school of engineering (mechanical and automotive)

55
0 | Page School of Engineering (Mechanical and Automotive) Major Assessment Course: Mechanics of Machines (MIET1077) Experiment: Six Bar Linkage Mechanism Course Coordinator: Prof. Firoz Alam ([email protected]) Student Information Family Name Given Name Pace Samuel Student Number: S3659265 Due Date: 25/10/20

Upload: others

Post on 13-Apr-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: School of Engineering (Mechanical and Automotive)

0 | P a g e

School of Engineering (Mechanical and Automotive)

Major Assessment Course: Mechanics of Machines (MIET1077)

Experiment: Six Bar Linkage Mechanism

Course Coordinator: Prof. Firoz Alam ([email protected])

Student Information Family Name Given Name

Pace Samuel

Student Number: S3659265

Due Date: 25/10/20

Page 2: School of Engineering (Mechanical and Automotive)

1 | P a g e

Contents Summary ........................................................................................................................................................................................................... 2

Objectives .......................................................................................................................................................................................................... 2

Related Theory .................................................................................................................................................................................................. 2

Calculating Lengths of Links .............................................................................................................................................................................. 3

Graphical Position Analysis ................................................................................................................................................................................ 4

Graphical Velocity Analysis ................................................................................................................................................................................ 5

Complete Vector Polygon ............................................................................................................................................................................ 7

Graphical Velocity Results ............................................................................................................................................................................ 7

Graphical Acceleration Analysis ........................................................................................................................................................................ 8

Complete Vector Polygon .......................................................................................................................................................................... 15

Graphical Acceleration Results .................................................................................................................................................................. 16

Graphical Instantaneous Centre Analysis ........................................................................................................................................................ 16

Comlete Instantaneous Centre Diagram .................................................................................................................................................... 22

Results for Instantaneous Centre of Zero Velocity Method ....................................................................................................................... 23

Analytical Method for Position, Velocity and Acceleration ............................................................................................................................. 23

Position Analysis ........................................................................................................................................................................................ 23

Part A - Crank ........................................................................................................................................................................................ 23

Part B – Coupler & Rocker .................................................................................................................................................................... 24

Part C – Slider ....................................................................................................................................................................................... 29

Velocity Analysis ........................................................................................................................................................................................ 30

Part A - Crank ........................................................................................................................................................................................ 30

Part B – Coupler & Rocker .................................................................................................................................................................... 30

Part C - Slider ........................................................................................................................................................................................ 32

Acceleration Analysis ................................................................................................................................................................................. 34

Part A – Crank ....................................................................................................................................................................................... 34

Part B – Coupler & Rocker .................................................................................................................................................................... 34

Part C – Slider ....................................................................................................................................................................................... 37

Summary of Analytical Values .................................................................................................................................................................... 38

Dynamic Forces ............................................................................................................................................................................................... 39

Equations of Motion .................................................................................................................................................................................. 39

Equation Matrix ......................................................................................................................................................................................... 45

Working Model Simulation .............................................................................................................................................................................. 45

Balancing Strategy Development ...................................................................................................................................................................... 0

Results ............................................................................................................................................................................................................... 1

Discussion .......................................................................................................................................................................................................... 2

Conclusion ......................................................................................................................................................................................................... 3

References ........................................................................................................................................................................................................ 3

Attachments ...................................................................................................................................................................................................... 3

Page 3: School of Engineering (Mechanical and Automotive)

2 | P a g e

Summary This report details the methods for calculating the position, velocity and acceleration of a 6 bar linkage mechanism. The graphical method of calculating the position, velocity, acceleration and instantaneous centres of zero velocity use vector polygons and position diagrams to calculate and display graphically the magnitude and direction of each component which can be measured to provide an accurate result. The values are then cross checked using the analytical method for calculating each component. A simulation was made using Working Model to provide further analysis and verification of the results. Each of these methods provided results that would be used to calculate the dynamic forces of the system and generate a balancing strategy for reducing the vibration in the system. From this report, the positions, velocity, and accelerations of the linkages have been accurately calculated and verified using multiple methods of calculating the results.

Objectives The objectives of this major assessment are to:

β€’ Apply the understanding of Mechanics of Machines course content β€’ Calculate position, velocity, acceleration, and instantaneous centres of the system using

graphical methods β€’ Calculate position, velocity and acceleration using analytical methods β€’ Develop and analyse a working model simulation to evaluate the outputs β€’ Calculate the dynamic forces on the system and develop a balancing strategy development

Related Theory A linkage mechanism has a grounded link, driver link (crank) and a slave link (rocker). The grounded (link g) link throughout the whole motion of the system will always have no velocity or acceleration. This link is the link which the system revolves around and defines the joints which the links rotate around. The crank (a and Ξ±) is what drives the motion of the system and determines the limits of motion for each link and joint. The rocker (b and Ξ²) has its motion driven by the crank and that motion is dependent on the size of the crank. The floating link (link f) has complex motion dependant on the crank and rocker and is what connects them together.1

Figure 1 4 Bar Linkage Mechanism Source: http://dynref.engr.illinois.edu/aml.html

Many different linkage mechanisms can be seen in our daily life, some examples can be seen below.

Page 4: School of Engineering (Mechanical and Automotive)

3 | P a g e

Figure 2 Bike Pedalling Source:

http://dynref.engr.illinois.edu/aml.html

Figure 3 Knee Joint Source

:http://dynref.engr.illinois.edu/aml.html

Figure 4 Suspension with Watt's linkage Source: http://dynref.engr.illinois.edu/aml.html

These different linkages seen in our daily lives are made up of different types of 4 bar linkage mechanisms and can have the same principles applied to finding out their function and ranges of movement.

Calculating Lengths of Links To begin the following values were given to begin calculating the links.

OA (m) 0.2 B (deg) 12 ΞΈ1 (deg) 6 n2 (rpm) 480

The following lengths are calculated using the provided equations

𝐻𝐻 =𝑂𝑂𝑂𝑂4

=0.24

= 0.05π‘šπ‘š

𝑂𝑂𝑂𝑂 = 𝐢𝐢𝐢𝐢 = 4 βˆ— 𝑂𝑂𝑂𝑂 = 4 βˆ— 0.2 = 0.8π‘šπ‘š

The following values are left to be calculated through the simultaneous equations provided.

𝑂𝑂𝐢𝐢 = ?

𝑂𝑂𝐴𝐴 = ?

Page 5: School of Engineering (Mechanical and Automotive)

4 | P a g e

𝐴𝐴𝑂𝑂 = ?

Trial and error was used to find the following values for the unknowns.

𝑂𝑂𝐢𝐢 = 0.3π‘šπ‘š

𝑂𝑂𝐴𝐴 = 0.5π‘šπ‘š

𝐴𝐴𝑂𝑂 = 0.6π‘šπ‘š

These values were checked against the equations to test their validity.

𝑂𝑂𝑂𝑂 + 𝑂𝑂𝐴𝐴 < 𝑂𝑂𝑂𝑂 + 𝐴𝐴𝑂𝑂

0.2 + 0.5 < 0.8 + 0.6

0.7 < 1.4

𝑂𝑂𝑂𝑂 + 𝑂𝑂𝑂𝑂 < 𝑂𝑂𝐴𝐴 + 𝑂𝑂𝐴𝐴

0.2 + 0.8 < 0.5 + 0.6

1.0 < 1.1

Since both these statements are true, the system may continue with the following values used for each of the links.

Graphical Position Analysis

Figure 5 Graphical Position Analysis

Page 6: School of Engineering (Mechanical and Automotive)

5 | P a g e

The positions of 16 different angles of πœƒπœƒ2 and the subsequent positions of each of the other positions. The paths are 𝑆𝑆𝐴𝐴, 𝑆𝑆𝐡𝐡, 𝑆𝑆𝐢𝐢 and 𝑆𝑆𝐷𝐷 with the limits of the motion for B being 𝐴𝐴𝐿𝐿 and 𝐴𝐴𝑅𝑅 and the limits of D being 𝐢𝐢𝐿𝐿 and 𝐢𝐢𝑅𝑅.

Graphical Velocity Analysis To begin the graphical velocity analysis, the velocity of point A is calculated as it has a known rotational speed and direction and so can be found.

𝑛𝑛2 = 480 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘šπ‘š =48060

π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ = 8 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ = 8 βˆ— 2πœ‹πœ‹ π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ π‘Ÿπ‘Ÿβ„ = 50.26 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ π‘Ÿπ‘Ÿβ„

𝑉𝑉𝐴𝐴 = πœ”πœ”π΄π΄π‘Ÿπ‘Ÿπ‘‚π‘‚π΄π΄ = 50.26 βˆ— 200 = 10053.1π‘šπ‘šπ‘šπ‘š/π‘Ÿπ‘Ÿ

The direction of 𝑉𝑉𝐴𝐴 is tangential to the position circle and the velocity is going anticlockwise.

The next component to be found is 𝑉𝑉𝐡𝐡 which can be found using the following equation

𝑉𝑉𝐡𝐡βŠ₯OE = 𝑉𝑉𝐴𝐴βŠ₯OA + 𝑉𝑉𝐡𝐡/𝐴𝐴βŠ₯BE

This equation produces the following vector polygon.

Figure 6 Finding VB

The same technique is used to find 𝑉𝑉𝐢𝐢 , but there are 2 equations which need to be used. 𝑉𝑉𝐢𝐢 = 𝑉𝑉𝐴𝐴βŠ₯OA + 𝑉𝑉𝐢𝐢/𝐴𝐴βŠ₯AC

𝑉𝑉𝐢𝐢 = 𝑉𝑉𝐡𝐡βŠ₯BE + 𝑉𝑉𝐢𝐢/𝐡𝐡βŠ₯BC

Drawing out the known components and the relative components, the following vector polygon is found.

Page 7: School of Engineering (Mechanical and Automotive)

6 | P a g e

Figure 7 Finding VC

The lines can then be connected to find the relative velocities and the point which they intersect is the arrowhead of 𝑉𝑉𝐢𝐢 .

Figure 8 Graphically Solving for VC

Now that 𝑉𝑉𝐢𝐢 is known, 𝑉𝑉𝐷𝐷 can be found using it in the following equation.

𝑉𝑉𝐷𝐷||π‘‹π‘‹βˆ’π‘‹π‘‹ = 𝑉𝑉𝐢𝐢 + 𝑉𝑉𝐷𝐷/𝐢𝐢βŠ₯CD

The following vector polygon is produced, and the connection points define the vectors of the velocities.

Page 8: School of Engineering (Mechanical and Automotive)

7 | P a g e

Figure 9 Finding VD

Figure 10 Solving for VD

Complete Vector Polygon Now that all the individual components are found, the entire velocity vector polygon can be seen below.

Figure 11 Velocity Vector Polygon

The program which the vector polygon was drawn in had a scale which was used at 𝑉𝑉𝐴𝐴 of 1 point = 100mm/s. Using this scale, the following magnitudes and angles for the rest of the vectors can be solved.

Graphical Velocity Results Width (pts) Height (pts) Length (pts) Velocity (mm/s) Velocity (m/s)

𝑉𝑉𝐴𝐴/𝑂𝑂 72.649 61.685 95.30434 9530.434 9.530434

Page 9: School of Engineering (Mechanical and Automotive)

8 | P a g e

𝑉𝑉𝐢𝐢/𝑂𝑂 35.039 45.354 57.31245 5731.245 5.731245

𝑉𝑉𝐢𝐢 52.023 4.911 52.25429 5225.429 5.225429

𝑉𝑉𝐴𝐴 14.413 11.42 18.38888 1838.888 1.838888

𝑉𝑉𝐴𝐴/𝐢𝐢 37.674 16.331 41.06132 4106.132 4.106132

𝑉𝑉𝐴𝐴/𝐢𝐢 54.92 0 54.92 5492 5.492

𝑉𝑉𝐢𝐢/𝐢𝐢 2.896 4.911 5.701293 570.1293 0.570129 Table 1 Graphical Velocity Analysis Results

Graphical Acceleration Analysis To begin the graphical acceleration analysis, first the known values are calculated to calibrate the scale and distance. The following equation is used to find the magnitude of π‘Ÿπ‘Ÿπ΄π΄π‘›π‘›.

π‘Ÿπ‘Ÿπ΄π΄π‘›π‘› =𝑉𝑉𝐴𝐴2

π‘Ÿπ‘Ÿπ΄π΄=

(πœ”πœ”π΄π΄π‘Ÿπ‘Ÿπ‘‚π‘‚π΄π΄)2

π‘Ÿπ‘Ÿπ΄π΄=

(50.265 βˆ— 200)2

200= 505323.6 π‘šπ‘šπ‘šπ‘š/π‘Ÿπ‘Ÿ2

Since it is known that the direction is perpendicular to link OA, π‘Ÿπ‘Ÿπ΄π΄π‘›π‘› can be sketched as follows. Since the velocity is known to be constant, the tangential acceleration of the support is known to be 0. Because there is no tangential component to the acceleration, the normal component of the acceleration is equal to the overall acceleration of the link.

π‘Ÿπ‘Ÿπ΄π΄ = π‘Ÿπ‘Ÿπ΄π΄π‘›π‘›||𝑂𝑂𝐴𝐴 + π‘Ÿπ‘Ÿπ΄π΄π‘‘π‘‘βŠ₯𝑂𝑂𝐴𝐴

π‘Ÿπ‘Ÿπ΄π΄π‘‘π‘‘βŠ₯𝑂𝑂𝐴𝐴 = 0

Figure 12 Calibrating Scale with aA

Using the following graphic, the directions for each component of the accelerations can be found.

Page 10: School of Engineering (Mechanical and Automotive)

9 | P a g e

Figure 13 Directions of Acceleration Components

The first component to be found is π‘Ÿπ‘Ÿπ΅π΅/𝐴𝐴𝑛𝑛 using the following calculation.

π‘Ÿπ‘Ÿπ΅π΅/𝐴𝐴𝑛𝑛 =

𝑉𝑉𝐡𝐡/𝐴𝐴2

π‘Ÿπ‘Ÿπ΅π΅/𝐴𝐴=

9530.4342

500= 181658.3 π‘šπ‘šπ‘šπ‘š/π‘Ÿπ‘Ÿ2

This is graphed as follows with π‘Ÿπ‘Ÿπ΅π΅/𝐴𝐴𝑛𝑛 off the end of π‘Ÿπ‘Ÿπ΄π΄ and the line of π‘Ÿπ‘Ÿπ΅π΅/𝐴𝐴

𝑑𝑑 being tangential.

π‘Ÿπ‘Ÿπ΅π΅/𝐴𝐴 = π‘Ÿπ‘Ÿπ΅π΅/𝐴𝐴𝑛𝑛

||𝐴𝐴𝐡𝐡+ π‘Ÿπ‘Ÿπ΅π΅/𝐴𝐴

𝑑𝑑βŠ₯𝐴𝐴𝐡𝐡

Figure 14 Finding aB/A

Page 11: School of Engineering (Mechanical and Automotive)

10 | P a g e

The next part to be calculated is π‘Ÿπ‘Ÿπ΅π΅π‘›π‘› using the following equation.

π‘Ÿπ‘Ÿπ΅π΅π‘›π‘› =𝑉𝑉𝐡𝐡2

π‘Ÿπ‘Ÿπ΅π΅=

1838.882

600= 5635.85 π‘šπ‘šπ‘šπ‘š/π‘Ÿπ‘Ÿ2

π‘Ÿπ‘Ÿπ΅π΅π‘›π‘› is graphed from the origin with the π‘Ÿπ‘Ÿπ΅π΅π‘‘π‘‘ being tangential.

π‘Ÿπ‘Ÿπ΅π΅ = π‘Ÿπ‘Ÿπ΅π΅π‘›π‘›||𝐴𝐴𝐡𝐡 + π‘Ÿπ‘Ÿπ΅π΅π‘‘π‘‘βŠ₯𝐴𝐴𝐡𝐡

Figure 15 Finding aB

Since π‘Ÿπ‘Ÿπ΅π΅π‘‘π‘‘ and π‘Ÿπ‘Ÿπ΅π΅/𝐴𝐴𝑑𝑑 intersection defines their lengths, the values can be sketched accordingly.

π‘Ÿπ‘Ÿπ΅π΅π‘›π‘›||𝐴𝐴𝐡𝐡 + π‘Ÿπ‘Ÿπ΅π΅π‘‘π‘‘βŠ₯𝐴𝐴𝐡𝐡 = π‘Ÿπ‘Ÿπ΅π΅/𝐴𝐴𝑛𝑛

||𝐴𝐴𝐡𝐡+ π‘Ÿπ‘Ÿπ΅π΅/𝐴𝐴

𝑑𝑑βŠ₯𝐴𝐴𝐡𝐡

Figure 16 Solving for aB and aB/A

Page 12: School of Engineering (Mechanical and Automotive)

11 | P a g e

From this graph, the connection between the vector between the tangential and normal components of the vector can be resolved to find the full vectors for π‘Ÿπ‘Ÿπ΅π΅ and π‘Ÿπ‘Ÿπ΅π΅/𝐴𝐴.

Figure 17 Finding aB and aB/A

Now the acceleration at C is to be calculated starting with π‘Ÿπ‘ŸπΆπΆ/𝐴𝐴. First π‘Ÿπ‘ŸπΆπΆ/𝐴𝐴𝑛𝑛 is to be calculated using

the following.

π‘Ÿπ‘ŸπΆπΆ/𝐴𝐴𝑛𝑛 =

𝑉𝑉𝐢𝐢/𝐴𝐴2

π‘Ÿπ‘Ÿπ΄π΄πΆπΆ=

5731.242

300= 109490.7 π‘šπ‘šπ‘šπ‘š/π‘Ÿπ‘Ÿ2

π‘Ÿπ‘ŸπΆπΆ/𝐴𝐴𝑛𝑛 can be sketched from π‘Ÿπ‘Ÿπ΄π΄ with π‘Ÿπ‘ŸπΆπΆ/𝐴𝐴

𝑑𝑑 being perpendicular to the normal component as follows.

π‘Ÿπ‘ŸπΆπΆ/𝐴𝐴 = π‘Ÿπ‘ŸπΆπΆ/𝐴𝐴𝑛𝑛

||𝐴𝐴𝐢𝐢+ π‘Ÿπ‘ŸπΆπΆ/𝐴𝐴

𝑑𝑑βŠ₯𝐴𝐴𝐢𝐢

Page 13: School of Engineering (Mechanical and Automotive)

12 | P a g e

Figure 18 Finding aC/A

The same principle can be applied for finding π‘Ÿπ‘ŸπΆπΆ/𝐡𝐡𝑛𝑛 and π‘Ÿπ‘ŸπΆπΆ/𝐡𝐡

𝑑𝑑 as follows.

π‘Ÿπ‘ŸπΆπΆ/𝐡𝐡𝑛𝑛 =

𝑉𝑉𝐢𝐢/𝐡𝐡2

π‘Ÿπ‘Ÿπ΅π΅πΆπΆ=

4106.132

215.77= 78141.1 π‘šπ‘šπ‘šπ‘š/π‘Ÿπ‘Ÿ2

With π‘Ÿπ‘ŸπΆπΆ/𝐡𝐡𝑛𝑛 coming from the end of π‘Ÿπ‘Ÿπ΅π΅ and π‘Ÿπ‘ŸπΆπΆ/𝐡𝐡

𝑑𝑑 being perpendicular to π‘Ÿπ‘ŸπΆπΆ/𝐡𝐡𝑛𝑛, the following

vector polygon can be drawn.

π‘Ÿπ‘ŸπΆπΆ/𝐡𝐡 = π‘Ÿπ‘ŸπΆπΆ/𝐡𝐡𝑛𝑛

||𝐡𝐡𝐢𝐢+ π‘Ÿπ‘ŸπΆπΆ/𝐡𝐡

𝑑𝑑βŠ₯𝐡𝐡𝐢𝐢

Page 14: School of Engineering (Mechanical and Automotive)

13 | P a g e

Figure 19 Finding aC/B

From here, the π‘Ÿπ‘ŸπΆπΆ/𝐴𝐴 and π‘Ÿπ‘ŸπΆπΆ/𝐡𝐡 values are combined to find the tangential components using the following equation and vector polygon.

π‘Ÿπ‘ŸπΆπΆ/𝐡𝐡𝑛𝑛 + π‘Ÿπ‘ŸπΆπΆ/𝐡𝐡

𝑑𝑑 = π‘Ÿπ‘ŸπΆπΆ/𝐴𝐴𝑛𝑛 + π‘Ÿπ‘ŸπΆπΆ/𝐴𝐴

𝑑𝑑

Figure 20 Solving for aC/B and aC/A

Page 15: School of Engineering (Mechanical and Automotive)

14 | P a g e

The lines can be connected accordingly and the vector component of π‘Ÿπ‘ŸπΆπΆ/𝐡𝐡, π‘Ÿπ‘ŸπΆπΆ/𝐴𝐴 and π‘Ÿπ‘ŸπΆπΆ can be found as follows.

Figure 21 Calculating aC/B and aC/A

The final acceleration to be found is π‘Ÿπ‘Ÿπ·π· which required π‘Ÿπ‘ŸπΆπΆ and since the directions are known the following vector polygon can be created using the same principles as before.

π‘Ÿπ‘Ÿπ·π·/𝐢𝐢𝑛𝑛 =

𝑉𝑉𝐷𝐷/𝐢𝐢2

π‘Ÿπ‘ŸπΆπΆπ·π·=

570.132

800= 406.31 π‘šπ‘šπ‘šπ‘š/π‘Ÿπ‘Ÿ2

The π‘Ÿπ‘Ÿπ·π·/𝐢𝐢𝑛𝑛 is sketched with π‘Ÿπ‘Ÿπ·π·/𝐢𝐢

𝑑𝑑perpendicular and π‘Ÿπ‘Ÿπ·π· parallel to the x-axis.

π‘Ÿπ‘Ÿπ·π·||π‘‹π‘‹βˆ’π‘‹π‘‹ = π‘Ÿπ‘Ÿπ·π·/𝐢𝐢𝑛𝑛

||𝐷𝐷𝐢𝐢+ π‘Ÿπ‘Ÿπ·π·/𝐢𝐢

𝑑𝑑βŠ₯𝐷𝐷𝐢𝐢

Page 16: School of Engineering (Mechanical and Automotive)

15 | P a g e

Figure 22 Finding aD

This vector polygon can be solved for π‘Ÿπ‘Ÿπ·π·/𝐢𝐢𝑑𝑑 and π‘Ÿπ‘Ÿπ·π·.

Figure 23 Calculating aD

Complete Vector Polygon All the vector polygons are combined to produce the overall vector polygon for the acceleration.

Page 17: School of Engineering (Mechanical and Automotive)

16 | P a g e

Figure 24 Acceleration Vector Polygon

Graphical Acceleration Results Using the initial scale, the vector polygon can be resolved to find the rest of the components in the system. The magnitudes for each of the accelerations calculated using the graphical method can be observed in the table below.

Width (pts)

Height (pts)

Length (pts)

Acceleration (mm/s2)

Angle (deg)

Aa 252.662 437.623 505.323635 505323.635 239.999976

Ab/a 289.362 6.329 289.431206 289431.206 181.252988

Ab 545.44 426.877 692.62455 692624.55 218.047753

Ac/a 168.412 39.139 172.900153 172900.153 193.083313

Ac 421.074 398.485 579.735809 579735.809 223.421191

Ad/c 233.83 398.485 462.024636 462024.636 239.595696

Ad 187.244 0 187.244 187244 180 Table 2 Graphical Acceleration Analysis Results

Graphical Instantaneous Centre Analysis For the graphical instantaneous centre of zero velocities analysis, we will be using Kennedy’s theorem. To begin Kennedy’s theorem, the number of IC’s must be found using the following.

Page 18: School of Engineering (Mechanical and Automotive)

17 | P a g e

𝐢𝐢 =𝑛𝑛(𝑛𝑛 βˆ’ 1)

2 =

6(6 βˆ’ 1)2

= 15

From observation of the model, the position of the following instantaneous centres can be found.

𝐼𝐼𝐢𝐢12, 𝐼𝐼𝐢𝐢23, 𝐼𝐼𝐢𝐢34, 𝐼𝐼𝐢𝐢14, 𝐼𝐼𝐢𝐢35, 𝐼𝐼𝐢𝐢56, 𝐼𝐼𝐢𝐢16

The 8 unknown instantaneous centres left to be found can be observed in Kennedy’s circle.

Figure 25 Kennedy's Circle with Unknown and Known Instantaneous Centre

The following instantaneous centres to be found are seen as dotted lines in the Kennedy’s circle.

𝐼𝐼𝐢𝐢13, 𝐼𝐼𝐢𝐢15, 𝐼𝐼𝐢𝐢24, 𝐼𝐼𝐢𝐢45, 𝐼𝐼𝐢𝐢46, 𝐼𝐼𝐢𝐢36, 𝐼𝐼𝐢𝐢25, 𝐼𝐼𝐢𝐢26

The instantaneous centres are found in the following order using the lines between the respective instantaneous centres.

𝐼𝐼𝐢𝐢13 is found using the intersection of lines produced from 𝐼𝐼𝐢𝐢12 to 𝐼𝐼𝐢𝐢23 and 𝐼𝐼𝐢𝐢14 to 𝐼𝐼𝐢𝐢34.

Page 19: School of Engineering (Mechanical and Automotive)

18 | P a g e

Figure 26 Finding IC13

𝐼𝐼𝐢𝐢15 is found using the lines 𝐼𝐼𝐢𝐢13 to 𝐼𝐼𝐢𝐢35 and 𝐼𝐼𝐢𝐢16 to 𝐼𝐼𝐢𝐢56.

Figure 27 Finding IC15

𝐼𝐼𝐢𝐢24 is found using the lines 𝐼𝐼𝐢𝐢12 to 𝐼𝐼𝐢𝐢14 and 𝐼𝐼𝐢𝐢23 to 𝐼𝐼𝐢𝐢34.

Page 20: School of Engineering (Mechanical and Automotive)

19 | P a g e

Figure 28 Finding IC24

𝐼𝐼𝐢𝐢45 is found using the lines 𝐼𝐼𝐢𝐢14 to 𝐼𝐼𝐢𝐢15 and 𝐼𝐼𝐢𝐢35 to 𝐼𝐼𝐢𝐢34.

Figure 29 Finding IC54

𝐼𝐼𝐢𝐢46 is found using the lines 𝐼𝐼𝐢𝐢14 to 𝐼𝐼𝐢𝐢16 and 𝐼𝐼𝐢𝐢45 to 𝐼𝐼𝐢𝐢56.

Page 21: School of Engineering (Mechanical and Automotive)

20 | P a g e

Figure 30 Finding IC64

𝐼𝐼𝐢𝐢36 is found using the lines 𝐼𝐼𝐢𝐢13 to 𝐼𝐼𝐢𝐢16 and 𝐼𝐼𝐢𝐢35 to 𝐼𝐼𝐢𝐢56.

Figure 31 Finding IC63

𝐼𝐼𝐢𝐢25 is found using the lines 𝐼𝐼𝐢𝐢12 to 𝐼𝐼𝐢𝐢15 and 𝐼𝐼𝐢𝐢24 to 𝐼𝐼𝐢𝐢45.

Page 22: School of Engineering (Mechanical and Automotive)

21 | P a g e

Figure 32 Finding IC25

𝐼𝐼𝐢𝐢26 is found using the lines 𝐼𝐼𝐢𝐢12 to 𝐼𝐼𝐢𝐢16 and 𝐼𝐼𝐢𝐢25 to 𝐼𝐼𝐢𝐢56.

Figure 33 Finding IC26

All the instantaneous centres can be seen placed onto the 6 bar linkage mechanism as seen below.

Page 23: School of Engineering (Mechanical and Automotive)

22 | P a g e

Comlete Instantaneous Centre Diagram

Figure 34 Graphical Inspection of All Instantaneous Centres

Page 24: School of Engineering (Mechanical and Automotive)

23 | P a g e

𝐼𝐼𝐢𝐢15 is off the top of the graph but can be seen below.

Figure 35 Graphical IC15

Using these graphs, the velocities can be calculated with 𝑉𝑉𝐴𝐴 calibrating 𝛷𝛷1 using 𝐼𝐼𝐢𝐢13. Once 𝛷𝛷1 is calculated 𝑉𝑉𝐡𝐡 and 𝑉𝑉𝐢𝐢 can be calculated. Using 𝑉𝑉𝐢𝐢 and 𝐼𝐼𝐢𝐢15, 𝛷𝛷2 can be calibrated and used to calculated 𝑉𝑉𝐷𝐷. From the graph, the following values were calculated

Results for Instantaneous Centre of Zero Velocity Method Height

(pts) Width (pts)

Length (pts)

Velocity (mm/s)

Graphical Velocity (mm/s)

vA 8.706 5.027 10.05311718 10053.12 10053.09

vB 1.441 1.142 1.83865304 1838.653 1838.89

vC 5.202 0.491 5.225120573 5225.121 5225.43

vD 5.308 0 5.308 5308 5492 Figure 36 Joint Velocities Calculated Using Kennedy's Theorem

Analytical Method for Position, Velocity and Acceleration Position Analysis Part A - Crank To start the analytical method, the calculations are completed for the crank (link OA). The position of the crank is first calculated.

𝒙𝒙𝑨𝑨 = 𝑙𝑙2 cos(πœƒπœƒ2) = 200 cos(60) =𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

π’šπ’šπ‘¨π‘¨ = 𝑙𝑙2 sin(πœƒπœƒ2) = 200 sin(60) =𝟏𝟏𝟏𝟏𝟏𝟏.𝟐𝟐𝟏𝟏𝟏𝟏

Page 25: School of Engineering (Mechanical and Automotive)

24 | P a g e

Part B – Coupler & Rocker To begin calculating the coupler and rocker, the vector diagram for the system is sketched as follows.

Figure 37 Position Vector of Crank, Rocker and Coupler

Starting by using the vector form of the components to create a vector polygon.

𝑅𝑅𝐴𝐴 + 𝑅𝑅3 = 𝑅𝑅2 + 𝑅𝑅4

𝑅𝑅3 = 𝑅𝑅𝐴𝐴𝐴𝐴 + 𝑅𝑅4

𝑅𝑅𝐴𝐴𝐴𝐴 = 𝑅𝑅𝐴𝐴 βˆ’ 𝑅𝑅𝐴𝐴 = 𝑙𝑙1𝑒𝑒𝑖𝑖𝑖𝑖1 βˆ’ 𝑙𝑙2𝑒𝑒𝑖𝑖𝑖𝑖2

𝑅𝑅𝐴𝐴𝐴𝐴 + 𝑙𝑙2𝑒𝑒𝑖𝑖𝑖𝑖2 βˆ’ 𝑙𝑙1𝑒𝑒𝑖𝑖𝑖𝑖1 = 0

Using this equation, the Euler identity can be used to solve the equation.

𝑒𝑒𝑖𝑖𝑖𝑖 = cos (πœƒπœƒ) + 𝑖𝑖 βˆ— sin (πœƒπœƒ)

𝑅𝑅𝐴𝐴𝐴𝐴 = 𝑙𝑙1(cos(πœƒπœƒ1) + 𝑖𝑖 βˆ— sin(πœƒπœƒ1)) βˆ’ 𝑙𝑙2(cos(πœƒπœƒ2) + 𝑖𝑖 βˆ— sin(πœƒπœƒ2))

Splitting the equation into the real and imaginary component.

𝑅𝑅𝐴𝐴𝐴𝐴 = (𝑙𝑙2 cos(πœƒπœƒ2) βˆ’ 𝑙𝑙1 cos(πœƒπœƒ1)) + 𝑖𝑖(𝑙𝑙1 sin(πœƒπœƒ) βˆ’ 𝑙𝑙2 sin(πœƒπœƒ2))

Solving for the components.

𝑅𝑅𝑒𝑒 = π‘…π‘…π‘’π‘’π‘Ÿπ‘Ÿπ‘™π‘™ π‘π‘π‘π‘π‘šπ‘šπ‘Ÿπ‘Ÿπ‘π‘π‘›π‘›π‘’π‘’π‘›π‘›π‘π‘

πΌπΌπ‘šπ‘š = πΌπΌπ‘šπ‘šπ‘Ÿπ‘ŸπΌπΌπ‘–π‘–π‘›π‘›π‘Ÿπ‘Ÿπ‘Ÿπ‘ŸπΌπΌ π‘π‘π‘π‘π‘šπ‘šπ‘Ÿπ‘Ÿπ‘π‘π‘›π‘›π‘’π‘’π‘›π‘›π‘π‘

Page 26: School of Engineering (Mechanical and Automotive)

25 | P a g e

𝑹𝑹𝑹𝑹 = 𝑙𝑙1 cos(πœƒπœƒ1) βˆ’ 𝑙𝑙2 cos(πœƒπœƒ2) = 800 βˆ— cos(6) βˆ’ 200 βˆ— cos(60) = πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”.πŸ”πŸ”πŸπŸπŸπŸπŸπŸ

π‘°π‘°πŸπŸ = 𝑙𝑙1 sin(πœƒπœƒ1) βˆ’ 𝑙𝑙2 sin(πœƒπœƒ2) = 800 βˆ— sin(6) βˆ’ 200 βˆ— sin(60) = βˆ’πŸ–πŸ–πŸ”πŸ”.πŸ”πŸ”πŸ–πŸ–πŸπŸπŸπŸ

Using the vector graph of the linkages, the following equations can be used to calculate πœƒπœƒ3 and πœƒπœƒ4.

𝑙𝑙3𝑒𝑒𝑖𝑖𝑖𝑖3 = 𝑅𝑅𝑒𝑒 + π‘–π‘–πΌπΌπ‘šπ‘š + 𝑙𝑙4𝑒𝑒𝑖𝑖𝑖𝑖4

𝑙𝑙3π‘’π‘’βˆ’π‘–π‘–π‘–π‘–3 = 𝑅𝑅𝑒𝑒 βˆ’ π‘–π‘–πΌπΌπ‘šπ‘š + 𝑙𝑙4𝑒𝑒𝑖𝑖𝑖𝑖4

𝑙𝑙32 = 𝑅𝑅𝑒𝑒2 + πΌπΌπ‘šπ‘š2 + 𝑅𝑅𝑒𝑒𝑙𝑙4(cos(πœƒπœƒ4) + 𝑖𝑖 sin(πœƒπœƒ4)) βˆ’ π‘–π‘–πΌπΌπ‘šπ‘šπ‘™π‘™4(cos(πœƒπœƒ4) + 𝑖𝑖 sin(πœƒπœƒ4))

+ 𝑅𝑅𝑒𝑒𝑙𝑙4(cos(πœƒπœƒ4) + 𝑖𝑖 sin(πœƒπœƒ4)) + π‘–π‘–πΌπΌπ‘šπ‘šπ‘™π‘™4(cos(πœƒπœƒ4) + 𝑖𝑖 sin(πœƒπœƒ4)) + 𝑙𝑙42 = 0

This equation can be simplified and used for finding πœƒπœƒ4.

𝑅𝑅𝑒𝑒2 + πΌπΌπ‘šπ‘š2 + 2𝑅𝑅𝑒𝑒𝑙𝑙4 cos(πœƒπœƒ4) + 2πΌπΌπ‘šπ‘šπ‘™π‘™4 sin(πœƒπœƒ4) + 𝑙𝑙42 βˆ’ 𝑙𝑙3

2 = 0

695.622 + (βˆ’89.58)2 + 2(695.62)(600) cos(πœƒπœƒ4) + 2(βˆ’89.58)(600) sin(πœƒπœƒ4) + (600)2 βˆ’ (500)2

= 0

483883.73 + 8024.99 + 834741.02 cos(πœƒπœƒ4) βˆ’ 107498.78 sin(πœƒπœƒ4) + 360000 βˆ’ 250000 = 0

601908.72 + 834741.02 cos(πœƒπœƒ4) βˆ’ 107498.78 sin(πœƒπœƒ4) = 0

834741.02 cos(πœƒπœƒ4) βˆ’ 107498.78 sin(πœƒπœƒ4) = βˆ’601908.72

Solving this equation has 2 answers for different angles of πœƒπœƒ4.

πœ½πœ½πŸ’πŸ’ = βˆ’πŸπŸπŸ’πŸ’πŸπŸ.πŸ”πŸ”πŸ”πŸ”πŸ”πŸ” 𝒅𝒅𝑹𝑹𝒅𝒅𝒅𝒅𝑹𝑹𝑹𝑹𝒅𝒅 π‘π‘π‘Ÿπ‘Ÿ πœ½πœ½πŸ’πŸ’ = πŸπŸπŸπŸπŸ–πŸ–.𝟏𝟏𝟏𝟏 𝒅𝒅𝑹𝑹𝒅𝒅𝒅𝒅𝑹𝑹𝑹𝑹𝒅𝒅

The values of πœƒπœƒ4 are checked using the following equation at πœƒπœƒ4 = βˆ’142.995 to make sure that the equations are correct.

sin(πœƒπœƒ4) =2 tan οΏ½πœƒπœƒ42 οΏ½

1 + tan2 οΏ½πœƒπœƒ42 οΏ½

sin(βˆ’142.995) =2 tan οΏ½βˆ’142.995

2 οΏ½

1 + tan2 οΏ½βˆ’142.9952 οΏ½

βˆ’0.6019 = βˆ’0.6019

Since these values are true, the equation using cos(πœƒπœƒ4) should be true as well, proving that this is the angle of πœƒπœƒ4.

cos(πœƒπœƒ4) =1 βˆ’ tan2 οΏ½πœƒπœƒ42 οΏ½

1 + tan2 οΏ½πœƒπœƒ42 οΏ½

Page 27: School of Engineering (Mechanical and Automotive)

26 | P a g e

cos(βˆ’142.995) =1 βˆ’ tan2 οΏ½βˆ’142.995

2 οΏ½

1 + tan2 οΏ½βˆ’142.9952 οΏ½

βˆ’0.7986 = βˆ’0.7986

The other calculated value of πœƒπœƒ4 = 128.31 is checked against the same equations to validate the results.

sin(128.31) =2 tan οΏ½128.31

2 οΏ½

1 + tan2 οΏ½128.312 οΏ½

0.7847 = 0.7847

cos(128.31) =1 βˆ’ tan2 οΏ½128.31

2 οΏ½

1 + tan2 οΏ½128.312 οΏ½

βˆ’0.6199 = βˆ’0.6199

The following equation is used to find C which can be also used to find πœƒπœƒ4 and validate the results.

π‘ͺπ‘ͺ =𝑅𝑅𝑒𝑒2 + πΌπΌπ‘šπ‘š2 + 𝑙𝑙4

2 βˆ’ 𝑙𝑙32

2𝑙𝑙4=

695.622 + (βˆ’89.58)2 + 6002 βˆ’ 5002

2 βˆ— 600= πŸ”πŸ”πŸπŸπŸπŸ.πŸ”πŸ”πŸ”πŸ”

πœ½πœ½πŸ’πŸ’ = 2 arctan οΏ½βˆ’πΌπΌπ‘šπ‘š Β± βˆšπ‘…π‘…π‘’π‘’2 + πΌπΌπ‘šπ‘š2 βˆ’ 𝐢𝐢2

𝐢𝐢 βˆ’ 𝑅𝑅𝑒𝑒�

= 2 arctanοΏ½βˆ’(βˆ’89.58) Β± οΏ½695.622 + (βˆ’89.58)2 βˆ’ 501.592

501.59 βˆ’ 695.62οΏ½

= βˆ’2.496 π‘π‘π‘Ÿπ‘Ÿ 2.239 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ = βˆ’πŸπŸπŸ’πŸ’πŸπŸ.πŸ”πŸ”πŸ”πŸ”πŸ”πŸ” 𝒐𝒐𝒅𝒅 πŸπŸπŸπŸπŸ–πŸ–.πŸπŸπŸπŸπŸ”πŸ” 𝒅𝒅𝑹𝑹𝒅𝒅

Using these equations, the following vector field is used to calculate πœƒπœƒ3

Page 28: School of Engineering (Mechanical and Automotive)

27 | P a g e

Figure 38 Diagram to Find AB'B

Distance between B and B’ real component for πœƒπœƒ4 = βˆ’142.995.

𝑙𝑙3 + 𝑙𝑙4 cos(πœƒπœƒ4) + 𝑅𝑅𝑒𝑒 = 500 + 600 cos(βˆ’142.995) + 695.62 = 716.467π‘šπ‘šπ‘šπ‘š

Distance between B and B’ imaginary component for πœƒπœƒ4 = βˆ’142.995.

πΌπΌπ‘šπ‘š + 𝑙𝑙4 sin(πœƒπœƒ4) = βˆ’89.58 + 600 sin(βˆ’142.995) = βˆ’450.713π‘šπ‘šπ‘šπ‘š

Calculating πœƒπœƒ3

πœƒπœƒ3 = 2 arctan οΏ½πΌπΌπ‘šπ‘š Β± 𝑙𝑙4 sin(πœƒπœƒ4)

𝑙𝑙3 + 𝑙𝑙4 cos(πœƒπœƒ4) + 𝑅𝑅𝑒𝑒� = 2 arctanοΏ½

βˆ’89.58 Β± 600 sin(βˆ’142.995)500 + 600 cos(βˆ’142.995) + 695.62

οΏ½

𝜽𝜽𝟏𝟏 = βˆ’πŸ”πŸ”πŸ’πŸ’.πŸπŸπŸ’πŸ’πŸ”πŸ” 𝒅𝒅𝑹𝑹𝒅𝒅 π‘π‘π‘Ÿπ‘Ÿ πœƒπœƒ3 = 41.514 π‘Ÿπ‘Ÿπ‘’π‘’πΌπΌ

Since the link is below the x-axis, the link will not work for πœƒπœƒ3 = 41.514 π‘Ÿπ‘Ÿπ‘’π‘’πΌπΌ so therefore πœƒπœƒ3 =βˆ’64.346 π‘Ÿπ‘Ÿπ‘’π‘’πΌπΌ.

From this the X and Y position of B can be solved using the following equations.

𝑿𝑿𝑩𝑩 = 𝑋𝑋𝐴𝐴 + 𝑙𝑙4 cos(πœƒπœƒ4) = 800 cos(6) + 600 cos(βˆ’142.995) = πŸπŸπŸπŸπŸ”πŸ”.πŸ’πŸ’πŸ”πŸ”πŸπŸπŸπŸπŸπŸ

𝒀𝒀𝑩𝑩 = π‘Œπ‘Œπ΄π΄ + 𝑙𝑙4 sin(πœƒπœƒ4) = 800 sin(6) + 600 sin(βˆ’142.995) = βˆ’πŸπŸπŸπŸπŸπŸ.πŸ”πŸ”πŸπŸπŸπŸπŸπŸ

Page 29: School of Engineering (Mechanical and Automotive)

28 | P a g e

Figure 39 4 Bar Linkage with the First πœƒπœƒ3

Distance between B and B’ real component for πœƒπœƒ4 = 128.32.

𝑙𝑙3 + 𝑙𝑙2 cos(πœƒπœƒ4) + 𝑅𝑅𝑒𝑒 = 500 + 200 cos(128.32) + 695.62 = 823.60π‘šπ‘šπ‘šπ‘š

Distance between B and B’ imaginary component for πœƒπœƒ4 = 128.32.

πΌπΌπ‘šπ‘š + 𝑙𝑙4 sin(πœƒπœƒ4) = βˆ’89.58 + 600 sin(128.32) = 381.16π‘šπ‘šπ‘šπ‘š

Calculating πœƒπœƒ3 using the above values.

πœƒπœƒ3 = 2 arctan οΏ½πΌπΌπ‘šπ‘š Β± 𝑙𝑙4 sin(πœƒπœƒ4)

𝑙𝑙3 + 𝑙𝑙4 cos(πœƒπœƒ4) + 𝑅𝑅𝑒𝑒� = 2 arctanοΏ½

βˆ’89.58 Β± 600 sin(128.32)500 + 600 cos(128.32) + 695.62

οΏ½

𝜽𝜽𝟏𝟏 = πŸ’πŸ’πŸ”πŸ”.πŸ”πŸ”πŸπŸπŸπŸ 𝒅𝒅𝑹𝑹𝒅𝒅 π‘π‘π‘Ÿπ‘Ÿ πœƒπœƒ3 = βˆ’68.458 π‘Ÿπ‘Ÿπ‘’π‘’πΌπΌ

Since the link is above the x-axis, the link will not work for πœƒπœƒ3 = βˆ’68.458 π‘Ÿπ‘Ÿπ‘’π‘’πΌπΌ so therefore πœƒπœƒ3 =49.670 π‘Ÿπ‘Ÿπ‘’π‘’πΌπΌ.

From this the X and Y position of B can be solved using the following equations.

𝑿𝑿𝑩𝑩 = 𝑋𝑋𝐴𝐴 + 𝑙𝑙4 cos(πœƒπœƒ4) = 800 cos(6) + 600 cos(49.670) = πŸ’πŸ’πŸπŸπŸπŸ.πŸ”πŸ”πŸπŸπŸπŸπŸπŸ

𝒀𝒀𝑩𝑩 = π‘Œπ‘Œπ΄π΄ + 𝑙𝑙4 sin(πœƒπœƒ4) = 800 sin(6) + 600 sin(49.670) = πŸ”πŸ”πŸ”πŸ”πŸ’πŸ’.πŸ’πŸ’πŸπŸπŸπŸπŸπŸ

Page 30: School of Engineering (Mechanical and Automotive)

29 | P a g e

Figure 40 4 Bar Linkage with the Second πœƒπœƒ3

After visually producing each of the scenarios, it can be deduced that the angle used for the system will be whenπœƒπœƒ4 = 128.32 π‘Ÿπ‘Ÿπ‘’π‘’πΌπΌ and πœƒπœƒ3 = 49.670 π‘Ÿπ‘Ÿπ‘’π‘’πΌπΌ. For calculating the 𝐢𝐢 position, the Ξ² angle will need to be used along with the previous results.

Ξ² = βˆ’12 π‘Ÿπ‘Ÿπ‘’π‘’πΌπΌ

𝑿𝑿π‘ͺπ‘ͺ = 𝑙𝑙2 cos(πœƒπœƒ2) + 𝑙𝑙𝐴𝐴𝐢𝐢 cos(πœƒπœƒ3 + Ξ²) = 200 cos(60) + 300 cosοΏ½49.67 + (βˆ’12)οΏ½ = 𝟏𝟏𝟏𝟏𝟏𝟏.πŸ’πŸ’πŸ”πŸ” 𝟏𝟏𝟏𝟏

𝒀𝒀π‘ͺπ‘ͺ = 𝑙𝑙2 sin(πœƒπœƒ2) + 𝑙𝑙𝐴𝐴𝐢𝐢 sin(πœƒπœƒ3 + Ξ²) = 200 sin(60) + 300 sinοΏ½49.67 + (βˆ’12)οΏ½ = πŸπŸπŸ”πŸ”πŸ”πŸ”.πŸ”πŸ”πŸπŸ 𝟏𝟏𝟏𝟏

Part C – Slider From the data calculated, the following values are known.

𝐻𝐻 = βˆ’50 π‘šπ‘šπ‘šπ‘š

𝑋𝑋𝐢𝐢 = 337.46 π‘šπ‘šπ‘šπ‘š

π‘Œπ‘ŒπΆπΆ = 356.54 π‘šπ‘šπ‘šπ‘š

𝑙𝑙5 = 𝐢𝐢𝐢𝐢 = 800 π‘šπ‘šπ‘šπ‘š

From these given values, πœƒπœƒ5 can be calculated through the following.

πœ½πœ½πŸ”πŸ” = arcsin �𝐻𝐻 βˆ’ π‘Œπ‘ŒπΆπΆπ‘™π‘™5

οΏ½ = arcsin οΏ½(βˆ’50) βˆ’ 356.54

800οΏ½ = βˆ’0.533 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ = βˆ’πŸπŸπŸπŸ.πŸ”πŸ”πŸ’πŸ’ 𝒅𝒅𝑹𝑹𝒅𝒅

From this, the position of 𝑋𝑋𝐷𝐷 and π‘Œπ‘Œπ·π· can be found.

𝑿𝑿𝑫𝑫 = 𝑺𝑺 = 𝑋𝑋𝐢𝐢 + 𝑙𝑙5 cos(πœƒπœƒ3) = 337.46 + 800 cos(βˆ’30.54) = πŸπŸπŸπŸπŸπŸπŸ”πŸ”.πŸ’πŸ’πŸπŸπŸπŸπŸπŸ

Page 31: School of Engineering (Mechanical and Automotive)

30 | P a g e

𝒀𝒀𝑫𝑫 = 𝑯𝑯 = βˆ’πŸ”πŸ”πŸπŸπŸπŸπŸπŸ

A summary of all the calculated values can be seen in the table below.

Joint X Component (mm)

Y Component (mm)

A 100 173.2051

B 423.6679 554.4237

C 337.4643 356.5373

D 1026.469 -50

E 795.6175 83.62277 Table 3 Analytical Position Results

Angle Value (degrees)

ΞΈ1 6 ΞΈ2 60 ΞΈ3 49.66962 ΞΈ4 128.31 ΞΈ5 -30.5421

Table 4 Analytical Angles

Velocity Analysis Part A - Crank To begin the velocity analysis, the velocity of the crank is to be calculated.

πœƒπœƒ2Μ‡ = πœ”πœ”2 = 50.26 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ/π‘Ÿπ‘Ÿ

οΏ½Μ‡οΏ½π‘₯𝐴𝐴 = βˆ’π‘™π‘™2πœƒπœƒ2Μ‡ cos(πœƒπœƒ2) = βˆ’200 βˆ— 50.26 cos(60) = βˆ’8706.24

�̇�𝐼𝐴𝐴 = βˆ’π‘™π‘™2 πœƒπœƒ2Μ‡sin(πœƒπœƒ2) = βˆ’200 βˆ— 50.26sin(60) = βˆ’5026.55

𝑽𝑽𝑨𝑨 = οΏ½οΏ½Μ‡οΏ½π‘₯𝐴𝐴2 + �̇�𝐼𝐴𝐴2 = οΏ½(βˆ’8706.24)2 + (βˆ’5026.55)2 = πŸπŸπŸπŸπŸπŸπŸ”πŸ”πŸπŸ.𝟏𝟏𝟏𝟏𝟏𝟏/𝒅𝒅

πœΉπœΉπ‘½π‘½π‘¨π‘¨ = πœƒπœƒ2 +πœ‹πœ‹2

=πœ‹πœ‹3

+πœ‹πœ‹2

=5πœ‹πœ‹6π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ = πŸπŸπŸ”πŸ”πŸπŸ 𝒅𝒅𝑹𝑹𝒅𝒅𝒅𝒅𝑹𝑹𝑹𝑹𝒅𝒅

Part B – Coupler & Rocker To begin finding the velocities at each point, first the rotational velocity for link 3 and 4 must be found (πœ”πœ”3 and πœ”πœ”4). Using the closed vector loop method, these values can be found.

𝑅𝑅2 + 𝑅𝑅3 βˆ’ 𝑅𝑅1 βˆ’ 𝑅𝑅4 = 0

Using the Euler identity:

𝑙𝑙2𝑒𝑒𝑖𝑖𝑖𝑖2 + 𝑙𝑙3𝑒𝑒𝑖𝑖𝑖𝑖3 βˆ’ 𝑙𝑙1𝑒𝑒𝑖𝑖𝑖𝑖1 βˆ’ 𝑙𝑙4𝑒𝑒𝑖𝑖𝑖𝑖4 = 0

200 βˆ— 𝑒𝑒𝑖𝑖𝑖𝑖2 + 500 βˆ— 𝑒𝑒𝑖𝑖𝑖𝑖3 βˆ’ 800 βˆ— 𝑒𝑒𝑖𝑖𝑖𝑖1 βˆ’ 600 βˆ— 𝑒𝑒𝑖𝑖𝑖𝑖4 = 0

Differentiate with respect to time to find the velocity.

Page 32: School of Engineering (Mechanical and Automotive)

31 | P a g e

π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘π‘

(200𝑒𝑒𝑖𝑖𝑖𝑖2 + 500𝑒𝑒𝑖𝑖𝑖𝑖3 βˆ’ 800𝑒𝑒𝑖𝑖𝑖𝑖1 βˆ’ 600𝑒𝑒𝑖𝑖𝑖𝑖4) =π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘π‘

(0)

200𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖2π‘Ÿπ‘Ÿπœƒπœƒ2π‘Ÿπ‘Ÿπ‘π‘

+ 500𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖3π‘Ÿπ‘Ÿπœƒπœƒ3π‘Ÿπ‘Ÿπ‘π‘

βˆ’ 800𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖1π‘Ÿπ‘Ÿπœƒπœƒ1π‘Ÿπ‘Ÿπ‘π‘

βˆ’ 600𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖4π‘Ÿπ‘Ÿπœƒπœƒ4π‘Ÿπ‘Ÿπ‘π‘

= 0

200𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖2πœ”πœ”2 + 500𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖3πœ”πœ”3 βˆ’ 800𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖1πœ”πœ”1 βˆ’ 600𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖4πœ”πœ”4 = 0

Using Euler’s formula, the equation can be solved.

𝑒𝑒𝑖𝑖𝑖𝑖 = cos (πœƒπœƒ) + 𝑖𝑖sin (πœƒπœƒ)

200π‘–π‘–πœ”πœ”2(cos (πœƒπœƒ2) + 𝑖𝑖sin (πœƒπœƒ2)) + 500π‘–π‘–πœ”πœ”3(cos (πœƒπœƒ3) + 𝑖𝑖sin (πœƒπœƒ3)) βˆ’ 800π‘–π‘–πœ”πœ”1(cos(πœƒπœƒ1) + 𝑖𝑖 sin(πœƒπœƒ1))βˆ’ 600π‘–π‘–πœ”πœ”4(cos (πœƒπœƒ4) + 𝑖𝑖sin (πœƒπœƒ4)) = 0

This equation can be divided into the real and imaginary components to solve for πœ”πœ”4.

200πœ”πœ”2 sin(πœƒπœƒ2) + 500πœ”πœ”3 sin(πœƒπœƒ3) βˆ’ 800πœ”πœ”1 sin(πœƒπœƒ1) βˆ’ 600πœ”πœ”4sin (πœƒπœƒ4) = 0

500πœ”πœ”3 =800πœ”πœ”1 sin(πœƒπœƒ1) + 600πœ”πœ”4 sin(πœƒπœƒ4) βˆ’ 200πœ”πœ”2 sin(πœƒπœƒ2)

sin(πœƒπœƒ3)

200πœ”πœ”2 cos(πœƒπœƒ2) + 500πœ”πœ”3 cos(πœƒπœƒ3) βˆ’ 800πœ”πœ”1 cos(πœƒπœƒ1) βˆ’ 600πœ”πœ”4π‘π‘π‘π‘π‘Ÿπ‘Ÿ(πœƒπœƒ4) = 0

500πœ”πœ”3 =800πœ”πœ”1 cos(πœƒπœƒ1) + 600πœ”πœ”4 cos(πœƒπœƒ4) βˆ’ 200πœ”πœ”2 cos(πœƒπœƒ2)

cos(πœƒπœƒ3)

These 2 equations are equal, so simultaneous equations can be used to find πœ”πœ”4.

800πœ”πœ”1 sin(πœƒπœƒ1) + 600πœ”πœ”4 sin(πœƒπœƒ4) βˆ’ 200πœ”πœ”2 sin(πœƒπœƒ2)sin(πœƒπœƒ3)

=800πœ”πœ”1 cos(πœƒπœƒ1) + 600πœ”πœ”4 cos(πœƒπœƒ4) βˆ’ 200πœ”πœ”2 cos(πœƒπœƒ2)

cos(πœƒπœƒ3)

Since πœ”πœ”1 = 0, the equation can be further simplified.

600πœ”πœ”4 sin(πœƒπœƒ4) βˆ’ 200πœ”πœ”2 sin(πœƒπœƒ2)sin(πœƒπœƒ3) =

600πœ”πœ”4 cos(πœƒπœƒ4) βˆ’ 200πœ”πœ”2 cos(πœƒπœƒ2)cos(πœƒπœƒ3)

600πœ”πœ”4(cos(πœƒπœƒ4) sin(πœƒπœƒ3) βˆ’ sin(πœƒπœƒ4) cos(πœƒπœƒ3)) = 200πœ”πœ”2(cos(πœƒπœƒ2) sin(πœƒπœƒ3) βˆ’ sin(πœƒπœƒ2) cos(πœƒπœƒ3))

πœ”πœ”4 =200πœ”πœ”2

600βˆ—

cos(πœƒπœƒ2) sin(πœƒπœƒ3) βˆ’ sin(πœƒπœƒ2) cos(πœƒπœƒ3)cos(πœƒπœƒ4) sin(πœƒπœƒ3) βˆ’ sin(πœƒπœƒ4) cos(πœƒπœƒ3)

πœ”πœ”4 =200(50.26)

600βˆ—

cos(60) sin(49.67) βˆ’ sin(60) cos(49.67)cos(128.31) sin(49.67) βˆ’ sin(128.31) cos(49.67)

πŽπŽπŸ’πŸ’ = 𝟏𝟏.πŸπŸπŸ”πŸ”πŸ’πŸ’ 𝒅𝒅𝒓𝒓𝒅𝒅/𝒅𝒅

Using this value of πœ”πœ”4, it can be substituted back into one of the original equations to find πœ”πœ”3.

500πœ”πœ”3 =600 βˆ— 3.064 sin(128.31) βˆ’ 200 βˆ— 50.26 sin(60)

sin(49.67)

Page 33: School of Engineering (Mechanical and Automotive)

32 | P a g e

𝝎𝝎𝟏𝟏 = βˆ’πŸπŸπŸ”πŸ”.πŸπŸπŸ”πŸ” 𝒅𝒅𝒓𝒓𝒅𝒅/𝒅𝒅

Now that the angular velocities have been calculated, the velocities of the links can be calculated.

𝑉𝑉𝐡𝐡/𝐴𝐴 = 𝑖𝑖𝑙𝑙3πœ”πœ”3(cos(πœƒπœƒ3) + 𝑖𝑖 sin(πœƒπœƒ3)) = 𝑙𝑙3πœ”πœ”3(𝑖𝑖 cos(πœƒπœƒ3) βˆ’ sin(πœƒπœƒ3))

𝑉𝑉𝐡𝐡/𝐴𝐴 = 500 βˆ— (βˆ’19.05)(𝑖𝑖 cos(49.67) βˆ’ sin(49.67)) = (βˆ’6166.44) + 𝑖𝑖(βˆ’7263.40)

𝑽𝑽𝑩𝑩/𝑨𝑨 = οΏ½(βˆ’6166.44)2 + (βˆ’7263.40)2 = πŸ”πŸ”πŸ”πŸ”πŸπŸπŸπŸ.πŸ”πŸ”πŸ”πŸ”πŸπŸπŸπŸ/𝒅𝒅

Using the same principles, 𝑉𝑉𝐡𝐡 can be found.

𝑉𝑉𝐡𝐡 = 𝑖𝑖𝑙𝑙4πœ”πœ”4(cos(πœƒπœƒ4) + 𝑖𝑖 sin(πœƒπœƒ4)) = 𝑙𝑙4πœ”πœ”4(𝑖𝑖 cos(πœƒπœƒ4) βˆ’ sin(πœƒπœƒ4))

𝑉𝑉𝐡𝐡 = 600 βˆ— (3.064)(𝑖𝑖 cos(128.31) βˆ’ sin(128.31)) = (βˆ’1442.83) + 𝑖𝑖(βˆ’1139.89)

𝑽𝑽𝑩𝑩 = οΏ½(βˆ’1442.83)2 + (βˆ’1139.89)2 = πŸπŸπŸ–πŸ–πŸπŸπŸ–πŸ–.πŸπŸπŸ–πŸ–πŸπŸπŸπŸ/𝒅𝒅

The direction of 𝑉𝑉𝐡𝐡 can be found using the following equation.

𝛿𝛿𝑉𝑉𝐡𝐡 = arctan οΏ½πΌπΌπ‘šπ‘šπ‘…π‘…π‘’π‘’οΏ½ + πœ‹πœ‹ = arctan οΏ½

βˆ’1139.89βˆ’1442.83

οΏ½ + πœ‹πœ‹ = 3.810 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ

πœΉπœΉπ‘½π‘½π‘©π‘© = πŸπŸπŸπŸπŸ–πŸ–.𝟏𝟏𝟏𝟏 𝒅𝒅𝑹𝑹𝒅𝒅

Part C - Slider Using the currently calculated values, πœ”πœ”5 can be found.

𝑆𝑆 = 𝑙𝑙2 cos(πœƒπœƒ2) + 𝑙𝑙𝐴𝐴𝐢𝐢 cos(πœƒπœƒ3 βˆ’ 𝛽𝛽) + 𝑙𝑙5 cos(πœƒπœƒ5)

𝑙𝑙2𝑒𝑒𝑖𝑖𝑖𝑖2 + 𝑙𝑙𝐴𝐴𝐢𝐢𝑒𝑒𝑖𝑖(𝑖𝑖3βˆ’π›½π›½) βˆ’ 𝑙𝑙5𝑒𝑒𝑖𝑖𝑖𝑖5 βˆ’ 𝑆𝑆𝑒𝑒𝑖𝑖𝑖𝑖3 βˆ’ 𝐻𝐻𝑒𝑒𝑖𝑖𝑖𝑖4 = 0

π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘π‘

(𝑙𝑙2𝑒𝑒𝑖𝑖𝑖𝑖2 + 𝑙𝑙𝐴𝐴𝐢𝐢𝑒𝑒𝑖𝑖(𝑖𝑖3βˆ’π›½π›½) βˆ’ 𝑙𝑙5𝑒𝑒𝑖𝑖𝑖𝑖5 βˆ’ 𝑆𝑆𝑒𝑒𝑖𝑖𝑖𝑖3 βˆ’ 𝐻𝐻𝑒𝑒𝑖𝑖𝑖𝑖4) =π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘π‘

(0)

π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘π‘

(200𝑒𝑒𝑖𝑖𝑖𝑖2 + 300𝑒𝑒𝑖𝑖(𝑖𝑖3βˆ’π›½π›½) βˆ’ 800𝑒𝑒𝑖𝑖𝑖𝑖5 βˆ’ 1026.47𝑒𝑒𝑖𝑖𝑖𝑖3 βˆ’ 50𝑒𝑒𝑖𝑖𝑖𝑖4) = 0

200π‘–π‘–πœ”πœ”2(cos(πœƒπœƒ2) + 𝑖𝑖 sin(πœƒπœƒ2)) + 300π‘–π‘–πœ”πœ”3(cos(πœƒπœƒ3 βˆ’ 𝛽𝛽) + 𝑖𝑖 sin(πœƒπœƒ3 βˆ’ 𝛽𝛽)) βˆ’ 800π‘–π‘–πœ”πœ”5(cos(πœƒπœƒ5)+ 𝑖𝑖 sin(πœƒπœƒ5)) = 0

This equation can be split into its real and imaginary components to solve for πœ”πœ”5.

200πœ”πœ”2 sin(πœƒπœƒ2) + 300πœ”πœ”3 sin(πœƒπœƒ3 βˆ’ 𝛽𝛽) βˆ’ 800πœ”πœ”5 sin(πœƒπœƒ5) = 0

200π‘–π‘–πœ”πœ”2 cos(πœƒπœƒ2) + 300π‘–π‘–πœ”πœ”3 cos(πœƒπœƒ3 βˆ’ 𝛽𝛽) βˆ’ 800π‘–π‘–πœ”πœ”5 cos(πœƒπœƒ5) = 0

One of these equations can be solved to find πœ”πœ”5 since the rest of the values are known.

200 βˆ— 50.26 cos(60) + 300 βˆ— βˆ’19.05 cos(49.67 βˆ’ 12) βˆ’ 800πœ”πœ”5 cos(βˆ’30.54) = 0

πŽπŽπŸ”πŸ” = βˆ’πŸπŸ.πŸπŸπŸπŸπŸ–πŸ– 𝒅𝒅𝒓𝒓𝒅𝒅/𝒅𝒅

𝑉𝑉𝐢𝐢/𝐴𝐴 is now calculated using the same principles as previous velocity calculations.

Page 34: School of Engineering (Mechanical and Automotive)

33 | P a g e

𝑉𝑉𝐢𝐢/𝐴𝐴 = π‘™π‘™π΄π΄πΆπΆπœ”πœ”3(𝑖𝑖 cos(πœƒπœƒ3 βˆ’ 𝛽𝛽) βˆ’ sin(πœƒπœƒ3 βˆ’ 𝛽𝛽))

𝑉𝑉𝐢𝐢/𝐴𝐴 = 300 βˆ— (βˆ’19.06)(𝑖𝑖 cos(49.67 βˆ’ 12) βˆ’ sin(49.67 βˆ’ 12))

𝑉𝑉𝐢𝐢/𝐴𝐴 = (3493.6) + 𝑖𝑖(βˆ’4525.1)

𝑽𝑽π‘ͺπ‘ͺ/𝑨𝑨 = οΏ½(3493.6)2 + (βˆ’4525.1)2 = πŸ”πŸ”πŸπŸπŸπŸπŸ”πŸ”.πŸπŸπŸ”πŸ”πŸπŸπŸπŸ/𝒅𝒅

𝑉𝑉𝐢𝐢 is calculated using velocity addition.

𝑉𝑉𝐢𝐢 = 𝑉𝑉𝐢𝐢/𝐴𝐴 + 𝑉𝑉𝐴𝐴

𝑉𝑉𝐢𝐢 = οΏ½3493.6 + (βˆ’8706.24)οΏ½ + 𝑖𝑖(βˆ’4525.1 + (βˆ’5026.55))

𝑉𝑉𝐢𝐢 = (βˆ’5212.67) + 𝑖𝑖(501.45)

𝑽𝑽π‘ͺπ‘ͺ = οΏ½(βˆ’5212.67)2 + (501.45)2 = πŸ”πŸ”πŸπŸπŸπŸπŸ”πŸ”.πŸπŸπŸ’πŸ’πŸπŸπŸπŸ/𝒅𝒅

𝛿𝛿𝑉𝑉𝐢𝐢 = arctan οΏ½πΌπΌπ‘šπ‘šπ‘…π‘…π‘’π‘’οΏ½ + πœ‹πœ‹ = arctan οΏ½

501.45βˆ’5212.67

οΏ½ + πœ‹πœ‹ = 3.046 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ

πœΉπœΉπ‘½π‘½π‘ͺπ‘ͺ = πŸπŸπŸπŸπŸ’πŸ’.πŸ”πŸ”πŸπŸ 𝒅𝒅𝑹𝑹𝒅𝒅

𝑉𝑉𝐷𝐷/𝐢𝐢 is calculated using the same technique as shown in 𝑉𝑉𝐢𝐢/𝐴𝐴.

𝑉𝑉𝐷𝐷/𝐢𝐢 = 𝑙𝑙5πœ”πœ”5(𝑖𝑖 cos(πœƒπœƒ5) βˆ’ sin(πœƒπœƒ5))

𝑉𝑉𝐷𝐷/𝐢𝐢 = 800 βˆ— (βˆ’0.73)(𝑖𝑖 cos(βˆ’30.54) βˆ’ sin(βˆ’30.54))

𝑉𝑉𝐷𝐷/𝐢𝐢 = (βˆ’295.87) + 𝑖𝑖(βˆ’501.45)

𝑽𝑽𝑫𝑫/π‘ͺπ‘ͺ = οΏ½(βˆ’295.87)2 + (βˆ’501.45)2 = πŸ”πŸ”πŸ–πŸ–πŸπŸ.𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏/𝒅𝒅

𝑉𝑉𝐷𝐷 is calculated using velocity addition, the same way as 𝑉𝑉𝐢𝐢 .

𝑉𝑉𝐷𝐷 = 𝑉𝑉𝐷𝐷/𝐢𝐢 + 𝑉𝑉𝐢𝐢

𝑉𝑉𝐷𝐷 = οΏ½βˆ’295.87 + (βˆ’5212.67)οΏ½ + 𝑖𝑖(βˆ’501.45 + 501.45) = (βˆ’5508.55) + 𝑖𝑖(0)

𝑽𝑽𝑫𝑫/π‘ͺπ‘ͺ = οΏ½(βˆ’5508.55)2 + (0)2 = πŸ”πŸ”πŸ”πŸ”πŸπŸπŸ–πŸ–.πŸ”πŸ”πŸ”πŸ”πŸπŸπŸπŸ/𝒅𝒅

𝛿𝛿𝑉𝑉𝐷𝐷 = arctan οΏ½πΌπΌπ‘šπ‘šπ‘…π‘…π‘’π‘’οΏ½ + πœ‹πœ‹ = arctan οΏ½

0βˆ’5508.55

οΏ½ + πœ‹πœ‹ = 3.142 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ

πœΉπœΉπ‘½π‘½π‘«π‘« = πŸπŸπŸ–πŸ–πŸπŸ 𝒅𝒅𝑹𝑹𝒅𝒅

Now that all the values are calculated, their values are compared to the velocities calculated in the graphical method to evaluate their differences.

Graphical

(mm/s) Analytical

(mm/s) Difference

(%) vA 10053.09 10053.10 -3.497E-05

Page 35: School of Engineering (Mechanical and Automotive)

34 | P a g e

vB/A 9530.43 9527.96 0.02597

vC/A 5731.25 5716.78 0.2525

vC 5225.43 5236.74 -0.2164

vB 1838.89 1838.78 0.005762

vD 5492 5508.55 -0.3013

vD/C 570.13 582.23 -2.122 Table 5 Analytical Velocity Results

Observing these values obtained from the graphical and analytical methods shows that the numbers obtained from the calculations are within 3% of each other at every calculation step. This agreement between both methods proves that both the methods are effective in evaluating the numbers.

Acceleration Analysis Part A – Crank To begin the acceleration analysis, the crank acceleration is found using the following equations.

πœƒπœƒ2̈ = 𝛼𝛼2 = 0 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ/π‘Ÿπ‘Ÿ2

π‘₯π‘₯�̈�𝐴 = βˆ’π‘™π‘™2πœƒπœƒ2̈ sin(πœƒπœƒ2)βˆ’π‘™π‘™2πœƒπœƒ2Μ‡ cos(πœƒπœƒ2) = βˆ’200 βˆ— 0 sin(60) βˆ’ 200 βˆ— 50.26 cos(60)= βˆ’252661.87π‘šπ‘šπ‘šπ‘š π‘Ÿπ‘Ÿ2⁄

𝐼𝐼�̈�𝐴 = 𝑙𝑙2πœƒπœƒ2̈ cos(πœƒπœƒ2)βˆ’π‘™π‘™2πœƒπœƒ2Μ‡ sin(πœƒπœƒ2) = 200 βˆ— 0 cos(60) βˆ’ 200 βˆ— 50.26 sin(60) = βˆ’437623.20π‘šπ‘šπ‘šπ‘š π‘Ÿπ‘Ÿ2⁄

𝒓𝒓𝑨𝑨 = οΏ½π‘₯π‘₯�̈�𝐴2 + 𝐼𝐼�̈�𝐴2 = οΏ½(βˆ’252661.87)2 + (βˆ’437623.20)2 = πŸ”πŸ”πŸπŸπŸ”πŸ”πŸπŸπŸπŸπŸπŸ.πŸπŸπŸ”πŸ”πŸπŸπŸπŸ π’…π’…πŸπŸβ„

Part B – Coupler & Rocker Differentiating the velocity expression is used to obtain the acceleration.

𝑙𝑙2π‘–π‘–πœ”πœ”2𝑒𝑒𝑖𝑖𝑖𝑖2 + 𝑙𝑙3π‘–π‘–πœ”πœ”3𝑒𝑒𝑖𝑖𝑖𝑖3 βˆ’ 𝑙𝑙4π‘–π‘–πœ”πœ”4𝑒𝑒𝑖𝑖𝑖𝑖4 βˆ’ 𝑙𝑙1π‘–π‘–πœ”πœ”1𝑒𝑒𝑖𝑖𝑖𝑖1 = 0

π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘π‘οΏ½π‘™π‘™2π‘–π‘–πœ”πœ”2𝑒𝑒𝑖𝑖𝑖𝑖2 + 𝑙𝑙3π‘–π‘–πœ”πœ”3𝑒𝑒𝑖𝑖𝑖𝑖3 βˆ’ 𝑙𝑙4π‘–π‘–πœ”πœ”4𝑒𝑒𝑖𝑖𝑖𝑖4 βˆ’ 0οΏ½ =

π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘π‘

(0)

200π‘–π‘–πœ”πœ”2𝑒𝑒𝑖𝑖𝑖𝑖2π‘Ÿπ‘Ÿπœƒπœƒ22

π‘Ÿπ‘Ÿπ‘π‘+ 500π‘–π‘–πœ”πœ”3𝑒𝑒𝑖𝑖𝑖𝑖3

π‘Ÿπ‘Ÿπœƒπœƒ32

π‘Ÿπ‘Ÿπ‘π‘βˆ’ 600π‘–π‘–πœ”πœ”4𝑒𝑒𝑖𝑖𝑖𝑖4

π‘Ÿπ‘Ÿπœƒπœƒ42

π‘Ÿπ‘Ÿπ‘π‘= 0

Therefore, the acceleration is equal to the following equation.

οΏ½200𝑖𝑖𝛼𝛼2𝑒𝑒𝑖𝑖𝑖𝑖2 βˆ’ 200πœ”πœ”22𝑒𝑒𝑖𝑖𝑖𝑖2οΏ½ + οΏ½500𝑖𝑖𝛼𝛼3𝑒𝑒𝑖𝑖𝑖𝑖3 βˆ’ 500πœ”πœ”3

2𝑒𝑒𝑖𝑖𝑖𝑖3οΏ½ + (βˆ’600𝑖𝑖𝛼𝛼4𝑒𝑒𝑖𝑖𝑖𝑖4 + 600πœ”πœ”42𝑒𝑒𝑖𝑖𝑖𝑖4) = 0

𝑂𝑂𝐴𝐴 = 200𝑖𝑖𝛼𝛼2𝑒𝑒𝑖𝑖𝑖𝑖2 βˆ’ 200π‘–π‘–πœ”πœ”22𝑒𝑒𝑖𝑖𝑖𝑖2

𝑂𝑂𝐡𝐡/𝐴𝐴 = 500𝑖𝑖𝛼𝛼3𝑒𝑒𝑖𝑖𝑖𝑖3 βˆ’ 500π‘–π‘–πœ”πœ”32𝑒𝑒𝑖𝑖𝑖𝑖3

𝑂𝑂𝐡𝐡/𝐴𝐴 = βˆ’600𝑖𝑖𝛼𝛼4𝑒𝑒𝑖𝑖𝑖𝑖4 + 600π‘–π‘–πœ”πœ”42𝑒𝑒𝑖𝑖𝑖𝑖4

Page 36: School of Engineering (Mechanical and Automotive)

35 | P a g e

Using Euler’s formula, the equation can split into the real and imaginary component and solved for 𝛼𝛼3 and 𝛼𝛼4.

𝑒𝑒𝑖𝑖𝑖𝑖 = cos (πœƒπœƒ) + 𝑖𝑖sin (πœƒπœƒ)

𝛼𝛼2 = 0

οΏ½βˆ’200πœ”πœ”22(cos(πœƒπœƒ2) + 𝑖𝑖 sin(πœƒπœƒ2))οΏ½ + οΏ½500𝑖𝑖𝛼𝛼3(cos(πœƒπœƒ3) + 𝑖𝑖 sin(πœƒπœƒ3))οΏ½

βˆ’ οΏ½500πœ”πœ”32(cos(πœƒπœƒ3) + 𝑖𝑖 sin(πœƒπœƒ3))οΏ½

+ οΏ½βˆ’600𝑖𝑖𝛼𝛼4(cos(πœƒπœƒ4) + 𝑖𝑖 sin(πœƒπœƒ4)) + 600πœ”πœ”42(cos(πœƒπœƒ4) + 𝑖𝑖 sin(πœƒπœƒ4))οΏ½ = 0

The real component is extracted from the equation.

(βˆ’200πœ”πœ”22 cos(πœƒπœƒ2)) βˆ’ (500𝛼𝛼3 sin(πœƒπœƒ3)) βˆ’ (500πœ”πœ”3

2 cos(πœƒπœƒ3)) + (600𝛼𝛼4 sin(πœƒπœƒ4))+ (600πœ”πœ”42 cos(πœƒπœƒ4)) = 0

(βˆ’200(50.26)2 cos(60)) βˆ’ (500𝛼𝛼3 sin(49.67)) βˆ’ (500(βˆ’19.06)2 cos(49.67))+ (600𝛼𝛼4 sin(128.31)) + (600(3.06)2 cos(128.31)) = 0

The imaginary component is extracted from the equation.

(βˆ’200πœ”πœ”22𝑖𝑖 sin(πœƒπœƒ2)) + (500𝑖𝑖𝛼𝛼3 cos(πœƒπœƒ3)) βˆ’ (500πœ”πœ”3

2𝑖𝑖 sin(πœƒπœƒ3)) + (βˆ’600𝑖𝑖𝛼𝛼4 cos(πœƒπœƒ4))+ (600πœ”πœ”42𝑖𝑖 sin(πœƒπœƒ4)) = 0

(βˆ’200(50.26)2𝑖𝑖 sin(60)) + (500𝑖𝑖𝛼𝛼3 cos(49.67)) βˆ’ (500(βˆ’19.06)2𝑖𝑖 sin(49.67))+ (βˆ’600𝑖𝑖𝛼𝛼4 cos(128.31)) + (600(3.06)2𝑖𝑖 sin(128.31)) = 0

Solving both the real and imaginary component simultaneously will solve for 𝛼𝛼3 and 𝛼𝛼4.

𝜢𝜢𝟏𝟏 = πŸ’πŸ’πŸ’πŸ’πŸπŸ.πŸ’πŸ’πŸ’πŸ’ 𝒅𝒅𝒓𝒓𝒅𝒅/π’…π’…πŸπŸ

πœΆπœΆπŸ’πŸ’ = πŸπŸπŸπŸπŸ”πŸ”πŸπŸ.πŸ–πŸ–πŸ–πŸ– 𝒅𝒅𝒓𝒓𝒅𝒅/π’…π’…πŸπŸ

Now that the alpha values are obtained, 𝑂𝑂𝐡𝐡/𝐴𝐴, 𝑂𝑂𝐡𝐡 and 𝑂𝑂𝐴𝐴 can be calculated.

𝑂𝑂𝐡𝐡/𝐴𝐴 = 𝑖𝑖𝑙𝑙3𝛼𝛼3𝑒𝑒𝑖𝑖𝑖𝑖3 βˆ’ 𝑙𝑙3πœ”πœ”32𝑒𝑒𝑖𝑖𝑖𝑖3

𝑂𝑂𝐡𝐡/𝐴𝐴 = 𝑖𝑖𝑙𝑙3𝛼𝛼3οΏ½cos(πœƒπœƒ3) + π‘–π‘–π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒ3)οΏ½ βˆ’ (𝑙𝑙3πœ”πœ”32(cos(πœƒπœƒ3) + π‘–π‘–π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒ3))

𝑂𝑂𝐡𝐡/𝐴𝐴 = 𝑖𝑖(𝑙𝑙3𝛼𝛼3cos(πœƒπœƒ3)βˆ’π‘™π‘™3πœ”πœ”32π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒ3)) βˆ’ 𝑙𝑙3πœ”πœ”3

2 cos(πœƒπœƒ3) βˆ’ 𝑙𝑙3𝛼𝛼3π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒ3)

𝑂𝑂𝐡𝐡/𝐴𝐴 = 𝑖𝑖(500(442.44) cos(49.67) βˆ’ 500(βˆ’19.06)2π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(49.67)) βˆ’ 500(βˆ’19.06)2 cos(49.67)βˆ’ 500(442.44)π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(49.67)

𝑂𝑂𝐡𝐡/𝐴𝐴 = (βˆ’286148.97) + 𝑖𝑖(4761.69)

𝑨𝑨𝑩𝑩/𝑨𝑨 = οΏ½(βˆ’286148.97)2 + (4761.69)2 = πŸπŸπŸ–πŸ–πŸ”πŸ”πŸπŸπŸ–πŸ–πŸ–πŸ–.πŸ”πŸ”πŸ”πŸ”πŸπŸπŸπŸ π’…π’…πŸπŸβ„

Calculating 𝑂𝑂𝐴𝐴

𝑂𝑂𝐴𝐴 = 𝑖𝑖𝑙𝑙2𝛼𝛼2𝑒𝑒𝑖𝑖𝑖𝑖2 βˆ’ 𝑙𝑙2πœ”πœ”22𝑒𝑒𝑖𝑖𝑖𝑖2

Page 37: School of Engineering (Mechanical and Automotive)

36 | P a g e

𝑂𝑂𝐴𝐴 = 𝑖𝑖𝑙𝑙2𝛼𝛼2οΏ½cos(πœƒπœƒ2) + π‘–π‘–π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒ2)οΏ½ βˆ’ (𝑙𝑙2πœ”πœ”22(cos(πœƒπœƒ2) + π‘–π‘–π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒ2))

𝑂𝑂𝐴𝐴 = 𝑖𝑖(𝑙𝑙2𝛼𝛼2cos(πœƒπœƒ2)βˆ’π‘™π‘™2πœ”πœ”22π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒ2)) βˆ’ 𝑙𝑙2πœ”πœ”2

2 cos(πœƒπœƒ2) βˆ’ 𝑙𝑙2𝛼𝛼2π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒ2)

𝜢𝜢𝟐𝟐 = 𝟏𝟏

𝑂𝑂𝐴𝐴 = π‘–π‘–οΏ½βˆ’π‘™π‘™2πœ”πœ”22π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒ2)οΏ½ βˆ’ 𝑙𝑙2πœ”πœ”2

2 cos(πœƒπœƒ2)

𝑂𝑂𝐴𝐴 = π‘–π‘–οΏ½βˆ’200(50.26)2π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(60)οΏ½ βˆ’ 200(50.26)2 cos(60)

𝑂𝑂𝐴𝐴 = (βˆ’252661.87) + 𝑖𝑖(βˆ’437623.20)

𝑨𝑨𝑨𝑨 = οΏ½(βˆ’252661.87)2 + (βˆ’437623.20)2 = πŸ”πŸ”πŸπŸπŸ”πŸ”πŸπŸπŸπŸπŸπŸ.πŸπŸπŸ”πŸ”πŸπŸπŸπŸ π’…π’…πŸπŸβ„

𝛿𝛿𝐴𝐴𝐴𝐴 = arctan οΏ½πΌπΌπ‘šπ‘šπ‘…π‘…π‘’π‘’οΏ½ + πœ‹πœ‹ = arctan οΏ½

βˆ’437623.20βˆ’252661.87

οΏ½ + πœ‹πœ‹ = 4.189 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ

πœΉπœΉπ‘¨π‘¨π‘¨π‘¨ = πŸπŸπŸ’πŸ’πŸπŸ 𝒅𝒅𝑹𝑹𝒅𝒅

Calculating 𝑂𝑂𝐡𝐡

𝑂𝑂𝐡𝐡 = 𝑖𝑖𝑙𝑙4𝛼𝛼4𝑒𝑒𝑖𝑖𝑖𝑖4 βˆ’ 𝑙𝑙4πœ”πœ”42𝑒𝑒𝑖𝑖𝑖𝑖4

𝑂𝑂𝐡𝐡 = 𝑖𝑖𝑙𝑙4𝛼𝛼4οΏ½cos(πœƒπœƒ4) + π‘–π‘–π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒ4)οΏ½ βˆ’ (𝑙𝑙4πœ”πœ”42(cos(πœƒπœƒ4) + π‘–π‘–π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒ4))

𝑂𝑂𝐡𝐡 = 𝑖𝑖(𝑙𝑙4𝛼𝛼4cos(πœƒπœƒ4)βˆ’π‘™π‘™4πœ”πœ”42π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒ4)) βˆ’ 𝑙𝑙4πœ”πœ”42 cos(πœƒπœƒ4) βˆ’ 𝑙𝑙4𝛼𝛼4π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒ4)

𝑂𝑂𝐡𝐡 = 𝑖𝑖(600 (1151.88)cos(128.31)βˆ’600(3.06)2π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(128.31)) βˆ’ 600(3.06)2 cos(128.31)βˆ’ 600(1151.88)π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(128.31)

𝑂𝑂𝐡𝐡 = (βˆ’545797.55) + 𝑖𝑖(βˆ’432861.51)

𝑨𝑨𝑩𝑩 = οΏ½(βˆ’545797.55)2 + (βˆ’432861.51)2 = πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸπŸπŸ–πŸ–.πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”πŸπŸπŸπŸ π’…π’…πŸπŸβ„

𝛿𝛿𝐴𝐴𝐡𝐡 = arctan οΏ½πΌπΌπ‘šπ‘šπ‘…π‘…π‘’π‘’οΏ½ + πœ‹πœ‹ = arctan οΏ½

βˆ’432861.51βˆ’545797.55

οΏ½ + πœ‹πœ‹ = 3.812 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ

πœΉπœΉπ‘¨π‘¨π‘©π‘© = πŸπŸπŸπŸπŸ–πŸ–.πŸ’πŸ’πŸπŸ 𝒅𝒅𝑹𝑹𝒅𝒅

Calculating 𝑂𝑂𝐢𝐢/𝐴𝐴

𝑂𝑂𝐢𝐢/𝐴𝐴 = 𝑖𝑖𝑙𝑙3𝛼𝛼3𝑒𝑒𝑖𝑖𝑖𝑖3 βˆ’ 𝑙𝑙3πœ”πœ”32𝑒𝑒𝑖𝑖𝑖𝑖3

𝑂𝑂𝐢𝐢/𝐴𝐴 = 𝑖𝑖𝑙𝑙𝐴𝐴𝐢𝐢𝛼𝛼3οΏ½cos(πœƒπœƒπ΄π΄πΆπΆ) + π‘–π‘–π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒπ΄π΄πΆπΆ)οΏ½ βˆ’ (π‘™π‘™π΄π΄πΆπΆπœ”πœ”32(cos(πœƒπœƒπ΄π΄πΆπΆ) + π‘–π‘–π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒπ΄π΄πΆπΆ))

𝑂𝑂𝐢𝐢/𝐴𝐴 = 𝑖𝑖(𝑙𝑙𝐴𝐴𝐢𝐢𝛼𝛼3cos(πœƒπœƒπ΄π΄πΆπΆ)βˆ’π‘™π‘™π΄π΄πΆπΆπœ”πœ”32π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒπ΄π΄πΆπΆ)) βˆ’ π‘™π‘™π΄π΄πΆπΆπœ”πœ”3

2 cos(πœƒπœƒπ΄π΄πΆπΆ) βˆ’ 𝑙𝑙𝐴𝐴𝐢𝐢𝛼𝛼3π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(πœƒπœƒπ΄π΄πΆπΆ)

𝑂𝑂𝐢𝐢/𝐴𝐴 = 𝑖𝑖(300(442.44)cos(43.67)βˆ’300(βˆ’19.06)2π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(43.67)) βˆ’ 300(βˆ’19.06)2 cos(43.67)βˆ’ 300(442.44)π‘Ÿπ‘Ÿπ‘–π‘–π‘›π‘›(43.67)

𝑂𝑂𝐢𝐢/𝐴𝐴 = (βˆ’170450.21) + 𝑖𝑖(20787.79)

𝑨𝑨π‘ͺπ‘ͺ/𝑨𝑨 = οΏ½(βˆ’170450.21)2 + (20787.79)2 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.πŸπŸπŸ”πŸ”πŸπŸπŸπŸ π’…π’…πŸπŸβ„

Page 38: School of Engineering (Mechanical and Automotive)

37 | P a g e

Calculating 𝑂𝑂𝐢𝐢

𝑂𝑂𝐢𝐢 = 𝑂𝑂𝐢𝐢/𝐴𝐴 + 𝑉𝑉𝐴𝐴

𝑂𝑂𝐢𝐢 = (βˆ’170450.21 + (βˆ’252661.87)) + 𝑖𝑖(20787.79 + (βˆ’437623.20))

𝑂𝑂𝐢𝐢 = (βˆ’423112.08) + 𝑖𝑖(βˆ’416835.41)

𝑨𝑨π‘ͺπ‘ͺ = οΏ½(βˆ’423112.08)2 + (βˆ’423112.08)2 = πŸ”πŸ”πŸ”πŸ”πŸπŸπŸ”πŸ”πŸ’πŸ’πŸ”πŸ”.πŸπŸπŸ”πŸ”πŸπŸπŸπŸ π’…π’…πŸπŸβ„

𝛿𝛿𝐴𝐴𝐢𝐢 = arctan οΏ½πΌπΌπ‘šπ‘šπ‘…π‘…π‘’π‘’οΏ½ + πœ‹πœ‹ = arctan οΏ½

βˆ’416835.41βˆ’423112.08

οΏ½ + πœ‹πœ‹ = 3.920 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ

πœΉπœΉπ‘¨π‘¨π‘ͺπ‘ͺ = πŸπŸπŸπŸπŸ’πŸ’.πŸ”πŸ”πŸπŸπ’…π’…π‘Ήπ‘Ήπ’…π’…

Part C – Slider In order to calculate 𝑂𝑂𝐷𝐷, firstly 𝛼𝛼5 must be calculated as follows. Firstly, the velocity equation is differentiated.

𝑖𝑖𝑙𝑙2πœ”πœ”2𝑒𝑒𝑖𝑖𝑖𝑖2π‘Ÿπ‘Ÿπœƒπœƒ2π‘Ÿπ‘Ÿπ‘π‘

+ π‘–π‘–π‘™π‘™π΄π΄πΆπΆπœ”πœ”3π‘’π‘’π‘–π‘–π‘–π‘–π΄π΄π΄π΄π‘Ÿπ‘Ÿπœƒπœƒ3π‘Ÿπ‘Ÿπ‘π‘

βˆ’ 𝑖𝑖𝑙𝑙5πœ”πœ”5𝑒𝑒𝑖𝑖𝑖𝑖5π‘Ÿπ‘Ÿπœƒπœƒ5π‘Ÿπ‘Ÿπ‘π‘

= 0

This produces the following acceleration equation.

�𝑖𝑖𝑙𝑙2𝛼𝛼2𝑒𝑒𝑖𝑖𝑖𝑖2βˆ’π‘™π‘™2πœ”πœ”22𝑒𝑒𝑖𝑖𝑖𝑖2οΏ½ + �𝑖𝑖𝑙𝑙𝐴𝐴𝐢𝐢𝛼𝛼3π‘’π‘’π‘–π‘–π‘–π‘–π΄π΄π΄π΄βˆ’π‘™π‘™3πœ”πœ”3

2𝑒𝑒𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴� βˆ’ (𝑖𝑖𝑙𝑙5𝛼𝛼5𝑒𝑒𝑖𝑖𝑖𝑖5βˆ’π‘™π‘™5πœ”πœ”52𝑒𝑒𝑖𝑖𝑖𝑖5) = 0

Euler’s formula can be applied to this equation and divided into the imaginary and real components.

𝑒𝑒𝑖𝑖𝑖𝑖 = cos (πœƒπœƒ) + 𝑖𝑖sin (πœƒπœƒ)

𝛼𝛼2 = 0

βˆ’(𝑙𝑙2πœ”πœ”22(cos(πœƒπœƒ2) + 𝑖𝑖 sin(πœƒπœƒ2))) + (𝑖𝑖𝑙𝑙𝐴𝐴𝐢𝐢𝛼𝛼3(cos(πœƒπœƒπ΄π΄πΆπΆ) + 𝑖𝑖 sin(πœƒπœƒπ΄π΄πΆπΆ)))βˆ’(π‘™π‘™π΄π΄πΆπΆπœ”πœ”3

2(cos(πœƒπœƒπ΄π΄πΆπΆ)+ 𝑖𝑖 sin(πœƒπœƒπ΄π΄πΆπΆ))) βˆ’ (𝑖𝑖𝑙𝑙5𝛼𝛼5(cos(πœƒπœƒ5) + 𝑖𝑖 sin(πœƒπœƒ5)))+(𝑙𝑙5πœ”πœ”5

2(cos(πœƒπœƒ5) + 𝑖𝑖 sin(πœƒπœƒ5))) = 0

Using the imaginary component, 𝛼𝛼5 can be found.

βˆ’(𝑙𝑙2πœ”πœ”22𝑖𝑖 sin(πœƒπœƒ2)) + (𝑖𝑖𝑙𝑙𝐴𝐴𝐢𝐢𝛼𝛼3 cos(πœƒπœƒπ΄π΄πΆπΆ))βˆ’(π‘™π‘™π΄π΄πΆπΆπœ”πœ”3

2𝑖𝑖 sin(πœƒπœƒπ΄π΄πΆπΆ)) βˆ’ (𝑖𝑖𝑙𝑙5𝛼𝛼5 cos(πœƒπœƒ5))+(𝑙𝑙5πœ”πœ”52𝑖𝑖 sin(πœƒπœƒ5))

= 0

βˆ’(200(50.26)2𝑖𝑖 sin(60)) + (300𝑖𝑖(442.44) cos(43.67)) βˆ’ (300(βˆ’19.06)2𝑖𝑖 sin(43.67))βˆ’ (800𝑖𝑖𝛼𝛼5 cos(βˆ’30.54)) + (800(βˆ’0.73)2𝑖𝑖 sin(βˆ’30.54)) = 0

πœΆπœΆπŸ”πŸ” = πŸ”πŸ”πŸπŸπŸ”πŸ”.πŸπŸπŸ”πŸ”π’…π’…π’“π’“π’…π’… π’…π’…πŸπŸβ„

Using 𝛼𝛼5, 𝑂𝑂𝐷𝐷/𝐢𝐢 and 𝑂𝑂𝐷𝐷 can now be calculated.

𝑂𝑂𝐷𝐷/𝐢𝐢 = 𝑙𝑙5𝛼𝛼5(cos(πœƒπœƒ5) + 𝑖𝑖 sin(πœƒπœƒ5)) + 𝑙𝑙5πœ”πœ”52(cos(πœƒπœƒ5) + 𝑖𝑖 sin(πœƒπœƒ5))

𝑂𝑂𝐷𝐷/𝐢𝐢 = 800(605.29)(cos(βˆ’30.54) + 𝑖𝑖 sin(βˆ’30.54)) + 800(βˆ’0.73)2(cos(βˆ’30.54)+ 𝑖𝑖 sin(βˆ’30.54))

𝑂𝑂𝐷𝐷/𝐢𝐢 = (245709.84) + 𝑖𝑖(416835.41)

Page 39: School of Engineering (Mechanical and Automotive)

38 | P a g e

𝑨𝑨π‘ͺπ‘ͺ = οΏ½(245709.84)2 + (416835.41)2 = πŸ’πŸ’πŸ–πŸ–πŸπŸπŸ–πŸ–πŸ”πŸ”πŸ’πŸ’.πŸπŸπŸ’πŸ’πŸπŸπŸπŸ π’…π’…πŸπŸβ„

Using vector addition, 𝑂𝑂𝐷𝐷 can be found.

𝑂𝑂𝐷𝐷 = 𝑂𝑂𝐷𝐷/𝐢𝐢 + 𝑂𝑂𝐢𝐢

𝑂𝑂𝐷𝐷 = (245709.84 βˆ’ 423112.08) + 𝑖𝑖(416835.41 + (βˆ’416835.41))

𝑂𝑂𝐷𝐷 = (βˆ’177402.24) + 𝑖𝑖(0)

𝑨𝑨𝑫𝑫 = πŸπŸπŸπŸπŸπŸπŸ’πŸ’πŸπŸπŸπŸ.πŸπŸπŸ’πŸ’πŸπŸπŸπŸ π’…π’…πŸπŸβ„

𝛿𝛿𝐴𝐴𝐷𝐷 = arctan οΏ½πΌπΌπ‘šπ‘šπ‘…π‘…π‘’π‘’οΏ½ + πœ‹πœ‹ = arctan οΏ½

0βˆ’177402.24

οΏ½ + πœ‹πœ‹ = 3.142 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ

πœΉπœΉπ‘¨π‘¨π‘«π‘« = πŸπŸπŸ–πŸ–πŸπŸπ’…π’…π‘Ήπ‘Ήπ’…π’…

Comparing the graphical method for calculating acceleration to the analytical method, similar to the velocities, both the methods have very similar values.

Graphical (mm/s2)

Analytical (mm/s2)

Difference (%)

Aa 505323.6 505323.7 2.178E-05

Ab/a 289431.2 286188.6 -1.133

Ab 692624.5 696609 0.5720

Ac/a 172900.2 171713.2 -0.6913

Ac 579735.8 593949.2 2.393

Ad/c 462024.6 483864.7 4.514

Ad 187244 177402.2 -5.548 Table 6 Analytical Acceleration Results Compared to Graphical

The variation in the methods can be attributed to the compounding small errors between calculations and difference in velocity values to calculate acceleration.

Summary of Analytical Values

Joint X Component (mm)

Y Component (mm)

A 100 173.21

B 423.67 554.42

C 337.46 356.54

D 1026.47 -50

E 795.62 83.62 Table 7 Analytical Position Results

Page 40: School of Engineering (Mechanical and Automotive)

39 | P a g e

Angle Value (degrees)

ΞΈ1 6 ΞΈ2 60 ΞΈ3 49.66962 ΞΈ4 128.31 ΞΈ5 -30.5421

Table 8 Analytical Angles

Joint Linear Velocity (mm/s)

Linear Acceleration (mm/s2)

A 10053.1 505323.7

B 1838.78 696609

C 5236.74 593949.2

D 5508.55 177402.2 Table 9 Analytical Linear Velocity and Acceleration

Link Angular Velocity Ο‰ (rad/s)

Angular Acceleration Ξ± (rad/s2)

2 50.26548 0

3 -19.0559 442.4406

4 3.064637 1151.876

5 -0.72779 605.2945 Table 10 Analytical Angular Velocity and Acceleration

Dynamic Forces Equations of Motion For link 2:

Figure 41 Link 2 Free Body Diagram

Page 41: School of Engineering (Mechanical and Automotive)

40 | P a g e

First the variables used are found.

π‘Ÿπ‘ŸπΊπΊ2 = 252.66π‘šπ‘š/π‘Ÿπ‘Ÿ2

𝛼𝛼2 = 0

𝑅𝑅12 = 𝑅𝑅32 = 0.1π‘šπ‘š

πœƒπœƒπΊπΊ2 = 240 π‘Ÿπ‘Ÿπ‘’π‘’πΌπΌ

π‘Ÿπ‘ŸπΊπΊ2𝑋𝑋 = π‘Ÿπ‘ŸπΊπΊ2cos(πœƒπœƒ) = 252.66cos(240) = βˆ’126.22 π‘šπ‘š/π‘Ÿπ‘Ÿ2

π‘Ÿπ‘ŸπΊπΊ2π‘Œπ‘Œ = π‘Ÿπ‘ŸπΊπΊ2sin(πœƒπœƒ) = 252.66sin(240) = βˆ’218.88 π‘šπ‘š/π‘Ÿπ‘Ÿ2

The x and y components of each of the radii are found.

𝑅𝑅12𝑋𝑋 = 𝑅𝑅12 cos(πœƒπœƒ12) = 0.1 cos(240) = βˆ’0.05π‘šπ‘š

𝑅𝑅12π‘Œπ‘Œ = 𝑅𝑅12 sin(πœƒπœƒ12) = 0.1 sin(240) = βˆ’0.086π‘šπ‘š

𝑅𝑅32𝑋𝑋 = 𝑅𝑅32 cos(πœƒπœƒ32) = 0.1 cos(60) = 0.05π‘šπ‘š

𝑅𝑅32π‘Œπ‘Œ = 𝑅𝑅32 sin(πœƒπœƒ32) = 0.1 sin(60) = 0.086π‘šπ‘š

The forces and moment equation are found for link 2.

𝛴𝛴𝛴𝛴𝑋𝑋 = π‘šπ‘š2π‘Ÿπ‘ŸπΊπΊ2π‘₯π‘₯ = 1 βˆ— (βˆ’126.22) = βˆ’126.22𝑁𝑁

𝛴𝛴𝛴𝛴𝑋𝑋 = 𝛴𝛴12𝑋𝑋 + 𝛴𝛴32𝑋𝑋 … 1

π›΄π›΄π›΄π›΄π‘Œπ‘Œ = π‘šπ‘š2π‘Ÿπ‘ŸπΊπΊ2π‘Œπ‘Œ = 1 βˆ— (βˆ’218.88) = βˆ’218.88𝑁𝑁

π›΄π›΄π›΄π›΄π‘Œπ‘Œ = 𝛴𝛴12π‘Œπ‘Œ + 𝛴𝛴32π‘Œπ‘Œ … 2

𝛴𝛴𝛴𝛴 = 𝑇𝑇12 + (𝑅𝑅12𝑋𝑋𝛴𝛴12π‘Œπ‘Œ βˆ’ 𝑅𝑅12π‘Œπ‘Œπ›΄π›΄12𝑋𝑋) + (𝑅𝑅32𝑋𝑋𝛴𝛴32π‘Œπ‘Œ βˆ’ 𝑅𝑅32π‘Œπ‘Œπ›΄π›΄32𝑋𝑋) = 𝐼𝐼2𝛼𝛼2 … 3

𝐼𝐼2𝛼𝛼2 = 0.002 βˆ— 0 = 0

For link 3:

Page 42: School of Engineering (Mechanical and Automotive)

41 | P a g e

Figure 42 Link 3 Free Body Diagram

First the variables used are found.

π‘Ÿπ‘ŸπΊπΊ3 = 584.89π‘šπ‘š/π‘Ÿπ‘Ÿ2

𝛼𝛼3 = 442.44 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ/π‘Ÿπ‘Ÿ2

𝑅𝑅23 = 0.2731π‘šπ‘š

𝑅𝑅43 = 0.2299π‘šπ‘š

𝑅𝑅43 = 0.03811π‘šπ‘š

πœƒπœƒπΊπΊ3 = 226.36 π‘Ÿπ‘Ÿπ‘’π‘’πΌπΌ

π‘Ÿπ‘ŸπΊπΊ3𝑋𝑋 = π‘Ÿπ‘ŸπΊπΊ3cos(πœƒπœƒ) = 584.89cos(226.36) = βˆ’403.62 π‘šπ‘š/π‘Ÿπ‘Ÿ2

π‘Ÿπ‘ŸπΊπΊ3π‘Œπ‘Œ = π‘Ÿπ‘ŸπΊπΊ3sin(πœƒπœƒ) = 252.66sin(226.36) = βˆ’423.30 π‘šπ‘š/π‘Ÿπ‘Ÿ2

The x and y components of each of the radii are found.

𝑅𝑅23𝑋𝑋 = 𝑅𝑅23 cos(πœƒπœƒ23) = 0.2731 cos(226.90) = βˆ’0.1994π‘šπ‘š

𝑅𝑅23π‘Œπ‘Œ = 𝑅𝑅23 sin(πœƒπœƒ23) = 0.2731 sin(226.90) = βˆ’0.1866π‘šπ‘š

𝑅𝑅43𝑋𝑋 = 𝑅𝑅43 cos(πœƒπœƒ43) = 0.229 cos(57.48) = 0.1236π‘šπ‘š

𝑅𝑅43π‘Œπ‘Œ = 𝑅𝑅43 sin(πœƒπœƒ43) = 0.229 sin(57.48) = 0.1938π‘šπ‘š

𝑅𝑅53𝑋𝑋 = 𝑅𝑅53 cos(πœƒπœƒ53) = 0.03811 cos(βˆ’5.026) = 0.03796π‘šπ‘š

𝑅𝑅53π‘Œπ‘Œ = 𝑅𝑅53 sin(πœƒπœƒ53) = 0.03811 sin(βˆ’5.026) = βˆ’0.003339π‘šπ‘š

Page 43: School of Engineering (Mechanical and Automotive)

42 | P a g e

The forces and moment equation are found for link 3.

𝛴𝛴𝛴𝛴𝑋𝑋 = π‘šπ‘š3π‘Ÿπ‘ŸπΊπΊ3𝑋𝑋 = 2.5 βˆ— (βˆ’403.62) = βˆ’1009.05𝑁𝑁

𝛴𝛴𝛴𝛴𝑋𝑋 = 𝛴𝛴23𝑋𝑋 + 𝛴𝛴43𝑋𝑋 + 𝛴𝛴53𝑋𝑋 … 4

π›΄π›΄π›΄π›΄π‘Œπ‘Œ = π‘šπ‘š3π‘Ÿπ‘ŸπΊπΊ3π‘Œπ‘Œ = 2.5 βˆ— (βˆ’423.30) = βˆ’1058.25𝑁𝑁

π›΄π›΄π›΄π›΄π‘Œπ‘Œ = 𝛴𝛴23π‘Œπ‘Œ + 𝛴𝛴43π‘Œπ‘Œ + 𝛴𝛴53π‘Œπ‘Œ … 5

𝛴𝛴𝛴𝛴 = βˆ’(𝑅𝑅32𝑋𝑋𝛴𝛴32π‘Œπ‘Œ βˆ’ 𝑅𝑅32π‘Œπ‘Œπ›΄π›΄32𝑋𝑋) + (𝑅𝑅53𝑋𝑋𝛴𝛴53π‘Œπ‘Œ βˆ’ 𝑅𝑅53π‘Œπ‘Œπ›΄π›΄53𝑋𝑋) + (𝑅𝑅43𝑋𝑋𝛴𝛴43π‘Œπ‘Œ βˆ’ 𝑅𝑅43π‘Œπ‘Œπ›΄π›΄43𝑋𝑋) = 𝐼𝐼3𝛼𝛼3 … 6

𝐼𝐼3𝛼𝛼3 = 0.008 βˆ— 442.44 = 3.5395

For link 4:

Figure 43 Link 4 Free Body Diagram

First the variables used are found.

π‘Ÿπ‘ŸπΊπΊ4 = 345.48π‘šπ‘š/π‘Ÿπ‘Ÿ2

𝛼𝛼4 = 1151.88π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ/π‘Ÿπ‘Ÿ2

𝑅𝑅14 = 𝑅𝑅34 = 0.3π‘šπ‘š

πœƒπœƒπΊπΊ4 = 218.80π‘Ÿπ‘Ÿπ‘’π‘’πΌπΌ

π‘Ÿπ‘ŸπΊπΊ4𝑋𝑋 = π‘Ÿπ‘ŸπΊπΊ4cos(πœƒπœƒ) = 345.48cos(218.80) = βˆ’269.27π‘šπ‘š/π‘Ÿπ‘Ÿ2

π‘Ÿπ‘ŸπΊπΊ4π‘Œπ‘Œ = π‘Ÿπ‘ŸπΊπΊ3sin(πœƒπœƒ) = 345.48sin(218.80) = βˆ’216.44π‘šπ‘š/π‘Ÿπ‘Ÿ2

The x and y components of each of the radii are found.

𝑅𝑅14𝑋𝑋 = 𝑅𝑅14 cos(πœƒπœƒ14) = 0.3 cos(βˆ’51.61) = 0.1863π‘šπ‘š

Page 44: School of Engineering (Mechanical and Automotive)

43 | P a g e

𝑅𝑅14π‘Œπ‘Œ = 𝑅𝑅14 sin(πœƒπœƒ14) = 0.3 sin(βˆ’51.61) = βˆ’0.2351π‘šπ‘š

𝑅𝑅34𝑋𝑋 = 𝑅𝑅34 cos(πœƒπœƒ34) = 0.3 cos(128.39) = βˆ’0.1863π‘šπ‘š

𝑅𝑅34π‘Œπ‘Œ = 𝑅𝑅34 sin(πœƒπœƒ34) = 0.3 sin(128.39) = 0.2351π‘šπ‘š

The forces and moment equation are found for link 4.

𝛴𝛴𝛴𝛴𝑋𝑋 = π‘šπ‘š4π‘Ÿπ‘ŸπΊπΊ4𝑋𝑋 = 1.5 βˆ— (βˆ’269.27) = βˆ’403.91𝑁𝑁

𝛴𝛴𝛴𝛴𝑋𝑋 = 𝛴𝛴34𝑋𝑋 + 𝛴𝛴14𝑋𝑋 … 7

π›΄π›΄π›΄π›΄π‘Œπ‘Œ = π‘šπ‘š4π‘Ÿπ‘ŸπΊπΊ4π‘Œπ‘Œ = 1.5 βˆ— (βˆ’216.44) = βˆ’324.67𝑁𝑁

π›΄π›΄π›΄π›΄π‘Œπ‘Œ = 𝛴𝛴34π‘Œπ‘Œ + 𝛴𝛴14π‘Œπ‘Œ … 8

𝛴𝛴𝛴𝛴 = (𝑅𝑅34𝑋𝑋𝛴𝛴34π‘Œπ‘Œ βˆ’ 𝑅𝑅34π‘Œπ‘Œπ›΄π›΄34𝑋𝑋) + (𝑅𝑅14𝑋𝑋𝛴𝛴14π‘Œπ‘Œ βˆ’ 𝑅𝑅14π‘Œπ‘Œπ›΄π›΄14𝑋𝑋) = 𝐼𝐼4𝛼𝛼4 … 9

𝐼𝐼4𝛼𝛼4 = 0.005 βˆ— 1151.88 = 5.7594

For link 5:

Figure 44 Link 5 Free Body Diagram

First the variables used are found.

π‘Ÿπ‘ŸπΊπΊ5 = 362.21 π‘šπ‘š/π‘Ÿπ‘Ÿ2

𝛼𝛼5 = 605.29 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ/π‘Ÿπ‘Ÿ2

𝑅𝑅35 = 𝑅𝑅65 = 0.4π‘šπ‘š

πœƒπœƒπΊπΊ5 = 213.44π‘Ÿπ‘Ÿπ‘’π‘’πΌπΌ

π‘Ÿπ‘ŸπΊπΊ5𝑋𝑋 = π‘Ÿπ‘ŸπΊπΊ5cos(πœƒπœƒ) = 362.21cos(213.44) = βˆ’302.24π‘šπ‘š/π‘Ÿπ‘Ÿ2

π‘Ÿπ‘ŸπΊπΊ5π‘Œπ‘Œ = π‘Ÿπ‘ŸπΊπΊ5sin(πœƒπœƒ) = 362.21sin(213.44) = βˆ’199.63π‘šπ‘š/π‘Ÿπ‘Ÿ2

Page 45: School of Engineering (Mechanical and Automotive)

44 | P a g e

The x and y components of each of the radii are found.

𝑅𝑅35𝑋𝑋 = 𝑅𝑅35 cos(πœƒπœƒ14) = 0.4 cos(149.45) = βˆ’0.344π‘šπ‘š

𝑅𝑅35π‘Œπ‘Œ = 𝑅𝑅35 sin(πœƒπœƒ23) = 0.4 sin(149.45) = 0.203π‘šπ‘š

𝑅𝑅65𝑋𝑋 = 𝑅𝑅65 cos(πœƒπœƒ34) = 0.4 cos(βˆ’30.55) = 0.344π‘šπ‘š

𝑅𝑅65π‘Œπ‘Œ = 𝑅𝑅65 sin(πœƒπœƒ34) = 0.4 sin(βˆ’30.55) = βˆ’0.203π‘šπ‘š

The forces and moment equation are found for link 5.

𝛴𝛴𝛴𝛴𝑋𝑋 = π‘šπ‘š5π‘Ÿπ‘ŸπΊπΊ5𝑋𝑋 = 1.8 βˆ— (βˆ’302.23) = βˆ’544.03𝑁𝑁

𝛴𝛴𝛴𝛴𝑋𝑋 = 𝛴𝛴35𝑋𝑋 + 𝛴𝛴65𝑋𝑋 … 10

π›΄π›΄π›΄π›΄π‘Œπ‘Œ = π‘šπ‘š5π‘Ÿπ‘ŸπΊπΊ5π‘Œπ‘Œ = 1.8 βˆ— (βˆ’199.63) = βˆ’359.33𝑁𝑁

π›΄π›΄π›΄π›΄π‘Œπ‘Œ = 𝛴𝛴35π‘Œπ‘Œ + 𝛴𝛴65π‘Œπ‘Œ … 11

𝛴𝛴𝛴𝛴 = (𝑅𝑅35𝑋𝑋𝛴𝛴35π‘Œπ‘Œ βˆ’ 𝑅𝑅35π‘Œπ‘Œπ›΄π›΄35𝑋𝑋) + (𝑅𝑅65𝑋𝑋𝛴𝛴65π‘Œπ‘Œ βˆ’ 𝑅𝑅65π‘Œπ‘Œπ›΄π›΄65𝑋𝑋) = 𝐼𝐼5𝛼𝛼5 … 12

𝐼𝐼5𝛼𝛼5 = 0.006 βˆ— 605.29 = 3.6318

For link 6:

Figure 45 Link 6 Free Body Diagram

First the variables used are found.

π‘Ÿπ‘ŸπΊπΊ6 = 177.40π‘šπ‘š/π‘Ÿπ‘Ÿ2

𝛼𝛼6 = 0 π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ/π‘Ÿπ‘Ÿ2

πœƒπœƒπΊπΊ6 = 180 π‘Ÿπ‘Ÿπ‘’π‘’πΌπΌ

π‘Ÿπ‘ŸπΊπΊ6𝑋𝑋 = π‘Ÿπ‘ŸπΊπΊ6cos(πœƒπœƒ) = 177.40cos(180) = βˆ’177.40π‘šπ‘š/π‘Ÿπ‘Ÿ2

π‘Ÿπ‘ŸπΊπΊ6π‘Œπ‘Œ = π‘Ÿπ‘ŸπΊπΊ6sin(πœƒπœƒ) = 177.40sin(180) = 0π‘šπ‘š/π‘Ÿπ‘Ÿ2

Page 46: School of Engineering (Mechanical and Automotive)

45 | P a g e

The x and y components of each of the radii are found.

𝛴𝛴𝛴𝛴𝑋𝑋 = π‘šπ‘š6π‘Ÿπ‘ŸπΊπΊ6𝑋𝑋 = 0.9 βˆ— (177.40) = βˆ’159.66𝑁𝑁

𝛴𝛴𝛴𝛴𝑋𝑋 = βˆ’π›΄π›΄65𝑋𝑋 + 𝛴𝛴16𝑋𝑋 … 13

𝛴𝛴𝛴𝛴𝑋𝑋 = βˆ’π›΄π›΄65𝑋𝑋 + πœ‡πœ‡π›΄π›΄16π‘Œπ‘Œ … 14

πœ‡πœ‡ = 0.3

The forces and moment equation are found for link 5.

π›΄π›΄π›΄π›΄π‘Œπ‘Œ = π‘šπ‘š6π‘Ÿπ‘ŸπΊπΊ6π‘Œπ‘Œ = 0.9 βˆ— (0) = 0𝑁𝑁

π›΄π›΄π›΄π›΄π‘Œπ‘Œ = βˆ’π›΄π›΄65π‘Œπ‘Œ + 𝛴𝛴16π‘Œπ‘Œ

𝐼𝐼6𝛼𝛼6 = 𝐼𝐼6 βˆ— 0 = 0

Equation Matrix Using the 14 equations found from the dynamic forces equations, the following matrix can be used to represent each of the equations.

⎣⎒⎒⎒⎒⎒⎒⎒⎒⎒⎒⎒⎒⎑

1 0 1 0 0 0 0 0 0 0 0 0 0 00 1 0 1 0 0 0 0 0 0 0 0 0 0

0.086628 βˆ’0.04996 βˆ’0.08663 0.04996 0 0 0 0 0 0 0 0 0 10 0 βˆ’1 0 1 0 1 0 0 0 0 0 0 00 0 0 βˆ’1 0 1 0 1 0 0 0 0 0 00 0 βˆ’0.18666 0.199477 βˆ’0.19389 0.123602 0.003339 0.037966 0 0 0 0 0 00 0 0 0 βˆ’1 0 0 0 1 0 0 0 0 00 0 0 0 0 βˆ’1 0 0 0 1 0 0 0 00 0 0 0 0.235141 0.186303 0 0 0.235141 0.186303 0 0 0 00 0 0 0 0 0 βˆ’1 0 0 0 1 0 0 00 0 0 0 0 0 0 βˆ’1 0 0 0 1 0 00 0 0 0 0 0 0.203346 0.344456 0 0 0.20335 0.344456 0 00 0 0 0 0 0 0 0 0 0 βˆ’1 0 0.3 00 0 0 0 0 0 0 0 0 0 0 βˆ’1 1 0⎦

βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎀

βˆ—

βŽ£βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ‘π›΄π›΄12𝑋𝑋𝛴𝛴12π‘Œπ‘Œπ›΄π›΄32𝑋𝑋𝛴𝛴32π‘Œπ‘Œπ›΄π›΄43𝑋𝑋𝛴𝛴43π‘Œπ‘Œπ›΄π›΄53𝑋𝑋𝛴𝛴53π‘Œπ‘Œπ›΄π›΄14𝑋𝑋𝛴𝛴14π‘Œπ‘Œπ›΄π›΄65𝑋𝑋𝛴𝛴65π‘Œπ‘Œπ›΄π›΄16π‘Œπ‘Œπ‘‡π‘‡12 ⎦

βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎀

=

βŽ£βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ‘βˆ’126.221βˆ’218.875

0βˆ’1009.05βˆ’1058.253.539525βˆ’403.912βˆ’324.6655.759379βˆ’544.025βˆ’359.3313.631767βˆ’159.662

0 ⎦βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎀

This matrix is solved to produce the following results for each of the unknown variables.

βŽ£βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ‘π›΄π›΄12𝑋𝑋𝛴𝛴12π‘Œπ‘Œπ›΄π›΄32𝑋𝑋𝛴𝛴32π‘Œπ‘Œπ›΄π›΄43𝑋𝑋𝛴𝛴43π‘Œπ‘Œπ›΄π›΄53𝑋𝑋𝛴𝛴53π‘Œπ‘Œπ›΄π›΄14𝑋𝑋𝛴𝛴14π‘Œπ‘Œπ›΄π›΄65𝑋𝑋𝛴𝛴65π‘Œπ‘Œπ›΄π›΄16π‘Œπ‘Œπ‘‡π‘‡12 ⎦

βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎀

=

βŽ£βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ‘βˆ’1791.45βˆ’1626.381665.231407.50

61.89354.57594.29βˆ’5.32βˆ’342.02

29.9150.27

βˆ’364.65βˆ’364.65147.89 ⎦

βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎀

Working Model Simulation

Page 47: School of Engineering (Mechanical and Automotive)

0 | P a g e

Analysis of the positions of each of the joints.

Figure 46 Working Model Position Analysis

Page 48: School of Engineering (Mechanical and Automotive)

1 | P a g e

Analysis of all the velocities at each joint.

Figure 47 Working Model Velocity Analysis

Page 49: School of Engineering (Mechanical and Automotive)

2 | P a g e

Analysis of all the accelerations at all of the joints.

Figure 48 Working Model Acceleration of Joints Analysis

Page 50: School of Engineering (Mechanical and Automotive)

3 | P a g e

Analysis of the acceleration at the mass centre of each of the links.

Figure 49 Working Model Acceleration at Centre of Mass Analysis

Page 51: School of Engineering (Mechanical and Automotive)

4 | P a g e

Analysis of each of the forces at each of the joints and torque moment at the motor.

Figure 50 Working Model Force Analysis

Page 52: School of Engineering (Mechanical and Automotive)

0 | P a g e

Balancing Strategy Development To find the shaking forces, the following equation is used.

𝛴𝛴𝑆𝑆 = 𝛴𝛴21 + 𝛴𝛴41 + 𝛴𝛴6

𝛴𝛴𝑆𝑆 = 𝛴𝛴21𝑋𝑋 + 𝛴𝛴21π‘Œπ‘Œ + 𝛴𝛴41𝑋𝑋 + 𝛴𝛴41π‘Œπ‘Œ + 𝛴𝛴61𝑋𝑋 + 𝛴𝛴61π‘Œπ‘Œ

Where the values are found from the dynamic forces’ matrix.

βŽ£βŽ’βŽ’βŽ’βŽ’βŽ‘π›΄π›΄21𝑋𝑋𝛴𝛴21π‘Œπ‘Œπ›΄π›΄41𝑋𝑋𝛴𝛴41π‘Œπ‘Œπ›΄π›΄61𝑋𝑋𝛴𝛴61π‘Œπ‘ŒβŽ¦

βŽ₯βŽ₯βŽ₯βŽ₯⎀

=

⎣⎒⎒⎒⎒⎑1791.451626.38342.02βˆ’29.91109.395364.65 ⎦

βŽ₯βŽ₯βŽ₯βŽ₯⎀

These forces can be split into their x and y components of the resultant force respectively.

Firstly, the x axis resultant force is found.

𝛴𝛴𝛴𝛴𝑅𝑅𝑋𝑋 = 𝛴𝛴21𝑋𝑋 + 𝛴𝛴41𝑋𝑋 + 𝛴𝛴61𝑋𝑋

𝛴𝛴𝛴𝛴𝑅𝑅𝑋𝑋 = 1791.45 + 342.02 + 109.40 = 2242.873𝑁𝑁

Following with the y axis resultant force.

π›΄π›΄π›΄π›΄π‘…π‘…π‘Œπ‘Œ = 𝛴𝛴21π‘Œπ‘Œ + 𝛴𝛴41π‘Œπ‘Œ + 𝛴𝛴61π‘Œπ‘Œ

π›΄π›΄π›΄π›΄π‘…π‘…π‘Œπ‘Œ = 1626.38 βˆ’ 29.91 + 364.65 = 1961.118𝑁𝑁

𝛴𝛴𝑆𝑆 = οΏ½(π›΄π›΄π›΄π›΄π‘…π‘…π‘Œπ‘Œ)2 + (𝛴𝛴𝛴𝛴𝑅𝑅𝑋𝑋)2 = 2979.34𝑁𝑁

The shaking moment is found for the system.

𝑇𝑇𝑆𝑆 = 𝑇𝑇21 = βˆ’π‘‡π‘‡12 = βˆ’147.89 π‘π‘π‘šπ‘š

Figure 51 Shaking Moment Diagram

Finally, the shaking moment is developed from the diagram above.

𝛴𝛴𝑆𝑆 = 𝑇𝑇21 + (𝑅𝑅1𝛴𝛴41) + (𝑅𝑅2𝛴𝛴61)

Page 53: School of Engineering (Mechanical and Automotive)

1 | P a g e

𝛴𝛴𝑆𝑆 = 𝑇𝑇21 + (𝑅𝑅1𝑋𝑋𝛴𝛴41π‘Œπ‘Œ) βˆ’ (𝑅𝑅1π‘Œπ‘Œπ›΄π›΄41𝑋𝑋) βˆ’ (𝑅𝑅2𝑋𝑋𝛴𝛴61π‘Œπ‘Œ) βˆ’ (𝑅𝑅2π‘Œπ‘Œπ›΄π›΄61𝑋𝑋)

𝛴𝛴𝑆𝑆 = βˆ’147.89 + οΏ½0.7956 βˆ— (βˆ’29.91)οΏ½ βˆ’ (0.0836 βˆ— 342.02) βˆ’ (1.0264 βˆ— 364.65)βˆ’ (0.05 βˆ— 109.40) = βˆ’580.02 π‘π‘π‘šπ‘š

In order to reduce the shaking moment transferred to the ground, some actions could be made.

Firstly, if the shaking moment isn’t too great, a damper can be used to absorb the energy being transferred to the ground to help reduce the overall effect on the ground.

If the shaking moment is too great or a damper is unable to be installed, another solution is to remove or add mass to the system at points which can reduces the overall moments at each of the ground points.

Results Graphical Method Analytical Method Computational

Method Linear Velocity Vector

(𝟏𝟏𝟏𝟏/𝒅𝒅) IC

(𝟏𝟏𝟏𝟏/𝒅𝒅) ΞΈ

(𝒅𝒅𝑹𝑹𝒅𝒅) Vector

(𝟏𝟏𝟏𝟏/𝒅𝒅) ΞΈ

(𝒅𝒅𝑹𝑹𝒅𝒅) Vector

(𝟏𝟏𝟏𝟏/𝒅𝒅) 𝑽𝑽𝑨𝑨 10053.09298 10053.1171

8 150.00 10053.09649 150 10053.1

𝑽𝑽𝑩𝑩 1838.888167 1838.65304 218.39 1838.782206 218.31 2520.1

𝑽𝑽π‘ͺπ‘ͺ 5225.428643 5225.120573

174.61 5236.737183 174.5051768

5617.9

𝑽𝑽𝑫𝑫 5492 5308 180 5508.545817 180 5676.2

Angular Velocity Vector (𝒅𝒅𝒓𝒓𝒅𝒅/𝒅𝒅) Vector (𝒅𝒅𝒓𝒓𝒅𝒅/𝒅𝒅) Vector (𝒅𝒅𝒓𝒓𝒅𝒅/𝒅𝒅)

𝝎𝝎𝟐𝟐 50.26548246 50.26548246

𝝎𝝎𝟏𝟏 -19.0608557 -19.05591673

πŽπŽπŸ’πŸ’ 3.064816259 3.064637009

πŽπŽπŸ”πŸ” -0.712661395 -0.727786137

Linear Acceleration

Vector (𝟏𝟏𝟏𝟏/π’…π’…πŸπŸ)

ΞΈ (𝒅𝒅𝑹𝑹𝒅𝒅) Vector (𝟏𝟏𝟏𝟏/π’…π’…πŸπŸ)

ΞΈ (𝒅𝒅𝑹𝑹𝒅𝒅) Vector (𝟏𝟏𝟏𝟏/π’…π’…πŸπŸ)

𝒓𝒓𝑨𝑨 505323.6353 239.9999761 505323.7453 240 505323.7

𝒓𝒓𝑩𝑩 692624.5496 218.0477535 696608.9655 218.4172561

671303.7

𝒓𝒓π‘ͺπ‘ͺ 579735.8094 223.4211914 593949.1532 224.571854 563438.9

𝒓𝒓𝑫𝑫 187244 180 177402.2398 180 160192.2

Angular Acceleration

Vector (𝟏𝟏𝟏𝟏/π’…π’…πŸπŸ) Vector (𝟏𝟏𝟏𝟏/π’…π’…πŸπŸ) Vector (𝟏𝟏𝟏𝟏/π’…π’…πŸπŸ)

𝜢𝜢𝟐𝟐 0 0

𝜢𝜢𝟏𝟏 445.6566542 442.4406331

πœΆπœΆπŸ’πŸ’ 1154.375247 1151.875838

πœΆπœΆπŸ”πŸ” 577.5306514 605.2945123

Table 11 Velocity and Acceleration Results for πœƒπœƒ2 = 60 degrees

Page 54: School of Engineering (Mechanical and Automotive)

2 | P a g e

Analytical Method Computational Method

Raw Data (N) Joint Forces (N) Software Generated (N)

π‘­π‘­πŸπŸπŸπŸπ‘Ώπ‘Ώ -1791.454367 𝛴𝛴12 2419.5905

π‘­π‘­πŸπŸπŸπŸπ’€π’€ -1626.379177

π‘­π‘­πŸπŸπŸπŸπ‘Ώπ‘Ώ 1665.233433 𝛴𝛴32 2180.383 𝛴𝛴𝑨𝑨 2195.65

π‘­π‘­πŸπŸπŸπŸπ’€π’€ 1407.504103

π‘­π‘­πŸ’πŸ’πŸπŸπ‘Ώπ‘Ώ 61.88841423 π›΄π›΄πŸ’πŸ’πŸπŸ 359.93553 𝛴𝛴𝑩𝑩 438.99

π‘­π‘­πŸ’πŸ’πŸπŸπ’€π’€ 354.5749709

π‘­π‘­πŸ”πŸ”πŸπŸπ‘Ώπ‘Ώ 594.2925285 π›΄π›΄πŸ”πŸ”πŸπŸ 594.31632 𝛴𝛴π‘ͺπ‘ͺ 709.01

π‘­π‘­πŸ”πŸ”πŸπŸπ’€π’€ -5.317468002

π‘­π‘­πŸπŸπŸ’πŸ’π‘Ώπ‘Ώ -342.0237588 𝛴𝛴14 343.32907 𝛴𝛴𝑬𝑬 433.53

π‘­π‘­πŸπŸπŸ’πŸ’π’€π’€ 29.90989642

π‘­π‘­πŸ”πŸ”πŸ”πŸ”π‘Ώπ‘Ώ 50.26751607 π›΄π›΄πŸ”πŸ”πŸ”πŸ” 368.09677

π‘­π‘­πŸ”πŸ”πŸ”πŸ”π’€π’€ -364.6483324

π‘­π‘­πŸπŸπŸ”πŸ”π’€π’€ -364.6483324 𝛴𝛴16 380.70404 𝛴𝛴𝑺𝑺 2642.40

π‘­π‘­πŸπŸπŸ”πŸ”π‘Ώπ‘Ώ -109.3944997

π‘»π‘»πŸπŸπŸπŸ (π‘΅π‘΅πŸπŸ) 147.8827066

𝑇𝑇12 (π‘π‘π‘šπ‘š) 157.32

Table 12 Force Results for πœƒπœƒ2 = 60 degrees

The stroke distance was determined as seen below:

Stroke Distance = 1026.4mm

The shaking force, shaking torque and shaking moment at πœƒπœƒ2 = 60 degrees were found as seen below:

𝛴𝛴𝑠𝑠 = 2979.34𝑁𝑁

𝑇𝑇𝑠𝑠 = βˆ’147.883π‘π‘π‘šπ‘š

𝛴𝛴𝑠𝑠 = βˆ’580.02π‘π‘π‘šπ‘š

Discussion The results at every stage of the process produced values which were within an acceptable tolerance of other values found using different methods. Most values were within 5% of other calculated values for other methods, however, the values which were outside this calculation were still relatively close to the other methods calculations.

This discrepancy between some of the values can be attributed to measurement inaccuracy for the different methods. Some of the errors in the graphical method can be attributed to rounding of numbers and measurement tools resolution being unable to 100% accurately determine values. For the Working Model results, the snapshot which the results were taken may not have been at exactly when πœƒπœƒ2 = 60 degrees causing a slightly different situation to be analysed. Across all methods, compounding differences and rounding errors in the methods will attribute to some of the larger differences in results obtained towards the end of each section. Since all the results have relatively

Page 55: School of Engineering (Mechanical and Automotive)

3 | P a g e

similar magnitude and results, it can be assumed that these values are correct for if this mechanism was to be created in the real world.

Conclusion Overall the values that were produced from all the methods may not be completely accurate but most of the values are close enough that any of them can be used as an approximate used for a system and thus confirms that the methods are relatively accurate in determining the values for the position, velocity, acceleration and forces on the system.

References 1. Matthew West 2015, Four-Bar Linkages, Dynamics, Viewed September 12 2020,

<http://dynref.engr.illinois.edu/aml.html> 2. Course material of MIET1077: Mechanics of Machines provided by Prof. Firoz Alam

Attachments Attached to this document is a zip folder containing all the Working Model files used.