatives and Indices of

    Various Ship Forms and Comparison with Experimental Results, DavidsonLaboratory Report 1035, September 1964

    5. l. Folger Whicker and Leo, F. Fehlner, Free-Stream Characteristics of aFamily of Low-Aspect Ratio, All-Movable Control Surfaces for Application

    958

    6. Wartsila Lips D SS Project, FigureV

    200613 GA.dwg, 8/9/2006

    8. IMO Resolution MSC.137(76) adopted 4 December 2002, MSC 76/23/Add.1

    10. USCG NVIC 7-89, 8 Jan 1990

    to Ship Design, David Taylor Model Basin Report 933, December 1

    efence, Power Absorption Diagram, HAL

    7. HALSS

    9. IMO Circular MSC/Circ.1053, 16 December 2002, Ref. T4/3.01

    PRINCIPAL PARTICULARS

    Length, over all ..............................................................................327.45 mLength, between perpendiculars ....................................................300.00 mBreadth (extreme) ............................................................................54.90 mDepth @ side (center hull, molded) .................................................22.50 m

    esign Draft (molded) .....................................................................12.00 mD

    INTRODUCTION

    In the development of the design of the Heavy Air Lift Seabasing Ship (HALSS)trimaran, questions have arisen on the maneuvering characteristics that should beexpected of such a large and innovative hull configuration. In particular, ship steering at

    a under rudder control, and slow speed maneuvering in harbor with only the side hullpropellers operating instead of bow thrusters, require an initial assessment to confirm thatse

    91

  • 8/10/2019 Scantling Calculations

    10/70

    HALSS Design Report Appendix C - Maneuvering Assessment

    the rudders main dimensions and the side propeller thrust range would be sufficient toensure adequate maneuverability in all conditions.

    The method by Zhang and Andrews [Ref. 1] of the University College London (UCL) isused to estimate the maneuvering performance of the HALSS in this study. This paper

    focuses primarily on high speed trimaran steady turning circles but the methodology usedis also suitable for predicting relatively low speed turning radii under the action of sidepropellers. In brief, the method by Zhang and Andrews is a force and moment balancethat aims to estimate the value of the steady turn radius, given values for ship speed (notthe result of a resistance/thrust balance) and rudder angle (both quantities are consideredconstant and uncoupled from the resulting turning characteristics). Multi-hullydrodynamic derivatives are computed assuming no interaction between main hull and

    ssion series, those of the sideulls are assumed equal to a very low aspect ratio lifting surface.

    lthough turning circles do not provide a complete picture of a ship maneuveringults with current IMO and USCG

    quirements for commercial ships is deemed sufficient for the purpose of qualifying thisaspect of the initial design. In this respect, please note that although the current IMO andUSCG requirements for commercial ships are based on the value of the tactical diameter

    houtriggers, and rudder and propeller forces (only used to estimate differential thrustmoments) are estimated linearly and independently from each other. Whilst thederivatives of the main hull are derived from standard regreh

    Acharacteristics a comparison of these numerical resre

    ther than the value of the steady turn diameter ra , the difference between half tacticalically less than the margin the HALSS has on IMOteady turn diameter derived for the HALSS using

    ethod is compared directly with the current IMO and USCGuirements. In support to this way of proceeding, a comparison of the tactical diameter

    diameter and steady turn radius is typequirements. For this reason, the sr

    Zhang and Andrews mreqand the steady turn diameter measured during sea trials of the trimaran RV TRITON[Ref. 2 and 3] is given next. Comparison of Figure 50 with Figure 45 confirms the abovethesis.

    92

  • 8/10/2019 Scantling Calculations

    11/70

  • 8/10/2019 Scantling Calculations

    12/70

    HALSS Design Report Appendix C - Maneuvering Assessment

    94

    IMPLEMENTATIONThe paper by Zhang and Andrews [Ref. 1] provides most details about the numericalmethod therein proposed. Nevertheless, some small variations and additionalassumptions were made in order to either bridge the occasional gap or in order tofacilitate the code implementation. These variations and assumptions were as follows:

    1. The side hulls resistance differential is ignored. The reason for this assumption isthat individual resistance regression lines for the side hulls are not available forthe HALSS, RV TRITON or UCL model. This assumption is justified by theconclusion in [Ref. 1] that the influence of this element on the overall turningmoment is negligible.

    2. B-Series were used in order to estimate thrust coefficients for the side propellers.This is probably a coarse assumption for all three vessels since the actualpropeller geometries are quite different from those of the Wageningen series. Thereason to adopt these coefficients is that they are well established, readilyavailable and would serve relatively well the purpose of an initial estimation of

    the propulsion characteristics.3. The thrust of a side propeller backing was estimated in two ways. As suggestedby Zhang and Andrews [Ref. 1], one way would be to assume it equal to thepropeller bollard pull. This can be estimated using the B-Series simply by settingthe speed of advance equal to zero. It is believed that this method mightunderestimate the steady turn radius. For this reason it was not employed toestimate the HALSS slow speed maneuvering but only to compare HEC resultswith UCL data.A second way is to consider the thrust of the backing propeller equal toapproximately 20% of the equivalent forward thrust for the same RPM and speedconditions. This is in accordance to what is stated in [Ref. 3 for RV TRITON]and most probably a more realistic assumption than the first one. Results for theHALSS were calculated with this method.Note that the four quadrants propeller characteristics of the B series could also beused to estimate the propeller thrust in any speed-RPM combination, using Ct-Beta characteristics. However, the Triton experience is deemed to be moreaccurate than the analytical model of four quadrants propeller characteristics forsuch an original ship configuration.

    CALIBRATION

    In addition to the very detailed description of their numerical method, Zhang andAndrews also provide som tests that can be used tocalibrate the spreadsheet im ee Table 27).

    In the following comparison, one needs to bear in mind that not all input parameters wereavailable for the UCL trimaran in Zhang and Andrews paper. In Appendix A, the valuesof the input parameters that were directly available from the paper are highlighted in boldblue characters. All other parameter values (normal blue characters) were eitherestimated from other similar ships or deduced from other data available in the paper.

    e experimental results from modelplementation put together by HEC (s

  • 8/10/2019 Scantling Calculations

    13/70

    HALSS Design Report Appendix C - Maneuvering Assessment

    Because of the above assumptions, the com ison of the numerical results obtained byHEC for the turning circles corresponding to the operation of the rudder only (nodifferential trust from the side pro ental data provided by UCL isnot an exact match (see Figure rtheless that the difference in

    results is not excessive and that the error gets progressively smaller as the rudder angle isincreased. This indicates that the implementation of the methodology is basically sound.

    Table 27: Steady turn radius experimental data for UCL trimaran - Rudder Only

    par

    pellers) and the experim46). One should note neve

    Zhang and Andrews paper - Fig. 4

    Rudder Angle Turning Radius

    (deg) (m)

    5.0 1600.0

    10.0 800.0

    20.0 400.0

    35.0 220.0

    0.0

    200.0

    400.0

    600.0

    800.0

    1000.0

    1200.0

    1400.0

    1600.0

    1800.0

    0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

    Rudder angle (deg)

    Turningra

    dius(m)

    UCL experiments

    HEC numerical

    Figure 46 Steady turn radius experimental data versus HEC numerical predictions for

    UCL trimaran - Rudder only

    The same comparison presented above for the case of sole rudder operation, was alsocarried out for two modes of differential side propulsion: with one propeller pushing andone idling (case a) and with one propeller pushing and one reversing (case c). The

    95

  • 8/10/2019 Scantling Calculations

    14/70

  • 8/10/2019 Scantling Calculations

    15/70

  • 8/10/2019 Scantling Calculations

    16/70

    HALSS Design Report Appendix C - Maneuvering Assessment

    geometry and thrust of the TRITONs side propeller. For these reasons, the thrustdifferential portion of HEC spreadsheet remains not fully validated.

    0.0

    50.0

    100.0

    150.0

    200.0

    250.0

    300.0

    350.0

    400.0

    450.0

    500.0

    0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0

    Rudder angle (deg)

    Turningradius(m)

    QuinetiQ Trials

    HEC

    Figure 49 - TRITON steady turn radius sea trials data versus HEC numerical predictions

    Rudder only

    RESULTS

    Steady turn radius estimates were run for the HALSS trimaran for the same operationmodes as the ones run for the UCL model:

    - Rudder only- No rudder, one propeller pushing and the other one idle- No rudder, one propeller pushing and the other one reversing

    Figure 50 to Figure 54 show the results of these calculations. It should be noted thatwhen steering under differential propulsion only, the steady turn radius is both a functionof the ships speed and ed thatthe ship speedtotally available for steering.

    Figure 50 also shows the current IMO/USCG requirement for merchant vessels. Thisstipulates that the tactical diameter should be less then five times the vessel length. Forthe HALSS, this is approximately equivalent to a steady turn radius of less than about750 m.

    the side propellers RPM. In this exercise, it was assumwould be provided by the center hull propulsion so that side propellers are

    98

  • 8/10/2019 Scantling Calculations

    17/70

    HALSS Design Report Appendix C - Maneuvering Assessment

    0.00

    0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

    Rudder angle (deg)

    200.00

    400.00

    600.00

    800.00

    Turningradi

    1,000.00

    1,400.00

    1,600.00

    us(m)

    1,200.00

    HEC

    IMO Res. MSC.137(76)

    Figure 50 - HEC numerical predictions of HALSS steady turn radius

    Rudder only

    0.00

    200.00

    400.00

    600.00

    800.00

    1,000.00

    1,200.00

    1,400.00

    1,600.00

    m)

    1,800.00

    100 110 120 130 140 150 160 170 180 190 200

    RPM

    Turningradius(

    HEC

    Figure 51 - HEC numerical predictions of HALSS steady turn radius

    One propeller idling Speed = 10 knots

    99

  • 8/10/2019 Scantling Calculations

    18/70

    HALSS Design Report Appendix C - Maneuvering Assessment

    0.00

    500.00

    1,000.00

    1,500.00

    2,000.00

    2,500.00

    0.00 5.00 10.00 15.00 20.00 25.00

    Speed (knots)

    Turningradius(m)

    HEC

    Figure 52 - HEC numerical predictions of HALSS steady turn radius

    One propeller idling - RPM = 190

    0.00

    500.00

    100 110 120 130 140 150 160 170 180 190 200

    RPM

    1,000.00

    1,500.00

    2,000.00

    2,500.00

    3,000.00

    Turningradius(m)

    HEC

    Figure 53 - HEC numerical predictions of HALSS steady turn radius

    One propeller reversing Speed = 10 knots

    100

  • 8/10/2019 Scantling Calculations

    19/70

    HALSS Design Report Appendix C - Maneuvering Assessment

    0.00

    500.00

    1,000.00

    1,500.00

    2,000.00

    2,500.00

    3,000.00

    3,500.00

    4,000.00

    4,500.00

    0.00 5.00 10.00 15.00 20.00 25.00

    Speed (knots)

    Turningradius(m)

    HEC

    Figure 54 - HEC numerical predictions of HALSS steady turn radius

    One propeller reversing RPM = 190

    CONCLUSIONS

    In terms of comparison to existing IMO criteria, the HALSS in her current configurationdisplays satisfactory turning ability.

    The above results show that for high speed turning, rudder control is always requiredsince side propulsion differential quickly becomes inadequate as the ship speed increases.The reason for this is that the propeller thrust decreases as the speed of advance increases,whilst the hydrodynamic resistance of the hulls to turning increases as the ship speedincreases. Since the power (RPM) of the side propellers is limited, the vessel willquickly get to a point (ship speed) where the turning moment from the side propellerswill simply not be enough to turn the ship.

    Unlike the differential thrust turning moment provided by the propellers, the ruddersturning moment increases with ship speed in the same way as the hydrodynamicresistance of the hulls to turning (they are both functions of the ship speed squared). Thisis what makes rudders such effective steering devices at higher speeds. In fact, accordingto Zhang and Andrews methodology, the steady turn radius under rudder action only isindependent of the ships speed. This is also confirmed by the data in [Ref. 3].

    101

  • 8/10/2019 Scantling Calculations

    20/70

    HALSS Design Report Appendix C - Maneuvering Assessment

    For low speed tur ery effective butside propulsion would allow extremely tight turns. This is hardly surprising when theside propellers are compared to standard bow thrusters, where side propellers typicallyhave larger diameters (thrust is a function of ropeller diameter to the power of four) anddelivered power than bow thrusters, as well as the possibility to be operated in opposition

    (one propeller pushing and the other one reversing). Including the fact that the resistancefrom the bow thrusters ducts cannot be reduced by operational means, while sidepropellers can be made to idle in order not to produce extra resistance, makes this astrong argument for avoiding bow thrusters in the design of the HALSS. One shouldnevertheless remember that the crabbing capability provided by bow thrusters could bedifficult to match using rudders, side and center propellers only.

    One final word is finally due in regard to the course keeping characteristics of theHALSS. Using the hydrodynamic derivatives estimated by Zhang and Andrews method(see Appendix B and C), one can estimate if the inequality:

    ning, the picture is instead reversed. Rudders are not v

    p

    0YN

    YN

    'v

    '

    v''

    r

    '

    r

    is satisfied or not. For the RT TRITON one obtains:

    0055.1Y

    N

    Y

    N'v

    'v

    ''r

    'r

    For the HALSS one obtains instead:

    0279.0Y

    N

    Y

    N'

    '

    v''

    '

    r vr

    The above inequality, when satisfied, expresses the control fixed straight line stability ofa craft. This means that under the simplifying assumptions of Zhang and Andrewsmethod, both HAL line path after adisturbance, even if their rudders are held fixed to zero. Note that the above analysis is

    served that low speed course stabilityility when the assumptions of linearity

    SS and the RV TRITON will resume a new straight

    speed-independent. In practice, though, it is obmight not necessarily entail high speed course stabof the hydrodynamic derivatives used by Zhang and Andrews method break down.

    102

  • 8/10/2019 Scantling Calculations

    21/70

  • 8/10/2019 Scantling Calculations

    22/70

    HALSS Design Report Appendix C - Maneuvering AssessmentConstants

    Sea water density - rho (MT/m^3) = 1.025

    Variables

    Ship speed - speed (kn) = 1 20.00 30.00

    lta (deg) = 1 0.00 0.00

    00

    .00

    1 14.50

    Side hull sway-yaw derivative - Nvs (N*sec) = 0.000 0.000

    Side hull yaw-yaw derivative - Nrs (N*m/rad*sec) = 0.000 0.000

    Ship sway-sway derivative - Yv (N/m*sec) = -1,076,343.179 -1,614,514.769

    Ship yaw-sway derivative - Yr (N/rad*sec) = 37,580,394.984 56,370,592.476

    Shp sway-yaw derivative - Nv (N*sec) = -47,848,845.000 -71,773,267.500

    Ship yaw-yaw derivative - Nr (N*m/rad*sec) = -3,349,419,150.000 -5,024,128,725.000

    Wing propeller thrust (starboard) - Tws (N) = 253,603 192,668

    Wing propeller thrust (port) - Twp (N) = 0 0

    Ship's turning rate - rr (rad/sec) = 0.001 0.001

    Ship's steady turning radius - TurningRadius (m) =

    Rudder angle - de

    Trim - deltaT (m) = 0.00 0.00

    Parameters

    Center hull length at WL - L (m) = 1 150.00

    Center hull beam at WL - B (m) = 1 10.80

    Center hull draft at MS - T (m) = 1 5.50

    Center hull block coefficient based on WL data- Cb () = 0.700

    Ship displacement - disp (MT) = 1 5,400

    Rudder sweep angle - lamda (deg) = 1 5.00

    Rudder area - Ar (m^2) = 1 29.00

    Rudder length - l (m) = 1 5.00

    LCG from MS - xg (m) = 0.

    Distance of rudder 1/4 line from MS - xr (m) = 75

    Distance from wing propeller to CL - ys (m) =

    Profile area of side hull under WL - Af (m 2) = 162.00

    Side hull length at WL - Ls (m) = 1 60.00

    Side hull draft at WL - Ts (m) = 1 3.00

    Distance of middle side hull from MS - xs (m) = 0.00

    Pitch/diameter ratio - () = 1 1.68

    3.50Propeller diameter - (m) = 1

    Number of blades - () = 4

    RPM - (1/min) = 1 127 166

    Blade area ratio - () = 1 0.80

    Wake fraction - () = 1 0.00 0.00

    KT = 0.184 0.082

    KQ = 0.050 0.025

    Va (m/sec) = 10.288 15.432

    J = 1 1.389 1.594Thrust (N) = 126,801 96,334

    Bollart Pull (N) = 534,649 913,435

    Eta0 = 0.810 0.828

    PS (MW) = 1.644 1.833

    Derived quantities

    Ship mass - m (kg) = 5,400,000 5,400,000

    Longitudinal velocity - u (m/sec) = 10.288 15.432

    Rudder area as a % or lateral center hull area - () = 3.52% 3.52%

    Rudder aspect ratio - a () = 0.862 0.862

    Rudder lift curve slope - dClddelta (1/deg) = 0.021 0.021

    Rudder force control derivative - Ydelta - (N/deg) = 33,694.893 75,813.508

    Rudder force - Ydeltadelta - (N) = 0.000 0.000

    Rudder moment control derivative - Ndelta (N*m/deg) = -2,527,116.950 -5,686,013.136

    Rudder moment - Ndeltadelta (N*m) = 0.000 0.000

    Center hull sway-sway derivative - Yvc (N/m*sec) = -808,000.524 -1,212,000.786

    Center hull yaw-sway derivative - Yrc (N/rad*sec) = 37,580,394.984 56,370,592.476

    Center hull sway-yaw derivative - Nvc ( N*sec) = -47,848,845.000 -71,773,267.500

    Center hul l yaw-yaw derivat ive- Nrc (N*m/rad*sec) = -3,349,419,150.000 -5,024,128,725.000

    Side hull aspect ratio - as () = 0.100 0.100

    Side hull lift curve slope - dCldbeta (1/rad) = 0.157 0.157

    Side hull sway-sway derivative - Yvs (N/m*sec) = -134,171.328 -201,256.991

    Side hull yaw-sway derivative - Yrs (N/rad*sec) = 0.000 0.000

    7,135.23 21,131.70

    UCL One propeller idling

    104

  • 8/10/2019 Scantling Calculations

    23/70

    HALSS Design Report Appendix C - Maneuvering AssessmentConstants

    Sea water density - rho (MT/m^3) = 1.025

    Variables

    Ship speed - speed (kn) = 1 20.00 30.00

    lta (deg) = 1 0.00 0.00

    00

    .00

    1 14.50

    Side hull sway-yaw derivative - Nvs (N*sec) = 0.000 0.000

    Side hull yaw-yaw derivative - Nrs (N*m/rad*sec) = 0.000 0.000

    Ship sway-sway derivative - Yv (N/m*sec) = -1,076,343.179 -1,614,514.769

    Ship yaw-sway derivative - Yr (N/rad*sec) = 37,580,394.984 56,370,592.476

    Shp sway-yaw derivative - Nv (N*sec) = -47,848,845.000 -71,773,267.500

    Ship yaw-yaw derivative - Nr (N*m/rad*sec) = -3,349,419,150.000 -5,024,128,725.000

    Wing propeller thrust (starboard) - Tws (N) = 253,603 192,668

    Wing propeller thrust (port) - Twp (N) = -534,649 -913,435

    Ship's turning rate - rr (rad/sec) = 0.004 0.004

    Ship's steady turning radius - TurningRadius (m) =

    Rudder angle - de

    Trim - deltaT (m) = 0.00 0.00

    Parameters

    Center hull length at WL - L (m) = 1 150.00

    Center hull beam at WL - B (m) = 1 10.80

    Center hull draft at MS - T (m) = 1 5.50

    Center hull block coefficient based on WL data- Cb () = 0.700

    Ship displacement - disp (MT) = 1 5,400

    Rudder sweep angle - lamda (deg) = 1 5.00

    Rudder area - Ar (m^2) = 1 29.00

    Rudder length - l (m) = 1 5.00

    LCG from MS - xg (m) = 0.

    Distance of rudder 1/4 line from MS - xr (m) = 75

    Distance from wing propeller to CL - ys (m) =

    Profile area of side hull under WL - Af (m 2) = 162.00

    Side hull length at WL - Ls (m) = 1 60.00

    Side hull draft at WL - Ts (m) = 1 3.00

    Distance of middle side hull from MS - xs (m) = 0.00

    Pitch/diameter ratio - () = 1 1.68

    3.50Propeller diameter - (m) = 1

    Number of blades - () = 4

    RPM - (1/min) = 1 127 166

    Blade area ratio - () = 1 0.80

    Wake fraction - () = 1 0.00 0.00

    KT = 0.184 0.082

    KQ = 0.050 0.025

    Va (m/sec) = 10.288 15.432

    J = 1 1.389 1.594Thrust (N) = 126,801 96,334

    Bollart Pull (N) = 534,649 913,435

    Eta0 = 0.810 0.828

    PS (MW) = 1.644 1.833

    Derived quantities

    Ship mass - m (kg) = 5,400,000 5,400,000

    Longitudinal velocity - u (m/sec) = 10.288 15.432

    Rudder area as a % or lateral center hull area - () = 3.52% 3.52%

    Rudder aspect ratio - a () = 0.862 0.862

    Rudder lift curve slope - dClddelta (1/deg) = 0.021 0.021

    Rudder force control derivative - Ydelta - (N/deg) = 33,694.893 75,813.508

    Rudder force - Ydeltadelta - (N) = 0.000 0.000

    Rudder moment control derivative - Ndelta (N*m/deg) = -2,527,116.950 -5,686,013.136

    Rudder moment - Ndeltadelta (N*m) = 0.000 0.000

    Center hull sway-sway derivative - Yvc (N/m*sec) = -808,000.524 -1,212,000.786

    Center hull yaw-sway derivative - Yrc (N/rad*sec) = 37,580,394.984 56,370,592.476

    Center hull sway-yaw derivative - Nvc ( N*sec) = -47,848,845.000 -71,773,267.500

    Center hul l yaw-yaw derivat ive- Nrc (N*m/rad*sec) = -3,349,419,150.000 -5,024,128,725.000

    Side hull aspect ratio - as () = 0.100 0.100

    Side hull lift curve slope - dCldbeta (1/rad) = 0.157 0.157

    Side hull sway-sway derivative - Yvs (N/m*sec) = -134,171.328 -201,256.991

    Side hull yaw-sway derivative - Yrs (N/rad*sec) = 0.000 0.000

    2,295.61 3,680.86

    UCL One propeller reversing

    105

  • 8/10/2019 Scantling Calculations

    24/70

    HALSS Design Report Appendix C - Maneuvering Assessment

    Appendix C-2: Validation Spreadsheets

    Constants

    Sea water density - rho (MT/m^3) = 1.025

    Variables

    Ship speed - speed (kn) = 10.00 10.00 10.00 10.00

    Rudder angle - delta (deg) = 10.00 20.00 30.00 40.00

    0.00

    Center hull beam at WL - B (m) = 7.20

    Rudder area - Ar (m^2) = 7.69

    Centerh ull y aw-yaw derivative -N rc (N*m/rad*sec) = -261,097,741.580 -261,097,741.580 -261,097,741.580 -261,097,741.580

    Side hull aspect ratio - as () = 0.124 0.124 0.124 0.124

    Side hull lift curve slope - dCldbeta (1/rad) = 0.194 0.194 0.194 0.194

    Side hull sway-sway derivative - Yvs (N/m*sec) = -20,219.392 -20,219.392 -20,219.392 -20,219.392

    Side hull yaw-sway derivative - Yrs (N/rad*sec) = -45,493.633 -45,493.633 -45,493.633 -45,493.633

    Side hull sway-yaw derivative - Nvs (N*sec) = -45,493.633 -45,493.633 -45,493.633 -45,493.633

    Side hull yaw-yaw derivative - Nrs (N*m/rad*sec) = -102,360.674 -102,360.674 -102,360.674 -102,360.674

    Ship sway-sway derivative - Yv (N/m*sec) = -204,790.138 -204,790.138 -204,790.138 -204,790.138

    Ship yaw-sway derivative - Yr (N/rad*sec) = 4,874,283.598 4,874,283.598 4,874,283.598 4,874,283.598

    Shp sway-yaw derivative - Nv (N*sec) = -6,412,966.481 -6,412,966.481 -6,412,966.481 -6,412,966.481

    Ship yaw-yaw derivative - N r (N*m/rad*sec) = -261,302,462.928 -261,302,462.928 -261,302,462.928 -261,302,462.928

    Wing propeller thrust (starboard) - Tws (N) = 0 0 0 0

    Wing propeller thrust (port) - Twp (N) = 0 0 0 0

    Ship's turning rate - rr (rad/sec) = 0.011 0.023 0.034 0.046

    Ship's steady turning radius - TurningRadius (m) =

    Trim - deltaT (m) = 0.00 0.00 0.00

    Parameters

    Center hull length at WL - L (m) = 90.00

    Center hull draft at MS - T (m) = 3.65

    0.557Center hull block coefficient based on WL data - Cb () =

    Ship displacement - disp (MT) = 1,350

    Rudder sweep angle - lamda (deg) = 2.20

    Rudder length - l(m) = 3.20

    LCG from MS - xg (m) = 2.20 aft

    Distance of rudder 1/4 line from MS - xr (m) = 43.03

    Distance from wing propeller to CL - ys (m) = 10.00

    Profile area of side hull under WL - Af (m 2) = 39.52

    Side hull length at WL - Ls (m) = 34.80

    Side hull draft at WL - Ts (m) = 2.15

    Distance of middle side hull from MS - xs (m) = 2.25 aft

    Pitch/diameter ratio - () = 1.68

    Propeller diameter - (m) = 1.05

    Number of blades - () = 4

    RPM - (1/min) = 70 70 70 70

    Blade area ratio - () = 0.80Wake fraction - () = 0.00 0.00 0.00 0.00

    KT = 1.229 1.229 1.229 1.229

    KQ = 0.010 0.010 0.010 0.010

    Va (m/sec) = 5.144 5.144 5.144 5.144

    J = 4.199 4.199 4.199 4.199

    Thrust (N) = 2,084 2,084 2,084 2,084

    Bollart Pull (N) = 1,313 1,313 1,313 1,313

    Eta0 = 80.307 80.307 80.307 80.307

    PS (MW) = 0.000 0.000 0.000 0.000

    Derived quantities

    Ship mass - m (kg) = 1,350,000 1,350,000 1,350,000 1,350,000

    Longitudinal velocity - u (m/sec) = 5.144 5.144 5.144 5.144

    Rudder area as a % or lateral center hull area - () = 2.34% 2.34% 2.34% 2.34%

    Rudder aspect ratio - a () = 1.332 1.332 1.332 1.332Rudder lift curve slope - dClddelta (1/deg) = 0.031 0.031 0.031 0.031

    Rudder force control derivative - Ydelta - (N/deg) = 3,261.621 3,261.621 3,261.621 3,261.621

    Rudder force - Ydeltadelta - (N) = 32,616.212 65,232.423 97,848.635 130,464.847

    Rudder moment control derivative - Ndelta (N*m/deg) = -140,334.512 -140,334.512 -140,334.512 -140,334.512Rudder moment - Ndeltadelta (N*m) = -1,403,345.122 -2,806,690.244 -4,210,035.365 -5,613,380.487

    Center hull sway-sway derivative - Yvc (N/m*sec) = -164,351.353 -164,351.353 -164,351.353 -164,351.353

    Center hull yaw-sway derivative - Yrc (N/rad*sec) = 4,965,270.864 4,965,270.864 4,965,270.864 4,965,270.864

    Center hull sway-yaw derivative - Nvc (N*sec) = -6,321,979.215 -6,321,979.215 -6,321,979.215 -6,321,979.215

    449.23 224.62 149.74 112.31

    TRITON Rudder only

    106

  • 8/10/2019 Scantling Calculations

    25/70

    HALSS Design Report Appendix C - Maneuvering Assessment

    Appendix C-3: HALSS Spreadsheets

    Constants

    Sea water density - rho (MT/m^3) = 1.025

    Variables

    Ship speed - speed (kn) = 10.00 10.00 10.00

    Rudder angle - delta (deg) = 10.00 20.00 30.00 35.00 40.00

    Trim - deltaT (m) = 0.00 0.00 0.00 0.00 0.00

    (m) = 300.00

    0

    0

    0.583

    64,152

    Rudder sweep angle - lamda (deg) = 6.90 2.20

    Rudder area - Ar (m^2) = 84.60 7.69

    Rudder length - l (m) = 9.30 3.20

    LCG from MS - xg (m) = 2.20 aft

    Distance of rudder 1/4 line from MS - xr (m) = 43.03

    Distance from wing propeller to CL 10.00

    Profile area of side hull under WL - 39.52

    157.15

    8.00

    tio - () =

    5

    in) 106 10 106

    rearat 0.75t ion - 0 0.00 0. 0.00

    3 0.293 0.2 0.293

    6 0.046 0.0 0.046

    c) = 4 5.144 5.1 5.144

    5 0.485 0.4 0.485

    ) = 22 6,622 1,216,6 1,216,622

    ull (N 61 ,061 1,945,0 1,945,061

    .489 0.4 0.489

    = .060 13.0 13.060

    quan

    ss - m 00 ,000 ,152,0 64 64,152,000

    inal v /sec) = 44 .144 5.1 5.144

    a eral cen = % 35% 2.3 2.35%

    ec = 22 .022 1.0 1.022

    ft cur Cl 25 .025 0.0 0.025

    orce at eg) = 97 .197 ,677.1 28 28,677.197

    orce a - 72 .943 0,315.9 ,003 1,147,087.886

    er *m/d 31 .331 2,109.3 ,112 -4,112,109.331

    el 12 .624 3,279.9 ,923 -164,484,373.249

    ull sw riv c) 56 .156 7,683.1 ,837 -1,837,683.156

    ull ya iva sec) 93 3.393 5,103.3 ,895 178,895,103.393

    ull sw iva = 00 0.000 6,320.0 ,776 -227,776,320.000

    ull ya t *sec - 00 0.000 2,160.0 ,13 -31,433,132,160.000

    0.102 0.1 0.102

    0.160 0.160 0.160 0.160

    Side hull sway-sway derivative - Yvs (N/m*sec) = -504,144.426 -504,144.426 -504,144.426 -504,144.426 -504,144.426

    Side hull yaw-sway derivative - Yrs (N/rad*sec) = -17,152,858.692 -17,152,858.692 -17,152,858.692 -17,152,858.692 -17,152,858.692

    Side hull sway-yaw derivative - Nvs (N*sec) = -17,152,858.692 -17,152,858.692 -17,152,858.692 -17,152,858.692 -17,152,858.692

    Side hull yaw-yaw derivative - Nrs (N*m/rad *sec) = -583,603,718.263 -583,603,718.263 - 583,603 ,718 .263 -583 ,603 ,718 .263 -583,603,718.2 63

    Ship sway-sway derivative - Yv (N/m*sec) = -2,845,972.007 -2,845,972.007 -2,845,972.007 -2,845,972.007 -2,845,972.007

    Ship yaw-sway derivative - Yr (N/rad*sec) = 144,589,386.010 144,589,386.010 144,589,386.010 144,589,386.010 144,589,386.010

    Shp sway-yaw derivative - Nv (N*sec) = -262,082,037.383 -262,082,037.383 -262,082,037.383 -262,082,037.383 -262,082,037.383

    Ship yaw-yaw derivat ive - Nr (N*m/rad*sec) = -32,600,339,596.526 -32,600,339,596.526 -32,600,339,596.526 -32,600,339,596.526 -32,600,339,596.526

    Wing propeller thrust (starboard) - Tws (N) = 0 0 0 0 0

    Wing propeller thrust (port) - Twp (N) = 0 0 0 0 0

    Ship's turning rate - rr (rad/sec) = 0.004 0.007 0.011 0.012 0.014

    Ship's steady turning radius - TurningRadius (m) =

    10.00 10.00

    Parameters HALSS

    Center hull length at WL - L

    Triton

    90.00

    Center hull beam at WL - B (m) = 25.0

    Center hull draft at MS - T (m) = 12.0

    Center hull block coefficient based on WL data - Cb () =

    Ship displacement - disp (MT) =

    7.20

    3.65

    0.557

    1,350

    10.69 aft

    143.39

    - ys(m) = 23.58

    Af (m^2) = 1,195.70

    Side hull length at WL - Ls (m) =

    Side hull draft at WL - Ts (m) =

    Dis tanc d le side hu ll from MS - xs (m)

    34.80

    2.15

    2.2e of mid = 34.02 aft 5 aft

    Pitch/diameter ra

    Propeller diamet

    1

    6.00er - (m) =

    es - () =Numberof blad

    1/mRPM - (

    Blade a

    =

    io - () =

    6 106 106

    Wake frac () = 0.0 00 0.00

    KT = 0.29 93 0.293

    KQ = 0.04 46 0.046

    Va (m/se

    J =

    5.14

    0.48

    44

    85

    5.144

    0.485

    Thrust (N 1,216,6 1,21 22 1,216,622

    Bollart P

    Eta0 =

    ) = 1,945,0

    0.489

    1,945

    0

    61

    89

    1,945,061

    0.489

    PS (MW) 13.060 13 60 13.060

    Derived tities

    Ship ma (kg) = 64,152,0 64,152 64 00 ,152,000

    Longitud elocity - u (m 5.1 5 44 5.144

    Rudder are as a % or lat ter hull area - () 2.35 2. 5% 2.35%

    Rudder asp

    Rudder li

    t ratio - a ()

    veslope - d

    1.0

    0.0

    1

    0

    22

    25

    1.022

    0.025ddelta (1/deg) =

    Rudder f control deriv ive - Ydelta - (N/d 28,677.1 28,677 28 97 ,677.197

    Rudder f

    Rudder mome

    - Ydeltadelt

    nt control d

    (N) =

    ivative - Ndelta (N

    286,771.9

    -4,112,109.3

    573,543

    -4,112,109

    86

    -4,11

    15 1

    31 -4

    ,701.900

    ,109.331eg) =

    Rudder moment - Ndeltad ta (N*m) = -41,121,093.3 -82,242,186 -123,36 37 -143 ,826.593

    Center h ay-sway de ative - Yvc (N/m*se = -1,837,683.1 -1,837,683 -1,83 56 -1 ,683.156

    Center h w-sway der tive - Yrc (N/rad* = 178,895,103.3 178,895,10 178,89 93 178 ,103.393

    Centerh

    Centerh

    ay-yaw der

    w-yaw deriva

    tive - Nvc (N*sec)

    ive - Nrc (N*m/rad

    -227,776,320.0

    31,433,132,160.0

    -227,776,32

    -31,433,132,16

    -227,77

    -31,433,13

    00 -227

    00 -31,433

    ,320.000

    2,160.000) =

    Side hull aspect ratio - as () = 0.102

    Side hull lift curve slope - dCldbeta (1/rad) = 0.160

    02 0.102

    1,451.49 725.75 483.83 414.71 362.87

    IMO Standard = 750.00

    HALSS Rudder only

    107

  • 8/10/2019 Scantling Calculations

    26/70

    HALSS Design Report Appendix C - Maneuvering Assessment

    Cons

    S

    tants

    ea water density - rho (MT/m 3) = 1.025

    Variables

    Ship speed- speed (kn) = 10.00 10.00 10.00 10.00 10.00

    0.00 0.00 0.00 0.00 0.00

    0.00 0.00 0.00 0.00 0.00

    WL - L (m)

    ter hull beam at WL - B (m) =

    ter hull draft at MS - T (m) = 12.00

    ter hull block coefficient bas on b () = 0.583

    143.39

    23.58

    Profile area of side hull under WL - Af (m^2) = 1,195.70

    ide hull length at WL - Ls(m) = 157.15

    ide hull draft at WL - Ts (m) = 8.00

    stance of middle side hull from MS - xs 34.02 aft

    tch/diameter ratio - () =

    peller diameter - (m) =

    5

    106 170 190

    Wake fra = 0.00 0. 0.00

    0.383

    0.046 0.0 054 0.056 0.058

    5.144 5.1 5.144

    5 0.3 0.271

    T 148 2,944 5,101,663

    B (N) = 555 3,894 6,249,262

    E 9 0.407 0. 0.285

    P 0 737 43 93.902

    D uantit

    S - m (k 00 000 152, 64,152,000

    L vel sec) = 44 5.144 5. 5.144

    R al cente % 5% 2.3 2.35%

    R pect r 22 1.022 1. 1.022

    R curv lddelta ( 25 0.025 0. 0.025

    R ce co tive - Yd 97 197 677. 28,677.197

    R ce - Y (N) = 00 0.000 0. 0.000

    R ment ivative - 31 331 109 4,1 -4,112,109.331

    R ment lta 00 0.000 0. 0.000

    C sway va ec) = 56 156 683 1,8 -1,837,683.156

    C yaw ati ec) = 93 393 103 8 178,895,103.393

    C sway ati = 00 000 320 7 -227,776,320.000

    C yaw tiv *sec) -3 00 - 000 160 1 -31,433,132,160.000

    S spect = 02 0.102 0. 0.102

    S t curv Cl 60 0.160 0. 0.160

    S way- tiv ) = 26 426 144 -5 -504,144.426

    S aw-s ve ) = 92 692 858. 1 -17,152,858.692

    S way- ve 92 692 858. 1 -17,152,858.692

    i aw-ya ve - Nr ec) = 63 18.263 03,718.2 83,603 -583,603,718.263

    hip sway-sway derivative - Yv (N/m*sec) = -2,845,972.007 -2,845,972.007 -2,845,972.007 -2,845,972.007 -2,845,972.007

    hip yaw-sway derivative - Yr (N/rad*sec) = 144,589,386.010 144,589,386.010 144,589,386.010 144,589,386.010 144,589,386.010

    hp sway-yaw derivative - Nv (N*sec) = -262,082,037.383 -262,082,037.383 -262,082,037.383 -262,082,037.383 -262,082,037.383

    Ship yaw-yaw derivat ive - Nr (N*m/rad*sec) = -32,600,339,596.526 -32,600,339,596.526 -32,600,339,596.526 -32,600,339,596.526 -32,600,339,596.526

    Wing propeller thrust (starboard) - Tws (N) = 2,433,244 4,150,296 5,889,263 7,907,144 10,203,326

    Wing propeller thrust (port) - Twp (N) = 0 0 0 0 0

    Ship's turning rate - rr (rad/sec) = 0.003 0.005 0.007 0.010 0.013

    Ship's steady turning radius - TurningRadius (m) =

    Rudder angle - delta (deg) =

    Trim - deltaT (m) =

    Parameters

    ter hull length atCen

    Cen

    Cen

    = 300.00

    25.00

    Cen ed WL data - C

    Ship displacement - disp (MT) = 64,152Rudder sweepangle - lamda (deg) = 6.90

    Rudder area - Ar (m^2) = 84.60

    Rudder length - l (m) =

    LCG from MS - xg (m) =

    Distance of rudder 1/4 line from MS - xr (m) =

    Distance from wing propeller to CL - ys (m) =

    9.30

    10.69 aft

    S

    S

    Di (m) =

    Pi

    Pro

    1

    6.00

    Number of blades - () =

    RPM - (1/min) =

    Blade are () =

    130 150

    a ratio -

    ction - ()

    0.75

    0.00 00 0.00

    KT = 0.293 0.333

    51

    0

    0.

    .355 0.371

    KQ =

    ) =Va (m/sec

    J =

    44

    96

    5.144

    0.343

    5.144

    0.3030.48

    1,216,622hrust (N) = 2,075, ,632 3,953,572

    ollart Pull

    ta0 =

    1,945,061

    0.48

    2,925, ,969

    357

    5,002,872

    0.317

    S (MW) = 13.06 26. .319 65.446

    erivedq

    hipmass

    ies

    g) = 64,152,0 64,152, 64, 000 64,152,000

    ongitudinal ocity - u (m/ 5.1 144 5.144

    udder area as a % or later r hull area - () = 2.35 2.3 5% 2.35%

    udder as atio - a () = 1.0 022 1.022

    udder lift

    udder for

    e slope - dC

    ntrol deriva

    1/deg) =

    elta - (N/deg) =

    0.0

    28,677.1

    025

    197

    0.025

    28,677.19728,677. 28,

    udder for deltadelta - 0.0 000 0.000

    udder mo

    udder mo

    control der

    - Ndeltade

    Ndelta (N*m/deg

    ) =

    ) = -4,112,109.3

    0.0

    -4,112,109. -4,112, .331 -

    000

    12,109.331

    0.000(N*m

    enter hull

    enter hull

    -sway deri

    -sway deriv

    tive - Yvc (N/m*s

    ve - Yrc (N/rad*s

    -1,837,683.1

    178,895,103.3

    -1,837,683.

    178,895,103.

    -1,837,

    178,895,

    .156 -

    .393 178,

    37,683.156

    95,103.393

    enter hull -yaw deriv ve - Nvc (N*sec) -227,776,320.0 -227,776,320. -227,776, .000 -227, 76,320.000

    enter hull -yaw deriva e - Nrc (N*m/rad = 1,433,132,160.0 31,433,132,160. -31,433,132, .000 -31,433, 32,160.000

    ide hull a ratio - as () 0.1 102 0.102

    ide hull lif e slope - d dbeta (1/rad) = 0.1 160 0.160

    ide hull s

    ide hull y

    sway deriva

    way derivati

    e - Yvs (N/m*sec

    - Yrs (N/rad*sec

    -504,144.4

    -17,152,858.6

    -504,144.

    -17,152,858.

    -504,

    -17,152,

    .426

    692 -17,

    04,144.426

    52,858.692

    ide hull s

    de hull y

    yaw derivati

    w derivati

    - Nvs (N*sec) =

    s (N*m/rad*s

    -17,152,858.6

    -583,603,718.2

    -17,152,858.

    -583,603,7

    -17,152,

    -583,6

    692 -17,

    63 -5

    52,858.692

    ,718.263S

    S

    S

    S

    1,708.30 1,001.55 705.81 525.69 407.39

    HALSS One propeller idling

    108

  • 8/10/2019 Scantling Calculations

    27/70

    HALSS Design Report Appendix C - Maneuvering Assessment

    Constants

    Sea water density - rho (MT/m^3) = 1.025

    Variables

    Ship speed - speed (kn) = 5.00 10.00 15.00 20.00

    0.00 0.00 0.00 0.00

    0.00 0.00 0.00 0.00

    length at WL - L (m) =

    Center h ull beam a t W m) =

    Centerhull draft a tM T (m)= 12.00

    Center hull block coef ent () = 0.583

    64,152

    r (m 2) = 84

    10

    14

    23

    Profile area of side hull under WL - Af (m 2) = 1,195.70

    Side hull length at WL - 15

    Side hull draft at WL - T

    Distance of middle side hull from MS - xs (m) = 34 2 aft

    Pitch/diameter ratio - () =

    Propeller diameter - (m) =

    190 190

    ea ratio - () =

    action - () = 0.0 0.00

    = 0.383 0.32 0.268

    = 0.05 0.043

    Va (m 6 10.288J = 0.541

    Thrust 5, 60 3,563,836

    Bollar 6, 262 6,249,262

    Eta0 = 0.537

    PS (M 54 69.712

    Deriv ties

    Ship g) = 64 00 64,152,000

    Long city - u 6 10.288

    Rudd l ll 35% 2.35%

    Rudd atio - a ( 1.022

    Rudd slope - 5 0.025

    Rudd ntrol deri - ( 7 2 694 114,708.789

    Rudd deltadel 0.000

    Rudd control elt 8 -4,11 995 ,448,437.325

    Rudd - ) = 0 0.000

    Cent -s Yvc ( -918 -1,83 735 675,366.313

    Cent sw c (N ,447 178,89 2 0 ,790,206.787

    Cent -y vc (N ,888 27,77 -3 000 ,552,640.000Cent ya c (N ,566 433,13 -47,1 0 ,264,320.000

    Side ra 0.102

    Side e (1/ra 0.160

    Side w s (N/ -25 -50 638 008,288.851

    Side a (N/ra -17,15 - 037 ,717.383

    -17,15 - 037 ,717.383

    -583,603,718.263 -875,405,577.394 -1,167,207,436.526

    Ship sway-sway derivative - Yv (N/m*sec) = -1,422,986.004 -2,845,972.007 -4,268,958.011 -5,691,944.015

    Ship yaw-sway derivative - Yr (N/rad*sec) = 72,294,693.005 144,589,386.010 216,884,079.016 289,178,772.021

    Shp sway-yaw derivative - Nv (N*sec) = -131,041,018.692 -262,082,037.383 -393,123,056.075 -524,164,074.766

    Ship yaw-yaw derivati ve - Nr (N*m/rad*sec) = -16,300,169,798.263 -32,600,339,596.526 -48,900,509,394.789 -65,200,679,193.052

    Wing propeller thrust (starboard) - Tws (N) = 11,464,328 10,203,326 8,747,210 7,127,672

    Wing propeller thrust (port) - Twp (N) = 0 0 0 0

    Ship's turning rate - rr (rad/sec) = 0.028 0.013 0.007 0.004

    HALSS One propeller idling

    Rudder angle - delta (deg) =

    im - deltaT (m) =Tr

    Parameters

    Centerhull 300.00

    25.00L - B (

    S -

    f ic i based on WLdata - Cb

    Ship displacement - disp (MT) =Rudder sweep angle - lamda (deg) =

    Rudder area - A

    6.90

    .60

    Rudder length - l (m) =

    LCG from MS - xg (m) =

    Distance of rudder 1/4 line from MS -xr (m) =

    Distance from wing propeller to CL - ys (m) =

    9.30

    .69 aft

    3.39

    .58

    Ls (m) =

    s (m) =

    7.15

    8.00

    .0

    1

    6.00

    Number of blades - () =

    RPM - (1/min) =

    5

    190 190

    Blade ar 0.75

    0.00Wake fr 0.00 0

    KT

    KQ

    0.430

    0.064

    8

    10.058

    5.144/sec) = 2.572 7.710.135

    732,164

    0.271

    5,101,663

    0.40

    4,373,

    6

    5(N) =

    t Pull (N) = 249,262 6,249,262 6,249,

    0.145 0.285 0.417

    W) = 103.661 93.902 82. 6

    ed quanti

    mass - m (k

    itudinal velo

    ,152,000

    2.572

    64,152,000

    5.144

    64,152,

    7.71

    0

    (m/sec) =

    er area as a % or

    er aspect r

    ateral center hu

    ) =

    area - () = 2.35%

    1.022

    2.35%

    1.022

    2.

    1.022

    er lift curve dClddelta (1/deg) = 0.025 0.025 0.02

    er force co vative - Ydelta N/deg) = ,169.299 8,677.197 64,523.

    er force - Y

    er moment

    ta - (N) =

    derivative - Nd

    0.000

    ,027.333

    0.000

    2,109.331

    0.00

    -9,252,245.

    0

    -16a (N*m/deg) = -1,02

    er moment Ndeltadelta (N*m 0.000 0.000 0.00

    er hull sway way derivative - N/m*sec) = ,841.578 7,683.156 -2,756,524. -3,

    er hull yaw- ay derivative - Yr /rad*sec) = 89 ,551.697 5,103.393 68,342,655.09 357

    er hull swayer hull yaw-

    aw derivative - Nw derivative - Nr

    *sec) =*m/rad*sec) =

    -113-15,716

    ,160.000 -2,080.000 -31,

    6,320.0002,160.000

    41,664,480.49,698,240.00

    -455-62,866

    hull aspect tio - as () = 0.102 0.102 0.102

    hull lift curv

    hull sway-s

    slope - dCldbeta

    ay derivative - Yv

    d) =

    m*sec)=

    0.160

    2,072.213

    0.160

    4,144.426

    0.16

    -756,216.

    0

    -1,

    hull yaw-sw y derivative - Yrs d*sec) = -8,576,429.346 2,858.692

    2,858.692

    25,729,288.

    25,729,288.

    -34,305

    -34,305Side hull sway-yaw derivative - Nvs (N*sec) = -8,576,429.346

    Side hull yaw-yaw d erivative - Nrs (N*m/rad*sec) = -291,801,859.131

    109

  • 8/10/2019 Scantling Calculations

    28/70

    HALSS Design Report Appendix C - Maneuvering Assessment

    Cons

    S

    tants

    ea water density - rho (MT/m 3) = 1.025

    Variables

    Ship speed- speed (kn) = 10.00

    0.00

    10.00 10.00 10.00 10.00

    0.00 0.00 0.00 0.00

    0.00 0.00 0.00 0.00 0.00

    WL - L (m)

    L - B (m) =

    S - T (m) =

    ter hull blockcoefficient bas on WL data - Cb () =

    ip displacement - disp (MT) = 64,152der sweep angle - lamda (de = 6.90

    10.69 aft

    8

    1,195.70

    157.15

    Side hull draft at WL - Ts (m) = 8.00

    Distance of middle sidehull from 34.02 aft

    Pitch/diameter ratio - () =

    Propeller diameter - (m) =

    Number of blades - () =

    RPM - (1/min) = 150 170 190

    0.75

    0.00 0.00 0.00

    .33 0.383

    0.05 0.058

    5.144 5.14 144 5.144 5.144

    0.485 0.39 0.271

    ) = ,622 75,14 2,9 5,101,663

    (N) = 55 3,8 6,249,262

    E 9 0.407 0. 0.285

    P 0 737 43 93.902

    D uantiti

    S - m (k 000 152, 64,152,000

    L velo /sec) = 44 5.144 5. 5.144

    R al cente % 5% 2.3 2.35%

    R pect r 22 1.022 1. 1.022

    R curv lddelta ( 25 0.025 0. 0.025

    R ce co tive - Yd 97 197 677. 28,677.197

    R ce - Y (N) = 00 0.000 0. 0.000

    R ment ivative - 31 331 109 4,1 -4,112,109.331

    R ment lta 00 0.000 0. 0.000

    C sway va ec) = 56 156 683 1,8 -1,837,683.156

    C yaw ati ec) = 93 393 103 8 178,895,103.393

    C sway ati = 00 000 320 7 -227,776,320.000

    C yaw tiv *sec) -31, 00 -3 000 160 1 -31,433,132,160.000

    S spect = 02 0.102 0. 0.102

    S t curv Cl 60 0.160 0. 0.160

    S way- tiv ) = 26 426 144 -5 -504,144.426

    S aw-s ve ) = 92 692 858. 1 -17,152,858.692

    S way- ve 92 692 858. 1 -17,152,858.692

    S aw-y e - ) = 63 263 718 6 -583,603,718.263

    5,972.007 -2,845,972.007 -2,845,972.007 -2,845,972.007

    S ,386.010 144,589,386.010 144,589,386.010 144,589,386.010

    Shp sway-yaw derivative - Nv (N*sec) = -262,082,037.383 -262,082,037.383 -262,082,037.383 -262,082,037.383 -262,082,037.383

    Ship yaw-yaw derivat ive - Nr (N*m/rad*sec) = -32,600,339,596.526 -32,600,339,596.526 -32,600,339,596.526 -32,600,339,596.526 -32,600,339,596.526

    Wing propeller thrust (starboard) - Tws (N) = 1,216,622 2,075,148 2,944,632 3,953,572 5,101,663

    Wing propeller thrust (port) - Twp (N) = -243,324 -415,030 -588,926 -790,714 -1,020,333

    Ship's turning rate - rr (rad/sec) = 0.002 0.003 0.004 0.006 0.008

    Ship's steady turning radius - TurningRadius (m) =

    Rudder angle - delta (deg) =

    Trim - deltaT (m) =

    Parameters

    Center hull length at

    Center hull beam at W

    ter hull draft at M

    = 300.00

    25.00

    Cen

    Cen

    12.00

    0.583ed

    ShRud g)

    Rudder area - Ar (m^2) = 84.60

    Rudder length - l (m) = 9.30

    LCG from MS - xg (m) =

    Distance of rudder 1/4 line from MS - xr (m) = 143.39

    Distance from wing propeller to CL - ys (m) = 23.5

    Profile area of side hull under WL - Af (m^2) =

    Side hull length at WL - Ls(m) =

    MS - xs (m) =

    1

    6.00

    5

    106 130

    Bladearea ratio - () =

    Wake fraction - () = 0.00 0.00

    KT =

    KQ =

    0.293

    0.046

    0 3

    1

    0.355

    0.054

    0.371

    0.056

    Va (m/sec) =

    J =

    4

    6

    5.

    0.343

    44,632

    94,9

    0.303

    3,953,572

    2

    Thrust (N

    B

    1,216 2,0 8

    5ollart Pull

    ta0 =

    1,945,061

    0.48

    2,925, 69

    357

    5,002,87

    0.317

    S (MW) = 13.06 26. .319 65.446

    erived q es

    hip mass g) = 64,152,000 64,152, 64, 000 64,152,000

    ongitudinal city - u (m 5.1 144 5.144

    udder area as a % or later r hull area - () = 2.35 2.3 5% 2.35%

    udder as atio - a () = 1.0 022 1.022

    udder lift

    udder for

    e slope - dC

    ntrol deriva

    1/deg) =

    elta - (N/deg) =

    0.0

    28,677.1

    025

    197

    0.025

    28,677.19728,677. 28,

    udder for deltadelta - 0.0 000 0.000

    udder mo

    udder mo

    control der

    - Ndeltade

    Ndelta (N*m/deg

    ) =

    ) = -4,112,109.3

    0.0

    -4,112,109. -4,112, .331 -

    000

    12,109.331

    0.000(N*m

    enter hull

    enter hull

    -sway deri

    -sway deriv

    tive - Yvc (N/m*s

    ve - Yrc (N/rad*s

    -1,837,683.1

    178,895,103.3

    -1,837,683.

    178,895,103.

    -1,837,

    178,895,

    .156 -

    .393 178,

    37,683.156

    95,103.393

    enter hull -yaw deriv ve - Nvc (N*sec) -227,776,320.0 -227,776,320. -227,776, .000 -227, 76,320.000

    enter hull -yaw deriva e - Nrc (N*m/rad = 433,132,160.0 1,433,132,160. -31,433,132, .000 -31,433, 32,160.000

    ide hull a ratio - as () 0.1 102 0.102

    ide hull lif e slope - d dbeta (1/rad) = 0.1 160 0.160

    ide hull s

    ide hull y

    sway deriva

    way derivati

    e - Yvs (N/m*sec

    - Yrs (N/rad*sec

    -504,144.4

    -17,152,858.6

    -504,1

    -17,152,858.

    44. -504,

    -17,152,

    .426

    692 -17,

    04,144.426

    52,858.692

    ide hull s yaw derivati - Nvs (N*sec) = -17,152,858.6 -17,152,858. -17,152, 692 -17, 52,858.692

    ide hull y aw derivativ Nrs (N*m/rad*sec -583,603,718.2 -583,603,718. -583,603, .263 -583, 03,718.263

    Ship sway-sway derivative - Yv (N/m*sec) = -2,845,972.007 -2,84

    hip yaw-sway derivative - Yr (N/rad*sec) = 144,589,386.010 144,589

    2,847.17 1,669.25 1,176.36 876.15 678.98

    HALSS One propeller reversing 20% fwd thrust

    110

  • 8/10/2019 Scantling Calculations

    29/70

    HALSS Design Report Appendix C - Maneuvering Assessment

    Constants

    Sea water density - rho (MT/m^3) = 1.025

    Variables

    Ship speed - speed (kn) = 5.00 10.00 15.00 20.00

    Rudder angle- delta (deg) = 0.00 0.00 0.00 0.00

    Trim - deltaT (m) = 0.00 0.00 0.00 0.00

    Parameters

    Center hull length at WL - L (m) = 300.00

    Center hull beam at WL - B (m) = 25.00

    Center hull draft at MS - T (m) = 12.00

    Center hull block coefficient based on WL data - Cb () = 0.583

    Ship displacement - disp (MT) = 64,152Rudder sweep angle - lamda (deg) = 6.90

    Rudder area - Ar (m^2) = 84.60

    Rudder length - l (m) = 9.30

    LCG from MS - xg (m) = 10.69 aft

    Distance of rudder 1/4 line from MS - xr (m) = 143.39

    Distance from wing propeller to CL - ys (m) = 23.58

    Profile area of side hull under WL - Af (m^2) = 1,195.70

    Side hull length at WL - Ls (m) = 157.15

    Side hull draft at WL - Ts (m) = 8.00

    Distance of middle side hull from MS - xs (m) = 34.02 aft

    Pitch/diameter ratio - () = 1

    Propeller diameter - (m) = 6.00

    Number of blades - () = 5

    RPM - (1/min) = 190 190 190 190

    Blade area ratio - () = 0.75

    Wake fraction - () = 0.00 0.00 0.00 0.00

    KT = 0.430 0.383 0.328 0.268

    KQ = 0.064 0.058 0.051 0.043

    Va (m/sec) = 2.572 5.144 7.716 10.288

    J = 0.135 0.271 0.406 0.541

    Thrust (N) = 5,732,164 5,101,663 4,373,605 3,563,836

    Bollart Pull (N) = 6,249,262 6,249,262 6,249,262 6,249,262

    Eta0 = 0.145 0.285 0.417 0.537

    PS (MW) = 103.661 93.902 82.546 69.712

    Derived quantities

    Ship mass - m (kg) = 64,152,000 64,152,000 64,152,000 64,152,000

    Longitudinal velocity - u (m/sec) = 2.572 5.144 7.716 10.288

    Rudder area as a % or lateral center hull area - () = 2.35% 2.35% 2.35% 2.35%

    Rudder aspect ratio - a () = 1.022 1.022 1.022 1.022

    Rudder lift curve slope - dClddelta (1/deg) = 0.025 0.025 0.025 0.025

    Rudder force control derivative - Ydelta - (N/deg) = 7,169.299 28,677.197 64,523.694 114,708.789

    Rudder force - Ydeltadelta - (N) = 0.000 0.000 0.000 0.000

    Rudder moment control derivative - N delta ( N*m/deg) = -1,028,027.333 -4,112,109.331 -9,252,245.995 -16,448,437.325

    Rudder moment - Ndeltadelta (N*m) = 0.000 0.000 0.000 0.000

    Center hull sway-sway derivative - Yvc (N/m*sec) = -918,841.578 -1,837,683.156 -2,756,524.735 -3,675,366.313

    Center hull yaw-sway d erivative - Yrc (N/rad*sec) = 89,447,551.697 178,895,103.393 268,342,655.090 357,790,206.787

    Center hull sway-yaw d erivative - Nvc (N*sec) = -113,888,160.000 -227,776,320.000 -341,664,480.000 -455,552,640.000

    Center hull yaw-yaw derivative - Nrc (N*m/rad*sec) = -15,716,566,080.000 -31,433,132,160.000 -47,149,698,240.000 -62,866,264,320.000

    Side hull aspect ratio - as () = 0.102 0.102 0.102 0.102

    Side hull lift curve slope - dCldbeta (1/rad) = 0.160 0.160 0.160 0.160

    Side hull sway-sway derivative - Yvs (N/m*sec) = -252,072.213 -504,144.426 -756,216.638 -1,008,288.851

    Side hull yaw-sway derivative - Yrs (N/rad*sec) = -8,576,429.346 -17,152,858.692 -25,729,288.037 -34,305,717.383

    Side hull sway-yaw derivative - Nvs ( N*sec) = -8,576,429.346 -17,152,858.692 -25,729,288.037 -34,305,717.383

    Side h ull yaw-yaw deri vative - Nrs (N*m/rad*sec) = -291,801,859.131 -583,603,718.263 -875,405,577.394 -1,167,207,436.526

    Ship sway-sway derivative - Yv (N/m*sec) = -1,422,986.004 -2,845,972.007 -4,268,958.011 -5,691,944.015

    Ship yaw-sway derivative - Yr (N/rad*sec) = 72,294,693.005 144,589,386.010 216,884,079.016 289,178,772.021

    Shp sway-yaw derivative - Nv (N*sec) = -131,041,018.692 -262,082,037.383 -393,123,056.075 -524,164,074.766

    Ship yaw-yaw der ivative - Nr(N*m/ rad*sec) = -16,300,169 ,798 .263 -32 ,600,339,596.526 -48,900,509,394 .789 -65 ,200,679,193 .052

    Wing propeller thrust (starboard) - Tws (N) = 5,732,164 5,101,663 4,373,605 3,563,836

    Wing propeller thrust (port) - Twp (N) = -1,146,433 -1,020,333 -874,721 -712,767

    Ship's turning rate - rr (rad/sec) = 0.017 0.008 0.004 0.003

    Ship's steady turning radius - TurningRadius (m) = 151.07 678.98 1,782.02 3,887.87

    HALSS One propeller reversing 20% fwd thrust

    111

  • 8/10/2019 Scantling Calculations

    30/70

  • 8/10/2019 Scantling Calculations

    31/70

  • 8/10/2019 Scantling Calculations

    32/70

    foundation girders forward of frame 45 to provide a good transition, in addition to providingbrackets to taper the inner skin bulkheads aft of frame 45.

    Longitudinal Strength Curves Strategic Mobility Departure

    Longitudinal Strength Curves - Strategic Mobility Arrival

    114

  • 8/10/2019 Scantling Calculations

    33/70

    Longitudinal Strength Curves - Early Entry Departure

    Longitudinal Strength Curves - Early Entry Arrival

    The maximum shear force requires the side shell plating to be 16.5mm vs 16.0 provided, if alllongitudinal bulkheads are ineffective. In the area of maximum shear, the main enginefoundation girders and centerline longitudinal bulkheads provide additional shear area whichshould be sufficient to achieve adequate shear strength with no increase in shell plate thickness.

    115

  • 8/10/2019 Scantling Calculations

    34/70

    APPENDIX E: Model test results (Tables)

    The test results are presented in the following Tables

    --------------------------------------------------------------------------------------

    EHP RESULTS FROM EXPERIMENT NUMBER = 1

    DTRC MODEL NUMBER = 5651

    MODEL CONDITION = HALSS: Center Hull Only @ 11.5 m Draft, Bare Hull, Bow Bulb

    SHIP MODEL

    LENGTH 950.83 FT (289.8 M) 17.61 FT (5.367 M)

    WETTED SURFACE 101780.0 FT2 (9456.0 M2) 34.90 FT2 (3.24 M2)

    DISPLACEMENT 47297.TONS (48054. T) 0.29 TONS (0.29 T)

    RHO 1.9905 (31.885 N S2/M4) 1.9367 (31.023 N S2/M4)

    NU (E+5) 1.2816 (0.11906 M2/SEC) 1.9905 (0.18493 M2/SEC)

    LINEAR RATIO 54.000

    ITTC FRICTION LINE

    CORRELATION ALLOWANCE (CA) 0.00000

    --------------------------------------------------------------------------------------

    VS PE FRICTIONAL POWER FN V-L 1000CR

    --------------------------------------------------------------------------------------KNOTS M/S HP KW HP KW

    --------------------------------------------------------------------------------------

    10.0 5.14 1460.0 1088.7 1318.3 983.1 0.096 0.324 0.160

    12.0 6.17 2472.9 1844.0 2228.1 1661.5 0.116 0.389 0.160

    14.0 7.20 3886.1 2897.9 3473.0 2589.8 0.135 0.454 0.170

    15.0 7.72 4900.0 3653.9 4236.5 3159.2 0.145 0.486 0.222

    16.0 8.23 6139.5 4578.2 5102.2 3804.7 0.154 0.519 0.286

    18.0 9.26 8981.8 6697.7 7163.9 5342.1 0.174 0.584 0.352

    20.0 10.29 12397.8 9245.1 9705.9 7237.7 0.193 0.649 0.380

    22.0 11.32 16546.8 12338.9 12775.2 9526.5 0.212 0.713 0.400

    24.0 12.35 21547.6 16068.0 16418.5 12243.2 0.232 0.778 0.419

    25.0 12.86 24447.0 18230.1 18469.8 13772.9 0.241 0.811 0.432

    26.0 13.38 28168.1 21004.9 20681.9 15422.5 0.251 0.843 0.481

    28.0 14.40 39821.0 29694.5 25611.3 19098.3 0.270 0.908 0.731

    30.0 15.43 58747.2 43807.8 31252.0 23304.6 0.289 0.973 1.15032.0 16.46 76241.2 56853.0 37649.2 28075.0 0.309 1.038 1.330

    34.0 17.49 90197.5 67260.3 44847.7 33442.9 0.328 1.103 1.303

    35.0 18.01 98117.6 73166.3 48761.3 36361.3 0.338 1.135 1.300

    36.0 18.52 107798.8 80385.6 52891.9 39441.5 0.347 1.167 1.329

    38.0 19.55 134710.9 100453.9 61826.1 46103.7 0.367 1.232 1.500

    40.0 20.58 177729.2 132532.6 71694.3 53462.4 0.386 1.297 1.871

    42.0 21.61 235008.2 175245.6 82540.2 61550.2 0.405 1.362 2.324

    44.0 22.64 301014.3 224466.3 94407.4 70399.6 0.425 1.427 2.739

    45.0 23.15 337488.7 251665.3 100737.4 75119.9 0.434 1.459 2.934

    --------------------------------------------------------------------------------------

    116

  • 8/10/2019 Scantling Calculations

    35/70

    -------------------------------------------------------------------------------------EHP RESULTS FROM EXPERIMENT NUMBER = 2DTRC MODEL NUMBER = 5651MODEL CONDITION = HALSS: Center Hull Only @ 11.5 m Draft, Bare Hull, Stem Bow

    SHIP MODELLENGTH 926.18 FT (282.3 M) 17.15 FT (5.228 M)WETTED SURFACE 98633.0 FT

    2(9163.0 M

    2) 33.82 FT

    2(3.14 M

    2)

    DISPLACEMENT 46938.TONS (47689. T) 0.29 TONS (0.29 T)

    RHO 1.9905 (31.885 N S2

    /M4

    ) 1.9367 (31.023 N S2

    /M4

    )NU (E+5) 1.2816 (0.11906 M

    2/SEC) 1.9905 (0.18493 M

    2/SEC)

    LINEAR RATIO 54.000ITTC FRICTION LINECORRELATION ALLOWANCE (CA) 0.00000

    ------------------------------------------------------------------------------------- VS PE FRICTIONAL POWER FN V-L 1000CR-------------------------------------------------------------------------------------KNOTS M/S HP KW HP KW-------------------------------------------------------------------------------------10.0 5.14 1590.6 1186.1 1281.7 955.7 0.098 0.329 0.360

    12.0 6.17 2699.9 2013.3 2166.1 1615.2 0.117 0.394 0.360

    14.0 7.20 4249.8 3169.1 3376.3 2517.7 0.137 0.460 0.371

    15.0 7.72 5294.3 3948.0 4118.4 3071.1 0.147 0.493 0.406

    16.0 8.23 6562.7 4893.8 4959.9 3698.6 0.156 0.526 0.45618.0 9.26 9596.4 7156.0 6964.0 5193.0 0.176 0.591 0.526

    20.0 10.29 13402.8 9994.5 9434.8 7035.5 0.196 0.657 0.578

    22.0 11.32 17882.4 13334.9 12418.2 9260.2 0.215 0.723 0.598

    24.0 12.35 23302.5 17376.7 15959.4 11900.9 0.235 0.789 0.619

    25.0 12.86 26655.2 19876.8 17953.3 13387.7 0.244 0.821 0.649

    26.0 13.38 30661.1 22864.0 20103.4 14991.1 0.254 0.854 0.700

    28.0 14.40 43543.9 32470.6 24894.5 18563.9 0.274 0.920 0.990

    30.0 15.43 65872.8 49121.3 30377.1 22652.2 0.293 0.986 1.532

    32.0 16.46 84397.5 62935.2 36594.8 27288.7 0.313 1.051 1.700

    34.0 17.49 100591.5 75011.0 43591.2 32505.9 0.332 1.117 1.690

    35.0 18.01 108985.3 81270.3 47394.9 35342.4 0.342 1.150 1.674

    36.0 18.52 119031.9 88762.1 51409.5 38336.1 0.352 1.183 1.689

    38.0 19.55 148240.3 110542.8 60092.8 44811.2 0.372 1.249 1.872

    40.0 20.58 194627.6 145133.8 69683.7 51963.1 0.391 1.314 2.275

    42.0 21.61 254744.2 189962.7 80224.8 59823.6 0.411 1.380 2.74544.0 22.64 324798.0 242201.9 91758.4 68424.2 0.430 1.446 3.188

    45.0 23.15 360731.1 268997.1 97910.4 73011.8 0.440 1.479 3.361-------------------------------------------------------------------------------------

    117

  • 8/10/2019 Scantling Calculations

    36/70

  • 8/10/2019 Scantling Calculations

    37/70

  • 8/10/2019 Scantling Calculations

    38/70

    --------------------------------------------------------------------------------------

    EHP RESULTS FROM EXPERIMENT NUMBER = 5

    DTRC MODEL NUMBER = 5651MODELCONDITION

    = HALSS: Center Hull @ 11.5 m Draft. Side Hulls @ 7.5 m Draft, Middle

    Longitudinal Location, and Inboard Transverse Location.

    SHIP MODEL

    LENGTH 950.83 FT (289.8 M) WETTED SURFACE 172,524.0FT2(16,028.0 M2)

    17.61 FT (5.367 M) 59.16 FT2(5.50 M2)

    DISPLACEMENT 59,393.0 TONS (60,343.0 T) RHO 1.9905(31.885 N S2/M4) NU (E+5) 1.2816 (0.11906 M2/SEC)

    0.37 TONS (0.37 T) 1.9367 (31.023 N S2/M4)1.9905 (0.18493 M2/SEC)

    LINEAR RATIO 54.000

    ITTC FRICTION LINE

    CORRELATION ALLOWANCE (CA) 0.00000

    ------------------------------------------------- -------------------------------------

    VS PE FRICTIONAL POWER FN V-L 1000CR

    --------------- -------------------- --------------------- ---------- ---------- ----------

    KNOTS M/S HP KW HP KW

    ------- -------- ---------- ---------- ---------- ----------- ---------- ---------- ----------10.0 5.14 3105.3 2315.6 2234.7 1666.4 0.096 0.324 0.580

    12.0 6.17 5281.2 3938.2 3776.8 2816.3 0.116 0.389 0.58014.0 7.20 8275.9 6171.4 5887.0 4390.0 0.135 0.454 0.58016.0 8.23 12460.5 9291.8 8648.6 6449.3 0.154 0.519 0.62018.0 9.26 18533.8 13820.6 12143.4 9055.3 0.174 0.584 0.73020.0 10.29 26358.9 19655.8 16452.2 12268.4 0.193 0.649 0.82522.0 11.32 36518.9 27232.2 21654.9 16148.1 0.212 0.713 0.93024.0 12.35 48995.6 36536.0 27830.6 20753.2 0.232 0.778 1.02026.0 13.38 61966.9 46208.7 35057.4 26142.3 0.251 0.843 1.02028.0 14.40 74715.8 55715.6 43413.1 32373.1 0.270 0.908 0.95030.0 15.43 92691.4 69120.0 52974.6 39503.2 0.289 0.973 0.98032.0 16.46 113003.6 84266.8 63818.4 47589.4 0.309 1.038 1.00034.0 17.49 135016.1 100681.5 76020.4 56688.4 0.328 1.103 1.00036.0 18.52 168090.9 125345.4 89655.9 66856.4 0.347 1.167 1.120

    38.0 19.55 226698.2 169048.9 104800.1 78149.4 0.367 1.232 1.48040.0 20.58 311735.9 232461.4 121527.5 90623.0 0.386 1.297 1.98042.0 21.61 423490.1 315796.5 139912.1 104332.4 0.405 1.362 2.55044.0 22.64 563433.4 420152.2 160027.9 119332.8 0.425 1.427 3.155

    45.0 23.15 635809.1 474122.8 170757.8 127334.1 0.434 1.459 3.400

    --------------------------------------------------------------------------------------

    120

  • 8/10/2019 Scantling Calculations

    39/70

    EHP RESULTS FROM EXPERIMENT NUMBER = 6DTRC MODEL NUMBER = 5651MODELCONDITION

    = HALSS: Center Hull @ 11.5 m Draft. Side Hulls @ 7.5 m Draft, Middle

    Longitudinal Location, Middle Transverse Location.

    SHIP MODEL

    LENGTH 950.83 FT (289.8 M) WETTED SURFACE 172,524.0FT2(16,028.0 M2)

    17.61 FT (5.367 M) 59.16 FT2(5.50 M2)

    DISPLACEMENT 59,393.0TONRHO 1.9905 (NU (E+5) 1.2816 (

    S (60,343.0 T) 31.885 NS2/M4) 0.11906M2/SEC)

    0.37TON1.9367(311.9905 (0.

    S (0.37 T).023 N S2/M4)18493 M2/SEC)

    LINEAR RATIO 54.000

    ITTC FRICTION LINE

    CORRELATION ALLOWANCE (CA) 0.00000

    ------------------------------------------------- -------------------------------------

    VS PE FRICTIONAL POWER FN V-L 1000CR

    --------------- -------------------- --------------- ------ ---------- ---------- ----------

    KNOTS M/S HP KW HP KW

    ------- -------- ---------- ---------- ---------- ----------- ---------- ---------- ----------10.0 5.14 3105.3 2315.6 2234.7 1666.4 0.096 0.324 0.580

    12.0 6.17 5281.2 3938.2 3776.8 2816.3 0.116 0.389 0.58014.0 7.20 8275.9 6171.4 5887.0 4390.0 0.135 0.454 0.58016.0 8.23 12460.5 9291.8 8648.6 6449.3 0.154 0.519 0.62018.0 9.26 18271.1 13624.8 12143.4 9055.3 0.174 0.584 0.70020.0 10.29 25698.5 19163.3 16452.2 12268.4 0.193 0.649 0.77022.0 11.32 34441.2 25682.8 21654.9 16148.1 0.212 0.713 0.80024.0 12.35 44430.6 33131.9 27830.6 20753.2 0.232 0.778 0.80026.0 13.38 56162.8 41880.6 35057.4 26142.3 0.251 0.843 0.80028.0 14.40 73727.3 54978.4 43413.1 32373.1 0.270 0.908 0.92030.0 15.43 92691.4 69120.0 52974.6 39503.2 0.289 0.973 0.98032.0 16.46 113003.6 84266.8 63818.4 47589.4 0.309 1.038 1.00034.0 17.49 151535.0 112999.6 76020.4 56688.4 0.328 1.103 1.28036.0 18.52 203806.9 151978.8 89655.9 66856.4 0.347 1.167 1.63038.0 19.55 273645.5 204057.4 104800.1 78149.4 0.367 1.232 2.05040.0 20.58 350161.8 261115.6 121527.5 90623.0 0.386 1.297 2.38042.0 21.61 440171.2 328235.6 139912.1 104332.4 0.405 1.362 2.70044.0 22.64 560876.1 418245.2 160027.9 119332.8 0.425 1.427 3.13545.0 23.15 626234.5 466983.0 170757.8 127334.1 0.434 1.459 3.330

    121

  • 8/10/2019 Scantling Calculations

    40/70

    EHP RESULTS FROM EXPERIMENT NUMBER = 7DTRC MODEL NUMBER = 5651MODELCONDITION

    = HALSS: Center Hull @ 11.5 m Draft. Side Hulls @ 7.5 m Draft, Middle

    Longitudinal Location, Outboard Transverse Location.

    SHIP MODEL

    LENGTH 950.83 FT (289.8 M) WETTED SURFACE 172,524.0FT2(16,028.0 M2)

    17.61 FT (5.367 M) 59.16 FT2(5.50 M2)

    DISPLACEMENT 59,393.0 TONS (60,343.0 T) RHO 1.9905(31.885 N S2/M4) NU (E+5) 1.2816 (0.11906 M2/SEC)

    0.37 TONS (0.37 T) 1.9367 (31.023 N S2/M4)1.9905 (0.18493 M2/SEC)

    LINEAR RATIO 54.000

    ITTC FRICTION LINE

    CORRELATION ALLOWANCE (CA) 0.00000

    ------------------------------------------------- -------------------------------------

    VS PE FRICTIONAL POWER FN V-L 1000CR

    --------------- -------------------- --------------------- ---------- ---------- ----------

    KNOTS M/S HP KW HP KW

    ------- -------- ---------- ---------- ---------- ----------- ---------- ---------- ----------10.0 5.14 3225.3 2405.1 2234.7 1666.4 0.096 0.324 0.660

    12.0 6.17 5488.7 4092.9 3776.8 2816.3 0.116 0.389 0.66014.0 7.20 8605.4 6417.1 5887.0 4390.0 0.135 0.454 0.66016.0 8.23 12706.4 9475.2 8648.6 6449.3 0.154 0.519 0.66018.0 9.26 18096.1 13494.2 12143.4 9055.3 0.174 0.584 0.68020.0 10.29 24857.9 18536.5 16452.2 12268.4 0.193 0.649 0.70022.0 11.32 34601.0 25802.0 21654.9 16148.1 0.212 0.713 0.81024.0 12.35 45260.6 33750.8 27830.6 20753.2 0.232 0.778 0.84026.0 13.38 57350.0 42765.9 35057.4 26142.3 0.251 0.843 0.84528.0 14.40 74056.8 55224.2 43413.1 32373.1 0.270 0.908 0.93030.0 15.43 92691.4 69120.0 52974.6 39503.2 0.289 0.973 0.98032.0 16.46 113003.6 84266.8 63818.4 47589.4 0.309 1.038 1.00034.0 17.49 135016.1 100681.5 76020.4 56688.4 0.328 1.103 1.00036.0 18.52 175794.4 131089.8 89655.9 66856.4 0.347 1.167 1.23038.0 19.55 246465.5 183789.3 104800.1 78149.4 0.367 1.232 1.72040.0 20.58 344397.9 256817.5 121527.5 90623.0 0.386 1.297 2.32042.0 21.61 462412.6 344821.0 139912.1 104332.4 0.405 1.362 2.90044.0 22.64 584530.7 435884.5 160027.9 119332.8 0.425 1.427 3.320

    45.0 23.15 648119.3 483302.5 170757.8 127334.1 0.434 1.459 3.490

    --------------------------------------------------------------------------------------

    122

  • 8/10/2019 Scantling Calculations

    41/70

  • 8/10/2019 Scantling Calculations

    42/70

    --------------------------------------------------------------------------------------

    EHP RESULTS FROM EXPERIMENT NUMBER = 9

    DTRC MODEL NUMBER = 5651MODELCONDITION

    = HALSS: Center Hull @ 11.5 m Draft. Side Hulls @ 7.5 m Draft, Aft

    Longitudinal Location, Inboard Transverse Location.

    SHIP MODEL

    LENGTH 950.83 FT (289.8 M) WETTED SURFACE 172,524.0FT2(16,028.0 M2)

    17.61 FT (5.367 M) 59.16 FT2(5.50 M2)

    DISPLACEMENT 59,393.0 TONS (60,343.0 T) RHO 1.9905(31.885 N S2/M4) NU (E+5) 1.2816 (0.11906 M2/SEC)

    0.37 TONS (0.37 T) 1.9367 (31.023 N S2/M4)1.9905 (0.18493 M2/SEC)

    LINEAR RATIO 54.000

    ITTC FRICTION LINE

    CORRELATION ALLOWANCE (CA) 0.00000

    ------------------------------------------------- -------------------------------------

    VS PE FRICTIONAL POWER FN V-L 1000CR

    --------------- -------------------- --------------------- ---------- ---------- ----------

    KNOTS M/S HP KW HP KW

    ------- -------- ---------- ---------- ---------- ----------- ---------- ---------- ----------10.0 5.14 3480.5 2595.4 2234.7 1666.4 0.096 0.324 0.830

    12.0 6.17 5929.6 4421.7 3776.8 2816.3 0.116 0.389 0.83014.0 7.20 9305.6 6939.2 5887.0 4390.0 0.135 0.454 0.83016.0 8.23 13751.6 10254.6 8648.6 6449.3 0.154 0.519 0.83018.0 9.26 19496.7 14538.7 12143.4 9055.3 0.174 0.584 0.84020.0 10.29 27019.4 20148.3 16452.2 12268.4 0.193 0.649 0.88022.0 11.32 39236.0 29258.3 21654.9 16148.1 0.212 0.713 1.10024.0 12.35 56258.1 41951.6 27830.6 20753.2 0.232 0.778 1.37026.0 13.38 70409.